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Abstract

We prove existence and uniqueness of strong solutions for a class of second-
order stochastic PDEs with multiplicative Wiener noise and drift of the form
div γ(∇·), where γ is a maximal monotone graph in R

n ×R
n obtained as the

subdifferential of a convex function satisfying very mild assumptions on its be-
havior at infinity. The well-posedness result complements the corresponding
one in our recent work arXiv:1612.08260 where, under the additional assump-
tion that γ is single-valued, a solution with better integrability and regularity
properties is constructed. The proof given here, however, is self-contained.

1 Introduction and main result

Let us consider the stochastic partial differential equation

du(t)− div γ(∇u(t)) dt ∋ B(t, u(t)) dW (t), u(0) = u0, (1)

posed on L2(D), with D a bounded domain of Rn with smooth boundary. The
following assumptions will be in force: (a) γ is the subdifferential of a lower
semicontinuous convex function k : Rn → R+ with k(0) = 0 and such that

lim
|x|→∞

k(x)

|x| = +∞, lim sup
|x|→∞

k(−x)

k(x)
< +∞

(in particular, γ is a maximal monotone graph in R
n×R

n whose domain coincides
with R

n); (b) W is a cylindrical Wiener process on a separable Hilbert space H,
supported by a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the “usual
conditions”; (c) B is a map from Ω× [0, T ]×L2(D) to L 2(H,L2(D)), the space of
Hilbert-Schmidt operators from H to L2(D), that is Lipschitz-continuous and has
linear growth with respect to its third argument, uniformly with respect to the
other two, and is such that B(·, ·, a) is measurable and adapted for all a ∈ L2(D).
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Under the additional assumption that γ is a (single-valued) continuous func-
tion, we proved in [7] that (1) admits a strong solution u, which is unique within
a set of processes satisfying mild integrability conditions. The solution of [7] is
constructed pathwise, i.e. for each ω ∈ Ω, so that, as is natural to expect, mea-
surability problems arise with respect to the usual σ-algebras on Ω× [0, T ] used in
the theory of stochastic processes. Precisely because of such an issue we needed
to assume γ to be single-valued.

The purpose of this note is to provide an alternative approach to establish the
well-posedness of (1) that, avoiding pathwise constructions, is simpler than that
of [7] and does not need any extra assumption on γ. The price to pay is that the
solution we obtain here is less regular than that of [7]. We also refer to [9] for a
related result obtained by analogous methods.

Let us define the concept of solution to (1) we shall be working with.

Definition 1.1. Let u0 be an L2(D)-valued F0-measurable random variable. A
strong solution to equation (1) is a couple (u, η) satisfying the following properties:

(i) u is a measurable and adapted L2(D)-valued process such that

u ∈ L1(0, T ;W 1,1
0 (D)) and B(·, u) ∈ L2(0, T ;L 2(U,L2(D))) P-a.s.;

(ii) η is a measurable and adapted L1(D)n-valued process such that

η ∈ L1(0, T ;L1(D)n) P-a.s. , η ∈ γ(∇u) a.e. in Ω× (0, T )×D;

(iii) one has, as an equality in L2(D),

u(t)−
∫ t

0
div η(s) ds = u0 +

∫ t

0
B(s, u(s)) dW (s) P-a.s. ∀ t ∈ [0, T ]. (2)

Note that (2) has to be intended in the sense of distributions. In particular,
since η ∈ L1(D)n, the integrand in the second term of (2) does not, in general,
take values in L2(D). However, the conditions on B imply that the stochastic
integral in (2) is an L2(D)-valued local martingale, hence the term involving the
divergence of η turns out to be L2(D)-valued by comparison.

We can now state our main result. Here and in the following k∗ : Rn → R+ is
the convex conjugate of k, defined as k∗(y) := supx∈Rn

(

x · y − k(x)
)

.
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Theorem 1.2. Let u0 ∈ L2(Ω,F0;L
2(D)). Then equation (1) admits a unique

strong solution (u, η) such that

sup
t≤T

E‖u(t)‖2L2(D) + E

∫ T

0
‖u(t)‖W 1,1

0
(D) dt < ∞,

E

∫ T

0
‖η(t)‖L1(D)n dt < ∞,

E

∫ T

0

(

‖k(∇u(t))‖L1(D) + ‖k∗(η(t))‖L1(D)

)

dt < ∞.

Moreover, the solution map u0 7→ u is Lipschitz-continuous from L2(Ω;L2(D)) to
L∞(0, T ;L2(Ω;L2(D))), and u is weakly continuous as a function on [0, T ] with
values in L2(Ω;L2(D)).

Under the extra assumption of γ being single-valued, the solution obtained
in [7] is more regular in the sense that E supt≤T ‖u(t)‖2L2(D) is finite, the solution

map is Lipschitz-continuous from L2(Ω;L2(D)) to L2(Ω;L∞(0, T ;L2(D))), and
u(ω, ·) is weakly continuous as a function on [0, T ] with values in L2(D) for P-a.a.
ω ∈ Ω.

Acknowledgements. The authors are partially supported by The Royal Society
through its International Exchange Scheme. Parts of this chapter were written
while the first-named author was visiting the Interdisziplinäres Zentrum für Kom-
plexe Systeme at the University of Bonn, hosted by Prof. S. Albeverio.

2 Well-posedness of an auxiliary equation

The goal of this section is to prove well-posedness of a version of (1) with additive
noise. Namely, we consider the initial value problem

du(t)− div γ(∇u(t)) dt ∋ G(t) dW (t), u(0) = u0, (3)

where G ∈ L2(Ω× [0, T ];L 2(H,L2(D))) is a measurable and adapted process.

Proposition 2.1. Equation (3) admits a unique strong solution (u, η) satisfying
the same integrability and weak continuity conditions of Theorem 1.2.

We introduce the regularized equation

duλ(t)− div γλ(∇uλ(t)) dt − λ∆uλ(t) dt = G(t) dW (t), uλ(0) = u0,

where γλ : Rn → R
n, γλ := 1

λ (I − (I + λγ)−1), for any λ > 0, is the Yosida
approximation of γ, and ∆ : H1

0 (D) → H−1(D) is the (variational) Dirichlet
Laplacian. Since γλ is monotone and Lipschitz-continuous, the classical variational
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approach (see [4, 8] as well as [5]) yields the existence of a unique predictable
process uλ with values in H1

0 (D) such that

E‖uλ‖2C([0,T ];L2(D)) + E

∫ T

0
‖uλ(t)‖2H1

0
(D) dt < ∞

and

uλ(t)−
∫ t

0
div γλ(∇uλ(s)) ds − λ

∫ t

0
∆uλ(s) ds = u0 +

∫ t

0
G(s) dW (s) (4)

P-a.s. in H−1(D) for all t ∈ [0, T ].
We are now going to prove a priori estimates and weak compactness in suitable

topologies for uλ and related processes. These will allow us to pass to the limit as
λ → 0 in (4).

For notational parsimony, we shall often write, for any p ≥ 0, Lp
ω, L

p
t , and Lp

x

in place of Lp(Ω), Lp(0, T ), and Lp(D), respectively, and Ct to denote C([0, T ]).
Other similar abbreviations are self-explanatory. The L2(D)-norm will be denoted
simply by ‖·‖. If a function f : D → R

n is such that each component f j, j =
1, . . . , n, belongs to Lp(D), we shall just write f ∈ Lp(D) rather than f ∈ Lp(D)n.
The notation a . b means that a ≤ Nb for a positive constant N .

Lemma 2.2. There exists a constant N such that

‖uλ‖L2
ωCtL2

x
+ λ1/2‖∇uλ‖L2

t,ω,x
+ ‖γλ(∇uλ) · ∇uλ‖L1

t,ω,x,

< N
(

‖u0‖L2
ω,x

+ ‖G‖L2
t,ωL 2(H,L2

x)

)

.

Proof. Itô’s formula for the square of the norm in L2
x yields

‖uλ(t)‖2 + 2

∫ t

0

∫

D
γ(∇uλ(s)) · ∇uλ(s) dx ds + 2λ

∫ t

0
‖∇uλ(s)‖2 ds

= ‖u0‖2 + 2

∫ t

0
uλ(s)G(s) dW (s) +

∫ t

0
‖G(s)‖2

L 2(H,L2
x)
ds,

hence, taking the supremum in time and expectation,

E‖uλ‖2CtL2
x
+ E

∫ T

0

∫

D
γλ(∇uλ(s)) · ∇uλ(s) dx ds + λE‖∇uλ‖2L2

t,x

. E‖u0‖2 + E‖G‖2L2

t L 2(H,L2
x)

+ E sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0
uλ(s)G(s) dW (s)

∣

∣

∣

∣

,

where, by Davis’ inequality (see, e.g., [6]), the ideal property of Hilbert-Schmidt
operators (see, e.g., [1, p. V.52]), and the elementary inequality ab ≤ εa2 + b2/ε
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∀a, b ≥ 0, ε > 0,

E sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0
uλ(s)G(s) dW (s)

∣

∣

∣

∣

. E

(
∫ T

0
‖uλ(s)G(s)‖2

L 2(H,R) ds

)1/2

≤ εE‖uλ‖2CtL2
x
+N(ε)E

∫ T

0
‖G(s)‖2

L 2(H,L2
x)
ds

for any ε > 0. To conclude it suffices to choose ε small enough.

Lemma 2.3. The families (∇uλ) and (γλ(∇uλ)) are relatively weakly compact in
L1(Ω × (0, T )×D).

Proof. Recall that, for any y, r ∈ R
n, ones has k(y) + k∗(r) = r · y if and only if

r ∈ ∂k(y) = γ(y). Therefore, since

γλ(x) ∈ ∂k
(

(I + λγ)−1x
)

= γ
(

(I + λγ)−1x
)

∀x ∈ R
n,

we deduce by the definition of γλ that

k
(

(I + λγ)−1x
)

+ k∗
(

γλ(x)
)

= γλ(x) · (I + λγ)−1x

= γλ(x) · x− λ |γλ(x)|2 ≤ γλ(x) · x ∀x ∈ R
n .
(5)

(See, e.g., [3] for all necessary facts from convex analysis used in this note.) Hence,
taking Lemma 2.2 into account, there exists a constant N > 0, independent of λ,
such that

E

∫ T

0

∫

D
k∗
(

γλ(∇uλ)
)

≤ E

∫ T

0

∫

D
γλ(∇uλ) · ∇uλ < N.

The assumptions on k imply that its convex conjugate k∗ is also convex, lower
semicontinuous and such that lim|y|→∞ k∗(y)/|y| = +∞. Therefore a simple mod-
ification of the criterion by de la Vallée Poussin implies that (γλ(∇uλ)) is uniformly
integrable on Ω × (0, T ) ×D, hence that it is relatively weakly compact in L1

t,ω,x

by the Dunford-Pettis theorem. A completely analogous argument shows that

E

∫ T

0

∫

D
k
(

(I + λγ)−1∇uλ
)

≤ E

∫ T

0

∫

D
γλ(∇uλ) · ∇uλ < N,

hence that (I + λγ)−1∇uλ is relatively weakly compact in L1
t,ω,x. Moreover, since

∇uλ = (I + λγ)−1∇uλ + λγλ(∇uλ), it also follows that (∇uλ) is relatively weakly
compact in L1

t,ω,x.
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Thanks to Lemmata 2.2 and 2.3, there exists a subsequence of λ, denoted by
the same symbol, and processes u ∈ L∞

t L2
ω,x ∩ L1

t,ωW
1,1
0 and η ∈ L1

t,ω,x such that

uλ −→ u weakly* in L∞
t L2

ω,x,

uλ −→ u weakly in L1
t,ωW

1,1
0 ,

γλ(∇uλ) −→ η weakly in L1
t,ω,x,

λuλ −→ 0 weakly in L2
t,ωH

1
0 .

as λ → 0. Let t ∈ [0, T ] be arbitrary but fixed. The fourth convergence above
implies

λ

∫ t

0
∆uλ(s) ds −→ 0 in L2

ωH
−1,

while the third yields, for any ϕ ∈ L∞
ω W 1,∞,

E

∫ t

0

∫

D
γλ(∇uλ(s)) · ∇ϕdx ds −→ E

∫ t

0

∫

D
η(s) · ∇ϕdx ds,

hence E

∫ t

0
〈div γλ(∇uλ(s)), ϕ〉 ds −→ E

∫ t

0
〈div η(s), ϕ〉 ds. Therefore, recalling

(4), by difference we deduce that

E〈uλ(t), ϕ〉 −→ E〈u(t), ϕ〉.

Consequently, since uλ(t) is bounded in L2
ωL

2
x, we also have that uλ(t) → u(t)

weakly in L2
ωL

2
x. Taking the limit as λ → 0 in (4) thus yields

u(t)−
∫ t

0
div η(s) ds = u0 +

∫ t

0
G(s) dW (s) in L1

ωV
′
0 ,

where V ′
0 is the (topological) dual of a separable Hilbert space V0 embedded con-

tinuously and densely in H1
0 , and continuously in W 1,∞. The identity immediately

implies that u ∈ CtL
1
ωV

′
0 . Since u ∈ L∞

t L2
ωL

2
x, it follows by a result of Strauss

(see [10, Theorem 2.1]) that u is a weakly continuous function on [0, T ] with values
in L2

ωL
2
x.

By Mazur’s lemma there exist sequences of convex combinations of γλ(∇uλ)
that converge η in (the norm topology of) L1

t,ω,x, thus also, passing to a sub-
sequence, P ⊗ dt-almost everywhere in L1

x. Similarly, since uλ → u weakly* in
L∞
t L2

ω,x implies that uλ → u weakly in L2
t,ω,x, there exist sequences of convex

combinations of uλ that converge to u P⊗ dt-almost everywhere in L2
x. Since con-

vex combinations of (uλ) and of (γλ(∇uλ)) are (at least) predictable and adapted,
respectively, it follows that u is predictable and η is measurable and adapted.
Moreover, thanks to the weak lower semicontinuity of convex integrals, one has

E

∫ T

0

∫

D

(

k(∇u) + k∗(η)
)

< ∞.
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In order to show that η ∈ γ(∇u) for a.a. (ω, t, x), we need the following “energy
identity”.

Lemma 2.4. Assume that

y(t) + α

∫ t

0
y(s) ds−

∫ t

0
div ζ(s) ds = y0 +

∫ t

0
C(s) dW (s)

in L2
x P-a.s. for all t ∈ [0, T ], where α ∈ R, y0 ∈ L2

ω,x is F0-measurable, and

y ∈ L∞
t L2

ω,x ∩ L1
t,ωW

1,1
0 , ζ ∈ L1

t,ω,x, C ∈ L2
t,ωL

2(H,L2
x)

are measurable and adapted processes such that k(c∇y) + k∗(cζ) ∈ L1
t,ω,x for a

constant c > 0. Then

E‖y(t)‖2 + 2αE

∫ t

0
‖y(s)‖2 ds + 2E

∫ t

0

∫

D
ζ · ∇y dx ds

= E‖y0‖2 + E

∫ t

0
‖C(s)‖2

L 2(H,L2
x)
ds ∀t ∈ [0, T ].

Proof. Let m ∈ N be such that such that (I − δ∆)−m maps L1
x into H1

0 ∩W 1,∞,
and use the notation hδ := (I − δ∆)−mh for any h taking values in L1

x. One has

yδ(t) + α

∫ t

0
yδ(s) ds−

∫ t

0
div ζδ(s) ds = yδ0 +

∫ t

0
Cδ(s) dW (s) (6)

P-a.s. for all t ∈ [0, T ], as an equality in L2
x, for which Itô’s formula yields

‖yδ(t)‖2 + 2α

∫ t

0
‖yδ(s)‖2 ds+ 2

∫ t

0

∫

D
ζδ · ∇yδ dx ds

= ‖yδ0‖2 +
∫ t

0
‖Cδ(s)‖2

L 2(H,L2
x)
ds+

∫ t

0
yδ(s)Cδ(s)dW (s).

It is evident from (6) that yδ is a continuous L2
x-valued process, hence the stochas-

tic integral (yδCδ) ·W on the right-hand side of the above identity is a continuous
local martingale. Let (Tn) be a localizing sequence, and multiply the previous
identity by 1[[0,Tn]], to obtain, thanks to E(yδCδ) ·W (· ∧ Tn) = 0,

E‖yδ(t ∧ Tn)‖2 + 2αE

∫ t∧Tn

0
‖yδ(s)‖2 ds+ 2E

∫ t∧Tn

0

∫

D
ζδ · ∇yδ dx ds

= E‖yδ0‖2 + E

∫ t∧Tn

0
‖Cδ(s)‖2

L 2(H,L2
x)
ds.
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Letting n tend to ∞, the dominated convergence theorem yields

E‖yδ(t)‖2 + 2αE

∫ t

0
‖yδ(s)‖2 ds+ 2E

∫ t

0

∫

D
ζδ · ∇yδ dx ds

= E‖yδ0‖2 + E

∫ t

0
‖Cδ(s)‖2

L 2(H,L2
x)
ds

for all t ∈ [0, T ]. We are now going to pass to the limit as δ → 0: the first and
second terms on the left-hand side and the first on the right-hand side clearly
converge to E‖y(t)‖2, 2αE

∫ t
0‖y(s)‖2 ds and E‖y0‖2, respectively. Properties of

Hilbert-Schmidt operators and the dominated convergence theorem also yield

lim
δ→0

E

∫ t

0
‖Cδ(s)‖2

L 2(H,L2
x)
ds = E

∫ t

0
‖C(s)‖2

L 2(H,L2
x)
ds

for all t ∈ [0, T ]. To conclude it then suffices to show that ∇yδ ·ζδ → ∇y·ζ in L1
t,ω,x.

Since ∇yδ → ∇y and ζδ → ζ in measure in Ω× (0, t)×D, Vitali’s theorem implies
strong convergence in L1

t,ω,x if the sequence (∇yδ · ζδ) is uniformly integrable in

Ω × (0, t) × D. In turn, the latter is certainly true if (|∇yδ · ζδ|) is dominated
by a sequence that converges strongly in L1

t,ω,x. Indeed, using the assumptions
on the behavior of k at infinity as well as the generalized Jensen inequality for
sub-Markovian operators (see [2]), one has

±c2ζδ · ∇yδ . 1 + k(c∇yδ) + k∗(cζδ) ≤ 1 + (I − δ∆)−m (k(c∇y) + k∗(cζ)) ,

where the sequence on the right-hand side converges in L1
t,ω,x as δ → 0 because,

by assumption, k(c∇y) + k∗(cζ) ∈ L1
t,ω,x.

Itô’s formula yields

E‖uλ(t)‖2 + 2E

∫ t

0

∫

D
γλ(∇uλ) · ∇uλ + 2λE

∫ t

0
‖∇uλ‖2

= E‖u0‖2 + E

∫ t

0
‖G(s)‖2

L 2(H,L2
x)
ds

and, by Lemma 2.4,

E‖u(t)‖2 + 2E

∫ t

0

∫

D
η · ∇u = E‖u0‖2 + E

∫ t

0
‖G(s)‖2

L 2(H,L2
x)
ds.
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One then has

2 lim sup
λ→0

E

∫ T

0

∫

D
γλ(∇uλ(s)) · ∇uλ(s) dx ds

≤ E‖u0‖2 + E

∫ T

0
‖G(s)‖2

L 2(H,L2
x)
ds− lim inf

λ→0
E‖uλ(T )‖2

≤ E‖u0‖2 + E

∫ T

0
‖G(s)‖2

L 2(H,L2
x)
ds− E‖u(T )‖2

= E

∫ T

0

∫

D
η(s) · ∇u(s) dx ds.

Since ∇uλ → ∇u and γλ(∇uλ) → η weakly in L1
t,ω,x, this implies that η ∈ γ(∇u)

a.e. in Ω × (0, T ) × D. We have thus proved the existence and weak continuity
statements of Proposition 2.1.

In order to show that the solution is unique, we are going to prove that any
solution depends continuously on (u0, G). Let (ui, ηi), i = 1, 2, satisfy

ui(t)−
∫ t

0
div ηi(s) ds = u0 +

∫ t

0
Gi(s) ds

in the sense of Definition 1.1, as well as the integrability conditions (on u and η) of
Theorem 1.2. Setting y := u1−u2, y0 := u01−u02, ζ := η1−η2, and F := G1−G2,
one has

y(t)−
∫ t

0
div ζ(s) ds = y0 +

∫ t

0
F (s) dW (s)

P-a.s. in L2(D) for all t ∈ [0, T ]. For any process h, let us use the notation
hα(t) := e−αth(t). For any α > 0, the integration-by-parts formula yields

yα(t) +

∫ t

0
(− div ζα(s) + αyα(s)) ds = y0 +

∫ t

0
Fα(s) dW (s),

hence also, thanks to Lemma 2.4,

E‖yα(t)‖2 + 2αE

∫ t

0
‖yα(s)‖2 ds + 2E

∫ t

0

∫

D
ζα(s) · ∇yα(s) dx ds

≤ E‖y0‖2 + E

∫ t

0
‖Fα(s)‖2

L 2(H,L2
x)
ds,

where ζα · ∇yα ≥ 0 by monotonicity. Therefore, taking the L∞
t norm,

‖yα‖L∞

t L2
ω,x

+
√
α‖yα‖L2

t,ω,x
. ‖y0‖L2

ω,x
+ ‖Fα‖L2

t,ωL 2(H,L2
x)
,

that is, using the notation Lp
t (α) := Lp([0, T ], e−αtdt) for any p ≥ 0,

‖u1 − u2‖L∞

t (α)L2
ω,x

+
√
α‖u1 − u2‖L2

t (α)L
2
ω,x

. ‖u01 − u02‖L2
ω,x

+ ‖G1 −G2‖L2
t (α)L

2
ωL 2(H,L2

x)
.

(7)
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Taking α = 0 and G1 = G2 immediately yields the uniqueness of solutions (as well
as Lipschitz-continuous dependence on the initial datum). The proof of Proposi-
tion 2.1 is thus complete.

3 Proof of Theorem 1.2

For any v ∈ L2
t,ω,x measurable and adapted, and any F0-measurable random

variable u0 ∈ L2
ω,x, the process B(·, v) is measurable, adapted, and belongs to

L2
t,ωL 2(H,L2

x), hence the equation

du(t)− div γ(∇u(t)) dt ∋ B(t, v(t)) dW (t), u(0) = u0,

is well-posed in the sense of Proposition 2.1. Moreover, for any v1, v2 and u01, u02
satisfying the same hypotheses on v and u0, respectively, (7) yields

‖u1 − u2‖L∞

t (α)L2
ω,x

+
√
α‖u1 − u2‖L2

t (α)L
2
ω,x

. ‖u01 − u02‖L2
ω,x

+ ‖B(·, v1)−B(·, v2)‖L2

t (α)L
2
ωL 2(H,L2

x)
.

It hence follows by the Lipschitz-continuity of B that

‖u1 − u2‖L2
t (α)L

2
ω,x

.
1√
α

(

‖u01 − u02‖L2
ω,x

+ ‖v1 − v2‖L2
t (α)L

2
ω,x

)

, (8)

where the implicit constant does not depend on α. In particular, denoting by Γ the
map (u0, v) 7→ u, one has that v 7→ Γ(u0, v) is a strict contraction of L2

t (α)L
2
ω,x for

α large enough. Therefore, by equivalence of norms, v 7→ Γ(u0, v) admits a unique
fixed point in L2

t,ω,x, which solves (1) and satisfies all integrability conditions. Such
solution is unique as any solution is a fixed point of v 7→ Γ(u0, v).

Let us show that the solution map u0 7→ u is Lipschitz-continuous: (8) yields,
choosing α large enough,

‖u1 − u2‖L2
t (α)L

2
ω,x

≤ N1‖u01 − u02‖L2
ω,x

+N2‖u1 − u2‖L2
t (α)L

2
ω,x

with constants N1 > 0 and 0 < N2 < 1, hence, by equivalence of norms,

‖u1 − u2‖L2

tL
2
ω,x

. ‖u01 − u02‖L2
ω,x

.

This in turn implies, in view of (7) (with α = 0) and the Lipschitz-continuity of
B,

‖u1 − u2‖L∞

t L2
ω,x

. ‖u01 − u02‖L2
ω,x

+ ‖B(·, u1)−B(·, u2)‖L2

t,ωL 2(H,L2
x)

. ‖u01 − u02‖L2
ω,x

+ ‖u1 − u2‖L2

tL
2
ω,x

. ‖u01 − u02‖L2
ω,x

,

which completes the proof.
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Remark. A priori estimates entirely analogous to those of Lemma 2.2, as well
as weak compactness results exactly as in Lemma 2.3, can be proved for the
regularized equation obtained by replacing γ with γλ + λ∇ directly in (1). It is
however not immediately clear how to pass to the limit as λ → 0 in the stochastic
integrals appearing in such regularized equations with multiplicative noise, i.e. to
show that B(uλ) ·W converges to B(u) ·W in a suitable sense.

References

[1] N. Bourbaki, Espaces vectoriels topologiques. Chapitres 1 à 5, new ed., Mas-
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[6] C. Marinelli and M. Röckner, On the maximal inequalities of Burkholder,
Davis and Gundy, Expo. Math. 34 (2016), no. 1, 1–26. MR 3463679

[7] C. Marinelli and L. Scarpa, Strong solutions to SPDEs with monotone drift
in divergence form, arXiv:1612.08260.

[8] E. Pardoux, Equations aux derivées partielles stochastiques nonlinéaires
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