ONLINE SUPPLEMENT

Common carotid intima-media thickness relates to cardiovascular events in adults under the age of 45 years

Anouk L.M. Eikendal ¹, Karlijn A. Groenewegen ², Todd J. Anderson ³, Annie R. Britton ⁴, Gunnar Engström ⁵, Greg W. Evans ⁶, Jacqueline de Graaf ⁷, Diederick E. Grobbee ^{2,8}, Bo Hedblad ⁹, Suzanne Holewijn ¹⁰, Ai Ikeda ¹¹, Kazuo Kitagawa ¹², Akihiko Kitamura ¹¹, Eva M. Lonn ¹³, Matthias W. Lorenz ¹⁴, Ellisiv B. Mathiesen ¹⁵, Giel Nijpels ¹⁶, Jacqueline M. Dekker ¹⁶, Shuhei Okazaki ¹⁷, Daniel H. O'Leary ¹⁸, Joseph F. Polak ¹⁸, Jacqueline F. Price ¹⁹, Christine Robertson ¹⁹, Christopher M. Rembold ²⁰, Maria Rosvall ⁹, Tatjana Rundek ²¹, Jukka T. Salonen ²², Matthias Sitzer ²³, Coen D.A. Stehouwer ²⁴, Imo E. Hoefer²⁵, Sanne A.E. Peters ^{2,26}, Michiel L. Bots ², Hester M. den Ruijter ^{2,25} on behalf of the USEIMT Project Group ^{S3}

1. Department of Radiology, University Medical Center, Utrecht, the Netherlands; 2. Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands; 3. Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada; 4. Department of Epidemiology and Public Health University College London, London, United Kingdom: 5. Department of Clinical Sciences in Malmö", Lund University. Skåne University Hospital, Malmö, Sweden; 6. Department of Biostatistical Sciences and Neurology. Wake Forest School of Medicine, Winston-Salem, NC, United States of America; 7. Department of General Internal Medicine, Division of Vascular Medicine, Radboud University Medical Centre Nijmegen, The Netherlands; 8. University of Malaya Medical Center, Kuala Lumpur, Malaysia; 9. Department of Clinical Sciences in Malmö, Lund University, Skåne University Hospital, Malmö, Sweden; 10. Department of General Internal Medicine, Division of Vascular Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; 11. Osaka Medical Center for Health Science and Promotion, Osaka, Japan; 12. Department of Neurology, Tokyo Women Medical University, Tokyo, Japan; 13. Department of Medicine, Division of Cardiology and Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada; 14. Department of Neurology, University Hospital, Goethe-University, Frankfurt am Main, Germany; 15. Brain and Circulation Research Group, Department of Clinical Medicine, University of Tromsø, Tromsø, Norway: 16. Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands; 17. Stroke Center, Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan; 18. Department of Radiology, Tufts Medical Center, Boston, MA, United States of America; 19. Centre for Population Health Sciences, University of Edinburgh, United Kingdom; 20. Cardiology Division, Department of Internal Medicine, University of Virginia, Charlottesville, VA, United States of America; 21. Department of Neurology, Miller School of Medicine, University of Miami, Miami, FI, United States of America; 22. MAS-Metabolic Analytical Services Oy; 23. Department of Neurology, University Hospital, Goethe-University, Frankfurt am Main, Germany and Department of Neurology Klinikum Herford, Germany; 24. Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center. Maastricht, The Netherlands; 25. Department of Experimental Cardiology, University Medical Center Utrecht, the Netherlands; 26. The George Institute for Global Health, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.

Short title: CIMT and cardiovascular events in the young

Word count: 5630

Corresponding author:

Anouk L.M. Eikendal, MD

Department of Radiology (HP: E.01.132)

University Medical Center

Heidelberglaan 100, 3584 CX Utrecht

P.O. Box 85500

The Netherlands

e-mail: a.l.m.eikendal@umcutrecht.nl

phone/fax: +310621978619/+310302581098

Statement of Medical Ethical Committee of UMC Utrecht regarding the Non-Medical Research Involving Human Subjects Act complicity of the current study

Utrecht

Medical Ethics Review Committee

University Medical Center Utrecht Julius Center for Health Sciences and Primary Care Department of Epidemiology Attn. dr. H. den Ruijter Internal address: STR 6.131 🔎 PO Box 85500 3508 GA Utrecht

Mrs. M.A.C. van Groenestijn Telephone ++31 088 755 56376 (09.30-12.00 AM) Internal mail D 01.343 E-mail metc@umcutrecht.nl www.umcutrecht.nl/metc

Date May 20th, 2011 METC-protocol number 11-197/C Advice non-WMO research

Our reference AvG/rc/11/11083 Your reference

Dear Ms. Den Ruijter,

The Medical Research Ethics Committee (MREC), recognized on November 11, 1999 ex section 16 of the WMO¹, has considered research proposal number 11-197/C entitled "The added value of carotid initima media thickness measurements in cardiovascular risk prediction: The USE-IMT Study", submitted by Ms. H. den Ruijter from Utrecht and commissioned by the University Medical Center Utrecht in Utrecht, in the meeting of May, 10th 2011.

The committee has had the following documents at her disposal:

- Letter with brief outline of study proposal, dated April 29, 2011
 Data and materials distribution agreement MESA, dated April 21, 2011
 MESA Ancillary Study Proposal Form (v6), received on May 3, 2011

The research proposal has been considered with regard to the use of data already assembled in other studies. Since the research proposal does not imply that people will receive particular additional treatment, nor imposes on the behaviour of persons, the MREC concludes that the Medical Research Involving Human Subjects Act (WMO) does not apply.

Therefore, the MREC concludes that for this proposal no WMO-approval by the MREC is needed.

Furthermore the MREC has made sure that the investigators shall take all necessary appropriate measures to safeguard the protection of the participant's privacy, including the adaptation of data in order to ensure sufficient anonymity.

¹ Medical Research Involving Human Subjects Act

Our reference AvG/rc/1111083 Blad 2 van 2

Any change of protocol, however small, must be submitted to the MREC for approval.

On behalf of the METC, M.A.C. van Groenestijn Secretary

c.c. Manager Onderwijs en Onderzoek Prof.dr. A.W. Hoes, UMC Utrecht, Divisie Julius Centrum voor Gezondheidswetenschappen en Eerstelijns Geneeskunde, STR6.131

A list of committee members and the committee regulations are available and can be obtained from the METC office.

Supplemental references

- 1. den Ruijter HM, Peters SA, Groenewegen KA et al. Common carotid intima-media thickness does not add to Framingham risk score in individuals with diabetes mellitus: The USE-IMT initiative. *Diabetologia*. 2013;56:1494-1502.
- 2. Den Ruijter HM, Peters SA, Anderson TJ et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: A meta-analysis. *JAMA : the Journal of the American Medical Association*. 2012;308:796-803.
- 3. Lorenz MW, Schaefer C, Steinmetz H, Sitzer M. Is carotid intima media thickness useful for individual prediction of cardiovascular risk? Ten-year results from the Carotid Atherosclerosis Progression Study (CAPS). *European Heart Journal*. 2010;31:2041-2048.
- 4. Anderson TJ, Charbonneau F, Title LM, Buithieu J, Rose MS, Conradson H, Hildebrand K, Fung M, Verma S, Lonn EM. Microvascular function predicts cardiovascular events in primary prevention: Long-term results from the Firefighters And Their Endothelium (FATE) study. *Circulation*. 2011;123:163-169.
- 5. Salonen R, Salonen JT. Determinants of carotid intima-media thickness: A population-based ultrasonography study in eastern Finnish men. *Journal of Internal Medicine*. 1991;229:225-231.
- Kitagawa K, Hougaku H, Yamagami H et al. Carotid intima-media thickness and risk of cardiovascular events in high-risk patients. Results of the Osaka follow-up study for carotid atherosclerosis 2 (OSACA2 study). *Cerebrovasc Dis.* 2007;24:35-42.
- 7. Stensland-Bugge E, Bonaa KH, Joakimsen O, Njolstad I. Sex differences in the relationship of risk factors to subclinical carotid atherosclerosis measured 15 years later : The Tromsø study. *Stroke; a journal of cerebral circulation*. 2000;31:574-581.
- 8. Ali YS, Rembold KE, Weaver B, Wills MB, Tatar S, Ayers CR, Rembold CM. Prediction of major adverse cardiovascular events by age-normalized carotid intimal medial thickness. *Atherosclerosis*. 2006;187:186-190.
- 9. Myocardial infarction redefined: A consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction. *European Heart Journal*. 2000;21:1502-1513.

Supplemental tables

Table S1. Method section of each cohort^{1, 2}

Study Name	Study design	CV risk factor measurement	Event measurement	CIMT measurement	Reproducibility information
Carotid Atherosclerosis Progression Study (CAPS) ³	Prospective population based cohort study (n=3889)	CV risk factors obtained using standardized computer-assisted interview technique	Median follow up: 8.1 years (7.4, 9.1). Follow up time: from date of examination to date of endpoints: first-ever fatal/non-fatal MI, stroke or date of death. Follow up also terminated when patients withdrew from the study or died from	P700SE, Philips. CCA (20- 60mm proximal from flow divider), CB, ICA (0-20mm distally from flow divider), digitally captured during	Gain was adjusted so that least dense arterial wall interface was just visible_Inter-
2006, Germany	Members of German primary healthcare scheme	examination by a physician trained in vascular medicine and	other causes. Identification of endpoints using ICD codes for CV events and mortality, guestionnaires for participants and information	systole. Measured offline, automated (Matlab.) Calibration measurements	observer reliabilities (15 subjects): ICC
	No event (MI or stroke) before baseline visit	blood sampling	obtained from their physicians. Follow-up time for each patient included in analyses	with phantom in 1 in 100 patients	0.97, intra- observer: ICC 0.93
The Firefighters and Their Endothelium Study (FATE) ⁴ 2011, Canada	Prospective population based cohort study (n=1441) Healthy men at low/intermediate Framingham Risk Free from symptomatic CVD at baseline	CV risk factors obtained using a detailed interview and questionnaire and blood sampling. Risk factors defined according to current guidelines	Mean follow up: 7.2 (± 1.7 years). Follow up time: from date of examination to date of first-ever MI, stroke or date of death. Telephone follow up was obtained every 12 months in which next to information on events, also information on withdrawal, loss to follow up and non-end point deaths was documented. Endpoints: composite of CV death; resuscitated cardiac arrest; nonfatal first time MI; revascularization coronary, carotid or peripheral circulation; symptomatic CVD with >50% stenosis documented by angiography and documented stroke or TIA. Identification of endpoints: by documents on events, verified by local site investigator and reviewed by end-point committee. Follow-up time for each patient	Acuson/Acoustic Response Technology ART 1 imaging System. Right CCA, proximal to flow divider. Thickest region identified (circumferential scan). Measured manually traced lumen-to-intima and media-to-adventitia interfaces, using locally developed software	Within-observer: ICC 0.89, between-observer: 0.92

Kuopio Ischaemic Heart Disease Risk Factor Study (KHID) ⁵ 1991, Finland	Prospective population based cohort study (n=879) Eastern Finnish men aged 42,48,54, 60 years Free from history of CVD at baseline	CV risk factors obtained using questionnaires and interviews, examination by a study nurse and blood sampling	Median follow up: 14.2 years (13.2, 15.2). Follow up time: from date of examination to date of endpoints: first-ever MI, stroke or date of death. There were no losses to follow up. Identification of endpoints using hospital files, stroke registry and death certificate registry (1984-1992). From 1993, computer linkage to Finnish national hospital discharge registry and death certificate registry using unique Finnish identification number. Endpoints were coded according to the ICD codes for MI and stroke and checked for first time MI/stroke. Follow-up time for each patient included in analyses	ATL UM4 duplex ultrasound system. Right and left CCA and CB, max CIMT located. Measured recorded on videotape. Image Measure morphometry software	Reproducibility: 50 subjects rescanned by same scanner, other reader. Correlation: 0.91. Difference: mean - 0.03 mm, SD 0.09, range -0.17=0.16 mm)
Osaka Follow-Up Study for Carotid Atherosclerosis 2 (OSACA 2) ⁶ 2007, Japan	Prospective population based cohort study (n=403) High risk patients ≥ 40 years of age (>1 CV risk factor) Free from history of CVD events, endartectomy or carotid artery stenting	CV risk factors obtained using clinical records and self- reports at time of enrollment, physical examination and blood sampling	Median follow up 4.6 years (3.3, 6.1). Follow up time: from date of examination to date of first- ever MI, stroke or date of death. Follow up also terminated when patients withdrew from the study because of death or for personal reasons. Identification of endpoints: first occurrence of major CV event: nonfatal stroke/TIA, nonfatal MI, hospitalization for AP, arterial revascularization procedure (PCI, bypass graft) or confirmed death from CV causes. Endpoints assessed by investigators blinded to baseline data. Follow-up time for each patient included in analyses	Phillips SONOS 5500 equipped with a 3- to 11- MHz linear-array transducer. CCA, CB, ICA, near and far wall, mean of max-IMT calculated. Measured using electronic caliper on frozen frame of longitudinal B-mode image	In 36 patients: intra-observer correlation 0.98, inter-observer correlation for 47 patients 0.94, differences in both cases not significant
Tromsø Study ⁷ 2000, Norway	Prospective population based cohort study (n=4240) Inhabitants of municipality of Tromsø	Baseline CV risk factors collected using self-administered questionnaires, physical examination and blood sampling	Median follow up 10.7 years (10.4, 11.0). Follow up time: from date of screening to date of endpoints: first-ever fatal/non-fatal MI, stroke or date of death. Follow up also terminated when patients withdrew from study because of migration or death. Identification of endpoints using computer linkage to national and local diagnosis registries (University Hospital of North Norway, outpatient diagnoses included) and National Causes of Death Registry at Statistics Norway using unique Norwegian identification number. Cases were identified according to ICD	Acuson 128 XP/10c ART upgraded. Three images (of CCA and CB) selected for offline reading (with optimal visibility). Measured via offline reading, using automated software (AMS)	No systematic differences between observers or within observers, however precision decreased with increasing CIMT

	Exclusion of persons with previous history of MI or stroke		codes for MI and stroke. Adjudication of endpoints by endpoint committee consisting of experienced physicians. Follow-up time for each patient included in analyses	
Charlottesville Study ⁸ 2006, USA	Prospective population based cohort study (n=610) Exclusion of persons with prior history of MI or stroke	Assessment of baseline CV risk factors using questionnaires and a physical examination. Blood samples were obtained retrospectively	Mean follow up 4.1 years (2.7, 5.0). Follow up time: from date of examination to date of first- ever fatal/non-fatal MI, stroke or date of death. Telephone follow up was obtained in which adjacent to information on events, also information on withdrawal and loss to follow up was documented . Endpoint: MACE: new MI, arterial revascularization, (PCI, bypass graft), or stroke/TIA. Identification of endpoints by telephone interviews with participants and subsequent confirmation via medical records and consistent with AHA/ACC diagnostic criteria	Toshiba PLM-703AT, Toshiba Powervision 6000SSA370A. Near and far wall CCA (5mm distal to bulb), near far wall bulb, far wall internal (5mm distal to bulb) end diastole, bilateral

Abbreviations: CV: cardiovascular; CVD: cardiovascular disease CCA: common carotid artery; ICA: internal carotid artery; CB: carotid bifurcation; CIMT: carotid intima-media thickness; ICD: International Statistical Classification of Diseases and Related Health Problems; MI: myocardial infarction; TIA: transient ischemic attack; AP: Angina Pectoris; PCI: percutaneous intervention; ICC: intraclass correlation; SD: standard deviation; AHA/ACC American Heart Association/American College of Cardiology

Table S2. Definition of MI and stroke for each cohort

Study Name	Definition of MI	Definition of stroke
Carotid Atherosclerosis Progression Study (CAPS) ³ 2006, Germany	 MI was defined according to the ICD-9 classification: cardiac infarction coronary artery embolism, occlusion, rupture or thrombosis infarction of heart, myocardium or ventricle rupture of myocardium or ventricle ST elevation (STEMI) and non-ST elevation (NSTEMI) MI 	 Stroke was defined according to the ICD-9 classification: (non-traumatic) subarachnoid hemorrhage (non-traumatic) intracerebral hemorrhage other and unspecified non-traumatic intracranial hemorrhage occlusion and stenosis of pre-cerebral arteries occlusion of cerebral arteries acute, but ill-defined cerebrovascular disease other and ill-defined cerebrovascular disease late effects of cerebrovascular disease
The Firefighters and Their Endothelium Study (FATE) ⁴ 2011, Canada	 MI was defined according to the AHA classification⁹: detection of typical rise and gradual fall of cardiac troponin or more rapid rise and fall (CK-MB) of biochemical markers of myocardial necrosis with at least one of the following: symptoms of ischemia development of pathological Q waves on the ECG ECG changes indicative of ischemia (e.g. ST segment elevation or depression) Identification of an intracoronary thrombus by angiography or autopsy All nonfatal cases were confirmed using coronary angiography 	Stroke was defined as the presence of typical neurological symptoms supported by abnormalities on neurovascular imaging. All cases were confirmed by a stroke neurologist
Kuopio Ischaemic Heart Disease Risk Factor Study	 MI was defined according to the ICD-9 and ICD-10 classification: cardiac infarction coronary artery embolism, occlusion, rupture or thrombosis 	Stroke was defined as a sudden onset of focal/global neurological deficit that leads to death or lasts for at

(KHID)⁵ 1991, Finland	 infarction of heart, myocardium or ventricle rupture of myocardium or ventricle ST elevation (STEMI) and non-ST elevation (NSTEMI) MI myocardial infarction specified as acute or with a stated duration of 4 weeks (28 days) or less from onset 	least more than 24 hours and of apparent vascular cause
Osaka Follow-Up Study for Carotid Atherosclerosis 2 (OSACA 2) ⁶ 2007, Japan	 MI was defined as a nonfatal MI or confirmed death from MI. 2 of the following 3 criteria had to be met: a significant rise in serum CK level (more than two times the upper limit of the normal level) symptoms of chest pain or compression lasting for at least 30 minutes ECG changes indicative of ischemia (ST segment elevation more than 0.1 mV in ≥1 limb leads or in ≥2 precordial leads) 	Stroke was defined as a sudden onset of clinical symptoms suggestive for neurological impairment and of apparent vascular cause. All cases were confirmed using neurovascular imaging.
Tromsø Study ⁷ 2000, Norway	 MI was defined according to an algorithm comprising the following: clinical signs (typical, atypical or ill-described) and changes on the ECG suggestive for MI clinical signs (typical) and a significant rise in the levels of myocardial enzymes/troponin clinical signs (atypical or ill-described) and a significant rise in the levels of myocardial enzymes/troponin and changes on the ECG suggestive for MI clinical signs (atypical or ill-described) and a significant rise in the levels of myocardial enzymes/troponin and changes on the ECG suggestive for MI Identification of a recent MI by autopsy 	Stroke was defined as a sudden onset of focal/global neurological deficit that leads to death or lasts for at least more than 24 hours and of apparent vascular cause
Charlottesville Study ⁸ 2006, USA	 MI was defined according to the AHA classification⁹: detection of typical rise and gradual fall of cardiac troponin or more rapid rise and fall (CK-MB) of biochemical markers of myocardial necrosis with at least one of the following: symptoms of ischemia development of pathological Q waves on the ECG ECG changes indicative of ischemia (e.g. ST segment elevation or depression) 	Stroke was defined as a sudden onset of focal/global neurological deficit that leads to death or lasts for at least more than 24 hours and of apparent vascular cause

autopsy			
Characteristic	'Adjusted' mean	'Adjusted' mean common	P value
	common CIMT< 50 th	$CIMT \ge 50^{th} percentile \ddagger$	
	percentile‡	(n = 1602)	
	(n = 1465)		
Age (years), median (IQR)*	37 (32, 42)	37 (32, 42)	
Sex, male (%)	870 (59.4)	958 (59.8)	
BMI (kg/m2), median (IQR)*	24.7 (22.5, 27.1)	25.3 (23.2, 28.1)	<0.001§
Systolic blood pressure (mmHg), median	120 0 (112 0 120 0)	124 0 (115 0 132 0)	<0.001§
(IQR)*	120.0 (112.0, 129.0)	124.0 (113.0, 132.0)	
Diastolic blood pressure (mmHg), median (IQR)*	74.0 (65.0, 80.0)	75.0 (70.0, 85.0)	<0.001§
Cigarette smoking status, yes (%)	403 (27.5)	448 (28.0)	0.80
Total cholesterol level (mmol/L), median (IQR)*	5.2 (4.6, 5.9)	5.4 (4.7, 6.1)	<0.001§
HDL cholesterol level (mmol/L), median (IQR)*	1.4 (1.2, 1.7)	1.4 (1.1, 1.7)	<0.001§
Hypertension, yes (%)†	108 (7.4)	194 (12.1)	<0.001§
Diabetes, yes (%)	5 (0.3)	15 (0.9)	0.06§
Use of antihypertensive medication, yes (%)	47 (3.2)	93 (5.8)	<0.001§
Use of lipid lowering medication, yes (%)	20 (1.4)	33 (2.1)	0.61

 \circ identification of an intracoronary thrombus by angiography or

Abbreviations: ICD: International Statistical Classification of Diseases and Related Health Problems; MI: myocardial infarction; CK-MB: Creatine Kinase MB ECG: Electrocardiogram; ACC/AHA: American College of Cardiology / American Heart Association

Table S3. Study population characteristics using 'adjusted common CIMT' <50th and ≥50th percentile

* IQR: interquartile range, BMI: body mass index, HDL: high-density lipoprotein, CIMT: carotid intima-media thickness, MI: myocardial infarction

† Defined as systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥ 90 mmHg and/or use of antihypertensive medication

 \ddagger CIMT value adjusted for age categories, sex and study. Median <50th percentile 'adjusted' CIMT = 0.6 mm, median ≥ 50th percentile 'adjusted' CIMT = 0.7 mm

§ p<0.2

|| p value of model

Table S4. Relation between quartiles of mean common CIMT and first-time MI/stroke

Per quartile of CIMT	mean common CIMT (mm)*	mean common CIMT (mm)*	mean common CIMT (mm)*	mean common CIMT (mm)*
	Q1	Q2	Q3	Q4
Range of CIMT (mm)	0.285 - 0.560	0.563 - 0.624	0.625 - 0.680	0.682 - 1.175
Person years	7330	6738	6767	6744
Number of events (MI/stroke)	5	9	15	26
Age and sex adjusted hazard ratio (reference: Q1)†	-	1.49 (0.49, 4.50)	2.36 (0.84, 6.64)	3.29 (1.21, 8.94)
Multivariable hazard ratio (reference: Q1)†‡	-	1.49 (0.49, 4.53)	2.22 (0.78, 6.29)	3.04 (1.11, 8.32)

* Q: quartile, SD: standard deviation, CIMT: carotid intima-media thickness, MI: myocardial infarction

† Values are standardized hazard ratios (HR) with 95% confidence intervals

‡ Multivariable model is adjusted for age, sex, body mass index, smoking, diastolic blood pressure, total cholesterol level, HDL cholesterol level, presence of diabetes, use of antihypertensive medication, use of lipid lowering medication and for study

Table S5. Relation between cardiov	ascular risk factors and mean comr	mon CIMT adjusted for SBP instead of DBP

Cardiovascular risk factors	Mean common CIMT (In(mm))*†‡**	P value
Age, per 1 SD increase*	0.042 (0.037, 0.048)	<0.001§
Sex (reference: female)	0.005 (0.001, 0.017)	0.04§
Smoking (reference: nonsmoker)	0.005 (-0.005, 0.016)	0.33
SBP, per 1 SD increase*	0.015 (0.009, 0.021)	<0.001§
BMI, per 1 SD increase*	0.012 (0.007, 0.018)	<0.001§
Total Cholesterol, per 1 SD increase*	0.009 (0.004, 0.014)	<0.001§
HDL-Cholesterol, per 1 SD increase*	-0.069 (-0.013, -0.001)	0.02§
Diabetes mellitus (reference: no diabetes)	0.048 (-0.011, 0.106)	0.11
Antihypertensive medication use (reference: no use)	0.008 (-0.016, 0.032)	0.52
Lipid lowering medication use (reference: no use)	-0.006 (-0.048, 0.036)	0.77

* SD: standard deviation, CIMT: carotid intima-media thickness, SBP: systolic blood pressure, DBP: diastolic blood pressure, BMI: body mass index, HDL: high density lipoprotein

† Values are standardized beta's with 95% confidence intervals

‡ Adjusted for all risk factors included in the model and for study

§ p<0.05

|| p value of fully adjusted model

** In this variable natural logarithmic transformation was performed

Cardiovascular risk factors	Multivariable hazard ratio (HR) ⁺	P value
Mean common CIMT, per 1 SD increase*	1.38 (1.09, 1.73)	0.006§
Age, per 1 SD increase*	1.35 (0.90, 2.03)	0.15
Sex (reference: female)	1.34 (0.59, 3.02)	0.48
Smoking (reference: nonsmoker)	0.91 (0.50, 1.67)	0.77
SBP, per 1 SD increase*	1.27 (0.97, 1.67)	0.09
BMI, per 1 SD increase*	0.84 (0.61, 1.15)	0.28
Total Cholesterol, per 1 SD increase*	0.96 (0.73, 1.26)	0.80
HDL-Cholesterol, per 1 SD increase*	0.91 (0.64, 1.30)	0.60
Diabetes mellitus (reference: no diabetes)	2.25 (0.50, 10.11)	0.29
Antihypertensive medication use (reference: no use)	2.98 (1.34, 6.63)	0.008§
Lipid lowering medication use (reference: no use)	5.01 (1.38, 18.22)	0.01§

Table S6. Relation between mean common CIMT and first-time myocardial infarction/stroke adjusted for SBP instead of DBP

* SD: standard deviation, CIMT: carotid intima-media thickness, SBP: systolic blood pressure, DBP: diastolic blood pressure, BMI: body mass index, HDL: high density lipoprotein

† Values are standardized hazard ratios (HR) with 95% confidence intervals

‡ Adjusted for all risk factors included in the model and for study

§ p<0.05

|| p value of fully adjusted model

Supplemental acknowledgements

The USE-IMT Project Group

Individuals: Hester M. Den Ruijter, PhD; Sanne A. E. Peters, PhD; Todd J. Anderson, MD; Annie R. Britton, PhD; Jacqueline M. Dekker, MD/PhD; Marinus J. Eijkemans, PhD; Gunnar Engström, MD, PhD; Gregory W. Evans, MA; Jacqueline de Graaf, MD/PhD; Diederick E. Grobbee, MD/PhD; Bo Hedblad, MD/PhD; MD/PhD; Suzanne Holewijn, PhD; Ai Ikeda, PhD; Kazuo Kitagawa, MD; Akihiko Kitamura, MD/PhD; Hendrik Koffijberg, PhD; Eva M. Lonn, MD; Matthias W. Lorenz, MD; Ellisiv B. Mathiesen, MD; Giel Nijpels, MD/PhD; Shuhei Okazaki, MD; Daniel H. O'Leary, MD; Joseph F. Polak, MD; Jackie F. Price, MD; Christine Robertson, MBChB; Christopher M. Rembold, MD; Maria Rosvall, MD/PhD; Tatjana Rundek, MD/PhD; Jukka T. Salonen, MD/PhD; Matthias Sitzer, MD; Coen D. A. Stehouwer, MD/PhD; Karel G. Moons, PhD; Michiel L. Bots, MD/PhD

Affiliations: Julius Center for Health Sciences and Primary Care (Den Ruijter, Peters, Eijkemans, Grobbee, Koffijberg, Moons, and Bots) and Department of Experimental Cardiology (Den Ruijter), University Medical Center Utrecht, Utrecht, the Netherlands; Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (Anderson); Department of Epidemiology and Public Health, University College London, London, United Kingdom (Britton); Institute for Health and Care Research, VU Medical Center, Amsterdam, the Netherlands (Dekker and Nijpels); Department of Clinical Sciences in Malmö, Lund University, Skåne University Hospital, Malmö, Sweden (Engström, Hedblad, and Rosvall); Department of Biostatistical Sciences and Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Evans); Department of General Internal Medicine, Division of Vascular Medicine, Nijmegen University Medical Centre, the Netherlands (de Graaf and Holewijn); University of Malaya Medical Center, Kuala Lumpur, Malaysia (Grobbee); Osaka Medical Center for Health Science and Promotion, Osaka, Japan (Ikeda and Kitamura); Stroke Center, Department of Neurology, Osaka University Graduate School of Medicine, Osaka (Kitagawa and Okazaki); Department of Medicine, Division of Cardiology and Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada (Lonn); Department of Neurology, University Hospital, Goethe-University, Frankfurt am Main, Germany (Lorenz and Sitzer); Brain and Circulation Research Group, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway (Mathiesen); Department of Radiology, Tufts Medical Center, Boston, Massachusetts (O'Leary and Polak); Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom (Price and Robertson); Cardiology Division, Department of Internal Medicine, University of Virginia, Charlottesville (Rembold); Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida (Rundek); MAS-Metabolic Analytical Services Oy, Helsinki, Finland (Salonen); Department of Neurology Klinikum Herford, Herford, Germany (Sitzer); and Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands (Stehouwer).