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A B S T R A C T

This paper describes a method of predicting constant flow filtration capacities using constant pressure datasets
collected during the purification of several monoclonal antibodies through depth filtration. The method required
characterisation of the fouling mechanism occurring in constant pressure filtration processes by evaluating the
best fit of each of the classic and combined theoretical fouling models. The optimised coefficients of the various
models were correlated with the corresponding capacities achieved during constant flow operation at the
specific pressures performed during constant pressure operation for each centrate. Of the classic and combined
fouling models investigated, the Cake-Adsorption fouling model was found to best describe the fouling
mechanisms observed for each centrate at the various different pressures investigated. A linear regression
model was generated with these coefficients and was shown to predict accurately the capacities at constant flow
operation at each pressure. This model was subsequently validated using an additional centrate and accurately
predicted the constant flow capacities at three different pressures (0.69, 1.03 and 1.38 bar). The model used the
optimised Cake-Adsorption model coefficients that best described the flux decline during constant pressure
operation. The proposed method of predicting depth filtration performance proved to be faster than the
traditional approach whilst requiring significantly less material, making it particularly attractive for early
process development activities.

1. Introduction

The market for therapeutic monoclonal antibodies (mAb) has seen
unprecedented growth in recent years and this expansion is predicted
to continue over the next decade [1]. To meet product supply for this
increasing market and to ensure potential new drug candidates are
manufactured effectively, pharmaceutical and biotechnology compa-
nies are required to operate across a wide range of scales, including
large-scale manufacturing performed in vessels up to 20,000 L in
addition to research development activities carried out using small or
micro-scale systems. One of the challenges of operating at multiple
scales is the need for flexible and scalable downstream processing unit
operations. Depth filtration is an adaptable and scalable unit operation
that has gained wide acceptance as the technique of choice for the
clarification of mammalian cell culture broth post-centrifugation [2].

Accurate estimations of the optimum filter sizing of this key unit
operation are critical. Over-sizing of the filter is uneconomic and
under-sizing of the filter can result in process-related issues such as
increased fouling in subsequent chromatographic stages thus short-
ening column lifetime and efficiency [3,4] or filter blockage resulting in
loss of material. For constant flow operation the optimum filter area or
capacity is defined as the cumulative volume of material filtered until a
maximum pressure is reached [5] whereas the capacity for constant
pressure is determined as the volume of material processed before a
minimum flow rate is reached [6]. The optimum capacity of this unit
operation is difficult to predict and can be influenced by a large number
of parameters, including mode of operation, type of cell line, level of
aggregates, cell culture conditions and centrifuge operating conditions
[2]. Typically in an industrial environment, depth filtration trials are
performed in constant flow mode on a scale-down mimic that predicts
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the capacity at large-scale for each material tested. One of the problems
of this approach is that it is time-consuming and material-intensive,
particularly in comparison to capacity predictions performed in con-
stant pressure mode. Fundamentally constant pressure and constant
flow are operated differently. In constant flow operation a positive
displacement pump is required to ensure the constant flow is main-
tained throughput the run. The pressure drop across the filter increases
to maintain this constant flow due to foulant build up with time. In
contrast, during constant pressure operation the initial flux through the
filter is relatively high and decreases gradually as the filter fouls
resulting in the hydrodynamic conditions at the filter surface changing
over time [7]. This initial high flux can result in severe fouling [8] and
therefore subsequently reduce the overall capacity of the filter. Hence
the majority of biopharmaceutical processes operate in constant flow
mode to maximize the available filter area. Miller et al. [7] demon-
strated comparable fouling behavior between constant flow and con-
stant pressure operation during dead-end ultrafiltration of an emulsi-
fied oil for low constant flow operation ( < 62 LMH) with deviations
between the modes of operation found for flows about this value.
Furthermore, Bolton et al. [9] and Chellam and Xu [10] demonstrated
comparable fouling characteristics between the two modes of operation
during the dead-end ultrafiltration of various materials ranging from
antibody preparations to bacteria. Little research has investigated the
conversion of constant pressure to constant flow operation for depth
filtration.

Understanding membrane fouling remains a major challenge due to
the multiple factors influencing this highly complex mechanism.
Upstream processing conditions including cell viability and centrifuge
operation can greatly influence the feed material onto a primary
recovery depth filter resulting in significantly varied filtration proper-
ties [11]. Furthermore, the filters typically have an anisotropic pore
structure resulting in various fouling mechanisms from deposition to
adsorption of solutes to the membrane surface, cake layer formation,
concentration polarisation and build-up of osmotic pressure [7]. In an
attempt to simplify these highly complicated mechanisms various
mathematical models have been applied to quantify the observed
fouling. A limitation of these blocking models is that they are semi-
empirical and assume the fouling mechanism is solely related to the
physical blockage of the pores or inner pore walls as a result of the
particles depositing onto the surface [12]. However, his generalisation
has been widely implemented and successfully approximated the
observed fouling during dead-end microfiltration [8,13–15], ultra-
filtration [16,17] and depth-filtration [18,19]. The four classic models
outlined in the literature are referenced as Complete blocking,
Standard blocking, Cake filtration and Intermediate blocking [15].
Combination models have also been investigated which incorporate
two or more of the classic models in conjunction. These have been
shown to describe better the observed fouling in filters where classic

models fail [17]. Most research has focused on the application of these
mathematical models to define the fouling properties of proteins in
dead-end microfiltration systems during constant pressure operation
[9,13,15] or ultra-filtration [17,18]. Depth filtration operates slightly
differently than these absolute filters and mainly retains the particles in
the filter media, however these fouling models have been successfully
demonstrated to model the observed fouling [19]. Sampath et al. [15]
showed that these mathematical models can characterise the fouling of
depth filters during the loading of a Pichia pastoris fermentation
during constant pressure operation. Hlavacek and Bouchet [16]
implemented the models to explore the fouling behaviours at constant
flow and demonstrated the ability of the intermediate model to fit the
pressure increase of bovine serum albumin (BSA) solutions filtered
through various different membrane types. Similarly, Ho and Zydney
[13] modelled constant flow microfiltration of protein, while Chellam
and Xu [10] used these blocking laws to analyse the constant flow
microfiltration of colloids. As depth filtration post centrifugation is the
primary clarification method for large-scale mammalian cell manufac-
turing there is a need to investigate the various fouling modes that
occur during both constant flow and constant pressure operation.

The ability to translate across constant flow and constant pressure
models in filtration studies would be a major step forward and result in
significant savings of time and valuable test materials for filter sizing
studies. Bolton et al. [9] investigated the transition between these two
modes of operation on dead-end microfiltration through characterisa-
tion of a bovine serum albumin foulant on a membrane filter. They
found that the parameter coefficients of various theoretical models
used to fit the flux decline during constant pressure operation could be
used within the constant flow model to predict the observed pressure
increase. However, with this method some models require calculation
of the initial pressure drop for constant flow operation or the initial flux
decline for constant pressure operation to generate predictions in the
different mode.

Our study provides a methodology to accurately predict the capacity
of depth filtration operated under constant flow utilising only constant
pressure flux decline data. The flux decline of a wide range of
industrially relevant centrates was characterised under constant pres-
sure operation by evaluating the fit of various theoretical fouling
models. Subsequently, constant flow experiments were conducted to
determine the capacity of each of the centrates investigated. The model
was found to be highly robust based on a low root mean square error
for cross-validation. Additional experiments were performed to vali-
date further the model and demonstrate its ability to predict accurately
capacity at constant flow using data performed at constant pressure
while also using significantly less material. This method may be highly
beneficial at an early stage in the development of new molecules or
proteins where material and time resources for process studies are
often in short supply.

Nomenclature

a cake model coefficient (L m−2)
b cake model exponential coefficient (m)
A available membrane frontal area (m2)
CFCap,i filter capacity at constant flow for a given pressure (L m−2)
J flux (L m2 h−1)
Jv(0) initial flux (L m2 h−1)
Jv(t) flux relative to available membrane area (L m2 h−1)
KA complete blocking constant (m2 L−1)
KC cake filtration constant (m2 L−1)
KCom complete blocking constant (m2 L−1)
KI intermediate blocking constant (m2 L−1)
KS standard blocking constant (m2 L−1)

LMH liters per meter per hour (L m−2 h−1)
P pressure (bar)
Rfilter specific resistance to filtration (m−1)
R2 coefficient of determination
t time (h)
V volume filtered (m3)

Greek letters

α0 Cake-Adsorption model coefficient (L m−2 h−1)
α 1,2, Cake-Adsorption model coefficients (L2 m−4 h−1)
α 3,4 Cake-Adsorption model coefficients (L4 m−6 h)
μ solution viscosity (Pa s)
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2. Theoretical considerations

In depth filtration the rate of filter fouling can be described by the
generalised form of Darcy's Law:

J
A

dV
dt

P
R μ

= 1 ≈ ∆
v

filter (1)

where Jv is the permeate flux defined by the flow rate per unit area of A
with V and t representing the volume and time respectively. The
pressure drop across the filter, ΔP, depends on the viscosity of the
material, μ, and the specific filter resistance, Rfilter. During constant
flow operation ( J∆ v=0), the increase in pressure during fouling is
represented as:

P J R μ∆ = v filter (2)

Whereas during constant pressure operation ( P∆ is fixed) the decrease
in flux is represented by:

J P
R μ

∆ = ∆
v

filter (3)

Both the viscosity and equivalent filter resistance are specific to the
material being filtered and dependent on the filter type and pore size.
In both modes of operation the increase in filter resistance (R )filter
during dead-end filtration relates to filter fouling as a result of particle
retention on the surface and inner walls of the filter, cake layer
formation, concentration polarisation in addition to other microscopic
fouling mechanisms. The increase in filter resistance results in a
reduction in flux during constant pressure operation whereas a
pressure increase is observed during constant flow operation. To
characterise the observed fouling, researchers have relied on four
classical fouling models; Cake filtration, Complete, Intermediate and
Standard blocking. These models are semi-empirical and are highly
dependent on the ratio of the particle size of the cell culture material to
filter pore size [20]. Filter resistance is increased by large particles
retained on the surface that completely block (Complete blocking) or
partially block the available pores (Intermediate blocking). This filter
foulant can increase with time as more material is filtered and the
particles can form a cake layer (Cake filtration) further increasing the
filter resistance. Small particles in the material relative to the filter pore
size can deposit within the pore structure (Standard blocking or
Adsorption) reducing the radius of the pore and therefore restricting
the volume throughput of the filter.

The primary blocking models were originally defined by Hermans
and Bredee [21] in 1935 and have more recently gained significant
interest based on their application to dead-end microfiltration of
protein solutions by Bowen et al. [15] and Ho and Zydney [13].
These models are defined by Bowen et al. [9] as Complete blocking,
Intermediate blocking, Standard blocking and Cake filtration.

Complete blocking occurs when each particle arriving at the filter
participates in blocking the pores of the membrane and is defined by
Eq. (4) where KCom is the fouling coefficient for the Complete blocking
model and Jv(0) is the initial permeate flux.

J t J eComplete blocking model: ( ) = (0)v v
K J t− (0)Com v (4)

Cake filtration occurs when the particles form a resistant layer on
top of the filter, this layer increases in depth as new particles arrive at
the filter and is defined as Eq. (5) where KC is the fouling coefficient for
the Cake filtration model.

J t
J
K J t

Cake filtration model: ( ) =
(0)

1+ (0)v
v

C v (5)

Intermediate blocking assumes that some particles arriving at the
filter will directly block a portion of the available area while other
particles will only participate in partial blockage of the pores and is
defined as Eq. (6) where KI is the fouling coefficient for the

Intermediate blocking model.

J t
J
K J t

Intermediate blocking model: ( ) =
(0)

1+ (0)v
v

I v (6)

Standard blocking assumes that particles deposit onto the internal
walls of the pores. As further particles arrive the internal diameter of
the pore wall is further constricted and over time will result in the
complete blockage of the pore. The mechanism is defined as Eq. (7)
where KS is the fouling coefficient for the Standard blocking model.

J t
J

K J t
Standard blocking model: ( ) =

(0)
(1+ (0) )v

v

S v
2 (7)

In addition to the four classic models, additional fouling models
have been generated including an adsorptive fouling model that
assumes particle deposition on the pore walls of the filter follows
zeroth-order kinetics and is defined by Bolton et al. [9] as Eq. (8) where
KA is the fouling coefficient for the Adsorption fouling model.

J t J K J tAdsorptive model: ( ) = (0)(1− (0) )v v A v
4 (8)

For constant flow operation, the inverse of the above mentioned
fouling models applies and can model the increase in pressure as a
function of time by replacing Jv(0) with P0 as the initial pressure during
constant flow mode [9].

One of the major problems with fitting a single blocking model is
the assumption of a single fouling mechanism in action when in reality
membrane fouling is often far more complicated and is usually better
characterised using a combination of models [17,18]. The combination
models enable 2 of the 5 previously discussed fouling mechanisms to
act in parallel resulting in an additional ten combination fouling
models to be considered. In total there were 15 different fouling
models that were examined in this work and are outlined in Table 4.

To characterise the dominant fouling mechanism during con-
stant pressure operation, a global optimisation function was
implemented to find the optimum classic and combined fouling
coefficients. The optimisation function minimised the summed
squared error (f(x)) between the experimental flux decline (Jv exp, )
generated at constant pressure and the predicted theoretical flux
decline (Jv pred, ) generated from the 15 (primary and combined)
previously discussed fouling models. The optimisation function is
subject to the constraint of non-negative fouling coefficients and is
defined as:

∑f x J J

K K K K K

Minimise: ( ) = ( − )

subject to , , , , ≥ 0

v exp v pred

C S Com I A

, ,
2

(9)

The dominant fouling mechanism was quantifed by the coefficient
of determination (Rfit

2), calculated based on the difference between of
the experimental constant pressure flux decline compared to theore-
tical fouling model. The coefficient of determination was defined here
as:

R
J t J t

J t J t
=1−

∑ ( ( )− ( ))

∑ ( ( )− ( ))fit
t
t t

v exp v pred

t
t t

v exp v exp

2 =0
=

, ,
2

=0
=

, ,
2

(10)

where J t( )v exp, defines the mean value of the flux.
The theoretical model that best describes the observed flux decline

typically defines the dominant fouling mechanism for the material.
However, the fouling can often be described by multiple fouling
mechanisms where the combined fouling models are typically a better
fit. To demonstrate this Fig. 1 highlights an example of two experi-
mental flux declines recorded on a depth filter for two centrates
(Centrate 4 and 5) operated at constant pressure equal to 0.69 bar.
The optimum theoretical flux for each experimental flux decline is
shown by the solid line. Centrate 4 represented by the large pink circles
was adequately described by the Cake filtration model with an Rfit

2 equal
to 0.99. The primary fouling models could not accurately approximate
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the flux decline of Centrate 5, however the combined Cake-Adsorption
combined fouling model resulted in an excellent fit with Rfit

2 equal to
0.97.

3. Experimental materials and methods

3.1. Cell culture

The cell culture material utilised in these experiments was gener-
ated using Chinese Hamster Ovary (CHO) cell lines expressing a range
of monoclonal antibodies (mAb) products. The cultures were produced
in bench (5 L) and pilot scale (500 L) bioreactors and harvested during
the decline phase of growth (days 11–14). The harvested broths had a
range of cell culture properties summarised in Table 1. The cell density
and cell viability were identified using an automated Trypan blue dye
exclusion method (ViCell, Beckman Coulter, High Wycombe, UK).

3.2. Large scale centrifugation

The centrates were generated by processing the cell culture broths
though a Westfalia SO1-06-107 (Odele, Germany) disk-stack centrifuge
operated at 10,000 RPM and flow rates were varied between 0.3–0.9 L/
min. The centrifugal operating conditions and the subsequent turbid-
ities of the centrates are summarised in Table 2. The turbidity values
recorded in this study were measured using a HACH 2100 P turbidity
meter (Loveland, CO, USA).

3.3. Filtration

Constant pressure and constant flow filtration experiments were
conducted using a 23 cm2 Millistack X0HC depth filter capsule (EMD
Millipore, MA, USA) with a nominal pore size ranging from 0.1 to
2 µm. The depth filter was first wetted with RO water at 200 L m−2 h−1

(LMH) for 20 min and subsequently aired for 10 min to remove any
residual water. The centrate was well mixed using a magnetic flea and
pumped through the aired filter at 100 LMH with pressure recorded for
the duration of the experiment. Identical materials were used to
challenge the filter in both constant pressure and constant flow

approaches. During constant pressure experiments the centrate was
sealed inside a feed vessel and pressurised to the set pressure using
compressed air. Throughout the experiment the filtrate was collected
and the volume recorded with time. A similar methodology was
implemented for constant pressure operation of a 3.5 cm2 Millipore
SHC sterile filters (EMD Millipore, MA, USA). The pressure was set at
0.69 bar for all sterile filter experiments. A summary of the pressure set
points for constant pressure operation and flowrate set point during
constant flow operation are shown in Table 3.

4. Results and discussion

The capacity of depth filters at any scale is primarily determined by
the fouling properties of the material. Understanding these character-
istics faster and accurately can provide an efficient method by which to
determine depth filter capacity. Capacity predictions can be performed
through constant pressure operation or constant flow operation. In
order to highlight the advantages of constant pressure operation
compared to constant flow operation the depth filter performance
was evaluated in both modes of operation using a wide range of
processed materials. Processing multiple cell culture broths at a variety
of centrifuge operating conditions provided a range of centrates with
various fouling properties.

It is common practice in industry to quantify the capacity during
constant flow operation as the total volume passed through the filter up
until a given pressure drop is reached (typically 1.38 bar). This practice
is however, time-consuming and material-intensive. Whilst depth filter
sizing at constant pressure is not common practice, this mode of
operation has the advantage of processing samples more quickly than
when operating at constant flow mode. The savings of experimental
process time are highlighted in Fig. 2A where the time to filter 100 mL
of each centrate under both constant pressure and constant flow
operation is shown. As expected all of the centrates were processed
by the 23 cm2

filter in approximately 26 min during constant flow
operation. Constant pressure operation allows the material to be
processed significantly faster, with on average an 80% reduction in
processing time observed for the majority of the centrates compared to
constant flow operation. Additionally, the total volume required to
conduct experiments under both modes of operations is summarised in
Fig. 2B and highlights an average of 70% savings of material to perform
these experiments at constant pressure operation. The processing time
and volume required to filter Centrate 4 with an NTU value of 560 is
shown here to behave abnormally in comparison to the other five
centrates. This high NTU value is atypical and resulted in rapid fouling
of the filter in both modes of operation. However, filtering this turbid
material under constant pressure operation mode was still faster than
constant flow operation.

The significant savings in material and processing time achieved
during constant pressure operation provided the impetus for develop-
ing a constant pressure operation based method to enable accurate
predictions of capacity for constant flow operations. Little research has
been carried out on the ability to utilise constant pressure data to
enable accurate predictions of process performance of depth filters

Fig. 1. Comparison of theoretical flux decline compared to experimental flux decline
data generated from constant pressure studies using a small-scale (23 cm2) depth filter.
The flux decline represented by • is the experimental flux decline of Centrate 4 operated
at constant pressure equal to 0.69 bar and represents the experimental flux decline of

Centrate 5 operated at the same constant pressure. The flux represented by equals

the optimum theoretical flux decline with the highest coefficient of determination. The
best fouling model fit for Centrate 4 was the Intermediate model with KI equal to
1.942×10−5 m2 L−1

. Similar the best fouling fit model for Centrate 5 was equal to the
Cake-Adsorption model with KC and KA equal to 1.085×10−5 and 2.6×10−7 m2 L−1

. (For
interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Table 1
Cell culture properties of material used for constant flow and constant pressure
experiments.

Product Material ID Bioreactor size
(L)

Cell density×106

(cells/mL)
Cell viability
(%)

mAb-A Centrate 1 500 25 68
mAb-B Centrate 2 5 20 75
mAb-B Centrate 3 5 20 75
mAb-B Centrate 4 5 20 75
mAb-C Centrate 5 500 24 90
mAb-C Centrate 6 500 24 90
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when operated at constant flow. The methodology reported in this
paper analysed both constant pressure and constant flow depth
filtration performance data. The study utilised a wide range of centrates
generated from three different products and two scales as summarised

in Table 1. The varied range of turbidities and process characteristics of
the six centrates generated a broad range of experimental capacities
when operated at constant flow as shown in Fig. 3. The turbidity post
centrifugation was recorded here as a quick and simple measurement
to quantify centrifuge performance, similar to practices in industry
[22]. It can also give a broad indication of a centrates fouling
propensity during depth filtration.

As highlighted by Fig. 3, Centrate 4 with the highest turbidity (560
NTU) was shown to be the most difficult material to filter. Similarly,
Centrate 5 with the lowest turbidity (102 NTU) was easily filtered and
displayed a significantly higher subsequent filter capacity than the
other centrates. However, Centrate 6 (106 NTU) with a similar NTU
value to Centrate 5 displayed a very different level of filterability. This
suggests no obvious correlation can be determined between the
filterability of the centrate and its recorded turbidity. Thus the large
range of observed capacities posed a real challenge in the optimum
sizing of this key unit operation.

Comparable variation was observed when the six centrates were
passed through the depth filter at constant pressure. The unique flux
profiles for each centrate are shown in Fig. 4 highlighting the differing
rates of membrane fouling specific to each material. Similar to the work
carried out by Sampath et al. [18] on depth filtration of a therapeutic
product expressed in a Pichia pastoris fermentation under constant
pressure, no correlation was determined between the filterability of the
centrate and the recorded turbidity. The initial flux (Jv(0)) of each
centrate was shown to increase (Fig. 4) with pressure of operation due
to the incompressible nature of the depth filter over the experimental
pressure range of 0.69−1.72 bar. Similar observations were seen by Ho
and Zydney [13] during microfiltration studies of bovine serum
albumin solutions and by Chellam and Xu [10] during microfiltration
of bacteria, colloidal silica and treated natural waters.

Characterising the fouling mechanisms observed during both
modes of operation are routinely defined through the application of
various mathematical fouling models as summarised in Section 2 of
theoretical considerations. In this work the observed fouling during
constant pressure operation of Centrates 1–6 was characterised using
the classic and combined fouling models.

A global optimisation function was utilised to generate the optimum
coefficients of the fouling models that minimised the error between the
experimental and theoretical flux declines. The goodness of fit was
quantified using the coefficient of determination (Rfit

2) and is sum-
marised in Table 4. Of the classic models the Cake and Intermediate
models were the dominant fouling mechanism found to model
accurately the majority of the different flux profiles. Similarly, for the
combined models, the Cake-Adsorption, Cake-Intermediate, Cake-

Table 2
Centrifugal operational settings for processing of cell cultures and the resultant centrate
turbidity.

Material Centrifuge flow rate (L/min) Turbidity (NTU)
ID

Centrate 1 0.3 234
Centrate 2 0.3 215
Centrate 3 0.6 331
Centrate 4 0.9 560
Centrate 5 0.3 102
Centrate 6 0.9 106

Note: NTU-Normalised turbidity units

Table 3
Experimental conditions for constant flow and constant pressure studies.

Material ID Constant pressure operation conditions (bar) Flowrate (LMH)

Centrate 1 0.69, 1.03, 1.38, 1.72 100
Centrate 2 0.69, 1.03, 1.38, 1.72 100
Centrate 3 0.69, 1.03, 1.38, 1.72 100
Centrate 4 0.69, 1.03, 1.38, 1.72 100
Centrate 5 0.69, 1.03 100
Centrate 6 0.69, 1.03, 1.38 100

Fig. 2. Comparison of constant flow and constant pressure modes of operation on (A)
experimental time to process 100 mL of material and (B) total process material volume
requirements across multiple centrates. Centrates used by these studies were sourced
from multiple cell culture broths (Table 1) and processed through a pilot scale centrifuge
at a range of conditions (Table 2). Constant pressure represented as ⊠ and constant flow
as □.

Fig. 3. Experimental pressure profile data generated from constant flow studies using a
small-scale (23 cm2) depth filter operated at 100 LMH with Centrate 1 represented as ,

Centrate 2 as , Centrate 3 as , Centrate 4 as •, Centrate 5 as and Centrate 6 as .
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Complete and Cake-Standard were shown to model effectively the
observed fouling of each centrate at the different pressures investi-
gated. Table 4 highlights the challenge with fitting theoretical fouling
models to a wide range of centrates and the inability of some of the
classic models to capture the observed complex fouling mechanisms.
Furthermore, some of the centrates were adequately described by two
or more of the classic fouling models demonstrating the similarly
between the theoretical flux declines generated by the different fouling
models.

Interestingly in Table 4, the pressure was also shown to influence
the blocking mechanism observed for each material. At the lower
pressures where particles would be depositing onto the filter surface at
a slower rate the Cake filtration model, the dominant fouling model for
these materials, failed to describe adequately the fouling. This implies
that in addition to the formation of the cake resistance layer there was a
second type of fouling occurring. The complex fouling observed for
Centrate-2 and Centrate-5 could not be described by a single fouling
mechanism at the lower pressures. The Cake-Adsorption model was the
only model that could adequately describe the fouling profiles observed
for these centrates across all of the pressures investigated. Sampath
et al. [18] reported similar findings and concluded that neither of the
classic or combined fouling models could consistently fit the various
flux declines for different depth filters. Although, the Cake-Adsorption
model was not investigated in their work.

The optimised fouling coefficients that best described the constant
pressure flux decline of Centrates 1–5 (shown in Fig. 4) were selected
as the calibration dataset. The coefficients were normalised by pressure
and correlated with the corresponding capacity achieved during con-
stant flow (shown in Fig. 3) at the specific pressure investigated. For
the classic models, containing a single coefficient, a simple exponential
relationship generated the strongest correlation between the constant
flow capacities and enabled accurate predictions. This type of relation-

ship was selected across all of the classic models based on minimising
the coefficient of determination (RCal

2) between the predicted and
experimentally recorded capacity at constant flow for the calibration
datasets (Centrates 1–5). The robustness of the correlation model was
estimated by a cross validation method that estimated the performance
of the model trained with one of the centrates removed from the
calibration dataset and is defined in Table 5 as RCross

2. For the
combined models, containing two coefficients, a quadratic linear
regression model that considered the interaction between the two
terms was assumed and a stepwise regression approach implementing
both forward addition and backward elimination was used to generate
the final model. The selection criteria for the finalised combined model
was the same as for the classic models. A summary of the finalised
correlation models of both the classic and combined models outlining
their structure and prediction accuracy are shown in Table 5.

Table 5 suggests that of the classic models the correlation generated
from the Cake model fouling coefficients enabled the best prediction of
the constant flow capacity. However, the correlation generated from
the Cake-Adsorption combined model gave a better prediction of the
capacity at constant flow. This fouling mechanism suggests the
dominant mechanism involves an initial deposition of the foulant onto
the filter with a gradual build-up of a cake layer increasing the
resistance to flow. Table 5 demonstrates that in addition to the Cake-
Adsorption model, some of the other models were comparable in terms
of their respective fits and power of prediction. The exponential
relationship generated by the Cake model is defined in Eq. (11) where
CFcap, i is the predicted filter capacity at pressure i when operated at
constant flow. KC, i is the Cake filtration coefficient calculated from the
flux decline data when operated at constant pressure. a and b are
calculated model coefficients.

CF ae=cap i
bK

,
C i, (11)

Fig. 4. Experimental data generated from constant pressure studies using a small-scale (23 cm2) depth filter for Centrates 1–6 at pressures equal to (A) 0.69 bar, (B) 1.03 bar, (C)
1.38 bar and (D) 1.72 bar. Centrate 1 represented as blocking , Centrate 2 as , Centrate 3 as , Centrate 4 as •, Centrate 5 as and Centrate 6 as .
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Whereas the Cake-Adsorption model and is defined as Eq. (12) where
KC,i and KA,i are the cake and adsorptive model coefficients calculated
from flux decline data when operated at constant pressure. α0, α1, α2
and α3 are the calculated model coefficients.

CF α α K α K α K= + + +cap i C i A i C i, 0 1 , 2 , 3 ,
2

(12)

All of the models were found to be robust through cross validation
analysis of the five centrates resulting in a high cross validation

(RCross
2) value as summarised in Table 5. To verify further the

accuracy of both models in this work, the constant flow capacity data
of Centrate-6 (not included in the model calibration dataset) was
implemented as an external validation dataset. The predictions were
made using the calculated fouling coefficients of each model that best
fitted the pressure flux profile of the Centrate-6 at 0.69, 1.03 and
1.38 bar during constant pressure operation shown in Fig. 4A–C. The
generated fouling coefficients were then inserted into Eqs. (11) and
(12) to predict the capacity at each pressure analysed. Fig. 5 shows the

Table 4
Summary of the classic and combined fouling model fits for Centrates 1–6 (Table 2) at the range of pressures tested (Table 3).
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predicted capacities at constant flow operation obtained from both of
the correlation models. Although the Cake model is shown to predict
adequately the capacity at constant flow for this centrate, the Cake-
Adsorption model generates a more accurate prediction. The constant
pressure flux profile generated at 1.38 bar for Centrate-6 was generated
in 2.5 min and required a total of 140 mL of centrate. Filtering
Centrate-6 through constant flow operation took a total of 173 min
and required 670 mL to generate a capacity prediction up to 1.38 bar.
Therefore, for this particular centrate the constant pressure methodol-
ogy was almost 70 times quicker and required only a fraction (1/5) of
the material needs of the constant flow approach.

It is important when creating an alternative method for filter rating
that the properties of the filtrates produced by either method of
operation (constant flow or constant pressure) be comparable in terms
of subsequent processing. To test the ability of each method to create
essentially identical filtrates, the filtrate of Centrate 6 operated at
constant flow and constant pressure modes of operation were taken
forward for sterile filtration. The recorded turbidites post depth filter
operated at constant flow resulted in a filtrate with a turbidity equal to
23.4 NTU and at constant pressure equal to 22.8 NTU. Furthermore,
Fig. 6 shows that identical flux decline profiles were generated when
operating the sterile filter using material from the depth filtration step
operated at both conditions. The external validation of this methodol-
ogy data was carried out using Centrate 6 and validated the correlation
developed. It also suggests that the developed methodology based on
constant pressure operation can be utilised to characterise subsequent
sterile filtration operations.

A summary outlining the new methodology is shown in Fig. 7.
Firstly, the fouling coefficients for the different centrates at various
constant pressures are calculated. The dominant fouling mechanism is
then calculated by analysing the optimum fit of each of the classic and
combined fouling models. Subsequently the capacity using the same
centrates are calculated for constant flow operation up to a predefined
pressure (typically 1.38 bar). A correlation is developed between the
fouling coefficient of the dominant fouling mechanism and the
subsequent capacity at each pressure investigated. Correlations invol-
ving the classic models can be generated using an exponential function
and a linear regression model can be used for the combined model
coefficients. The generated correlations can be used to predict the
capacity at constant flow operation by calculating the fouling coefficient
during constant pressure operation. The reduction of experimental
runs and the minimisation of material requirements are the key aspect
of the methodology described in Fig. 7. This study used 5 distinct feed
stocks at a range of pressures to develop the correlation to successfully
predict the capacity of the X0HC filter at constant flow. A possible
limitation of the study is the application of a brute force modelling
approach to characterise the dominant fouling mechanism based on
the available classical and combined fouling models. However, this
methodology was found to be valid for the filtration of multiple highly
varied centrate materials and across multiple operating conditions.
Although, previous reports have demonstrated significant deviations in
the fouling observed between constant pressure and constant flux
operation for high initial pressure fluxes [7]. The methodology reported
here was found to be very robust and was verified for constant flux
operation at 100 LMH. Therefore, the proposed methodology is highly

Table 5
Correlation model structure and R2 values for both classic and combined models.

Fouling model Correlation model structure RCal
2 RCross

2

Intermediate aebKI 0.81 0.78
Cake aebKC 0.83 0.82
Standard aebKS 0.78 0.74
Complete ae

bKCom 0.74 0.69
Adsorption aebKA 0.59 0.59
Cake-Adsorption α0+α1KC+α2KA+α3KC

2 0.86 0.89
Cake- Intermediate α0+α1KC+α2KI+α3KI

2 0.76 0.79
Comp-Standard α0+α1KS+α2 KS

2 0.74 0.72
Intermediate- Standard α0+α1KI+α2KS+α2 KI

2 0.77 0.76
Intermediate- Adsorption α0+α1KI+α2KA+α3KI

2+α4KA
2 0.78 0.75

Complete-Adsorption α0+α1KCom+α2KA 0.41 0.43
Cake-Complete α0+α1KC+α2KCom+α3KC

2 0.81 0.81
Intermediate-Complete α0+α1KI+KCom+α2KI

2 0.77 0.76
Cake-Standard α0+α1KC+α2KS+α3KC

2 0.78 0.80
Standard-Adsorption α0+α1KI+α2KI

2 0.74 0.72

Note: RCal
2 was the coefficient of determination between the predicted and experimen-

tally recorded capacity of the calibration dataset (Centrates 1–5). RCross
2 was taken as

the cross validation coefficient of determination of the calibration dataset. In the
correlation model structure, KI, KC, KS, KCom and KA represent the model coefficients
of the Intermediate, Cake, Standard, Complete and Adsorption models respectively and a
and b are the model coefficients related to the exponential function. In the combined
models, α0 is the intercept term and α1,2,3,4 represent the parameter coefficients of the
model.

Fig. 5. Capacity predictions of the Cake and Cake-Adsorption fouling models for
Centrate 6 at constant flow using constant pressure data recorded at 0.69, 1.03 and
1.38 bar. The experimental capacity for Centrate 6 generated in constant flow mode is
shown for comparison and represented as . The Cake model predictions are

represented as and the Cake-Adsorption model as . The symbols represent the
experimental data points. The a and b coefficients in the Cake model were equal to
424 L m−2 h and −7.18×105 L m−2, respectively and the Cake filtration coefficients
recorded at constant pressure were 1.03×10−6 ,4.32×10−7 and 2.01×10−7 for each
pressure investigated. For the Cake-Adsorption model, α0, α1, α2, α3 were equal to
296 L m−2 h−1, −1.12×108 L2 m−4 h−1, 6.12×109 L2 m−4 h−1 and 9.91×1012 L4 m−6 h,
respectively. The fouling Cake-Adsorption coefficients for each pressure were equal to
1.03×10−6,0; 5.32×10−7, 4.86×10−9; 2.73×10−7, 4.80×10−9. All fouling coefficient units
are equal to m2 L−1.

Fig. 6. Comparison of flux declines generated from a sterile filter when processing
Centrate 6 filtrate post depth filter generated at constant pressure operation and at

constant flow operation .
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suited to predict constant flux capacity for industrial depth-filtration
operations that are typically operated at 100 LMH up to a maximum
pressure differential pressure equal to 1.38 bar.

To further verify the method described in this publication an
additional study on a D0HC depth filter (EMD Millipore, MA, USA)
with a wider nominal pore size was conducted. The study utilised a
wide range of cell culture material as feed-stock to challenge the depth
filter. Fig. 1 Supplementary information highlights a strong correlation
between the capacities reached at 0.69 bar for the D0HC depth filter
when operated at constant flow and the standard fouling coefficients
calculated for the constant pressure operation recorded at 0.69 bar.
The developed correlation successfully predicted the D0HC capacities
when processing three independent cell culture materials at constant
flow as shown in Fig. 2 Supplementary information. The results from
this study demonstrates the robustness and applicability of this
methodology to work across a range of filter types and feed stocks.
Furthermore, the accurate predictions of capacity at constant flow
generated through constant pressure experimentation enables signifi-
cant reductions in material and time requirements for various filtration
studies.

5. Conclusion

This publication describes the development and testing of a
methodology to utilise constant pressure fouling data to predict
capacity during constant flow processes of depth filters using mamma-
lian cell culture material with a range of fouling propensities. The Cake-
Adsorption fouling model was found to represent accurately the
dominant fouling mechanism for the wide variety of centrates analysed
across the multiple pressures. The calculated coefficients of this model
were highly correlated (RCal

2=0.86) with the capacity at constant flow
for the equivalent pressure. The correlation model can be implemented
to provide an accurate prediction of the capacity during constant flow
operation at a specific pressure utilising the fouling coefficient calcu-
lated for the constant pressure flux profile at the specific pressure
investigated. The correlation was found to be robust through cross-
validation and was externally validated resulting in accurate capacity
predictions of constant flow operation. The method described in this
publication was also utilised to successfully predict the capacity of an
alternate depth filter with a wider nominal pore size when operated at
constant flow, further verifying the utility of the methodology devel-
oped. Additionally, it was also found that the filtrate generated from
both modes of operation had similar qualities in terms of turbidity and
subsequent sterile filter fouling propensities. The use of constant
pressure over constant flow operation enabled significant savings in
time and material requirements allowing for faster process develop-
ment times in industry for depth filtration characterisation.
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