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Background: Polarising currents can modulate membrane potentials in animals, affecting the after-effect
of theta burst stimulation (TBS) on synaptic strength.
Objective: We examined whether a similar phenomenon could also be observed in human motor cortex
(M1) using transcranial direct current stimulation (TDCS) during monophasic intermittent TBS (iTBS).
Methods: TDCS was applied during posterior-anterior iTBS using three different conditions: posterior-
anterior TDCS (anode 3.5 cm posterior to M1, cathode 3.5 cm anterior to M1), anterior-posterior TDCS
(cathode 3.5 cm posterior to M1, anode 3.5 cm anterior to M1), and sham TDCS.
Results: When the direction of TDCS (posterior-anterior) matched the direction of the electrical field
induced by iTBS, we found a 19% non-significant increase in excitability changes in comparison with iTBS
combined with sham TDCS. When the TDCS was reversed (anterior-posterior), the excitatory effect of
iTBS was abolished.
Conclusion: Our findings suggest that excitatory after-effects of iTBS can be modulated by directionally-
specific TDCS.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Background

The hand area of M1 is sensitive to the direction of electrical
current induced by TMS; current flowing in a posterior-anterior
(PA) direction across the central sulcus elicits motor evoked po-
tentials (MEPs) in hand muscles at lower intensities and shorter
latencies than anterior-posterior (AP) induced currents [1e3]. We
recently reported that changes in M1 excitability produced by
transcranial direct current stimulation (TDCS) are also influenced
by current direction. TDCS delivered with the anode posterior and
the cathode anterior to theM1 hotspot produces larger after-effects
than other directions [4].

Intermittent theta burst stimulation (iTBS) is typically applied
using biphasic stimulus pulses which induce an initial PA current
across M1. It produces a moderate but highly variable facilitation of
motor evoked potentials (MEPs) (potentiation of ~20e30% and
~50% of responders) [5e7]. Previous work has shown the
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concurrent application of TDCS can modulate the response to theta
burst protocols when TDCS is applied directly over themotor cortex
[8]. However, the results of these experiments are difficult to
interpret given the bidirectional TMS pulses. Recent studies have
suggested that the use a of near-rectangular monophasic pulse that
is thought to induce a more “unidirectional” electric field can
possibly lead to improved effects of repetitive TMS [9]. As such,
here we use a new stimulator capable of delivering unidirectional
TMS pulses, and ask whether iTBS using PA pulses is differentially
modulated by concurrent directional (PA or AP) TDCS applied
across the motor cortex. The experiments were inspired by recent
animal studies which have shown that modification of neural
membrane potentials with polarising currents can boost or abolish
the after-effects of simultaneously applied theta burst stimulation,
depending on the site and polarity of stimulation [10,11]. Although
care should be taken when translating slice preparation to in vivo
studies because of the vast differences in the applied electric fields
(10e20 V/mm versus 0.2e0.5 V/mm; [12,13]) activation of net-
works may also amplify these effects and be sufficient to modulate
likelihood of firing [14]. It is important to note in these experiments
that TDCS is applied for a very short time and is concurrent with
TMS. This is quite different than experiments that examine ho-
meostatic interactions between TDCS applied for a longer period
prior to a second “plasticity” protocol [15e17].
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Methods

Twenty individuals (12 men; M±SD ¼ 29 ± 8 years; right-
handed; no history of neurological or psychiatric disorder) partic-
ipated in a double-blind randomized crossover protocol, which
consisted of two experimental sessions: 1) iTBS þ posterior-ante-
rior TDCS (TDCSPA), 2) iTBS þ sham TDCS (TDCSSHAM). Fourteen of
those individuals also participated in a third session, where DC
current was opposite to TMS: 3) iTBS þ anterior-posterior TDCS
Fig. 1. Effect of iTBS-TDCS on normalised and absolute MEP amplitudes. A) Left, TMS coil
TDCS electrodes were positioned either side of the hotpot and presumed central sulcus. “A” a
anterior montage, while TDCSAP refers cathode-posterior/anode-anterior. Sham was applied
baseline (B1 and B2) prior to iTBS-TDCS, and at 10 min intervals following iTBS-TDCS. For the
19 and 14 and AP45 MEPs were recorded in 15, 15 and 14 individuals due to some individua
PA75 and AP45 MEP amplitudes shown for the three iTBS-TDCS conditions. Paired-sample t
versus averaged baseline MEPs (Bonferroni adjusted significance level, p < 0.0125). iTBS-T
TDCSSHAM at T30 (p ¼ 0.016). *p < 0.0125, **p < 0.002. (D) Averaged PA75-AP45 MEP amplitud
assess the time*condition interactions, post-hoc comparisons (Bonferroni adjusted significa
tDCSPA, and a statistical trend at T30 iTBS-TDCSSHAM, in comparison with iTBS-tDCSAP. T
significantly greater than iTBS-tDCSAP (M ¼ 0.96, N ¼ 14) (p ¼ 0.001, Cohen's d ¼ 1.33) an
d ¼ 0.50). A similar trend was observed for iTBS-tDCSSHAM versus iTBS-tDCSAP (p ¼ 0.05, Cohe
Individual average SEM of 20 MEPs from each baseline was computed and averaged acros
stimulation was considered when it exceeded 95% confidence interval of the SEM (±0.29)
sponders (ER), >1.29. Compared to iTBS-TDCSSHAM, response rates increased 8% and rates of O
TDCSAP, 79% of individuals were classified as NR and only 7% as ER. (F) Individual grand-
Compared to iTBS-TDCSSHAM, 11 of 19 participants displayed an increase in MEP amplitude
tudes compared with iTBS-TDCSSHAM and iTBS-TDCSPA in 12 of 14 participants.
(TDCSAP). All sessions were separated by > five days. TMS was
delivered through a figure-of-eight coil (70mm;Magstim Company
Ltd, UK) connected to a cTMS device ([18]: cTMS3; Rogue Resolu-
tions Ltd., UK) over the representation of the right first dorsal
interosseous (FDI) muscle. MEPs were recorded via surface elec-
tromyography. A neuronavigation system was used to ensure
consistent coil positioning (Brainsight, Rogue Resolution Ltd., UK).
Following determination of the active motor threshold (AMT), two
baseline blocks of 20 MEPs with a ~1 mV peak-peak amplitude test
orientations for measurements of PA75 and AP45 MEPs; Right, TDCS electrode montages.
nd “C” represent the anode and cathode. TDCSPA refers to an anode-posterior/cathode-
using the TDCSPA montage. (B) Timeline of the protocol. MEPs were recorded twice at
iTBS-TDCSPA, iTBS-TDCSAP and iTBS-TDCSSHAM sessions PA75 MEPs were recorded in 20,
ls having high TMS thresholds and not returning for the final test session. (C) Absolute
-tests were computed on absolute MEP average amplitudes to assess each time point
DCSPA increased MEPs at all time-points, while a statistical trend was found for iTBS-
es, normalised to the average of B1 and B2, for the three different conditions. To further
nce level, p < 0.0167) revealed greater MEP amplitudes at T10, T20 and T30 for iTBS-
he grand-average of MEP change (T0-T30) for iTBS-tDCSPA (M ¼ 1.39, N ¼ 19) was
d tended to be greater than for iTBS-tDCSSHAM (M ¼ 1.20, N ¼ 19) (p ¼ 0.09, Cohen's
n's d ¼ 0.82). *p < 0.05; þ p < 0.017; þþ p < 0.01. (E) Response rates for each condition.
s all participants to compute a grand SEM average (±0.15). A significant response to
: opposite responders (OR), <0.71; non-responders (NR), 0.71 > < 1.29; expected re-
R decreased from 21 to 0% for iTBS-TDCSPA. When the DC current was reversed in iTBS-
average of normalised MEP amplitude (T0-T30). Grey zone represents non-response.
s following iTBS-TDCSPA. iTBS-TDCSAP was associated with a decrease in MEP ampli-
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stimulus (TS1mV) were recorded using a near-rectangular mono-
phasic pulse of 45ms duration for antero-posterior (AP45), and of
75ms for postero-anterior (PA75) stimulation (average PA75 TS1mV:
M ¼ 43% of MSO; average AP45 TS1mV: M ¼ 87% of MSO) (see
Refs. [19,20]). iTBS was delivered over left M1 using a PA75 pulse
(80% AMT; 3 pulses at 50 Hz repeated at 5 Hz; 600 stimuli [21]).
Electrical current was delivered using a Starstim system (Neuro-
electrics, Spain) through a pair of circular 3.14 cm2 Ag/AgCl gelled
electrodes positioned 3.5 cm posterior and anterior to the TMS
hotspot parallel with the orientation of the TMS coil. Stimulation
was applied during iTBS for 190s (1 mA, 5sec ramp up/down, sham:
5sec ramp up/down only) (Fig. 1A). Blocks of 20MEPs (TS1mV) using
both current directions were recorded for 30min following iTBS-
TDCS (Fig. 1B).
Results

Data are shown mean ± SEM. No differences were obtained
among the three sessions for AMT and TS1mV values, and both
baseline MEP amplitudes (repeated-measure (RM) ANOVAs; all
p > 0.40). To account for unequal group sizes among the three
conditions and two coil orientations, a mixed ANOVA (between-
group: condition, test pulse; within-group: time) was computed on
averaged normalisedMEP amplitudes (i.e. divided by the average of
B1 and B2). A significant interaction time*condition was obtained
(F ¼ 2.93, p ¼ 0.001). Because no significant effect of “test pulse”
was obtained (p ¼ 0.86), PA75 and AP45 MEPs were averaged for
further analyses. iTBS-TDCSPA induced facilitation at all time points,
and iTBS-TDCSSHAM produced a trend towards facilitation at T30,
whereas iTBS-TDCSAP did not induce changes (Fig. 1C). To assess the
interaction, a one-way ANOVA (between-subject: condition) was
computed on normalised MEPs at each time-point, and the grand-
averaged of normalised MEPs (T0-T30). Significant effects were
found for T10 to T30 and T0-T30 (all p < 0.05) and LSD post-hoc
comparisons were computed (see Fig. 1D for results). Response
rates were also computed (see Ref. [22]; Fig. 1E). Individual re-
sponses are displayed in Fig. 1F.
Discussion

Results showed that when the direction of the DC current
matched the direction of the electrical field induced by iTBS (pos-
terior-anterior), there was a qualitative increase (19%) in the after-
effects of iTBS alone (iTBS-TDCSSHAM) that did not reach statistical
significance, as well as a slight qualitative increase in “responders”
rate. When the direction of the DC current was opposite to the TMS
(i.e. anterior-posterior), a significant 24% decrease in cortical
excitability changes was observed in comparison with iTBS alone,
as well as an important decline in the proportion of “responders”
(47%e7%).

Considering the short duration of stimulation (3 min; [23]), it is
unlikely that TDCS alone would have produced after-effects on
cortical excitability that could interact with iTBS. It seems more
likely that TDCS hyperpolarised presynaptic terminals or soma/
dendrites of neurons in M1 that were targeted by iTBS, and, as
described in animal experiments, this modulated the after-effects
of repetitive activity [10,11,14]. However, this remains hypotheti-
cal as it is not currently possible to be certain which membrane
locations might have been affected by TDCS/iTBS in humans since
this depends on the details of the electrical field and orientation of
neurons, which have yet to be modelled in sufficient detail to
address the question. Although we think the results have practical
application in using TDCS to boost the effects of rTMS, further
detailed work is needed to explore the mechanism.
iTBS did not differentially modulate MEPs recorded using AP45
or PA75 pulses, which are thought to activate different subsets of
neurons when recorded using subthreshold intensities during
slight voluntary contraction [1e3,24]. This could reflect the fact
that our MEPs were recorded at rest using suprathreshold stimulus
intensities that recruit multiple neural populations (both early and
late indirect waves) [1e3], reducing the specificity of the directional
effect. Alternatively, it could be that this form of unidirectional iTBS
equally modulated subsets of neurons recruited by both current
directions.

Current results are limited by the fixed order and the smaller
sample size for the TDCSAP. However, participants were blind to
conditions and sessions were separated by at least a week to avoid
carry-over/order effects. Arousal changes are also unlikely because
of the important scalp activation induced by iTBS compared to
TDCS. In addition, because of limitations of our cTMS device we
could not test whether AP-iTBS (requiring higher absolute stimulus
intensity) would interact similarly with TDCS.

In conclusion, although the present study remains exploratory,
our finding suggests that iTBS after-effects can be modulated, and
possibly optimised, by concurrent application of directional TDCS.
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