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Abstract Imaging in heart failure (HF) provides data for di-
agnosis, prognosis and disease monitoring. Both MRI and
nuclear imaging techniques have been successfully used for
this purpose in HF. Positron Emission Tomography-Cardiac
Magnetic Resonance (PET-CMR) is an example of a new
multimodality diagnostic imaging technique with potential
applications in HF. The threshold for adopting a new diagnos-
tic tool to clinical practice must necessarily be high, lest they
exacerbate costs without improving care. New modalities
must demonstrate clinical superiority, or at least equivalence,
combined with another important advantage, such as lower
cost or improved patient safety. The purpose of this review
is to outline the current status of multimodality PET-CMR
with regard to HF applications, and determine whether the
clinical utility of this new technology justifies the cost.
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Introduction

Heart failure (HF) is an ever-increasing public health problem,
with an annual global economic burden of $108 billion per

annum [1]. The magnitude of this problem mandates innova-
tive therapeutic and diagnostic solutions. However, the thresh-
old for adopting new diagnostic tools to clinical practice must
necessarily be high, lest they exacerbate costs without improv-
ing care. New modalities must demonstrate clinical superior-
ity, or at least equivalence, combined with another important
advantage, such as lower cost or improved patient safety.

Positron Emission Tomography-Cardiac Magnetic
Resonance (PET-CMR) is an example of a new multimodality
diagnostic imaging technique with potential applications in
heart failure. In PET-CMR, PET data is acquired either simul-
taneously or sequentially to CMR data using hybrid-scanner
infrastructure. Such hardware has been available for approxi-
mately 5 years, however the high costs has limited utilization
to a small number of early adopters; not necessarily focused
on cardiac applications – therefore the literature at this time
remains sparse. As an alternative to PET-CT, PET-CMR is
associated with lower radiation exposure, improved cardiac
and respiratory motion compensation and versatile data acqui-
sition. However there are important concerns about capital
(~$9,000,000) and operational costs (~$100,000 per month
[2]), technical limitations and patient eligibility.

CMR and PET scans have been successfully used in the
evaluation of patients with HF either simultaneously or sepa-
rately with application of post-acquisition fusion of indepen-
dently acquired scans. The purpose of this review is to outline
the current status of the new hybrid PET-CMR technology
with regard to HF applications – Is hybrid PET-CMR now
ready for prime time in HF?

Multimodality imaging in HF

Cardiac pump dysfunction is the final endpoint of a range of
cardiac pathologies, such as ischemic heart disease,
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replacement fibrosis, infiltration, inflammation and myocardi-
al iron deposition. Establishing the specific etiology of HF is
important because it is associated with prognosis [3] and
guides specific therapy: for example, revascularization and
secondary prevention for ischemic heart disease. While imag-
ing is generally helpful in providing a specific diagnosis, var-
iability in diagnostic performance can often result in etiologic
uncertainty. Multi-modality imaging aims to harness the dif-
ferent physical bases of image formation to create an image set
with complementary (or even synergistic) information. The
aim is to produce superior biomarkers for heart failure diag-
nosis, prognosis, and monitoring. For example improved sta-
tistical performance for risk estimation by using PET bio-
markers with CMR cardiac or respiratory motion correction
[4], or improved diagnostic categorization of patients accord-
ing to differential patterns of fused PET-CMR images.

By contrast, if data from different imaging modalities pro-
vide the ‘same’ information in different image spaces, collin-
earity and redundancy are introduced. The success or failure
of PET-CMR (and indeed all multi-modality imaging) is
therefore dependent on acquiring information more valuable
than the individual components.

PET imaging

Cardiac PET is the modality of choice to measure perfusion,
metabolism and regional/absolute myocardial blood flow.
PET imaging is facilitated by the use of radiotracers, in which
a compound or pharmaceutical is labeled with a positron emit-
ting radionuclide. Positrons are positively charged nuclear
particles with the same mass as an electron. When an emitted
positron collides with an electron in adjacent tissue, two
511 keV gamma rays (photons) are emitted in opposite direc-
tions. PET detectors are designed to register only photon pairs
that strike opposing detectors at the same time, termed ‘coin-
cidence detection’. PET radionuclides generally have much
shorter half-lives than those used in single photon emission
CT (SPECT), and therefore are associated with less radiation
exposure [5].

The most commonly utilized cardiac PET tracers include:
tracers to assess myocardial blood flow (MBF) (13N–
Ammonia, Rubidium-82 [82Rb], oxygen-15 labeled water
[H2

15O]) or glucose metabolism (18F–Fluorodeoxyglucose,
FDG). The type of image that can be acquired is based upon
the pharmacokinetics of the particular radiopharmaceutical,
and in principle, any physiological or molecular process that
can be targeted with a radiotracer can be imaged, given suit-
able uptake in the area of interest. An important area of trans-
lational imaging research is the clinical development of spe-
cific molecular probes, which can detect inflammation, throm-
bosis, apoptosis, necrosis, angiogenesis, fibrosis or other al-
terations of the extracellular matrix [6].

Measurement of absolute MBF by PET entails the intrave-
nous injection of a MBF tracer followed by dynamic acquisi-
tion of images of the radiotracer passing through the circula-
tory system and evaluation of extraction and retention in the
myocardium. Kinetic models and operational equations (ac-
counting for tracer decay, partial volume, blood pool spill-
over) are then applied to yield regional MBFs in absolute
terms, ml/g/min [7]. Calculating the ratio of peak MBF at
maximal pharmacologically induced vasodilatation to resting
MBF provides quantification of myocardial perfusion reserve,
which provides important prognostic and severity information
in the assessment of coronary stenosis and microvascular dis-
ease [8–10].

18F–FDG is a glucose analog that is taken up by myocytes
(and other cells, including immune cells) via membrane glu-
cose transporters (GLUT); and therefore highly sensitive to
metabolically active processes. 18F–FDG is phosphorylated
intracellularly in the glycolytic pathway by a hexokinase into
18F–FDG-6-phosphate. However 18F–FDG-6-phosphate can-
not be metabolized further along this pathway and therefore
accumulates within cells in direct proportion to their metabolic
activity. In the myocardium, under aerobic conditions, most
myocardial energy consumption is derived from oxidation of
free fatty acids, followed by glucose, and therefore accumula-
tion of 18F–FDG-6-phosphate is expected to be low, but in-
creased in areas of increased metabolism, such as inflamma-
tion, or in the setting of myocardial hibernation.

CMR imaging

CMR is an excellent non-invasive imaging modality for char-
acterization of the heart as a complex structure and mechanical
pump. Cine imaging is the reference standard for the assess-
ment of structure and global ventricular performance through
quantification of chamber volumes and function (ejection
fraction (EF) and cardiac output). Combined with phase con-
trast imaging, valve regurgitation volume/fraction can also be
reliably estimated for all four cardiac valves. Cine imaging
can also be used to demonstrate regional wall motion abnor-
malities or LV thrombus. Newer forms of acquisition can di-
rectly assess myocardial deformation or strain (e.g. Tagging,
Tissue phase mapping or DENSE imaging) [11, 12].
Assessment of diastolic function can also be performed with
combinations of the above techniques, with characterization
of atrial volume and mitral valve inflow patterns. In serial
follow-up of ventricular function, CMR offers markedly su-
perior inter-study reproducibility compared to 2D echocardi-
ography [13].

CMR can also be used to characterize myocardial tissues
based upon three properties that determine image contrast in
anMR image: proton density (density of hydrogen atoms) and
two magnetic relaxation parameters (T1 – longitudinal relax-
ation time) and T2 (Transverse relaxation time). For example,
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in T1-weighted images, myocardial tissue is dark while fat is
bright. By contrast, T2-weighted images can be used to iden-
tify myocardial water/edema caused by inflammation or acute
ischemia. Using a gadolinium-based contrast, which acts to
shorten T1 in the area of distribution, can further assist tissue
characterization. Gadolinium accumulates in areas of in-
creased extracellular volume such as scar or fibrosis, resulting
in hyperenhancement on inversion recovery CMR images –
late gadolinium enhancement (LGE). It is possible, therefore,
using a combination of acquisitions, which differ in terms of
tissue contrast, to characterize normal from abnormal areas of
myocardium and identify possible pathological mechanisms
(e.g. fibrosis, edema, ischemia). Gadolinium CMR may also
be used to quantify myocardial perfusion and perfusion re-
serve (in a conceptually similar way to PET) without radiation
exposure using dual bolus, first pass imaging with Fermi func-
tion deconvolution methods [14, 15].

It is immediately clear that combining PET and CMR has
great potential for the characterization of pathology from mo-
lecular to organ levels; this multimodality approach may ben-
efit investigation of patients with heart failure.

PET-CMR in heart failure

Ischemic heart disease

Myocardial perfusion imaging

The estimated prevalence of coronary artery disease (CAD) in
patients with HF ranges from 50 to 65% [16, 17]. Chronic left
ventricular dysfunction in patients with coronary artery dis-
ease may be due to scar, ischemia, stunning and hibernation,
or a mixture – some of which may be amenable to recovery
following revascularization. Using a combination of perfusion
and viability imaging it is possible to define the percentage of
abnormal myocardium in each of these categories.

The landmark STICH (Surgical Treatment for Ischemic
Heart Failure) trial showed that surgical revascularization of
patients with ischemic cardiomyopathy (LVEF <35%) im-
proves cardiovascular mortality [18]. The identification of
coronary artery disease in new onset heart failure is therefore
of utmost importance. Yet, it is estimated that only 17.5% of
patients hospitalized for new onset heart failure undergo diag-
nostic workup for CAD during their admission, increasing to
only 27.4% at 90 days [19]. The diagnosis of obstructive cor-
onary artery disease by myocardial perfusion imaging (MPI)
is the most frequent indication for nuclear cardiology in clin-
ical practice and PET is the gold standard for this purpose [14,
20, 21]. Studies of MPI using hybrid PET-MRI systems are
notably limited, in part because of the incompatibility with
rubidium-82 generators with MRI. 13N–Ammonia is an alter-
native and MRI compatible MPI radiotracer, but requires an

on-site cyclotron. The feasibility of stress MPI using 13N–
Ammonia PET-CMR has been reported in a small number
of patients and has shown good diagnostic accuracy compared
to SPECT [22, 23]. Considering the challenges of performing
MPI in this setting, it is likely that CMR, rather than nuclear,
approaches would be preferred for PET-CMR. The most ob-
vious solution would be the use of dobutamine/adenosine
first-pass contrast-enhanced perfusion CMR. A recent meta-
analysis of 19 studies and 111,636 patients with a mean
follow-up of 32 months showed that patients with ischemia
on a stress CMR study had an almost 8-fold increased inci-
dence of MI and a 7-fold increased risk for cardiovascular
death compared with those without ischemia [24]. A similar
analysis of 12,178 patients showed that the annualized event
rate after a negative CMR stress test was 1% [25]. Accurate
quantitative myocardial perfusion imaging is also possible
using CMR with good comparability to PET [14]. Thus,
multi-parametric CMR may be the preferred option for the
detection of clinically significant CAD in HF when using
PET-CMR infrastructure.

Myocardial viability imaging

Meta-analysis data supports the view that, the greater the
amount of ‘hibernating’ versus non-viable myocardium, the
better the outcome with revascularization [26]. In patients
with ischemic cardiomyopathy, myocardial viability imaging
may be used to support a decision for revascularization eligi-
bility. Such an assessment aims to separate myocardial dys-
function into two main categories: 1) irreversible myocardial
necrosis due to prior MI with resultant scar or (2) myocardium
with reversible loss of contractility as a result of chronic hy-
poperfusion (hibernation) or recurrent transient ischemia (re-
petitive stunning).

However, the role of viability imaging in this cohort re-
mains somewhat controversial. In the PARR-2 study, patients
with severe LV dysfunction and suspected CAD were ran-
domized to FDG-PET assisted management or standard care.
The study did not demonstrate a significant reduction in car-
diac events for FDG PET-assisted management versus stan-
dard care. However, in those who adhered to PET recommen-
dations and in patients without recent angiography, significant
benefits were observed [27, 28]. In the viability substudy of
STICH (using SPECT or dobutamine stress echo) the assess-
ment of myocardial viability did not identify patients with a
differential survival benefit from CABG, as compared with
medical therapy alone [29]. These data have been criticized
as only 19% of the patients in the viability study had nonvia-
ble myocardium, and the viability imaging techniques were
not themselves randomized or standardized. Furthermore,
PET-FDG or delayed CMR were not performed [30].

More recent data using multi-modal imaging with stress/
rest, viability/perfusion imaging with PET-FDG and
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Rubidium-82 (identifying ischemia, scar, and hibernating
myocardium) by Ling et al. [31]. do provide evidence that
hibernating myocardium identified by imaging does identify
those patients with ischemic cardiomyopathy who accrue a
survival benefit with revascularization. In this study, the in-
vestigators found that revascularization in the setting of sig-
nificant myocardial hibernation (but not scar or ischemia) im-
proved survival, particularly when the extent of viability
exceeded 10% of the LV myocardium.

Both CMR and PET have been independently used to eval-
uate myocardial viability using LGE and 18F–FDG, respec-
tively [32–35]. However, the higher spatial resolution of CMR
facilitates the identification of scar more easily than PET, sug-
gesting a benefit for hybrid imaging [33]. Several studies have
investigated the role of hybrid PET-CMR for assessment of
myocardial viability, albeit in acute myocardial infarction rath-
er than ischemic cardiomyopathy. Bulluck et al. [36] used
PET-CMR to predict the outcome of an ischemic injury at
12 months. In this study the salvaged ‘area at risk’ (AAR) in
reperfused acute myocardial infarction (MI) was delineated
using T2 mapping (Fig. 1). In patients with minimal myocar-
dial salvage following ST elevation MI, the areas of reduced
FDG uptake were confined to the areas of LGE (indicating the
area irreversible myocardial necrosis). In contrast, in patients
with significant myocardial salvage, the areas of reduced FDG
uptake extended beyond areas of LGE. Importantly, at
12 months the study showed normalization of cardiac metab-
olism in the salvaged myocardium in the AAR, with only the
irreversibly injured myocardium demonstrating reduced FDG

uptake. The strength of this study is demonstration of the
ability of PET-CMR to provide metrics relating to the extent,
severity and outcome of an ischemic injury, which may be
transferable to viability imaging in ischemic cardiomyopathy.

Rischpler et al. [37] used hybrid PET-CMRwith the aim of
comparing LGE CMR with 18F–FDG PET in dysfunctional
myocardial segments early after acute myocardial infarction
and functional recovery of these segments after 6 months.
They also showed that FDG uptake was related to the AAR
and exceeded the extent of LGE. This study showed that FDG
uptake extent correlated with the inflammatory response as
measured by blood inflammatory leukocytosis and that uptake
in the infarcted myocardium was associated with LV function
independent of infarct size.

Coronary imaging

Coronary PET-CMR imaging using 18F–FDG and 18F–sodi-
um fluoride radiotracers in combination have been used re-
cently to image coronary artery inflammation and
microcalcification, respectively. This very new approach, has
the potential to be used to identify patients with increased or
active atherosclerotic disease activity that may benefit from
aggressive risk factor modification [38].

Sarcoid

Sarcoidosis is a systemic granulomatous disease in which in-
flammatory granulomas result in marked local inflammation
and post-inflammatory scar. Cardiac granulomas produce con-
duction defects, heart block and heart failure [39]. The onset
of cardiac involvement heralds a markedly worse prognosis
for affected patients [40]. Early diagnosis and intervention
with disease modifying therapy is therefore warranted.
Historically Gallium-67 scintigraphy has been used for the
diagnosis of cardiac sarcoid, but it has a low sensitivity owing
to low image resolution, and has begun to be replaced by other
imaging modalities such as CMR or PET. CMR has the po-
tential to demonstrate myocardial edema using T2-weighted
imaging, and also delineate scarring with LGE imaging,
which has prognostic significance [41]. Importantly, inflam-
mation is an important component of the disease process, and
18F–FDG PET may provide unique data on disease activity.
Ishimaru et al. [42] showed abnormalities in PET imaging that
were entirely absent on traditional Gallium scans. The com-
plementary nature of CMR and PET imaging modalities has
been investigated by Ohira et al. [43] who studied 21 patients
with cardiac sarcoid using serial imaging techniques per-
formed within 4 weeks. In this cohort of patients, the authors
found focal 18F–FDG uptake in 15 patients (71%), and high
signal intensity (T2-weighted imaging) or LGE on CMR in 9
patients (43%). Importantly, in eight of these patients, 3 had
abnormal findings in only one of the two modalities, while the

1 2 3

CMR LGE

18FDG PET

T2 Mapping CMR

LGE-FDG Fusion

Fig. 1 Hybrid positron emission tomography– magnetic resonance
(PET-CMR) cardiac imaging of subendocardial infarction. Three study
patients with subendocardial myocardial infarction (red arrows) with sig-
ni f icant myocardia l sa lvage. The areas of reduced 18F–
fluorodeoxyglucose (FDG) uptake (white arrows) and the areas of edema
on T2 maps (the AAR; black arrows) extended both transmurally and
radially beyond the areas of late gadolinium enhancement (LGE). AAR
indicates area at risk. Figure from adapted from Bullock et al. [36]Circ
CV Imaging 2016
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other five had positive findings on both images, but with dif-
ferent distributions. These findings are important as they indi-
cate the potential power of orthogonal data from
multimodality imaging to increase test sensitivity. This kind
of data has been replicated in numerous case studies using
hybrid or same day PET-CMR [44–49]. Together these data
indicate that the hybrid approach yields superior diagnostic
information than either modality alone.

Amyloid

Cardiac amyloid deposits can be imaged using PET radio-
tracers, which target the amyloid β-pleated-sheet structure,
for example 18F–florbetaben PET (Figs. 2, 50] CMR bio-
markers of cardiac amyloidosis are of proven prognostic
value [51]. However, CMR is unable to differentiate be-
tween the two main forms of amyloid: acquired monoclo-
nal immunoglobulin light-chain (AL) and transthyretin-
related (familial and wild-type/senile) amyloid (ATTR).
This information has important prognostic and therapeutic
implications. Nuclear imaging with SPECT bone tracers
has been shown as one possible method to differentiate
amyloid subtypes [52, 53]. Trivieri et al. [54] used hybrid
PET-CMR and the PET bone tracer 18F–sodium fluoride,
with the aim of differentiation of ATTR and AL forms
within a single, low-radiation scan. Fourteen subjects were
prospectively recruited, comprising 4 patients with biopsy-
proven ATTR, 3 with biopsy-proven AL amyloid, and 7
control subjects without clinical suspicion of amyloid. The
authors performed image analysis on fused, co-registered
PET and MR LGE images, allowing PET activity to be
measured within the LV myocardium, and importantly
demonstrating specific areas of amyloid deposition that
were visualized on LGE. The amyloid burden as assessed

by T1 mapping was similar in patients with AL and
ATTR amyloid, however patchy areas of increased 18F–
sodium fluoride uptake were observed in the myocardium
of patients with ATTR but not the other two groups. This
study differs from some of the other approaches described
in this review, in that truly independent (and complemen-
tary) data is derived from both modalities, rather than
images which essentially describe the same pathology in
different image space (e.g. 18F–FDG-PET and T1/T2 map-
ping for inflammation).

Novel PET radiotracers may have potential to further
refine ATTR amyloid diagnosis. Amongst patients with
ATTR V30 M (the most common Transthyretin [TTR]
mutation in Europe) amyloidosis, two main phenotypes
are observed: one characterized by late onset (>50 years)
with both cardiac and neurological manifestations and an-
other with an early onset of disease, with mainly neuro-
pathic manifestations. These phenotypes have been associ-
ated with differences in amyloid fibril composition – type
A (full length TTR and fragments) and type B (full length
TTR) [55]. Pilebro et al. investigated the role of 11C–
Pittsburgh compound B (PIB) to differentiate these sub-
types of ATTR, and showed that global LV 11C–PIB
was higher in patients with Type B V30 M ATTR [56].

Myocarditis

Acute myocarditis is an important cause of death in children
and young adults and is traditionally assumed to account for
many cases of dilated cardiomyopathy previously classified as
idiopathic. The role of CMR (especially T1 and T2 mapping)
is now established in the diagnosis of acute and chronic myo-
carditis [57, 58]. However, CMR fails to identify a significant
number of patients with biopsy proven myocarditis. The

A B C

Fig. 2 18F–florbetaben PET (left column in each panel), low-dose CT
(middle column), and PET/CT images (right column) of representative
AL patient (A), ATTR patient (B), and hypertensive control (C). 18F–

florbetaben myocardial uptake is seen in patients with both AL and
ATTR amyloidosis. W. Phillip Law et al. [50] J Nucl Med
2016;57:1733–1739
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addition of nuclear imaging to CMR may therefore improve
sensitivity, Fig. 3.

Nensa et al. investigated the feasibility of PET-CMR for the
investigation of suspected myocarditis [59]. The authors
showed good agreement between myocardial FDG and
LGE/T2 hyper-intensity. Overall 24/65 patients had abnor-
malities on either PET or CMR imaging consistent with myo-
carditis: 17 patients (71%) showed concordant CMR and PET
abnormalities, 6 patients (25%) had pathologic CMR findings
in the absence of pathologic FDG uptake and 1 patient (4%)
demonstrated pathologic FDG uptake in the absence of path-
ologic CMR findings. These data point to several important
problems for PET-CMR: 1) in 8/65 patients (12%), the inhi-
bition of physiological myocardial glucose uptake failed, ren-
dering the nuclear imaging unusable, and 2) adding PET im-
aging provided only a minimal increase in the sensitivity
above CMR imaging alone (also assuming this was not a false
positive). On this basis, the case has not been clearly made for
routine use of PET-CMR in the assessment of myocarditis.

Anderson fabry disease

Anderson Fabry disease (AFD) is an x-linked lysosomal stor-
age disorder. It is caused by deficient activity of the lysosomal
enzyme alpha-galactosidase A, resulting in the accumulation
of globotriaosylceramide in lysosomes in multiple cell types
throughout the body [60]. Heart failure is the most common
first cardiac event in AFD patients [61], but may be prevent-
able with enzyme replacement therapy; [62–64] early diagno-
sis of cardiac involvement is therefore important. Nappi et al.
[65] used PET-CMR hybrid imaging to assess cardiac in-
volvement a cohort of 13 asymptomatic AFD patients. There
were three components to the imaging protocol: LGE imaging
(fibrosis), short inversion time inversion recovery [STIR] im-
aging (edema), and 18F–FDG PET (myocardial metabolism).
6/13 patients exhibited focal LGE indicating intra-myocardial
fibrosis; four of these patients also had positive STIR imaging
suggesting myocardial edema. All 4 patients with LGE and
positive STIR showed focal FDG uptake in the corresponding
myocardial segments indicating inflammation (these patients
also had elevated cardiac troponin). An important area requir-
ing further exploration is the significance of heterogenous
FDG uptake in a group of patients without other CMR abnor-
malities - Does this finding represent myocardial inflamma-
tion indicating early (pre-clinical) cardiac involvement?
Alternatively, could enzyme replacement therapy itself result
in inflammation secondary to globotriaosylceramide clear-
ance? This novel data supports the role of inflammation in
the pathogenesis of cardiac involvement in AFD, and demon-
strates the possibility for dissecting disease stages using
multimodality PET-CMR.

Potential new developments

Sympathetic nervous system imaging

Whilst PET-CMR literature remains in its infancy, it is possi-
ble to identify some areas of future development applicable to
heart failure. Sympathetic nervous system imaging The
ADMIRE-HF (AdreView Myocardial Imaging for Risk
Evaluation in Heart Failure) study prospectively evaluated
iodine-123 meta-iodobenzylguanidine (123I–mIBG) imaging
for identifying cardiac events in patients with symptomatic
heart failure. Increased myocardial sympathetic activity is a
prominent feature of heart failure and is associated with re-
duced neuronal norepinephrine (NE) uptake due to post-
transcriptional down-regulation of the cardiac NE transporter,
which can be assessed by 123I–mIBG imaging. The
ADMIRE-HF trial showed that mIBG data provides comple-
mentary prognostic information to existing heart failure bio-
markers (BNP and LVEF) [66]. The role of the sympathetic
nervous system can also be approached using PET tracers

A B

C D

E

Fig. 3 Patient With Acute Myocarditis. Patient (25-year-old female)
hospitalized for supraventricular tachycardia with history of recent viral
infection, and inconclusive myocardial biopsy. (A) LGE-CMR image
obtained in short-axis view shows linear mid-wall and subepicardial
LGE of the anterior wall and inferoseptum. (B) FDG PET imaging
performed 90 min after injection of 370 MBq FDG following dietary
restrictions to suppress myocardial tracer uptake demonstrated FDG
uptake that matched LGE. (C-D) Fused FDG-PET/MR images
demonstrated increased activity exactly corresponding to the pattern of
injury on CMR (maximum standardized uptake value of LGE territory/
blood pool uptake ratio = 2.0). (E) In the same view, CMR T2 mapping
was unable to clearly differentiate regions of increased myocardial
inflammation. This example illustrates the exact co-localization of the
PET FDG signal with the pattern of injury on LGE, facilitating the
diagnosis of active myocarditis. Figure adapted from Abgral et al. [47]
JACC CV Imaging 2016
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such as 11C meta-hydroxyephedrine (11C–HED) [67]. Data
from 123I–mIBG and 11C–HED in heart failure have been
shown to be analogous, with 11C–HED having superior ca-
pacity to identify regional abnormalities [68]. The PAREPET
trial (Prediction of ARrhythmic Events with Positron
Emission Tomography) investigated sympathetic denervation
assessed using 11C–HED PET in ischemic cardiomyopathy.
The study showed that 11C–HED PET predicted cause-
specific mortality from sudden cardiac arrest independently
of LVEF and infarct volume. These data may provide infor-
mation useful for the identification of patients most likely to
benefit from an ICD [69]. The potential of multiparametric
assessment of ischemic cardiomyopathy investigated by De
Haan et al. [70] used serial PET and CMR with 11C–HED
(sympathetic innervation) and 15O–water (myocardial perfu-
sion) to study the relationship between, scar, perfusion and
innervation. The authors showed that areas of denervated,
residual viable myocardium in ischemic cardiomyopathy were
related to the heterogenic scar zone as assessed with LGE
CMR. A novel 18F–labeled ligand for the norepinephrine
transporter (N-[3-bromo-4-(3-18F-fluoro-propoxy)-benzyl]-
guanidine [LMI1195]) is in clinical development for mapping
cardiac nerve terminals in vivo using PET. First in man stud-
ies, have shown that LMI1195 is well tolerated and yields a
radiation dose comparable to that of other commonly used
PET radiopharmaceuticals [71]. The clinical and imaging sig-
nificance of the autonomic nervous system for heart failure
continues to develop [72].

Myocardial metabolism

The failing heart undergoes significant, complex changes in
energy utilization. In addition to Glucose imaging with FDG-
PET, it is also possible to assess myocardial fatty acid utiliza-
tion using novel metabolic tracers such as 18F–Fluoro-6-Thia-
Heptadecanoic acid (FTHA). Taylor et al. [73] demonstrated
the feasibility of this approach, demonstrating a reciprocal

relationship between myocardial fatty acid and glucose uptake
rates in heart failure; the former were higher than expected for
the normal heart, whereas myocardial glucose uptake rates
were lower. Metabolic assessment using MRI approaches
are also becoming feasible, through the use of hyperpolarized
carbon-13 imaging of pyruvate metabolism. In a preclinical
model of porcine cardiomyopathy, Schroeder et al. [74] suc-
cessfully demonstrated impaired pyruvate and fat oxidation at
the onset of cardiomyopathy. However, whether myocardial
metabolism represents a useful biomarker for heart failure
remains under uncertain.

Apoptosis

Apoptosis is considered an important pathophysiological ele-
ment to the development of ventricular dysfunction in heart
failure. Several molecular markers of programmed cell death
exist, which are attractive targets for molecular imaging – for
example phosphatidylserine (PS), which is translocated from
the inner plasma layer to the cell surface under conditions of
cell stress and physiologically serves as a marker to macro-
phages to remove apoptotic cells [75]. Several ligands with
high specificity for PS exist, including Annexin V, which has
been studied in heart failure using technetium SPECT, although
experimental PET radiotracers also exist [76, 77]. Targeted
magnetic nanoparticles for use in MRI, have also been used
to image apoptosis in experimental animal models [78].

Remodeling imaging: angiogenesis and fibrosis

Matrix metalloproteinases (MMPs) are a family of zinc-depen-
dent, secreted or transmembrane enzymes that degrade compo-
nents extracellular matrix (ECM). Angiogenesis, the process of
forming new blood vessels, requires degradation of the vascular
basement membrane and remodeling of the ECM in order to
facilitate endothelial cell migration into the surrounding tissue.

Table 1 Examples of
commercially available
PET-MRI systems and
their technical
characteristics

Vendor System Name Characteristics Technical Elements

Siemens Biograph mMR True Hybrid PET-MRI (single gantry) 3 T MRI

Avalanche photodiode (APD)
detectors with Lutetium
oxyorthosilicate scintillator

GE SIGNA™ PET/MR True Hybrid PET-MRI (single gantry) 3 T MRI

Silicon photomultiplier tube
(SiPM) with Lutetium based
scintillator.

Philips Ingenuity TF PET/MR Sequential PET and MRI (separate
gantries, single room)

3 T MRI

Photomultiplier tube (magnetically
shielded) with Lutetium-yttrium
oxyorthosilicate crystal scintillator
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The relative contribution of these processes in response to myo-
cardial injury is thought to be an important determinant of myo-
cardial remodeling. Atrial fibrillation (AF) is a common arrhyth-
mic complication in patients with heart failure. In patients with
end-stage HF, left atrial and ventricular MMP-9 and collagen
levels were higher in AF compared to patients with no AF
[79]. Serological markers of collagen turnover have been dem-
onstrated in patients with persistent AF, including elevated levels
of TIMP-1 [80]. MMP radiotracers are under active investiga-
tion, but remain experimental, but could provide useful informa-
tion on including arrhythmia risk in this population [81]. A novel
αvβ3 integrin-selective PET radiotracer, 18F–fluciclatide has
been used to identify myocardial segments displaying functional
recovery following acute myocardial infarction [82]. Imaging
molecular targets such as αvβ3 integrin (angiogenesis) or
MMP activity may provide novel information about the myocar-
dial remodeling process in patients with HF.

Technical considerations

Several important technical considerations should briefly be
mentioned. The contraindications for CMR imaging (e.g.
pacemakers, CRT and ICD devices) and arrhythmia imaging
challenges also apply to PET-CMR. These characteristics are
prevalent in a heart failure population; therefore, general ap-
plicability is restricted.

Integration of PET and MRI hardware has been technically
challenging, as conventional PET detectors are incompatible
with the strong magnetic field intrinsic to MRI systems.
Vendors have typically opted for either avalanche photodiodes
or silicon photon multipliers that are insensitive to magnetic
fields, and therefore can be integrated into hybrid units,
Table 1.

One needs to also consider the true advantage of
performing PETandMR imaging on a hybrid imaging system
versus registering PET/CT images with MR images acquired
on separate more conventional imaging systems, which might
be operated independently with more clinical efficiency and at
lower cost. Our group and others have demonstrated the fea-
sibility of using the CT images from a hybrid PET/CT to
accurately register separately acquired PET and MR images
(Fig. 4).

PET-CMR infrastructure is incompatible with rubidium-82
generators, the most commonly utilized radiotracer for MPI.
Alternative MPI radiotracers require an onsite cyclotron, thus
limiting the accessibility of this technique. As an alternative
for CAD assessment in such a situation, CMR MPI can be
used.

PET data needs to be attenuation corrected (AC) during
reconstruction in order validly quantify tracer activity distri-
bution. In PET-CT hybrid imaging, the CT image provides a
spatial representation of the patient tissues and hardware com-
ponents, which can be used to calculate attenuation maps.
PET-MRI systems cannot measure linear attenuation directly;
therefore, AC here needs to be performed differently. AC
based on MRI data is typically performed using a Dixon-

CT + MR Rb + MR FDG + MR

Sagittal

Coronal

Axial

Fig. 4 Image fusion of separately acquired PET/CT and CMR images in
a patient with cardiac sarcoidosis. CT images from a hybrid PET-CT
scanner were used to fuse the PET images (color) with MR images
(B&W). Shown are fused CT and CMR images (left), fused 82Rb
perfusion PET and CMR (middle), and fused 18FDG inflammation PET
and CMR (right) studies. Image fusion and figure provided courtesy of
Mary Germino, PhD, Yale University

A B C DFig. 5 Dixon MRI-based
attenuation correction used for
PET-MRI. Shown are the Dixon
water (A) and fat (B) images. C.
MRI-based attenuation map was
generated by combining water
and fat images. D. CT of same
patient. Adapted from Yoo et al.
[84] (open access)
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based MR acquisition, which defines air, fat, muscle, and
lungs (Fig. 5). Using this approach, bone is classified as soft
tissue, and thus signal attenuation of the bone is likely
underestimated [83]. The obvious benefit is a reduced radia-
tion dose using PET-MRI.

One important advantage of PET-CMR over PET-CT is the
potential for motion correction. In PET-CT, the CT data is
acquired once, and used for attenuation correction and ana-
tomical localization. With hybrid PET-MRI, data may be ac-
quired throughout the examination allowing for cardiac mo-
tion correction. Petibon et al. investigated the effects of mo-
tion correction and gating on the quantification of myocardial
blood flow. Motion correction and gating, respectively de-
creased mean apparent wall thickness by 15.1% and 14.4%
and increased MBR by 20.3% and 13.6% compared to
ungated images.

An overview of the relative advantages and disadvantages
of hybrid PET-MRI is given in Table 2.

Conclusion

Heart failure applications of PET-CMR are currently feasible.
Unfortunately, the field remains in its infancy, and investiga-
tors are still addressing the challenges associated with the
complexities of the technology. The future of this technology
rests on the ability to achieve synergistic imaging – where
non-redundant data, is combined to produce information
greater than the sum of the parts. The challenge facing the
nuclear component of this hybrid is the encroachment of
radiation-free CMR techniques into its traditional territory
(CMR perfusion imaging, T1/T2 mapping of inflammation).
Using PET to target specific molecular processes, currently
inaccessible to CMR is vital to the success of this powerful
technology. Comparative effectiveness research is required to
justify the need for concurrent PET-CMR imaging relative to
PET/CTor MR imaging performed separately. These imaging
modalities are already adequate for some clinical assessments

and are undoubtedly less expensive and logistically less
complex.

Is PET-CMR in heart failure ready for prime time? Not yet,
but there are sufficient clues in the data presented here that
synergistic multi-modality imaging may be on the horizon.
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