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Abstract 

Elements with a biological role include six trace transition metals: manganese, iron, cobalt, 

copper, zinc and molybdenum. Transition metals participate in group transfer reactions such 

as glycosylation and phosphorylation and those that can transfer an electron by alternating 

between two redox states such as iron (3+/2+) and copper (2+/1+) are also  very important 

in biological redox reactions including the reduction of molecular oxygen and the transport 

of oxygen. However, these trace metals are also potentially toxic, generating reactive 

oxygen species through Fenton chemistry. Recently, a role of trace metals in host defence 

(“nutritional immunity”) has been recognized. The host can deprive the pathogen of a trace 

metal or poison it with a toxic concentration. 

Disorders leading to low concentrations of a trace metal can often be treated by 

supplementing that metal; disorders leading to excessively high concentrations can often be 

treated with chelating agents such as penicillamine and disodium calcium edetate. 

This update will address: i) the manganese / zinc transporters (because two new treatable 

disorders were described in 2016 – SLC39A8 deficiency and SLC39A14 deficiency); ii) copper 

transporter disorders because we need to improve the treatment of patients with 

neurological symptoms due to Wilson’s disease; and iii) iron homeostasis because recent 

progress in research into the metabolism of iron and its regulation helps us better 

understand several inborn errors affecting these pathways.  
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Introduction 

To many scientists, the “transitional elements” or “transitional metals” are those in the d 

series (sometimes referred to as Groups 3 to 12) of the periodic table (Figure 1). Using this 

definition, there are six transition metals with biological activity: manganese, iron, cobalt, 

copper, zinc and molybdenum. [Selenium is often included in reviews of trace metals but is 

actually a non-metal with properties more like those of the element above it in Group 16, 

sulphur.] The IUPAC definition defines a transition metal as "an element whose atom has a 

partially filled d sub-shell, or which can give rise to cations with an incomplete d sub-shell" 

(IUPAC 2006). This excludes zinc which has a complete d sub-shell.  

Biological Redox Reactions 

The importance of an incomplete d sub shell is that electrons in this orbital can participate 

in bonding (alongside the 4s electrons) so that the element can exist in different oxidation 

states eg. 3+/2+ (Fe) or 2+/1+ (Cu). This confers on manganese, iron, cobalt, copper and 

molybdenum, the ability to participate in redox reactions by switching between redox 

states. This is important for copper and iron in the reduction of molecular oxygen in 

complex IV of the respiratory chain (Sharma, Karlin & Wikström 2013) and for iron in 

transport of oxygen by haemoglobin. 

Group Transfer Reactions 

Transitional metals (including zinc) can also participate in group transfer reactions e.g 

transfer of a phosphate residue (phosphorylation or dephosphorylation) or transfer of a 

sugar residue (glycosylation). For example, when the enzyme -1,4-galactosyltransferase is 

transferring a galactose residue from UDP-galactose to glucose, the developing negative 



charge on UDP needs to be neutralized by a divalent cation and Mn2+ is the most efficient 

cation (Ramakrishnan, Ramasamy & Qasba 2006). Hence deficiency of manganese leads to 

impaired activity of -1,4-galactosyltransferase. 

Toxicity (Fenton Chemistry) 

Although essential for biological catalysis as indicated above, the transition metals are also 

potentially highly toxic. One mechanism for toxicity arises through the ability to switch 

redox states in non-enzyme catalyzed reactions, in particular through Fenton chemistry. The 

best known example is the reaction between ferrous (Fe2+) ions and hydrogen peroxide to 

produce the highly reactive hydroxyl and hydroperoxyl radicals: 

    (1) Fe2+ + H2O2 → Fe3+ + HO• + OH− 

    (2) Fe3+ + H2O2 → Fe2+ + HOO• + H+ 

The hydroxyl and hydroperoxyl radicals (“reactive oxygen species”, ROS) can oxidise lipids, 

protein and DNA leading to serious damage to the cell.  

Neurotoxicity 

Accumulation of copper, manganese and iron in the brain leads to neuronal damage. The 

basal ganglia and substantia nigra are particularly vulnerable. In Wilson’s disease, a 

movement disorder is common; the same is true of the two disorders that lead to high 

blood manganese levels (SLC30A10 and SLC39A14 deficiency). In haemochromatosis, 

however, neurological disease is rare (Niederau et al. 1996). The link between systemic iron 

overload and the accumulation of iron in the brain that has been implicated in Parkinson’s 

disease and Alzheimer’s disease is clearly complex (Zecca et al. 2004).  For example a study 

of common haemochromatosis mutations in familial Alzheimer’s disease showed that they  



were overrepresented in males and underrepresented in females (Moalem et al. 2000). 

Equally puzzling is the fact that there are 10 inborn errors that do lead to 

neurodegeneration with brain iron accumulation (NBIA) (van Hasselt et al 2016), however, 

the link between the primary genetic defect and the iron accumulation in the basal ganglia 

and substantia nigra is only clear for two (acaeruloplasminemia and neuroferritinopathy, 

discussed below). Disorders leading to accumulation of transition metals in the basal ganglia 

are summarized in Table 1. 

Transition Metals in Host Defence 

Transition metals are essential but toxic for microorganisms as well as for man. This fact is 

used by the immune system; the host can deprive the pathogen of a trace metal or poison it 

with a toxic concentration; this is referred to as “nutritional immunity”, part of the innate 

immune system. Thus an iron transporter SLC11A1 can control intracellular microbial 

replication by removing Fe2+ and other essential divalent cations from the phagosome (see 

below and Canonne-Hergauxet al 1999).  

 

Treatment of Transition Metal Disorders 

Several of the transition metal disorders can be treated very effectively. Deficiency of a 

metal can often be made good by oral supplementation. Treatment of metal toxicity can be 

achieved by the use of a second metal that competes for uptake / transport e.g. iron which 

competes with manganese for intestinal uptake (by DMT1) and for transport and cellular 

uptake (transferrin/transferrin receptor) can be used in the treatment of a disorder in which 

manganese accumulates (Tuschl et al 2008). An alternative treatment for toxicity is removal 



of the offending transition metal by chelation therapy. Chelation of copper with agents such 

as penicillamine and trientine is well established. Other more powerful chelating agents for 

copper will be discussed below. Intravenous infusion of disodium calcium edetate has 

proved valuable in the treatment of manganese toxicity disorders (Tuschl et al 2008, 2012, 

2016). This chelator has been used frequently for the treatment of lead poisoning. When 

considering whether a chelator is likely to be effective, two factors should be taken into 

account: Firstly, the stability constant;  disodium calcium edetate will chelate those metals 

that bind with a higher stability constant than calcium (Mn, Fe, Co, Zn, Cd, Pb, Ni). Secondly, 

whether the accumulating metal is free or bound; disodium calcium edetate will bind 

unbound metal ions much more effectively than bound (e.g. for manganese, the plasma 

fraction that is not bound to transferrin). Toxicity of iron can be treated by removal of iron 

either by venesection or by chelators such as deferoxamine or deferiprone.  

This review will concentrate on three areas: i) manganese / zinc transporters (because two 

new disorders were described in 2015/2016 and because these have led us to reconsider 

the major role(s) of some transporters; ii) disorders of copper transport leading to copper 

toxicity (because treatment of Wilson’s disease is sometimes unsatisfactory and because 

there are some new potential treatments); iii) disorders of iron homeostasis because iron is 

the transition metal for which we have the most complete understanding of routes of 

metabolism and their regulation. 

Zinc/ManganeseTransporters 

Cell Surface Transporters 

A recent review of zinc transporters suggested that several members the SLC39A family (ZIP 

transporters; 1-6, 8-10, 12 &14) mainly mediate uptake of zinc at the cell surface, although 



some can also transport iron manganese and cadmium, and that  SLC39A4 (ZIP4), SLC39A8 

(ZIP8) and SLC39A14 (ZIP14) all had similar functions as shown in Figure 2 (Kambe et al. 

2015). A recent review of manganese transporters similarly suggested that SLC39A8 and 

SLC39A14 have similar functions mediating manganese uptake at the cell surface as shown 

in Figure 3 (Chen et al. 2015). However, deficiencies of these 3 manganese/zinc transporters 

cause very different diseases in man: SLC39A4 causes a zinc deficiency disorder 

(acrodermatitis enteropathica) (Küry et al. 2002); SLC39A8 deficiency mainly causes 

problems due to cellular manganese deficiency (Boycott et al. 2016, Park et al. 2016) and 

SLC39A14 is probably mainly a disorder of hepatic uptake (and hence biliary excretion) of 

manganese leading to symptoms caused by excessively high manganese levels in the brain 

(Tuschl et al 2016). 

Other transporters identified as causing diseases in man when mutated 

The SLC30A (ZnT) transporters are involved in export of zinc and/or manganese from cells.  

SLC30A2 (ZnT2) transports zinc into secretory vesicles in mammary epithelial cells; 

heterozygous mutations in SLC30A2 in a mother leads to zinc deficiency in her breast-fed 

infant (Chowanadisa Lönnerdal & Kelleher 2006). Homozygous SLC30A10 mutations lead to 

high levels of manganese in liver, blood and brain; the transporter is involved in biliary 

excretion of manganese (Tuschl et al 2012) . 

Iron/ Manganese Transporters 

Iron homeostasis will be discussed below but it is important to note that several iron 

transporters also transport manganese. These include DMT-1 (intestinal and cellular 



uptake); transferrin and the transferrin receptor (transport in blood and cellular uptake) and 

ferroportin (cellular excretion). 

Disorders mainly Affecting Zinc Levels 

SLC39A4 (ZIP4) deficiency. Acrodermatitis enteropathica 

Acrodermatitis enteropathica typically presents in infancy with peri-orificial and acral 

dermatitis, diarrhoea, recurrent infections, and growth delay. Children may also have mood 

changes e.g apathy, irritability. This disorder can be treated very effectively with zinc 

supplementation typically 35-90 mg elemental zinc per day as the sulphate. 

SLC30A2 (ZnT2) deficiency. Breast milk zinc deficiency 

A breast-feeding mother who has a heterozygous mutation in SLC30A2 does not supply 

enough zinc to her infant in her breast milk and the infant develops symptoms similar to 

those of acrodermatitis enteropathica (Chowanadisai, Lönnerdal & Kelleher, 2006). The 

baby can be treated with a physiological zinc supplement. 

Disorders mainly Affecting Manganese Levels 

SLC30A10 (Znt10) Deficiency. Dystonia/Parkinsonism, Hypermanganesaemia, 

Polycythaemia, and Chronic Liver Disease 

In 2008, we described a syndrome of hepatic cirrhosis, dystonia, polycythaemia and 

hypermanganesaemia (Tuschl et al. 2008). The T1-weighted MRI scan of the brain showed 

marked hyperintensity of the basal ganglia – attributable to the accumulation of 

manganese. Manganese levels in the blood could be reduced by chelation with intravenous 

disodium calcium edetate and oral iron supplementation and this treatment led to an 

improvement in the dystonia, the brain MRI appearances and the liver manganese content 



and histology. In 2012, we and others were able to show that this syndrome was caused by 

mutations in SLC30A10  (Tuschl et al. 2012, Quadri et al. 2012); some of the patients 

described by Quadri et al had adult onset Parkinsonism rather than childhood onset 

dystonia.  

SLC39A14 (ZIP14 Deficiency). Infantile / Early Childhood onset Dystonia with 

Hypermanganesaemia 

We discovered that some children with a movement disorder, T1-hyperintensity of the basal 

ganglia and white matter and hypermanganesaemia did not have mutations in SLC30A10;  

rather whole exome sequencing revealed mutations in SLC39A14. In 2015, we realized that 

the group of Manju Kurian working in our institute had found mutations in the same gene in 

a cohort of children with a movement disorder and T2-hypointensity of the globus pallidus 

(similar to neurodegeneratioin with brain iron accumulation; NBIA). Fortunately we agreed 

to collaborate rather than compete and this led to a full description of SLC39A14 deficiency 

in 8 patients from 5 families (Tuschl et al 2016). This disorder presents in infancy or early 

childhood with loss of developmental milestones, progressive dystonia and bulbar 

dysfunction. By 8-10 years, patients typically have generalized, drug-resistant dystonia, 

spasticity, limb contractures, scoliosis, and loss of independent ambulation but with 

preserved cognition. Some have additional features of Parkinson’s disease (hypomimia, 

tremor and bradykinesia). They have high blood manganese but (in contrast to SLC30A10 

deficiency) no polycythaemia and no liver disease. T1-weighted MRI scans show 

hyperintensity of the globus pallidus, striatum, cerebral white matter, pituitary, dorsal pons 

and cerebellum. The liver T1 intensity is not increased (in contrast to SLC30A10 deficiency). 

SLC39A14 deficiency, like SLC30A10 deficiency responds to treatment with disodium calcium 



edetate, at least if treatment is started before the disease is advanced; the urinary 

manganese excretion increases markedly, blood manganese falls and the motor impairment 

improves significantly.  

A zebrafish model of SLC39A14 deficiency shows marked accumulation of manganese (and 

no other metals) in the brain, associated with reduced locomotor activity. The main defect 

thus appears to be uptake of managesese into the liver which normally allows blood levels 

of manganese to be reduced by biliary excretion. 

SLC39A8 (ZIP8) Deficiency. Hypomanganesaemia, developmental delay plus 

Two papers published simultaneously in 2015 describe the effects of SLC39A8 mutations 

(Boycott et al. 2015; Park et al 2015, 2016). Boycott et al described 6 patients from the 

Hutterite community and an Egyptian sibling pair with recessively inherited, developmental 

delay / intellectual disability, hypotonia, strabismus, and variable short stature. MRI scans 

showed cerebellar atrophy. Concentrations of manganese and zinc were variably reduced in 

plasma  and increased in urine. They all had a homozygous mutation (p.Gly38Arg) in 

SLC39A8. The patient described by Park et al. presented with cranial asymmetry, 

disproportionate (short-limbed) dwarfism, severe infantile spasms with hypsarrhythmia, 

hearing loss, and severe developmental delay. The blood manganese was below the limit of 

detection. The patient’s plasma showed an abnormal transferrin glycosylation profile (Type 

II pattern); this was consistent with reduced activity of a manganese-dependent enzyme 

required for N-glycosylation – 1,4-galalctosyl transferase. 

A third patient with mutations in SLC39A8 (homozygous p.Cys113Ser) was described at the 

symposium and subsequently published in the JIMD (Riley et al 2016/2017) This patient 

presented with Leigh disease and was confirmed to have a raised CSF lactate and reduced 



activities of complexes II / III and IV in liver. However, a similarly affected sibling also had a 

type II abnormal transferrin pattern and blood and urine manganese levels were 

undetectably low. Interestingly the brain imaging findings were opposite to those seen in 

the disorders in which manganese accumulates (SLC30A10 and SLC39A14 deficiencies); the 

basal ganglia were hypointense on T1-weighted images and hyperintense on T2. (Since high 

levels of manganese produce hyperintensity on T1 and hypointensity on T2, it seems quite 

possible that the signal changes in SLC39A8 deficiency are due to low manganese levels). 

The abnormal transferrin pattern was attributed to reduced 1,4-galalctosyl transferase 

activity and the mitochondrial damage to build up of reactive oxygen species as a result of 

reduced activity of manganese-dependent superoxide dismutase. 

Treatment of SLC39A8 deficiency with an oral galactose supplement corrected the abnormal 

transferrin pattern (Park et al 2015). Added manganese supplementation led to further 

clinical improvement with cessation of seizures (Park et al 2016). 

 

Disorders of Copper Homeostasis 

The main effects of mutations in ATP7A are failure of copper uptake by the enterocytes and 

by the nervous system resulting in cellular copper deficiency and 3 main phenotypes: 

Menke’s disease, occipital horn syndrome and X-linked distal neuropathy (van Hasselt, 

Clayton & Houwen, 2016). In contrast, mutations in ATP7B lead to a failure of copper 

excretion by hepatocytes leading to copper toxicity principally affecting the central nervous 

system and liver (Wilson’s disease). The ATP7A and ATP7B proteins are synthesized in the 

endoplasmic reticulum, and are then trafficked to the trans-Golgi network and on to the 

basolateral plasma membrane (ATP7A) or the apical (canalicular) plasma membrane 



(ATP7B). This update will focus on challenges in the treatment of Wilson’s disease and 

potential new approaches and describe some conditions in which the trafficking of ATP7B 

and or ATP7A from ER through trans-Golgi to plasma membrane is defective. 

i) Challenges and New Approaches in the Treatment of Wilson’s Disease. 

Neurological Presentation 

Patients with Wilson’s disease who present with neurological symptoms typically present 

between the ages of 8 and 20 years and most often with a movement disorder, particularly  

dysarthria and dysgraphia, progressing to tremor, dystonic rigidity and drooling. In a sub-

group, psychiatric symptoms predominate ranging from impulsivity and irritability to frank 

psychosis. T2-weighted MRI images typically show changes in the striatum but individual 

patients show marked heterogeneity in the striatal changes in terms of the location and 

density of both hyperintense and hypointense signals (Schlaug et al. 1996).   The 

neurological symptoms of Wilson’s disease can be very debilitating so it is a tragedy when 

they get worse when the paediatrician / physician is trying to treat the patient in a way that 

will lead to improvement in these symptoms. This is particularly so in the 34% of cases in 

which the neurological deterioration is irreversible. A recent study confirmed that 

worsening of neurological symptoms can occurr in 35% of patients treated with D-

penicillamine (n=35) and 19% of patients treated with zinc sulphate (n=21) a difference that 

was not statistically significant (Czlonkowska et al 2014, Litwin et al. 2015). On the other 

hand, a study in 2006 by Brewer et al. showed that neurological deterioration on treatment 

occurred in 27% of patients treated with trientine (n=23) but only in 4% of patients treated 

with ammonium tetrathiomolybdate (n=25), a difference that was significant at the p<0.05 



level. Tetrathiomolybdate has been awarded Orphan Drug status in Europe. Clearly further 

studies are required to find the optimum treatment for neurological Wilson’s disease. 

Liver Failure 

Liver failure in Wilson’s disease is currently treated by liver transplantation; a patient with a 

severity score of 11 is unlikely to survive with chelation therapy (Dhawan et al. 2005). 

However, liver transplantation is limited by the availability of donor organs / segments, so a 

new approach to liver failure being tested in an animal model of Wilson’s disease, is of 

considerable interest. Lichtmannegger et al. (2016) showed  that methanobactin could 

reverse acute liver failure in the ATP7B-deficient rat. Methanobactin is a peptide produced 

by Methylosinus trichosporium OB3b that has an exceptionally high affinity for copper and it 

was shown to be more efficient than D-penicillamine, trientine, and tetrathiomolybdate in 

extracting copper from liver mitochondria of Atp7b-/- rats. The rats have hepatic copper 

accumulation, liver damage and mitochondrial impairment. Short term treatment with 

methanobactin reversed mitochondrial impairment and liver damage and prevented liver 

failure and death in the rats, providing a rationale for clinical trials in man. 

ATP7B Proteins Retained in the Endoplasmic Reticulum 

Several ATP7B mutations, including the common mutations, H1069Q and R778L, produce 

proteins that are active but are retained in the endoplasmic reticulum whereas they need to 

travel to the cell surface to bring about copper excretion. In addition, expression of H1069Q 

activates p38 and c-Jun N-terminal kinase (JNK) signaling pathways and this leads to rapid 

degradation of the mutant protein. Chesi et al (2016) have shown that suppression of p38 

and c-Jun pathways with small inhibitory RNA (siRNA) or chemical inhibitors allows the 

protein to get to the trans-Golgi network, leading to restoration of copper-dependent 



trafficking and reduction of cellular copper levels. These findings suggest that there may, in 

the future, be additional treatments for patients with Wilson’s disease who harbour 

mutations causing retention of the protein in the ER. 

ii) ATP7A and ATP7B Retained in the Trans-Golgi Network- MEDNIK syndrome 

Martinelli, Dionisi Vici and colleagues have recently described a disorder that combines 

features of Wilson’s disease and Menke’s disease and is caused by defective trafficking of 

ATP7A and ATP7B proteins from the trans-Golgi network (TGN) to the cell membrane and 

other organelles (Martinelli et al. 2013; Martinelli and Dionisi-Vici 2014). MEDNIK syndrome 

is characterized by mental retardation, enteropathy, deafness, peripheral neuropathy 

ichthyosis and keratoderma plus brain atrophy and cholestatic hepatopathy. Copper and 

caeruloplasmin concetrations are reduced in plasma and liver copper is elevated. Like 

Wilson’s disease, the disorder responds to treatment with zinc acetate. The underlying 

cause is mutations in AP1S1, encoding adaptor protein complex 1 subunit 1, a protein that 

is necessary for the trafficking of ATP7A and ATP7B out of the TGN.  

Iron Homeostasis and its Disorders 

Over the last decade, much has been learned about i) hormonal regulation of plasma iron 

levels and ii) cellular processing of iron regulation and it regulation. 

Hormonal Regulation of Plasma Iron Concentration 

An increased plasma iron level leads to increased transcription of hepcidin from HAMP. The 

increased level of hepcidin in the circulation has major effects on target cells – principally 

enterocytes and macrophages (Figure 4). In both cell types the action of hepcidin leads to 

degradation of ferroportin, the main channel for export of iron from the cell. The action on 



enterocytes leads to reduced intestinal absorption of iron. The action on macrophages 

reduces the release of iron into the plasma from the stores in these cells. The net result is 

for the plasma iron to be reduced so that it is back in the normal range. If the hepcidin 

pathway is impaired, iron from plasma will be taken up by cells of the liver, pancreas, heart 

and other organs leading to cirrhosis, diabetes, cardiomyopathy etc (haemochromatosis).  

Infection and inflammation can trigger the secretion of hepcidin when plasma iron is 

normal, leading to the low plasma iron seen in chronic infection / inflammation.  

The gene defects that can cause hereditary haemachromatosis are listed in Tables 1 and 2. 

The commonest types involve reduced synthesis of hepcidin in reponse to iron (by a 

mechanism that is not fully understood) e.g. HFE1 mutations. Other mechanisms involve 

mutations in hepcidin (Table 2) or ferroportin (Table 3).  

 

Cellular Processing of Iron and its Regulation 

A simplified scheme of iron uptake and processing by the cell, and its regulation is shown in 

Figure 5 (based on Barapula et al 2015). Uptake of Fe2+ at the cell surface can occur via the 

divalent metal transporter encoded by DMT1. This transporter also mediates uptake into 

the enterocyte. Transferrin-bound Fe3+ binds to the transferrin receptor at the cell surface 

and the complex is endocytosed. Uptake from the endocytotic vesicle requires conversion of 

Fe3+ to Fe2+ catalyzed by the endosomal ferrireductase (STEAP3) followed by uptake of the 

Fe2+ by DMT1. Transport into the mitochondria requires mitoferrin 1 (MFRN1; SLC25A37) 

and 2 (MFRN2; SLC25A28). Within the mitochondrion iron has two principal fates – 

synthesis of haem and synthesis of iron-sulphur clusters. Some iron can be stored in the 

mitochondrion  as mitochondrial ferritin (MTFT). Cytosolic iron can be incorporated into Fe-



proteins and FeS proteins and it can be converted via a PCB1-4 dependent pathway to 

ferritin the main cellular store from which it can subsequently be released in a controlled 

fashion. Export from the cell is via ferroportin the activity of which is determined by plasma 

hepcidin as indicated above.  Regulation of cellular iron homeostasis involves binding of 

cytosolic iron to iron-responsive proteins 1 and 2 (IRP1/2) – also known as iron-reponsive 

element-binding proteins (IREB1/2). These iron-bearing IRPs bind to iron-responsive 

elements (IREs) in the 5’ or 3’untranslated regions of messenger RNAs and regulate 

transcription of the iron-reponsive protein. A defect in the ability of cells to use iron for 

synthesis of haem leads to an “iron refractory iron deficient anaemia” and often to liver iron 

overload. Disorders are listed in Table 4.   

Defective haem synthesis is, of course, the basis of the porphyrias. Defects of iron sulphur 

cluster synthesis have been the subject of recent reviews (Ahting et al. 2015; Rahman and 

Mayr 2016) and have not been included in this update.  

Neurodegeneration with Brain Iron Accumulation (NBIA) 

Ten inborn errors lead to NBIA. For two of these the mechanism is understood: 

Acaeruloplasminaemia 

Biallelic mutations in CP lead to undetectable levels of caeruloplasmin in plasma. Patients 

have accumulation of iron in the liver, islets of Langerhans and brain. They present in adult 

life with neurological symptoms (chorea, ataxia, dystonia, Parkinsonism and psychiatric 

disorders), retinal degeneration and diabetes mellitus. Caeruloplasmin is a copper-

containing enzyme secreted by the liver into the plasma that converts ferrous (Fe2+) iron 

(which is the form of iron that is taken up from the diet and the form is stored in ferritin) to 



ferric (Fe3+)  iron (which is the iron species that can be transported in the circulation by 

transferrin). Patients with acaeruloplasminaemia have a low serum iron (mostly transferrin-

bound) and a high serum ferritin. This suggests that the excessive uptake of iron into the 

basal ganglia may be attributable to uptake of ferrous iron which is then stored as ferritin.  

Treatment with the iron chelator, desferrioxamine leads to  a reduction in body iron stores 

as well as amelioration of diabetes and a decrease in neurologic symptoms (Miyajima et al. 

1997). 

Neuroferritinopathy 

Heterozygous mutations in FTL affecting the last part of the light chain of ferritin lead to 

deposits of iron and ferritin in the brain, particularly the basal ganglia. Patients present in in 

early adult life with progressive neurological symptoms (chorea, ataxia, rigidity, dystonia, 

cognitive impairment). Using a mouse model of the disease Garringer et al (2016) showed 

that treatment of cells with the iron chelator, deferiprone, could decrease the iron content 

of the cells and increase cell viability. However, in vivo studies failed to improve the CNS 

pathology.    

 

Metals in Innate Immunity 

Iron 

NRAMP1 (SLC11A1) is a transporter of Fe2+ found in membranes of phagocytic vacuoles of 

macrophages and neutrophils. NRAMP1 mutations in mice impair resistance to intracellular 

parasites e.g.Salmonella, Leishmania, Mycobacterium (Canonne-Hergauxet al 1999). It is 

thought that NRAMP1 controls intracellular microbial replication by actively removing Fe2+ / 



other divalent cations from the phagosomal space. In man, meta-analysis confirms an 

association between SLC11A1 polymorphisms and tuberculosis (Li et al. 2011), supporting 

the hypothesis that NRAMP1 is important in human defence against TB. 

Copper 

Mice respond to infection with Candida albicans by trying to poison the fungus with copper; 

however the pathogen is also capable of modifying its copper metabolism (Mackie et al 

2016). 

Conclusion 

Inborn errors of transition metals along with advances in basic science are allowing us to 

understand much more about the metabolism of these micronutrients and its regulation 

and this in turn is leading to new treatments. There is, however, still a lot to learn. 
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Metal 
Accumulating 

Disorder Inheritance Gene Function of gene product Prominent motor 
symptoms 

Age at 
presentation 

Copper Wilson’s disease AR ATP7B Copper transporter Dysarthria, dysphagia, 
tremor, dystonic rigidity 

10y -30y 

Manganese Dystonia/Parkinsonism, hypermanganesaemia, 
polycythaemia, and chronic liver disease 

AR SLC30A10 Manganese transporter Dystonia, cock-walk gait  
Parkinsonism 

Childhood 
 Middle age 

Manganese Infantile / early childhood onset dystonia with 
hypermanganesaemia 

AR SLC39A14 Manganese transporter Progressive dystonia and 
bulbar dysfunction. 

Infancy /early 
childhood 

Iron Acaeruloplasminaemia AR CP Ferroxidase Chorea, ataxia, dystonia, 
Parkinsonism 

Adulthood 

Iron Neuroferritinopathy AD FTL Iron storage Chorea, dystonia Middle age 

Iron Pantothenate kinase associated neurodegeneration 
(PKAN) 

AR PANK2 Pantothenate kinase (CoA 
synthesis) 

Dystonia, rigidity, 
choreoathetosis 

Early 
childhood 

Iron Coenzyme A synthetase deficiency AR COASY CoA synthesis Dystonia, rigidity, 
choreoathetosis 

Early 
childhood 

Iron Infantile neuroaxonal dystrophy (INAD) AR PLA2G6 Phospholipase Motor regression, 
hypotonia 

Infancy / early 
childhood 

Iron Fatty acid hydroxylase associated neurodegeneration AR FA2H Fatty acid 2-hydroxylase 
(Synthesis of sphingolipids) 

Gait difficulties with 
spastic paraparesis and 
dysmetria 

Early 
childhood 

Iron Mitochondrial protein associated neurodegeneration AR C19orf12 Mitochondrial magnesium 
homeostasis 

Spastic paraplegia, 
Parkinsonism 

Childhood / 
adulthood 

Iron Woodhouse-Sakati syndrome AR DCAF17 Ubiquitinylation Developmental delay 
Dystonia, dysarthria, 
choreoathetosis  

Childhood 
Adolescence 

Iron Static encephalopathy of childhood with 
neurodegeration in adulthood (SENDA) 
Beta-propeller protein-associated neurodegeneration 
(BPAN) 

XD WDR45 Autophagy Global developmental 
delay 
Parkinsonism and 
dementia 

Childhood 
 
Early 
adulthood 

Iron Kufor-Rakeb syndrome AR ATP13A2  Atypical Parkinsonism 
Supranucelar gaze palsy 
Spasticity 

Childhood 

 

Table 1. Inborn errors of metabolism leading to accumulation of a transition metal in the basal ganglia and substantia nigra. AR, autosomal 

recessive; AD autosomal dominant; XD, X-linked dominant.  



 

Gene Inheritance Protein Role in Fe  
Metabolism 

Anaemia Haemochromatosis 
(Cirrhosis, 
diabetes, 
cardiomyopathy  

Treatment 

HAMP AR Hepcidin Inhibits iron 
release by 
ferroportin 

- + (3rd- 4th decade) 
 

HFE1 AR 
2 common 
mutations 

HFE ? Fe sensor 
Regulates 
synthesis of 
hepcidin 

- +/-  (4th-5th decade) Phlebotomy 
for ferritin 
>1000 
ng/ml 

HJV AR Haemojuvelin Regulates 
synthesis of 
hepcidin 

- + (2nd-3rd decade) 
(incl. 
hypogonadism) 

Phlebotomy 
effective if 
started 
early 

TRF2 AR Transferrin 
receptor 2 

? Fe sensor 
Regulates 
synthesis of 
hepcidin 

- + (3rd-5th decade) Phlebotomy 

 

Table 2. Inborn errors of metabolism leading to hepcidin deficiency, and thereby 

haemochromatosis. Although the exact mechanism by which the hepatocyte senses raised 

plasma iron and increases transcription of hepcidin is not fully understood it is believed that 

HFE1, HJV and TRF2 gene products participate in this process.  

  



 

Gene Inheritance Protein Role in Fe  
Metabolism 

Anaemia Haemochromatosis 
(Cirrhosis, diabetes, 
cardiomyopathy  

Treatment 

SLC40A1 AD Ferroportin 
(Loss of 
function) 

Export from 
cells into 
circulation 

Mild 
microcytic 

+/- Iron storage in 
macrophages 

 

SLC40A1 AD Ferroportin 
(Gain; 
hepcidin 
resistant) 

  
+ Phlebotomy 

 

Table 3. Effects of loss of function and gain of function (hepcidin resistance) mutations in 

ferroportin.  



Gene Protein Role in Fe  
Metabolism 

Microcytic 
Anaemia 

Liver Fe 
overload 

Other Treatment 

SLC11A2 DMT1 Duodenal 
uptake 
Intracellular 
release 

+ + Increased Cu in brain 
associated with 
impulsivity in rat 
model 

Erythropoietin 
(EPO) 

TMPRSS6 Matriptase 
2 

Cleavage of 
haemojuvelin 
Mutations 
lead to high 
hepcidin 
levels 

+ 
IRIDA* 

+ 
 

i/v Fe 

STEAP3 STEAP3 Endosomal 
ferrireductase 
required for 
uptake into 
cytoplasm 

+ + Hepatosplenomegaly 
Hypopituitarism 
Hypogonadism 

Transfusion 
Fe chelation 

TFRC Transferrin 
receptor 1 

Cellular 
uptake 

+ 
 

Combined 
immunodeficiency 
Leukopenia 
Thrombocytopenia 

 

TF Transferrin Fe transport 
in blood, 
uptake 

+ + Growth retardation 
(TF<20mg/dL) 

Plasma 
infusions 

 

Table 4. Disorders affecting the ability of the cell to take up iron, maintain adequate levels in 

cytosol and mitochondria and incorporate into haem. 

  



Figure 1. The biological periodic table. Red, major building blocks (96% mass of organism); 

green, major minerals; blue and yellow trace elements (micronutrients). The seven trace 

metals are in groups 3 to 12 of the periodic table (the d series). With the exception of zinc 

they have an incomplete d sub shell of electrons. 

  



 

Figure 2. A 2015 view of zinc transporters (simplified from Kambe et al 2015). ZIP 

transporters are now placed in the SLC39A family; for disorders to be discussed the SLC39A 

name is given alongside the ZIP name. ZnT transporters are placed in the SLC30A family; for 

disorders to be discussed the SLC30A name is given alongside the ZnT name. ER, 

endoplasmic reticulum; SV, (mammary) secretory vesicle; E/L endosome/lysosome. 

  



 

Figure 3. A 2015 view of manganese transporters (simplified from Chen et al 2015). ER, 

endoplasmic reticulum; E, endosome; L, lysosome: RME, receptor-mediated endocytosis; Tf, 

transferrin, TfR, transferrin receptor.  

  



 

 

 

Figure 4. Hormonal control of plasma iron by hepcidin. Failure to activate left-hand pathway 

in response to a high plasma iron leads to haemochromatosis. Right-hand pathway explains 

why chronic infection / inflammation leads to a low plasma iron. 

  

Increased plasma Fe 

Increased hepatic transcription  
of hepcidin from HAMP 

Degradation of ferroportin  

Reduced flux of Fe from stores in 
macrophages into plasma 

Reduced absorption of Fe 

Normal plasma Fe 

Infection / inflammation 

Low plasma Fe 

Uptake by liver, pancreas, heart 

Haemochromatosis 



Figure 5. Cellular iron metabolism and its regulation (after Barapula et al 2015). RME, 

receptor-mediated endocytosis, E, endosome; Ff, transferrin, TfR, transferrin receptor; IRP, 

iron-reponsive protein, IRE, iron responsive element; FeS , iron sulphur cluster; XS, unknown 

sulphur transporter; ISCM, iron sulphu cluster machinery; CIAM,  cytosolic iron-sulphur 

cluster assembly machinery; PCBP, poly (rC) binding protein.



 


