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Abstract 15	
Energy system optimization models (ESOMs) are widely used to generate insight that informs 16	
energy and environmental policy. Using ESOMs to produce policy-relevant insight requires 17	
significant modeler judgement, yet little formal guidance exists on how to conduct analysis with 18	
ESOMs. To address this shortcoming, we draw on our collective modelling experience and 19	
conduct an extensive literature review to formalize best practice for energy system optimization 20	
modelling. We begin by articulating a set of overarching principles that can be used to guide 21	
ESOM-based analysis. To help operationalize the guiding principles, we outline and explain 22	
critical steps in the modeling process, including how to formulate research questions, set spatio-23	
temporal boundaries, consider appropriate model features, conduct and refine the analysis, 24	
quantify uncertainty, and communicate insights. We highlight the need to develop and refine 25	
formal guidance on ESOM application, which comes at a critical time as ESOMs are being used 26	
to inform national climate targets. 27	
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1. Introduction 33	
Sustainable energy development worldwide requires us to anticipate and shape possible future 34	
outcomes under a variety of different scenarios that consider resource availability and pricing, 35	
technology innovation, demand growth, and new energy and environmental policy. Computer 36	
models represent a critical tool that can be used to examine the future decision space under a 37	
variety of different assumptions. Energy infrastructure is long-lived, so model scenarios that aim 38	
to show significant turnover in capital stock in response to new policy must span multiple 39	
decades. However, given large future uncertainties that grow with time, using models to produce 40	
narrowly focused quantitative predictions is a perilous approach that often produces misleading 41	
conclusions. For example, retrospective analysis of energy demand projections generally shows a 42	
poor match to reality [1–4]. Even with more modeling experience, higher quality input data, and 43	
improved computational resources, model results covering multiple decades cannot be validated, 44	
making it hard to create a feedback loop that links model improvements to more accurate 45	
projections [1,5,6]. Thus the goal of energy modeling should be insights that challenge our 46	
working assumptions and mental models rather than a limited set of quantitative predictions [7–47	
9] 48	
 49	
Given the complexity of the modeled system and the inability to validate model results, energy 50	
modeling requires a significant amount of modeler judgment that – depending on one’s 51	
perspective – makes energy modeling a blend of art and science [6] or a craft that is neither art 52	
nor science [10]. A variety of methodological approaches and models exist, each with their own 53	
strengths and weaknesses that are adapted to answer specific types of questions. Several past 54	
efforts have characterized the distinctions between different energy model types (e.g., [11,12]. 55	
 56	
Within the field of energy modeling, energy system optimization models (ESOMs) are widely 57	
used to model the system-wide impacts of energy development using a self-consistent framework 58	
for evaluation. ESOMs include detailed, bottom-up technology specifications and utilize linear 59	
programming techniques to minimize the system-wide present cost of energy provision by 60	
optimizing the installation of energy technology capacity and its utilization. The models are 61	
subject to a number of constraints that enforce system performance criteria as well as user-62	
defined limits. Outputs include future estimates of technology capacity and utilization, marginal 63	
commodity prices, and emissions across the energy system. Example ESOMs include ESME 64	
[13], the MARKAL/TIMES model generators [14,15], MESSAGE [16], OSeMOSYS [17], and 65	
Temoa [18]. In their basic form, ESOMs assume perfect foresight and optimize the energy 66	
system from a social planning perspective, thus producing ideal, normative results that can lead 67	
to policy-relevant insights. ESOMs have several analytical strengths. First, they provide a 68	
consistent accounting framework for specifying the techno-economic performance characteristics 69	
of all modeled processes. Second, the model formulation allows for quick and efficient 70	
normative goal seeking within highly complex systems. Third, the results can suggest a wide 71	
range of energy futures that reflect energy and environmental policy objectives. Fourth, ESOMs 72	
can capture sectoral interactions that can lead to cross-cutting insights, which are hard to capture 73	
in sector-specific models.  74	
 75	
However, given the broad scope of ESOMs, they have become a magnet for increasing 76	
complexity as different approaches and features are developed to improve the realism associated 77	
with internal model dynamics. Examples include price-responsive demands, hurdle rates, 78	
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macroeconomic feedbacks, and endogenous technological learning. While various model 79	
features and their theoretical underpinnings have been documented elsewhere (e.g., [14,15,19]), 80	
there is no published guidance on how and when particular features should be applied. Such 81	
decisions are model- and analysis-specific, and depend on reasoned judgment rather than 82	
objective rules. More generally, each modeler must make their own decisions about how to 83	
develop and apply ESOMs. Over time, this has led to a crowded landscape of model-based 84	
analyses that can overwhelm decision makers with their complexity. 85	
 86	
This paper fills a gap in the energy system modeling literature by outlining a set of guiding 87	
principles; enumerating steps associated with ESOM-based analysis; reviewing specific features 88	
of ESOMs; and discussing approaches to sensitivity and uncertainty analysis as well as ways to 89	
communicate model-based results. While the energy community has rightly focused on specific 90	
model applications to inform energy decision making, there is also a need to document the 91	
approach to ESOM applications in a way that maximizes transparency and engenders trust 92	
among those who rely on model-based results. This paper represents a first step towards 93	
developing best practice guidelines for ESOM-based analysis within the energy modeling 94	
community, and is also aimed as a guide for consumers of model-based analysis. While this 95	
paper focuses on ESOMs, the recommendations are broadly applicable to other modelling tools 96	
used to inform energy and environmental decision making. 97	
 98	
2. Guiding principles for ESOM-based analysis 99	
ESOM-based analysis should be driven by a limited set of guiding principles. The guidelines 100	
presented here are inspired by the ten commandments of good policy analysis articulated by 101	
Morgan and Henrion [20] as well as recommendations provided by Craig et al. [1] related to 102	
energy forecasting. We have adapted these recommendations to the application of ESOMs.  103	

i. Let the problem drive the analysis, not the other way around. This is arguably the 104	
most important guideline when conducting energy systems analysis with data intensive 105	
models. As development time and experience grows with a particular model, there is a 106	
tendency to use the same tool to address different problems, even when it may not be the 107	
best option. Modelers must fight this temptation of convenience, and carefully evaluate 108	
the model required by the motivating questions. Modelers must ensure that ESOMs are fit 109	
for their purpose and should be adapted to suit the problem at hand. In some cases, the 110	
ESOM may need to be abandoned altogether if its capabilities do not align with the 111	
research questions. 112	

ii. Make the analysis as simple as possible and as complex as necessary. Modelers must 113	
be cognizant of the complexity and data intensiveness of their models, particularly as 114	
they appear to non-modelers interested in the results of model-based analysis. Because 115	
the most convincing models and analyses are often the easiest to comprehend, parsimony 116	
should always be a goal. In this context, we make a distinction between complication and 117	
complexity: the former is unnecessary and should be avoided, while the latter is required 118	
when an honest accounting of the driving questions requires it. Sensitivity analysis 119	
(Section 3.5.2) could be used to identify critical model features that lead to important 120	
changes in the modeling outcomes of interest. Such model introspection helps to keep the 121	
focus on the model improvements that produce a significant difference in the results. 122	

iii. Develop quality assurance procedures and apply them to input data. ESOMs are 123	
necessarily data intensive, requiring the specification of technology-specific input cost 124	
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and performance data that ranges from energy supply through end use demands. Data 125	
quality is highly variable, yet formal efforts to develop and apply quality assurance 126	
procedures to ESOM input data are lacking. Government agencies typically have detailed 127	
data quality assurance programs, which can be adapted to the needs of energy modelers. 128	
For example, HM Treasury [21] outline several quality assurance activities, including 129	
version control, analyst-led testing, peer reviews, and audits. Formalized methods to rate 130	
data quality should also be considered. For example, the pedigree matrix approach has 131	
been developed to code qualitative judgements about data into numerical scores [22], and 132	
has been adopted within the LCA community to code uncertainty about flows within the 133	
ecoinvent 3 database [23]. 134	

iv. Consider the range of sectoral detail across the model. When constructing a new 135	
ESOM dataset, a simple system should first be developed and tested. Sectoral detail 136	
should be added – as needed – in a structured, piecewise approach that ensures the level 137	
of detail across the model is appropriate for a given analysis. There are no objective rules 138	
that one can follow; rather, it necessarily relies on modeler judgment. Over time, careful 139	
model management is required to avoid a slow creep toward increased complexity as the 140	
vestiges of past analyses are retained within the model. Some model sectors may accrue 141	
more detail over time in response to project-specific needs. Efforts to assess the 142	
appropriate level of sectoral detail within a model should be conducted regularly [24]. 143	
‘Model archeology’ can be employed to ensure that data development is consistent and 144	
unbiased over time [25] and can be aided with the use of version control software [6]. In 145	
their role as book keeping devices, energy models can also help prioritize the collection 146	
of empirical data in areas found to be lacking [1]. 147	

v. Re-evaluate the modeling approach and objectives throughout the analysis. As with 148	
any analysis, modelers design an analysis based on a set of objectives and hypotheses 149	
about how they think the modeled system will respond. As the analysis proceeds and 150	
model results are processed, the research questions and hypotheses may need to be 151	
refined. The need to iteratively refine research questions in light of new results is 152	
common to most forms of quantitative analysis, including policy analysis [20] and life 153	
cycle assessment [26]. 154	

vi. Consider uncertainties that are both endogenous and exogenous to the model and 155	
how they can affect conclusions. Both structural and parametric uncertainty abounds in 156	
long term energy projections. Modelers should expend effort to quantify key sensitivities 157	
and uncertainties within the model. Even with a rigorous accounting of uncertainty, 158	
modelers should be aware of false precision in the results. Given the high dimensionality 159	
of the decision space, it is difficult to account for all relevant uncertainties. Modelers 160	
should work to ensure that insights are supported by the model approach and results. Care 161	
should be taken to outline the caveats and uncertainties that are not addressed, and how 162	
they can affect the insights and conclusions.  163	

vii. Make transparency a goal of model-based analysis. It is critical to make each model 164	
and resultant analysis as transparent as possible. Model source code and data should be 165	
publicly accessible in order to enable third party replication of results [6]. This is 166	
particularly true of analysis that supports decisions related to public policy. However, 167	
open models are not enough. Modelers must carefully document the model and input data 168	
as well as key assumptions and judgments made within each analysis. They should also 169	
provide guidance on how to interpret the results, given the relevant caveats. 170	



5	
	

3. Steps associated with ESOM-based analysis 171	
Fig. 1 outlines a series of critical steps in the modeling process that can help operationalize the 172	
guiding principles in the previous section. We note that these steps are not strictly sequential; 173	
they can be considered simultaneously and iteratively refined. Each step is described in more 174	
detail in Sections 3.1 – 3.6. 175	
 176	

 177	
Fig. 1. Key steps associated with the application of ESOMs. The thinner arrows indicate that 178	
iterative refinement is part of the process. The numbers in parentheses indicate the section in 179	
which the associated step is discussed.  180	
 181	
3.1.   Formulate research questions 182	
Much time is wasted conducting analysis without a clearly defined purpose [1]. Before running 183	
the model, it is imperative to formulate a specific set of research questions that map the issue at 184	
hand to appropriate modeling capabilities. To properly formulate questions, modelers must 185	
identify the target audience and the decisions to which the model-based analysis is trying to lend 186	
insight. It is also important to consider whether the model is being used to “project, provoke, 187	
postulate, or prospect” [27]. Broader issues of study design should also be considered along with 188	
the development of research questions. The goal and scope phase of life cycle assessment is 189	
instructive, and includes several elements that are also relevant to the first stage of energy system 190	
modeling: (1) define the goals of the project; (2) determine what type of information is needed to 191	
inform decision makers; (3) determine the required specificity in the results; (4) evaluate how 192	
data should be organized and results displayed; (5) define the scope of the study; and (6) 193	
determine ground rules for performing the work, including quality assurance and reporting 194	
requirements [28]. Time spent formulating clear and specific research questions that fit into a 195	
coherent study design lends clarity to all downstream analysis-related decisions.  196	
 197	
3.2. Set spatio-temporal boundaries  198	
Using the analysis-specific motivation and research questions as a guide, it is important to 199	
consider the necessary spatial and temporal boundaries for the proposed analysis. There is a 200	
tradeoff between model complexity and a realistic representation of spatiotemporal detail [29]. 201	
For example, models depicting systems with a potentially high share of variable renewables will 202	
require high spatiotemporal resolution compared to a fossil-based system. Table 1 presents a set 203	
of considerations that can be used to help guide the selection of appropriate spatio-temporal 204	

Formulate Research 
Questions
(3.1)

Set Spatio-Temporal 
Boundaries
(3.2)

Consider Model 
Features
(3.3)

Conduct and Refine 
Analysis
(3.4)

Quantify 
Uncertainty
(3.5)

Communicate 
Insights
(3.6)



6	
	

boundaries. The goal should be to formulate boundaries that lead to minimum model complexity 205	
while still addressing the goals of the analysis.  206	
 207	
Table 1. Considerations associated with the selection of spatial (top) and temporal (bottom) 208	
boundaries associated with ESOM-based analysis 209	

Spatial considerations 
Sub-Regional Representation Rest-of-World Representation 

• Tradable energy commodities 
• Technology cost 
• Demands 
• Government policies 
• Degree of urbanization 
• Existing infrastructure 
• Differentiated resources 

• Policy regimes 
• Technological learning 
• Emissions pricing 

 

Temporal Considerations 
Sub-Annual Representation Time Horizon 

• Demand profiles 
• Variable renewable energy 
• Energy storage 

• Capital stock turnover 
• Number and duration of time periods 
• Myopia versus perfect foresight 
• Growing uncertainty with time 
• Consistency with policy timelines 

 210	
Using Table 1 as a guide, there are two key issues related to the selection of spatial boundaries 211	
within the ESOM: the sub-regional representation within the target area and the rest-of-world 212	
representation in relation to the target area. Selection of the target area itself is typically 213	
straightforward and follows directly from the motivation and research questions. Within the 214	
target area, the modeler must decide whether to explicitly model differences within sub-regions. 215	
Modelers should consider the following differences by sub-region: the price and availability of 216	
tradable energy commodities, such as natural gas or biomass; temporally-resolved resource 217	
availability; the cost of technology development and deployment; sub-regional demands that 218	
provide opportunities for more efficient resource sharing; government policies that reward 219	
resource and technology capacity sharing; and levels of urbanization and stocks of existing 220	
infrastructure, both of which may suggest varying sub-regional solutions. When deciding how to 221	
model the rest of the world (ROW) outside the target area, the same considerations for sub-222	
regions apply. International policy regimes, emissions pricing, and global technology learning 223	
should also be considered since large uncertainties related to these factors can significantly affect 224	
the region(s) being modelled, and endogeneity exists in some variables between the modelled 225	
region and the rest of the world. Note that the number of decision variables in the model grows 226	
linearly with the number of regions, so regionalization can quickly increase the size of the input 227	
and output datasets. 228	
 229	
With respect to temporal boundaries, modelers must consider both the model time horizon as 230	
well as the sub-annual representation. The time horizon represents the total timeframe under 231	
consideration. Generally, ESOM timeframes range from several decades to a century. The choice 232	
of time horizon should be long enough to observe the replacement of long-lived capital stock and 233	
maintain consistency with relevant policy timeframes. The choice of timeframe should be 234	
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tempered by considering the incremental computational effort and the reality that results are 235	
subject to uncertainty that grows with time. In addition, the number and length of model time 236	
periods within an analysis should also be evaluated. It is common to use time periods that consist 237	
of 5- or 10-year segments, with each year within a time period assumed to produce identical 238	
results. Some models, such as TIMES and Temoa, allow time periods of varying length, so that 239	
modelers can specify shorter time periods in the near future when uncertainty is lower and longer 240	
model time periods in the mid- to long-term when uncertainty is higher and less temporal 241	
resolution is required.  242	
 243	
ESOMs have perfect foresight, such that all future possibilities are known with certainty and the 244	
model simultaneously optimizes over the entire model time horizon. Some ESOM formulations 245	
allow for “myopic” runs whereby the model time horizon is split into a number of possibly 246	
overlapping time frames for which decisions are made sequentially, one model period at a time. 247	
As each time period is optimized, all considerations related to future time periods are ignored. A 248	
myopic approach can reflect the shorter timeframes associated with real world decision making. 249	
Myopic formulations have been developed for a limited number of ESOMs that usually assume 250	
perfect foresight (e.g., MESSAGE [30] and GET-LFL [31]), in addition to the models that rely 251	
on limited foresight in their standard formulation (e.g., IKARUS [32]). 252	
 253	
ESOMs optimize a representative year within each time period, which is broken into sub-annual 254	
time segments that consist of combinations of different seasons and times-of-day. The sub-255	
annual time slices allow the ESOM to capture finer resolution temporal variation in both 256	
resource supply and end-use demands. Many ESOMs use a limited number of time slices, which 257	
can become an issue when considering high penetrations of variable solar and wind energy [33]. 258	
Because ESOMs generally have a simplified temporal and geographical resolution [34], the 259	
representation of renewable energy resources is usually highly stylized [35]. In order to provide 260	
the necessary insights into transitioning to a low carbon system, an adequate representation of 261	
the spatial and temporal characteristics of renewables is needed [36–38]. 262	
 263	
Kannan [39] uses high resolution time slices within an ESOM to incorporate the impacts of 264	
intermittent renewables. Such an approach is able to better identify the need for flexible 265	
generation or energy storage than a low-resolution model, but does not have the ability to fully 266	
represent the variable nature of supply and demand in the same way as a high time resolution 267	
unit commitment and dispatch model [40]. When the driving research questions depend critically 268	
on an examination of renewable energy deployment, linking an ESOM to a unit commitment and 269	
dispatch model may give more robust insights than further temporal disaggregation within the 270	
ESOM itself [41–44]. 271	
 272	
The spatial representation of renewables should also be considered. For example, Simoes et al. 273	
[38] assesses how different levels of geographical disaggregation of wind and solar photovoltaic 274	
resources could affect ESOM outputs over multiple decades, and Zeyringer et al. [45] link a 90-275	
region ESOM with a dispatch model to better study the integration of wind energy. 276	
 277	
3.3. Consider model features 278	
In its most basic form, an ESOM makes optimal technology investment and utilization decisions 279	
based on differences in the relative cost of competing technologies, thermodynamic performance 280	
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limits, fixed end-use demands, and constraints that reflect known physical resource limits or 281	
policy objectives. The associated model-based results provide a prescription that indicates what 282	
should happen if a single rational economic decision maker acts from a social planning 283	
perspective to minimize cost. This perspective affects how the model outputs can be used to 284	
inform policy design, and as such, caution is required when interpreting results. For example, 285	
ESOM results can suggest massive shifts in technology market shares due to trivial differences in 286	
cost-performance [4,46]. 287	
 288	
There are three fundamental omissions in the most basic ESOM formulations that lead to such 289	
simplified results. First, the models ignore the heterogeneity in decision making: decisions are 290	
taken by a range of actors, from supply-side investors to individual demand-side consumers, 291	
each with different preferences that modify their assumed cost-minimizing behavior. Second, 292	
ESOMs make technology deployment and utilization decisions based on exogenously specified 293	
differences in engineering-economic costs; they do not endogenously model the process of 294	
technology innovation or supply chain logistics that could accelerate or limit the rate of 295	
technology deployment. Third, basic ESOM formulations do not account for feedbacks between 296	
the macro-economy and energy systems, including the effect of energy commodity prices on 297	
demand or the feedback between broader macroeconomic conditions and energy demands. 298	
 299	
Modelers have developed an extensive toolkit in response to these three key limitations, as 300	
shown in Fig. 2. Conceptually, ESOM datasets can be divided into three subsystems. ‘Supply’ 301	
includes supply curves that capture the price-quantity relationships for specific commodities and 302	
processes that import, capture, or extract primary energy commodities. ‘Intermediate conversion’ 303	
represents technologies within the modeled energy system that transform primary energy 304	
commodities into intermediate, usable forms. Examples include uranium enrichment, electric 305	
power plants, and petroleum refineries. Finally, ‘end-use’ includes demand devices distributed 306	
across the commercial, industrial, residential, and transportation sectors that convert intermediate 307	
commodities into final, end-use demands. This model disaggregation provides a useful 308	
distinction, as not all model features apply equally throughout the energy system. In general, 309	
energy-related decisions in the end-use sectors tend to stray farthest from cost minimizing 310	
behavior.  311	
 312	
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 313	
Fig. 2. A catalogue of ESOM features grouped by the challenge they are trying to address. To aid 314	
discussion, ESOM datasets are divided into three subsystems (primary energy supply, 315	
intermediate conversion, and end-use). Note that different model features apply to different 316	
subsystems, though the boundaries are fuzzy. 317	
 318	
Sections 3.3.1 - 3.3.6 describe the model features outlined in Fig. 2 and provide guidelines for 319	
how they can be applied. Modelers must exercise judgment when evaluating the utility of these 320	
options for a specific analysis. The selection of features should be driven by the guiding 321	
principles articulated in Section 2. Most importantly, specific model features should only be 322	
utilized when absolutely necessary to address the problem at hand. Modelers must resist the 323	
temptation to employ model features simply because they are available. 324	
 325	
 3.3.1.   Endogenous technological learning (ETL)  326	
Given the long time scales involved in energy system modeling, the effects of learning and 327	
innovation can have a large effect on the relative cost-effectiveness of different technologies. 328	
While technology costs are typically specified exogenously in ESOMs, endogenous 329	
technological learning (ETL) incorporates the effects of learning-by-doing on technology cost. 330	
More precisely, technology-specific investment costs are reduced by a specified learning rate 331	
each time the technology’s cumulative capacity is doubled. ETL has been used widely in 332	
different energy system models (e.g., MESSAGE [47] and MARKAL [48]). A key benefit of 333	
ETL is that it produces internally consistent technology cost trajectories. 334	
 335	
Several caveats related to the implementation and application of ETL should be noted. First, the 336	
modeled relationship between installed capacity and investment cost is non-linear and therefore 337	
binary variables are needed to implement ETL within a linear optimization model. Turning the 338	
model into a mixed integer linear programming model significantly increases the computational 339	
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burden and thus ETL is typically applied to a subset of technologies. Since learning takes place 340	
with all technologies to some degree, modelers must ensure that ETL avoids learning 341	
asymmetries by applying it consistently and fairly across all relevant technologies within a given 342	
analysis. It is also possible to apply clustering, whereby learning is applied across a set of 343	
technologies that share similar components [48–50]. Second, ETL may be appropriate when a 344	
modelled country or region is driving technology innovation, but modelers need to keep in mind 345	
that ETL is a global phenomenon and modelers and policymakers need to be cautious in 346	
structuring the model and interpreting the results. Third, learning rates are non-trivial to measure 347	
[51,52] and may not remain constant through time. While this same issue must be faced when 348	
making exogenous cost assumptions, the increasing returns to scale with ETL mean that very 349	
small changes in learning rate assumptions can lead to vastly different optimal investment 350	
portfolios. Fourth, the perfect foresight assumption means that the model can make massive 351	
investments in a single immature technology with a high learning rate without risk of failure. 352	
Fourth, investments in new capacity are in reality made by firms that – unlike the social planner 353	
– would not necessarily see benefits in making a technology cheaper for other actors operating in 354	
the distant future. Thus the model results may suggest investment patterns that differ greatly 355	
from what one would expect to see in reality. Finally, because ETL requires a mixed integer 356	
formulation, shadow prices can no longer be used to represent marginal costs or equilibrium 357	
prices. The concept of an average shadow price has been developed for discrete optimization, but 358	
it is doubtful whether it can be used for all problem types and formulations [53]. 359	
 360	
Given these considerations, great care should be put into the interpretation of the results and it is 361	
not advisable to rely on a single set of assumed learning rates. When research or policy efforts 362	
are aimed at driving innovation, failure to include ETL could undermine the ability of the model 363	
to assess the intended effects. In some cases, however, it may be more logical and transparent to 364	
specify changes in technology performance over time exogenously and then test through 365	
sensitivity analysis. Exogenous trajectories may not capture the feedbacks between technology 366	
deployment and costs correctly, but neither do they incentivize investment dynamics that do not 367	
have a counterpart in reality.  368	
 369	
3.3.2.   Lumpy investment 370	
Most ESOMs are strictly linear models that can build continuous amounts of technology-specific 371	
capacity in any model time period.  While this is a reasonable approximation for many 372	
technologies, in some cases it is appropriate to account for the granularity of investments by 373	
constraining the model to build discrete sizes of particular technologies, a method known 374	
colloquially as “lumpy investments.” Lumpy investments require a mixed-integer formulation 375	
[15], and as with ETL, therefore take a longer time to solve. 376	
 377	
Lumpy investments should be considered when only a small number of plants is likely to be 378	
built, such that a single plant would comprise a substantial part of the total capacity for that part 379	
of the energy system.  For example, in a model of a city, a small country, or a large country with 380	
many regions specified separately, nuclear power plants could be specified using lumpy 381	
investments, while wind turbines would not as the capacity of a single turbine is comparatively 382	
small.  Lumpy investments should also be considered where infrastructure cannot be constructed 383	
incrementally and is likely to have a low capacity factor in the early years of operation.  For 384	
example, Dodds and McDowall [54] and Yang and Ogden [55] both use lumpy investments to 385	
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represent the development of hydrogen transmission networks. On the other hand, electricity 386	
transmission networks already exist in many countries, so incremental capacity upgrades are 387	
typically represented without lumpy investments.   388	
	389	
3.3.3.   Hurdle rates  390	
The base ESOM formulation assumes a social planner makes cost optimal decisions with perfect 391	
knowledge and access to capital. Hurdle rates represent technology-specific discount rates used 392	
to amortize investment costs over a technology’s loan period or lifetime, and therefore adjust the 393	
relative sensitivity of the model’s capacity installation decisions to investment costs. Hurdle rates 394	
can be used to represent the preferences of individuals or firms who require a different rate of 395	
return on an investment when considering non-economic borrowing costs such as time 396	
preference, risk, and uncertainty in their decision making.  397	
 398	
Hurdle rates have a significant impact on investment decisions, abatement costs, and greenhouse 399	
gas emissions (e.g., [56–58]).  For example, Kesicki [59] applied hurdle rates in different ways to 400	
the transportation sector and showed that baseline abatement pathways are not robust to different 401	
hurdle rate assumptions. This sensitivity creates a need for caution when applying, justifying, 402	
and communicating hurdle rates, which is done in widely different ways across studies. Hurdle 403	
rates can be derived empirically through stated- and revealed-preference studies, as in the case of 404	
barriers to energy efficiency investment. For example, the implicit discount rate for efficiency 405	
measures in the residential sector can range from 25% to 300% [58].  406	
 407	
Specifying hurdle rates can be problematic given the lack of empirical evidence. The basis for 408	
these values often come from a few empirical observations of actual consumer purchase 409	
behaviors, such as those related to more efficient cars [60,61] or household appliances [62]. 410	
However, consumer preference is heterogeneous, differs across sectors and regions, and is highly 411	
uncertain in the future. Given the sensitivity of results to hurdle rates, transparency is key, but 412	
often lacking. Many ESOM studies do not state that hurdle rates are used, and of those that do, 413	
many fail to provide sufficient detail. Hurdle rates should be specific to the investment decision 414	
at hand (e.g., energy efficient insulation, alternative vehicles, solar PV installation); the nature of 415	
the barrier (e.g., hidden costs, finance costs, lack of information, aversion to risk); and to whom 416	
the barrier applies (e.g., to a firm, individual, or government). It is also important to consider the 417	
quality of hurdle rate data across the entire dataset, else model results may be driven by a limited 418	
number of highly uncertain discount rates. The danger of applying and justifying hurdle rates 419	
without transparency is that they can be used as an opaque means of tweaking model results to 420	
yield a technology portfolio desired by the modeler.  421	
 422	
3.3.4.   Incorporating consumer choice  423	
As stated previously, consumer preferences and purchasing decisions are often poorly 424	
represented in ESOMs. Modelling methods that lack strong theoretical underpinnings and 425	
coherent empirical observations, such as hurdle rates, market share constraints, and technology 426	
growth rates have been frequently introduced to smooth out the projected technology adoption 427	
rates. These shortcomings have long been recognized and to some extent have limited the ability 428	
of ESOMs to produce more credible projections or policy evaluations. 429	
 430	
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Progress has been made in recent years to improve the behavioral realism of ESOMs. The most 431	
common approach is to create different consumer segments to represent the heterogeneity in 432	
consumer demand level and/or consumer choice [63–68]. Additionally, disutility costs have been 433	
introduced to represent perceived “non-market” costs such as value of time costs, risk attitudes, 434	
or market barriers [67]. For example, McCollum et al. [66] consider consumer behavior related 435	
to light duty vehicle purchasing in a global integrated assessment model and include the 436	
following disutility costs: refueling inconvenience cost, battery electric vehicle range limitation 437	
cost, vehicle model availability cost, risk premium, home charger installation cost, towing 438	
capability, and cargo space availability. Behavioral constraints, such as time budget constraints 439	
[65] and household budget constraints [63,64,68] have also been considered in some models. 440	
Bunch et al. [63] and Ramea [68] use a novel approach that combines a classic consumer choice 441	
model (nested multinomial logit discrete choice) [69,70], with an ESOM. 442	
 443	
This recent work suggests the importance of understanding consumer behavior and consumer 444	
choice and developing methods to incorporate them into ESOMs. In general, these studies 445	
indicate that consumer investment decisions are often dominated by non-market costs, and 446	
highlight the significant heterogeneity in consumer demand and preferences. Modelers 447	
considering such methods should understand the theoretical basis of consumer preference and 448	
consumer choice [71] and ensure theoretical consistency when different methods are combined 449	
(e.g., cost minimization versus utility maximization [72]).  There is also a great need for both 450	
more empirical observations and more proof-of-concept case studies like those mentioned above. 451	
Ultimately, predicting future consumer choice will remain challenging given the inherent 452	
difficulty in predicting rapid changes in technology attributes, the changing preferences of 453	
consumers, and the manner in which consumers adapt their behaviors toward new technologies. 454	
Nevertheless, an improved representation of consumer behavior and consumer choice can lead to 455	
insights regarding which policy levers, technology attributes, or market conditions may be the 456	
most conducive to accelerating the deployment of sustainable technologies that achieve the most 457	
socially optimal outcomes.  458	
 459	
3.3.5.   Price elastic demands  460	
Price elastic demands are a feature of ESOMs that allow for energy service demands to be 461	
responsive to changes in prices. First introduced in the MARKAL framework [73], this 462	
mechanism improves model representation of real world observations, where demand for energy 463	
decreases under price increases, and vice versa. This is modelled via linearized demand curves, 464	
which represent the change in each energy service demand as a function of the change in price 465	
for the energy service. Crucially, this mechanism means the ESOM is providing a partial 466	
equilibrium solution, where endogenous trade-offs are made between supply-side investment in 467	
technologies and fuels, including end use sector energy efficiency and conservation, and 468	
demand-side change in welfare gains or losses associated with changing demand.  469	
 470	
The inclusion of elastic demands in a UK-focused model showed that price-induced demand 471	
response was particularly strong in those sectors with limited supply-side mitigation options 472	
[74]. Chen et al. [75] underline the importance of demand reduction in their analysis of 473	
mitigation costs in China, estimating a 60% reduction in marginal abatement costs in 2020. Other 474	
analyses also support the importance of demand reductions in climate mitigation both in the UK 475	
[76] and globally [77]. 476	
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While conceptually simple, the application of elastic demands in an ESOM present several data-477	
related challenges [78]. First, experience from the UK suggests that there are a wide range of 478	
estimated elasticities for the same service demands. For example, 10 of 13 estimated demand 479	
elasticities from Anandarajah et al. [74] are not contained within the ranges estimated by Pye et 480	
al. [78] for the same service demands. Second, it is imperative for the modeler to understand 481	
what elasticity estimates drawn from the literature represent, particularly whether the estimated 482	
elasticity is short-run or long-run, and whether the estimates correspond to changes in price and 483	
consumption associated with energy or service demands. It may be tempting to apply elasticities 484	
to all service demands, but in some cases the assumed demand elasticities lack an empirical basis 485	
and are only very rough proxies. For example, applying generic elasticities to industrial 486	
subsectors could overstate the role of specific subsectors that present limited technical 487	
opportunity for demand reduction.  488	
 489	
Further research is needed to better estimate maximum response levels; in addition, the impact of 490	
changes in energy services on one another should be assessed via cross-price elasticities. Careful 491	
consideration needs to be given to these elasticity factors, as they can strongly determine the 492	
model solution, particularly under stringent policy constraints, such as a carbon cap. Given the 493	
high uncertainty around many of these estimates, sensitivity analysis is recommended to 494	
understand how specific demand elasticities affect model outputs of interest. 495	
 496	
3.3.6.   Incorporating macroeconomic feedbacks 497	
ESOMs with elastic demands are considered partial equilibrium because their scope is limited to 498	
the supply and demand balance of commodities modeled within the energy system. In some 499	
analyses; however, it is necessary to capture the economic effects of a perturbation beyond the 500	
boundaries of the energy system. In such cases, computable general equilibrium (CGE) models 501	
can be employed to capture macroeconomic effects. CGE models simulate the circular flow of 502	
commodities in a closed economy between households (which own the factors of production) 503	
and firms (which rent the factors of production from households to produce goods and services) 504	
[79]. Walrusian general equilibrium occurs when both product and economic value (i.e., 505	
expenditures and incomes) are balanced across all markets in the modeled economy [79]. The 506	
substitution among the factors of production (e.g., material, energy, labor) and consumption 507	
(e.g., material, leisure) are modeled explicitly. CGE models provide a data-consistent view of the 508	
entire economy, and enable the quantification of impacts associated with price and quantity 509	
distortions (e.g., taxes) across all markets of a given economy. Impacts include welfare losses, 510	
changes in gross domestic product, and pollution abatement costs that reflect macroeconomic 511	
adjustments. Capturing both the bottom-up technical detail in an ESOM with the top-down 512	
consistency in a CGE is an active area of ongoing research.  513	
 514	
When an analysis requires general equilibrium considerations, there are three basic approaches: 515	
an ESOM linked to a simple economic module (e.g., [80]), a link between an ESOM and a 516	
complete CGE model (e.g., [81]), or the incorporation of technology detail into the energy 517	
sectors of a CGE model (e.g., [82]). A more complete introduction to hybrid modelling 518	
approaches is given by Hourcade et al. [12] and more recently by Glynn et al. [83]. Jacobsen [84] 519	
gives an overview of the types of models and issues involved in linking, including how variables 520	
can be aggregated to have an emphasis on top-down or bottom-up approaches. In addition, 521	
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Gargiulo and Ó Gallachóir [11] outline several existing models, and draw distinctions between 522	
ESOMs and CGE models. 523	
 524	
There are several instances in which ESOMs have been combined with simple general 525	
equilibrium modules to incorporate both the effects of energy system changes on the aggregate 526	
economy and the economic feedback returning to the energy system. Hamilton et al. [80] outline 527	
the development of MARKAL-MACRO, which hard links MARKAL, a well-known ESOM, to 528	
a simple macroeconomic module. While the MACRO model maximizes the inter-temporal utility 529	
function of a single producer-consumer, there is only a single sector for each modeled region. 530	
More recently, Kypreos and Lehtila [85] have produced the Macro Stand-Alone (MSA) module 531	
hard-linked into the TIMES framework. The MSA model is a single agent; single sector, multi-532	
regional, general equilibrium optimal growth model which maximises the discounted utility of a 533	
single consumer-producer agent. A single sector simplification does not capture the inter-534	
linkages of multi-sector models that allow for economy-wide results. Messner and 535	
Schrattenholzer [86] also discuss the similar MESSAGE-MACRO model, which is solved 536	
iteratively through a soft-link. In this case, supply curves derived from MESSAGE are fed into 537	
the two production sectors of MACRO (electric and non-electric), which then returns a set of 538	
demands into MESSAGE.  539	
 540	
3.4.    Conduct and refine the analysis     541	
Once the model and input dataset are established, modelers conduct and refine the analysis.  542	
Calibration is a critical aspect of ESOM-based analysis, and represents an iterative process of 543	
refinement to ensure plausible results. The calibration process is guided by recent historical 544	
trends, projections by other models covering the same spatial and temporal domains, and the 545	
modeler’s own understanding of the modeled energy system.  546	
 547	
Model results deemed implausible can be addressed with a variety of common calibration 548	
techniques. For example, technology-specific bounds on capacity or activity can be applied to 549	
control technology deployment and utilization. In addition, growth rate constraints can be 550	
applied to specific technologies to prevent them from dominating new capacity installations. 551	
Likewise, market share constraints are often added to ensure that a certain technology is 552	
constrained to a minimum or maximum share within a given sector. These techniques are 553	
typically used throughout the energy system and the constraint specifications are refined through 554	
the calibration process. Calibration can also produce new insight that leads the modeler to 555	
reconsider the model features employed or the chosen spatiotemporal boundaries, emphasizing 556	
the iterative nature of ESOM-based analysis. 557	
 558	
Given the subjective judgment required, model calibration is also fraught with challenges. In its 559	
purest form, modelers employ rigorously derived empirical estimates to inform the constraint 560	
formulations. In such cases, the modeler is able to expand the model’s knowledge claims further 561	
into the technological, economic, and human behavioral realms. However, modelers must 562	
exercise subjective judgment when adding such ad hoc constraints. The data required to develop 563	
constraint coefficients varies widely in quality and availability. Some input data, such as future 564	
market shares are often based on historical trends despite the recognition that structural changes 565	
in markets or technology breakthroughs can produce significant deviations from past trends. 566	



15	
	

There is also a danger that modelers add constraints – with limited empirical basis – in order to 567	
make the model future conform to their mental model about how the future should unfold. In this 568	
case, the model is not making new claims on knowledge, but rather is simply reflecting the 569	
preconceived notions of the modelers. This phenomenon is well known: Keepin and Wynne [46] 570	
demonstrated that overly constrained models may simply return results that are prescribed a 571	
priori by the modeler through constraints. This problem can be exacerbated by perceived peer 572	
pressure, as most modelers prefer not to produce results that are widely divergent from their 573	
peers. To overcome this challenge, modelers should be rigorous in their thinking and question 574	
every assumption. Modelers should take care to document the reasoning and empirical basis for 575	
user-defined model constraints. Such assumptions could be documented as internally consistent 576	
storylines, making them easier for the audience outside the modeling community to grasp and 577	
memorize [87]. 578	
 579	
While not a regular part of ESOM-based analysis, periodic verification checks of the model 580	
formulation should be performed. Particularly for new modelers, it is a valuable exercise to 581	
verify results from a simple ESOM test case through comparison with other ESOMs, 582	
spreadsheets, or even pen and paper calculations. For example, Hunter et al. [18] conducted a 583	
careful verification of Temoa by analyzing the same input dataset with MARKAL and found that 584	
the latter underinvests in demand device capacity in cases where the demand rate (e.g., PJ/year) 585	
varies throughout the year. 586	
 587	
3.5.   Quantify uncertainty 588	
The long-term future transition of the energy system is shaped by a combination of factors that 589	
are deeply uncertain, including technology innovation, resource availability, and socio-economic 590	
dynamics. Given such deep uncertainties about the future, singular ESOM projections obscure 591	
the full spectrum of possible energy system futures. The focus of ESOM-based analysis should 592	
thus be based on producing insights, which requires the identification of patterns across ESOM 593	
model runs under uncertainty.    594	
 595	
Two types of uncertainties can be distinguished for ESOMs: parametric and structural [20,88]. 596	
Parametric uncertainty refers to imperfect knowledge of ESOM input values. Structural 597	
uncertainty refers to the imperfect mathematical relationships that govern energy system 598	
development and operation within the model. In this section, we describe several approaches for 599	
dealing with uncertainty in ESOMs that address both parametric and structural uncertainty. 600	
 601	
3.5.1.   Scenario analysis 602	
A common approach that avoids the pitfalls associated with forecasting is scenario analysis, 603	
where each scenario corresponds to a storyline about how the future may unfold along with a set 604	
of exogenous assumptions consistent with the storyline that is used to drive the model. This 605	
method of combining quantitative and qualitative elements is sometimes referred to as a 606	
“storyline and simulation” approach [89], which can provide “a more qualitative and contextual 607	
description” [90]. All schools of scenario development seek to differentiate between scenario 608	
building and the purely mechanistic projection of historical trends [91–94]. Scenarios often 609	
include quantitative predictions, but by definition cannot be separated from their contextual 610	
framing [95]. Scenario analysis can be used to address parametric uncertainty by translating 611	
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scenario assumptions into ESOM input parameters, and it can address structural uncertainty by 612	
altering the model formulation to address an uncertain scenario element. 613	

In the early part of the 21st century, some scholars suggested that scenario thinking suffered 614	
from a “lack of paradigms“, comprised a range of “vastly different and even furiously 615	
conflicting” approaches and characterized the field as being in “methodological chaos” [96]. 616	
Commenting on the complexity of scenario development, researchers noted that “there is no 617	
single way of planning scenarios” [97] and that “almost every new scenario process… ultimately 618	
develops a virtually customized approach” [98]. Various attempts have been made to map the 619	
landscape of scenario planning techniques [99–103], and there is no shortage of literature 620	
offering suggestions for a prescriptive multi-stage process to design, build, evaluate and draw 621	
inferences from scenarios [92,104–107]. 622	

Scenarios can include narrative elements that are not formally modelled, enabling them to 623	
combine quantitative analysis and subjective interpretations [108]. However, as Morgan and 624	
Keith [2] point out, this can be a pitfall as well as a strength: scenarios with detailed storylines 625	
can play into cognitive biases by appearing more plausible and probable than they are in reality. 626	
Another limitation of scenario analysis is that mutually exclusive and exhaustive subjective 627	
probabilities are often not assigned to scenarios, leaving decision makers with a disparate set of 628	
energy futures to ponder [2,109,110], though not all agree about the appropriateness of assigning 629	
probabilities to scenarios [111]. Finally, traditional scenario analysis can be effective with small 630	
groups of clients whose concerns are well known to the scenario developers, but can fail to 631	
generate consensus in broad public debates that include divergent interests and values [112,113].  632	
 633	
Despite these limitations, scenario analysis can be a valuable tool to explore energy futures. 634	
Modelers should strongly consider the methodological heritage of various scenario approaches, 635	
ensure consistency among scenario assumptions, and carefully consider the limitations and 636	
caveats associated with the analysis while drawing insights. 637	
 638	
3.5.2.   Sensitivity analysis 639	
Sensitivity analysis is typically used to address parametric uncertainty by identifying the model 640	
input parameters that have the largest influence on the modeling results. Such analysis can be 641	
conducted for a single parameter at a time or for combinations of input parameters, which may 642	
be correlated. Global sensitivity analysis can be employed to simultaneously vary a large number 643	
of input parameters based on predefined probability distributions. Global sensitivity analysis 644	
with an ESOM can provide a measure of dispersion in the results, yield insight into the specific 645	
combinations of parameters that lead to outcomes of interest, identify the input parameters that 646	
drive model results, and screen out unimportant parameters from a scenario analysis (e.g., 647	
[4],[114]). 648	
 649	
Sensitivity analysis can also be used to test structural uncertainties. Alternative model 650	
formulations (e.g., with or without elastic demand) can be used to understand the sensitivity of 651	
modeling results to these variations in model formulation. Sensitivity analysis applied in this way 652	
can help extract insights that are robust to different model formulations and help navigate the 653	
catalogue of ESOM features (Fig. 2). In addition, multi-model exercises that explore the same 654	
future scenarios can be used to identify structural uncertainties across models (e.g., [115]). 655	
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3.5.3.   Stochastic optimization 656	
A limitation of ESOMs is that an individual scenario assumes all uncertainty is resolved ex ante: 657	
all parameters are assigned values prior to the model run. However, decision makers need to take 658	
action before uncertainty is resolved. Stochastic optimization can address this limitation by 659	
explicitly considering uncertainty within the model formulation. A stochastic ESOM encodes 660	
uncertain future outcomes within an event tree, where each branch in the tree is assigned an 661	
outcome and an associated probability. Optimizing over a finite set of future outcomes encoded 662	
within the event tree yields a near-term hedging strategy that accounts for potential future 663	
outcomes and puts the decision maker in a position to take recourse action as uncertainty is 664	
resolved. Several applications of stochastic optimization using an ESOM have been conducted 665	
(e.g., [116–122]). 666	
 667	
A key challenge related to stochastic optimization is the curse of dimensionality: the number of 668	
decision variables grows exponentially with the number of uncertain parameters and the number 669	
of uncertain time stages. As a result, applications with stochastic optimization involve a limited 670	
number of possible outcomes, typically with event trees that include less than eight scenarios 671	
across two time stages. It is possible to take advantage of high performance computing resources 672	
coupled with decomposition techniques that make use of parallel computing in order to expand 673	
the size of the event tree. For example, progressive hedging algorithm decomposes a stochastic 674	
problem into a set of paths through the event tree that can be solved using parallel computing 675	
resources [123]. In addition, sampling-based decomposition algorithms can be used to 676	
approximately solve problems [124,125]. 677	
 678	
While more advanced optimization techniques can expand the size of modeled event trees, the 679	
large number of uncertainties mean that the curse of dimensionality will always exert its 680	
influence. An additional limitation of stochastic optimization is that it only deals with parametric 681	
uncertainty. Thus, while stochastic optimization can yield a hedging strategy, it is only robust to 682	
variation in a limited number of parameter values and not broader uncertainties related to model 683	
structure.  684	

 685	
3.5.4.   Generating near-optimal solutions  686	
Since ESOMs are linear programming models, it is possible to modify the model formulation in 687	
order to explore alternative solutions that are near optimal in solution space but very different in 688	
decision space. In an ESOM context, this means finding alternative solutions that are close to the 689	
minimum cost or maximum welfare but utilize a different set of technologies to meet end-use 690	
demands.  691	
 692	
A technique called ‘modeling to generate alternatives’ (MGA) was developed and applied to 693	
examine water and land management problems in order to produce a set of alternatives for 694	
planners to consider [126,127]. This technique involves several steps. First, a base case version 695	
of the optimization is solved. Second, the objective function is encoded as a constraint, and the 696	
optimal objective value from the base case run along with some added slack is encoded as the 697	
right hand side of this new constraint. The slack value determines the flexibility afforded to the 698	
model while seeking alternative solutions. Third, a new objective function is formulated, which 699	
minimizes the non-zero decision variables from the base solution. Fourth, the reformulated 700	
model is iterated, where each iteration includes an updated objective function that includes all 701	
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decision variables with non-zero values from all previous iterations. Fifth, the algorithm is 702	
terminated after a set number of iterations or the solutions begin to repeat themselves.  703	
 704	
DeCarolis [128] presented the application of MGA to a simple energy portfolio, and DeCarolis et 705	
al. [129] applied MGA to an ESOM in order to explore different ways to weight the MGA 706	
objective function. Trutnevyte [130] incorporated MGA to better evaluate the economic potential 707	
of renewable energy. In addition, Trutnevyte [4] used MGA to model cost-optimal and near-708	
optimal electricity supply scenarios using empirically estimated slack from a retrospective 709	
modelling exercise. Price [131] has developed a formulation of the MGA objective function that 710	
maximizes the difference associated with the consumption of each primary energy commodity 711	
between successive MGA iterations. 712	
 713	
The application of MGA represents a simple way to explore structural uncertainties in the model. 714	
No optimization can fully capture real world complexity; unmodeled objectives and constraints 715	
are always present. Thus, decision makers may find that the near optimal solutions are preferable 716	
to the base solution when their own preferences and concerns – exogenous to the model – are 717	
brought to bear on the model solutions. Unlike stochastic optimization, which explicitly 718	
incorporates uncertainty into a single run to help inform a decision strategy, MGA yields a set of 719	
computer-generated alternatives. The intent of MGA is not to provide a singular answer, but 720	
rather to provide a set of alternative solutions that indicate the degree of flexibility in the model 721	
solution and can be further evaluated.  722	
 723	
3.6.   Communicate insights 724	
The goal of effective communication is to help policymakers and others decision makers to draw 725	
appropriate insights from the work and to understand their significance in light of the limitations 726	
of the modelling framework. With tools that generate what can appear to be precise long term 727	
forecasts, there is a risk that either policymakers will draw incorrect conclusions from modelling 728	
work, or as noted by Craig et al. [1], that model outputs will be used simply to provide scientific 729	
justification for decisions made for other reasons.  730	
 731	
Scholars have emphasized the importance of various aspects of communication, in particular, 732	
focusing on ‘insights’ rather than precise numerical outputs [7,132]; transparency of input data, 733	
model structure and outputs [17,18]; involvement of decision makers in an iterative modeling 734	
process [88]; and provision of adequate information about the uncertainties associated with the 735	
results [133]. Each is described in turn below. 736	
 737	
Model results must be synthesized into insights before presentation to decision makers. Given 738	
the limitations of ESOMs and models more generally, policy-relevant conclusions can rarely be 739	
drawn by inspection of model results alone. Insight is generated by examining the model results 740	
while considering the key uncertainties, model limitations, and spatiotemporal boundaries of the 741	
analysis. Modelers should present the key results; there is often a tendency to include too many 742	
results which can mask or muddle the key insights. When presenting caveats to decision makers, 743	
Kloprogge et al. [133] suggest it is best to avoid ambiguous statements such as ‘care should be 744	
taken in interpreting these results’ since people fit evidence to their existing beliefs, an effect 745	
known as ‘confirmation bias.’ General caveats may either be ignored by those who agree with 746	
the findings or provide an invitation to discredit the analysis by those who disagree with the 747	
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findings. Clearly focused caveats, on the other hand, can reduce the tendency for biased 748	
interpretation. 749	
 750	
Transparency is routinely identified as an important criterion for responsible and appropriate use 751	
of modelling to support decision-making and policy development [1,6,134]. Published 752	
documentation as well as open source code and data provide a strong basis for those with the 753	
relevant skills and knowledge to interrogate key assumptions and reproduce relevant findings. 754	
However, in the context of models as complex and data-rich as ESOMs, transparency is not a 755	
straightforward goal to achieve, since deep modeling knowledge is often required to understand 756	
the relative importance of different assumptions. Transparency is thus an ongoing process of 757	
explanation and engagement, alongside open data and model information.  758	
 759	
To maximize the relevance of an ESOM-based modeling exercise to decision makers, they 760	
should be involved throughout the analysis. Lempert et al. [88] emphasize the importance of 761	
engaging stakeholders early to avoid disconnects between the final analysis with neatly drawn 762	
system boundaries and real world policy debates, which must typically address a wider range of 763	
complex, non-technical issues. For example, early involvement of decision makers can help link 764	
modelling outcomes with policy-specific assessment criteria. In addition, engagement with the 765	
public on energy issues can reflect “useful social intelligence” back to scientists, engineers, and 766	
decision makers, which can also inform the approach to model-based analysis [135]. One way to 767	
engage stakeholders is through the use of decision aids, which can distill complex issues into a 768	
simplified decision framework. For example, Pidgeon et al. [135] used a tool developed by the 769	
UK’s Department of Energy and Climate Change to engage the UK public on issues related to 770	
national energy planning. ESOM-based analysis could be used to develop such energy-related 771	
decision aids to help engage a broad range of stakeholders. The effectiveness of such tools 772	
should be evaluated with formal procedures [136]. 773	
 774	
It is widely agreed that effective communication of results must include adequate attention to 775	
communication of uncertainties [134,137]. Ideally, this should address both structural and 776	
parametric uncertainty, and with the latter, information about which parameters are most 777	
sensitive [137]. Kloprogge et al. [133] provide a valuable guide for the communication of 778	
uncertainties to policy audiences, drawing on the literature that links heuristics and biases to 779	
human judgment and decision-making. They articulate a framework for the “progressive 780	
disclosure of information,” which highlights that attention must be paid to reporting the right 781	
kind of information in the right place. In particular, the ‘outer’ layers of reports, such as the 782	
executive summary and conclusions, should contain information appropriate to wider audiences 783	
and more general messages, including top-level information on uncertainties and levels of 784	
confidence along with headline conclusions. More detailed and technical issues can be described 785	
in the “inner layers,” represented by the main body of the report and in the technical appendices. 786	
They also note the importance of “framing biases,” whereby the interpretation will depend on 787	
where uncertainty is conveyed: uncertainties presented as footnotes or alongside more detailed 788	
technical information will tend to be understood as less important than those presented upfront 789	
alongside key messages.  790	
 791	
 792	
 793	
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4. Discussion  794	
The application of ESOMs to draw policy-relevant insight regarding future energy system 795	
development and associated environmental impacts is fraught with challenges. The models have 796	
expansive spatial and temporal boundaries, the formulations are highly simplified given the 797	
complex dynamics that govern real world energy systems, and model projections cannot be 798	
validated through comparison to actual outcomes. Operating under such challenging 799	
circumstances requires modelers to exercise careful judgment. These challenges notwithstanding, 800	
ESOMs are a critical tool employed by government agencies to develop energy planning 801	
strategies. For example, participating nations need to develop long-term greenhouse gas 802	
mitigation strategies under Article 4.19 of the Paris Accord [138], and ESOMs will surely play a 803	
role. 804	
 805	
Despite the use of ESOMs to produce high visibility assessments, there has been little attempt to 806	
formalize the approach to model-based analysis. By contrast, life cycle assessment (LCA), which 807	
involves similar analyst judgments, has benefitted from efforts aimed at a standardization in 808	
approach (e.g., [26,28,139]). While such guides belie the ongoing methodological debates within 809	
the LCA community [140], they have produced consensus on a broad range of issues and serve 810	
as a practical guide for LCA practitioners. While the application of ESOMs has had a significant 811	
influence on public policy [19], there has been little effort to develop formal, general guidance 812	
related to their application. Sound modelling practice is now typically learned through 813	
apprenticeship with more experienced modelers. 814	
 815	
This paper is intended to help formalize best practice regarding the proper application of 816	
ESOMs. We have outlined a series of guiding principles, and provided informed discussion on 817	
key steps within the modelling process, from formulating research questions to communicating 818	
key insights to decision makers. To do so, we have drawn extensively from the literature as well 819	
as our collective modelling experience. Over time, through discussion, debate, and refinement, 820	
we hope to solidify this guidance into a practical handbook for energy modelers. 821	
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