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Abstract 

Synthetic Biology is ushering in a new era where reengineered genomes can enhance 

the capacity of host cells to produce biologic and chemical products. Standardisation is 

a key component of synthetic biology as it enables effective implementation (Müller 

and Arndt, 2012). This project has successfully generated synthetic biology standards 

for the quantitative polymerase chain reaction (qPCR), a highly specific and sensitive 

analytical platform, in order to increase its robustness for monitoring of host cell 

processes in an industrial setting. This project has also increased the assay throughput to 

allow for at-line analysis, in accordance with initiatives such as Process Analytical 

Technology (PAT) (Gnoth et al., 2007). Analysis was conducted on three commonly 

used host cell chassis and industrial contamination was also simulated by the addition of 

plasmid proxies. All assays were optimised by primer design and screening to ensure 

accuracy. End point PCR (e –pPCR) and quantitative PCR (qPCR) was conducted in the 

presence   and   absence   of   cellular   material   disrupted   by   a mild sonication 

procedure. We found that, whilst cellular material reduces assay sensitivity for a 

genomic locus, the presence of contaminating species can be accurately quantified. We 

also employed LRE–qPCR, which uses the CAL1 standard for quantification. LRE-

qPCR matched   the   accuracy   of   a   conventional   standard curve   qPCR   method 

and we propose it as a Synthetic Biology standard.   

We next developed a modified standard curve method that streamlined methodology 

and bypassed errors inherent to the gold standard methodology to, for the first time, 

enable quantification of multiple targets from a single standard curve. The CyCal curve 

is a standard curve constructed from the CAL1 standard combined with the Cy0 data 

analysis. The approach was validated against 6 bioprocess targets and it was found that 

CyCal was able to replicate the accuracy of the gold standard approach. We then used 

CyCal to accurately determine how host cell plasmid copy number (PCN) evolves 

during fermentation. The combination of rapid sample preparation and a universal 

standard means that CyCal is capable of becoming the basis of an at-line qPCR assay 

when conducted on modern ultra-rapid qPCR thermocycler technology.  
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Chapter 1 

1 General Introduction 

1.1 Introduction to synthetic biology and standardisation 

Synthetic biology is an engineering-driven approach to utilising recombinant DNA 

technology that has proved to be immensely successful in developing an understanding 

of how genetic systems and metabolic pathways function (Arpino et al., 2013). 

Synthetic biology has allowed entirely synthetic (Gibson et al., 2010) or refactored 

(Lajoie et al., 2013) genomes to be used to design new function into organisms such as 

bacteria and has been crucial in the development of increasingly sophisticated methods 

of manipulating of genetic systems (Agapakis and Silver, 2009).  

Standardisation, or the universal adoption of conventions, materials or methodologies, is 

key to the synthetic biology ethos as it facilitates communication, compatibility, quality 

control and reproducibility across this highly multidisciplinary field (Müller and Arndt, 

2012). By adopting standards experiments can become comparable across scientific 

disciplines as data can be shared and results reported with greater ease. Standardisation 

in Synthetic Biology is largely defined by a “toolbox” of well characterised genetic 

components (Kelly et al., 2009), organisms and protocols (Bustin et al., 2009).  

1.2 The quantitative polymerase chain reaction 

The Polymerase Chain Reaction (PCR) is an in vitro method of amplifying a specific 

target region of DNA. The process involves DNA polymerase-mediated reactions in 

which DNA amplification is driven by a series of temperature cycles, with a full PCR 

run consisting of 30 cycles or more. The DNA products of PCR are termed amplicons 

and a perfectly efficient reaction will double the quantity of amplicons with each cycle 

(Erlich et al., 1991).  

Amplification by PCR can be observed in real-time by introducing fluorescent probes 

into the reaction media. These probes react with double stranded DNA (dsDNA) to 
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produce a signal proportional in magnitude to amplicon quantity, making it possible to 

track the production of amplicons in real-time (Wilhelm and Pingoud, 2003). This real-

time gathering of data confers a major advantage as the reaction container can remain 

closed once an experiment has begun, reducing the risk of sample contamination and 

improving experimental reliability. The need for complex downstream processing is 

also eliminated and a high degree of automation can be applied, which in turn reduces 

experimental time and cost and allows for higher-throughput assays (Kubista et al., 

2006), (Wilhelm and Pingoud, 2003).  

qPCR was pioneered by Higuchi et al. (1992), the first group to record the increase in 

fluorescent signal as reporter molecules interact with exponentially accumulating 

amplicons (Higuchi et al., 1992). It was quickly realised that kinetic PCR data, in the 

form of an amplification profile, can be subjected to powerful quantitative analyses that 

are capable of providing information on original template mass in samples where it was 

previously unknown (Wilhelm and Pingoud, 2003). qPCR has since achieved “gold 

standard” status due to the myriad of other convenient experimental factors, such as the 

improved experimental reliability as a result of data gathering from a closed reaction 

container, the reduced need for complex downstream processing and the amenability of 

qPCR to automated and high-throughput systems (Kubista et al., 2006).  

1.2.1 PCR nomenclature 

The rapid and widespread uptake of qPCR has resulted in varying nomenclature within 

the literature. There are a number of terms that, whilst broadly describing the same 

process, have subtly different meanings. Real-time PCR refers to a PCR where the data 

is gathered whilst the amplification of DNA is occurring. Kinetic PCR also refers to this 

process and is fully interchangeable with real-time PCR. Quantitative PCR is used to 

describe a PCR reaction where the amount of starting DNA can be quantified. Whilst 

the term “quantitative PCR” has been used in the literature before the development of 

real-time PCR (Ferre, 1992) the two terms are now interchangeable, due to the 

widespread use of real-time PCR as a quantitative technique.  
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Real-time PCR is sometimes shortened to RT-PCR in the literature; however RT-PCR 

is also used to describe reverse-transcription PCR, a form of PCR where reverse 

transcriptase enzymes are used to convert RNA before the PCR. Due to the confusion 

between reverse-transcription PCR and real-time PCR, and the common use of 

quantitative PCR to describe real-time PCR, qPCR will be used as the term to describe 

real-time PCR, kinetic PCR and quantitative PCR. 

1.2.2 PCR data capture and analysis 

As PCR protocols and methodologies have evolved the methods of acquiring data from 

the process of nucleic acid amplification have diversified. There are currently two main 

methods of studying the products of PCR, end-point analysis and through a qPCR 

amplification curve. 

1.2.3 End-point PCR 

In end-point PCR (e-pPCR) the amplified DNA is analysed at the end point of the 

reaction using gel electrophoresis. Although the quantification of target DNA is 

possible with densitometry, e-pPCR is often used as a binary analysis method, giving a 

“yes” or “no” result as to the presence of a target gene and allowing visualisation of 

amplicon size (Aaij and Borst, 1972).  

Whilst e-pPCR has been superseded by other PCR methods, such as qPCR, it is still 

used to detect clinical or industrial infection by adventitious microorganisms. These can 

include mycoplasmas, phage and other contaminating bacteria (Kong et al., 2001;
 

Arabestani et al., 2011). Through elegant assay design, primers can be designed that are 

capable of distinguishing between multiple contaminant species in a single sample 

(Timenetsky et al., 2006). 

1.2.4 qPCR amplification curve 

Kinetic qPCR data is plotted as an amplification profile, shown in Figure 1-1. The 

amplification profile has distinct stages; the linear-ground, exponential and plateau 
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phases, plus inter-phases between them. These reflect the processes behind amplicon 

production and accumulation, with the linear-ground phase reflecting the cycles 

during which fluorescence from product accumulation has not exceeded background 

fluorescence (Fb) (Ruijter et al., 2009), the exponential phase reflecting the cycles 

where the increase in amplicon mass reaches an exponential level according to the 

growth equations (Rutledge and Stewart, 2008), and the plateau phase reflecting the 

stalling of the reaction, largely due to inhibition through excess product 

accumulation (VanGuilder et al., 2008). 
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Figure 1-1 qPCR amplification curve annotated with kinetic phases 
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1.2.5 Efficiency of qPCR amplification 

The accumulation of amplicons during PCR can be described by an application of the 

exponential growth equation, which establishes a relationship between the efficiency 

(E) of amplification and quantity of nucleic acid template (N): 

𝑁𝑛 ≅ 𝑁0𝐸𝑛 

Where Nn is the quantity of target DNA at cycle n and N0 is the quantity of target 

DNA initially input to the reaction. E can range between values of 1, which describes 

0% efficiency where no amplicons are produced, or 2, which describes 100% 

efficiency where amplicons double during each cycle (Tichopad et al., 2003).  

As it has been shown that fluorescent intensity is proportional the quantity of 

template, values for fluorescence signal can be directly substituted: 

𝐹𝑛 = 𝐹0𝐸𝑛 

Where F is the fluorescence signal from the nucleic acid target, Fn is fluorescence at 

cycle n, and F0  is the initial fluorescence. As fluorescence intensity is directly 

proportional to initial template quantity, F0 also represents the absolute quantity of 

template (Rutledge and Côté, 2003).  

These calculations are the basis for nucleic acid quantification from the fluorescent 

signal generated during qPCR and demonstrate that accurate calculation of E is 

critical to the quantitative precision of qPCR.  

There are numerous compounds that can impact efficiency of qPCR amplification, 

inhibiting amplicon formation and causing quantitative inaccuracy. To maintain the 

accuracy of assays, it is common to subject a test sample to round or rounds of sample 

preparation to remove these inhibitors and allow for testing on a sample of the highest 

possible purity. 
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1.2.6 Quantification cycles (Cq) in qPCR 

As efficiency has a direct impact on quantification, analysis is carried out in the 

exponential phase of amplification where efficiency is considered to be constant 

(Ruijter et al., 2009). This is achieved through generation of the cycle pf quantification 

(Cq), or the fractional cycle at which fluorescence intensity exceeds the fluorescence 

threshold (Fq), a line drawn within the exponential phase, above the background 

fluorescence (Fb), which runs parallel to the x-axis of the amplification curve (Ruijter et 

al., 2009). Fb is the level of fluorescence generated from background sources such as 

the experimental sample, reagents and qPCR consumables being used. The Fq is 

commonly generated by the qPCR instrumentation, but can be implemented by the user. 

If implemented by the user then the Fq should be set at the same point for all 

experimental repeats to ensure comparability (Ruijter et al., 2013). 

1.2.7 Relative quantification from qPCR 

Relative quantification compares the change in levels of a target nucleic acid 

sequence to an experimental control group, giving the fold difference in gene 

expression. Absolute quantification gives a measure of the absolute quantity of 

nucleic acid and typically involves the construction of a standard curve (SC), where 

samples containing a known mass of template are amplified in parallel, to gain 

information on a sample containing the same target sequence but unknown mass 

(Rutledge and Côté, 2003).  

1.2.8 Absolute quantification qPCR 

Whilst direct observation of F0 would conveniently achieve absolute template 

quantification, it is unfortunately rendered impossible by interference from Fb. 

Therefore F0 is approximated using information from the exponential phase of the 

amplification profile, where amplicon fluorescence suitably exceeds Fb. 

The analysis of the exponential phase of amplification is achieved through generation 

of the cycle of quantification (Cq). This is the fractional cycle at which fluorescence 
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intensity exceeds the fluorescence threshold (Fq), a line drawn within the exponential 

phase that runs parallel to the x-axis of the amplification curve. Some qPCR 

instrumentation, such as the Roche LightCycler, can also calculate Cq using the 

second derivative maximum (SDM), identified as the point on the amplification 

curve at which the increase of fluorescence intensity reaches its maximum (Pfaffl, 

2001). 

The SC method takes 10 fold serial dilutions of a sample of known DNA mass and 

amplifies them in parallel to generate a series of Cq values. These are then plotted 

against their log dilution to give a linear regression line, of which the y-intercept (b) 

and slope (m) are used to convert the Cq of an unknown sample into quantified 

template mass, using the following equation: 

𝑁𝑛 = 10
(

𝐶𝑞−𝑏

𝑚
)
 

Most commercially available packages for qPCR data analysis apply baseline 

subtraction, or a process of accounting for Fb to improve quantitative precision. 

 The increased labour needed in setting up a qPCR assay capable of absolute 

quantification is a contributing factor, as SC protocols increase experimental 

complexity and error from the extra set of liquid handling steps. The most important 

issue however is that assumptions are made during data analysis that reduces 

quantitative precision.  

1.2.9 Limitations of absolute quantification 

A fundamental assumption made by the SC method is that the purified standards and 

sample of unknown DNA mass have an equal value for amplification efficiency, E, 

which has been experimentally proven to be highly improbable (Rutledge and 

Stewart, 2008). As previously discussed, accurate and consistent determination of E 

is critical to the quantitative precision of qPCR. Differences in E of only 0.05 

(corresponding to 5%) can result in a sample having double the mass of amplicons 
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after 26 cycles of amplification (Freeman et al., 1999). The implications of this are 

that even small differences in E between standard and unknown sample efficiencies 

often result in loss of quantitative accuracy and, in extreme cases, erroneous data 

(Meijerink et al., 2001). Some studies even suggest that E is a dynamic value, in that 

its value varies within a cycle (Goll et al., 2006). 

1.3 Diversity of qPCR data analysis 

A number of alternate protocols have been developed that aim to achieve accurate 

absolute quantification without the practical flaws and inherent assumptions of the 

standard curve method. Amongst these are attempts to give a more reliable and 

dynamic estimation of E, to provide a more accurate determination of Cq and to 

model the mechanics of amplicon accumulation to extrapolate initial template 

fluorescence and mass.  

The ultimate goal of these refinements in qPCR data analysis is a method of 

accurately determining F0, and therefore initial template mass, from a single reaction 

with minimal assumptions. This would allow for accurate and rapid absolute 

quantification that is highly amenable to automation. The development of a superior 

method of absolute quantification could also drive a synthetic biology level of 

standardisation, which would see diverse methods and arbitrary experimental 

decisions coalesce into a routine laboratory assay that produces consistently reliable 

data. 

1.3.1 Sigmoidal curve fitting and Linear Regression of Efficiency (LRE)-qPCR 

Sigmoidal curve fitting was the first attempt to estimate F0 from observations of raw 

fluorescence data (Liu and Saint, 2002) and since its appearance in the literature the 

method has been extensively built upon, resulting in LRE-qPCR (Rutledge, 2004). By 

modelling the qPCR amplification curve with a Boltzmann sigmoid function, this 

method attempts to calculate efficiency and fluorescence values at specific cycles 

(Rutledge, 2004). The sigmoid function that was first applied to qPCR data is: 
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𝐹𝑛 =
𝐹𝑚𝑎𝑥

1 + 𝑒
−(𝑛−𝑛1

2⁄ /𝑘)
+ 𝐹𝑏 

Where n is cycle number, Fn is fluorescence at cycle n, Fmax is the maximum value of 

fluorescence at the end of PCR, n½ is the fractional cycle at which fluorescence reaches 

half of Fmax, K is the slope of the curve and Fb is background fluorescence. Following 

calculation of Fc, the exponential growth equation can be further applied to values 

generated by the model to estimate F0 and thus the initial template mass. 

Whilst this approach is successful at modelling the early log-linear stages of 

amplification, the sigmoid function deviates from fluorescence values found in the 

plateau phase and becomes inaccurate, thus making it is necessary to find a “cut-off” 

point after which fluorescence values are ignored. This was initially chosen by the 

experimenter, however LRE-qPCR developed by Rutledge implemented an automated 

method for choosing a suitable cut-off point. This automated process uses an algorithm 

to determine the cycle where the increase in fluorescence reaches its lowest value and 

then removes all subsequent plateau phase cycles, producing an analytical window that 

only contains values in the linear phase of amplification (Rutledge and Stewart, 2010). 

Subsequent developments in LRE-qPCR further improved quantitative accuracy by 

introducing an improved method of converting the raw fluorescence value, Fc, into 

quantities of nucleic acid.  This was achieved by establishing a standardisable optical 

scale, or optical conversion factor (OCF), to convert target fluorescence into target copy 

number, negating the need for target specific calibration. A high performance 

calibration reaction using commercially available lambda DNA is suggested and details 

of the calibration primers and reaction conditions have been published and are openly 

available(Rutledge and Stewart, 2010).  

A javascript program, which conveniently automates the application of LRE-qPCR to 

raw fluorescence values generated from qPCR, has been developed and is maintained, 

with an OCF calculation feature included (Rutledge, 2011). 
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Studies have demonstrated that LRE-qPCR can give quantitative accuracy of ±15-25% 

from “gold standard” standard curve methods and it is also been demonstrated that 

single-molecule template reactions can be analysed with this method (Rutledge and 

Stewart, 2010). Additionally, the calibration done with lambda DNA allows for a degree 

of standardisation. Some reports have however concluded that this sigmoidal curve 

fitting method assumes symmetry between the inflection points between the ground-

leading-to-exponential and exponential-leading-to-plateau phases of the amplification 

curve, introducing errors in quantitation and meaning that the standard curve (SC) 

method remains gold standard (Ruijter et al., 2013).  

1.3.2 Optical Calibration Factor (OCF) and LRE-qPCR 

LRE-qPCR allows determination of F0 through analysis of an amplification curve, 

which must then be converted into the number of target molecules by correlating the 

fluorescence units to the mass of the DNA. In order for this to be practical, a correlation 

must be established between the DNA mass and fluorescence. This can be achieved by 

amplifying a known quantity of standard with as close to 100% efficiency as possible. 

This approach is similar to conventional qPCR approaches, with the exception that it 

doesn’t necessitate specificity to the target molecule. Rutledge et al (2008) have 

developed a “calibration reaction” for this, which uses commercially available lambda 

bacteriophage genome as target and a high-performance ‘Cal1’ primer pair. 

1.3.3 Cy0 

Cy0 is a modified standard curve method that produces a Cy0 value that, unlike the Cq 

value, does not require the assumption of uniform e between the standards and the 

unknown sample and does not require an arbitrary Fq. 

The Cy0 is both a quantitative entity and a reaction kinetic, and was realised through 

adaptations of the logistic models described by Rutledge & Stewart (Rutledge, 2004) 

and Chervoneva et al (2007). The Cy0 value is generated by using non-linear regression 

of the experimental data to produce a Richards curve. The tangent of the inflection point 
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of this curve is intersected with the abscissa axis, the point of intersection being the Cy0 

value. The 5 parameter Richards function used is: 

𝐹𝑛 =
𝐹𝑚𝑎𝑥

[1 + 𝐸 (−
1
𝑏

(𝑛 − 𝑥))]

𝑑 + 𝐹𝑏 

Where F is the reaction fluorescence at cycle n, which is the fractional cycle of the 

turning point of the curve, b is the slope parameter, x is the transition parameter and d is 

the Richards coefficient.  

If d=1 then the Richards equation becomes the logistic equation and the parameters 

obtained by these equations can be used to generate the Cy0 value (Guescini et al., 

2008):  

𝐶𝑦0 = 𝑥 − 𝑏(1 +
1

𝑑
− ln 𝑑) 

Since publication of the original Cy0 method, the authors have integrated shape based 

kinetic outlier detection (SOD) into analysis that compensates for variations in reaction 

efficiency between samples and improve accuracy (Guescini et al., 2013). 

The authors of Cy0 attempted to prove their model by simulating varying levels of PCR 

inhibition through the addition of Immunoglobulin G (IgG), a known PCR inhibitor. 

Two criteria were used to judge performance, accuracy of quantification and variability 

between results. They found that, whilst Cy0 and SC methods have comparable levels 

of variability and accuracy when amplification conditions were optimal, the accuracy of 

SC methods became significantly impaired upon the introduction of inhibition. Cy0 had 

levels of variability comparable to optimal conditions and had far increased levels of 

accuracy when the reaction was inhibited. This makes Cy0 data analysis a good choice 

for the absolute quantitation of samples that might contain a source of inhibition, such 

as those from a biological source (Ruijter et al., 2013). 
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The Cy0 method can be applied to data by uploading fluorescence readings to a website 

maintained by the authors (http://www.cy0method.org/). 

1.3.4 Methods for comparing competing analysis methods 

The direct quantification of target nucleic acid quantity is not currently possible, rather 

it is extrapolated from analysis of PCR amplification in the presence of a fluorescent 

reporter. Therefore, when assessing the suitability of a new data analysis method, the 

method will need to be evaluated through comparison to existing methods rather than 

the actual value of nucleic acid quantity. 

Two methods of indirectly measuring a variable can be compared through an XY plot to 

find correlation, or the degree as to which they are related.  Here the mean of one 

analytical method is plotted on the y axis and the mean of the second is plotted on the x 

axis. Visual analysis of the plots formed can give an indicator as to the nature and 

strength of agreement. If relationship between the variables is linear, with no noticeable 

curvature, linear regression analysis can be used to determine the slope and intercept of 

a line that best predicts Y from X, and the correlation coefficient (R
2
). If the data being 

compared is in perfect agreement, the slope will equal 1.0 and the y intercept will equal 

0. Lines with a slope not statistically different from 1.0 but with y-intercept different 

from 0 indicates a systematic bias. Alternatively, a slope that is statistically different 

from 1.0 indicates a proportional bias. R
2
 is the measure of goodness-of-fit of linear 

regression and ranging between 1.0 (a perfect fit) and 0.0 (no linear relationship). 

Therefore the closer the R
2 

value is to +1.0, the stronger the relationship is.   

When assessing the quantitative ability of two sets of measurements, using the 

correlation between the methods can be misleading as it studies the relationship 

between the two and not the differences. Bland and Altman (1986) devised a method of 

comparing clinical diagnostic methods, which also indirectly measure a value, in order 

to assess agreement. A Bland-Altman plot determines limits of agreement, calculated 

using mean and standard deviations of the difference between the measurements of each 

method. To do this, an XY plot is constructed where the X axis shows the mean of the 

http://www.cy0method.org/
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two measurements and the Y axis shows difference between measurements. If the 

analytical methods are carried out over a large range of concentrations then the data 

should be log transformed. This results in difference plot, where the relationship 

between the averages and differences of the measurements and will reveal any 

bias. Should 95% of the data points lie within two standard deviations of the mean 

difference, which is the recommended limits of agreement (Bland and Altmann, 1986) 

and can be marked on the graph for avoidance of doubt, then there statistically no 

evidence of bias. 

1.3.5 qPCR instrumentation 

The development of thermal cyclers with integrated fluorimeters has been crucial to the 

adoption of qPCR technology and, since the first generation of qPCR thermocyclers, the 

instruments have become increasingly sophisticated. Early qPCR thermal cyclers that 

utilised a heat block to alternate between temperatures lacked homogeneity of heat 

within the reaction vessel, which often resulted in inefficient reactions (Mackay, 2004). 

Reaction efficiency is a critical component of qPCR quantification and changes in its 

value can dramatically affect the accuracy of the technique. In order to drive efficient 

reactions that result in accurate qPCR, alternative methods of heating have been 

developed which are able to produce a homogenous temperature gradient. These novel 

heating methods generally use smaller sample sizes, which in turn decreases cycle time, 

resulting in the development of rapid cycle qPCR (Kaltenboeck and Wang, 2005). 

1.3.6 Rapid-cycle qPCR platforms 

The first “rapid-cycle” qPCR instrument, marketed by Roche as the LightCycler, passed 

heated air over glass capillaries containing samples to drive temperature change. 

Thermal transfer via air is rapid and uniform, and since the commercial success of the 

LightCycler, competing instruments that use similar technology have entered the market 

(Rasmussen, 2001). Generations of qPCR thermocyclers that have followed since have 

improved upon efficiency and accuracy of replication. The overall cost of the 

instruments has also decreased, making them accessible to a larger audience and 

allowing them to be introduced to a wider range of applications.  
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The Cockerill lab published a comparison of assay turnaround time between 

conventional PCR and rapid-cycle PCR. They found that whilst conventional PCR had 

an assay turnaround time of 2 to 3 days, rapid-cycle PCR had a vastly improved 

turnaround time of approximately 30 minutes.  It was also noted that sample 

contamination was markedly decreased, experiments were less laborious to perform and 

the range of nucleic acid quantification was approximately double that of conventional 

PCR (Cockerill, 2003). These factors make rapid-cycle qPCR an ideal platform for 

reliable, accurate assays with fast turnover time. 

Table 1: Summary of commercially available qPCR thermal cyclers 

Instrument Manufacturer Probes used Number of 

Samples 

Sample 

volume (µl) 

Capable of 

Rapid-cycling 

LightCycler 

1.0 

Roche Applied 

Science 

Hybridisation 

probes,  molecular 

beacons, Taqman 

probes 

32 10-20 Yes 

LightCycler 

2.0 

Roche Applied 

Science 

Hybridisation 

probes,  molecular 

beacons, Taqman 

probes 

32 10-100 Yes 

SmartCycler II Cepheid Molecular beacons, 

Taqman probes 

16 25-100 Yes 

Rotor-Gene 

3000 

Corbett 

Research 

Molecular beacons, 

Taqman probes 

72 10-150 Midrange 

Prism 7000 Applied 

Biosystems 

Molecular beacons, 

Taqman probes 

96 n/a No 

Prism 7300 Applied 

Biosystems 

Molecular beacons, 

Taqman probes 

96 n/a No 
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Prism 7500 Applied 

Biosystems 

Molecular beacons, 

Taqman probes 

96 n/a No 

Prism 7900ht Applied 

Biosystems 

Molecular beacons, 

Taqman probes 

384 n/a No 

MyiQ BioRad Molecular beacons, 

Taqman probes 

96 15-100 No 

iCycler iQ BioRad Molecular beacons, 

Taqman probes, 

hybridisation 

probes 

96 50 No 

Mx4000 Stratagene Molecular beacons, 

Taqman probes 

96 10-50 No 

Mx3000p Stratagene Molecular beacons, 

Taqman probes 

96 25 No 

Chromo4 MJ Research Molecular beacons, 

Taqman probes 

96 10-100 No 

Opticon  MJ Research Molecular beacons, 

Taqman probes 

96 10-100 No 

SynChron Genetic 

Discovery 

Technology 

Molecular beacons, 

Taqman probes, 

hybridisation 

probes 

6 10-50 Yes 

 

1.4 Introduction to Bioprocess Engineering 

Bioprocess engineering (bioprocessing) is a multidisciplinary specialisation of chemical 

engineering that researches and develops manufacturing processes from biological 
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sources. These are often host cell systems that have been genetically modified using 

recombinant DNA technology and are grown to a high cell density (HCD) in defined 

fermentation conditions. A notable development in this field was the introduction of 

human insulin derived from transgene expression in E. coli in 1982 (Johnson, 1982), 

which was the first biopharmaceutical product bought to market. The biopharmaceutical 

market is now worth in excess of $50billion (Pavlov et al., 2004) and protein-based 

biopharmaceutical products produced from recombinant DNA technology are projected 

to represent 19-20% of the total market value by 2017 (IMS Health, 2016). This rapid 

growth in the biopharmaceutical market, as well as the increased production of biofuels 

(Clomburg and Gonzalez, 2010), biocatalysts (Ruth and Glieder, 2010) and other fine 

chemicals (Zhang and Wang, 1994) from recombinant DNA technology, means that 

bioprocessing as a transformative research field is likely to endure. 

1.5 Bioprocess platforms 

Since E. coli, the first bacterial host cell chassis, bought recombinant insulin to market, 

many other cellular bioprocess platforms have been explored. A significant portion of 

the biopharmaceutical market utilises eukaryotic hosts, primarily mammalian cells such 

as the Chinese hamster ovary (CHO), but also yeasts such as Pichia pastoris. 

Bioprocessing is continuing to produce an ever increasing array of compounds from 

these organisms, as well as optimising them to improve product titre from batch 

production and increase product quality (Riesenberg and Guthke, 1999). 

1.5.1 Pichia pastoris 

The methylotrophic yeast P. pastoris is a eukaryotic industrial chassis with a proven 

capacity for expressing hundreds of different recombinant proteins that has emerged as 

an effective microbial cell factory for production of biotherapeutics (Macauley-Patrick 

et al., 2005) and bespoke fine chemicals (Zhang and Wang, 1994). P. pastoris possesses 

some advantages over mammalian expression systems, such as a greater amenability to 

genetic modification (Lin Cereghino et al., 2001) and ability to rapidly reach and 

maintain high cell densities (HCD), whilst retaining the capacity for human-compatible 

post translational modification (Sreekrishna et al., 1988). 



Chapter 1 
General Introduction 

18 

 

Challenges for P. pastoris bioprocessing include mitigation of the impacts of HCD 

cultivation on cell physiology (Heyland et al., 2010) and the downstream processing 

challenges posed by process stream with a high content of solids, such as dewatering 

(Lopes et al., 2012) and clarification (Tolner et al., 2006). Developing optimal P. 

pastoris chassis and process design therefore remains an active area of investigation for 

bioindustry. 

1.5.2 Chinese Hamster Ovary (CHO) 

The first therapeutic protein produced within a mammalian cell host was a human 

plasminogen activator in 1986 (Vehar et al., 1986) and, since this, mammalian cell 

production platforms have now become the primary means of commercially producing 

recombinant proteins (Walsh, 2014). Mammalian cells have the capacity to provide 

human-like post glycosylation patterns, a feature essential for effective production of 

monoclonal antibodies (mAbs) that represent more than half the products in the 

biopharmaceutical industry. Due to features such as high genetic plasticity and 

adaptability to different culture conditions, the Chinese Hamster Ovary (CHO) has 

become one of the most widely researched and used mammalian host cell chassis for the 

production of mAbs (Jayapal et al., 2007). Furthermore, the use of CHO cells over two 

decades has demonstrated that they are safe and reliable hosts, increasing the probability 

of regulatory approval of associated products. 

In their 2 decades of CHO cell line use, an increase in productivity of more than 100-

fold have been observed (Hayduk and Lee, 2005). This has been due to optimisation 

strategies and the development of serum free media (Hacker et al., 2009). The demands 

of an escalating and competitive market mean that increase in product titre is still an 

active area of research and strategies of increasing cell density and cell productivity are 

under development (Kantardjieff et al., 2009). 

1.5.3 Escherichia coli 

The gram negative bacterium Escherichia coli has seen the longest use as a chassis for 

the commercial production of recombinant proteins. It remains a promising host for the 
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production of biologics due to its rapid rate of growth and cultivation, easy and well-

described genetic manipulation and relatively inexpensive cultivation tools and media. 

A large body of research has been carried out detailing the production of recombinant 

protein in E. coli and groups have achieved the production of up to 285kDa proteins 

with gram-per-litre yields from HDC culture (Xia et al., 2010, Huang et al., 2012).  

Advances in the past decade have seen E. coli high-cell density fermentations producing 

high yields of human antibody fragments (Fabs) through a secretion mechanism and 

engineered intrinsic stability, allowing up to 40-fold increases in production over more 

commonplace periplasmic expression systems (Demarest et al., 2006,
 
Rios, 2012). 

Whilst these advances keep microbial platforms such as E. coli competitive with 

mammalian platforms such as CHO, mammalian platforms remain optimised for 

situations where complex and intricate post translational protein modification is 

required. However synthetic biology has improved understanding of complex biological 

systems to the degree where such post translational modification is becoming possible 

in E. coli (Wang et al., 2001), and these strategies need further investigation and 

improvement. 

1.6 Bioprocess monitoring 

The bioprocess engineering community seeks to gain the optimum product yield and 

reproducible product quality from the host cell chassis with minimal resource 

expenditure, while shortening process development and time to market. To achieve 

these aims cellular production processes must be understood and modelled in order to 

extract the maximum production efficiency from the systems.  Advancements to 

bioprocess monitoring technologies are providing increasingly sophisticated assays and 

platforms with which to gather the data necessary for the realisation of these aims 

(Clementschitsch and Bayer, 2006).  

A desirable bioprocess monitoring assay is reliable whilst being relatively inexpensive 

and easy to perform. For these reasons assays can be improved in terms of their 

turnover time to gain a result, ease of use and reliability of results. Novel assays that 
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allow the detection of new factors are also desirable, for example, assays that are able to 

quantify the presence of plasmids within bacterial chassis (Lee et al., 2006a) without the 

use of antibiotics (Skulj et al., 2008). 

1.6.1 Scope for improvement in Bioprocess monitoring 

Regulatory frameworks such as Process Analytical Technology (PAT) are creating 

drivers for development of monitoring technologies (Kaiser et al., 2008). The objective 

of the PAT framework is to increase process understanding in order to support 

innovation and efficiency in the development of biopharmaceuticals. To achieve this, 

the integration of on-line and at-line monitoring systems is essential in order to gather 

as much information on bioprocesses as possible (Gnoth et al., 2007). Due the 

implementation of the PAT initiative, industrial facilities are strategically increasing 

their use of timely monitoring systems, or those with the capacity for in-line, at-line or 

on-line data collection (Table 2). 

Table 2: Definitions of monitoring classes in bioprocessing 

System Definition Example 

In Line The sample is measured within the 

process stream, and not removed. 

This can be invasive or non-

invasive. 

pH probe, DO2 probe 

On-Line The sample is automatically 

removed from the process stream 

and analysed by equipment usually 

built into the fermentation 

apparatus, then it might be returned 

or disposed of. 

Mass Spectrometry 

At-line The sample is isolated from the 

process stream and analysed in situ 

by separate equipment. It is 

Spectrophotometric measurement 

of optical density 
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disposed of after. 

 

1.6.2 Biomass and Growth 

Perhaps the most critical parameters to monitor during bioprocessing are the biomass, 

viability and growth kinetics of the production platform. Traditional off-line methods 

used to determine biomass include dry cell mass quantification through weighing. The 

desire for in-situ, on-line and at-line approaches to biomass quantification has seen the 

development of optical probes capable of online biomass determination (Kiviharju et 

al., 2008). Other approaches to biomass monitoring have been explored, such as those 

that expose cells to radiofrequency electrical fields to determine the proportion of viable 

cells with intact cell membranes (Soley et al., 2005). 

1.6.3 Gasses 

Monitoring of gasses, mainly oxygen and carbon dioxide, is important feature of 

bioprocess monitoring. Dissolved oxygen (DO) concentration is an important parameter 

to monitor and control as it directly impacts cellular metabolism and therefore 

production (Ozturk and Palsson, 1990). Data on DO is commonly gathered in-line, 

using a probe submerged in culture media, although on-line systems exist to measure 

off-gas also exist (Teixeira et al., 2009). The monitoring of dissolved carbon dioxide 

(DCO2) is an important requirement for mammalian cell culture. CO2 is used as pH 

control and maintaining it at a correct level (usually 5%) helps maintain optimum cell 

growth and secondary metabolite production (Miller et al., 1988). 

1.6.4 Metabolites 

Sugars, amino acids and other such metabolites are key nutrients for the support of 

cellular growth in fermentation, and as such are key targets for monitoring. By 

constructing models of metabolic profiles and how metabolites are utilised by candidate 
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bioprocess platforms, the bioprocess engineer can facilitate high throughput screens 

which identify the cellular phenotypes with the highest production capacity (Mapelli et 

al., 2008). Several approaches to metabolite monitoring have been described including 

monitoring of off-gas and using chemical-ionization mass spectrometry (CIMS) 

(Heinzle, 1992). The most recent approaches to metabolite monitoring are biosensors 

that are biological macromolecules, such as fluorescent reporter proteins (Constantinou 

and Polizzi, 2013). 

1.6.5 Proteins and bio-products 

A critical endeavour of bioprocess monitoring is the monitoring of product yield and 

quality and as such proteins and bioproducts are key bioprocess monitoring targets. 

Traditionally, western blotting has been used to identify and analyse target proteins 

(Shacter et al., 1994). Chromatography is also key technology with which to capture 

and analyse proteins, and methods such as high performance liquid chromatography 

help researchers study the effect of different fermentation parameters on final product 

quantity (Chen and Horváth, 1995). These techniques are however limited to offline 

use. 

1.6.6 Gene expression 

In order to be able to better understand and control production in host cell chassis a 

detailed understanding of the gene regulatory networks that govern metabolism and 

synthetic pathways are required. Transcriptome analysis can be conducted to discover 

how conditions within bioreactors affect protein synthesis. Cultivation within a 

bioreactor exposes host cells to a variety of environmental stresses, including nutrient 

gradients, oxygen deprivation and overproduction of recombinant proteins (Zhang et al., 

2010). A detailed understanding of how these affect cell metabolism is extremely 

advantageous in process optimisation as it facilitates understanding of how cells adapt 

to these conditions, and can be used as a tool to build a library of biomarkers that signal 

when cells are experiencing conditions that will limit or halt production (Pioch et al., 

2007). It also has the potential to influence host cell optimisation by engineering cells to 

better combat any deleterious effects (Wang et al., 2009).  
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Techniques for such analyses can include fusing gene promoters to reporter proteins 

such as GFP or luciferase (Weber et al., 2006). A major contributing technology to 

understanding gene expression is analysis using quantitative PCR (qPCR), especially as 

the library of complete genomic sequences for organisms is growing (Shendure and Ji, 

2008). It is however largely limited to off line measurement.  

1.7 Quantitative PCR as a bioprocess monitoring tool 

qPCR has revolutionised the analysis and monitoring of nucleic acid and genetic 

function, and has found applications as a platform technology in areas as diverse as 

disease diagnostics (Planell-Saguer and Rodicio, 2011), oncogene detection( Kristensen 

et al., 2011) and transcriptome analysis (Morozova et al., 2009). As long as a robust 

assay is developed, qPCR has a number of diagnostic applications. The combination of 

ease of use, specificity, sensitivity and low risk of contamination has introduced real 

time PCR as a replacement for to traditional techniques such as culture-based or 

immunoassay-based diagnostics (Bravo and Procop, 2009). It is also fast becoming a 

transformative tool for monitoring bioprocess host systems (Lee et al., 2006b; Skulj et 

al., 2008) and has applications ranging from the tracking of host cells in fermentation to 

detecting and quantifying infection.  

1.7.1 Sample preparation and target selection considerations for bioprocess 

monitoring by qPCR 

Sample preparation is normally performed to remove inhibitors that might impact the 

accuracy and sensitivity of PCR-based assays (Dineva et al., 2007). Ionic detergents, 

phenol and metal salts that may be present in growth media can all inhibit PCR. Kits 

and reagents used to extract, purify and preserve DNA can also influence PCR and 

bring the risk of introducing error through loss of DNA (Miller et al., 1999), 

introduction of inhibitory biological material from disrupted cells and co-purification of 

chemical inhibitors (Schrader et al., 2012).  

Commercial sample preparation kits, including membrane and bead-based systems, 

often involve protocols that comprise 20 steps or more and can take over one hour to 
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perform. This serves to significantly decrease assay throughput times and means that 

they are unsuitable for use at-line. Some DNA isolation kits have also been shown to 

produce false-positive results due to the presence of contaminant DNA in the kit, the 

level and source of which varies between manufacturer and batch. Queipo-Ortuño et al 

tested 7 commercially available DNA extraction kits for contamination and found that 6 

of these had contamination from a range of organisms (Queipo-Ortuño et al., 2007). 

When selecting targets for future study, it is important they have well-published and 

accessible sequences. Furthermore, if attempting to determine absolute copy number, all 

targets should be selected on the basis of them being single copy, to ensure only one is 

present on a genome and thus the quantification of target is directly proportional to the 

quantity of copy number. 

1.7.2 Standardisation of bioprocess monitoring 

The optimisation and scale up of bioprocesses and synthetic biology systems brings 

with it the challenge of standardising bioprocess analytics. A set of common metrics 

and standardised methods will allow for greater quality control and the capture of data 

sets comparable across multiple instruments and laboratories (Müller and Arndt, 2012). 

Once established, Synthetic Biology standards at scale could compliment bench scale 

standards that are already available (Kelly et al., 2009). Successful standardisation of 

bioprocess monitoring process is also likely to enable greater process understanding and 

help industrialists better demonstrate regulatory compliance (Kaiser et al., 2008). 

1.8 Aims and objectives 

At-line bioprocess monitoring by qPCR is currently unfeasible, due to lengthy sample 

preparation stages and an arduous workflow that limits assay throughput time. 

Furthermore a lack of standardisation has resulted in a diverse range of protocols, 

targets and primers, which limits reproducibility. The aim of this project is to therefore 

improve the workflow of qPCR for monitoring of biochemical engineering through a 

reduction in sample preparation steps and time. This is to increase the throughput of 

PCR assays, whilst maintaining reproducibility and accuracy, with a view to generating 
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the first viable, at-line and regulatory compliant qPCR bioprocess monitoring tool. 

Whilst we recognise that current sample preparation kits are routinely used to gain data, 

our hypothesis here is that they are not needed and serve to increase the throughput time 

to an extent that at-line analysis is rendered unachievable. A secondary aim is to also 

introduce a level of standardisation in order to increase reproducibility. 

The main objectives of this project that will contribute to achieving the aim are as 

follows: 

 We will identify single copy gene targets and develop a primer design and 

screening strategy, to ensure high efficiency PCR reactions are conducted and 

assays are compliant with widely adopted PCR regulatory guidelines (Bustin et 

al., 2009). 

 We will explore increasing the how drastically increasing assay throughput time, 

by removing many sample preparation stages, affects e-pPCR accuracy across 

three model organisms 

 We will measure the extent to which rapid sample preparation affects qPCR 

efficiency and quantitative accuracy 

 For the first time this project will also introduce to introduce Synthetic Biology-

compliant and industrially robust standards for bioprocess monitoring by PCR in 

order to increase reproducibility. 

 Alternative methods of PCR data analysis will be explored and existing 

methodologies will be adapted to allow for standardisation, and a community 

wide proposal will be outlined for the adoption of standards by the qPCR and 

Synthetic Biology community. 

 An assay will be developed that implements rapid sample preparation and 

synthetic biology standards, in order to monitor the evolution of plasmid copy 

numbers within an E. coli production strain, during the course of a fermentation 

 All assays developed will be directly transferrable to rapid-cycle platforms, such 

as the BJS Biotechnology Xxpress thermocyclers, with the prospect of allowing 

for at-line analysis. 
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Chapter 2  

2 Materials and Methods 

All reagents were of molecular biology grade unless otherwise stated. All solutions 

were prepared using molecular biology grade water (Millipore, Billerica, USA). 

2.1 Cell cultivation  

2.1.1 P. pastoris cultivation 

The production strain used was P. pastoris GS115 (Invitrogen) expressing a 

recombinant human protein. A single colony from a yeast-peptone-dextrose (YPD) agar 

plate (1% w/v yeast extract and peptone, dextrose, and agar all at 2% w/v) was used to 

inoculate 50mL buffered glycerol complex medium (BMGY) broth (1% w/v yeast 

extract, 2% w/v peptone, 100 mM potassium phosphate pH 6, 1.34% w/v yeast nitrogen 

without amino acids, 1% v/v glycerol, and 0.4µg/mL biotin) in a 250mL shake flask 

which was incubated at 30ºC, with 250 RPM agitation for 15 hours, after which 

typically OD600=2 was reached. This inoculum was used for a working cell bank (WCB) 

of over twenty 1mL vials stored at -20ºC each containing 500µL inoculum mixed with 

300µL 80% v/v glycerol. 

For shake flask cultivation prior to fermentation, a WCB vial was thawed on ice and 

100μL of the glycerol stock solution used to inoculate 100mL BMGY in a 500mL shake 

flask before incubation at 30ºC, with 250 RPM agitation until OD600 =50 was reached. 

18mL of this inoculum was used to inoculate 550mL Basal Salt Media (BSM). BSM 

consisted of 26.7mL 85% w/v H2PO4, 0.93g CaSO4, 18.2g K2SO4, 14.9g MgSO4.7H2O, 

4.13g KOH, 40g glycerol and 12mL ‘Pichia Trace Metal 1’ (PTM1) solution (6.0 g/L 

CuSO45H2O, 0.08 g/L Nal, 3.0 g/L MnSO4.H2O, 0.2 g/L Na2MoO4.2H2O, 0.02 g/L 

H3BO3, 0.5 g/L CoCl2, 20.0 g/L ZnCl2, 65.0 g/L FeSO4.7H2O, 0.2 g/L biotin, and 5.0 

mL/L 96% H2SO4) per litre dH2O. Bioreactor cultivation was performed according to a 

commercial protocol (“Pichia Fermentation Process Guidelines,” 2002). 



Chapter 2: Materials and Methods 

27 

 

2.1.2 CHO cultivation 

Glutamine synthase (GS) Chinese hamster ovary (CHO) cells stably expressing an 

immunoglobulin G4 (IgG4) were cultivated in T175 shake flasks (SF) according to the 

protocol described by Velez-Suberbie et al., (2013) until a viable cell count of 2x106 

cell/mL was reached, determined by ViCell-XR cell viability analyser (Beckman 

Coulter, USA).  

Bioreactor (BR) cultivation was performed in a 3L Applikon Appliflex (Applikon, 

Holland) flexible rocked bag bioreactor, controlled by an Applikon EZ controller 

system. Temperature was kept at 37°C with the dissolved oxygen (DO) set-point at 30% 

and the pH set-point at 7.1±0.05. The bioreactor was inoculated with at 2x106 viable 

cells per mL at mid-exponential phase and cultured for 14 days. Glucose concentration 

was maintained at 150g/L, as determined by NOVA Bioanalyser 400 (NOVA 

Biomedical, Waltham, USA), by supplementing with 10x concentrated CD-CHO media 

(Life Technologies, Paisley, UK). 

2.1.3 E. coli cultivation 

E. coli W3110 (K12) was transformed with pTODD A33 plasmid encoding an antibody 

fragment (Fab’). pTODD A33 was kindly donated by UCB Celltech. 

200mL of defined media (10g tryptone, 5g yeast extract, 5g NaCl per 1L dH2O), 

containing 10µg mL
-1

 tetracycline, was used as a starter culture and cells were 

cultivated in shake flask, at 37°C and 200RPM. Upon cell density reaching an OD600 of 

2.5, this starter culture was used as 10% (v/v) inoculum for defined media (5.2g 

(NH4)2SO4, 4.4g NaH2PO4.H2O, 4g KCl, 1.04g MgSO4.7H2O, 10mL SM6e trace 

elements (100g C6H8O7, 5g CaCl2.6H2O, 2.46g ZnSO4.7H2O, 2g MnSO4.4H2O, 0.5g 

CuSO4.5H2O, 0.427g CoSO4.7H2O, 9.67g FeCl3.6H2O, 0.03g H3BO3, 0.024 

NaMoO4.2H2O per 1L dH2O), 4.2g C6H8O7.H2O, 141g glycerol, 0.25g CaCl2.H2O per 

1L dH2O) shake flask fermentation, grown at 30°C and 200RPM. 
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Upon defined media culture reaching an OD600 of 5, 10% (v/v) was used to inoculate 

defined media in a New Brunswick 7L Bioreactor (Eppendorf, Hamburg, Germany). A 

fed-batch protocol was then used that has been described previously by Tustian et al. 

(2007).  

2.2 Sample preparation 

Following sample preparation, aliquots were made and immediately stored at -20C until 

further analysis. 

2.2.1 Nucleic acid purification  

Shake flask and bioreactor samples were centrifuged at 10,000 RPM for 3 minutes, re-

suspended in an equal volume of cell lysis buffer (2% Triton-X100, 1% SDS, 100mM 

NaCl, 10mM Tris-HCl, 1mM EDTA) and freeze-thawed twice by incubating at -80ºC 

for 3 minutes and 95ºC for 1 minute. Nucleic acid was extracted using standard 

phenol/ethanol extraction (Wilson, 2001) and purified DNA was resuspended in equal 

volume of 10mM Tris (pH 7.5) which was then split into aliquots of equal volume and 

stored at -20ºC. A given aliquot was thawed once for experimentation and any unused 

portion of the aliquot discarded.  

2.2.2 Sonication 

400µL shake flask and bioreactor samples were centrifuged and re-suspended in dH2O 

to a total volume of 400µL. A Soniprep 150 sonicator (MSE, London, UK) was used to 

subject samples to a 10 second cycle of 100% amplitude sonication, followed by 10 

seconds rest, three times. Total procedure duration was 5±2 minutes (n=20). 

2.2.3 Heat lysis 

An Eppendorf Thermomixer (Eppendorf, Hamburg, Germany) was used to incubate 

at 95°C for 10 minutes. 



Chapter 2: Materials and Methods 

29 

 

2.3 Oligonucleotide design 

2.3.1 Primers 

Experimental primer sequences (Table 1) were designed in accordance with MIQE 

guidelines [14] and also refined for specificity with the National Center for 

Biotechnology Information (NCBI) ‘Primer-blast’ tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed 23.11.14) and for self-

annealing with the NCBI ‘PCR primer stats’ tool 

(http://www.bioinformatics.org/sms2/pcr_primer_stats.html, accessed  23.11.14).  

2.3.2 Cal 1 sequence 

Cal1 (Rutledge and Stewart, 2010) LRE-qPCR primer sequences were used for 

calibration of data analysed by linear regression. 

2.3.3 Plasmid design 

A plasmid was designed that contained 300bp of a 16s RNA signature gene found in the 

5 species of Mycoplasma that are commonly found in infected mammalian cell culture 

(Kong et al., 2001). The gene was inserted into a pUC57 plasmid by Eurofins MWG 

Operon (Acton, UK) and propagated using standard molecular biology techniques. 

2.4 PCR conditions 

2.4.1 e-pPCR 

Reactions were carried out in a total volume of 50µL, with 5µL of 10x MgCl2 

polymerase buffer (100mM Tris/HCl, 15mM MgCl2, 500mM KCl), 0.5µL Taq 

polymerase, 1µL 50µM dNTP (Sigma Aldrich, St. Louis, MO, USA), 5µL of 

material containing template DNA and 2.5µl of primer at a concentration of 1µM (to 

give a final concentration of 500nM of each primer per reaction). A Veriti 96 well 

thermocycler (Applied Biosystems Grand Island, NY, USA) was used with a cover 

heated to 105ºC. Each PCR was run for 40 cycles of: 95°C for 5 seconds, 57°C for 5 

seconds, 72°C for 30 seconds.  
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2.4.2 qPCR 

Reactions were carried out in a total volume of 20µL, with each reaction containing 

10µL of 2x SsoAdvanced SYBR Green Supermix (BioRad, Hercules, CA, USA), 5µL 

of material containing template DNA and 1µl of primer at a concentration of 1µM (to 

give a final concentration of 500nM of each primer per reaction). Reactions were 

performed in a CFX Connect Real-time PCR Detection System (Bio-Rad, Hercules, 

CA, USA) with a cover heated to 105ºC. Each reaction was run at a total of 40 cycles, 

with the same cycling conditions as above.  

2.4.3 PCR efficiency estimation 

Efficiency of qPCR reaction was calculated from a standard curve constructed from 

purified DNA samples that were serially diluted from neat stock and amplified by qPCR 

in parallel. Cq values from amplification curves were generated by the fit-point method 

and plotted against log dilutions. A straight line was drawn between data points 

corresponding to a coefficient of determination (R
2
) of 0.99. Linear regression was then 

applied to calculate efficiency (E), with the equation (Pfaffl, 2001): 

𝐸 = 10
(

−1
𝑠𝑙𝑜𝑝𝑒

)
 

2.5 Nucleic acid quantitation 

2.5.1 Spectrophotometry 

DNA concentration was determined by spectrophotometry, using a Nanodrop 1000 

spectrophotometer (Thermo Scientific, Waltham, MA, USA). The molar absorption 

coefficient of DNA and sample dilution factor were used to infer DNA concentration 

(Efiok et al., 2000). Shake flask process streams were analysed undiluted, and diluted 

10 and 100 fold, and DNA mass at higher dilutions was then extrapolated from these 

analyses. When analysing bioreactor process streams, it was found that DNA mass of 

samples at OD600=800 could not be accurately quantified, so 10, 100 and 1000 fold 

dilutions were analysed (Figure 4).   
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2.5.2 Densitometry 

Samples were run on 1% agarose gels stained with ethidium bromide and bands 

visualised using a GelDoc 2000 device (BioRad, Hercules, CA, USA) and Quantity One 

software version 4.6.8 (BioRad, Hercules, CA, USA). ImageJ software (version 1.46r, 

National Institutes of Health, Bethesda, USA) was used to select a region of the gel 

image, either a lane or a band, containing a known mass of DNA and a brightness value 

captured. A selected region of the same size and shape was then used to capture 

brightness of a region of unknown DNA concentration on the same gel. Background 

noise was subtracted using the ‘Background Subtract’ function provided by the ImageJ 

software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, 

Maryland, USA, http://imagej.nih.gov/ij/, 1997-2014).  

2.5.3 Standard curve 

The standard curve generated as described previously was used to estimate copies of 

target in samples contaminated by cell debris. Cq values of contaminated samples were 

plotted along the standard curve and converted into copy number using the equation: 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 = 10(
𝐶𝑞−𝑏

𝑚
)
 

Where b is the y-intercept and m is the slope of the standard curve. 

2.5.4 LRE 

LRE PCR, as described by Rutledge (Rutledge, 2008), was also applied to estimate 

copy numbers. LRE analyser v. 0.97 (Rutledge, 2011) was used according to developers 

instructions. Purified samples, with known DNA mass, were used to calibrate the 

program and provide information on copy number in samples contaminated with cell 

debris. 
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2.5.5 Cy0 

The Cy0 was calculated by uploading raw fluorescent data to the Cy0 portal, found at 

www.cy0method.org.  

2.6 Flow Cytometry 

Flow cytometry was performed using an Accuri C6 flow cytometer (BD Biosciences, 

USA), using bis-oxonol (BOX) and propidium iodide (PI) stains according to 

previously described methods (Lewis, et al., 2004). Samples from lab-scale bioreactor 

fermentation were diluted to an OD600 of 1.0 AU and 10 µL was combined with 990 µL 

of staining solution (50 µg/mL BOX, 40mM EDTA, 20 µg/ml PI, in PBS) and 

incubated at room temperature for 8 minutes. Viable cells/mL was calculated by 

counting cells remaining unstained, or stained with BOX. 

2.7 HPLC 

Volumetric Fab’ concentration was assayed using Agligent 1200 (Agligent 

Technologies UK Ltd, West Lothian, UK), calibrated using standards of pure Fab’ at 

known concentration. A protein G Hi-Trap column (GE Healthcare, Uppsala, Sweden) 

of capacity 1mL was used. The samples were filtered using 0.22µm syringe filters into 

appropriate HPLC vials for measurement. Adsorption was performed using 20nM 

phosphate buffer at pH 7.4 and the product was eluted using 20mM phosphate buffer at 

pH 2.5. The amount of fab eluted was measured by recording absorbance at 200nm.

http://www.cy0method.org/
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Chapter 3 

3 Assay optimisation through primer screening and 

validation 

3.1 Introduction 

The design and validation of suitable PCR primers is an important consideration in PCR 

assay optimisation. Poorly designed primers can reduce or prevent amplification 

through lack of specificity, or produce unspecific products through dimer formation. 

Dimer formation can occur when sequences within the primer share similarity in 

nucleotide sequence such that the primers will self-anneal and form dsDNA without the 

presence of template (Figure 3-1). The formation of primer dimers has the potential of 

confounding analysis as they can generate an artificial fluorescent signal, resulting in 

overestimation of product or false positive detection (Hyndman and Mitsuhashi, 2003). 

To ensure specificity and to minimise the potential of dimer formation, a number of 

bioinformatics tools are available that calculate primer sequences according to user-

selected criteria. The user inputs the target DNA sequence and selects parameters such 

as primer length, primer melting temperature and product size and suitable candidates 

are generated. Candidate primer sequences can then be further screened in-silico to 

determine the potential for primers to amplify non-specific sections of the target 

genome and to self-anneal and forming dimers, ensuring the final primer pairs generated 

have a low chance of forming secondary products. 

Once primers are obtained their suitability can be confirmed by amplifying the target 

and analysing the amplicons. If SYBR-Green detection chemistry is used, specificity 

can be confirmed by melt-curve analysis, where amplicons are subject to a steady 

increase of temperature and change in fluorescence is monitored. As specific primers 

will form amplicons of uniform length they will dissociate at the same temperature, 

causing a rapid fluctuation in fluorescence. Different detection chemistries can be 

analysed by gel-electrophoresis to ensure product size is consistent with expectations.   
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Figure 3-1 The need for in silico screening of primer designs. Primer dimer formation and 

amplification of non-specific products result when two sets of primers free in reaction (A)  bind to either 

themselves or each other (B) and as a result polymerase will bind to the newly formed dsDNA section to 

synthesise a non-specific product (C). 
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Here we aim to develop a design strategy that will produce optimised primers with no 

dimer formation, which are specific to the range of templates used throughout future 

studies and will generate amplicons according to a high efficiency. We also aim here to 

directly compare the SC qPCR and LRE-qPCR methods on pure chromosomal and 

plasmid targets.  

3.2 Results 

3.2.1 Design strategy 

Ten candidate primer sequences were generated for each target according to the design 

criteria outlined in Table 3, using the NCBI primer blast database. Primer length was 

chosen to ensure maximum specificity to the target whilst minimising the chance of the 

primer self-annealing. Smaller amplicons can be synthesised with a higher efficiency, 

thus amplicon size was kept below 250bp. Primer melting temperatures were 

determined by the nearest neighbour method and were chosen based on the cycling 

regimen used in future studies. If the target is non-genomic DNA, specific to this 

exogenous DNA over the genomic sequence must also be determined at this point, to 

prevent the chance of amplifying from the wrong target. To achieve this any potential 

primer sequences can be screened against the genomic sequence of the host cell species. 

From these 10 candidates, three were selected for in vitro screening based on their low 

chance of forming dimers, following screening with a bioinformatics program (Vallone 

and Butler, 2004). Testing was conducted over two biological replicates, with each 

being analysed over three technical replicates. Primers concentration was set at 500nM 

per reaction and each candidate pair was used to amplify a dilution series of the target. 

Primers were selected based on those that could distinguish concentration difference 

over the largest dynamic range, produced the lowest overall Cq values and highest 

efficiency when analysed by LRE-qPCR, and produced only a single dissociation peak 

when subjected to melt-curve analysis.  
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Table 3 Design criteria used in generating primer pairs 

Criteria Value 

Amplicon size 60-250bp 

Primer length 19-23 nucleotides 

Minimum melting temperature 50ºC 

Optimum melting temperature 68ºC 

Maximum melting temperature 60ºC 

GC content 35-65% 

3.2.2 Transketolase (Tkt) 

Transketolase is a single copy gene coding for an industrially relevant enzyme and it’s 

sequence is published in the literature (De Schutter et al., 2009). The gene is found at 

the genomic locus PAS_chr1-4_0150, and here it is amplified from purified P. pastoris 

gDNA. Primer set 2 shows consistently lower Cq values in comparison to the two other 

primer pairs and an associated low amplification efficiency. As all three show no dimer 

formation when subject to melt-curve analysis (Figure 3-2), primer 2 was chosen as the 

optimal primer pair and carried forward into subsequent experiments.  

Table 4 Candidate sequences generated for Tkt 

Primer 

set 

5’ Sequence 3’ Sequence Amplicon size 

1 GCCTGTTGCCTCAAGAAAGC AAGTTGGCACCATAAGCGGA 243 
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2 CTCCACTGAAGCCTGATGAC ACTCCTGACCCAAATCTGGA 104 

3 TCCGCTTATGGTGCCAACTT GGCGTAGGACACGAAGTTCA 63 
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Figure 3-2 In vitro screening of Tkt primer candidates 
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3.2.3 Glyceraldehyde 3-phosphate dehydrogenase (GapDH) 

GapDH is a single copy gene found in mammalian cells (Gene ID: 100736557) and here 

it is being amplified in purified Chinese Hamster Ovary (CHO) gDNA. It’s sequence is 

reported in the literature as a qPCR housekeeping gene (Sikand et al., 2012). Of the 

three sets of primers designed, primer set three showed consistently low Cq values and 

the highest overall amplification efficiency. As melting curve analysis indicated that no 

primer pair forms dimers (Figure 3-3), primer set 3 was chosen as the optimal primer 

pair and taken forward in future studies. 

Table 5 Candidate sequences generated for GapDH 

Primer  5’ Sequence 3’ Sequence Amplicon 

size 

1 CTGACATGTCGCCTGGAGAA AGGTGACTACTCAAGCCCCA 86 

2 TTGGGGCTTGAGTAGTCACC CCCCAGCATCAAAGGTGGAA 179 

3 CATCACCATCTTCCAGGAGC CTTGGTTCACACCCATCACA 194 
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Figure 3-3 In vitro screening of GapDH primer candidates 
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3.2.4 Biotin retention locus (BirA) 

BirA is a single copy gene found in strains of E. coli that encodes the enzyme Biotin 

Ligase (Gene ID: 12934397). It is a single copy target with a published sequence with 

industrial applications (Entemadzadeh et al., 2015). Of the three primer sets designed, 

primer sets 1 and 3 showed similar Cq values across the range of dilutions tested. 

Primer set one continued to produce significantly different Cq values between dilutions 

8 and 9, indicating a higher dynamic range. Melting curve analysis shows primer set 3 

produces non-specific products, indicated by the presence of a second peak. Therefore, 

primer set 1 was chosen as the optimal primer pair.  

Table 6 Candidate sequences generated for BirA 

Primer 

set 

5’ Sequence 3’ Sequence Amplicon size 

1 ATCCACCCCTGATTAACGAC CGGAAGTATTACGCAAGCTG 199 

2 CAGGCAGGCTGTATCCTTTA AAACACATTCAGACACTGCG 73 

3 CGATCCTGCAGATAGAGGTC ATCGTGATGGCGGAAGTATT 83 
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Figure 3-4 In vitro screening of BirA primer candidates 

  



Chapter 3: Assay optimisation through primer screening and validation  

43 

 

3.2.5 Fragment antigen binding (Fab) antibody fragment 

A gene encoding a Fab antibody fragment contained within plasmid pTODD A33 was 

amplified by the three primer pairs. This gene is directly relevant to the plasmids 

function, with a known sequence and thus represents a good target. From this, primer 

set 2 shows consistently lower Cq values and a higher overall amplification efficiency. 

There is no evidence of dimer formation amongst any of the primer pairs or lack of 

specificity to the target, thus primer set 2 was chosen as the optimal primer set. 

Table 7 Candidate sequences generated for Fab 

Primer 

set 

5’ Sequence 3’ Sequence Amplicon 

size 

1 ATGGCCTTCCGTGTTCCTAC TGACTACTCAAGCCCCAACC 125 

2 CCAGGCATCAAATTAAGCAGA AAAGGGAATAAGGGCGACAC 195 

3 AGAACATCACCCCTGCATCC GGTGACTACTCAAGCCCCAA 207 
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Figure 3-5 In vitro screening of Fab' primer candidates 
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3.2.6 Green fluorescence protein (GFP) 

A gene encoding a green fluorescence protein was amplified from within plasmid 

pJDTI. The gene encoding the protein target is directly relevant to the plasmids 

function, with a recognised sequence and thus represents a good target. Whilst all three 

primer sets show comparable Cq values, set 1 is shown to differentiate between 

dilutions 7 and 8, indicating the possibility of this primer pair amplifying over a larger 

dynamic range. When subject to melt-curve analysis however, the formation of multiple 

peaks from primer pairs 1 and 3 indicate dimer formation, therefore primer set 2 was 

chosen for further experimentation. 

Table 8 Candidate sequences generated for GFP 

Primer 

set 

5’ Sequence 3’ Sequence Amplicon size 

1 TTTCACTGGAGTTGTCCCAA CCGTATGTTGCATCACCTTC 99 

2 GAAGCGTTCAACTAGCAGAC GGTCTCTCTTTTCGTTGGGA 129 

3 TTTTCACTGGAGTTGTCCCA TCCGTATGTTGCATCACCTT 101 
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Figure 3-6 In vitro screening of GFP primer candidates 
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3.2.7 Mycoplasma consensus sequence 

We designed a plasmid, pPROX2, encoding 300bp of mycoplasma DNA (Table 9) as a 

safe alternative to using live or attenuated mycoplasma. Whilst there are 20 species of 

mycoplasma known to infect mammalian cell culture, five species are identified in most 

infections. These are M. arginine, M. fermentans, M. hyorhinis, M. orale and A. 

laidlawii. The 300bp sequence we chose to use is conserved across five of the six 

mycoplasmas common to 90-95% of mammalian cell culture infections (Kong et al., 

2001).  Primer candidates were screened against the Cricetulus griseus (CHO) genome 

to ensure specificity. Figure 3-7 shows that, whilst primer sets 1 and 3 do not show 

dimer formation, primer set one has sensitivity over a wider dynamic range and so this 

set was taken forward for further study. 

Table 9 300bp sequence inserted into plasmid 

Mycoplasma spp. 16s RNA sequence  

TTGTACTCCGTAGAAAGGAGGTGATCCATCCCCACGTTCTCGTAGGGATACCTTGTTCGACT

TAACCCCAGTCACCAGTCCTGCCTTAGGCAGTTTGTTTATAAACCGACTTCGGGCATTACCA

GCTCCCATGGTTTGACGGGCGGTGTGTACAAGACCCGAGAACGTATTCACCGTAGCGTAGC

TGATCTACGATTACTAGCGATTCCGACTTCATGTAGTCGAGTTGCAGACTACAATCCGAACT

GAGACCGGTTTTTTGAGGTTTGCTCCATGTCACCACTTCGCTTCTCTTTGTA  

 

Primer 

set 

5’ Sequence 3’ Sequence Amplicon size 

1 AAACCGACTTCGGGCATTAC GAAGTGGTGACATGGAGCAA 184 

2 CCATCCCCACGTTCTCG ACCATGGGAGCTGGTAATGC 113 

3 TCCATCCCCACGTTCTCGTA GAGCTGGTAATGCCCGAAGT 104 
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Figure 3-7 In vitro screening of mycoplasma consesus sequence primer candidates 
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3.2.8 Direct comparison of Standard Curve-derived copy number and LRE-

qPCR derived copy number 

During the testing phase of our primers, we examined each primer candidate against a 

purified target background. This should be close to ideal reaction conditions, as the 

reaction media should have no inhibitors present. We therefore took this opportunity to 

directly compare the quantitative ability of Standard Curve (SC) qPCR and LRE-qPCR, 

two data analysis methods used in future studies, on these inhibitor-free purified 

samples. This will allow us to assess whether the methods are comparable in ideal 

conditions.  

Targets used in future studies will be present in either a chromosome or a plasmid. To 

qaccount for this we amplified the BirA E. coli chromosomal target and the Fab target 

of the pTODD A33 plasmid, in order to provide a comparison of the quantitative 

abilities of each method on both nucleic acid sources. 

As can be seen from Figure 3-8 the profiles of SC qPCR and LRE qPCR match across 

the range of dilutions studied. This suggests that each method has the same quantitative 

capacity and means that each is suitable for assessment of the impact of cellular debris 

from rapid sample preparation that will be performed in future chapters. 
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Figure 3-8 Direct comparison of quantitation by Standard Curve qPCR and LRE-qPCR. A is a 

direct comparison of SC qPCR and LRE-qPCR quantitation on the chromosomal BirA target on purified 

E. coli gDNA. B is a direct comparison of SC qPCR and LRE-qPCR on the plasmid target pTODD A33. 
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3.3 Discussion  

The design strategy shown here, consisting of screening multiple primer candidates in 

silico for sequence homology and potential for non-specific amplification, followed by 

in vitro screening of three candidates for dimer formation, has ensured the generation 

and experimental use of primers specific to the target gene. By detailing the sequences 

used for future experiments and the methodology used to generate them, this 

optimisation strategy falls in line with that outlined by initiatives such as the Minimum 

Information for publication of Quantitative Realtime PCR Experiments (MIQE) 

guidelines (Bustin et al., 2009). This code of practice for how to perform and interpret 

qPCR studies facilitates reproduction of data by peers, and adherence to this ensures 

that data gathered can be experimentally validated. 

Furthermore we have directly compared two methods of analysing the data, SC qPCR 

and LRE-qPCR. The results we obtained from this analysis suggest that the quantitative 

power of each data analysis method is comparable, when the reaction media is relatively 

free from inhibitors.  

Table 10 Selected optimal primers 

Organism, target 5’ sequence 3’ Sequence 

CHO, GapDH CATCACCATCTTCCAGGAGC 

 

CTTGGTTCACACCCATCACA 

P. pastoris, TKT CTCCACTGAAGCCTGATGAC ACTCCTGACCCAAATCTGGA 

E. coli, BirA ATCCACCCCTGATTAACGAC CGGAAGTATTACGCAAGCTG 

pTODD A33, Fab’ CCAGGCATCAAATTAAGCAGA AAAGGGAATAAGGGCGACAC 

pJDTI, GFP GAAGCGTTCAACTAGCAGAC GGTCTCTCTTTTCGTTGGGA 
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Myco AAACCGACTTCGGGCATTAC GAAGTGGTGACATGGAGCAA 

3.4 Conclusions 

 We have developed a screening method for the optimisation of PCR assays 

through primer design to specific criteria 

 We screened 10 primer candidates for the possibility of forming dimers and 

specificity to the target in silico to generate three candidates for in vitro 

screening 

 We screened three candidates in vitro for the possibility of forming dimers, as 

determined by a melt curve assay, and sensitivity over a 10 fold dynamic range 

 The lead primer candidate taken forward was the primer that did not form 

dimers or has the highest sensitivity over the range studied 

 We now have a set of optimised primers for further study, ensuring assays do 

not produce non-specific products and amplify according to a high efficiency 

 The screening methods shown here are compliant with industry guidelines such 

as MIQE 

 We directly compared the quantitative abilities of SC qPCR and LRE-qPCR, 

finding both to be comparable when conducted on a purified target
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Chapter 4 

4 Influence of high cell density Pichia pastoris cells on 

performance of PCR as a synthetic biology tool for 

bioprocess monitoring and contaminant detection 

4.1 Introduction 

The methylotropic yeast Pichia pastoris (P. pastoris) is often exploited industrially 

through the insertion of transgenes into the host genome (Inan et al., 2007). Synthetic 

biology has facilitated an increase in the level of genetic modification achievable and 

even enabled construction in vivo assembly of entire Saccharmoyces cerevisiae 

chromosome arms (Dymond et al., 2011) and chromosomes (Annaluru et al., 2014). 

Through elegant synthetic chromosome design these segments are able to undergo self-

directed recombinative rearrangement to generate genotypically diverse populations. 

Disappearance or appearance of given sequences due to such rearrangements can, to an 

extent, be monitored using PCR-based methods. It is also critical for industrial 

application of yeast synthetic biology that such methods are robust to industrial settings. 

Industrial application of yeasts frequently involves cultivation of cells to high cell 

density (HCD), placing cells under extreme recombinant protein synthesis burdens or 

tolerance of high concentrations of small molecule substrates or products. Such 

environments have a strong potential to exert selective pressure on cells to inactivate 

transgenes or synthetic genes by gene mutation, loss or rearrangement.  

In addition to actual scale environments, high throughput, microscale screening 

methods are increasingly being used to isolate biological variants and conditions best 

suited to industrial application (Baboo et al., 2012). Such microscale approaches ideally 

mimic industrial conditions with respect to factors such as cell density. Monitoring 

synthetic yeast genomes during industrial scale processes could reveal any possible 

effects of selection pressure or locus instability exerted by a given production step or set 

of conditions. However, current options for locus quantitation involve relatively lengthy 

approaches such as Southern blotting or preparation of samples for qPCR in which 
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DNA has been purified (Abad et al., 2010). These approaches tend not to be sufficiently 

rapid to enable at-line monitoring of yeast cells within scale industrial processes or their 

scaled-down mimics. 

Taking this into account, it would be advantageous to develop PCR-based methods to 

quantify the abundance of sequence-specific DNA within yeast genomes, ideally with 

an absolute measurement standard and in a sufficiently rapid manner to enable at-line 

monitoring during an industrial process (actual or mimicked).  

In this chapter we firstly test the hypothesis that the presence of non-DNA cellular P. 

pastoris material does not always compromise PCR accuracy. Specifically we are 

concerned to test if lengthy sample preparation procedures are necessary for accurate 

PCR-based assays of P. pastoris cellular material. We measure the influence of cellular 

material on the sensitivity of e-pPCR when used to detect the presence of a specific 

genomic sequence in a sample. We also measure the influence of P. pastoris cellular 

material on performance of qPCR for absolute target quantitation (Rutledge and Côté, 

2003). Secondly, we test the hypothesis that the concentration and provenance of non-

DNA cellular material are factors that influence PCR accuracy. To test this we perform 

PCR in the presence and absence of disrupted cells derived from high cell density 

cultivation in bioreactors and lower cell density cultivation in shake flasks. Finally, we 

test that hypothesis that LRE-qPCR (Robert G Rutledge, 2008) can match the accuracy 

of SC qPCR in the above conditions. We also discuss the suitability of LRE-qPCR as a 

synthetic biology standard. From the information gained through these experiments we 

address the timescales required to perform PCR by quantifying the extent to which 

sample processing is actually necessary to obtain accurate end point PCR (e-pPCR) and 

qPCR data from high cell density P. pastoris. 

4.2 Results 

4.2.1 Cultivation of P. pastoris 

We cultivated a P. pastoris recombinant protein production strain in complex medium 

in shake flasks and took a sample when OD600=50 for use as PCR template material 
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(Figure 4-1 A). This optical density is typical of both the early stages of industrial scale 

cultivation and the dilution steps that can be necessary for efficient dewatering of high 

cell density P. pastoris cultures (Lopes and Keshavarz-Moore, 2012). Shake flask 

material was used to inoculate a 550mL of BSM media in an Infors Multifors 1L 

bioreactor. When OD600=800 was achieved, typically after 60-70 hours of methanol-

induction (Figure 4-1B), a further sample was taken for PCR analysis. This represents a 

stage of cultivation when it is critical that recombinant protein yield and quality 

objectives have been met prior to harvest. 
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Figure 4-1 Shake flask and high cell density cultivation of P. pastoris production strain GS115. A 

methanol-inducible GS115 P. pastoris production strain was used to inoculate 100mL BMGY media in a 

0.5L shake-flask (A) and an uninduced sample taken of cells entering stationary phase growth (filled 

square). 18mL of shake flask culture was then used to inoculate 550mL BSM media in an Infors 

Multifors 1L bioreactor (B). 24 hours post-inoculation methanol was added for induction of transgene 

expression and a sample for PCR analysis was taken 66 hours post-induction (filled square). Data sets are 

representative of n=3 experimental repeats. 
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Figure 4-2 Comparison of nucleic acid extracted (A) and sonicated (B) P. pastoris gDNA integrity. 

(C) is an example of un-sheared DNA and (D) is an example of sheared DNA, for comparison. 
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4.2.2 Comparison between boiling and sonication sample preparation methods 

Rapid sample preparation for PCR study involves the lysis of all cells within a sample, 

in order to release the nucleic acid analyte. Traditional sample preparations achieve this 

by isolating then nucleic acid through chemical or physical means; however their impact 

on assay throughput is great. We initially sought to compare two methods of rapid 

sample preparation, a 10 minute boiling protocol and a 5 minute total sonication 

protocol. To achieve a comparison we divided a sample in half and treated one by 

sonication and the other by boiling. We then compared each method by comparing the 

Cq values obtained from qPCR analysis across three dilutions. Should the Cq values be 

equivalent, it can be determined that the impact on efficiency through inhibition is 

negligible. Significantly lower Cq values are indicative of efficiency being lowered 

through inhibition. This was carried out over three technical replicates and the average 

Cq gained was recorded. 

We found, as shown in Figure 4-3, that the two methods of rapid sample preparation are 

approximately equivalent, as demonstrated by the average Cq values being 

approximately equivalent. As we are looking to achieve the highest possible assay 

throughput, we chose the sonication method due to it being the most rapid method. 

4.2.3 Influence of disrupted P. pastoris cells on e-pPCR sensitivity 

We sought to quantify the degree to which the presence of P. pastoris cellular material 

influences the sensitivity of e-pPCR. To achieve this we used primers generated using 

the design strategy outlined (Figure 3-2) specific for a transketolase genomic target. In 

order to disrupt cells and liberate host gDNA whilst minimising gDNA shearing or 

degradation, we used a brief and mild sonication procedure. Agarose gel electrophoresis 

showed that no discernible shearing of gDNA had occurred post sonication compared to 

pre-sonication samples (Figure 4-2). As an example, C shows sheared DNA, where the 

analyte has moved to the bottom of the gel due to the reduced size of the DNA 

fragments. To quantify the effect of total disrupted cellular material, e-pPCR was 

performed using either purified gDNA or disrupted cells as template. We defined the 

limit of detection (LOD) as that tenfold dilution of template material which resulted in 
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no detectable amplicon band after n=3 experimental repeats. To allow direct 

comparison of the effects of cultivation method, DNA template mass and cell numbers 

were matched between shake flask and bioreactor samples (Figure 4-4). 

The presence of shake flask cellular material reduced the total production of amplicon 

band, summed from all reactions, by 48% (from 101 to 52 arbitrary units) compared to 

the purified, gDNA-only template (Figure 4-4 A). By contrast, cellular material from 

bioreactor cultivation (Figure 4-4 B) reduced template amplification by only 18% (from 

189 to 154 arbitrary units) and a greater overall level of template amplification was 

observed when compared to shake-flask derived material.  

The observed LOD was 50pg for purified gDNA for both shake flask (Figure 4-4 A) 

and bioreactor (Figure 4-4 B) samples. The presence of cellular material reduced e-

pPCR sensitivity sixfold to 300pg gDNA for both shake flask and bioreactor samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Influence of high cell density Pichia pastoris cells on performance of PCR as 

a synthetic biology tool for bioprocess monitoring and contaminant detection 

  

60 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-3 Comparison of boiling and sonication sample preparation protocols in terms of impact 

on Cq value. N=3 experiments. 
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4.2.4 Influence of disrupted P. pastoris cells on qPCR amplification efficiency 

A plethora of approaches to qPCR data analysis are used across many fields of science 

and engineering. However, a practice common to many methods is to calculate the 

efficiency of amplicon production as an indicator of accuracy (Pfaffl, 2001). Typically a 

threshold of 100±10% efficiency, at R
2
 > 0.99 (Gil and Coetzer, 2004), must be 

satisfied for a data point to be considered accurate. 

We compared the efficiency of amplification when purified genomic DNA (gDNA) and 

disrupted cellular material are used as template (Figure 4-5), as an indicator of the 

degree to which sample preparation is necessary in qPCR-based procedures. We defined 

limit of quantitation (LOQ) as that template dilution for which the coefficient of 

determination in an efficiency of 100±10% falls below R
2
 = 0.99. For purified gDNA 

analysis the samples indicated in Figure 4-1 underwent total gDNA purification 

followed by resuspension in dH2O to their original sample volume. For disrupted 

cellular material, the samples indicated in Figure 4-1 underwent centrifugation and 

suspension to the original volume with dH2O before sonication. All samples were then 

tenfold diluted as indicated in Figure 4-5 and used as template for qPCR. 

For shake flask samples (Figure 4-5), pure gDNA enabled 100±10% amplification 

efficiency, with R
2
 > 0.99, over 6 template dilutions. The presence of cellular material 

reduces this to 4 dilutions, decreasing the LOQ by two orders of magnitude. 

Surprisingly, the equivalent experiment with bioreactor samples (Figure 4-5), revealed 

amplification of both pure gDNA and disrupted cell material as template at 100±10% 

efficiency over 6 or more dilutions. Tenfold dilution of the initial OD600=800 bioreactor 

sample, down to OD600=80, is required, after which the presence of yeast cell material 

has little effect on assay performance. 
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Figure 4-4 Influence of disrupted cells on e-pPCR sensitivity. PCR and subsequent gel electrophoresis 

was performed using disrupted cells (gray symbols and lines) from shake flask (A) and bioreactor (B) 

cultivation as template material. Duplicate cell samples in which total gDNA had been purified away 

from cellular material was also used as template (black symbols and lines). For panels A and B, graph i) 

indicates densitometry measurements of resultant 104bp amplicon band. Inlaid graph ii) plots the area 

under each curve in graph i) with the total value indicated in white text within the bar. For reactions with 

pure DNA as template, gel photos (row iii) and estimated template mass (row iv) are shown. For reactions 

in which disrupted cells were used as template, gel photos (row v), estimated template mass (row vi) and 

estimated cell numbers present pre-sonication (row vii) are shown.  
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Figure 4-5 Influence of disrupted cells on qPCR efficiency. Quantitative PCR was performed using 

either disrupted cells (gray symbols and lines) or purified gDNA (black symbols and lines), from shake 

flask (A) and bioreactor (B) cultivation, as template. Data sets are representative of n=3 analytical 

repeats. 
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4.2.5 Influence of disrupted P. pastoris cells on ‘Standard Curve’ and ‘LRE’ 

qPCR 

Rutledge et al. demonstrated a novel approach to qPCR using a method of linear 

regression of efficiency (LRE) for analysis of fluorescence data. LRE-qPCR also 

features what Rutledge et al. (2008) refer to as a universal standard reaction, the optical 

calibration factor (OCF), consisting of a defined ‘Cal1’ primer pair plus lambda phage 

DNA as template. Rutledge et al.(Rutledge and Stewart, 2010) report that the Cal1 

reaction exhibits near-ideal behaviour of 100% amplification efficiency, enabling highly 

accurate correlation of amplification performance with the appearance of fluorescence. 

This approach does not require any relatedness between the Cal1 standard reaction and 

the experimental reaction. The authors tested LRE-qPCR with the Cal1 OCF over a 

four-month period with no significant change in OCF performance (Rutledge and 

Stewart, 2010). We suggest these inherent properties of the Cal1 OCF standard make it 

ideal for use as a synthetic biology standard for application of qPCR to P. pastoris 

samples. To validate LRE-qPCR with the Cal1 OCF as a synthetic biology standard we 

compared its accuracy with that of a conventional Standard Curve (SC) method of 

qPCR. 

Shokere et al., (2009) showed that spectrophotometry and the standard curve qPCR (SC 

qPCR) provide comparable DNA concentration measurements when used with purified 

DNA samples. Counter to our expectations, we also observed that spectrophotometry 

could be used to measure DNA concentration even when used with crude suspensions 

of disrupted cells from samples of up to OD600=80, despite the presence of many 

components likely to distort the absorbance spectra (see Table 11) and typical 

absorbance profiles shown in Figure 4-6). As such we used spectrophotometry as a 

mechanistically distinct comparator method to assess the performance of both LRE-

qPCR and SC qPCR. 
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Table 11 Spectrophotometric DNA measurements and indication of DNA loss in purification step. 

Source Dilution OD600 DNA (ng/µL) in disrupted 

cell solution 

DNA (ng/µL) DNA 

purified from cells  

DNA Loss (%) 

Shake Flask 0 50 776.1 319 58.9 

1 5 79.4 31 60.96 

2 0.5 7.7 3.2 59.09 

 Mean 59.65% 

Bioreactor 1 80 272.9 174.1 36.2 

2 8 30.9 17.4 43.69 

3 0.8 3.1 1.7 45.16 

 Mean 41.68% 
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Figure 4-6 Spectrophotometric measurements using disrupted cell suspensions. DNA absorbance 

profiles of disrupted cells derived from an OD600=50 shake flask sample (A) and an OD600=80 

bioreactor sample (B) using a Nanodrop 1000 spectrophotometer (Thermo Scientific, Waltham, MA, 

USA).  
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Spectrophotometrically determined DNA mass in disrupted cellular material and pure 

DNA samples (Figure 4-6) was used to predict genome copy number based on a P. 

pastoris genome size of 9.43 Mb (De Schutter et al., 2009). As the transketolase target 

locus is known to be present as a single copy within the P. pastoris genome, genome 

copy number is assumed to be equivalent to target sequence copy number. As such we 

converted three spectrophotometer measurements to target sequence copy numbers). We 

plotted these three spectrophotometrically derived target sequence copy numbers (grey 

circles in Figure 4-8) as a function of template dilution and linearly extrapolated the 

trend (dashed lines) for both shake flask (Figure 4-8 A) and bioreactor material (Figure 

4-8 B).  

For the conventional SC qPCR method the ‘standard curve’ used for calibration is 

generated by linear regression of Cq values obtained with log dilutions of purified 

samples of template DNA. Figure 4-7 shows the standard curves generated for both 

shake flask and bioreactor quantification and Figure 4-8 compares the SC and LRE-

qPCR methods of quantification..  The template DNA used for this standard curve must 

be purified, of known concentration and also the same sequence as the DNA expected to 

be present in the experimental samples at unknown concentration. As such, purified 

gDNA samples, where concentration has been measured by spectrophotometry, 

represents the standard curve for the SC qPCR method. For the LRE-qPCR method the 

proposed Cal1 universal OCF standard was used to calibrate the data and linear 

regression is applied directly to the fluorescence curve for every cycle of the reaction 

(Figure 4-8 D). 

For shake flask material (Figure 4-8 A), the SC method was able to quantify target 

DNA in undiluted (OD600=50) cellular material and over two further tenfold dilutions 

after which copy number values diverged from the spectrophotometric data. At the fifth 

dilution of the standard curve data, the individual data points diverge around the 

quantity predicted from the spectrophotometry data. In order to confirm statistical 

significance a t-test was performed, which compared the individual data points to the 

spectrophotometry data.  This resulted in a p value of 0.17, indicating no statistical 

significance and a probable divergence of quantification by SC analysis from that 
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extrapolated by spectrophotometry. The LRE-qPCR method produced results in 

agreement with spectrophotometric data for undiluted material but also over three 

further tenfold dilutions and with less divergence of individual data points. 

For bioreactor material (Figure 4-8 B), both LRE-qPCR and SC qPCR methods are in 

close agreement with spectrophotometrically derived target DNA copy number (Table 

11) for material that has undergone one tenfold dilution (therefore OD600=80) and five 

further tenfold dilutions.  
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Figure 4-7 Standard curves used in quantification of Cq values generated from sonicated P. pastoris 

process streams. (A) shows the standard curve generated from purified shake flask material. (B) shows 

the standard curve generated from purified bioreactor material. 
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Figure 4-8 Comparison of SC qPCR and LRE-qPCR using disrupted cells as template. Both graph 

A (shake flask) and graph B (bioreactor) incorporate the following features. Grey data points indicate 

spectrophotometric data. The absorbance profiles for the disrupted cell sample derived from OD600=50 

shake flask culture (A) and OD600=80 bioreactor culture (B) are shown in Figure 4. Dashed lines linearly 

extrapolate the spectrophotometric data points to predict copy number at lower dilutions. Open circles 

indicate copy number of target present in disrupted cells as determined by SC qPCR. Open rhomboids 

indicate copy number of target present in disrupted cells as determined by LRE-qPCR. Graph C shows 

the standard curve used for SC qPCR quantification, formed by plotting the Cq values (open circles) of 

multiple reactions as a function of the log of their serial dilution. Raw fluorescence data and a horizontal 

‘crossing threshold’ line is shown in the inlaid graph above the Cq data. In graph D fluorescence values 

(circles) of the Cal1 OCF reaction are plotted against their cycle number (upper panel) and the log of their 

cycle number (lower panel). Data sets are representative of n=3 analytical repeats. 
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4.2.6 Statistical comparison of ‘Standard Curve’ and ‘LRE’ qPCR methods 

We used an XY plot (Burd 10) to compare SC qPCR and LRE-qPCR for quantifying 

levels of target DNA in disrupted cellular material. A slope of 1.00 indicates zero bias 

between methods. XY plot showed that, for shake flask material, LRE-qPCR ( 

Figure 4-9 A) showed marginal proportional bias (slope of 0.914) of SC qPCR. The Y 

intercept for this comparison did show large deviation from zero (0.502), which would 

suggest real systemic bias of SC qPCR. However, Bland-Altman bias plots (Bland and 

Altman, 1986) indicated that LRE-qPCR and SC qPCR methods are equivalent for 

analysis of shake flask derived samples ( 

Figure 4-9B), as the mean bias spanned the zero difference level and generally fell 

within confidence limits (Burd, 2010). 

For bioreactor-derived samples, an XY plot of SC qPCR and LRE-qPCR data revealed 

a slope of 1.1758, indicative of only modest proportional bias ( 

Figure 4-9C).  Although again the Y intercept for this comparison did show large 

deviation from zero (-0.8513), a Bland-Altman bias plots was consistent with the LRE-

qPCR and SC qPCR methods being equivalent as the mean bias level spanned zero 

difference ( 

Figure 4-9D). 

4.2.7 LRE-qPCR with Cal1 OCF as a synthetic biology standard for qPCR in P. 

pastoris 

Unlike SC qPCR, LRE-qPCR does not require a standard curve consisting of indentical 

primers and target as experimental samples of unknown target DNA concentration. This 

allowed us to measure the profile of LRE-qPCR accuracy for both purified gDNA and 

disrupted cellular material (Figure 4-10). LRE-qPCR data in Figure 4-10 was calibrated 

using the Cal1 OCF primers and target. As previously, we used spectrophotometric data 
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to predict genome copy number present in a given sample. Shake flask data in Figure 

4-10A shows the effect of the presence of cell material from shake flask on the ability of 

LRE-qPCR to match the spectrophotometric prediction, with agreement for undiluted 

material and over three subsequent tenfold dilutions. For HCD bioreactor material 

(Figure 4-10B) LRE-qPCR also matched spectrophotometric data across all samples 

except for the most concentrated sample and most dilute samples, neither of which 

yielded amplicon.  



Chapter 4: Influence of high cell density Pichia pastoris cells on performance of PCR as 

a synthetic biology tool for bioprocess monitoring and contaminant detection 

  

73 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4-9 Statistical comparison of SC qPCR and LRE-qPCR. XY plots (graphs A and C) were 

derived from copy number estimations made using the indicated method, using data plotted in graphs A 

and B of Figure 5. Bland-Altman bias plots (graphs B and D) were derived from XY plots. Statistical 

procedures were performed as described by Burd (2010). 
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Figure 4-10 LRE-qPCR performance using pure gDNA and disrupted cells as template. LRE-qPCR 

was performed on samples derived from shake flask (A) and bioreactor (B) cultures. Grey data points 

indicate spectrophotometric data and dashed lines extrapolate these data to predict copy number at lower 

dilutions. LRE-qPCR data is plotted with square symbols for purified gDNA and triangles for disrupted 

cells. Data sets are representative of n=3 analytical repeats. 
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4.3 Discussion 

Sample preparation is normally performed to remove inhibitors that might impact the 

accuracy and sensitivity of PCR-based assays (Dineva et al., 2007). Ionic detergents, 

phenol and metal salts that may be present in growth media can all inhibit PCR. Kits 

and reagents used to extract, purify and preserve DNA can also influence PCR and 

bring the risk of introducing error through loss of DNA (Miller et al., 1999), 

introduction of inhibitory biological material from disrupted cells and co-purification of 

chemical inhibitors (Schrader et al., 2012). Some DNA isolation kits have also been 

shown to produce false-positive results due to the presence of contaminant DNA in the 

kit, the level and source of which varies between manufacturer and batch (Queipo-

Ortuño et al., 2007). 

End-point PCR remains a valuable tool for detecting contaminant organisms during 

scale up or storage of biological material. One factor that delimits e-pPCR application is 

the time it takes to perform sample preparation. We sought to measure the extent to 

which sample preparation is necessary for garnering a reliable yes / no binary datum 

using e-pPCR (Figure 4-4). Cell suspensions from shake flask or bioreactor cultivation 

were sonicated for 30s as part of a procedure that took a total of 5 minutes to perform 

before being used in e-pPCR. 

As expected, significant variation in the level of amplicon production was observed 

between experimental repeats - underlining the fact that e-pPCR is best suited to 

detection and not quantitation. The total the mass of amplicon produced was greater for 

bioreactor material than for shake flask material even though the templates had been 

matched in terms of number of cells and gDNA mass (see Materials and Methods). 

Despite the difference in amplicon production, both shake flask and bioreactor material 

reduced e-pPCR sensitivity six fold (Figure 4-4). These observations suggest that P. 

pastoris sample preparation for binary e-pPCR assays is necessary to avoid a significant 

reduction in LOD. 
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In contrast to e-pPCR, qPCR is used widely to accurately quantify relative or absolute 

abundance of DNA. Polymerisation and analysis occur in parallel in most qPCR 

platforms, unlike e-pPCR in which gel electrophoresis and gel analysis are performed 

serially after PCR. Sample preparation therefore represents a greater proportion of total 

assay time (Figure 4-11) for qPCR. As such we characterised the influence of shake 

flask and bioreactor samples on qPCR efficiency again using sonication to represent a 

non-processed sample in which DNA and all other cellular components remain present 

throughout polymerisation.  

LRE-qPCR is calibrated against the Cal1 reaction so we could directly test its 

performance using purified gDNA samples and disrupted cells as template. This 

allowed us to map the influence of shake flask and bioreactor material on LRE-qPCR 

analysis. Figure 4-5A data shows that shake flask material does compromise the LOQ 

for LRE-qPCR but Figure 4-5B indicates that bioreactor material has minimal effect on 

LRE-qPCR, except for the most concentrated (originating from OD600=800) and the 

most dilute samples. 

Commercial sample preparation kits, including membrane and bead-based systems, 

often involve protocols that comprise 20 steps or more and can take over one hour to 

perform. Our findings suggest that a simple and rapid (approximately 5 minute) 

sonication procedure is sufficient to render HCD bioprocess samples amenable to LRE-

qPCR analysis. Current (http://www.roche.com/products/product-

details.htm?type=product&id=64) and prototypical (www.xxpresspcr.com) ultra-rapid 

PCR devices offer the potential to reduce reaction and analysis time to less than 20 

minutes. A 30 minute or less total procedure duration would pose the real possibility of 

LRE-qPCR being used as an at-line bioprocess monitoring tool and as such offer new 

analytical power for process development. To illustrate this we logged the length of 

time taken to complete several of the procedures undertaken during this work and used 

these data to project likely future assay durations in Figure 4-11. 
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Figure 4-11 Predicted and known time profiles of different PCR methods. Data collected from this 

work (see Materials and Methods) and provided by manufacturers is used to compare typical durations of 

current and predicted PCR protocols. Assays of 60 minutes duration or less (dotted line) are compatible 

with at-line bioprocess monitoring. (A) X axis numbers indicate observations for the following 

procedures: 1) e-pPCR with agarose gel data capture, 2) Standard Curve qPCR using a BioRad CFX 

qPCR device with parallel fluorescent measurement and analysis. X axis numbers indicate predictions for 

the following procedures: 3) Standard Curve qPCR using a rapid sample preparation procedure such as 

the sonication step in this work, 4) LRE-qPCR with rapid sample preparation and 5) LRE-qPCR with 

rapid samples preparation and run on an ultra-rapid device such as the Xxpress (BJS Biotechnology) or 

the Roche LightCycler. (B) is an estimate of precision based on bias of data, assay stages and variability 

of data gained 
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Why does the presence of shake flask material affect both e-pPCR (Figure 4-4) and 

qPCR (Figure 4-4, Figure 4-8, Figure 4-10) more than high cell density bioreactor 

material? This may be due to the physiological status of cells 66 hours post-induction 

and at the end of idiophasic cultivation, compared to their pre-induced state during seed 

train, shake flask growth (Figure 4-1). To maximise product yield many microbial 

fermentations typically proceed for durations that can cause significant physiological 

impact on cells (Sandén et al., 2003). Levels of dyshomeostasis and misfolded protein 

accumulation in late idiophase cells may have the net effect of making cellular material 

more readily unbind DNA than is the case for healthier cells. The observation that 

phenol/chloroform DNA purification from shake flask material is loses more template 

material than purification from high cell density bioreactor material (Table 11, and 

plotted in Figure 4-10), is consistent with this hypothesis. 

Most current efforts in qPCR standards deal with experimental setup (Bustin et al., 

2009), food (Malorny et al., 2003) or water safety testing, with several standards (Table 

12) agreed by the International Standards Organisation (ISO). We suggest that, due to 

the advantages of having Cal1 OCF standard, LRE-qPCR need only match the accuracy 

of conventional SC qPCR in order to be a credible standard for bioindustry and the 

synthetic biology community. Figure 4-8 shows that, for both shake flask and bioreactor 

material, LRE-qPCR matched SC qPCR in ability to confirm copy number predictions 

made by extrapolation of spectrophotometric data. Head-to-head comparison also 

showed the methods to be equivalent (Figure 4-9). 
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Table 12 Comparison of calibration and standardisation for LRE and SC qPCR. Rutledge and 

Stewart (2010) observed negligible variation in the performance of the CAL1 OCF over 8 runs across a 4-

month period. We interpret this observation as a strong indicator that calibration runs may only be 

necessary for LRE-qPCR is infrequently as once every 4 months. 

 Calibration Method Recommended 

Frequency of 

calibration 

Proposed standards 

Standard Curve Parallel reactions of 

samples containing known 

DNA mass (Higuchi et al., 

1993). 

Every assay (Higuchi 

et al., 1993). 

ISO 22119:2011 (De Schutter 

et al. 2009)(De Schutter et al., 

2009). 

ISO 22119:2011 (De Schutter 

et al. 2009)(De Schutter et al., 

2009). 

ISO/TS 13136:2012. 

ISO/TS 12869:2012. 

ISO/TS 21569-2:2012. 

Standard proposed by Malorny 

et al. 2003. 

LRE OCF generated from the 

CAL1 lambda DNA 

calibration reaction. 

Every 4 months 

(Rutledge and 

Stewart 2010). 

This report. 

 

Assay duration is a key delimiting factor at present in the application of qPCR for 

monitoring industrial processes. In future, assay duration is also likely to be a key factor 

when monitoring the status of performance-critical loci within synthetic yeast genomes 

or gene networks (Guo et al., 2015). A significant advantage LRE-qPCR brings is the 

reduced need for calibration runs, with the Cal1 reaction recommended to be performed 

only every 3-4 months as opposed to Standard Curve calibration which is ideally 

performed for every experiment. 
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We have shown that sample preparation is a critical requirement e-pPCR analysis of P. 

pastoris material from both shake flasks and bioreactors. By contrast, for qPCR analysis 

a simple and rapid sample preparation stage of media removal and suspension in hH2O 

followed by sonication, with no attempt at DNA purification, is sufficient to gather 

accurate qPCR data from HCD bioreactor material. However, it is likely that a degree of 

DNA purification is necessary for accurate qPCR analysis of shake flask-derived P. 

pastoris material. 

LRE-qPCR has inherent advantages in terms of standardisation and the frequency of 

required calibration reactions. LRE-qPCR matches conventional Standard Curve qPCR 

with respect to absolute quantification of target DNA, even in the presence of OD600=80 

material. We predict a combination of rapid sample preparation, adoption of the LRE-

qPCR Cal1 OCF standard and devices capable of ultra-rapid PCR will enable expansion 

of qPCR to at-line monitoring of yeasts controlled by synthetic genomes at scale. We 

invite the synthetic biology and biotechnology communities to test further the 

Cal1/OCF standard and LRE-qPCR method for absolute quantitation of genomic 

sequences in P. pastoris and to assess the procedure as a standard for use with other 

organisms. 

4.4 Conclusions 

 Sample preparation is a requirement e-pPCR analysis of P. pastoris material 

from both shake flasks and bioreactors. 

 A simple and rapid sample preparation stage is sufficient to gather accurate 

qPCR data from HCD bioreactor material, although it is likely that a degree 

of DNA purification is necessary for accurate qPCR analysis of shake flask-

derived P. pastoris material. 

 LRE-qPCR shows comparable accuracy to SC qPCR analytical methods, and 

we propose its CAL1 standard as a Synthetic Biology complaint standard for 

qPCR 



Chapter 4: Influence of high cell density Pichia pastoris cells on performance of PCR as 

a synthetic biology tool for bioprocess monitoring and contaminant detection 

  

81 

 

 With the methodological changes developed here, we demonstrate that this 

assay has the potential for at-line qPCR analysis if applied to ultra-rapid 

thermocycling platforms



Chapter 5: Influence of high cell density Chinese Hamster Ovary (CHO) cells on 

performance of PCR as a synthetic biology tool for bioprocess monitoring and 

contaminant detection 

  

82 

 

Chapter 5 

5 Influence of high cell density Chinese Hamster Ovary 

(CHO) cells on performance of PCR as a synthetic biology 

tool for bioprocess monitoring and contaminant detection 

5.1 Introduction 

As seen by developments in genetic manipulation and industrial utilisation of yeasts, the 

design and construction of synthetic eukaryotic genomes has made rapid progress in 

recent years (Dymond et al., 2011), alongside conventional recombinant DNA 

approaches to construction of human artificial chromosomes (Kononenko et al., 2015). 

It is logical to expect these two research trajectories will converge with the design, 

construction and implementation of synthetic genomes to control mammalian cells. This 

holds the promise of powerful control of those mammalian cell characteristics that 

currently limit their performance in industrial settings. One challenge raised by this 

vision is the need for standardised assays to quantify the presence or loss of 

operationally critical genetic elements within a synthetic genome. Standardisation of 

data capture metrics is a defining feature of both synthetic biology and industrial 

bioprocessing and is critical to reproducible manipulation of host chassis (Kitney and 

Freemont, 2012). Data captured during industrial scale cell cultivation is also essential 

to achieve process understanding, which in turn is necessary for optimisation of product 

yield and quality (Clementschitsch and Bayer, 2006).  

As mammalian cells have the capacity to produce recombinant proteins with human-like 

glycosylation and post translational modification, they are essential for the production 

of therapeutic monoclonal antibodies (mAbs), (Walsh and Jefferis, 2006). The Chinese 

Hamster Ovary (CHO) cell production platform is one of the most widely researched 

and exploited chassis for the production of biologics such as mAbs (Kim et al., 2011). 

Mycoplasmal infections of CHO and other mammalian cells types can distort cell 

phenotype, compromise host genome integrity (Lincoln and Gabridge, 1998) and 
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confound efficacy of cell-based therapies (FDA - Food and Drug Administration and 

Center for Biologics Evaluation and Research, 2010). As such mycoplasmal infection is 

a major risk factor that potentially jeopardises clinical translation of many of the 

exciting advances made by synthetic biologists in areas such as T cell therapy 

(Nikfarjam and Farzaneh, 2012).  PCR and its variants has become the gold standard for 

detecting infection and profiling genome integrity of CHO cell lines. 

Whilst there are a number of PCR-based assays utilised in mammalian culture systems, 

there is little-to-no level of standardisation between methodology and nucleotide 

sequences. Furthermore, the same sample preparation procedures are used that typically 

extend assay throughput time, increase labour and can introduce error (Skulj et al., 

2008). This presents a particular limitation for industrialists seeking to gain insight from 

approaches such as process analytical technology (PAT) which ideally require real-time 

or at-line analysis (Kaiser et al., 2008).  

With these challenges in mind we suggest it is prudent to define some of the factors 

involved in developing rapid, industrially robust and standardised PCR-based assays for 

monitoring of both CHO cell genomic loci and contaminant organisms known to be a 

risk factor in CHO cultivation. To do this we quantitate the impact of CHO cells, from 

shake flask and bioreactor cultivation, on the performance of PCR. We test end point 

PCR (e-pPCR), a conventional method of standard curve-based (Pfaffl et al., 2002) 

quantitative PCR (SC qPCR) and the recently-developed linear regression of efficiency 

qPCR method (LRE-qPCR), which features a calibration reaction (Rutledge and 

Stewart, 2010) reported to have ideal amplification properties that enable its use as 

universal standard. We believe the resulting data will reveal the extent to which sample 

preparation is in fact required for PCR, if at all, enabling future efforts by ourselves and 

others to developme a rapid, robust and standardised PCR assay. We also continue to 

examine our findings in light of possible application of the LRE-qPCR calibration 

reaction as a synthetic biology standard applicable to CHO cell fermentation. 
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5.2 Results 

5.2.1 Cultivation of CHO cells by shake flask and bioreactor 

We used a commercial CHO cell line that constitutively expresses and secretes a 

therapeutic monoclonal antibody.  Cells were grown in CD-CHO media (Invitrogen, 

CA, USA) in 1L Erlenmeyer shake flasks to a cell density of 2x10
6
 cells / mL. At this 

point a sample was taken for further PCR experiments (Figure 5-1 A). This stage 

represents a critical point of industrial scale cultivation where the seed train is used to 

inoculate the larger scale growth vessel. The shake flask culture was added to CD-CHO 

media in a rocked bag bioreactor to an initial concentration of 2.5x10
5
 cells/mL. Cells 

then grew to achieve 1x10
11

 cells / mL with ~99% viability (Figure 5-1 B) and a further 

sample was removed for PCR. This cell concentration is typical of the point before 

harvest and product recovery when contamination from infectious agents presents the 

most significant economic burden.  

5.2.2 Preparation and analysis of material containing template DNA for PCR 

To evaluate the effect of cellular material on PCR assay performance we disrupted cells 

using a gentle sonication procedure configured to ensure gDNA remained largely intact 

and was not denatured to any significant degree. This was confirmed by agarose gel 

electrophoresis of cell suspensions before and after sonication (Figure 5-2). Disrupted 

cell samples were compared to samples in which total nucleic acids had been isolated 

using standard phenol-chloroform extraction. Spectrophotometry was used to determine 

DNA mass to enable genome copy number estimation by a method that is 

mechanistically unrelated to PCR. Three spectrophotometric measurements were taken 

over three tenfold serial dilutions and this was used to predict DNA mass over further 

dilution. Densitometric analysis of gel images was also used to estimate total DNA 

concentration present in a given sample of disrupted cells. 
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5.2.3 CHO cellular material reduces e-pPCR sensitivity tenfold for detection of a 

genomic locus 

As well as contaminant detection, end-point PCR (e-pPCR) is widely used to confirm 

the identity of a host cell by confirming the presence of a single genomic locus (Parodi 

et al. 2002). We quantified the impact of disrupted cells, from shake flask and 3L scale 

bioreactor cultivation, on the limit of detection (LOD) for e-pPCR used to confirm the 

presence of a sequence within the single genomic copy GAPDH gene. Template 

material consisted of either total nucleic acid purified from a cell suspension sample, or 

disrupted cells. LOD was taken to be the tenfold dilution of template material for which 

no amplicon band could be detected after n=3 experimental repeats. The presence of 

disrupted cells lowered e-pPCR LOD by one order of magnitude for samples from both 

shake flask (Figure 5-3 A) and bioreactor (Figure 5-3 B). Marginally lower overall 

amplicon production was observed in samples taken from bioreactor cultivation (Figure 

5-3 Bii) compared to shake flask (Figure 5-3 Aii).   
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Figure 5-1 Cultivation of CHO cells.  Growth profile of CHO cells in T-175 flasks (A) and in an 

Applikon 3L rocked bag bioreactor fermentation (B). Samples for PCR experiments were taken at the 

time point indicated (closed symbol). 
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Figure 5-2 Comparison of nucleic acid extracted (A) and sonicated (B) CHO gDNA integrity 
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Figure 5-3 Influence of disrupted CHO cells on e-pPCR detection of a genomic target sequence. 

Disrupted cells and purified DNA from samples taken from shake flask (A) and bioreactor (B) cultivation 

were used as template material for e-pPCR. For both cultivation methods the following data are depicted. 

The mass of amplicon produced in a reaction is plotted as a function of sample dilution (i). Inlaid graphs 

(ii) plot the area under each curve as a bar chart. Agarose gel images show the amplicons generated from 

the purified DNA (iii) and disrupted cells (v). Template DNA mass in purified DNA samples (iv) and 

disrupted cell samples (vi) was measured by spectrophotometry. The numbers of cells sonicated to 

generate the disrupted cell samples are indicated in the row labelled (viii). Error bars represent standard 

deviation over n=3 experimental repeats. 
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5.2.4 Efficiency of genomic target amplification is reduced by cellular material 

from bioreactor cultivation 

We determined the impact of disrupted cells by measuring the amplification efficiency 

for the GAPDH target using either purified gDNA or suspensions of disrupted cells as 

template material (Figure 5-4). Disrupted cells from shake flask cultivation had no 

marked impact on the efficiency profile for the reaction (Figure 5-4 A). By contrast 

cellular material from bioreactor cultivation constricted the window of efficient 

amplification from six tenfold dilutions for pure DNA template down to four when 

disrupted cells are present (Figure 5-4 B).  

5.2.5 LRE-qPCR is equivalent to SC qPCR with respect to quantification 

performance for a CHO genomic target  

Two methods of quantitation, the traditional standard curve (SC) qPCR approach and 

the recently developed method of LRE-qPCR (Robert G Rutledge, 2008), were used for 

absolute qPCR analysis of copies of the GAPDH sequence within disrupted cell 

samples. LRE-qPCR was calibrated using the Cal1 primers and methods detailed by 

Rutledge et al. (2010). Both methods were compared to copy numbers derived from 

spectrophotometric measurements (dotted lines in Figure 5-6). Four or more tenfold 

dilutions of the starting material from shake flask cultivation (Figure 5-6 A) should 

result in samples containing less than one copy of the CHO genome, assuming a 

genome size of 2.45 Gb. As such it is not unexpected that both SC and LRE-qPCR data 

diverge from projections based on spectrophotometry after four tenfold dilutions of the 

initial sample (Figure 5-6 A).  

For bioreactor-derived material (Figure 5-6 B), LRE-qPCR data largely agreed with 

spectrophotometry data over dilutions 2 to 4, after which LRE-qPCR data flattened. 

There are predicted to be 40 copies of the CHO genome present in the fifth tenfold 

sample dilution. As such this quantitative limit may be due more to the presence of the 

disrupted cells than the number of copies of the genome present. Overall, for bioreactor-

derived cellular material the LRE-qPCR data matches spectrophotometric projections 

more closely than SC qPCR over almost every sample dilution (Figure 5-6 B).  
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Figure 5-4 Influence of disrupted CHO cells on amplification efficiency for a genomic target. Real 

time PCR was performed using disrupted cells (grey symbols and lines) or purified DNA (black symbols 

and lines) from shake flask (A) and bioreactor (B) cultivation as template. The initial shake flask sample 

contained 2.5x106 cells/mL, which was split into a purified DNA sample and a disrupted cell sample. The 

bioreactor sample contained 1x1011 cells/mL and was asl split into pure DNA and disrupted cell samples. 

Cq values were plotted against 10 fold dilutions of template source. Lines indicate data point for which 

amplification efficiency is 100±10% efficiency, at a R2 > 0.99. Data featured is typical of N=3 analytical 

repeats. 
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Figure 5-5 Standard curves used in quantification of Cq values generated from sonicated CHO 

process streams. (A) shows the standard curve generated from purified shake flask material. (B) shows 

the standard curve generated from purieifed bioreactor material. 
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Method comparison by XY plot (Burd, 2010) gives a slope of 1.00 and an intercept of 

zero in the case of zero proportional bias between methods. For shake flask-derived 

material an XY plot (Figure 5-7 A) showed negligible proportional bias of SC qPCR 

data (slope of 1.06) when using the LRE-qPCR method. The Y intercept of the XY plot 

was close to zero (0.0705) indicating little systematic bias. A Bland-Altman (Bland and 

Altman, 1986) plot of these data (Figure 5-7 B) indicates LRE-qPCR had a positive bias 

of SC qPCR at higher copy numbers of target DNA but that the methods are broadly 

equivalent as the mean bias range for both includes zero difference (Burd 10).  

For qPCR of bioreactor-derived material an XY plot (Figure 5-7 C) showed that LRE-

qPCR exhibited significant proportional (slope of 1.26831) and systemic (intercept of 

1.26831) bias of SC qPCR data. However, when each method was separately compared 

to spectrophotometric data by XY plot their bias of the spectrophotometric data was 

very similar. This similarity was borne out by Bland-Altman plot (Figure 5-7 D) which 

indicated LRE-qPCR had negative bias of SC qPCR data at high target DNA copy 

number but that the methods are statistically equivalent as the bias range spans zero 

difference.  
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Figure 5-6 Qualitative comparison of SC qPCR and LRE-qPCR for quantitation of a genomic 

sequence. The predicted number of copies of the GAPDH target sequence in a sample of disrupted cells, 

as calculated using the LRE-qPCR (open triangles) and SC qPCR (open circles) methods, plotted as a 

function of sample dilution for samples derived from shake flask (A) and bioreactor (B) cultivation. Grey 

circles indicate genome copy number inferred from a spectrophotometric measurement of total DNA 

concentration present in sample. The dashed lines indicate linear extrapolation of the spectrophotometric 

data points. 
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Figure 5-7 Statistical comparison of SC qPCR and LRE-qPCR for quantitation of a CHO genomic 

sequence. Comparison of SC qPCR and LRE-qPCR methods when used to predicted number of copies of 

the GAPDH target sequence in a sample of disrupted cells. Data from samples derived from shake flask 

and bioreactor cultivation was campared using XY plot, graphs A and C respectively, and Bland-Altman 

plot, graphs B and D respectively. Statistical procedures were performed as described by Burd (2010). 
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5.2.6 LRE-qPCR quantitation of genomic target is largely unaffected by CHO 

cellular material 

As LRE-qPCR is calibrated from an external lambda DNA sample and quantifies 

directly from the fluorescence data, we were able to use this method to quantify target in 

purified DNA samples as well as in disrupted cell solutions. In this way we could 

evaluate the effect of cellular material on LRE-qPCR performance. For purified DNA 

samples derived from shake flask cultivation, Figure 5-8 A shows that LRE-qPCR 

(open squares) agrees well with spectrophotometric data (large dashed line). The 

presence of disrupted cells from shake flask cultivation caused divergence between 

LRE-qPCR data (open triangles) and spectrophotometric data (fine dashed line) for the 

more dilute samples. The equivalent profile for bioreactor-derived samples (Figure 5-8 

B) was broadly the same except the presence of disrupted cells caused LRE-qPCR data 

to diverge from spectrophotometric data at the both the most concentrated and the most 

dilute samples.  

5.2.7 Sensitivity of e-pPCR for mycoplasma DNA sequence detection is depressed 

by CHO cellular material 

A common application of e-pPCR is the binary detection of organisms known to 

contaminate cultures of mammalian cells at industrial scale. As such we designed a 

plasmid containing a 300bp sequence conserved across five species of mycoplasma 

(Kong et al., 2001), as detailed n chapter 3,  and used this as a safe proxy test of the 

sensitivity of e-pPCR for mycoplasma detection. Serial dilutions of the plasmid were 

made and to each dilution either water or disrupted cells was added (Figure 5-9). 

Disrupted cells were generated from a sample containing 2x10
6
 cells/mL from shake 

flask cultivation or from a sample of 2.5x10
5
 cells/mL from bioreactor cultivation 

(Figure 5-9). The LOD for naked DNA template was 15 copies. This was reduced by 

one order of magnitude to 150 copies by the presence of disrupted cells, from either 

shake flask (Figure 5-9 A) or bioreactor (Figure 5-9 B) cultivation. Total amplicon 

production, with either pure DNA or disrupted cells as template, was similar for shake 

flask (Figure 5-9 Aii) and bioreactor (Figure 5-9 Bii) cultivation.  
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Figure 5-8 Influence of disrupted CHO cells on LRE-qPCR for quantification of a CHO genomic 

target. The predicted number of copies of the GAPDH target sequence in a sample, as calculated using 

the LRE-qPCR method, was plotted as a function of sample dilution for samples derived from shake flask 

(A) and bioreactor (B) cultivation. Samples either underwent total DNA purification (open squares) or 

only mild cell disruption (open triangles) prior to LRE-qPCR procedure. Genome copy number was also 

inferred from spectrophotometric measurement of total DNA concentration. These spectrophotometric 

measurements are indicated by large grey circles and are linearly extrapolated for both purified DNA 

(thick dashed line) or disrupted cell (fine dashed line) samples. 
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Figure 5-9 Influence of disrupted CHO cells on e-pPCR detection of a mycoplasmal target 

sequence. 50 ng of plasmid encoding a mycoplasmal DNA sequence was used as e-pPCR template either 

as purified DNA or purified DNA plus disrupted cells derived from a sample containing X CHO cells 

from shake flask (panel A) and X CHO cells from bioreactor (panel B) cultivation. For both cultivation 

methods the following data are depicted. The mass of amplicon produced in a reaction is plotted as a 

function of sample dilution (i). Inlaid graphs (ii) plot the area under each curve as a bar chart. Agarose gel 

images show the 184bp amplicons generated from the purified plasmid DNA (iii) and plasmid DNA plus 

disrupted CHO cells (iv). The number of copies of the plasmid molecule in a given sample is indicated in 

the row labelled (v). 
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5.2.8 Amplification efficiency for a mycoplasma DNA sequence largely 

unaffected by CHO cellular material 

A common element of many approaches to absolute qPCR is the importance of 

amplification efficiency. To evaluate the influence of cellular material on the efficiency 

of amplification of a mycoplasma sequence we prepared a pure solution of 5ng of 

plasmid encoding a mycoplasmal sequence and also solution in which 5ng of plasmid 

was mixed with disrupted cells from shake flask or bioreactor cultivation. A tenfold 

dilution series of each sample type was then made and Cq values plotted (Figure 5-11). 

Between two and six tenfold dilutions (1.5x10
7
 copies to 1500 copies of target 

sequence) amplification efficiency is largely unaffected by the presence of disrupted 

CHO cells.  

5.2.9 LRE-qPCR and SC qPCR are equivalent with respect to mycoplasma 

sequence quantification in the presence of disrupted CHO cells 

LRE-qPCR (Figure 5-12 A) and SC qPCR (Figure 5-12 B) methods of quantitation 

were applied to the underlying data used to generate the Cq values in Figure 5-11. Both 

approaches resulted in reverse S-shaped curves for copy number estimation as a 

function of template dilution. The dotted line in both Figure 5-12 graphs is an 

extrapolation of three spectrophotometrically measured data points and serves to aid 

comparison of LRE-qPCR and SC qPCR data. The two methods are broadly equivalent, 

with disrupted CHO cells having little effect on copy number estimation over 3-6 

tenfold dilutions of template material (1.5x10
6
 copies to 1.5x10

3
 copies of target 

sequence).  
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Figure 5-10 Standard curve used in the quantification of Cq values generated from a mycoplasma 

target 
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Figure 5-11 Influence of disrupted CHO cells on amplification efficiency for a mycoplasmal target 

sequence. Real time PCR was performed using 50 ng of plasmid encoding a mycoplasmal DNA sequence 

and a further 8 tenfold dilutions of the plasmid template. For each starting solution either zero cells were 

present or disrupted cells derived from samples of 2x10
6
 cells/mL, from shake flask cultivation, or 

2.5x10
5
 cells/mL, 6x10

10
 cells/mL and 1x10

11
cells/mL, from bioreactor cultivation, were added to 

plasmid DNA (see legend). The resultant Cq values for each amplification reaction were plotted as a 

function of sample dilution. Data featured is typical of N=3 analytical repeats. 
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Figure 5-12 Comparison of SC qPCR and LRE-qPCR methods for absolute quantitation of a 

mycoplasmal DNA sequence. SC qPCR (A) and LRE-qPCR (B) methods were used to quantify the 

number of copies of a mycoplasmal DNA sequence present in reactions containing plasmid DNA plus 

disrupted CHO cells derived from a 2x106 cells/mL shake flask sample or 2.5x105 cells/mL, 6x1010 

cells/mL and 1x1011cells/mL bioreactor cultivation samples (see legend). The number of copies of the 

plasmid in a given sample was also inferred from spectrophotometric measurement of total DNA 

concentration before addition of disrupted cells. These spectrophotometric measurements are indicated by 

large grey circles and are also linearly regressed (thick dashed line) for qualitative comparison. For LRE-

qPCR (B) it is possible to assess quantification of the pure mycoplasmal sequence (open squares) because 

the unrelated Cal1-OCF reaction is used for calibration. For SC qPCR (A), quantification of the pure 

mycoplasmal sequence is not informative as this reaction represents the standard curve used for 

calibration. 

  



Chapter 5: Influence of high cell density Chinese Hamster Ovary (CHO) cells on 

performance of PCR as a synthetic biology tool for bioprocess monitoring and 

contaminant detection 

  

102 

 

5.3 Discussion 

As the number of innovative approaches to mammalian cell genome and gene network 

implementation expands so the need for standards in synthetic biology also becomes 

more acute. Industrial application of synthetic biology also requires standards that 

enable regulatory compliance and accurate analysis of chassis and bioprocess 

performance. The purpose of PCR sample preparation is to remove inhibitors that could 

lead to false positives, false negatives or inaccurate quantification. Sample preparation 

procedures tend to significantly extend assay duration so that live or at-line data set 

capture is not possible. This in turn delimits application of PCR approaches in statistical 

process optimisation procedures such as design of experiments (DOE). To address these 

issues of standardisation and sample preparation we sought to test the following 

hypotheses for both e-pPCR and qPCR: i) that the removal of cellular material may not 

necessarily be required for certain PCR-based assays and ii) that the LRE-qPCR 

method, which incorporates a putatively universal standard which is therefore 

potentially of use to synthetic biologists, is equivalent to conventional SC qPCR in 

terms of sensitivity and accuracy. 

We used the MIQE-compliant primers designed in chapter 2 to amplify a sequence 

present as a single copy within the CHO genome and a mycoplasmal sequence common 

to many mycoplasma species known to infect mammalian calls. We also used the ‘Cal1’ 

primers that comprise the OCF1 calibration reaction for the LRE-qPCR method. We 

then cultivated CHO cells in shake flasks and in an industrially relevant rocked bag 

bioreactor (Figure 5-1). We determined that the LOD for e-pPCR when used to detect a 

genomic target (Figure 5-3) and a mycoplasmal sequence (Figure 5-9) is reduced 

tenfold by the presence of disrupted CHO cells. This indicates clearly that sample 

preparation is required for accurate and sensitive use of e-pPCR as a detection method.  

Unlike e-pPCR, qPCR data collection occurs during the reaction, thus making any 

sample preparation time a larger fraction of total assay throughput time. We determined 

the extent to which the presence of disrupted CHO cells affects amplification efficiency 
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- a key metric for multiple statistical approaches to analysis of quantitative real-time 

PCR methods. The presence of cellular material from shake flasks had no effect on 

genomic target amplification efficiency (Figure 5-4 A) whereas material from 

bioreactors did constrict the range of reactions for which acceptable amplification 

efficiency was observed (Figure 5-4 B). This indicates that, for multiple qPCR methods, 

only minimal and rapid sample preparation is required for samples taken in the early, 

seed train, stages of industrial CHO cell cultivation. For amplification of a mycoplasmal 

sequence (Figure 5-11), the presence of CHO material originating from shake flask or 

bioreactor cultivation influenced amplification efficiency only in very concentrated or 

very dilute samples. 

LRE-qPCR, as reported by Rutledge et al. (2010), features the CAL1 reaction for 

calibration, which consists of lambda bacteriophage genome as target and a high-

performance ‘Cal1’ primer pair. By contrast most academic and industrial organisations 

use unique qPCR primer sets and, in the case of absolute quantitation, construct their 

own standard curves. Quantification from a standardised source could introduce far 

greater reproducibility of absolute qPCR data across facilities. As such we suggest 

adoption of Cal1/OCF reaction as a qPCR standard represents an excellent opportunity 

to improve standardisation within the synthetic biology and biotechnology 

communities. Standardisation between qPCR assays currently extends only to 

experimental setups, information reporting, such as the MIQE guidelines, and testing of 

food and water sources for contaminants. 

We compared the accuracy of LRE-qPCR and conventional SC qPCR for quantification 

of a genomic target sequence by juxtaposing both methods with spectrophotometric data 

(Figure 5-6) and by statistical head-to-head analysis (Figure 5-7). LRE-qPCR matched 

the performance of conventional SC qPCR for this target. The equivalence of LRE-

qPCR and SC qPCR could also be seen for quantification of a mycoplasmal sequence, 

comparing each method to spectrophotometric data (Figure 5-12). This was the case 

both in the presence and absence of disrupted CHO cells. Critically, disrupted CHO 

cells had very little effect on the accuracy of LRE-qPCR for quantitation of a genomic 
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target compared to spectrophotometric data (Figure 5-6 and Figure 5-8) even when 

sourced from bioreactor cultivation at high cell concentrations (1x10
11

 cells / mL). 

In conclusion, we suggest that sample preparation is necessary for e-pPCR as a 

detection tool for CHO cell and mycoplasmal DNA. 

5.4 Conclusions 

 Sample preparation is necessary for e-pPCR as a detection tool for CHO cell and 

mycoplasmal DNA. 

 Cellular material from shake flasks had no effect on genomic target 

amplification efficiency but material from bioreactors limited the range of 

reactions for which acceptable amplification efficiency was observed - indicates 

that, for multiple qPCR methods, only minimal and rapid sample preparation is 

required for samples taken in the early, seed train, stages of industrial CHO cell 

cultivation. 

 For amplification of a mycoplasmal sequence the presence of CHO material 

originating from shake flask or bioreactor cultivation influenced amplification 

efficiency only in very concentrated or very dilute samples. 

 LRE-qPCR matched the quantitative accuracy of SC qPCR 
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Chapter 6 

6 Influence of high cell density Escherichia coli cells on 

performance of PCR as a synthetic biology tool for 

bioprocess monitoring and contaminant detection 

6.1 Introduction 

6.1.1 Synthetic prokaryotic genomes and standards for their quantification 

As with eukaryotic genomes, synthetic biology has ushered in a new era in which 

entirely synthetic (Gibson et al., 2010) or refactored (Lajoie et al., 2013) genomes can 

be used to control bacterial cells. As this field of ‘synthetic genomics’ progresses it is 

inevitable that ever more de novo genome design strategies will be conceived and tested 

by synthetic biologists in both basic research and industrial settings. The current 

trajectory of much synthetic biology research make it increasingly likely that 

quantitative analysis of host cell genetic barcode (Parodi et al., 2002), genetic drift 

(Voronin et al., 2009), genome-integrated transgene copy number (Cong et al., 2013), 

plasmid copy number (Lee et al., 2006b) and natural (Katariina E. S. Tolvanen, 2008) or 

synthetic consortia (Bernstein and Carlson, 2012) will become critical factors for 

industrial application. We believe the integrity of large and complex gene networks 

present within genomes and refactored genomes will all drive greater need for at-line, 

quantitative analysis of genomic loci during industrial procedures.  

Bacteriophage can compromise virtually any industrial process involving bacteria 

(Sturino and Klaenhammer, 2006), even those with comprehensively refactored 

genomes (Lajoie et al., 2013). In this study we test PCR approaches to detecting 

bacteriophage DNA in industrial process streams. We have used a proprietary primer set 

specific to a 300bp region of bacteriophage DNA encoded by a plasmid (pPROX1) as a 

proxy for actual detection of bacteriophage particles in process streams. The use of a 

proxy sequence in this way enables investigation of detection of many pathogen types 

without the need to risk infection of other cultivation experiments being performed in 

the same facility.  
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Our aims in this chapter are to firstly measure the extent to which sample preparation is 

necessary for PCR analysis of target sequences and then rigorously compare the 

performance of LRE-qPCR and SC qPCR methods. These investigations measure i) 

material from shake flask and high cell density bioreactor cultivation and ii) measuring 

a genomic locus and a plasmid-encoded bacteriophage sequence as a target sequences. 

Finally will also discuss the suitability of LRE-qPCR as a synthetic biology standard for 

the qPCR of prokaryotic organisms. 

6.2 Results 

6.2.1 PCR design and cell cultivation 

We used shake flasks to grow an E. coli W3110 production strain in defined media 

(Balasundaram et al., 2009) to OD600 = 2.5 (Figure 6-1 A), typical of the end-point of 

seed train cultivation used to provide inoculum for growth in bioreactors. The strain 

harbours the plasmid pTTOD-A33 which encodes a recombinant Fab’ fragment 

(Nesbeth et al., 2012) inducible by addition of isopropyl β-D-1-thiogalactopyranoside 

(IPTG). Bioreactor cultivation started in batch mode (Figure 6-1 B) to OD600=130 then 

fed-batch mode was applied along with IPTG addition to induce Fab' fragment 

expression. An experimental sample was taken two hours post-induction, at OD600=160, 

during early idiophase growth when bacteriophage contamination can be highly costly. 

The proprietary pPROX1 plasmid encoding 300bp of bacteriophage DNA was used as a 

proxy for bacteriophage particle detection and quantitation. After sample processing, 

pPROX1 was added at known concentration and the ability of PCR methods to detect or 

quantify the bacteriophage sequence was tested.  
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Figure 6-1 Shake flask and bioreactor cultivation of a W3110 E. coli production strain. 40 mL of on 

E. coli W3110 production strain grown in LB was used to inoculate 360 mL defined media in a 5L shake-

flask (A). An uninduced sample was taken at the start of stationary phase growth in shake flasks (black 

filled square) for PCR experiments. 10% of this culture was used to inoculate 3.6 L defined media in a 

New Brunswick 7L bioreactor (B). In bioreactor cultivation, IPTG was added to induce transgene 

expression at 34 hours post-inoculation (grey filled square) and a sample taken 2 hours post-induction 

(black filled square) for PCR experiments. Error bars represent standard deviation over n=3 experimental 

repeats. 
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6.2.2 E. coli cellular material reduces ability of e-pPCR to detect genomic target 

We determined the extent to which the presence of disrupted E. coli cells influences the 

LOD of e-pPCR for a single copy genomic E. coli target sequence. We took samples 

from shake flask and bioreactor cultivation (Figure 6-1) and split each sample. For one 

half of the sample, we purified total nucleic acids by phenol chloroform method and 

used this as purified target DNA in subsequent experiments. The other half-sample was 

subjected to a brief sonication procedure in order to liberate host DNA from cells. Gel 

electrophoresis of this sample before and after sonication revealed that no discernible 

shearing of genomic DNA had occurred (Figure 6-2). 

We used agarose gel analysis and densitometry to match purified DNA samples and 

disrupted cell samples with respect to their host DNA content. We then set up a series of 

tenfold sample dilutions and defined LOD as the first tenfold dilution for which 

amplicon band was undetectable after n=3 repeats. Figure 6-3 A shows e-pPCR LOD of 

0.5pg of pure gDNA, which is reduced to 5pg gDNA when disrupted cells from shake 

flask cultivation are present. The same LOD profile was observed for bioreactor-derived 

material (Figure 6-3 B).  
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Figure 6-2 Comparison of nucleic acid extracted (A) and sonicated (B) E. coli gDNA integrity 
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Figure 6-3 Influence of disrupted E. coli cells on e-pPCR for detection of a genomic target sequence. 

Purified DNA (black symbols and lines) or disrupted cells (grey symbols and lines) was used as template 

for e-pPCR and final amplicon yield measured by densitometric analysis of the resultant band from gel 

electrophoresis. Samples were from either shake flask (Panel A) or bioreactor (Panel B) E. coli 

cultivation. The following sections are present in both Panels A and B. Section i is a plot of densitometry 

measurements of the resultant 313bp amplicon band as a function of tenfold dilutions of sample. Inlaid 

graph (Section ii) plots the area under each curve in Section A, with the total value indicated above the 

bar. Agarose gel photos (Section iii) and estimated template mass (Section iv) are indicated for pure DNA 

template reactions. For reactions in which disrupted cells provide PCR template, amplicon gel photos 

(Section v), estimated template mass (Section vi) and cell numbers present pre-disruption (Section vii) are 

indicated. Error bars represent standard deviation over n=3 experimental repeats. 
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6.2.3 Cellular material from HCD bioreactor cultivation reduces qPCR efficiency 

To evaluate the degree to which cellular material influences qPCR performance we set 

up reactions in the presence and absence of disrupted cells. Efficiency of amplicon 

production, defined as the slope of Cq values when plotted as a function of reaction 

cycle, is a key element for many of the numerous statistical approaches to qPCR data 

analysis. Typically, efficiency within the range of 100±10%, with R
2
 of at least 0.99, is 

set as the limit for accurate quantitation. 

Shake flask material (Figure 6-4 A) from which DNA was purified, resulted in a 

‘window’ of data points with acceptable efficiency that spanned 3 tenfold dilutions. The 

presence of disrupted cells from shake flask cultivation did not widen or constrict this 

window of operation.  

For bioreactor material (Figure 6-4 B), pure DNA samples were amplified with 

100±10% efficiency over 5 tenfold dilutions. Disrupted cells from bioreactor cultivation 

constricted this window of operation to 3 tenfold dilutions. For the undiluted bioreactor 

material, the disrupted cell sample and purified DNA sample contained 5µg/µL and 

3.9µg/µL respectively. These high DNA concentrations inhibited amplification for the 

disrupted cell sample and abolished amplification in the purified DNA sample, which 

we believe was due to inhibition of polymerase activity. 
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Figure 6-4 Influence of disrupted E. coli cells on amplification efficiency for a genomic target 

sequence. Real time PCR was performed using template material either from process stream sonicates 

(grey symbols and lines) or purified DNA (black symbols and lines) from shake flask (A) and bioreactor 

(B) cultivation. Spectrophotometry indicated the undiluted, purified DNA sample derived from shake 

flask material contained 112ng DNA and the undiluted total process stream sample contained 215ng. For 

bioreactor material, 3.9µg and 5µg respectively of DNA was present in purified and total process stream 

samples. Lines indicate data point for which amplification efficiency is 100±10% efficiency, at a R2 > 

0.99. N=3 analytical repeats. 
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6.2.4 LRE-qPCR and SC qPCR are equivalent for genomic target quantification 

Spectrophotometry has been used by others to assess the accuracy of qPCR (Shokere et 

al. 2009), using purified DNA as template. Unexpectedly, we observed in this study that 

spectrophotometry could be used to measure DNA concentration in the presence of 

disrupted cells from samples of up to OD600=16 (Figure 6-6), even though we 

anticipated the presence of such cell debris would distort the absorbance spectra. As 

such we used spectrophotometry as a mechanistically distinct comparator method to 

enable qualitative comparison of the performance of LRE-qPCR and SC qPCR. 

The genomic target sequence is present in the BirA gene, which is known to be present 

as a single copy in the E. coli genome. As such we assumed that total BirA copies are 

equivalent to total genome copies. Assuming an E. coli W3110 genome size of 

4,646,332bp plus pTTOD-A33 plasmid size of 6480bp with copy number of 10-20 

replicons / cell, host gDNA should constitute 97.2%-98.6% of total host cell DNA in 

process streams. Given these figures, we could convert DNA concentration levels, 

derived from spectrophotometry, to target sequence copy numbers.  

Three spectrophotometric measurements were taken, plotted (Figure 6-6 A and Figure 

6-6 B, grey circles) and extrapolated to provide a common benchmark for comparison 

of LRE-qPCR and SC qPCR. For quantitation of target DNA within disrupted cell 

samples from shake flask growth (Figure 6-6 A), LRE-qPCR data points matched the 

trend of spectrophotometric data more closely than SC qPCR. This observation also 

holds for high cell density bioreactor material (Figure 6-6 B) with the caveat that both 

LRE-qPCR and SC qPCR were unable to quantitate target DNA in undiluted samples 

and diverged significantly from the spectrophotometric for the first two tenfold 

dilutions. 
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Figure 6-5 Standard curves used in quantification of Cq values generated from sonicated E. coli  

process streams. (A) shows the standard curve generated from purified shake flask material. (B) shows 

the standard curve generated from purieifed bioreactor material. 
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Figure 6-6 Absolute quantification of an E. coli genomic target sequence using spectrophotometry, 

SC qPCR and LRE-qPCR. Grey data points indicate spectrophotometric data and dashed lines 

extrapolate these data to predict copy number at lower dilutions of both shake flask (graph A) and 

bioreactor (graph B) samples. Circles indicate copy number determined by the Standard Curve method, 

rhomboids indicate copy number determined by LRE method. 
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Method comparison by XY plot (Burd 10) gives a slope of 1.00 in the case of zero bias 

between methods. When compared to SC qPCR using an XY plot (Figure 6-7 A), LRE-

qPCR showed a small degree of proportional bias (slope of 1.1351) for quantitation of 

target in disrupted cells from shake flask cultivation. The Y intercept of 0.16674 also 

suggests modest systematic bias. A Bland-Altman (Bland and Altman, 1986) plot of 

these data (Figure 6-7 B) indicates LRE-qPCR had a slightly negative bias of SC qPCR 

data but that the methods are equivalent due to the fact that the mean bias range includes 

zero difference (Burd 10). Comparison of LRE-qPCR and SC qPCR analysis of 

disrupted cells from bioreactor cultivation (Figure 6C) showed less proportional bias 

(slope of 1.0074) than for shake flask material but greater systemic bias (Y intercept of 

0.2053). Bland-Altman plot again indicated the methods are equivalent as the mean bias 

range spans the zero difference level (Burd, 2010). 
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Figure 6-7 Statistical comparison of SC qPCR and LRE-qPCR for quantification of an E. coli 

genomic target sequence. XY plots (graphs A and C) were derived from copy number estimations 

resulting from each indicated method, plotted in Figure 5. Bland-Altman bias plots (graphs B and D) were 

derived from XY plot analyses. Statistical procedures were performed as described by Burd (2010). 
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6.2.5 Cellular material has minimal effect on LRE-qPCR performance 

SC qPCR is predicated on the use of a standard curve comprised of the same primers 

and target as those used in experimental reactions. Because purified DNA was used as 

standard curve for the SC qPCR experiment in Figure 6-6 it cannot meaningfully be 

used to evaluate the accuracy of SC qPCR for purified DNA template. No such 

restriction applies to LRE-qPCR and as such we plotted LRE-qPCR data gathered using 

naked DNA and disrupted cell suspension as template alongside data points generated 

by spectrophotometry (Figure 6-8). 

For disrupted cell samples derived from shake flask cultivation (Figure 6-8 A), there is 

close agreement between LRE-qPCR and spectrophotometric data, for undiluted 

material and over five tenfold dilutions. The copy numbers indicated by LRE-qPCR 

plateau over tenfold dilutions 5-7, suggesting either a false positive or that a certain 

level of DNA remains permanently associated with cellular material.  

For samples derived from bioreactor cultivation (Figure 6-8 B) the presence of 

disrupted cells had virtually no effect on LRE-qPCR measurements. At high 

concentrations, both purified DNA and disrupted cells depressed the target numbers 

indicated by LRE-qPCR compared to spectrophotometry. This is likely due to the 

presence of up to 5µg of DNA, which would be expected to inhibit amplicon 

production. Overall, LRE-qPCR closely matched spectrophotometric prediction of copy 

number (Figure 6-8 B) over tenfold dilutions 3-8 for purified target DNA and 3-7 for 

process stream material.  

  



Chapter 6: Influence of high cell density Escherichia coli cells on performance of PCR 

as a synthetic biology tool for bioprocess monitoring and contaminant detection 

119 

 

 

 

 

 

 

 

Figure 6-8 Influence of disrupted E. coli cells on LRE-qPCR quantification of an E. coli genomic 

target sequence. The LRE method was applied to real time PCR fluorescence data gathered using 

dilutions of shake flask (A) and bioreactor material (B) and pure gDNA extracted from these materials. 

Grey data points indicate spectrophotometric data and dashed lines extrapolate these data to predict copy 

number at lower dilutions. 
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6.2.6 E. coli cellular material reduces e-pPCR sensitivity to bacteriophage target 

We next evaluated the effect of cellular material on bacteriophage DNA sequence 

detection by e-pPCR (Figure 6-9). We performed e-pPCR using proprietary primers and 

serial dilutions of naked pPROX1 plasmid as target. We repeated the reactions in the 

presence of a constant volume of disrupted cells and defined LOD as the first tenfold 

dilution of template that yielded no amplicon. For purified DNA, an e-pPCR LOD of 50 

copies of the bacteriophage target sequence was observed (Figure 6-9 Ai). The presence 

of disrupted cells from a shake flask culture sample of OD600=2.5 reduced this LOD 

tenfold to 500 copies (Figure 6-9 Ai). Disrupted cells from OD600=5 bioreactor culture 

reduced the e-pPCR LOD a hundredfold to 5000 copies (Figure 6-9 Bi).  

6.2.7 Minimal effect of cellular material on qPCR of bacteriophage target 

sequence 

We performed real time PCR with 50ng of the naked pPROX1 plasmid, encoding 

bacteriophage DNA sequence, as template and plotted Cq values as a function of tenfold 

dilutions (Figure 6-11) to assess amplification efficiency. For naked template DNA, 

efficiency within the range of 100±10%, with a R
2
 ≥ 0.99, was observed across tenfold 

dilutions 0-8. The lowest level of naked template DNA, 140 copies in the ninth tenfold 

dilution, gave the same Cq value as 1400 copies. The ‘window of efficiency’ observed 

for naked DNA extended from the undiluted sample, containing 50ng of plasmid and 

over 8 subsequent tenfold dilutions (Figure 6-11). 

We next made up samples in which 50ng of the naked pPROX1 plasmid was added to 

cell debris derived from OD600=2.5 shake flask material and bioreactor material of 

OD600=5, OD600=50 and OD600=160. These starting samples were then serially diluted 

and used as template for qPCR. Disrupted cells from OD600=2.5, OD600=5 and 

OD600=50 cultures required two tenfold dilutions to achieve efficient amplification 

(Figure 6-11). Three tenfold dilutions were required when OD600=160 was present. 

When disrupted material from any of the four cell concentrations was present, copy 

number estimation would also flatten out after 7-8 tenfold dilutions, predicted to contain 

150 and 15 copies of the target sequence respectively.  
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Figure 6-9 Influence of disrupted E. coli cells on e-pPCR quantification of a bacteriophage target 

sequence. A series of tenfold dilutions of plasmid-encoded bacteriophage target sequence was used as e-

pPCR template either as naked DNA in water (black symbols and lines) or in the presence of process 

stream material (grey symbols and lines) of OD600=2.5 from shake flask (panel X) or OD600=5 from 

bioreactor (panel Y). The following sections are present in both panels A and B. Section i is a plot of 

densitometry measurements of the resultant 242bp amplicon band as a function of tenfold dilutions of 

template DNA. Inlaid graph (Section ii) plots the area under each curve in Section i, with the total value 

indicated above the bar. Agarose gel photos (Section iii) are of amplicon bands from pure DNA template 

reactions or those in with process stream material is present (Section iv), with predicted template copy 

numbers indicated in Section v.# 
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Figure 6-10 Standard curve used in the quantification of Cq values generated from a T7 phage 

target 
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6.2.8 3.8 LRE-qPCR outperforms SC qPCR for quantification of bacteriophage 

DNA in presence of high levels of cellular material  

We next used LRE-qPCR and SC qPCR to derive absolute bacteriophage DNA copy 

numbers from the real time PCR experiments described above in discussion of Figure 9. 

For comparison, absolute copy numbers calculated by the two different methods were 

plotted alongside copy numbers derived from spectrophotometry of naked plasmid 

DNA (Figure 6-12). For SC qPCR (Figure 6-12 A), both the high and low extremes of 

bacteriophage DNA concentration resulted in divergence from spectrophotometric data. 

The LRE-qPCR method provides copy numbers in agreement with spectrophotometric 

data in the range of 1.5x10
4
-1.5x10

9
 copies of target, despite the presence of process 

stream material of OD600 up to 160 in the undiluted sample. Over all, LRE-qPCR 

determinations of copy number agree better with spectrophotometric copy numbers at 

high concentration of process material and bacteriophage DNA but less so at much 

lower bacteriophage DNA concentrations (Figure 6-12 B).  
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Figure 6-11 Influence of disrupted E. coli cells on amplification efficiency for a bacteriophage 

target sequence. Cq values were derived from real time PCR fluorescence data using a dilution series of 

template bacteriophage DNA either in pure water or the presence of disrupted cells derived from cultures 

of the indicated provenance and optical density. 
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Figure 6-12 Comparison of SC qPCR and LRE-qPCR methods for absolute quantitation of a 

bacteriophage target sequence. Standard Curve (graph A) and LRE (graph B) methods were applied to 

real time PCR fluorescence data to quantify bacteriophage target sequence copy number either in purified 

DNA solution or plasmid DNA in the presence of disrupted cells derived from cultures of the indicated 

provenance and optical density. 
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6.3 Discussion 

We were very keen to capture a clear data set that illustrates unambiguously the degree 

to which E. coli sample preparation procedures are required to capture accurate e-pPCR 

and qPCR data. If certain PCR-based assays require little or no sample preparation this 

has the potential to help accelerate assay turnaround, expanding the range of 

applications to at-line monitoring and scale down, automated mimics of large scale 

bioindustrial processes. Another motivating factor is to address the sometimes ‘word of 

mouth’ route by which molecular biology ‘lore’ can spread amongst researchers and 

replace this with rigorous data.  

Detection of the E. coli genomic target by e-pPCR (Figure 6-3) was reduced tenfold by 

the presence of cell debris from both OD600=2.5 shake flask and OD600=160 bioreactor 

cultivation The overall level of amplicon production was marginally increased by the 

presence of bioreactor-derived disrupted cells (Figure 6-3 Bii) and decreased by the 

presence of disrupted cells from shake flasks (Figure 6-3 Aii). Detection of 

bacteriophage DNA by e-pPCR was reduced tenfold by the presence of OD600=2.5 

shake flask material and 100-fold by the OD600=5 bioreactor material (Figure 6-9). 

Cellular material also reduced the level of bacteriophage amplicon production relative 

to naked DNA for both shake flask (Figure 6-9 Aii) and bioreactor-derived samples 

(Figure 6-9 Bii). These observations clearly support the utility of sample preparation for 

e-pPCR as a detection assay. 

The presence of disrupted cells from shake flask cultivation did not impact the 

efficiency of amplification of a genomic target sequence (Figure 6-4 A) whereas 

disrupted cells from bioreactor cultivation did reduce amplification efficiency compared 

to that observed for purified DNA (Figure 6-4 B). For amplification of a bacteriophage 

target sequence, the presence of disrupted cells had little effect on amplification for 

samples that had undergone 3-7 tenfold dilutions. This holds true even for OD600=160 

starting material (Figure 6-11). Efficiency of amplification underlies many different 

statistical approaches to analysis of real time PCR data. As such, the finding that the 

presence of cellular material can in some cases have negligible effect on amplification 
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should encourage those researchers seeking to identify simple and rapid sample 

preparation procedures for qPCR. 

Standardisation is a key pillar of both synthetic biology and the regulatory frameworks 

that constantly evolve to maximise safety in the biopharmaceutical industry. Ground-

breaking work by Rutledge (2004)(Rutledge, 2004) suggested it is possible to have a 

universal standard for calibration and analysis of real time PCR data in the form of the 

LRE-qPCR method incorporating the Cal1-OCF reference reaction. We sought to test 

the robustness of LRE-qPCR by measuring the degree to which the presences of 

disrupted cells may compromise its accuracy. We also compare performance of LRE-

qPCR to conventional ‘standard curve’ SC qPCR for absolute quantitation of a target 

sequence.  

LRE-qPCR and SC qPCR were broadly equivalent in terms of quantifying genomic 

target DNA copy number in the presence of disrupted cells derived from shake flask or 

bioreactor cultivation (Figure 6-6). This was also borne out by statistical analysis 

(Figure 6-7). When applied to real time PCR for detection of bacteriophage DNA 

(Figure 6-12), LRE-qPCR appears to outperform SC qPCR in terms of agreement with 

spectrophotometry across all OD600 levels tested, except at very low template 

concentration (Figure 6-12). 

Quantitation of a genomic target sequence by LRE-qPCR closely agreed with copy 

number estimates made using spectrophotometric data (Figure 6-8 A) for purified DNA 

and disrupted cell samples derived from shake flask cultivation. Undiluted samples 

from shake flasks contained in the order of 100-200ng DNA. By contrast, undiluted 

samples derived from shake flask cultivation contained 3.9µg-5µg of DNA and the 

resultant LRE-qPCR data (Figure 6-8 B) diverged from spectrophotometric data at the 

highest and lowest sample concentrations. We suggest DNA content has inhibited 

amplification at high concentrations. For both shake flask and bioreactor-derived 

material, LRE-qPCR measurements of copy number eventually plateau at low template 

concentration. 
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Our observations suggest LRE-qPCR can be used to quantify specific host cell DNA 

sequences in shake flask (Figure 6-6 A, Figure 6-8 A) and, with some dilution, 

bioreactor (Figure 6-6 B, Figure 6-8 B) process streams using only minimal sample 

preparation procedure, as described here. The same is also true for quantitation of 

bacteriophage DNA in process streams (Figure 6-12 B). 

We have shown that the degree of sample preparation necessary for accuracy in PCR-

based assays can vary both with the particular PCR method and with the provenance of 

the cells in the sample. We observed that sample preparation is certainly essential to 

maximise the sensitivity of e-pPCR - with unpurified samples showing 10-100 fold 

reduction in LOD compared to purified DNA samples. However, compromise of qPCR 

data caused by the presence of crude solutions of disrupted cells could be surmounted 

by straightforward sample dilution in most cases. 

The accuracy profile of LRE-qPCR matches that of SC qPCR by the measures 

performed here. In light of this and previous validation of the properties of LRE-qPCR 

(Rutledge, 2004), we invite the synthetic biology community to use the Cal1-OCF 

standard and LRE procedure for absolute qPCR in anticipation that accumulation of 

data and experience could establish it as a valuable standard. 

6.4 Conclusions 

 Sample preparation remains a requirement for the e-pPCR analysis of genomic 

targets and targets separate to the host cell DNA, in this instance seeded 

plasmids representing bacteriophage infection. 

 Disrupted cells from shake flask cultivation did not impact the efficiency of 

amplification of a genomic target sequence whereas disrupted cells from 

bioreactor cultivation reduced amplification efficiency, when compared to the 

same analysis on purified DNA . 

 LRE-qPCR and SC qPCR were broadly equivalent in terms of quantifying 

genomic target DNA copy number in the presence of disrupted cells derived 

from shake flask or bioreactor cultivation. 
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 LRE-qPCR can be used to quantify genomic and plasmid DNA from a shake flask 

or bioreactor source (when diluted) with minimal sample preparation. 

 Standardisation is a key pillar of Synthetic Biology and we suggest the CAL1 

standard as a Synthetic Biology standard for qPCR.



Chapter 7: Performance of optically calibrated curve fitting and Cy0 data analysis 

methods on quantitation of Escherichia coli plasmid production factors 

130 

 

Chapter 7 

7 The CyCal curve - a Synthetic Biology standard for 

measuring host cell plasmids and genomes in Escherichia 

coli 

7.1 Introduction 

By monitoring genetic production factors in HCD fermentations, such as those 

contained within a genome or host cell plasmids, the bioprocess engineer can gain a 

better understanding of the processes underpinning biologics production and optimise 

fermentations to increase product titre (Ryu and Kim, 1993). Initiatives such as PAT 

have created further drivers for the production of timely data, specifically at-line or on-

line data gathering and the adoption of synthetic biology in the field has created drivers 

for industrially robust standards (Gnoth et al., 2007). As shown in previous chapters, 

qPCR represents a solid platform on which to conduct such quantitative analyses of 

genetic information within fermentation. 

As discussed in section 1.2.9, the “gold standard” SC qPCR method of absolute 

quantification has a number of limitations. These include increased practical 

complexity, a requirement for target specific analysis and the assumption of uniform 

amplification efficiencies across both standards and experimental samples. This 

assumption has often been shown to be false and makes the methodology unsuitable to 

any rapid sample processing that will leave inhibitors (such as cellular debris) within the 

reaction media (Miller et al., 1999). Furthermore standard curve construction itself is 

error prone, and small errors in the standard curve can translate into large errors in 

quantified copy number (Rutledge and Côté, 2003). These limitations serve to make 

absolute quantification impractical for studies examining even a small number of 

targets. 

We now begin to address these issues by implementing knowledge gained from all 

previous studies and combining two alternative data analysis methods, in order to 
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accurately quantify multiple targets within sonicated process streams from a single non-

specific standard curve. Previously we have applied various PCR data analysis methods 

quantify to genomic targets or seeded plasmid targets as proxies for contamination. We 

now attempt to refine our methodology to accurately quantify both genomic targets and 

host cell plasmids, which have been transformed and propagated intracellularly rather 

than seeded into the experimental sample. 

7.2 Results 

7.2.1 Theoretical development of the Cy0 Calibration (CyCal) Curve  

The Cy0 method is applied to equalise efficiency between samples and standard and is 

described fully in section 1.6.2. Briefly, the Cy0 value is both a quantitative value and a 

reaction kinetic and is transformed into target quantity in the same manner as the Cq 

value. By transforming amplification curves via the Cy0 method the effect of inhibition 

on efficiency can be accounted for and of quantitative accuracy in samples where purity 

is compromised can be preserved. 

The process of applying Cy0 led to the realisation that, as difference in efficiency 

necessitates the requirement of target-specific curves, a single non-specific curve could 

be applied to quantify samples where efficiency has been accounted for. As such we 

have adopted the CAL1 standard to produce the CyCal curve and logarithmically 

diluted the lambda phage DNA amplified by the CAL1 primers to generate the intercept 

and slope values. The CyCal curve can then be used to transform Cy0 values in the 

same manner that a standard curve is used to transform Cq values. 

7.2.2 Comparison of CyCal quantification to Cq, Cy0 and LRE-qPCR on 

purified nucleic acid targets 

As target specific standard curves remain the primary method with which to conduct 

absolute quantification, we have used both a target specific standard curve and the 

CyCal curve (constructed from logarithmically diluted lambda phage DNA) to quantify 

experimental targets diluted over a 5 fold dynamic range. These experimental samples 
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have been purified by phenol-chloroform extraction and should be relatively free from 

inhibitors, thus providing close agreement in copy number quantitation regardless of 

which data analysis method is used. From the amplification curves of these 

experimental samples, Cq and Cy0 values have been generated and both of these values 

have been transformed by the target specific curves and the CyCal curve. As a 

comparative measure, spectrophotometric measurements of the first purified sample 

were extrapolated into estimated copy number. Two experimental targets relevant to E. 

coli therapeutic biologic fermentation were quantified; a single copy gene on the E. coli 

chromosome, BirA, and a fragment antigen-binding (Fab) antibody gene contained 

within the pTODD A33 plasmid (Figure 7-1). The pTODD A33 plasmid is transformed 

into E. coli where it reaches a certain copy number and will allow for the production of 

Fab antibody fragments within the chassis upon induction. As the pTODD A33 plasmid 

has a ColE1 origin of replication, the expected copy number would be between 25-50 

copies (Lutz et al, 1997). 

Figure 7-1A shows the standard curve used for both the BirA and Fab targets and their 

application to determine the copy number of experimental samples. When constructing 

the target specific standard curves, spectrophotometry determined the first dilution of 

the BirA standard curve to contain 15ng of DNA and the first point of the Fab curve to 

contain 0.1ng of DNA. These were logarithmically diluted and linear regression of 

resultant Cq and log template mass gave the values for y-intercept and slope shown. 

When these standard curves are applied it can be seen that quantified BirA and Fab 

copy numbers show close agreement, regardless of quantification method used. It is 

notable that the Cy0 values show closer agreement to values for copy number 

determined by spectrophotometry than those from standard curves. This is likely due to 

the ability of Cy0 to remove the impact on efficiency caused by inhibitors, and small 

quantities of inhibitors will be co-purified during DNA extraction (Miller et al., 1999). 

Figure 7-1B shows the CyCal curve and its application to quantifying the same Cy0 

values used in Figure 7-1A. As the CyCal curve is not target specific it can be used to 

quantify Cy0 values generated from multiple targets. To construct the CyCal curve, an 

initial mass of 12ng of lambda DNA was serially diluted 7 times to give the values for 
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y-intercept and slope shown. LRE-qPCR was also used as it employs the same CAL1 

reaction as a calibrator however uses it to generate an optical calibration factor (OCF) to 

link fluorescence to copy number. When profiled against CyCal, copy numbers derived 

from the CyCal curve are consistently higher than LRE-qPCR, however both show 

close agreement to the copy number estimated from spectrographic measurement. 

We also directly compared copy numbers derived by transforming Cy0 values with a 

standard curve and Cy0 values with the CyCal curve, by calculating the percentage 

difference in copy number from the Cy0 value transformed by the standard curve and 

the Cy0 value transformed by the CyCal curve. It was noticed that marginal differences 

in copy number can be seen. The average difference in BirA copy number quantification 

across all dilutions is 13.5%. The average difference in Fab copy number estimation 

across all dilutions is 17.2% (Table 13). This indicates that the CyCal curve is able to 

provide a good agreement to standard curves when quantifying purified nucleic acid 

samples, despite it not being specific to either target. 

Table 13 Percentage errors between copy number quantified using a target specific standard curve 

and copy number quantified using the CyCal curve 

Dilution Genomic  Host plasmid 

1 18.53% 18.05% 

2 16.16% 17.63% 

3 13.58% 17.22% 

4 10.96% 16.77% 

5 8.29% 16.26% 

Ave 13.5% 17.2% 
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Figure 7-1 Comparison of target specific curves and the CyCal curve in the quantification of 

targets from purified E. coli gDNA and pTODD A33 pDNA. (A) Target specific curves were 

constructed from purified E. coli gDNA and pTODD A33 pDNA. Copy number derived from Cq and 

Cy0 transformation has been plotted against copy number estimated from spectrophotometry to profile 

accuracy of each method. (B) The CyCal curve was constructed using purified Bacteriophage λDNA. 

This was used to transform Cy0 values of both BirA and Fab’ targets and the results plotted against 

extrapolated spectrophotometry data. LRE-qPCR, that used the CAL1 reaction as a calibrator was also 

used to quantify copy number directly from the amplification profiles of each target.  
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7.2.3 Development of a CyCal assay capable of monitoring PCN and host cell 

plasmids from crudely prepared samples 

We next explore the CyCal curve’s ability to monitor multiple targets within samples 

taken from shake flask fermentation, in order to track the number of copies of the 

production plasmid per cell. As extraction of DNA limits assay throughput and 

introduces error through loss of material, the assay has been performed on sonicated 

process streams using methodologies from previous studies. All methods of data 

analysis have been utilised to allow assessment of how this rapid sample preparation 

affects quantitative accuracy between the methods. We have calculated the PCN 

through the ratio of Fab to BirA. These experiments aim to quantify plasmids from the 

host cell and not plasmids that are seeded into the sample, as was done in previous 

experiments. Therefore plasmids can be supercoiled or conjugated to proteins, which 

could affect their measurement by qPCR. 

Figure 7-4 shows that quantitation of sonicated process streams results in markedly 

different results depending on the data analysis method used. When quantifying a BirA 

target (Figure 7-2A) LRE-qPCR gives the lowest estimated copy number for BirA, 

indicating it is most affected by inhibition. There is very close agreement between 

CyCal-quantified and standard curve-quantified Cy0 values. We calculated average 

difference in error between Cy0 analysed with CyCal and Cy0 analysed with a target 

specific curve as 6.22%, demonstrating that the non-specific CyCal curve is able to 

produce copy numbers in close agreement to the target specific curve. When Cq values 

are transformed by target specific curves they fall between LRE-qPCR and CyCal/Cy0 

values, which directly shows how the generation of Cy0 is able to account for loss of 

amplification efficiency in quantification. 

The quantification of Fab by LRE-qPCR and Cq values transformed with a target 

specific curve produce similar data. This is in contrast to the large difference in copy 

number when the BirA target is analysed, suggesting impacted efficiency is not uniform 

between targets when quantifying by LRE-qPCR. Cy0 values transformed by target 

specific curves and CyCal curves again produce a copy number that is both close in 

agreement and higher than other methods used. The average difference in error between 
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Cy0 analysed with CyCal and Cy0 analysed with a target specific curve is 3.61%, 

further demonstrating that the non-specific CyCal curve has the capacity to produce 

quantitative data that is extremely close to a target specific curve. 

The ratio of BirA copies and Fab copies can be used to provide an estimate of Fab 

copies per cell, or plasmid copy number. When this is performed it can be seen Cy0, Cq 

and CyCal produce comparable estimations of PCN. LRE-qPCR, as the effect of 

inhibition has been non-uniform between the targets, produces a markedly different 

quantity of PCN. The copy numbers determined from this method fall largely within the 

range of those provided in the literature for the ColE1 origin of replication (Lutz et al, 

1997). The only exception is the PCN determined through LRE-qPCR, which is initially 

higher than the other methods and slightly higher than the literature reported copy 

number. 
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Figure 7-2 Quantification of BirA and Fab’ targets from whole cell lysate of a shake flask fermentation, using a variety of qPCR data analysis techniques, 

and subsequent calculation of Fab’ copies per cell. (A) Quantification of BirA gene copy number. (B) Quantification of Fab’ fragment gene copy number. (C) 

Calculation of Fab’ copies per cell, achieved by dividing total Fab’ copy number by total BirA copy number. 
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7.2.4 Application of CyCal curve to quantification of genetic production factors 

in high cell density E. coli fermentation. 

After showing that the CyCal curve can produce comparable data to target specific 

curves when analysing genomic DNA and host cell plasmids, we then used it to track 

the evolution of gDNA (BirA) and host cell plasmids (Fab) throughout HCD 

fermentation. In an industrial setting the monitoring of BirA evolution can be used to 

benchmark cell growth and monitoring of Fab evolution allows us to track how the 

quantity of the production gene changes over the course of the fermentation. Both of 

these can be combined to provide an estimate of how the PCN changes throughout 

fermentation. We have used flow cytometry as an alternative monitoring method to 

validate our data. 

Monitoring was conducted post induction and at high optical densities of up to 

OD600=140 (Figure 7-3 A). Figure 7-3B shows BirA profiled against Fab’. Following 

an initial increase BirA is stable in the early stages of fermentation. In contrast Fab 

copies are seen to steadily increase, suggesting that E. coli is increasing its PCN at this 

stage (Nordstrom et al, 2006). As BirA copies begin to decrease later into the 

fermentation, Fab copies initially follow the same trend and then increase before 

resuming the same overall trend. PCN copies again largely falls into the range of 25-50 

provided into the literature, with the exception of the later stages of fermentation when 

it exceeds this range. 

BirA copies in the fermentation have been profiled against flow cytometry data in 

Figure 7-3C. Both should provide comparable quantities as, due to BirA being a single-

copy gene, instances of it should correlate to a cell count. As can be seen the two 

methods share general agreement, however towards the end of fermentation the number 

of cells calculated using CyCal is slightly lower than those counted through flow 

cytometry. This provides validation for the approach of using single gene copy analysis 

as an indication of cell count in the fermentation. Despite the presence of cell debris 

being present and the curve being non-specific, a relatively accurate quantity of cells per 

mL can be elucidated. 
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PCN is also profiled against volumetric productivity quantified by HPLC (Figure 7-3D). 

These numbers should correspond as an increase in PCN should result in an increase in 

volumetric productivity. It can be seen that both can be seen steadily rise throughout the 

fermentation, however productivity stabilises at approximately 88 hours whereas PCN 

continues to rise. This could be due to free plasmids in the media from cell lysis at the 

late stage of fermentation, which introduces inaccuracy. Accurate monitoring at this 

stage would require further investigation and could require a further stage of sample 

processing to remove cell-free plasmid 
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Figure 7-3 Application of CyCal curve to the monitoring of Fab’ antibody fragment production in a 

high cell density E. coli fermentation. (A) Optical density. (B) Evolution of total BirA and Fab’ copy 

numbers throughout the fermentation, as measured by application of CyCal curve to Cy0 values. (C) 

Comparison of BirA copy number from CyCal curve and Cy0 values and total viable cells as measured 

through flow cytometry. (D) Comparison of Fab’ copies per cell, measured by dividing total Fab’ copy 

number by total BirA copy number, against volumetric productivity data measured by HPLC analysis  
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7.2.5 Application of the CyCal curve to other bioprocessing targets  

To further explore the potential of the CyCal curve as a bioprocess monitoring tool we 

have applied it to the quantification of several other purified and bioprocess relevant 

targets (Figure 7-4). These are a green fluorescence protein (GFP), often used as a 

reporter, contained within pJTDI and the bioprocess organisms used in previous studies; 

P. pastoris (Tkt genomic target) is targeted and CHO (GapDH genomic target). 

Figure 7-4 shows that quantification of GFP copy number has close agreement between 

all methods and generally follows copy number expected by spectrophotometric 

measurement. The average difference between Cy0 values quantified from the standard 

curve and CyCal curve is 5.5%. Quantification of CHO and P. pastoris show a greater 

deviation in estimated copy number between methods. CyCal appears to slightly 

overestimate copy number when compared to spectrophotometric data for both of these 

targets. The average difference between standard curve quantified and CyCal quantified 

Cy0 values for P. pastoris and CHO is 30.3% and 56.3% respectively. This shows that 

more optimisation might be necessary for organisms with larger genomes.  

Table 14 Percentage errors between copy number quantified using a target specific standard 

curve and copy number quantified using the CyCal curve 

Dilution Plasmid (GFP target) Genomic P. pastoris (Tkt 

target) 

Genomic CHO (GapDH) 

1 32.49% 37.67% 28.65% 

2 21.28% 33.69% 58.43% 

3 8.16% 30.16% 58.17% 

4 8.07% 26.67% 67.73% 

5 26.55% 23.33% 68.46% 

Ave 5.5% 30.3% 56.3% 
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Figure 7-4Comparison of target specific curves and the CyCal curve in the quantification of targets 

from purified pJTDI pDNA and CHO and P. pastoris gDNA. (A) Target specific curves were 

constructed from logarithmically diluted purified DNA. Values for y-intercept and slope were applied to 

their specific targets to quantify copy number from Cq and Cy0 values and quantified copy numbers were 

plotted against values estimated from spectrophotometric measurements. (B) The CyCal curve was used 

to quantify all three targets from Cy0 values. LRE-qPCR, which also uses the same standard, was used to 

quantify copy number directly from the amplification curve. These methods were again plotted against 

values estimated from spectrophotometric measurements. 
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7.3 Discussion 

Absolute quantification by qPCR remains the gold standard approach to analysing 

genetic targets. However the target specific curves required in current methodologies 

serve to introduce experimental and practical limitations, which have limited its 

widespread adoption in industrial settings. 

Here we have achieved absolute quantification of multiple targets from a single 

CyCal curve constructed, which uses the CAL1 reaction components that we propose 

as a Synthetic Biology qPCR standard. We used the CyCal curve to simultaneously 

monitor two factors within high cell density E. coli fermentations, a genomic target 

and a host cell plasmid target. These were quantified from within sonicated process 

streams prepared using the methodology developed from previous studies. By 

monitoring the single copy genomic BirA gene the growth of E. coli can be tracked 

over the course of fermentation and the growth of the plasmid carrying the Fab 

productivity can also be tracked through its amplification. By determining the ratio of 

these targets to each other, the PCN, or number of host cell plasmids per genome, can 

be monitored. 

PCN is an important metric in bioprocess monitoring as instability in the transfer of 

plasmids between dividing cells can lead to a population of cells lacking plasmids and 

therefore a loss of productivity (Friehs, 2004). The addition of antibiotics to the 

growth media can remedy this, however the added cost and impact on the final 

product quality at industrial-scale production makes their use impractical. Therefore it 

is desirable to maintain a high PCN, however an excessive plasmids within the cell 

can impact viability due to the imposition of metabolic burden (Skulj et al., 2008). 

Therefore plasmid vectors must be optimised and monitored to ensure their 

suitability to the application.  

Currently, the primary means to monitor PCN are lengthy and complex procedures 

that use dangerous chemicals, such as caesium chloride centrifugation (Weisblum et 

al., 1979) and southern blot hybridisation (Olsson et al., 1993). Methods have been 
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developed that analyse a fluorescent reporter encoded within the plasmid. Lobner-

Olesen (1999) developed a method that monitors PCN by inducing reporter 

expression for part of the cell cycle before blocking it before measuring fluorescence 

via flow cytometry. As plasmid copy number follows a stepwise rate of change, 

should show peaks of fluorescence distribution. The author however only witnessed 

smooth distributions and concluded that the method could at best detect two fold 

differences PCN, and was mainly suited to detecting large fluctuations in PCN 

(Loebner-Olesen, 1999). Wong et al. (2010) later adapted this, but a more suitable 

flow cytometry protocol was implemented and the reporter was induced for multiple 

cell cycles. Despite these changes, similar results to the earlier Loebner-Oleson 

method were obtained.  Super-microscopy visualization of fluorescence has been 

attempted, but due to the requirement for a single bacterium to be fixed these have 

achieved limited success (Huang et al, 2009). Fluorescence in-situ hybridization 

approaches have also been attempted but there is currently no means of examining 

the fluorescence with the required resolution. This, coupled with the amount of non-

specific targets present, mean the method is hampered by limitations (Zenklusen and 

Singer, 2010). As a result of these severe methodological limitations, assays using 

fluorescence reporters have failed to gain traction as suitable assays for determining 

PCN.  

The Paulsson lab in 2012 discussed the limited means of measuring PCN and as such 

attempted to implement methods of determining plasmid loss rates. Although this is 

not a direct measure of the PCN it allows determination as to whether a plasmid is 

being partitioned unevenly during cell division. In order to do this they used both a 

probability-based method and analysis through microscopy, finding that plasmid loss 

rates are typically lower than reported. These however involves culturing the bacteria 

separately and is not as such a monitoring technique, and definitely not applicable to 

at-line analysis (Paulsson, 2012). 

Due to these considerations, rapid determination of PCN is highly desirable feature 

of a bioprocess assay and the CyCal assay we demonstrate here circumvents these 

limitations. We did note that in the later stages of the fermentation, PCN did not 
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stabilize and exceeded literature reported copy numbers. This could be due to free 

plasmids being detected in the media and warrants further investigation. 

It was noticed here that LRE-qPCR, found to have accuracy during our previous 

studies, was unable to accurately quantify the host cell plasmids and therefore unable 

to provide an accurate value for PCN. We speculate that this is due to the plasmid 

being propagated in the host cell rather than seeded into the experimental sample. 

From this it will be subject to supercoiling and association with host cell proteins, 

which could possibly interfere with analysis. 

We next demonstrated the wider utility of the CyCal curve by successfully using it to 

quantify other bioprocess relevant targets, including the P. pastoris and CHO targets 

studied in previous chapters. Whilst these larger genomes will require further 

optimisation and validation to ensure accuracy, the initial copy numbers given are 

realistic and a promising start point for the assay. 

The CyCal curve not only allows an increase of assay throughput for qPCR assays 

by removing the need for repeated preparation of purified standards, but also gives 

the proven ability to accurately quantify from samples where nucleic acid 

purification is not a requirement. This reduces sample preparation time and prevents 

unnecessary target loss. The standardisable nature of the CyCal curve makes the 

method industrially robust and allows it to conform to Synthetic Biology standards, 

and will hopefully facilitate the wider adoption of absolute quantification across the 

bioprocess community. Taking into account these factors, we propose the CyCal 

curve as a reproducible and standardisable calibration curve that could become the 

basis of industrially robust qPCR assays, allowing for the precise determination of 

absolute quantity of multiple bioprocess genetic targets within endogenous or 

exogenous host cell DNA. 

With ultra-rapid qPCR technology becoming more prevalent in laboratories, we 

further propose that the CyCal curve can form the basis of an at-line assay compliant 

with PAT initiatives. The level of standardisation could be further increased by the 
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commercial supply of the CyCal standard from a centralised source, in line with other 

Synthetic Biology repositories such as those maintained by the BioBrick Foundation. 

7.4 Conclusions 

 The CyCal curve is a non-specific standard curve constructed from the CAL1 

standard 

 The CyCal curve was able to quantify a genomic E. coli target and a 

plasmid target with the same accuracy as other data analysis methods 

 The CyCal curve was then used to quantify genomic E. coli and host cell 

plasmid targets in a crudely prepared shake flask sample and was found to 

have comparable-or-improved accuracy to other data analysis methods 

 We developed an assay capable of monitoring PCN throughout HCD 

fermentation, which demonstrated accuracy when compared to other 

validation methods 

 CyCal also shows efficacy when used to analyse other targets, however 

might need to be optimised for organisms with larger genomes 

 We believe CyCal to be the basis of an industrially robust Synthetic 

Biology compliant qPCR monitoring standard 
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Chapter 8 

8 General conclusions and recommendations for future work 

The aims and objectives of this project, defined in section 1.7, have been largely 

achieved. Following the successful selection of targets and design of primers and testing 

of quantification methods on a purified target background (Chapter 3), rapid sample 

preparation by sonication was explored on three bioprocess relevant organisms, P. 

pastoris (Chapter 4), CHO (Chapter 5) and E. coli (Chapter 6) and common 

contaminants of CHO and E. coli fermentation. We also used this opportunity to explore 

alternative data analysis methods. From the knowledge gained through this we 

developed a standardised and high throughput assay, CyCal, to measure PCN in an E. 

coli fermentation (Chapter 7). 

8.1 Implementation of rapid sample preparation 

A common feature of PCR assays is the isolation of nucleic acid, which is done in order 

to separate out potential inhibitors that may be present in the growth media (Dineva et 

al., 2007). A number of strategies are available to achieve this, including manual 

extraction using a phenol-chloroform protocol and commercially available kits. These 

however serve to limit assay throughout time and have in some instances shown to 

introduce contaminants (Queipo-Ortuño et al., 2007). As such, a stated objective of this 

project was to measure the extent to which sample preparation was necessary across 

bioprocess relevant organisms and two simulated contaminating organisms, at either 

shake flask or bioreactor scale.  

We concluded that both shake flask and bioreactor materials significantly impacted the 

ability of e-pPCR to detect both endogenous targets and simulated contaminants from 

both shake flask and bioreactor process streams. We consistently found a significant 

variation in amplicon production, as determined by densitometry. E-pPCR protocols are 

often used in detection of biological contaminants such as mycoplasmas (Kong et al, 

2001; Sung et al., 2006; Dobrovolny and Bess, 2011), as accurate quantification is less 
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important than accurate detection and available protocols are able to distinguish 

between a range of species using one test. For these sensitivity is critical to avoid 

misleading results. Therefore our general conclusion is that e-pPCR detection of 

genomic and contaminant nucleic acid is not amenable to rapid sample preparation. 

qPCR is widely employed to investigate the quantity of a nucleic acid target, in relative 

or absolute terms. The utility of these assays is very broad, and can range between 

analysis of genetic variation, quantification of host cells in process streams and 

detection of genetic leakage as part of quality control (Parodi et al., 2002; Voronin et 

al., 2009; Cong et al., 2013). Equipment platforms amplify the target and analyse the 

amplification in a single step and are very amenable to automation. Therefore it is 

perhaps absolute quantification by qPCR that is best served by a drastic reduction in 

sample preparation, as it occupies a much greater proportion of total assay time. We 

found overall that absolute quantification is achievable across a range of dilutions for all 

targets tested, with only a rapid sonication step totalling 5 minutes. We feel here that we 

have however defined the conditions at which absolute quantification is achievable 

through minimal sample preparation, for both shake flask and bioreactor scale, across 

three organism backgrounds and two contaminant target backgrounds. 

8.2 Exploration of alternative qPCR data analysis methods 

A plurality of methods of analysing qPCR data have been developed and two were 

explored here, as alternatives to the classical standard curve method of achieving 

absolute quantification by qPCR.  

LRE-qPCR was implemented to complement the rapid sample preparation, as with the 

optical calibration it has the capacity to quantify nucleic acid target without the need for 

preparing a standard curve, thus further increasing assay throughput. We generally 

found when analysing a single target that LRE-qPCR performed in many instances with 

a comparable accuracy to SC-qPCR, although still failed to produce useable data at the 

most concentrated and dilute dilutions in many instances. 
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Upon attempting to analyse two targets in the same reaction, in order to quantify PCN, a 

small differential in the effect of inhibition and its impact quantification of each target 

meant that LRE-qPCR produced distorted results when quantifying PCN. As such a 

method of eliminating inhibition, Cy0, was implemented. This was adapted to use the 

Cal1 calibration reaction from LRE-qPCR to make the basis of a non-target specific 

reaction. We found that the implementation of Cy0 and its adaptation with the Cal1 

standard could form the basis of a new, high throughput and standardised assay that 

meets the overarching aim of the project. 

8.3 Introduction of Synthetic Biology standards 

Synthetic Biology is striving to implement standards in order to ensure the diverse range 

components necessary for this nascent field are able to perform consistently and 

reproducibly, as the genetic parts are not fully predictable. Initiatives such as the 

Synthetic Biology Standards Consortium (Hayden, 2015) have been organised to 

address this and explore the implementation of such standards.  

An objective of this project was to adapt this rationale into our investigations, in order 

to produce assays with standardised reaction components to ensure reproducibility. 

When implementing the LRE-qPCR data analysis method into our workflow we were 

pleased to see that the calibration steps used a standardised and non-target specifc 

calibration reaction, the Ca1 reaction, in order to generate an OCF. This was further 

expanded on by it’s incorporation into the CyCal Curve. 

Whilst PCR has standardised guidelines (Bustin et al., 2009), the components, targets 

and primers used feature no standardisation, especially when performing absolute 

quantification which relies on target specific standard curves (Rutledge et al., 2003). We 

therefore hoped to incorporate credible standards into PCR-based assays and feel we 

were successful in this endeavour in the production of the CyCal curve, which we 

promote as the first steps towards introducing such standards for widespread community 

use. 
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Assays such as the ones developed during this project serve to advance bioprocess 

monitoring and add to the toolbox of the synthetic biologist. Such rapid and simple to 

perform assays are highly desirable, as evidenced by initiatives such as PAT, which is 

creating drivers for at-line monitoring assays. If these assays were to be conducted on 

ultra-rapid qPCR platforms, such as the BJS Biotechnologies Xxpress, they could 

become the first at-line qPCR assays. 

8.4 At-line and on-line monitoring for real-time data gathering in Bioprocessing 

As the number and use of automated cell culture systems increases, the need for the 

real-time and high throughput analytics is increasing. The CyCal assay can be 

conceivably adapted into an assay capable of at-line monitoring, if used on ultra-rapid 

cycle qPCR platforms, allowing for close to real-time data gathering. This fits into the 

vision advanced by initiatives such as PAT, which promote at-line or on-line monitoring 

as a mean to study bioprocesses and advance their industrial capacity. The ability to 

gain results in (or close to) real-time is powerful when optimising fermentations and 

highly desirable to the bioprocess community.  

With regard to other methods of gaining real-time information on genetic elements in 

fermentations through qPCR, advances in equipment are poised to achieve this. 

Specialised qPCR equipment is under development which allows the complete 

automation of qPCR assays within a closed workflow. Sampath et al. (2010) have 

developed such a system, which adapts an existing biosensor system (Ecker et al., 2006) 

to enable the fully automated detection of a number of adventitious contaminant 

microorganisms in bioprocess streams. Such devices are highly desirable as it allows a 

rapid response to such infection at industrial scale. 

There are a number of technologies developing outside of qPCR that could provide at-

line analysis of genetic elements in fermentations. Ultra-rapid sequencing combined 

with advances in bioinformatics mean the large scale sequencing of a sample combined 

with quantification of known sequences could become the standard method of 

quantification of genetic targets (Morozova and Marea, 2009) .  
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The development of on-line flow cytometry is another research avenue that could 

produce timely data on bioprocesses. Kuystermans and Avesh (2016) have developed a 

method using on-line flow cytometry that is capable of providing near real-time data on 

viable, early apoptotic, late apoptotic and necrotic cell populations within fermentation. 

As apoptosis is the primary source of cell death in fermentation, the gathering of this 

data is key improving control strategies for the production of biologics from cells.   

A number of groups are developing whole cell biosensors for diagnostic or therapeutic 

applications, and it is highly conceivable that they could form a component of 

bioprocess monitoring.  By reengineering cells to respond to environmental factors, 

most commonly through the expression of a sensor protein that couples to a ligand, a 

measurable response can be elicited. Examples of this come from Donaldson and 

Dattelbaum (2014), who took a transcriptional reporter assay and adapted into a whole-

cell biosensor system. The result of this is that the presence of an analyte can be 

detected in the biosensor cell periplasm through an engineered periplasmic binding 

protein specific to the molecule. A number of protein interactions then follow that elicit 

a detectable fluorescent response. Interestingly, periplasmic binding proteins can be 

designed for a number of different analytes, creating a versatile biological monitoring 

system. 

Soft sensors are another emerging strategy for on-line data gathering from bioprocess 

streams. A soft sensor is one or more hardware sensors combined with a mathematical 

model, which processes the signals generated by the sensors to deliver new data. They 

are commonly used to gain information on variables that cannot be otherwise obtained 

through on-line measurement (Mandenius and Gustavsson, 2015). Strategies have been 

devised using soft sensors, whereby sensors are incorporated at numerous downstream 

processing steps to continuously measure a variable throughout the process train. 

Through this, subsequent processing stages can be automatically configured based on 

the data gathered in the previous processing step (Velayudhan, 2014). The strategy of 

linking sensors capable of real-time data gathering to automatically gather data on 

critical process variables and adjust fermentation parameters accordingly is powerful in 



Chapter 8: General conclusions and recommendations for future work 

  

152 

 

its ability to influence product quality, reliability and consistency of production and 

positively impact production economic cost. 

Exciting developments in monitoring technologies such as these bring the prospect of 

real-time gathering of bioprocess data closer to practicality. It is easy to envisage a 

future of fully automated bioprocessing, whereby the wealth of data contributed by 

associated monitoring technologies facilitates the rapid advancement of the field as a 

whole. 

8.5 Future work 

1) The CyCal curve can be further refined by using it to quantify different targets in an 

experimental setting and confirming accuracy with a wider range of validation 

techniques. The curve currently uses Cy0 to equalise efficiencies, however other 

alternative data analysis techniques could be explored. 

2) It was noticed that PCN continues to escalate during the last stages of fermentation 

and we hypotheses that this could be due to the release of plasmids into the media from 

lysing cells. This hypothesis could be explored and rapid ways of isolating cells to 

negate this effect explored. 

3) The CyCal assays are applicable to ultra-rapid platforms such as the BJS 

Biotechnologies Xxpress. An avenue of future research would be to gather data on 

platforms such as these and ensure accuracy is retained. SOP’s for at-line qPCR assays 

could be developed. 

4) For a standard to be adopted, it must be used by the wider community. Therefore the 

CyCal curve and any methodology could be released to other laboratories conducting 

qPCR to gather community data on its performance. 
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Appendix B – EngD Chapter 

10 Commercial landscape of ultra-rapid qPCR 

10.1 Commercial validation issues faced 

BJS Biotechnology’s sole business is the production of the Xxpress UF1 ultra-rapid 

thermocycler and its associated consumables. This is the first product that the company 

is entering into the market and was realised from the invention of a novel method of 

rapidly changing the temperature of the sample and reagents, which incorporates 

mechanisms that drive temperature change directly into the sample tray. There are a 

number of systems then built around this that must communicate and work in unison to 

allow for accurate data production and reporting. The two most crucial of these systems 

are an infra-red thermometer, which accurately detects this ultra-rapid change of 

temperature, and a system of cameras that records the change in fluorescence as the 

qPCR assay is carried out.  

As PCR is an exponential reaction, small variances in reaction conditions can lead 

significant variances in results (Bar et al., 2003). Within the thermal cycler itself, 

thermal uniformity and accurate switching between temperatures are key to ensuring 

reaction conditions are optimal. There is a very low tolerance in accuracy for both of 

these factors before the validity of an assay is compromised through sub-optimal 

reaction conditions. A major challenge for BJS Biotechnology has been the design, 

implementation and validation of a system that is able to accurately and uniformly 

change temperature, whilst monitoring and reporting on temperature change, all at an 

extremely rapid rate. The thermometers used must take many readings a second and 

feed back to a system that must be capable of rapidly ramping temperatures up and 

down at a rate that is uniform across all samples on the plate. As this is the company’s 

first product and the product is novel, the system has been designed and implemented 

from the ground up. This validation process is both extensive and ongoing, as it must be 

successfully reproduced, implemented and validated in every machine produced, to 

ensure accuracy across the whole Xxpress product line.  
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Regarding the equipment capable of monitoring fluorescence increase, the cameras used 

must be able to accurately distinguish between specific electromagnetic frequencies. 

This reflects the standard capacity of real-time PCR thermocyclers to “multiplex”, 

whereby a number of fluorescent dyes are used that emit different frequencies to 

distinguish between separate genes in the same sample (Lehmann et al., 2008). The 

capability of the machine to accurately do this must be validated to ensure the machines 

commercial success. 

Consumables also present a challenge for validation. There are a number of 

commercially available enzyme formulations (reagents) available to the PCR operator, 

each exhibiting slightly varying characteristics due to the polymerase used and 

proprietary contents of the formulation. Due to the extreme nature of ultra-rapid 

thermocycling, considerable pressure is exerted on the DNA polymerase and thus it is 

possible that some formulations will be incompatible with the Xxpress platform. 

Therefore a validation challenge is presented in testing which commercially available 

enzyme formulations are suitable. 

These separate validation issues affect the success of the machine, as it must be able to 

reproduce results of commercial assays on machines already used in labs with equal or 

greater precision. A breakdown in the thermal ramping or fluorescence monitoring 

equipment will lead to inaccurate results. The use of unsuitable enzyme formulations 

can also introduce inaccuracy. As such the validation of these items is critical for BJS 

Biotechnology. 

10.2 Research validation issues faced 

Every ultra-rapid PCR assay developed over the course of this project must meet the 

current industry standards in terms of accuracy, sensitivity and throughput time. There 

must also demonstrably equal or hopefully superior performance to currently available 

assays that fulfil the same function. These assays could be PCR-based but might use a 

different technology. Assays developed for a clinical environment will be subject to an 
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especially rigorous validation process, as is required for any technology or product 

bought into the clinical environment. 

The current scope of validation is to benchmark any at-line PCR assay developed for 

the Xxpress thermocycler against a similar offline PCR assay on an established 

thermocycler and a non-PCR assay used in industry. This will characterise performance 

against standard PCR techniques and equipment, as well as other assays currently used 

in industry. The data gathered from these experiments, if successful, can be used to 

argue the case for the adoption of at-line PCR assays to both industry and regulators. 

In addition to validation, data generated by PCR assays must conform to a set of 

guidelines if it is to be reported on in the scientific literature. The Minimum Information 

for publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines were 

established by a panel of qPCR experts from academia and industry, due to the presence 

of incorrect and often un-reproducible qPCR data being found within the peer reviewed 

literature. Any data resulting from my project must have been generated in accordance 

to these guidelines in order for it to gain approval for publication. 
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