Maskell, LJ;
Qamar, K;
Babakr, AA;
Hawkins, TA;
Heads, RJ;
Budhram-Mahadeo, VS;
(2017)
Essential but partially redundant roles for POU4F1/Brn-3a and POU4F2/Brn-3b transcription factors in the developing heart.
Cell Death & Disease
, 8
, Article e2861. 10.1038/cddis.2017.185.
Preview |
Text
Budhram-Mahadeo_cddis2017185a.pdf - Published Version Download (3MB) | Preview |
Abstract
Congenital heart defects contribute to embryonic or neonatal lethality but due to the complexity of cardiac development, the molecular changes associated with such defects are not fully understood. Here, we report that transcription factors (TFs) Brn-3a (POU4F1) and Brn-3b (POU4F2) are important for normal cardiac development. Brn-3a directly represses Brn-3b promoter in cardiomyocytes and consequently Brn-3a knockout (KO) mutant hearts express increased Brn-3b mRNA during mid-gestation, which is linked to hyperplastic growth associated with elevated cyclin D1, a known Brn-3b target gene. However, during late gestation, Brn-3b can cooperate with p53 to enhance transcription of pro-apoptotic genes e.g. Bax, thereby increasing apoptosis and contribute to morphological defects such as non-compaction, ventricular wall/septal thinning and increased crypts/fissures, which may cause lethality of Brn-3a KO mutants soon after birth. Despite this, early embryonic lethality in e9.5 double KO (Brn-3a(-/-) : Brn-3b(-/-)) mutants indicate essential functions with partial redundancy during early embryogenesis. High conservation between mammals and zebrafish (ZF) Brn-3b (87%) or Brn-3a (76%) facilitated use of ZF embryos to study potential roles in developing heart. Double morphant embryos targeted with morpholino oligonucleotides to both TFs develop significant cardiac defects (looping abnormalities and valve defects) suggesting essential roles for Brn-3a and Brn-3b in developing hearts.
Type: | Article |
---|---|
Title: | Essential but partially redundant roles for POU4F1/Brn-3a and POU4F2/Brn-3b transcription factors in the developing heart |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/cddis.2017.185 |
Publisher version: | http://dx.doi.org/10.1038/cddis.2017.185 |
Language: | English |
Additional information: | © The Author(s) 2017. Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Cell and Developmental Biology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science > Pre-clinical and Fundamental Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/1547020 |
Archive Staff Only
View Item |