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Abstract 

A series of experiments recorded the acoustic change complex (ACC) to a 

broad range of speech stimuli.  The ACC is an electrophysiological response to an 

acoustic change within an on-going stimulus.  Recordings were obtained from 

normal hearing (NH) listeners in noise, cochlear implanted (CI) listeners, and second 

language listeners.  Chapter 2 presented a mixture of transitions between four vowels 

and four fricatives in quiet and at three noise levels to NH listeners.  We investigated 

how the ACC was affected by noise, and how the ACC relates to individuals’ 

behavioural speech-in-noise ability.  Chapter 3 details a CI study using the same 

fricative and vowel stimuli but in quiet only.  The ACC was measured and again 

compared to behavioural speech perception performance.  Participants’ neural 

entrainment to continuous speech was also measured, and compared to their speech 

perception performance and ACC responses.  Chapter 4 details an ACC study using a 

mixture of transitions between eight voiceless fricatives presented to native English, 

Finnish and Polish speakers.  The ACC magnitude was used to create similarity 

matrices that were analysed by non-metric MDS and an acoustic analysis of the 

fricative stimuli was performed.  The ACC and its relationship to the spectra of the 

stimuli were used to investigate cross language differences between the groups.  

Overall, results suggest that the ACC is not merely a measure of general auditory 

detection as it is often described, but rather it is a measure at the border between 

auditory and linguistic processing in the auditory cortex.  Furthermore, the results 

indicate that the ACC has potential for further use in research in a variety of listener 

populations, as well as potential clinical benefits.  
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1 General Introduction 

Speech perception can be highly variable, due to differences in peripheral 

hearing function (e.g. hearing loss), differences in underlying perceptual and 

cognitive processing (e.g. second-language learners), or factors that are harder to 

identify (e.g. individual differences in speech-in-noise performance by normal-

hearing individuals).  Such individual differences are evident in people’s daily 

experiences, but may also be apparent under clinical observation.  In order to 

recognise and treat people with particular speech perception difficulties in a clinical 

setting, research focuses on both how listeners cope with challenging speech 

perception, and from where individual differences originate. 

Speech processing can be measured and assessed at different levels of the 

human auditory system.  Many behavioural measures of speech processing when 

used alone, such as tests of identification or sentence recognition, encompass the 

whole pathway from outer ear hearing, to central speech processing in the brain.  

This means that whilst performance on such measures may identify a problem, such 

tests may not necessarily locate the source of impairment.  For example, when 

compared to a young adult normal-hearing listener, an elderly listener with normal 

audiometric thresholds may perform either equally as well or worse on a behavioural 

speech-in-noise task (e.g. Frisina & Frisina 1997; Schoof 2014).  In such a scenario, 

worse performance is commonly attributed to age-related central auditory 

dysfunction, and/or age related cognitive decline (e.g. Füllgrabe et al. 2015).  

However, when compared to a young adult normal-hearing listener, an elderly 

hearing impaired listener will also likely perform worse on a behavioural speech 
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recognition test.  As such, performance may indicate either the effect of hearing loss, 

or the effect of aging plus hearing loss, thereby implying possible peripheral 

dysfunction, central dysfunction, or cognitive factors, or any combination of these 

factors (e.g. Frisina & Frisina 1997).  For such a listener, it would not be possible to 

identify the source(s) of their reduced SIN ability from a conventional behavioural 

test of speech performance alone.  This is also a practical issue in the clinic; 

clinicians currently rely on the audiogram and behavioural speech testing to treat a 

patient with speech processing difficulties, however, as outlined above, these 

measures alone may be insufficient to identify the source(s) of difficulty.  Therefore, 

if an elderly listener with a hearing impairment is fitted with a hearing aid, but is not 

achieving high speech recognition performance, the clinician does not know if it is a 

peripheral issue (e.g. a fault with the hearing aid) or a central issue (e.g. an effect of 

ageing).  As such, it may be difficult to tailor a rehabilitation program to the 

individual.   

The growing recognition that global behavioural speech tests may be affected 

by multiple factors has led to renewed interest in developing further tests to better 

identify the cause(s) of impairment.  For example, Füllgrabe et al. (2015) 

demonstrated that both composite measures of cognition and measures of temporal 

fine structure sensitivity are predictors of speech-in-noise performance in elderly 

listeners with normal audiograms.  Furthermore, neurophysiological and neuro-

imaging techniques provide an additional means to investigate the sources of speech 

processing difficulties, whilst testing with speech stimuli directly.  Such methods can 

provide a direct measurement of speech processing at different stages of the auditory 

pathway (see Section 1.1).  Furthermore, neurophysiological measures are objective, 

and they can often be recorded passively from subjects (i.e. many measures do not 
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require the subject to perform or even attend to the acoustic stimuli).  As such, 

certain objective measures are commonly used in hearing screening for new-born 

babies and infants, and can also be used for non-responsive or non-compliant 

subjects.  The reduced participant effort associated with objective measures is also 

desirable when testing clinical or ageing populations.  However, there is not 

currently a clinically-used objective measure of speech processing. 

One group of objective measures that can examine the neural encoding of 

incoming speech are auditory evoked potentials (AEPs).  AEPs are commonly 

measured using electroencephalography (EEG), where scalp-placed electrodes are 

used to record electrical activity in the brain. When a population of neurons fire in 

synchrony, changes in the voltage of the extracellular fluid are detectable from the 

scalp recording sites.  Evoked voltage changes are, however, relatively small in 

comparison to those from noise sources, and so neural EEG signals are typically 

observable only after repeated measurement and averaging, or after further 

processing.  Neural responses to sound have been successfully observed from passive 

activation of the auditory nerve (Wave I of the ABR: Pratt et al. 1999) to high-level 

cortical semantic processing of complex stimuli (N400: Kutas & Hillyard 1983; 

P600: Osterhout & Holcomb 1992; Hagoort et al. 1993).  One benefit of using EEG 

to study auditory processing is the high temporal resolution the technique affords. 

This allows for accurate measurement of a system that characteristically displays 

rapid and precise temporal encoding.  Furthermore, good temporal resolution allows 

for the identification of the area of processing from the latency of the response from 

the stimulus presentation.  That is, the further along the pathway that the response 

occurs, the longer the observed latency.  However, the spread of electrical current 

results in relatively poor spatial resolution.  Nevertheless, modern EEG systems are 
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capable of recording from a large number of electrodes, and post-recording signal 

processing allows for some degree of source localisation, to further identify sites of 

activation. 

The experiments presented in this thesis investigated the effect of peripheral 

and central factors of speech perception on the acoustic change complex (ACC).  The 

remainder of this chapter provides a background into EEG measures of speech 

perception, including the ACC.  The following three chapters detail experiments that 

use a combination of the ACC and behavioural measures to explore speech 

perception in normal-hearing adults, cochlear implanted adults, and second language 

learners.  Chapters 2 and 3 address peripheral manipulations (i.e. background noise 

and cochlear implants) that may limit speech perception performance. 

Specifically, Chapter 2 explores the ACC in normal-hearing adults listening to 

speech in noise, and Chapter 3 investigates the ACC in cochlear implanted adults 

listening to speech in quiet.  Chapter 4 controls these periphery factors (i.e. normal-

hearing in quiet) and addresses a central factor of speech perception, by measuring 

responses from listeners that differ in native language experience.  Chapter 5 

provides a discussion of the implications of the main findings from this thesis, and 

the potential use of the ACC in both research and clinical settings. 

1.1 EEG Measures of Auditory Speech Processing 

Commonly used AEP measures of auditory processing include the auditory 

brainstem response (ABR), the brainstem frequency following response (FFR) and 

the cortical mismatch negativity (MMN).  The ABR is a series of seven peaks that 

occurs within the first 10 ms after stimulus onset (Pratt et al. 1999; Trainor 
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2008).  These peaks represent subcortical activity along the auditory pathway from 

the cochlear nucleus to the thalamus, and are currently used clinically as a screening 

tool to assess hearing loss in babies (Trainor 2008).  Owing to their short latency, 

and maximal simulations firing to transient sounds, ABRs are typically elicited using 

brief tone pips, tone sweeps/chirps, or clicks (Dau et al. 2000).  Although ABRs can 

be evoked from the onset of speech sounds also, the measure reflects a transient 

response to sound onset, and so it alone cannot be used to characterize the sustained 

responding relevant for speech encoding.  Encoding at the level of the ABR is 

primarily thought to preserve or enhance the spectral and temporal signal transmitted 

by the auditory nerve, with little high-level processing occurring at this stage in the 

pathway.  Therefore, ABRs are not used to evaluate higher auditory functions, such 

as speech discrimination (Whiting 1998). 

A potentially more speech-relevant brainstem measure is the frequency 

following response (FFR: Moushegian et al. 1973).  The FFR represents sustained 

neural activity that is phase locked to the waveform or the envelope of a periodic 

stimulus (Krishnan 2008), and is attributed to generator sites in the inferior colliculus 

(e.g. Greenberg et al. 1987).  It is observed as a series of periodic peaks whose 

intervals correspond to the period of the stimulus frequency (Krishnan 2008).  The 

FFR can be measured using speech sounds, such as /da/, and so is a step forward 

from the ABR towards successfully measuring speech perception (e.g. Cunningham 

et al. 2001; Skoe & Kraus 2010).  The FFR can only be recorded using periodic 

stimuli within the range of phase locking at the brainstem (below ~ 1.5 - 2 kHz; 

Krishnan 2008), a range well encompassing that of the fundamental frequencies of 

speech (Traunmüller & Eriksson 1995).  Furthermore, the FFR has shown some 

cross-language effects.  When listeners are presented with Mandarin tones, native 
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Chinese listeners show a more robust FFR than English listeners (Krishnan et al. 

2005, 2009a, 2009b).  Additionally, short- and long-term training (such as musical 

experience) is associated with stronger FFR encoding (Wong et al. 2007; Carcagno 

& Plack 2011).  Whilst the FFR may reflect temporal encoding beneficial for speech 

and/or pitch processing, recent studies suggest that the measure may not reflect 

pitch-specific encoding, and so the experimental and clinical applicability of the FFR 

remains debated (Dau 2003; Gockel et al. 2011; Gockel et al. 2015).  

Cortical AEPs (CAEPs) are sensitive to a more complex range of speech 

materials and manipulations than brainstem measures.  CAEPs are closely linked to 

auditory processes that underlie speech perception, such as auditory detection and 

discrimination (Picton 1990; Stapells 2002; Martin et al. 2008).  A cortical response 

that is often used in speech processing research is the mismatch negativity 

(MMN: Näätänen et al. 1978).  The MMN is a pre-attentive response that occurs as a 

negative peak 100-250 ms after a deviation is detected from an established auditory 

pattern (Szymanski et al. 1999; Näätänen 2001).  The response is elicited by 

presenting standard tokens interspersed with deviant tokens; when a deviant is heard, 

the MMN response is elicited (Näätänen et al. 2001).  The MMN can be elicited 

from a wide variety of infrequent changes including tone duration, spatial location, 

intensity, violations of a repeating tone pattern, and acoustic characteristics such as 

frequency  see    t nen et al. 2001 for a review).  Furthermore, evidence from 

neurophysiological studies using the MMN has shown language specific perceptual 

sensitivities (Dehaene-Lambertz 1997; Näätänen et al. 1997; Winkler et al. 1999).  

Unlike the FFR, the MMN can be elicited using a wide range of both periodic 

and aperiodic stimuli spanning low and high frequencies.  At a group level the MMN 

is fairly replicable; however, on an individual basis it is less reliable in terms of 
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detection and reproducibility (Näätänen & Kreegipuu 2012).  Furthermore, the MMN 

paradigm is not time-efficient, as a standard must be established before each 

response evoking deviant can be presented.  This means that for every trial the target 

is preceded by two to six standard stimuli, drastically increasing the testing 

time.  This limits the clinical applicability of the measure, and in experimental 

research, limits the number of conditions which can be reasonably tested within a 

single experiment. These disadvantages have led to interest in more time-efficient 

measures of cortical speech processing, such as the P1-N1-P2 complex or the 

acoustic change complex, which is the main focus of this thesis.  

1.2 The P1-N1-P2 Complex 

The auditory-evoked P1-N1-P2 complex takes the form of three distinct 

peaks: a positive peak at around 50 ms after stimulus onset, a negative peak at about 

100 ms, and a second positive peak at about 180 ms (Martin et al. 2007). The 

complex is considered an early cortical response, and is generated in the 

thalamocortical segment of the central auditory system (Vaughan & Ritter 1970; 

Wolpaw & Penry 1975; Näätänen & Picton 1987; Hyde 1997).  It can be elicited 

from sound onset or offset, or from the occurrence of a change within a sound.  

When elicited from a change within a sound, the response is known as the acoustic 

change complex (ACC; Ostroff et al. 1998; Martin & Boothroyd 1999, 2000).  P1-

N1-P2 responses to sound onset or offset share similar morphologies and they are not 

considered to be physiologically independent (as evidenced by temporal interactions; 

Hillyard & Picton 1978; and source localisation; Pantev et al. 1996a).  Furthermore, 

onset responses have been studied more extensively than offset responses.  As such, 
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offset responses are not discussed further.  In this section, P1-N1-P2 responses to 

onsets are first considered, and the ACC is discussed further in section 1.3.  Because 

each of the three components of the response is considered to be differentially 

affected by factors such as stimulus parameters, age, and attentional state, each 

component is considered individually after a summary of the global response. 

As the global P1-N1-P2 onset complex is elicited irrespective of stimulus 

type, it is often described as an obligatory response that reflects the neural encoding 

of the acoustic properties of an incoming signal, and so is necessary for behavioural 

detection (e.g. Martin et al. 2008).  However, there is growing evidence that at least 

some aspects of the P1-N1-P2 complex represent more than pure detection only, and 

may be indicative of attentional and training effects (Tremblay & Kraus 2002; 

Crowley & Colrain 2004; Wagner et al. 2013).  Furthermore, stimulus parameters 

can affect the amplitudes and latencies of the three components of the complex 

differentially (Crowley & Colrain 2004).   

Early research on the P1-N1-P2 complex used the onset response to estimate 

hearing sensitivity (Perl et al. 1953; Appleby et al. 1963; McCandless & Best 1964; 

Cody & Bickford 1965; Davis 1966; Davis et al. 1967; Beagley & Kellogg 1969; 

Tyberghein & Forrez 1971; Mendel et al. 1975) and more recently, the response has 

been found to provide a reasonable estimate of behavioural thresholds (Stapells 2002; 

Lightfoot & Kennedy 2006).  Despite this, the ABR is used for the clinical 

measurement of hearing thresholds rather than the P1-N1-P2 complex.  This is 

because the ABR is not affected by sleep, sedation or attention (Stapells et al. 1994, 

1995), whereas the P1-N1-P2 complex requires the subject to be awake.  Although it 

is not as practical as the ABR in clinical audiometry, the P1-N1-P2 complex is well 
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suited to speech processing research as it can be elicited using a broad range of 

speech material, and it has a larger amplitude than the ABR.   

1.2.1 P1 

For adults with normal hearing, the P1 occurs at approximately 50-80 ms 

after the onset of a sound, or after a change within a sound, and was first described 

by Geisler et al. (1958).  It is thought to reflect the initial detection of sound by the 

auditory cortex, and the encoding of the sound’s acoustic characteristics such as 

frequency, amplitude and timing at a pre-perceptual level (Shtyrov et al. 1998; 

Čeponienė et al. 2005; Anderson 2010).  It has not been shown previously to be very 

sensitive to the magnitude of acoustic differences (Čeponienė et al. 2005).  However, 

there is some evidence that the P1, when measured in the ACC, has a larger 

amplitude for changes between vowels than changes between fricatives (Iverson et al. 

2016), indicating that it could be useful for more varied stimuli.  Furthermore, it is 

possible that the P1 magnitude saturates quickly when a stimulus is detected, and so 

it may be more useful in experiments where the stimuli are near detection threshold 

(Iverson et al. 2016).   

P1 is generated in the primary auditory cortex at Heschl’s gyrus  Wood & 

Woolpaw 1982; Reite et al. 1988; Pool et al. 1989; Liégeois-Chauvel et al. 1994; 

Huotilainen et al. 1998; Ponton et al. 2002), however more recent work suggests that 

it has more complex generators including the hippocampus, the planum temporale, 

the lateral temporal cortex, and neocortical areas (Liégeois-Chauvel et al. 1994, 1999; 

Howard et al. 2000; Grunwald et al. 2003; Kisley et al. 2003). 
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The P1 is often described as an obligatory or gating response to the onset of a 

sound (Pratt 2012), and is not thought to be modulated by attention (Picton & 

Hillyard 1974).  However, there is some evidence of its amplitude increasing with 

greater cognitive effort (Rao et al. 2010).  The P1 is the least investigated of the three 

peaks, as it is the smallest in amplitude in adults and the least reliable to measure. 

1.2.2 N1 

The N1, first described by Davis (1939), is a negative peak that follows the 

P1, occurring at approximately 80-110 msec after the onset of a sound or the change 

within a sound.  It is thought to reflect the encoding of time-varying aspects of a 

sound, such as amplitude, spectral, and voice onset time changes (Sharma & Dorman 

1999; Martin & Boothroyd 2000; Sharma et al. 2000; Hoonhorst et al. 2009).  The 

N1 can be used to assess hearing thresholds in infants and children and was the first 

evoked potential to be used for this purpose (Barnet & Lodge 1966; Rapin & 

Graziani 1967; Suzuki & Origuchi 1969; Taguchi et al. 1969), however there are 

reports that it does not fully mature until adolescence (Barnet 1975; Paetau et al. 

1995; Bruneau et al. 1997; Pang & Taylor 2000; Ponton et al. 2000; Čeponienė et al. 

2002; Kushnerenko et al 2002). 

In general, the N1 response predominantly reflects the encoding of an audible 

stimulus onset or change, but unlike the P1, it is thought to vary with the magnitude 

of the acoustic change (Näätänen & Picton 1987; Picton 1990; Steinschneider & 

Dunn, 2002).  However, the relationship of the N1 amplitude to acoustic 

characteristics of stimuli is not always monotonic.  For example, at high intensity 

onset amplitudes, it has been suggested that the magnitude of the N1 starts to level 
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off or even decrease (Buchsbaum 1976; Adler & Adler 1989; Paiva et al. 2016).  

Moreover, when noise is added to an auditory signal, at high signal-to-noise-ratios 

(SNR; i.e. > +30 dB SNR), the N1 peak can actually increase in amplitude, whereas 

the P1 and P2 peaks decrease in amplitude even at low noise levels (Kaplan-Neeman 

et al. 2006; Parbery-Clark et al. 2011; Papesh et al. 2015). 

Näätänen & Picton (1987) describe three components of the N1.  The first is 

fronto-centrally predominant (Vaughan and Ritter, 1970), generated bilaterally by 

vertically oriented sources in the supratemporal plane.  The second component is 

biphasic, with a positive peak at around 100 ms and a negative peak at around 150 

ms, generated in the lateral aspect of the superior temporal gyrus (secondary auditory 

cortices) and recorded over the temporal areas.  This second component was first 

described by Wolpaw & Penry  1975) who termed it the ‘T-complex,’ and it has 

recently been found to be affected by the language background of the listener 

(Wagner et al. 2013).  The third component is measured at the vertex and it is 

suggested that it induces a widespread arousal of the neural networks that facilitates 

stimulus detection, analysis, and response generation (Näätänen & Picton 1987; 

Crowley & Colrain 2004). 

The amplitude of the N1 can be modulated with attentional focus and the 

predictability of the stimuli (Näätänen & Picton 1987; Hillyard et al., 1973; Woldorff 

& Hillyard 1991).  The magnitude of the N1 is increased with selective attention to 

the stimuli (Näätänen & Picton 1987) and salience of the stimuli (Escera et al. 1998; 

Melara et al. 2002), and decreases rapidly with habituation of repeated stimuli 

(Fruhstorfer 1971; Rust 1977; Megela & Teyler 1979; Kenemans et al. 1989).  

Furthermore, there is emerging evidence that the N1 amplitude can be predictive of 

speech-in-noise ability (Billings et al. 2013). 
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1.2.3 P2 

The P2 follows the N1, and in normal-hearing adults occurs at approximately 

160-200 ms after the onset of or change within a sound.  It matures as early as 2-3 

years of age (Barnet 1975; Paetau et al. 1995; Bruneau et al. 1997; Pang & Taylor 

2000; Ponton et al. 2000; Čeponienė et al. 2002; Kushnerenko et al 2002).  The P2 is 

largest when measured at the vertex not only for auditory stimuli, but also for visual 

and somatosensory stimuli (Oades et al. 1995; Potts et al. 1998; Crowley & Colrain 

2004), and it at least partly reflects the auditory driven output of the mesencephalitic 

reticular activating system (Knight et al. 1980; Näätänen & Picton 1987; Rif et al. 

1991; Woods et al. 1993; Crowley & Colrain 2004).  Using MEG, the sources of the 

P2 component have been identified to the anterior of the generators of the N1 (Sams 

et al. 1985; Hari et al. 1987; Pantev et al. 1991, 1996a, 1996b; Rif et al. 1991; Ross 

& Tremblay 2009). 

Research suggests that the P2 magnitude does not decrease with habituation 

(Megela & Teyler 1979; Kenemans et al. 1989; Crowley & Colrain 2004), however, 

there is some evidence to suggest response adaption does occur, albeit at a slower 

rate than for the N1 (Ritter et al. 1968; Rust 1977).  Furthermore, there is consistent 

evidence that P2 amplitude increases with psychoacoustic training and perceptual 

learning (Tremblay et al. 2001; Tremblay & Kraus 2002; Reinke et al. 2003; Ross & 

Tremblay 2009; Tremblay et al. 2014). 

Some research suggests that the P2 may have a role in the classification or 

categorisation of auditory stimuli.  In an oddball task, studies have found that the P2 

magnitude is increased in response to the non-target stimuli, compared to the same 

stimuli in a task that does not require modulation of attention from the listener 
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(Garcia-Larrea et al. 1992; Novak et al. 1992).  It has been suggested that this is an 

attention modulated effect (Novak et al. 1992), where the P2 contributes to 

identifying a stimulus as a target (Garcia-Larrea et al. 1992).  Furthermore, this effect 

is largest at frontal electrode sites, which are situated on top of brain regions that 

involve inhibiting interference by irrelevant stimuli (Dempster 1991, 1992; van 

Zomeran & Bouwer 1994; Crowley & Colrain 2004). 

The P2 decreases in amplitude when stimuli are attended.  This contrasts with 

the N1, which increases in amplitude.  However, this may reflect a combined effect 

of a broad negativity that occurs with attention (Hansen & Hillyard 1980; Näätänen 

& Picton 1987) making both the N1 and P2 appear more negative (i.e. resulting in a 

net increase in N1 magnitude, and decrease in P2 magnitude; Näätänen & Michie 

1979; Näätänen & Picton 1987; Michie et al. 1990, 1993). 

1.3 The Acoustic Change Complex 

As previously outlined, when the P1-N1-P2 complex is measured in response 

to an acoustic change in an on-going sound, it is known as the acoustic change 

complex (ACC; Ostroff et al. 1998; Martin & Boothroyd 1999, 2000).  A complex 

and constantly changing stimulus, such as continuous speech, produces multiple, 

often overlapping ACC responses.  Although the ACC shares the morphology of a 

P1-N1-P2 complex, the extent to which the P1-N1-P2 complex and the ACC share 

neural processes is not fully understood.  Whilst the onset-evoked P1-N1-P2 

complex is itself a response to an acoustic change (i.e. from silence to sound), there 

is some evidence to suggest it does not represent identical processes to the ACC.  For 

example, Jones et al. (1998) showed that the ACC to a change in pitch or timbre has 
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a more posterior scalp distribution than the onset P1-N1-P2 response.  Despite these 

distributional differences, as they are both a P1-N1-P2 complex to an acoustic 

change and share the same morphology they are often considered as variants of the 

same response.  However, the extent of this variation is not fully understood. 

The ACC is most commonly recorded from midline-central electrode sites 

which are dominated by contributions from the primary auditory cortex (e.g. Ponton 

et al. 2002; Tonnquist-Uhlen et al. 2003).  It can be elicited using changes to basic 

stimulus properties such as frequency, intensity, and phase (Martin et al. 2007; Jerger 

& Jerger 1970; Näätänen & Picton 1987; Dimitrijevic et al. 2008; Ross et al. 2007), 

as well as more naturalistic changes, such as spectral and intensity changes in speech 

or speech like sounds (Ostroff et al. 1998; Martin & Boothroyd 1999, 2000).   

The ACC, like the MMN, can be recorded without the listener actively 

listening or responding to the stimuli.  However, it has three primary advantages over 

the MMN. Firstly, it is more time-efficient, as it can be elicited using stimuli that 

changes rapidly, at a rate of up to 2-3 Hz (Iverson et al. 2016) without having to 

create a standard. Secondly, it has a larger magnitude than the MMN, and so is more 

easily observed.  Thirdly, it shows excellent test-retest reliability in individual adults 

(Martin & Boothroyd 1999; Tremblay et al. 2003).  Despite such apparent benefits, 

the use of ACC as a tool to measure speech processing has not been extensively 

investigated.   

Concerning speech stimuli, the ACC was first recorded in response to a 

change from a consonant to a vowel within a syllable (Kaukoranta et al. 1987; 

Ostroff et al. 1998).  It has also been recorded to isolated acoustic characteristics of 

speech, such as amplitude and formant frequency changes within a vowel (Martin & 

Boothroyd 2000).  As the ACC can be recorded using changes within speech stimuli, 
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it may have important clinical implications, as the measure demonstrates cortical 

encoding of the acoustic features in speech that are needed for speech perception 

(Martin et al. 2007, 2008; Wagner 2013). 

Usual measurement of the speech-evoked ACC typically involves recordings 

from isolated speech tokens with a phonetic change midway, such as /ui/ (Martin & 

Boothroyd 2000).  This stimulus is repeated up to a few hundred times, so that the 

response can be observed easily after averaging, and a silent gap is presented 

between each token (typically about 2 s; Martin & Boothroyd 2000; Tremblay et al. 

2003).  Martin et al. (2010) improved the time-efficiency of the ACC paradigm by 

removing the inter-token silence, and so presenting a continuous chain of tokens (e.g. 

/uiuiuiuiuiui/).  The ACC could be successfully measured at every change.  However, 

when stimuli are repeated in this way, the magnitude of the N1 can be suppressed 

(Fruhstorfer 1971; Rust 1977; Megela & Teyler 1979; Kenemans et al. 1989). 

Iverson et al. (2016) developed a method of recording the ACC that takes into 

account the multidimensional variability of natural speech, by allowing many more 

stimuli transitions to be measured in one experiment.  These authors presented a long 

string of speech tokens concatenated in a random order, where token changes 

occurred at a rate of 2-3 times a second.  Using this paradigm, the ACC was 

successfully recorded for over 50 different stimulus pairs in one experiment (i.e. a 

pair being a transition from one speech token to the next).  Furthermore, by 

presenting the speech token stimuli in a random order, N1 suppression effects of 

stimulus repetition are minimised.  The experiments described in this thesis used a 

paradigm similar to that of Iverson et al. (2016) in order to investigate the 

measurement of the ACC in different listening groups/conditions with a broad range 

of speech stimuli. 
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1.4 Aim 

In summary, the ACC has great potential in the field of speech perception 

research, as it is characterised by good time efficiency, large response amplitude, and 

high test re-test reliability.  The aim of this thesis was to investigate how the speech-

evoked ACC is affected by manipulations of listening condition, and to explore the 

potential benefit of the measure for wider use in research and in the clinic.  The work 

presented in this thesis describes three experiments that investigate the ACC in 

normal-hearing listeners in noise, cochlear implant users, and second language 

listeners.  A combination of EEG and behavioural speech perception testing was 

used to examine how the ACC is informative of overall speech processing, and how 

it is affected by manipulations of speech perception.  Chapter 2 details a study using 

a stimulus combination of four vowels and four fricatives, in quiet and in noise, to 

investigate how the ACC in normal-hearing listeners is affected by background noise, 

and how it relates to individual differences in speech-in-noise performance.  Chapter 

3 describes a study that presented cochlear implant (CI) users with the same fricative 

vowel stimuli as in Chapter 2, but presented in quiet only.  Here, the ACC was 

measured in a group of CI users and was compared to their behavioural speech 

perception performance.  The CI users’ neural entrainment to continuous speech was 

also measured, and then compared to their speech perception performance and ACC 

responses.  Finally, Chapter 4 details an ACC study using eight voiceless fricatives 

concatenated in a random order and played to native English, Finnish and Polish 

speakers.  The ACC and its relationship to the spectra of the stimuli were used to 

investigate cross language differences between the groups.   
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2 Speech in Noise and the ACC 

2.1 Introduction 

In everyday life, many people struggle to understand speech in the presence 

of background noise.  When in quiet, it is typically easy for a normal-hearing listener 

to follow a conversation with an individual speaker, whereas in a crowded room with 

multiple sound sources, the listener must selectively focus their attention on the 

desired speaker and tune out other voices and noise (Cocktail party effect: Cherry 

1953).  The attentional demand of selectively focusing on one speech source 

amongst competing sound sources remains a research topic of interest (e.g. 

Bronkhorst 2000).  In addition to attentional demands, the presence of co-occurring 

acoustical signals can physically mask the speech signal of interest, making 

comprehension difficult or impossible. 

Speech-in-noise (SIN) performance is often poor for the elderly, those with 

hearing loss, and those who are second-language listeners (e.g. Plomp 1978; Dubno 

et al. 1984; Rogers et al. 2006).  Although age and peripheral hearing loss are known 

to increase SIN impairment, those with normal hearing often also experience 

difficulty.  For example, a survey undertaken in the UK found that 26% of adults 

reported having difficulty understanding SIN, whereas only 16% had a hearing loss 

(≥ 25 dB HL, 0.5-4 kHz; Davis 1989).  Recently, there has been growing interest in 

forms of hearing damage that may not be apparent from audiometric assessment 

alone.  Animal studies have shown that noise exposure that results in temporary 

threshold elevations may also result in the permanent loss of peripheral (auditory 

nerve) fibers (Kujawa & Liberman 2009).  This form of ‘hidden’ hearing loss, in 
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which audiometric thresholds may appear normal, but elements of peripheral 

encoding are impaired, is currently being further explored in human listeners 

(Schaette & McAlpine 2011).  It is also being investigated how this form of hearing 

damage may affect processes relevant to SIN encoding, such as the ability to encode 

precise temporal information (e.g. Plack et al. 2014). 

There is great individual variability in speech recognition performance in 

noise.  Better understanding of the variability seen in SIN performance provides an 

opportunity for improved prediction of SIN problems, improved diagnosis of 

conditions that effect SIN processes, and improved rehabilitation for individuals with 

problems with SIN.  Such issues also concern our growing understanding of hidden 

hearing loss.  If forms of hearing damage exist that are not diagnosed by standard 

audiometric tests, then there is scope to improve audiological assessment, by 

devising new measures of performance in conditions that reflect those challenging to 

hidden hearing loss, such as SIN.  Furthermore, results from normal-hearing listeners 

can aid the identification of underlying mechanisms for speech processing in noise, 

which may then be relevant to understanding the causes of poor SIN performance 

associated with hearing impairment. 

Both behavioural and physiological measures can be used to assess SIN 

ability. A wide range of SIN performance has been observed, even between those 

with normal hearing (Zhao & Stephens 2007).  The reasons for these differences and 

the precise relationship between behavioural performance and physiological 

responses remain unclear.  Nevertheless, physiological measures have been used to 

explore this variation by providing insight into how signals in noise are encoded in 

the auditory system (Billings et al. 2013).  Observed cortical neural responses can 
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provide information about the neural mechanisms used to process an incoming 

speech signal in noise. 

This chapter details a study of the acoustic change complex (ACC) and the 

onset P1-N1-P2 complex to SIN in normal-hearing listeners.  Four vowels and four 

fricatives were concatenated into sequences in a random order, and played to 30 

native English normal-hearing listeners, in quiet, and in two levels of noise.  The 

ACC response was recorded to each change of stimuli.  Segments of silence were 

also occasionally present in the stimulus chain.  This allowed for a comparison of the 

ACC and the onset P1-N1-P2 complex.  Participants also completed a speech 

recognition task in noise, the results of which were compared to measures of the 

ACC and P1-N1-P2 complex responses.  Variability across individuals was 

examined, as well as a comparison between measures. 

2.1.1 CAEPs and Listening in Noise 

CAEP studies concerning listening in noise have adopted a variety of 

measures, including the MMN (Muller-Gass et al. 2001), the N100m (Hiraumi et al. 

2008; Alain et al. 2009), and the P1-N1-P2 onset response (e.g. Martin & Stapells 

2005; Parbery-Clark et al. 2011; Billings et al. 2013).  Both non-speech and speech 

stimuli have been investigated, and in general, cortical responses decrease in 

amplitude and increase in latency when stimuli are presented in noise, with some 

exceptions to this pattern, as discussed below (e.g., Martin & Stapells 2005; Parbery-

Clark et al. 2011; Billings et al. 2013). 

Using the P1-N1-P2 complex, Martin et al. (1997, 1999, 2005) and Whiting 

et al. (1998) explored how the N1 is affected by high pass, low pass, and broadband 
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noise.  Normal-hearing listeners were presented with the speech stimuli /ba/ and /da/.  

For all noise types, the N1 was present even when stimuli were not behaviourally 

discriminable from each other, and its amplitude decreased and latency increased 

with increasing noise level (or increasing/decreasing noise cut-off frequency; Martin 

et al. 1997; Whiting et al. 1998; Martin et al. 1999; Martin & Stapells 2005).  

Furthermore, they found that the N1 latency was more susceptible to degradation 

(increased latency) in noise than the N1 amplitude (Whiting et al. 1998). Several 

other studies have looked at adult P1-N1-P2 onset response to speech sounds, such as 

/ba/, /da/ or /ga/, or to non-speech sounds such as 1 kHz pure tones, in either white 

noise (Kaplan-Neeman et al. 2006; McCullagh et al. 2012; Kim et al. 2012; Sharma 

et al. 2014), speech-shaped noise (Papesh et al. 2015), broadband noise 

(Michalewski et al. 2009), or multi-talker babble (Parbery-Clark et al. 2011).  It has 

been observed consistently that for high signal to noise ratios (SNR; > +30 dB SNR) 

the N1 peak increases in amplitude, whereas the P1 and P2 peaks decrease in 

amplitude and increase in latency even at high SNRs (Kaplan-Neeman et al. 2006; 

Parbery-Clark et al. 2011; Papesh et al. 2015).  However, as noise increases (< +10 

dB SNR) all three peaks decrease in amplitude and increase in latency (McCullagh et 

al. 2012; Kim et al. 2012; Papesh et al. 2015).  Most previous studies have only 

addressed the N1 and the P2, as the P1 is often smaller in amplitude and more 

variable and so harder to measure reliably (Sharma et al. 2014).  As such, several 

studies have excluded this peak from analysis (Kaplan-Neeman et al. 2006; Parbery-

Clark et al. 2011; McCullagh et al. 2012), or have reported that it is affected 

differently by noise than the N1 and P2 peaks (Sharma et al. 2014).  One aim of the 

current study was to obtain a reliable P1 response for analysis (i.e. from collecting 

from a large sample and by presenting a high number of stimulus presentations). 
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The majority of studies that have investigated the P1-N1-P2 response to 

speech presented in noise have used the onset response to /ba/, /da/, or /ga/ speech 

stimuli (e.g. Martin et al. 1997; Whiting et al. 1998; Kaplan-Neeman et al. 2006; 

Sharma et al. 2014).  Fewer studies have measured responses to a broader range of 

speech stimuli (Zendel et al. 2015; Kuruvilla-Mathew et al. 2015).  Zendel et al. 

(2015) recorded the onset response to French CVC tokens in a multi-talker babble 

from musicians and non-musicians.  Consistent with previous studies, peak 

amplitudes decreased and peak latencies increased with decreasing SNR (e.g. Martin 

& Stapells 2005; Parbery-Clark et al. 2011; Billings et al. 2013).  Musicians typically 

display larger P1 responses.  Kuruvilla-Mathew et al. (2015) presented /di/, /ti/, /gi/, 

/mi/, /pi/, /si/ and /ʃi/ speech stimuli in a multi-talker babble at +10 dB SNR to 

normal-hearing listeners who were either wearing hearing aids or not.  The unaided 

conditions saw an increase in latencies and a decrease in amplitudes with noise, 

whereas amplification produced complex effects on latencies and amplitudes across 

speech stimuli and peaks.  

A related line of research has investigated the cortical responses to SIN of 

children with and without learning impairment or autism (Cunningham et al. 2001; 

Wible et al. 2002; Warrier et al. 2004; Russo et al. 2009; Anderson et al. 2010; 

Hassaan 2015).  In general, children have a more defined P1 than adults (Sharma et 

al. 2002; Čeponienė et al. 2002) and a less defined N1 (Sussman et al. 2008) and P2.  

As such, child studies typically focus on P1-N1 amplitude and latency.  As with the 

adult studies, /ba/, /da/, /ga/ or pure-tones are often used with white, broadband, 

speech shaped, or multi-talker babble noise.  Again, the peaks consistently decrease 

in amplitude and increase in latency when the signal to noise ratio is decreased. 

Anderson et al. (2010) tested 32 children with a /da/ stimulus, and compared HINT 
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(Hearing in Noise Test: Nilsson et al. 1994) scores to P1-N1-P2-N2 response 

characteristics.  Compared to speech presented in quiet, the P1 decreased in 

amplitude when the noise was added (multi-talker babble, +10 dB SNR).  When they 

split the data into the top and bottom SIN performers, they found that those who 

performed worse on the HINT task had a larger N2 response, which they theorised 

showed a link between cortical inhibition and SIN perception.  In contrast, 

Cunningham et al. (2001) found that children who performed worse in a just 

noticeable difference task between /ada/ and /aga/ also showed a smaller difference 

between their P2 and N2 peaks when listening to /da/ in broadband noise. 

To my knowledge, there have been two studies that directly compared the 

onset P1-N1-P2 response to speech in noise to behavioural measures of SIN 

performance in adult listeners (Billings et al. 2013; Parbery-Clark et al. 2011).  

Billings et al. (2013) tested 15 normal-hearing adults on their SIN ability using IEEE 

sentences (Rothauser et al. 1969) presented in speech-shaped noise.  They also 

measured P1-N1-P2 responses to /ba/ presented in speech-shaped noise at varying 

SNRs and varying signal levels.  They concluded that N1 amplitude and latency 

measures best predicted SIN performance (compared to P1 and P2). Those 

performing worse in the IEEE task showed smaller-amplitude and longer-latency N1 

responses.  The authors also found significant correlations at certain SNRs for P1 

amplitude and latency and P2 latency, but these correlations were overall less 

predictive of performance.  Parbery-Clark et al. (2011) tested 22 normal-hearing 

adults on their SIN ability using the HINT test, and measured subcortical (ABRs) 

and cortical (N1-P2) responses to the speech token /da/ in a multi-talker babble of 

varying level.  They found that at high SNRs the N1 amplitude and latency increased 

in comparison to in quiet.  Even at high SNRs, however, the P2 amplitude decreased 
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and latency increased in comparison to quiet.  Looking at all their combined results, 

the authors concluded that those with better ABRs or better subcortical resilience to 

noise and better HINT scores showed larger N1 responses. 

These two studies suggest that the onset P1-N1-P2 response, particularly the 

N1 component, shows some relationship with listeners’ SI  abilities.  To date 

however, there have been no studies investigating the relationship between listeners’ 

SIN ability and ACC response.  Although the ACC and the onset P1-N1-P2 complex 

share a similar morphology, it is not clear if they share the same neural generators 

(Martin et al. 2008).  The ACC provides insight into the listener’s ability to 

distinguish between acoustic features of speech, whereas the P1-N1-P2 complex 

represents the transition from silence to sound only. In other words, the former 

reflects the ability to discriminate speech-relevant acoustic features, whereas the 

latter may primarily reflect the obligatory detection/encoding of the onset of a new 

sound.  For this reason, the ACC may be a more meaningful index of SIN 

performance than the P1-N1-P2 onset complex.  However, it is not known whether 

the morphology of the ACC and the P1-N1-P2 complex are each similarly affected 

by the presence of noise.  To this end, the aim of the following study was to 

investigate the effect of noise on the ACC compared to the P1-N1-P2 complex, and 

to compare the relationship of these responses to SIN performance.  Furthermore, the 

speech stimuli used in previous studies have been limited, mainly consisting of /ba/,  

/ga/, and /da/.  This study aimed to investigate the effect of noise on the ACC and 

P1-N1-P2 complex using a broad range of speech stimuli.  We used a variety of 

speech tokens known to elicit a clear ACC in order to give a better representation of 

the variety of speech that a listener hears in daily life, and to minimize the adaptation 

effects associated with the repeated presentation of a single transition.  By testing 
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using a time-efficient presentation paradigm, each subject was presented with a large 

number of transitions between speech tokens.  Additionally, a relatively large sample 

was tested (n = 29).  As such, the experiment was designed with the aim of observing 

robust responses, allowing for a good representation of all early cortical components 

(especially the P1 peak).   

In Experiment 1, SIN ability was measured using a sentence recognition task 

in noise.  Participants listened to sentences in speech-shaped noise at three different 

SNRs, and were asked to repeat what they heard.  For this behavioural task, sentence 

recognition was chosen in order to provide a broad measure of participants’ SI  

abilities.  Experiment 2 measured the ACC and P1-N1-P2 onset responses to vowels 

and fricatives concatenated into chains in a random order, presented in speech-

shaped noise at three different SNRs.  The effect of noise on the ACC and the P1-

N1-P2 complex was explored, and response characteristics were compared to the 

results of the sentence recognition task.  Based on previous CAEP in noise studies, 

with the addition of noise, peak amplitudes of both the ACC and P1-N1-P2 complex 

were expected to be decreased, and component latencies were expected to be 

increased.  Additionally, the N1 of the ACC and the P1-N1-P2 complex was 

expected to show a relationship with the participants’ behavioural speech recognition 

in noise scores. 

2.2 Experiment 1: Sentence Recognition in Noise 

A sentence recognition task was used to measure the participants’ SIN 

abilities.  The results from this experiment accompany those from the following 

ACC and P1-N1-P2 onset complex in noise experiment (section 2.3).  
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2.2.1 Participants 

Thirty native English-speaking normal-hearing adults contributed to the 

experiment. However, one participant was removed from analysis owing to 

excessively noisy data in the EEG recording, leaving a group of 29 participants (age 

range: 19-38).  Native English was defined as those whose first language was 

English, and with no other language being spoken in their household before they 

started school.  All participants passed a hearing screening test by demonstrating 

thresholds of at least 20 dB HL for pure-tones presented in quiet at the octave 

frequencies between 250 and 8000 Hz.  All participants were right handed with no 

known neurological impairments. 

The experiment and recruitment for this study was approved by the 

University College London ethics committee.  All subjects provided their informed 

consent before beginning the experiment and were paid an honorarium for their time. 

2.2.2 Stimuli 

The Basic English Lexicon (BEL) sentence set was used to assess speech 

recognition (Calandruccio & Smiljanic 2012).  This set comprises a large lexicon of 

500 sentences created from non-native English conversation.  All BEL sentences 

were recorded from a female Southern British English Speaker (500 sentences).  The 

recordings were taken in a sound-proof booth with a 44.1 kHz sampling rate at 16 

bits per sample.  Speech-shaped noise was created based on the smoothed long-term 

average spectrum of the Bel sentence recordings.  The sentences were embedded in 

this noise with SNRs of -9, -6, and -3 dB; with the noise level fixed and the sentence 

level adjusted. 
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2.2.3 Apparatus 

A Fireface UC external audio interface (44.1 kHz sampling rate, 16 bits per 

sample) connected to Etymotic Research ER-1 insert earphones was used for 

stimulus presentation.  Stimuli were presented binaurally at 65 dB SPL, and the 

sound level was verified with a Brüel & Kjaer 4157 artificial ear for insert earphones.  

Stimuli were presented using Praat (Boersma & Weenink 2013). 

2.2.4 Procedure 

Each participant listened to 20 sentences at each of the three SNR conditions 

(i.e. 60 sentences in total).  Each sentence was selected randomly from the lexicon of 

500 BEL sentences.  For each participant, sentences were not repeated within or 

across SNR conditions.  The stimuli were presented in a single block, for which the 

presentation order of SNR conditions was randomised.  The participant and the 

experimenter were seated in a sound-proof booth.  After the end of each stimulus 

presentation, the participant was asked to repeat back what they had heard, and the 

experimenter recorded the number of key words in the sentence they identified 

correctly (each Bel sentence contains four key words; e.g. The RABBIT and 

MOUSE EXPLORED the FIELD).   

2.2.5 Results  

For each SNR condition, the percentage of key words correct was calculated 

for each participant.  This data is presented in Figure 2.1.  Overall, participants 

performed worse as SNR was decreased (-9 dB SNR: mean = 37.97%, s.d. = 10.89, -



 

 

36 

6 dB SNR: mean = 78.92%, s.d = 8.17, -3 dB SNR: mean = 94.01%, s.d = 4.10).  As 

the variances were not equal between the results at each SNR (variability in 

performance increased as the SNR decreased, as evident from the increased ranges 

and interquartile ranges observed in Figure 2.1), a logistic mixed model was used.  

Sentence and subject were random intercepts, SNR was the independent variable and 

the sentence recognition response (i.e. coded as 1 for all key words correct within the 

sentence, and 0 for less than all key words correct, as a binary response is needed for 

a logistic regression with mixed factors) as the dependent variable.  The results 

showed that the effect of SNR on the scores was significant (χ
2
(2) = 189.65, p 

< .001). 

 

Figure 2.1 Boxplots showing the median (38.75, 80.00, 95.00), range (41.25, 25.00, 15.00) 

and interquartile ranges (16.25, 8.75, 6.25) for the BEL sentence task performance at – 9 dB 

SNR, -6 dB SNR, and -3 dB SNR respectively. 
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The sentence recognition results at -3 dB SNR were close to 100% and 

showed a ceiling effect.  Furthermore, at -9 dB SNR some listeners performed very 

poorly, and so individual sentence scores at -6 dB SNR were used as the measure of 

SIN ability for Experiment 2.  This intermediate condition reflected an SNR where 

speech recognition remained moderately high, but where the noise caused some 

impairment to performance. 

2.3 Experiment 2: The Acoustic Change Complex in Noise 

Experiment 1 showed that participants performed worse at the sentence 

recognition task as the SNR decreased.  Furthermore, as SNR decreased, 

performance also became more variable between individuals.  In Experiment 2, the 

ACC and onset P1-N1-P2 responses were recorded for a variety of speech sounds.  

The effect of noise on these responses was assessed, and then characteristics of the 

ACC and onset responses were compared to SIN performance.  

2.3.1 Participants 

The same 29 participants that were tested in Experiment 1 were tested in 

Experiment 2. 

2.3.2 Stimuli 

The stimuli comprised of four vowels (/ɑ/, /i/, /ɔ/, /u/), as heard in the words 

Bart, beat, bought and boot, and four fricatives (/ʃ/, /s/, /v/, /z/) as heard at the 

beginning of the words short, sing, vine and zip, and silence.  Sustained vowels and 
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fricatives were recorded from a female Southern British English speaker.  The 

recordings were made in a sound-proof booth with a 44.1 kHz sampling rate at 16 

bits per sample.  Speech stimuli manipulations were then conducted in Praat 

(Boersma & Weenink 2013).  For each recorded sound, a one second segment that 

was deemed to be reasonably static (minimal spectral change) was extracted from the 

recording.  The amplitude envelope of each segment was then flattened by 

calculating the envelope of the original recording (full rectification and a 50-Hz low-

pass filter, and then normalized).  The original recording was then divided by this 

envelope, and the overall amplitudes of all eight phonemes were rescaled to be equal.  

For the vowels and voiced fricatives, the pitch was flattened to the mean pitch of the 

recordings (200 Hz) using an overlap-add method (Boersma & Weenink 2013).   

The four vowels, four fricatives, and portions of silence were then 

concatenated into a random order without replacement (the same stimulus could not 

appear twice in a row) to create two-minute sequences that included all possible pair 

transitions (i.e. 72 possible transitions including each sound to silence and vice 

versa).  The phonemes were concatenated by splicing each transition with 50 ms 

raised-cosine ramps at each overlapping transition (i.e. the phoneme was ramped 

down at the same time as the new phoneme was ramped up).  The duration of each 

stimulus was randomly jittered from 350-450 ms, with the segment randomly 

selected from the longer, one-second recording.  This minimised the possibility of 

any spectral discontinuity within the recorded stimuli from being consistently time-

aligned to the spectral changes.  After the phonemes were concatenated into a two-

minute sequence, the entire amplitude envelope was flattened to correct for 

amplitude fluctuations during the brief overlapping transitions.  These concatenations 

were made into two-minute audio files either in quiet or with speech-shaped noise 
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added at +4 dB SNR or -3 dB SNR.  For CAEPs from signals presented in noise, the 

effect of SNR has been shown to obscure any effect of signal level (Billings et al. 

2009; Billings et al. 2012; Billings et al. 2013; Sharma et al. 2014).  As such, the 

noise level was held constant across conditions, and the signal level was adjusted to 

create the desired SNRs.  Each two-minute sequence was only used once. 

2.3.3 Apparatus 

All stimuli were presented binaurally via Praat (Boersma & Weenink 

2013).  A Fireface UC external audio interface (44.1 kHz sampling rate, 16 bits per 

sample) connected to Etymotic Research ER-1 insert earphones was used for 

stimulus presentation via a custom-built headphone amplifier.  Stimuli were 

presented at 65 dB SPL, and the sound level was verified with a Brüel & Kjaer 4157 

artificial ear for insert earphones.   

An additional audio channel was used to provide stimuli timing information 

to the EEG system.  A custom converter was used to convert the audio signal into 

TTL pulses, which was recorded as a time-aligned trigger by the EEG 

system.  Testing occurred in an electromagnetically shielded sound-proof booth that 

was kept at 19
o
C to minimize sweat artefacts.  Within the booth, mains electricity 

was turned off during testing to reduce electrical artefacts as far as possible.   

Evoked responses were recorded with a BioSemi ActiveTwo EEG system.  

Sixty-four active surface electrodes were placed in accordance with the international 

10-20 system.  Seven additional electrodes were placed on the left and right mastoid, 

left and right canthus, above and below the left eye, and on the tip of the 

nose.  Responses were recorded at a sampling rate of 2048 Hz. 
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2.3.4 Procedure 

Each participant was presented with 20 minutes (i.e. 10 two-minute 

sequences) of each condition (quiet, +4 dB SNR, and -3 dB SNR).  This means that 

in total, each participant heard approximately 42 repetitions of each possible pair at 

each noise level (i.e. each possible phoneme transition pair).  The entire stimulus 

presentation time was around one hour.  During testing, participants watched a silent 

animated film, and were given the opportunity for a short break every 10 minutes. 

2.3.5 Analysis 

Data were processed offline in MATLAB (MathWorks 2013a), using the 

toolboxes Fieldtrip (Oostenveld et al. 2011), EEGlab (Delorme & Makeig 2004), 

ERPlab (Lopez-Calderon & Luck 2014), and NoiseTools (de Cheveigné & Simon 

2007, 2008a, 2008b; de Cheveigné 2010, 2012, 2016; de Cheveigné & Parra 2014; 

de Cheveigné & Arzounian 2015).  For each electrode channel, data were first high 

pass filtered at 0.1 Hz (Butterworth filter, as implemented by the ERPlab plugins 

within EEGlab), and then referenced to the mastoid electrodes.  Using Fieldtrip, the 

recording was then segmented into epochs spanning from 100 ms before to 350 ms 

after each stimulus onset.  Epochs were then baseline corrected to a 100 ms window 

before the stimulus change.  Data were then low pass filtered at 30 Hz (Butterworth 

filter, as implemented by Fieldtrip) and downsampled to a 512 Hz sampling rate.  
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Using NoiseTools, denoising source separation (DSS
1
) was used to extract the 

ACC/P1-N1-P2 components for each subject, using a method that increased the 

signal-to-noise ratio of the neural signals, by selecting linear combinations of 

electrodes that maximised the repeatability of the ACC/P1-N1-P2 activity.  After 

visual inspection of the DSS components, the first three were selected and the 

response was taken as the projection of these three components back into sensor 

space at electrode FCz.  Epochs in which the signal amplitude exceeded 150 µV 

were rejected due to their high noise level, and the remaining epochs were averaged 

for each pair transition at each noise level.   

Statistical analysis was run using R (R Core Team 2013).  For linear mixed-

model analyses the R ‘lme4’ package  Bates et al. 2015) was used, and type II 

analysis-of-variance tables calculated were using the ‘CAR’ package  Fox 

                                                 

 

1
 Denoising source separation (DSS) is a component analysis, which uses principle 

components analysis (PCA) alongside normalisation and a set of bias filters to isolate 

artefactual components and correct for them across the whole sensor space.  It is assumed 

that components can be removed without affecting the rest of the data, or that reliable 

components of interest can be selected.  DSS is thought to be more effective than other linear 

methods, such as ICA (de Cheveigné, A., Parra, L. 2014).  Furthermore, it can be used to 

isolate the desired response, which can then be projected back into the sensor space.  For the 

current study, DSS was applied using the Matlab toolbox NoiseTools (de Cheveigné & 

Simon 2007, 2008a, 2008b; de Cheveigné 2010, 2012, 2016; de Cheveigné & Parra 2014; de 

Cheveigné & Arzounian 2015). 
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&Weisberg 2011).  The ‘lsmeans’ package (Lenth 2016) was used for post-hoc 

analysis. 

2.3.6 Results 

The effects of noise on the ACC and on P1-N1-P2 onset responses 

The data was subdivided into two groups: ‘ACC’ trials (those which 

comprised of transitions from speech to speech; i.e. all trials with silence involved 

were excluded leaving 56 pairs), and ‘onset’ trials (those containing a transition from 

silence to speech only, leaving 8 pairs; i.e. providing a P1-N1-P2 onset complex).  

Trials containing a transition from sound to silence were excluded from analysis.  

For both of these groups, the scalp distributions showed that the averaged response 

across all pairs was most prominent in fronto-central locations, with the largest 

response being observed at FCz (Figure 2.2).  Response magnitude was highest for 

the onset trials in quiet.  Figure 2.2 also shows the averaged response at FCz across 

all subjects for the three noise conditions, in quiet (blue), at +4 dB SNR (black), and 

at -3 dB SNR (red), for both groups of trials.  In both trial groups, all three peaks (P1, 

N1, and P2) were largest in the quiet condition and smallest in the -3 dB SNR 

condition.  The latency of all three peaks also appeared to increase with increasing 

noise level. 

To estimate the peak amplitude for each participant at each noise level, the 

maximum (P1 and P2) and minimum (N1) points within windows taken from the 

relative peaks in the grand mean response (Figure 2.2) were identified.  The peak 

amplitude was estimated as the average amplitude of the waveform from a 7 ms 

window around that maximum/minimum point (i.e. 3.5 ms either side of the peak).  
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The peak latencies were estimated by taking the time from the stimulus change onset 

to the maximum/minimum points used to calculate the peak amplitudes. 

 

Figure 2.2 Top panels: Grand mean responses at FCz, for ACC (56 pairs) and onset (8 pairs) 

in quiet (blue), +4 dB SNR (black) and -3 dB SNR (red). The stimulus onset is at 0 s.  

Bottom panels: Scalp distributions were calculated for P2 (150-250 ms), and the colour 

range used in all plots ranges from -1.4 to +1.8 µV.  Plot outlines denote the noise condition 

(as for top panels). 

To investigate the effect of noise on the ACC and P1-N1-P2 onset responses, 

a linear mixed models analysis was run.  By-subject and by-pair were entered as 

random intercepts, with the peak amplitude as the dependent measure. P1, N1, and 

P2 components were each analysed in separate models.  For each model, SNR (quiet, 

+4, and -3 dB SNR), trial type (ACC or onset), and their interaction were fixed 

factors.  For the P1, there were main effects for both SNR and trial type (χ
2
(2) = 
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506.68, p < .001, and χ
2
(1) = 14.81, p < .001, respectively), and a significant 

interaction between SNR and trial type (χ
2
(2) = 24.99, p < .001).  For the N1, there 

was a main effect of SNR (χ
2
(2) = 47.88, p < .001), and a significant interaction 

between SNR and trial type (χ
2
(2) = 60.15, p < .001).  For the P2, there was also a 

main effect of SNR (χ
2
(2) = 371.96, p < .001), and a significant interaction between 

SNR and trial type (χ
2
(2) = 54.85, p < .001).  These main effects demonstrate that the 

response amplitude of all three peaks decreased with decreasing SNR.  The main 

effect of trial type for the P1 only suggests that only this peak showed a distinction 

between onset and ACC trials, but the significant interaction between SNR and trial 

type for all three peaks suggests that the SNR affected responses differentially 

between trial groups.   

A Tukey HSD-adjusted pair wise comparison showed that for all three peaks 

in the ACC trials, the effect of noise was graded. Peak amplitudes were largest in 

quiet, smallest at -3 dB SNR, and intermediate at +4 dB SNR (p < .01 for all 

comparisons).  For the onset trials, peak amplitudes (P1, N1, and P2) were larger in 

quiet than in +4 or -3 dB SNR (p < .01 for all comparisons).  However, there was no 

difference in the peak amplitudes between the SNRs of +4 or -3 dB (P1: p = .050; N1: 

p = .061; P2: p = .14).  The effect of noise on peak amplitudes in both ACC and 

onset trials is visualised in the top row of Figure 2.3.  The figure shows that the 

reduction in ACC magnitude was graded by noise condition.  In contrast, for the 

onset trials, peak amplitudes were reduced in the presence of noise (barring the N1 

component), but were less differentiated by SNR (i.e. +4 or -3 dB SNR). 

In quiet, the P1 and P2 amplitudes were larger in the onset trials than in the 

ACC trials (p < .01 for both comparisons).  In contrast, the N1 amplitude was smaller 

in the onset trials than in the ACC trials (p < .01).  From figures 2.2 and 2.3, one may 
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speculate that the smaller N1 in the onset trials likely reflects the larger P1 and P2 

amplitudes in those trials having a global effect on the entire response complex, 

making it more “positive” overall.  At +4 dB S R, only the P1 remained larger in the 

onset trials compared to the ACC trials (p < .05), as the N1 and P2 amplitudes were 

not significantly different between trial groups (N1: p = .78; P2: p = .70).  At -3 dB 

SNR there was no difference in any of the peak amplitudes between the ACC trials 

and the onset trials (P1: p = .12; N1: p = .78; P2: p = .70).   

A linear mixed model analysis was then run to compare peak latencies.  As 

for the amplitude analysis, by-subject and by-pair were random intercepts, and the 

peak latency was the dependent measure.  The P1, N1, and P2 components were 

analysed in separate models.  The SNR (quiet, +4 and -3 dB SNR), trial type (ACC 

or onset), and their interaction were fixed factors.  In all three models there was a 

main effect of SNR (P1: χ
2
(2) = 165.08, p < .001; N1: χ

2
(2) = 699.34, p < .001; P2: 

χ
2
(2) = 5220.80, p < .001), but there were no main effects of trial type, nor any 

interactions between SNR and trial type (p > .05 in all cases).  These findings 

indicate that the noise had a significant influence on the response latency (i.e. latency 

increased with noise), and that this effect was not significantly different between the 

ACC and the onset trials.  Response latencies are plotted in the bottom panels of 

Figure 2.3. 
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Figure 2.3 Boxplots showing the P1, N1, and P2 peak amplitudes in the top row, and peak 

latencies in the bottom row.  The different SNR conditions are plotted in different colour 

bars: in quiet (blue), at +4 dB SNR (grey) and at -3 dB SNR (red).  All data are from FCz, 

and averaged across either ACC trials (left) or onset trials (right). 

Comparison of the ACC and onset to SIN performance 

For the following analysis, behavioural SIN ability for each participant was 

compared to their CAEP responses.  In Experiment 1, each participant performed a 

sentence recognition task at three different noise levels (-3, -6, and -9 dB SNR).  The 

sentence recognition results at -3 dB SNR were close to 100% and showed a ceiling 

effect.  The results at -9 dB SNR were low, and overall reflected poor recognition.  
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Therefore, performance at -6 dB SNR was used as the measure of SIN ability for the 

following analysis.   

The latencies of the peaks were difficult to measure reliably for individual 

stimulus pairs with low-amplitude responses, particularly at low SNRs.  As such, 

only peak amplitudes are considered in this section.  A linear mixed models analysis 

was used to investigate the effect of SIN performance on the peak amplitudes of the 

ACC and onset responses.  Participants and stimulus-pair were random intercepts, 

and the peak amplitude was the dependent measure (P1, N1, and P2 in separate 

models).  SNR (quiet, +4, and -3 dB SNR), SIN score, trial type (ACC or onset), and 

their interactions were fixed factors.  The main effects of trial type and interactions 

between trial type and SNR were reported in the previous analysis and so are not 

reported again here.   

For P1, there was a main effect of SNR (χ
2
(2) = 512.41, p < .001), but no 

main effect of SIN score (χ
2
(1) = 3.12, p = .077).  There was a significant interaction 

between SNR and SIN score (χ
2
(2) = 59.70, p < .001), but there was no significant 

interaction between SIN score and trial type (χ
2
(1) = 1.17, p = .28), or between SIN 

score, SNR, and trial type (χ
2
(2) = 1.03, p = .60).   

For N1, there was a main effect of SNR (χ
2
(2) = 48.06, p < .001), but no main 

effect of SIN score (χ
2
(1) = 0.63, p = .43).  There was a significant interaction 

between SNR and SIN score (χ
2
(2) = 19.12, p < .001), but there was no significant 

interaction between SIN score and trial type (χ
2
(1) = 1.15, p = .28), or between SIN 

score, SNR, and trial type (χ
2
(2) = 0.067, p = .97).   

For P2, there was a main effect of SNR (χ
2
(2) = 372.16, p < .001), but no 

main effect of SIN score (χ
2
(1) = 0.88, p = .35), and there was no significant 

interaction between SNR and SIN score (χ
2
(2) = 2.82, p = .24).  Furthermore, there 



 

 

48 

was no significant interaction between SIN score and trial type (χ
2
(1) = 0.15, p = .70), 

or between SIN score, SNR, and trial type (χ
2
(2) = 0.012, p = .99).   

The lack of any significant interactions between trial type and SIN score 

suggests that the relationships between the peak amplitudes and SIN score were not 

statistically different between the ACC and the onset trials.  The interaction between 

SNR and SIN score for the P1 and N1 peaks is explored in Figure 2.4.  The figure 

shows that participants with lower SIN scores showed a larger P1 response, 

particularly in quiet (left panel).  When compared to quiet, all participants showed a 

reduced P1 in the presence of noise, nevertheless worse performers continued to 

exhibit larger amplitudes than better performers.  For the N1, an opposite pattern is 

observed (Figure 2.4, right panel).  Participants with lower SIN scores showed 

smaller N1 responses, particularly in quiet.  For the quieter noise condition (+4 dB 

SNR), N1 magnitude also increased with better behavioural performance, however 

this effect was not as pronounced as in quiet.  For the louder noise condition (-3 dB 

SNR), N1 magnitude varied little with SIN performance in the behavioural task. 

To explore the interaction further, Pearson correlations were used to 

characterise the relationship between SIN scores and the P1 and N1 peak amplitudes 

for each of the SNRs.  Significance was tested using linear mixed-models with by-

subject and by-pair random intercepts, the peak amplitude as the dependent measure, 

and SIN score as the independent measure.  A different model was calculated for 

each SNR.  P1 in quiet was significantly correlated with SIN score (r = -0.37, χ
2
(1) = 

4.69, p = .030), but not at +4 dB SNR (r = -0.13, χ
2
(1) = 2.00, p = .16), nor at -3 dB 

SNR (r = -0.25, χ
2
(1) = 0.50, p = .48).  N1 amplitude was not significantly correlated 

with SIN score at any SNR, however, the relationship in quiet was stronger than in 
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noise (quiet: r = -0.21, χ
2
(1) = 1.35, p = .25; +4 dB SNR: r = -0.0047, χ

2
(1) = 0.39, p 

= .53; -3 dB SNR: r = -0.12, χ
2
(1) = 0.0006, p = .98). 

 

Figure 2.4 Plots showing the interactions between SNR and SIN score for the P1 (left), and 

the N1 (right), by showing linear regression lines for SIN score versus N1/P1 peak amplitude 

at each SNR. 

2.4 Discussion 

The aim of this study was to investigate the effect of noise on the ACC and 

the P1-N1-P2 onset complex to a broad range of speech stimuli in normal-hearing 

listeners.  Additionally, the properties of these responses were compared to speech-

in-noise (SIN) performance in a sentence recognition task.  There is good evidence 

that SIN performance is challenging for certain listeners, such as the hearing 

impaired and the elderly (e.g. Plomp, 1978; Dubno et al. 1984; Rogers et al. 2006).  
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Additionally, there is growing interest in variable performance in people with 

seemingly normal audiograms.  Whilst the reasons for such variability remain 

unclear, recent evidence suggests certain peripheral hearing damage may affect 

hearing performance in certain situations but not audiometric thresholds (hidden 

hearing loss; Schaette & McAlpine 2011; Plack et al. 2014).  On the basis of such 

considerations, there is renewed interest in characterising and understanding SIN 

performance, especially for clinical benefit. Whilst previous studies have 

characterised how early cortical responses to speech are affected by noise (e.g. 

Martin & Stapells 2005; Parbery-Clark et al. 2011; Billings et al. 2013), there has 

been no direct comparison between the ACC to speech and behavioural SIN 

performance.  The ACC to changing speech phonemes may be a good indicator of 

SIN performance, as it relies on the discrimination of speech-relevant spectral 

fluctuations.  This was assessed in the current experiment.  The paradigm used in this 

experiment represented a time-efficient measure of the ACC, and allowed for a 

robust ACC response to be observed in all individuals. 

In summary, as the SNR decreased, for both the ACC and the onset trials the 

amplitude of the response decreased and the latencies increased.  However, the ACC 

was more sensitive to the change in the level of presented noise, as its amplitude 

reduced in a graded manner as the SNR decreased.  The amplitude of the onset 

complex decreased in the presence of noise, but did not decrease further with further 

SNR reduction.  A second aim of the study was to explore how onset and ACC 

responses predict behavioural SIN performance. When comparing performance on a 

sentence recognition task in noise to the CAEP responses, poorer performers showed 

smaller N1 responses and larger P1 responses. This pattern was observed most 

strongly for CAEPs to stimuli presented in quiet.  This observed relationship 
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between peak amplitudes and behavioural performance was the same for both the 

ACC and the P1-N1-P2 complex responses. 

The ACC shows a graded response to the addition of noise 

When noise was added to the signal, the amplitudes of both the ACC and the 

onset responses were reduced.  This is consistent with previous studies of cortical 

responses to SIN (Kaplan-Neeman et al. 2006; Kim et al. 2012; Papesh et al. 2015).  

The current results suggest that the ACC amplitude was more sensitive to changes in 

SNR, whereas the onset response was only sensitive only to the addition of noise, 

irrespective of SNR.  This comparison has not been made in previous literature, but 

some studies have shown that the P1-N1-P2 complex does not show a graded 

decrease in amplitude with decreasing SNR (e.g. McCullagh et al. 2012; Papesh et al. 

2015).  This could be an indication of the onset response reflecting primarily the 

obligatory detection of an incoming sound, and so may be relatively invariant for 

spectral differences in detected stimuli. In contrast, the ACC to changing speech 

tokens, as measured here, relies on the detection of spectral changes in a speech 

stimulus.  It is likely that the salience of the spectral change is reduced with 

decreasing SNR; for example, we observed a graded deterioration in behavioural 

performance as SNR is decreased.  To this end, the ACC measure tested here may 

provide a more meaningful index of SIN performance than the P1-N1-P2 complex; 

as the former relies on the discrimination of speech-relevant spectral changes 

whereas the latter is indicative of stimuli detection only (i.e. the onset of an 

unmasked signal).  Alongside some distributional differences between the ACC and 

the onset P1-N1-P2 complex (Jones et al. 1998), these behavioural differences seen 

in the current study suggest that there are some distinct characteristics between the 
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two, despite them sharing the same morphology.  However, whether they are distinct 

responses or variants of the same response remains uncertain.   

Furthermore, the graded ACC response in noise observed currently also 

included the P1 amplitude of the ACC.  The P1 has previously been shown to be 

insensitive to the magnitude of acoustic differences (Čeponienė et al. 2005).  

However, the current results suggest that the peak is sensitive to changes in the SNR 

of the stimulus. 

P1 is larger for poorer SIN performers 

Typically, the P1 is small in adults and so is often excluded from analyses 

(Kaplan-Neeman et al. 2006; Parbery-Clark et al. 2011; McCullagh et al. 2012).  A 

benefit of the current design is that responses to multiple acoustic changes can be 

recorded in a short space of time.  This factor combined with the relatively large 

sample size of the current study meant that the P1 could be reliably measured.  As 

such, the P1 observed in the current study can be considered robust, and can be 

analysed with confidence.  The results show that poorer performers in the sentence 

task showed larger P1 responses (particularly in quiet).  Previous findings have 

suggested that the N1 is the most reliable predictor of SIN ability (Parbery-Clark et 

al. 2011; Billings et al. 2013).  The current finding, that worse SIN performance is 

related to a larger P1, would initially appear counter intuitive to these previous 

observations.  However, the current P1 findings are partially supported by a study by 

Billings et al. (2013).  These authors tested 15 normal-hearing adults on their SIN 

ability using IEEE sentences (Rothauser et al. 1969) in speech-shaped noise.  They 

also measured P1-N1-P2 responses to a /ba/ stimulus presented in speech-shaped 

noise at varying SNRs and varying signal levels.  They found that for behavioural 
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performance with a 60 dB SPL signal, the best predictor of the individual score was 

the N1 amplitude at +5 dB SNR (r = 0.77).  However, the next best predictor was the 

P1 amplitude at +35 dB SNR.  Here, those that performed worse on the behavioural 

task showed a larger P1 amplitude (r = 0.74).  This is consistent with the current 

results. 

The enhancement of certain aspects of cortical responses has been seen with 

musicians (Lee et al. 2009; Strait et al. 2009; Zendel et al. 2015).  Zendel et al. (2015) 

found that the P1 was enhanced in musicians compared to non-musicians when 

actively listening to speech in a multi-talker babble.  Additionally, the P1 peak was 

also delayed in the musically experienced group.  The musicians also performed 

better in a behavioural SIN task than the non-musicians.  The authors theorised that 

musicians rely more heavily on acoustic cues when listening to SIN than non-

musicians.  This P1 enhancement and delay during active listening could be related 

to the current results. More specifically, poorer SIN listeners may require more 

attention to perform compared to those with better SIN processing abilities.  It could 

be that pre-conscious attentional processes affect the top-down modulation of 

responses, even though participants were not instructed to actively attend the stimuli 

(e.g. Tervaniemi et al. 2009; Anderson et al. 2010).  Whereas musicians outperform 

non-musicians and have an enhanced and delayed P1, perhaps non-musicians who 

weigh more on acoustic cues do worse in SIN tasks.  Their strategy for listening in 

quiet does not withstand the presence of noise. 

A related possibility is that increased P1 amplitude with poorer SIN 

performance could be indicative of listening effort.  Rao et al. (2010) demonstrated 

that the P1 was enhanced in a task that involved greater listening effort.  The authors 

used Garner’s interference paradigm  Garner 1974), where participants classified the 
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pitch of either a pure tone or a filtered noise band, presented alongside compound 

sounds containing both a pure tone and a filtered noise band.  The frequency of the 

pure tone was either ‘high’ or ‘low’, and the frequency band of the filtered noise was 

also either ‘high’ or ‘low’, yielding four compound sound combinations.  

Participants were asked to classify either the pitch of the pure tone or of the filtered 

noise band as high or low in blocks whilst the pitch of the non-target was either kept 

constant or varied (i.e. constant vs. varied background condition).  Furthermore, the 

SNR was kept at +15 dB in favour of the pure tone.  The SNR meant that the 

classification of the pitch of the filtered noise band was a more difficult task (and 

required more cognitive effort) than the classification of the pitch of the pure tone, 

and the varied background condition was more difficult (and required more cognitive 

effort) than the constant background condition.  In this paradigm, the cognitive effort 

needed to do the tasks was different, whilst the compound auditory stimuli were 

physically identical.  The results showed increased P1 amplitudes for the varying 

background condition and for the pitch classification of the filtered noise bands, 

therefore the larger P1 was attributed to increased cognitive effort.  In the current 

study, it is plausible that the lower SIN performers required greater cognitive effort 

than the higher performers because they find listening in noise challenging.  

However, as participants were not instructed to attend to the sounds, this 

interpretation would assume that participants were either paying some level of 

attention to the sound stimuli, or that cognitive effort was obligatorily allocated to 

the speech stimuli.  Additionally, P1 variations were observed when the speech 

stimuli were presented in quiet, so one could speculate that variation in cognitive 

listening effort is extended to listening in quiet also.  Of the three peaks, the N1 is 

most often associated with an increase in amplitude with selective attention (Hillyard 
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et al. 1973; Näätänen & Picton 1987; Woldorf & Hillyard 1991), however the results 

of this study suggest that the P1 may also be modulated by certain aspects of 

subconscious attention or effort.  It is possible that these effects are not observed in 

studies where attention is modulated explicitly because they are masked by the broad 

processing negativity that occurs with attention (Hansen & Hillyard 1980; Näätänen 

& Picton 1987; Näätänen 1990; Alho et al. 1994).  Further study would be required 

to directly assess the cognitive effort associated with the current task. 

It is also possible that the greater amplitude of the P1 in quiet in poorer SIN 

performers is indicative of reduced neural efficiency.  The better SIN performers 

could require fewer neural resources in order to achieve accurate speech perception 

than the poor performers.  This theory has been used in the past to explain 

correlations between cortical responses and IQ scores (Robaey et al. 1995; Zhang et 

al.  2006), and to explain correlations between N2 amplitude and SIN performance 

(Anderson et al. 2010).  Anderson et al. (2010) tested 32 children, and compared 

HINT (Hearing in Noise Test: Nilsson et al. 1994) scores to P1-N1-P2-N2 response 

characteristics to /da/.  Compared to speech presented in quiet, the P1 decreased in 

amplitude when the noise was added (multi-talker babble, +10 dB SNR), but it 

wasn’t effected by HI T performance.  However, when they split the data into to the 

‘good’ and ‘poor’ SI  performers, they found that those who performed worse on 

the HINT task had a larger N2 response.  They suggest that the top SIN performers 

may have been recruiting fewer neural resources due to greater neural efficiency and 

that this is shown as a smaller N2 peak.  In the current study, the smaller P1 in the 

higher SIN performers could reflect greater neural efficiency than the lower SIN 

performers.  However, in the current study, the N1 peak was reduced in poorer 

performers, suggesting that if this interpretation has merit, any differences in neural 



 

 

56 

efficiency would affect response components in a non-linear manner.  Again, further 

study is required to confirm any such effects.   

N1 is smaller for poorer SIN performers 

The N1 is thought to reflect the encoding of time-varying aspects of a sound, 

such as amplitude, spectral, and voice onset time changes (Sharma & Dorman 1999; 

Martin & Boothroyd 2000; Sharma et al. 2000; Hoonhorst et al. 2009).  The 

amplitude of the N1 varies with the magnitude of the acoustic change (Näätänen & 

Picton 1987; Picton 1990; Steinschneider & Dunn 2002).  Accurate cortical 

representations of the acoustic information in a speech signal are important for 

speech perception in noise (Anderson et al 2010; Parbery-Clark et al. 2011).  

Therefore, it appears that the better listeners were more sensitive to the acoustic 

change, and so showed a larger N1.  In this way the larger N1 is indicative of better 

cortical representation of the acoustic changes in the better performers (Parbery-

Clark et al. 2011). 

Parbery-Clark et al. (2011) tested 22 normal-hearing adults on their SIN 

ability using the HINT test, and measured subcortical (ABRs) and cortical (N1-P2) 

responses to the speech token /da/ in a multi-talker babble of varying level.  They 

found that those with better ABRs in noise and better HINT scores had a larger N1s.  

They suggest that those with a better subcortical resilience to noise have a larger N1.  

In the current study, it is possible that the individuals who were better at the SIN task, 

also have a greater resilience to noise, which is indexed by a larger N1 amplitude. 

The N1 is thought to increase in amplitude with selective attention (Hillyard 

et al. 1973; Näätänen & Picton 1987; Woldorf & Hillyard 1991).  As such, the better 

SIN performers may have shown a larger N1 because they paid more attention 
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subconsciously to the speech (that is, despite not being instructed to actively attend 

the stimuli).  Whilst this may contradict the prior argument that the P1 was larger in 

poorer SIN performers because they subconsciously paid greater attention to, or used 

more cognitive effort when listening to speech, early cortical peaks do not exist in 

isolation.  Therefore, it is possible that any attentional effects influencing the N1 may 

also modulate the amplitude of the P1.  For example, whilst the better performers 

exhibit a smaller P1, this may reflect a combined effect of a broad negativity 

occurring with attention (Hansen & Hillyard 1980; Näätänen & Picton 1987), 

making both the N1 and P1 more negative.  However, this overlapping broad 

processing negativity usually effects the P2 (Näätänen & Michie 1979; Näätänen & 

Picton 1987; Michie et al. 1990, 1993) and there was no effect of SIN ability on P2 

amplitude in this study.  Therefore, in this case, if there was an attentional effect on 

the N1, it is perhaps more likely to be isolated to this component only, as opposed to 

being a broad processing negativity effecting the whole response. 

2.4.1 Conclusion 

Whilst the relationship between the ACC and P1-N1-P2 onset complex and 

SIN ability is not fully understood, it has been consistently observed that SIN ability 

correlates with certain components of these evoked responses (Cunningham et al. 

2001; Anderson et al. 2010; Parbery-Clark et al. 2011; Billings et al. 2013).  The 

current results are therefore consistent with these previous findings.  This gives 

promise that CAEPS have utility as tools to predict SIN ability for normal hearing 

listeners.  It would be of further interest to develop CAEP measures able to predict 

SIN performance for those showing SIN impairment (e.g. individuals with hearing or 
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learning impairment, or elderly listeners).  Better understanding of the variability 

seen in SIN ability provides opportunity for improved prediction of SIN problems, 

improved diagnosis of conditions that effect SIN processes, and improved 

rehabilitation for individuals with SIN problems.  An objective test for SIN ability 

would be clinically valuable for diagnosis and to aid measurement of rehabilitation 

outcomes.  Further research into the use of the ACC and the P1-N1-P2 complex in 

noise in clinical populations (e.g. hearing aid users) and the elderly is needed to 

further test the potential of these responses as tools to predict SIN performance. 

This study suggests that the underlying mechanisms of the ACC provide a 

more detailed representation of SIN than the P1-N1-P2 onset response.  Furthermore, 

notably, this study supports previous findings that noise affects the various cortical 

peaks in a differential manner.  This supports the growing acceptance that early 

cortical responses are not purely obligatory.  Results suggest that the P1 may reflect 

aspects of greater pre-conscious attention and cognitive effort, and lower neural 

efficiency in poorer SIN performers.  Whereas, the N1 reflects a greater resilience to 

noise and a better cortical representation of the acoustic information in the speech 

signal by good SIN performers.  There is growing evidence for a relationship 

between higher level processing and obligatory cortical activity, suggesting that there 

may be top-down influences on these early cortical auditory processes.  
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3 Cortical Measures of Speech 
Perception in Cochlear Implant 
Users 

3.1 Introduction 

Chapter 2 investigated the effect of noise on CAEPs in normal hearing (NH) 

listeners and how this related to their speech-in-noise (SIN) ability.  The speech 

stimuli were made harder to perceive by adding background speech-shaped noise.  

However, all listeners displayed normal hearing, and so individual differences in 

their SIN performance cannot be explained by peripheral factors (at least in terms of 

audiometric thresholds).  This next chapter focuses on CAEPs in cochlear implant 

(CI) users.  Here, both peripheral and central processes are likely to be much more 

variable amongst subjects than for a NH population.  For a group of CI participants, 

Experiment 3 measured behavioural speech performance, and Experiment 4 

measured the ACC response using a paradigm similar to that presented in Chapter 2.  

Finally, Experiment 5 measured entrainment of low frequency neural oscillations to 

continuous speech in the same CI participants.  This initial introduction considers 

both the factors that affect CI performance, as well as research into CAEP measures 

of CI performance.  After Experiments 3 and 4 are presented, neural entrainment (or 

phase coherence) measures are introduced, and then Experiment 5 is presented.  

Finally, a general discussion summarises the findings from all three experiments. 

A CI is a surgically implanted auditory prosthesis, designed to restore hearing 

to the profoundly deaf.  A common cause of hearing loss is the loss of cochlea hair 
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cells; from aging, noise exposure, certain medical or genetic conditions, or exposure 

to ototoxic substances.  CIs bypass absent or damaged hair cells by innovating the 

auditory nerve directly through electrical stimulation.  Modern implanted devices 

comprise of a number of electrically stimulating electrodes spaced along an array.  

The array is surgically inserted into the cochlear, placed typically in the scala 

tympani, and optimally spanning 18-26 mm of the length of cochlea (depending of 

the length of the implanted array, and the success of the implantation).  Acoustic 

information is received by an external microphone, and is converted by a behind-the-

ear speech processor into a corresponding sequence of electrode activation.  These 

stimulation parameters are transmitted to a subcutaneous receiver/stimulator via 

electromagnetic induction.  The receiver/stimulator then activates the electrode array.  

The delivered electrical pulses from the electrodes provide the input to the auditory 

nerve that is broadly analogous to acoustic hearing (see Zeng 2004 for a general 

review).  For example, the electrodes spaced along the array are designed to replicate 

the place-of-excitation based encoding of frequency (Wilson et al. 2011).  However, 

the pattern of auditory nerve activity elicited from CI stimulation is markedly 

different from the normally functioning cochlear.  The broad spread of electrical 

current from electrical stimulation results in a much more restricted frequency 

selectivity.  Even though a device may have up to 22 electrode channels, the 

effective number of independent frequency channels may be markedly less, due to 

current spread (e.g. Friesen et al. 2001).  Additionally, rapid electrical stimulation 

typically saturates auditory nerve firing, and so whilst implants are able to provide 

rapid pulse trains, users are typically insensitive to temporal cues above 

approximately 300-500 Hz (Nelson et al. 1995; Collins et al. 1997; Zeng et al. 2002).  

There is also typically a narrow dynamic range between the minimum current 
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required for threshold detection and the maximum current of comfortable listening.  

As such, CI users are typically restricted to a much narrower dynamic range of 

loudness, including the number of discernible loudness steps (Nelson et al. 1996; 

Zeng et al. 1998).  Despite such differences between CI and NH listening, CI users 

may achieve a good level of hearing performance from their device, with some 

reaching near-normal levels of speech recognition in quiet (Wilson & Dorman 2007).  

Whilst it is possible for CIs to provide enough information for some users to achieve 

such impressive outcomes (Wilson et al. 2011), it should be noted that many users 

struggle with speech understanding in everyday noisy environments (Fu et al. 1998), 

music appreciation (McDermott 2004), understanding prosody (Meister et al. 2009), 

and speaker characteristics (such as gender; Fu et al. 2004), as well as from issues 

arising from increased listening effort and fatigue (with some variability between 

unilateral and bilateral implantation; Hughes & Galvin 2013).  As such, there is great 

research interest in improving many aspects of CI performance.  

The exact output of the electrode array in response to an incoming sound is 

determined by the parameters of the speech processor, which extracts specific 

acoustic features of the sound.  To reflect tonotopy in the cochlear, implants 

implement a bank of filters to divide sound signals into different frequency bands, 

with low to high frequency bands allocated to apical to basal electrodes.  However, 

the processing strategies to extract, encode, and deliver stimulation vary between 

devices and settings.  Whilst early processing strategies aimed to extract specific 

features from sounds (such as speech formants), modern strategies attempt to 

represent the envelopes of incoming sounds without cue-specific weighting (see 

Zeng 2004; McDermott 2004; Wilson & Dorman 2008 for general 

reviews).  Continuous-Interleaved Sampling (CIS; Wilson et al. 1991) was designed 
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to extract and deliver temporal envelope cues.  Here, the envelope of each frequency 

band of the signal is extracted and compressed (in order to fit the large dynamic 

range of the acoustic world into the small dynamic range of a CI).  The variations in 

the envelopes of each frequency band are then represented in corresponding 

electrodes using modulated trains of biphasic electrical pulses (Wilson & Dorman 

2008).  To avoid electrode interactions from stimulating one or more electrodes at 

the same time, pulse trains on different electrodes are interleaved, so only a single 

electrode is active at any given time.  HiResolution (HiRes; Koch et al. 2004) is 

similar to CIS but with higher stimulation rates and higher cut-off frequencies used 

for envelope measurement, and a form of this (HiRes120) is the default for 

Advanced Bionic implants.  MED-EL implants use a form of Fine Structure 

Processing (FSP; Hochmair et al. 2006) where groups of pulses (or can be single) are 

presented at the zero crossings, as compared to CIS where single pulses are presented 

at peaks of the envelope (Wilson et al. 1991).  In other strategies, such as n-of-m 

(Wilson et al. 1988), Spectral Peak (SPEAK; Skinner et al. 1994), and Advanced 

Combination Encoder (ACE; Kiefer et al. 2001; ACE is the default in Cochlear CIs), 

only those filter bands with the highest energy (n) of all the bands (m) are selected to 

stimulate their corresponding electrodes.  These strategies are similar to CIS apart 

from the channel selection.  The idea is that by selecting only the channels with the 

highest energy, low amplitude channels are not stimulated, which reduces masking 

and interference across electrodes.  In n-of-m and ACE, n is fixed; whereas in 

SPEAK n varies depending on the input.  Furthermore, SPEAK also has a lower 

stimulation rate than n-of-m and ACE.  The default programming strategy for each 

CI manufacturer is nearly always used for fittings.  However, other strategies are 
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available in each CI and can be used for an individual if necessary at the discretion of 

the audiologist (Wilson & Dorman 2008). 

In addition to the method of sound processing, the manner in which charged-

balanced pulses are delivered can be varied; either monopolar (in which the return 

electrode is typically located outside the cochlear) or bipolar (the return electrode is 

an adjacent intra-cochlear electrode).  With monopolar stimulation the current has to 

travel to the return electrode outside the cochlear, and this distance causes a large 

spread of excitation, leading to poor spectral resolution.  Bipolar stimulation attempts 

to reduce the distance the current needs to travel by having the return electrode 

situated inside the cochlear, adjacent to the stimulating electrode.  However, all 

current CIs default to monopolar stimulation, as in practice it produces performance 

that is just as good as bipolar, but requires less current, and so battery power.  To 

further improve performance, tripolar stimulation (only in the research domain) has 

been investigated.  Tripolar stimulation is a variation of the bipolar mode in which 

two intra-cochlear return electrodes are used to limit spread on either side of the 

stimulating electrode.  However, tripolar stimulation requires a lot of current and it 

cannot always support the whole dynamic range or full loudness growth of the CI 

(Wu & Luo 2013).  In order to improve this, research is ongoing into partial tripolar 

stimulation where only part of the current is returned to the adjacent electrodes and 

the rest is returned to a ground electrode on the outside of the cochlear (Wu & Luo 

2013). 

The speech processing strategy and the parameters of this strategy are fitted 

to each individual user by clinicians.  The clinician may also identify non-

functioning or poorly functioning electrodes (i.e. those positioned outside of the 

cochlear) for deactivation. Whilst research studies can provide insight into 
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theoretically optimum stimulation strategies (e.g. Bierer & Middlebrooks 2004) and 

electrode deactivation criteria (e.g. Bierer 2010), in reality the fitting parameters that 

achieve the best speech performance and listening comfort for an individual are hard 

to predict.  As such, and given the limited clinical resources for individual fitting, 

there is considerable interest in understanding and improving the manner in which 

CIs are fitted to an individual. 

Individual CI users have a wide range of speech recognition outcomes, with 

some achieving word recognition scores of over 95% after a year of being fitted, 

whereas others struggle to improve beyond 20% (Helms et al. 1997; Wilson & 

Dorman 2007).  The reason for these performance differences between seemingly 

similar patients is not fully understood.  A CI user’s auditory pathway may be 

degraded if they had a long period of auditory deprivation prior to implantation 

(Shepherd & Hardie 2001; Shepherd et al. 2006), or a late age of implantation 

(Buckley & Tobey 2011; Giraud & Lee 2007; Lee et al. 2001; Sharma et al. 2002).  

Auditory deprivation may result in cross-modal plasticity in the cortex.  That is, 

processing in the auditory cortex may become reassigned to other modalities, such as 

vision (e.g. Lee et al. 2001; Kral & Eggermont 2007).  Such factors mean that some 

patients have greater access to speech processes in the brain than others (Wilson et al. 

2011). 

Pre-lingually deafened CI users suffer from the effects of auditory 

deprivation, however, unlike post-lingually deafened CI users, they also lack neural 

representations of speech from before they lost their hearing.  If infants do not 

receive language input in the first year of life their language development (e.g. 

babbling) begins to delay, and the longer they do not receive language exposure, the 

more delayed they become (Purves et al. 2001).  By the time they hit puberty this 
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delay may be irreversible (i.e. case studies of feral children; e.g. Curtiss et al. 1974).  

From an auditory perspective, this sensitive period in early life stems from plasticity 

in the auditory cortex and changes in this plasticity as the cortex develops (Kral 

2013).  Therefore, even if a pre-lingually deafened adult is able to receive auditory 

stimulation via a CI, they may struggle to use this information for communication as 

they do not have the necessary experience in early life, when the auditory cortex and 

linguistic systems were developing.  Thus, pre-lingually deafened adults generally do 

not perform as well as post-lingually deafened adults when they receive CIs.  

Although post-lingually deafened CI users may still have access to neural 

representations of speech from before they lost their hearing, duration of deafness is 

still a strong predictor of implant success (van Dijk et al. 1999; Kelly et al. 2005; 

Sandmann et al. 2015).  However, patients with identical durations of deafness can 

still display great variability in performance (Wilson et al. 2011). 

3.1.1 Auditory Evoked Potentials in Cochlear Implant Users 

This variability of CI outcomes is a current on-going topic of research.  In 

this field, auditory evoked potentials (AEPs) are useful for those in the CI population 

who are unable to perform behavioural methods of auditory performance as are 

traditionally used in audiology, such as speech intelligibility tests (i.e. children and 

non-verbal adults; Scheperle & Abbas 2015b).  AEPs have been successfully 

measured in both paediatric and adult CI populations (e.g. Hoppe et al. 2010; 

Alvarenga et al. 2012; He et al. 2014; Abbas & Brown 2015).  Currently, the 

electronically evoked compound action potential (ECAP) is used to measure whether 

or not the stimulation from the electrodes elicits a response in the auditory nerve 
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(Brown et al. 2000; Hughes et al. 2000a, 2000b).  Similarly, the electrically-evoked 

ABR (a subcortical measure) can be used to broadly estimate behavioural thresholds 

for signal detection (e.g. Brown et al. 2000).  Such information is important for 

assessing the functioning of the electrode array, as well as the auditory nerve and 

subcortical structures.  However, these measures are not informative of limitations at 

higher levels of processing, and so can only explain certain peripheral factors that 

influence speech perceptual performance.  For successful speech intelligibility, users 

need to accurately encode acoustic details, such as spectral information and the 

temporal patterns conveyed by the amplitude fluctuations in speech.  However, 

currently there are no electrophysiological measures that assess the perception of 

these characteristics of speech that are used routinely in clinical practice (Scheperle 

& Abbas 2015b).  Furthermore, whilst it is important that users receive adequate 

acoustic detail from the periphery, it has been proposed that individual differences 

along the entire auditory pathway mean that there could be benefit to a more top 

down, cognitive approach to CI programming and fitting, rather than the current 

bottom up technique based primarily upon signal detection (Wilson et al. 2011).  To 

this end, the current study investigated electrophysiological measures of both 

isolated spectral changes in speech and entrainment of cortical neural oscillations to 

the amplitude envelope of continuous speech, to explore their use in predicting 

speech perception performance in CI users. 

Objective measures that can predict variability in CI outcomes is currently a 

research topic of interest.  Due to the implanted device, there is limited scope for 

MEG and MRI imaging techniques, and so EEG has become the most common 

measure for studying brain activity evoked from CI stimulation.  Certain CAEPs 

have been obtained successfully in CI users, and there is some evidence of cortical 
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measures of discrimination being predictive of behavioural performance (e.g. Hoppe 

et al. 2010; He et al. 2014; Abbas & Brown 2015).  Furthermore, CAEPs have been 

successfully elicited with phonemic contrasts in speech-like stimuli (e.g. Friesen & 

Tremblay 2006; Martin 2007).  The mismatch negativity (MMN) has been used in CI 

studies with tonal deviations (Kileny et al. 1997; Kelly et al. 2005; Zhang et al. 2011; 

Obuchi et al. 2012), musical feature deviations (Timm et al. 2014) and speech stimuli 

deviations (Kraus et al. 1993; Groenen et al. 1996a; Kileny et al. 1997; Salo et al. 

2002).  In these cases, a larger mismatch negativity (MMN) response has been 

consistently found to be related to better CI performance (Groenen et al. 1996a; 

Roman et al. 2004; Zhang et al. 2011; Turgeon et al. 2014; Timm et al. 2014).  For 

example, Roman et al. (2004) measured the MMN to frequency-deviant acoustically 

presented tones in CI users, and compared the results to performance on a word 

discrimination task.  The discrimination task involved a pair of monosyllabic French 

words bain (/be/), and pain (/pe/).  Subjects had to identify the word and an adaptive 

forced-choice procedure was used to measure a threshold (the sound pressure level of 

the word was the tracking variable).  The authors reported correlations between the 

MMN latency and pure-tone detection thresholds, and performance on the 

behavioural discrimination task.  This shows that neural activity in the auditory 

cortex can be indicative of individual differences in CI performance.  As such, the 

MMN has potential to be used to measure speech recognition proficiency in CI 

populations that cannot perform behavioural tasks of speech recognition (e.g. non-

verbal populations).  However, other CAEPs such as the P1-N1-P2 onset complex or 

the ACC have advantages over the MMN, such as greater time-efficiency (Iverson et 

al. 2016), larger magnitudes, and greater test-retest reliability in individuals (Martin 

& Boothroyd 1999; Tremblay et al. 2003), at least in NH populations.   
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The P1-N1-P2 onset complex has been successfully recorded in CI adults 

(although often the P1 is not measured in these studies; Makhdoum et al. 1998; Firszt 

et al. 2002; Maurer et al. 2002; Roman et al. 2004; Kim et al. 2009; Timm et al. 2012; 

Abbas & Brown 2015; Brown et al. 2015).  Furthermore, some characteristics of the 

onset complex have been found to relate to speech processing ability (Firszt et al. 

2002; Maurer et al. 2002; Roman et al. 2004; Kelly et al. 2005).  For example, Kelly 

et al. (2005) found that the CI users who performed worse on the HINT speech test 

(Hearing in Noise Test: Nilsson et al. 1994) also showed longer P2 latencies to 

acoustically presented pure tones.  Groenen et al. (1996b) split seven CI users into 

two groups, ‘good’ and ‘moderate’ performers, and found that the amplitudes and 

latencies of the electrically evoked N1 and P2 to tone bursts were comparable to 

normal in the good group, whereas they had lower amplitudes and longer latencies in 

the moderate group.  The authors suggested that this could indicate disrupted 

tonotopic organisation of the auditory cortex in the moderate performers (Groenen et 

al. 1996b).  Maurer et al. (2002) measured evoked responses to an electrode pulse 

train presented through a research interface.  Participants were split into ‘good’ and 

‘poor’ performers based on a speech recognition task.  Good performers exhibited 

shorter P2 latencies than poor performers, and other amplitude and latency measures 

were not significant.  They concluded that some properties of the onset complex 

differed between participant groups, but that differences were more apparent in 

brainstem measures.  Alvarenga et al. 2012 measured acoustically-evoked CAEPs in 

children using a /ba/ speech stimulus.  The study aimed to characterise the P1 

component only, as this component often dominates the overall early cortical 

response in children.  The latency of the P1 component correlated with duration of 

sensorineural hearing deprivation, but not with duration of CI use.  When 
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participants were split into ‘good’ and ‘poor’ performer groups, good performers 

displayed significantly shorter P1 latencies.  Such P1-N1-P2 results give promise to 

the ACC also being able to predict CI performance.  However, as noted previously, 

the ACC and P1-N1-P2 complex do not always show the same patterns (e.g. Chapter 

2; Jones et al. 1998). 

The ACC predominately encodes the basic stimulus properties such as 

frequency, intensity, and phase (Jerger & Jerger 1970; Näätänen & Picton 1987; 

Martin et al. 2007; Ross et al. 2007; Dimitrijevic et al. 2008), as well as more 

naturalistic changes, such as spectral and intensity changes in speech or speech like 

sounds (Ostroff et al. 1998; Martin & Boothroyd 1999, 2000).  Furthermore, some 

aspects of the ACC can be modulated by top down cognitive processes, such as 

selective attention (Hillyard et al. 1973; Näätänen & Picton 1987; Woldorf & 

Hillyard 1991), and classification or categorisation of auditory stimuli (Garcia-Larrea 

et al. 1992; Novak et al. 1992).  Therefore, the ACC is a measure of sensitivity to 

acoustic changes in speech, and cognitive speech perception processes, beyond 

simple signal detection. Furthermore, aspects of the ACC can potentially be used to 

predict SIN ability in NH listeners (Chapter 2).  Therefore, this measure could 

conceivably be useful also for the prediction of CI performance.   

Recently, there have been some successful studies of the ACC recorded in CI 

users using direct stimulation.  Direct stimulation refers to the use of a specifically 

made research interface that bypasses the speech proccesor and directly controls the 

output of the electrode array.  This means that a carefully controlled pulse train can 

be sent to the listener.  As the exact pattern of electrode output from a speech 

processor is not known to the reseacher,  direct stimulation is needed when 

presenting pulses to specific electrodes at specific amplitudes, durations, rates, etc.  
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The ACC elicited from direct stimulation can be reliably recorded for changes in 

level (Kim et al. 2009), changes in stimulating electrode with the further apart the 

electrodes are the larger the ACC (Brown et al. 2008; Hoppe et al. 2010; He et al. 

2014), and changes of frequency location of spectral peaks within a ripple-noise 

stimulus (Scheperle & Abbas 2015a).  Due to the spread of electrical current 

assoicated with electrial stimulation, the neural populations stimulated by separate 

electrodes often overlap (He et al. 2014).  Any overlapping stimulation will reduce 

the discriminability between stimulation from different electrodes.  As such, several 

studies have found that psychophysical measurement of electrode discrimination is 

correlated with speech perception performance (e.g. Throckmorton & Collins 1999; 

Henry et al. 2000), although some studies have not (e.g. Hughes & Abbas 2006; 

Anderson et al. 2011).  In a related paradigm, the ACC can be recorded to changes in 

the stimulating electrode (i.e. where larger responses are indicative of greater 

channnel independence).  Such indexes of electrode discrimination measured with 

the ACC have been found to be consistent with behavioural thresholds (in children 

with ANSD; He et al. 2014).  Furthermore, the magnitude of the ACC to changes in 

stimulating electrode has been found to predict speech perception performance in 

both children and adults (He et al. 2014; Scheperle & Abbas 2015b).  Scheperle & 

Abbas (2015b) assessed speech performance and also recorded eCAPs and ACC 

responses to changes in  both spatial (electrode pairs) and spectral (rippled noise) 

stimulus changes.  Subjects were tested with three distinct MAPs, each designed to 

manipulate the likelihood of electrode interactions.  Using a mixed-model analysis 

which factored multiple measures for each particpant, the authors observed that 

electrophysiological measures were significantly related to each other and to the 

speech scores.  Whilst the eCAP measures proved to be the best predictor of speech 
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scores in this model, the authors proposed that a combination of peripheral (eCAP) 

and central (ACC) measures of performance may combine to offer a better predictor 

of speech performance. 

The ACC recorded by direct stimulation shows potential for predicting 

speech performance in CI users, and this method of stimulus presentation allows for 

the precise control of the stimuli being sent.  However, whilst performance 

differences in CI users do arise from peripheral factors (e.g. electrode 

discriminability), the way in which their individual implant is fitted and set is also an 

important factor in determining outcomes.  Although CI research using free field 

stimulus presentation results in less control over what each individual receives, it has 

the important benefit of measuring performance in a real-world listening situation.  

From acoustic presentation (via loud speaker), the ACC has been recorded in adult 

CI users with speech stimuli.  Frieson & Tremblay (2006) measured the ACC in 

eight adult CI users at the onset of the vowel in /si/ and /ʃi/ tokens.  The latency of 

the ACC was increased compared to a NH response.  They found that the response 

could distinguish between the two tokens, with earlier latencies for /ʃi/, and that 

individuals had a good test-retest reliability (r = 0.63 to 0.88).  Martin (2007) 

recorded the ACC to tokens of /ui/ with nine different second formant (F2) changes 

in a case study.  She found agreement between the ACC and behavioural detection 

thresholds; and that the ACC response was larger when the participant attended to 

the stimuli than when they ignored it.   

Only one study has explored the relationship between the ACC to 

acoustically presented stimuli and individual speech perception performance (Brown 

et al. 2015).  These authors measured the ACC to changes in synthesized vowels (/ui/ 

and /iu/) in 10 Nucleus hybrid users, and tested their speech perception abilities using 



 

 

72 

an adaptive speech in noise task (the SNR of 12 spondees in noise was adapted to 

reach 50% correct identification), and a closed set consonant recognition task.  They 

did not find a significant relationship between the ACC and the speech perception 

scores.  Hybrid devices are designed to preserve acoustic stimulation at low 

frequencies (i.e. apical cochlear region) whilst delivering electric stimulation to 

cochlear regions corresponding to higher frequncies (i.e. basal region).  Such devices 

are favoured for those with residual low-frequency hearing.  Brown et al. (2015) 

compared three different programming methods of the Nucleus hybrid device.  

Participants used each programming strategy for four weeks prior to testing to 

acclimatise to the new stimulation parameters.  Their behavioural speech recognition 

performance was measured using a closed set consonant recognition task, and an 

adaptive test that measured the SNR that resulted in 50% correct identification of a 

set of 12 spondees presented in background noise.  The participants listened to the 

vowel changes /ui/ and /iu/ and both the P1-N1-P2 and ACC were measured.  The 

ACC was recorded successfully in all users and showed similar characteristics to 

those recorded from NH listeners.  However, the response did not predict which 

programming strategy gave the best behavioural performance.  Furthermore, 

compared to using electrical stimulation alone, combined acoustic and electrical 

stimulation improved consonant recognition performance for all subjects, however, 

this again was not predicted by the ACC (ACC responses were larger with the 

acoustic and electrical stimulation, but not significantly so).  The authors concluded 

that the differences in performance between the programming strategies were not 

large enough for the ACC to predict (i.e. the ACC is not sensitive enough to indicate 

small improvements in performance).  In Chapter 2, using multiple speech stimuli, 

some aspects of the ACC were able to predict relatively small differences in SIN 
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performance in NH listeners. This may have been due to the rapid collection 

paradigm allowing for a large number of trials to be presented, and/or due to the 

presentation of non-monotous stimuli changes reducing adapation effects.  As such, 

one aim of this study was to investigate whether the ACC to a broader range of 

speech stimuli than has been used in the past can be used to predict CI performance. 

In this study, thirteen CI users with various processors and implants from 

various manufacturers listened to concatenated chains of vowels and fricatives 

(identical to the stimuli used in Chapter 2, Experiment 2, but presented in quiet only), 

and sections of naturally spoken stories via a loudspeaker.  EEG was used to measure 

the ACC to the vowels and fricatives (Experiment 4: section 3.3), and the 

participants’ phase coherence to the stories  Experiment 5: section 3.4).  The 

participants also completed behavioural tasks of sentence recognition, and vowel and 

consonant identification (Experiment 3: section 3.2).  The aims of this study were to 

compare the ACC recorded in the CI users to the ACC recorded in the NH listeners 

(Chapter 2), and to assess whether the ACC could predict CI users’ behavioural 

speech perception performance.  Furthermore, the study aimed to investigate whether 

phase coherence could be measured in CI users, and to see whether this could predict 

the CI users’ behavioural speech perception performance (see section 3.4). 

3.2 Experiment 3: Behavioural Measures of Speech Perception 

A sentence recognition task, a consonant identification (ID) task, and a vowel 

ID task were used to measure the participants’ speech perception abilities.  The 

results from these tasks are later used alongside the ACC and phase coherence 

experiments to assess the ability of the objective measures to predict speech 
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perception performance.  Three behavioural tasks were employed to provide a broad 

measure of individual speech perception abilities. 

3.2.1 Participants 

Thirteen post lingually deafened, right handed CI users, with one or two CIs 

contributed to the experiment (age range: 23-72, mean age = 51.8).  Participants were 

recruited through the Home Counties Cochlear Implant Users’ Group and from 

advertising on Facebook CI user groups.  The participants used CIs from a variety of 

manufactures: eight used Cochlear devices (Nucleus Freedom, 5, or 6 processors), 

three used Advanced Bionic, and two used MED-EL.  The duration of implant use 

spanned from 1 to 23 years (mean implant duration = 11.2 years).  All participants 

completed a questionnaire about their hearing loss and CIs, details of which are 

provided in Table 3.1.  The experiment and recruitment for this study was approved 

by the University College London ethics committee.  All subjects provided their 

informed consent before beginning the experiment and were paid an honorarium for 

their time. 

Of the 13 participants, eight were unilaterally implanted and five were 

bilaterally implanted.  The procedure for unilateral and bilateral users was the same, 

as participants used their CI(s) with their everyday settings during the experiment.  

This meant that those with two implants used both during the experiment, and this 

ensured that the results reflected each individual’s performance as close to their 

everyday experience.  Recruitment and time constraints meant that it was useful to 

include both unilateral and bilateral users to reach a reasonably sized group.  

Furthermore, the aim of the study was to assess the ACC and phase coherence 
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measures in a broad group of CI users, and how the measures related to overall 

speech perception abilities.  Therefore, including bilateral users and allowing them to 

keep both CIs on allowed us to examine the characteristics of the ACC and phase 

coherence in a wide variety of users. 

As the participants were recruited outside of the clinic, their clinical 

information (such as programming strategies, active electrodes, etc.) was not 

available.  The CI group that was tested was fairly small, from a mixture of 

manufactures, a spread of ages and CI experience, some were bilateral and some 

were unilateral, and each implant would likely have had different settings.  Taking 

this all into account, it would be unrealistic to expect to observe any meaningful 

information/correlations between clinical settings and performance on the tasks.  As 

such, this was not considered in this study. 
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Participant details 

 

Table 3.1 Details of participants’ hearing loss and CIs as provided by the participants 

themselves.  Those who have reported a duration of deafness the same as (or close to) their 

age also reported enough acoustic hearing as an infant to develop language. 

3.2.2 Stimuli, procedure, and apparatus 

For all tasks, stimuli were presented in quiet via a Rogers LS3/5A monitor 

loudspeaker situated 1.73 m in front of the listener at 0º azimuth, at a level of 65 dB 

SPL at the listener’s ear  verified with a Brüel & Kjaek 2231 sound level meter).  All 

participants wore their CI processors on their usual everyday comfortable setting.  

5 Left

3 Right

10 Left 

8 Right

2 Left

19 Right

5 Left

3 Right

Cause of hearing loss Device

4

Female

Female

Male

Female

37

61

58

72

CI 

user
Gender

Age 

(yrs)

Side of 

implant

Duration of 

deafness

Duration of 

implant use

1

2

3 23

Right 31 15

Both

Left 19

24

Both

Both

Right

Right

Both

10

Female

Female

Female

67

23

70

11

12

5

6

7

8

9

13

Unknown

Premature birth

Genetic

Genetic

Branchiootorenal 

syndrome

Genetic

Male

Female

Female

Female

Male

36

36

34

67

40

72 Both

Right

Left

Right

Female

Left

25

45

40

72 2

14

7

55

9

21.5

18

32

36 1

20

6

Medel

Mumps

Unknown

Meningitis

Ushers syndrome type 

III

Advanced Bionic 

Harmony

Rupture of malformed 

round window

Meningitis

Viral infections and 

Meniere's disease

3.5

Advanced Bionic

Cochlear Nucleus 6

Advanced Bionic

Cochlear Nucleus 22

Cochlear Nucleus 6

Cochlear Nucleus 6 

Left, Freedom Right

Cochlear Nucleus 6

Cochlear Nucleus 6

Cochlear Nucleus 5

Medel

Cochlear Nucleus 5
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The combined three behavioural tests took no longer than 30 minutes in total.  All 

recordings were made in a sound-proof booth with a 44.1 kHz sampling rate at 16 

bits per sample.   

For the sentence recognition task, each participant listened to five randomly 

selected IEEE (Rothauser et al. 1969) sentence lists (50 sentences per list and so a 

total of 250 sentences).  The sentences were presented in a random order.  The 

sentences were recorded from one male southern British English Speaker.  During 

the experiment, the participant and the experimenter were seated in a sound-proof 

booth.  The participants were required to repeat what they heard, and the 

experimenter recorded the number of key words in the sentence they correctly 

identified (each IEEE sentence contains five key words; e.g. The BIRCH CANOE 

SLID on the SMOOTH PLANKS).  The task was created and presented using Praat 

(Boersma & Weenik 2013). 

For the consonant ID task, each participant listened to 96 vowel-consonant-

vowel (VCV) tokens, 48 of which were spoken by a female southern British English 

speaker and 48 by a male.  The consonants were one of /b/, /d/, /f/, /g/, /k/, /l/, /m/, /n/, 

/p/, /s/, /ʃ/, /t/, /v/, /w/, /y/, and /z/.  The start and end vowels were always matched, 

and were one of /ɒ/, /i/, and /u/.  Each speaker recorded two of each VCV 

combination, and one token of each combination from each speaker was randomly 

selected.  The combined 96 tokens (48 from each speaker) were then presented in a 

randomised order.  Participants looked at a computer screen that displayed all of the 

16 possible consonants.  Once they heard a VCV token, they were asked to click on 

the consonant that they thought they heard.  The task was created and presented 

using MATLAB (MathWorks 2013a). 
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For the vowel ID task, participants listened to 102 CVC words, 51 of which 

were recorded by a female southern British English speaker and 51 by a male.  The 

words were “bad”, “bard”, “bared”, “bawed”, “bayed”, “bead”, “beard”, “bed”, “bid”, 

“bide”, “bird”, “bod”, “bode”, “booed”, “bowed”, “boyd” and “bud”.  Each speaker 

recorded six of each of these words, and three tokens of each word from each 

speaker were randomly selected.  The list of 102 words was then presented in a 

randomised order.  Participants looked at a computer screen that displayed all of the 

17 possible words.  Once they had heard a word, they were asked to click on the 

word that they thought they had heard.  The task was created and presented using 

MATLAB (MathWorks 2013a). 

3.2.3 Results  

Results from all three tasks are shown in Figure 3.1. For all three tasks, there 

was a wide range of performance, particularly for the IEEE task where the lowest 

performer scored 15.6% and the highest scored 96.4%.  Each participant only 

completed each task once and so it is possible that the large range could partially be 

due to the test-retest reliability of the tasks.  A task with low test-retest reliability 

could produce variable results.  To my knowledge there is little or no data available 

exploring the test-retest reliability of the exact tests used in this study with CI users.  

However, the IEEE sentence lists have a high test-re-test reliability when used in the 

Speech in Noise (SIN) test (Etymotic Research 1993) in both normal-hearing 

listeners and hearing-impaired listeners (Bentler 2000; Killion et al. 2004).  

Furthermore, Başkent and Shannon (2004) tested CI users using similar Vowel and 

consonant tasks to the current experiment (ten monophthongs and two diphthongs 
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presented in a /h/-vowel-/d/ context, and 20 consonants presented in an /a/-

consonant/a/ context) and found the tasks had a high test-retest reliability.  Therefore, 

although we do not have actual data for the test-retest reliability of the tasks used in 

this study, the materials used were standard speech perception materials that are 

generally considered to produce reliable results. 

All three tasks were highly positively correlated (IEEE vs. consonant ID: r = 

0.95, t = 9.29, p < .001; IEEE vs. vowel ID: r = 0.93, t = 7.41, p < .001; consonant vs. 

vowel ID: r = 0.92, t = 6.82, p < .001).  The IEEE task showed the greatest range of 

performance whilst remaining highly correlated with the other two measures.  

Because of this, this measure was selected as the index of speech recognition in the 

ACC (section 3.3) and phase coherence (section 3.4) experiments. 

 

Figure 3.1 Boxplots showing the median (65.2, 72.92, 73.53), range (78.80, 44.79, 62.75) 

and interquartile ranges (33.00, 19.27, 23.04) for the IEEE sentence recognition, consonant 

identification (ID) and vowel identification (ID) tasks respectively.  
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3.3 Experiment 4: The ACC in Cochlear Implant Users 

3.3.1 Participants 

The same participants that were tested in the behavioural experiments 

(section 3.2) were also tested in the ACC experiment. 

3.3.2 Stimuli 

The stimuli were the same as in Chapter 2 (section 2.3 Experiment 2).  The 

stimuli comprised of four vowels (/ɑ/, /i/, /ɔ/, /u/), as heard in the words Bart, beat, 

bought, and boot, and four fricatives (/ʃ/, /s/, /v/, /z/) as heard at the beginning of the 

words short, sing, vine, and zip, and silence.  Sustained vowels and fricatives were 

recorded from a female Southern British English speaker.  The recordings were made 

in a sound-proof booth with a 44.1 kHz sampling rate at 16 bits per sample. Speech 

stimuli manipulations were then conducted in Praat (Boersma & Weenink 2013).  

For each recorded sound, a one second segment that was deemed to be reasonably 

static (minimal spectral change) was extracted from the recording.  The amplitude 

envelope of each segment was then flattened by calculating the envelope of the 

original recording (full rectification and a 50-Hz low-pass filter, and then 

normalized).  The original recording was then divided by this envelope, and the 

overall amplitudes of all eight phonemes were rescaled to be equal.  For the vowels 

and voiced fricatives, the pitch was flattened to the mean pitch of the recordings (200 

Hz) using an overlap-add method (Boersma & Weenink 2013).   
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The four vowels, four fricatives, and portions of silence were then 

concatenated into a random order without replacement (the same stimulus could not 

appear twice in a row) to create two-minute sequences that included all possible pair 

transitions (i.e. 72 possible transitions including each sound to silence and vice 

versa).  Phonemes were concatenated by splicing each transition with 50 ms raised-

cosine ramps at each overlapping transition (i.e. the phoneme was ramped down at 

the same time as the new phoneme was ramped up).  The duration of each stimulus 

was randomly jittered from 350-450 ms, with the segment randomly selected from 

the longer, one-second recording.  This minimised the possibility of any spectral 

discontinuity within the recorded stimuli from being consistently time-aligned to the 

spectral changes.  After the phonemes were concatenated into a two-minute sequence, 

the entire amplitude envelope was flattened to correct for amplitude fluctuations 

during the brief overlapping transitions.  Each two-minute sequence was only used 

once. 

3.3.3 Apparatus 

All stimuli were presented binaurally via Praat (Boersma & Weenink 

2013).  Stimuli were presented using a Fireface UC external audio interface (44.1 

kHz sampling rate, 16 bits per sample) connected to a loud speaker situated 1.73 m 

in front of the listener at 0º azimuth.  Stimuli were presented at 65 dB SPL at the 

listener’s ear  verified with a Brüel & Kjaer 2231 sound level meter).  Each 

participant was asked to adjust their CI processors to their usual everyday 

comfortable setting. 
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An additional audio channel was used to provide stimuli timing information 

to the EEG system.  A custom converter was used to convert the audio signal into 

TTL pulses, which was recorded as a time-aligned trigger by the EEG 

system.  Testing occurred in an electromagnetically shielded sound-proof booth that 

was kept at 19
o
C to minimize sweat artefacts.  Within the booth, mains electricity 

was turned off during testing to reduce electrical artefacts as far as possible.   

Evoked responses were recorded with a BioSemi ActiveTwo EEG system.  

Sixty-four surface electrodes were placed in accordance with the international 10-20 

system; however, the electrodes directly over the CI were not used.  This was 

typically two or three electrodes per implant (i.e. 4-6 in the case of the bilateral 

users).  Seven additional electrodes were placed on the left and right mastoid, left 

and right canthus, above and below the left eye, and on the tip of the 

nose.  Responses were recorded at a sampling rate of 2048 Hz. 

3.3.4 Procedure 

The participants listened to 30 minutes of the stimuli (i.e. 15 two-minute 

sequences).  This meant that in total, each participant heard approximately 63 

repetitions of each possible pair (approximately 4356 trials in total).  They listened to 

the ACC audio files and stimuli for the phase coherence experiment (see section 3.4) 

in two-minute blocks in a random order.  EEG testing lasted one hour and they were 

given the opportunity for a break every 10 minutes.  During testing, participants 

watched an animated film without audio. 
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3.3.5 Analysis 

For each participant, data were processed offline in MATLAB (MathWorks 

2013a), using the Fieldtrip (Oostenveld et al. 2011), EEGlab (Delorme & Makeig 

2004), ERPlab (Lopez-Calderon & Luck 2014), and NoiseTools (de Cheveigné & 

Simon 2007, 2008a, 2008b; de Cheveigné 2010, 2012, 2016; de Cheveigné & Parra 

2014; de Cheveigné & Arzounian 2015) toolboxes.  For each electrode channel, data 

were first high pass filtered at 0.1 Hz (Butterworth filter, as implemented by the 

ERPlab plugins within EEGlab), and then referenced to the nose electrode.  Using 

Fieldtrip, the recording was segmented into epochs spanning from 100 ms before to 

350 ms after each stimulus change onset.  Epochs were baseline corrected to a 100 

ms window before each stimulus change onset.  Data were low pass filtered at 30 Hz 

(Butterworth filter, as implemented by Fieldtrip), and downsampled to a 512 Hz 

sampling rate.  The unused channels positioned over the implant(s) were dropped, 

and then DSS was run using NoiseTools.  Here, the first 50 ms after the stimulus 

onset was used to identify DSS components in which the apparent CI artefact was 

more dominant than the response.  For each individual, the DSS components were 

inspected, and the first one or two components that were identified as being primarily 

artefactual (e.g. Figure 3.2A) were removed from the full length epoched data.  This 

step was then repeated once and the first one or two components were again removed 

if artefactual components remained.  We then ran DSS again on the full length 

epoched data in which these artefactual components were removed (so that the 

response was dominant in the DSS components), and projected the first one, two or 

three components back into the data (components were inspected and selected for 

each individual, see Figure 3.2B).  Epochs in which the signal amplitude exceeded 
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150 µV were rejected due to their high noise level, and the remaining epochs were 

averaged.  

Statistical analysis was run using R (R Core Team 2013).  For linear mixed-

model analyses the R ‘lme4’ package  Bates et al. 2015) was used, and type II 

analysis-of-variance tables were calculated using the ‘CAR’ package  Fox 

&Weisberg 2011).  

3.3.6 Dropped participants 

Whilst evoked potentials have been successfully elicited CI listeners, it is 

often difficult to separate the implant artefacts from the response (e.g. Martin 2007).  

Implant artefacts arise primarily from the fact that the electrical pulses delivered by 

the array are detected by EEG, and are much larger in amplitude than the neural 

signal of interest. Additionally, electrical artefacts pose particular challenges when 

measuring AEPs that show stimulus-following characteristics, such as the ASSR (e.g. 

Hofmann & Wouters 2010).  Whilst CAEPs do not mirror the temporal 

characteristics of the stimuli in this manner, CIs nevertheless produce an electrical 

stimulus-related artefact that occurs for the entire duration of the sound (Shallop, 

1993), and a large artefact overlaps the signal of interest and so the response is hard 

to interpret.  In this study, DSS was used to identify the artefact and then remove it 

from the rest of the recording (See section 3.3.5).   

For most participants, isolating and removing the artefact using DSS was 

seemingly successful.  However, for two participants this was not the case.  Figure 

3.2 shows topographic maps and traces of A) a typical artefactual component from 

the first stage of DSS, and B) a typical resulting ACC component after the artefact 
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removal.  Figure 3.2 C) shows an attempt to isolate the artefact in participant number 

4.  When this artefact was removed and the first components were projected back 

into the data, the overall response was flat.  This is possibly because the artefact for 

this participant had a long duration (about 200 ms) and so it overlapped with the 

ACC response.  Figure 3.2 D) shows the topography of the artefact component for 

participant 12.  This shows that the energy of the artefact is in the fronto-central 

region, which is removed from the location of the implant and is instead where the 

ACC response is expected to be observed.  Again, when this artefact was removed 

and the first components were projected back into the data, the overall response was 

flat.  Therefore, we were unable to isolate the artefact or the response for both of 

these participants. As such, these two participants were removed from further 

analysis. 
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Figure 3.2 A) The topographic map and trace of a typical artefactual component from the 

first step of DSS. B) A typical ACC component from the second stage of DSS.  C) The first 

component in the first stage of DSS for participant 4.  D) The artefact component in the first 

stage of DSS for participant 12. 

3.3.7 Results 

Figure 3.3 shows the grand mean ACC response from all good CI participants 

(i.e. with participants 4 and 12 removed) and the normal-hearing (NH) response 

averaged over the quiet trials in the ACC in noise experiment (Chapter 2, Experiment 
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2).  Figure 3.3 shows that the NH participants have much clearer P1 and P2 peaks 

and their response is generally more positive, whereas because the CI participants’ 

response is dominated by the N1, their response is overall more negative.  It also 

appears as if the CI N1 peak is slightly delayed and their P2 peak is further delayed. 

The mean data from the CI group partially conceals important individual variability.  

In Figure 3.4, individual ACC responses are plotted, and from this graph it is notable 

that whilst all subjects displayed an apparent N1 peak, both P1 and P2 prominence 

were more variable amongst individuals.  
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Figure 3.3 The grand-averaged ACC response across all good participants and all trials at 

FCz for the CI participants in black and the NH participants in red.  The stimulus onset is at 

0 s. 
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Figure 3.4 The response averaged across all trials at FCz for each participant ordered by 

IEEE percent correct performance.  The stimulus onset is at 0 s. 
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The peak amplitudes for each participant were calculated by finding the 

maximum (P1 and P2) or minimum (N1) point within windows taken from the 

relative peaks in the grand mean response (Figure 3.3), then taking an average of the 

waveform 7 ms around that point (i.e. 3.5 ms either side of the peak).  The individual 

responses for the CI participants (Figure 3.4) shows that there was variability in the 

baseline, meaning that at onset (0 ms) some participants’ responses were already 

relatively negative (e.g. s7, Figure 3.4).  In order to ensure the peak values were 

representative of the response and not of the baseline, the average of a 7 ms window 

around the minimum point 50 ms before the P1 peak latency was subtracted from 

each peak amplitude.  The peak latencies were estimated by taking the time from the 

stimulus change onset to the maximum/minimum points used to calculate the peak 

amplitudes. 

Descriptive statistics of the peak amplitudes and latencies for both groups are 

shown in Figure 3.5 and Table 3.2.  A linear mixed models analysis was run, with 

by-subject and by-pair as random intercepts.  The peak amplitude was the dependent 

measure (with P1, N1, and P2 peaks analysed in three separate models).  The group 

(CI or NH) was a fixed factor.  Results of the mixed model analysis and the 

descriptive statistics showed that the P1 and P2 peaks were significantly larger in the 

NH group (P1: χ
2
(1) = 12.15, p < .001; P2: χ

2
(1) = 16.38, p < .001), whereas there 

was no significant difference between the N1 amplitude in the two groups (χ
2
(1) = 

1.48, p = .22).  Latency analysis was conducted with the same model design (with 

peak latency as the dependent measure).  Here, the N1 and P2 peaks were 

significantly delayed in the CI group (N1: χ
2
(1) = 4.66, p = .031; P2: χ

2
(1) = 49.43, p 

< .001), but the P1 peak latency was significantly shorter in the CI group (χ
2
(1) = 

4.46, p = .035).  However, this result may be partially attributable to the P1 latency 
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being difficult to estimate accurately in the CI group, as the response was very small.  

Peak latencies are difficult to look at confidently because they are measured by using 

just one point within a window where the response is at maximum or minimum.  The 

amplitude measurements, on the other hand, are more reliable, as an average over a 7 

ms window is taken, meaning that the value represents not only the point at 

maximum or minimum, but also how broad the peak is.   

 

Figure 3.5 Boxplots showing the P1, N1 and P2 peak amplitudes on the left and latencies on 

the right at FCz for the CI participants (grey) and the NH participants (red). 

  

-2

0

2

P1 N1 P2

A
m

p
li

tu
d

e
 (

m
ic

ro
v
o

lt
s
)

Group

Cochlear Implant

Normal Hearing

Peak Amplitudes

A
m

p
li

tu
d
e 

(µ
V

)

0
2

-2

P1 N1 P2

CI vs NH Peak Amplitudes and Latencies

L
at

en
cy

 (
S

ec
o

n
d

s)

0
.2

0
.3

0
.1

P1 N1 P2

0.1

0.2

0.3

P1 N1 P2

T
im

e
 (

S
e

c
o

n
d

s
)

Group

Cochlear Implant

Normal Hearing

Peak Latencies



 

 

92 

Descriptive Statistics of the Peak Amplitudes and Latencies 

 

Table 3.2 Means and standard deviations of the P1, N1 and P2 peak amplitudes and latencies 

for the CI and NH participants. 

To explore how the CI participants’ ACC responses related to their IEEE 

sentence recognition scores from section 3.2, Figure 3.4 shows the individual 

responses of the CI users ordered by their IEEE task performance (percentage of 

keywords correct).  For most individuals, a clear N1 was present, however the P2 

was less defined than the N1, and the P1 was the hardest to identify of all the three 

peaks.  Because the peak latencies are less reliable to measure than the peak 

amplitudes, latencies are not considered in the analysis of individual differences.  

Figure 3.6 and Table 3.3 show the scatter plots and correlation statistics for the IEEE 

sentence scores versus the P1, N1 and P2 peak amplitudes.  The sample size was 

relatively low for a correlation analysis, and so bootstrapping using 2000 samples 

was used to calculate 95% confidence intervals for all correlations (Table 3.3).  

There were no strong correlations between the IEEE scores and the peak amplitudes, 

and all the bootstrapped 95% confidence intervals crossed zero (Table 3.3), which 

means whilst there were some apparent trends in the correlation, they were not 

significantly different from a correlation of 0 (IEEE vs. P1: r = 0.046, 2000 

Mean (µV) sd N Mean (µV) sd N

CI 0.20 0.16 11 0.07 0.01 11

NH 1.12 0.99 29 0.08 0.03 29

CI -1.12 0.76 11 0.14 0.02 11

NH -0.69 1.02 29 0.12 0.02 29

CI 0.65 0.39 11 0.26 0.04 11

NH 1.48 0.72 29 0.19 0.03 29

Amplitudes Latencies

P1

N1

P2
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bootstrapped 95% CI = -0.80 to 0.63; IEEE vs. N1: r = -0.15, 2000 bootstrapped 95% 

CI = -0.71 to 0.62; IEEE vs. P2: r = 0.12, 2000 bootstrapped 95% CI = -0.61 to 0.61). 

From Figure 3.6, which shows the IEEE score vs. the N1 and P2 peak 

amplitudes, it appears that one outlier may be unduly influencing the statistics, 

particularly in the case of the N1 analysis.  If we remove this outlier (participant 8) 

the correlations become much stronger (IEEE vs. N1: r = -0.69, p = 0.029; IEEE vs. 

P2: r = 0.55, p = 0.096).  Whilst this result is interesting, there is no priori reason to 

remove this outlier from the data.   

 

Figure 3.6 Scatter plots showing IEEE sentence score vs. P1, N1, and P2 peak amplitudes.  

Refer to Table 3.3 for the corresponding statistics. 

  

0.0 0.1 0.2 0.3 0.4 0.5

2
0

4
0

6
0

8
0

P1 amplitude (µV)

IE
E

E
 p

e
rc

en
t 

c
o

rr
ec

t

-2.5 -2.0 -1.5 -1.0 -0.5

2
0

4
0

6
0

8
0

N1 amplitude (µV)

IE
E

E
 p

e
rc

en
t 

c
o

rr
ec

t

0.2 0.4 0.6 0.8 1.0 1.2 1.4

2
0

4
0

6
0

8
0

P2 amplitude (µV)

IE
E

E
 p

e
rc

en
t 

c
o

rr
ec

t

0.05 0.06 0.07 0.08 0.09

2
0

4
0

6
0

8
0

P1 latency (Seconds)

IE
E

E
 p

e
rc

e
n

t 
c
o

rr
e
ct

0.12 0.14 0.16 0.18

2
0

4
0

6
0

8
0

N1 latency (Seconds)

IE
E

E
 p

e
rc

e
n

t 
c
o

rr
e
ct

0.20 0.22 0.24 0.26 0.28 0.30 0.32

2
0

4
0

6
0

8
0

P2 latency (Seconds)

IE
E

E
 p

e
rc

e
n

t 
c
o

rr
e
ct

0.0 0.1 0.2 0.3 0.4 0.5

2
0

4
0

6
0

8
0

P1 amplitude (µV)

IE
E

E
 p

er
c
en

t 
co

rr
e
ct

-2.5 -2.0 -1.5 -1.0 -0.5

2
0

4
0

6
0

8
0

N1 amplitude (µV)

IE
E

E
 p

er
c
en

t 
co

rr
e
ct

0.2 0.4 0.6 0.8 1.0 1.2 1.4

2
0

4
0

6
0

8
0

P2 amplitude (µV)

IE
E

E
 p

er
c
en

t 
co

rr
e
ct

0.05 0.06 0.07 0.08 0.09

2
0

4
0

6
0

8
0

P1 latency (Seconds)

IE
E

E
 p

er
ce

n
t 

co
rr

ec
t

0.12 0.14 0.16 0.18

2
0

4
0

6
0

8
0

N1 latency (Seconds)

IE
E

E
 p

er
ce

n
t 

co
rr

ec
t

0.20 0.22 0.24 0.26 0.28 0.30 0.32

2
0

4
0

6
0

8
0

P2 latency (Seconds)

IE
E

E
 p

er
ce

n
t 

co
rr

ec
t

Sentence Recognition Performance vs. Peak Amplitudes

2
0

IE
E

E
 S

co
re

 (
%

)

6
0

4
0

8
0

N1 (µV) P2 (µV)P1 (µV)

0.1 0.3 0.5
0.0 0.1 0.2 0.3 0.4 0.5

2
0

4
0

6
0

8
0

P1 amplitude (µV)

IE
E

E
 p

e
rc

en
t 

co
rr

ec
t

-2.5 -2.0 -1.5 -1.0 -0.5

2
0

4
0

6
0

8
0

N1 amplitude (µV)

IE
E

E
 p

e
rc

en
t 

co
rr

ec
t

0.2 0.4 0.6 0.8 1.0 1.2 1.4

2
0

4
0

6
0

8
0

P2 amplitude (µV)

IE
E

E
 p

e
rc

en
t 

co
rr

ec
t

0.05 0.06 0.07 0.08 0.09

2
0

4
0

6
0

8
0

P1 latency (Seconds)

IE
E

E
 p

e
rc

en
t 

c
o
rr

ec
t

0.12 0.14 0.16 0.18

2
0

4
0

6
0

8
0

N1 latency (Seconds)

IE
E

E
 p

e
rc

en
t 

c
o
rr

ec
t

0.20 0.22 0.24 0.26 0.28 0.30 0.32

2
0

4
0

6
0

8
0

P2 latency (Seconds)

IE
E

E
 p

e
rc

en
t 

c
o
rr

ec
t

-2.5 -1.5 -0.5 0.4 0.8 0.12



 

 

94 

Correlation Statistics of IEEE Score vs. Peak Amplitudes 

 

Table 3.3 Correlation coefficient, p value, and 2000 bootstrapped 95 % confidence intervals 

for the IEEE sentence scores vs. the P1, N1, and P2 peak amplitudes. 

In summary, the results indicate that P1 and P2 peaks are smaller in CI 

participants compared to NH participants. CI users showed an N1 of a similar 

magnitude to NH listeners, suggesting that the CI users were successfully receiving 

the acoustic information of the spectral changes (Sharma & Dorman 1999; Martin & 

Boothroyd 2000; Sharma et al. 2000; Hoonhorst et al. 2009).  However, their 

response was overall more negative than the NH response, possibly indicating that 

attention may have influenced the peak magnitudes (Hansen & Hillyard 1980; 

Näätänen & Picton 1987).  For the CI users, the N1 and P2 peaks were delayed in 

comparison to NH responses.  However, it should be noted that P1 and P2 peak 

latencies were difficult to estimate in CI users.  Correlation analysis shows that there 

was no relationship between the individuals’ peak amplitudes and speech perceptual 

performance.  These observations are considered further in the discussion provided 

in section 3.5. 
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3.4 Experiment 5: Phase Coherence in Cochlear Implant Users 

The entrainment of low frequency neural oscillations to the amplitude 

envelope of speech can be measured in the auditory cortex (e.g. Ahissar et al. 2001; 

Luo & Poeppel 2007).  This entrainment or phase coherence to speech has been 

reliably shown to be affected by selective attention, indicating that it is not 

necessarily purely a response to acoustic information alone (Kerlin et al. 2010; 

Gomez-Ramirez et al. 2011; Ding & Simon 2012; Horton et al. 2014).  Ding and 

Simon  2012) used MEG to record listeners’ neural responses when participants 

listened to spoken narratives by two competing talkers whilst being instructed to pay 

attention to just one of them.  Using the neural responses, they reconstructed the 

temporal envelope and compared this to the envelopes of the two talkers and also the 

envelope of the two talkers combined.  The reconstructed envelope correlated more 

strongly with the attended speech envelope than the background speech envelope.  

Furthermore, they varied the intensity of the two talkers separately over an 8 dB 

range and found that the neural representation of the attended speech adapted only to 

the intensity of that speaker but not to the intensity of the background speaker (Ding 

& Simon 2012).  They conclude that auditory objects that overlap in the spectral and 

temporal domains are individually encoded in the auditory cortex.  Furthermore, 

their results provide support for the neural adaptation being driven by the acoustic 

properties of speech as well as being modulated by selective attention.   

There have been a few studies that have investigated phase-locked responses 

to speech that varied in intelligibility, using MEG, EEG and ECoG.  Results have 

varied, with some studies finding that as the intelligibility of the speech decreased so 

did the phase coherence (Peelle et al. 2013), and others finding that there was no 
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difference between the phase coherence to intelligible versus unintelligible speech 

(Howard & Poeppel 2010; Millman et al 2015).  Peelle et al. (2013) tested 16 adults 

using MEG.  Participants listened to sentences that were noise vocoded to vary 

intelligibility by limiting the spectral information but preserving the amplitude 

envelope.  They found that phase locking of the neural activity in the theta range (4-7 

Hz) occurred to all speech, but was enhanced when the speech was intelligible.  The 

authors suggest that coherence was enhanced when the speech was intelligible 

because the listeners were able to extract higher linguistic information in the speech 

signal, and that higher-level processes aided the low-level tracking of the amplitude 

envelope of the speech.  Howard & Poeppel (2010) used MEG to measure phase 

coherence between neural oscillations and the amplitude envelope of intelligible 

sentences and their time-inverted counterparts.  They found no difference between 

the observed phase coherence with the intelligible versus the unintelligible sentences, 

and so concluded that the discrimination of speech stimuli based on phase coherence 

depends on acoustics but not comprehension (Howard & Poeppel 2010).  Peelle & 

Davis (2012) suggest that this result occurred because the speech intelligibility 

manipulation that Howard and Poeppel performed did not preserve the amplitude 

envelope of the stimuli, and so the relationship between the acoustic characteristics 

of the speech, the phase coherence, and the intelligibility of the stimuli is uncertain.  

On the other hand, Millman et al. (2015) did preserve the temporal envelope of their 

sentences that were tone-vocoded to make them intelligible or unintelligible, and 

they also found no difference in theta-band phase coherence between the intelligible 

and unintelligible speech.  Rimmele et al. (2015) combined attention and 

intelligibility in their study where they played pairs of competing talkers of natural or 

noise vocoded speech to listeners who performed a detection task whilst ignoring the 
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other speaker.  They recorded the participants’ MEG and found that phase coherence 

to the natural, but not the vocoded, speech was enhanced by attention, whereas for 

the unattended speech there was no difference between natural and vocoded.  The 

authors reported that their findings suggest that when speech is attended, more 

precise phase locking is related to the spectral detail of the speech, whereas when it 

is unattended, the spectral detail is not processed to the same level and so the phase 

locking to this speech reflects tracking of the temporal envelope alone (Rimmele et 

al. 2015).   

In summary, it seems that the majority of neural entrainment to the amplitude 

envelope of speech is driven by acoustic factors, however in a competing talker 

situation it is also modulated by attention.  Furthermore, there is a possibility that 

intelligibility of the speech may influence phase coherence in the theta-band, 

however this relationship is not yet fully understood.  It is not clear whether the 

larger phase coherence to intelligible speech compared to unintelligible speech that 

was found in some studies was purely driven by acoustics (more spectral detail), or 

whether it is driven at least in part by higher-level linguistic processes related to 

intelligibility. 

It has been suggested that phase coherence in the theta range (4-7 Hz) is not 

thought to predict individual speech recognition scores, whereas phase coherence in 

the delta range (1-4 Hz) is (Ding & Simon 2014); however this has not been studied 

extensively.  Ding et al. (2014) tested 12 normal hearing adults using MEG.  The 

participants listened to a story (Alice in Wonderland) either in quiet or in spectrally 

matched stationary noise at +3 dB SNR.  The speech was either unprocessed or noise 

vocoded through a 4- or 8-channel vocoder.  Participants were asked to rate the 

intelligibility of the speech and to answer some comprehension questions every 50 s 
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(ratings and comprehension scores were highly correlated).  Noise affected 

coherence more for the vocoded speech than for the unprocessed speech.  In quiet, as 

the spectral resolution of the stimuli was reduced using vocoding, theta-band 

coherence decreased.  They did not find a relationship between the participants’ 

intelligibility rating scores and their theta-band phase coherence measure.  However, 

they did find a positive correlation between the participants’ intelligibility rating 

scores and the phase coherence in the delta range for the 4-band vocoded speech in 

quiet and the 8-band vocoded speech in quiet and in noise (Ding et al. 2014).  The 

authors suggest that when using the same stimulus, theta-band entrainment can 

sometimes correlate with speech intelligibility, whereas delta-band entrainment does 

correlate with speech intelligibility, when measured in individual listeners (Ding & 

Simon 2014).  The relationship between speech intelligibility and delta- and theta-

band entrainment is unclear, and so in this study we considered neural entrainment in 

a range of 2-8 Hz, which encompasses both the delta- and theta-band ranges. 

As far as I am aware there have been no studies conducted with CI users 

using phase coherence measures.  Therefore, the aim of this part of the study was to 

see if the phase coherence to the amplitude envelope of continuous speech could be 

measured in CI users and to see if it could be used to predict speech perception 

performance.  So far there is limited data on the relationship between behavioural 

measures of a listener’s speech processing abilities and the phase coherence of their 

neural oscillations to speech.  However, it is possible that phase coherence is reduced 

when the speech is less intelligible, and so conceivably poorer CI performers may 

show reduced cortical entrainment. 
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3.4.1 Participants 

The same participants that were tested in the behavioural speech perception 

tasks and the ACC experiment were tested in this phase coherence experiment.  The 

same participants were dropped from analysis as in the ACC experiment 

(participants 4 and 12), as we were unable to isolate and remove their CI artefacts 

(see section 3.3.6). 

3.4.2 Stimuli 

Portions of the stories ‘The Secret Garden’  Frances Hodgson Burnett) and 

‘Lazy Jack’  Joseph Jacobs) were recorded from one female southern British English 

speaker.  The recordings were made in a sound-proof booth with a 44.1 kHz 

sampling rate at 16 bits per sample.  The stories were then split into two-minute 

segments that started at the beginning of a phrase or sentence and finished at the end 

of a phrase or sentence. 

3.4.3 Apparatus 

The set-up was the same as was used in the ACC experiment (section 3.3). 

3.4.4 Procedure 

The participants listened to 15 of the two-minute story segments, presented in 

a random order with the two-minute ACC sequences from section 3.3.  In total, the 

EEG recording lasted one hour and they were given the opportunity for a break every 

10 minutes.  During testing, participants watched an animated film without audio. 
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3.4.5 Analysis 

Data were processed offline in MATLAB (MathWorks 2013a), using the 

Fieldtrip (Oostenveld et al. 2011), EEGlab (Delorme & Makeig 2004), ERPlab 

(Lopez-Calderon & Luck 2014), and NoiseTools (de Cheveigné & Simon 2007, 

2008a, 2008b; de Cheveigné 2010, 2012, 2016; de Cheveigné & Parra 2014; de 

Cheveigné & Arzounian 2015) toolboxes.  Data were high pass filtered at 0.1 Hz and 

low pass filtered at 40 Hz (Butterworth filters, as implemented by the ERPlab 

plugins within EEGlab), and then referenced to the nose electrode.  The channels 

directly over the implants were dropped and then using NoiseTools, denoising source 

separation (DSS) was run.  In order to isolate the artefact, the data from the ACC 

experiment (section 3.3) was used.  To begin, the first 50 ms after the stimulus onset 

(in the ACC epochs) was used to create DSS components of the CI artefact by 

selecting linear combinations of electrodes that maximised the repeatability of the 

artefact in individual trials.  For each individual, the DSS components were inspected 

and the first one or two components that were artefactual were removed from the full 

length story data.  This step was then repeated once and the first one or two 

components were removed if the artefact was still present.  We then ran DSS again 

on the full length story data (which had had the artefacts removed) to extract the 

components where the response was phase-locked to the corresponding speech signal 

for each subject, and the response was taken as the projection of the first three 

components back into the sensor space.   

The amplitude envelopes of the stories were obtained by full-wave rectifying 

the signals and filtering them with low pass (0.1 Hz) and high pass (40 Hz) 

Butterworth filters (i.e. the same filters that were used for the EEG data).  They were 
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then downsampled to 2048 Hz (to match the EEG data).  The read stories contained 

segments of silence (i.e. pauses between sentences and phrases, etc.), so the EEG 

data and the amplitude envelope of the audio signal were segmented into two-second 

epochs with any periods of silence in the stories removed from both signals.  A Fast 

Fourier transform (FFT) was used to transform the epoched EEG and the amplitude 

envelope of the speech signal into the frequency domain.  To calculate the coherence 

between the two signals (i.e. EEG and amplitude envelope of the stories), the cross-

spectrum of the two transformed signals (FFT data) was calculated and then 

normalised by the power spectra of each signal.  The coherence values were 

averaged across frontocentral electrodes (F, FC, and C electrodes) and used for 

further analysis.  Statistical analysis was run using R (R Core Team 2013). 

The main aim of this portion of the study was purely to investigate whether 

phase coherence could be measured in CI users, and so to be comparable to previous 

studies, a broad-spectrum envelope rather than a cochlear-model was used (e.g. 

Peelle et al. 2013).  Furthermore, most of the energy in the speech signal comes from 

voicing, and so most of the modulations in the signal are coming from the same 

source (i.e. voicing).  Since the modulations are mainly coming from the same source, 

they will be coherent with each other across the frequency bands.  Therefore, 

whether the envelope is broad-spectrum or passed through a cochlear model, the 

coherence across frequency bands are unlikely to be greatly affected. 

3.4.6 Results 

The phase coherence between the EEG response and the stories is plotted in 

Figure 3.7.  Both the coherence before and after the CI artefacts were removed using 
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DSS are shown, to display that the coherence measured is not merely a 

representation of the implant’s entrainment to the audio signal, but rather the 

listener’s neural oscillations.  Before the artefacts were removed (black line in Figure 

3.7) there was an unusual peak in the low frequencies (< 1 Hz).  This peak was 

removed after DSS was performed to remove the CI artefacts, leaving a much more 

typical coherence plot (red line in Figure 3.7).  There is a peak in the theta range, 

which is the correct region for phase coherence (between 4 and 8 Hz; Chi et al. 1999; 

Chandrasekaran et al. 2009; Elliott & Theunissen 2009; Peelle & Davis 2012). 

For each participant, a Monte Carlo analysis was run, where the coherence 

between the neural data was run with 1000 randomised acoustic envelopes.  The 

coherence of the randomised trials was then compared to the coherence of the neural 

data with the true acoustic envelope.  The results showed that all of the participants 

showed a significant coherence peak in the theta range (p < .05).  Although the mean 

coherence plot looks as expected and the CI artefact removal using DSS seems to be 

largely successful, the results should still be viewed with caution as any residual 

artefact could be boosting the coherence values for individual participants.  However, 

the results are promising for the measurement of phase coherence in CI users. 
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Figure 3.7 Phase coherence between the EEG response and the stories in the frequency range 

of 1.5 to 20 Hz.  The black response is the coherence before removing the CI artefacts using 

DSS and the red line is the coherence after they have been removed. 

In order to look at individuals’ phase coherence and how this related to their 

speech perception abilities and their ACC responses, a phase coherence value was 

calculated for each person by taking an average of the coherence between 2 and 8 Hz.  

Figure 3.8 shows the scatter plots of the phase coherence values for individuals 

against their ACC P1, N1 and P2 amplitudes, and their IEEE sentence score (sections 

3.3 and 3.2).  Bootstrapping using 2000 samples was used to calculate 95% 

confidence intervals for all correlations (Table 3.4).  There were no strong 
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correlations between the phase coherence values and the peak amplitudes or the 

IEEE sentence scores.  Furthermore, all the bootstrapped 95% confidence intervals 

crossed zero (Table 3.4), which means that they were not significantly different from 

a correlation of 0 (coherence vs. P1: r = 0.38, 2000 bootstrapped 95% CI = -0.73 to 

0.82; coherence vs. N1: r = -0.13, 2000 bootstrapped 95% CI = -0.74 to 0.35; 

coherence vs. P2: r = -0.35, 2000 bootstrapped 95% CI = -0.91 to 0.76; coherence vs. 

IEEE: r = -0.29, 2000 bootstrapped 95% CI = -0.69 to 0.37).  There was one 

participant with a particularly high coherence value (participant 5).  This could be 

normal variability, however it is worth viewing this participant’s result with caution, 

as, although the CI artefact seemed to be removed using DSS, it is possible that it 

still had an influence on the data, resulting in a high coherence value. 
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Figure 3.8 Scatter plots showing phase coherence vs. P1, N1 and P2 amplitudes, and IEEE 

sentence score.  The peak values are from the ACC response recorded in section 3.3 and the 

IEEE score is from section 3.2.  Refer to Table 3.4 for the corresponding statistics. 
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Correlation Statistics of Coherence value vs. Peak Amplitudes and IEEE Score 

 

Table 3.4 Correlation coefficient, p value, and 2000 bootstrapped 95 % confidence intervals 

for the coherence values vs. the P1, N1 and P2 peak amplitudes and the IEEE percent correct 

score. 

3.5 Discussion 

The results of this study found that a speech-evoked ACC response was 

observed in 11 out of 13 CI users (two participants were excluded because of 

apparent artefactual issues, as discussed further later).  For the ACC response, the P1 

and P2 peaks were reduced in amplitude, and the N1 and P2 peaks were delayed in 

comparison to NH listeners.  We investigated whether the properties of this response 

may predict individual behavioural speech perception performance (IEEE sentence 

recognition, vowel ID, consonant ID).  However, there was no significant 

relationship between CI users’ speech perception ability and the amplitudes of ACC 

response components to speech.  Furthermore, phase coherence was successfully 

measured in CI users, but this did not appear to be related to their ACC morphology 

co
h
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en
ce
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s. P1

N1

P2

IEEE -0.29 .39 -0.6938,  0.3708

r p confidence intervals

0.38 .24 -0.7299,  0.8174

-0.13 .69 -0.7353,  0.3505

-0.35 .29 -0.9070,  0.7581
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or speech perception performance. These findings will be considered in turn 

throughout this discussion section. 

Artefact Reduction Technique 

This study demonstrated that the substantial electrical artefact associated with 

CI stimulation via a speech processor can be successfully removed from the majority 

of CI users, with DSS; for both ACC and phase coherence measurements.  By 

analysing a short time window immediately after the onset or change of a stimulus, 

DSS components relating to the CI artefact can be identified and then removed from 

the rest of the EEG data. In this time window, components related to early cortical 

responses should be absent.  Two participants were excluded from analysis because 

we were unable to remove the artefact from their data satisfactorily.  Interestingly, 

both of these participants used Advanced Bionic devices; however, three Advanced 

Bionic users were tested in total, and so artefactual effects do not appear to be fully 

consistent across devices (although it should be noted that the one participant with a 

large coherence value was the third Advanced Bionic user).  Whilst electrical 

artefacts continue to pose problems for EEG measures of CI listening, DSS appears 

to be a useful tool for minimizing such issues. Although the current method of 

artefact removal was largely successful, it is worth noting that one cannot be 

absolutely certain that the entire artefact was removed, and that a different method, 

or a combination of methods, may work better for different processors, MAPs, and 

individuals. To this end, further research is still required to further develop 

techniques of artefact removal.   
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Comparisons of the ACC between Normal Hearing and Cochlear Implant Participants 

No previous studies have directly compared ACC responses between NH and 

CI participants.  Nevertheless, certain relevant literature has compared both the 

MMN and the onset P1-N1-P2 complex between CI and NH participants.  Results 

have shown that the MMN is delayed in CI users (Obuchi et al. 2012; Turgeon et al. 

2014), and the onset N1 and P2 have a lower amplitude in CI users (Kelly et al. 2005; 

Timm et al. 2012).  Additionally, the whole P1-N1-P2 onset complex is delayed in 

children with CIs in comparison to NH (Munivrana & Mildner 2013).  In summary, 

there is good evidence that CAEPs are often delayed, and/or of a lower amplitude in 

CI users in comparison to NH listeners.  

The results of the current study are broadly consistent with these observations. 

When the ACC observed from CI participants is compared to that from NH 

participants, both the P1 and P2 peaks had lower amplitudes, and the N1 and P2 

peaks were delayed.  The amplitude of the N1 component did not differ between 

groups.  Concerning the differences in peak amplitudes between the CI and NH 

groups, the N1 is thought to reflect the encoding of time-varying aspects of a sound, 

such as amplitude, spectral, and voice onset time changes (Sharma & Dorman 1999; 

Martin & Boothroyd 2000; Sharma et al. 2000; Hoonhorst et al. 2009).  Therefore, 

one simple interpretation of the finding that CI and NH participants displayed similar 

N1 amplitudes is that both groups received and encoded salient acoustic time-

varying changes in a comparable manner.  If so, this would suggest that the observed 

differences in behavioural speech perception ability reflected differences in more 

central processes.  This interpretation would seem unlikely however, as whilst the N1 

amplitudes were not significantly different between the participant groups, the 

morphology of the global response was clearly different (i.e. latencies and P1 and P2 



 

 

109 

amplitudes).  This suggests that although whilst central aspects of speech processing 

may well contribute to differences in speech perception ability, it remains likely that 

early cortical encoding is impaired in CI users, which may influence how peripheral 

spectral change information is encoded in the auditory cortex.   

The amplitude of the N1 is known to increase with selective attention 

(Hillyard et al. 1973; Näätänen & Picton 1987; Woldorf & Hillyard 1991).  Due to 

the reduced spectral resolution in the periphery, it has been proposed that CI users 

require greater listening effort than NH listeners in order to understand speech 

(Hughes & Galvin 2013; Pals et al. 2013).  Therefore, it is plausible that comparable 

N1 amplitudes between groups may reflect a trade-off between reduced encoding 

and greater listening effort in the CI group.  Concerning the global response in the CI 

group, reduced P1 and P2 amplitudes (but a normal sized N1 amplitude) could reflect 

a combined effect of a broad negativity that occurs with attention (Hansen & 

Hillyard 1980; Näätänen & Picton 1987), making the P1, N1, and P2 all appear more 

negative (Näätänen & Michie 1979; Näätänen & Picton 1987; Michie et al. 1990, 

1993). 

The CI group had a range of ages from 23 to 72 years (mean = 51.8 years).  It 

is possible that for some of the older listeners there were ageing effects taking place 

that could affect the morphology of the ACC.  For example, there has been a fairly 

consistent finding in the literature that the amplitude of the N1 is larger in elderly 

populations (Tomé et al. 2015; although this is not entirely consistent, see Čeponienė 

et al. 2008 for a review).  It has been suggested that this is owing to the elderly 

having inhibitory deficits (e.g. Anderer et al. 1996; Amendo & Díaz 1999) or a 

reduced ability to inhibit the processing of information irrelevant to the task.  This 

could also lead to a higher level of attention during tasks and so increased N1 
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amplitude  Čeponienė et al. 2008; Tomé et al. 2015).  In the current study, the  1 

was the most defined of the three peaks in the CI group, and was the only peak that 

wasn’t significantly smaller than the  H group.  It is possible that ageing effects, 

such as inhibitory deficits and attentional differences, could have affected the 

morphology of the ACC in the CI group. 

Concerning latency differences, the N1 and P2 peaks were found to be 

delayed in CI users compared to NH participants.  Research on auditory development 

in implanted children has suggested latencies and amplitudes of the N1-P2 complex 

may be associated with auditory system maturation and deprivation.  Here, studies 

demonstrate significant changes in response latency and amplitude well into 

adolescence (Courchesne 1978, 1990; Ponton et al. 1996a, 1996b; Ponton et al. 2000; 

Sharma et al. 1997).  Whilst this may suggest that the current CI group displayed 

such characteristics of auditory deprivation, it is important to note that the current 

participants were all of adult age, and with different histories of deafness and implant 

use.  The increased latencies currently observed more likely reflect the decreased 

stimuli discrimination ability in the CI group.  For example, Oviatt & Kileny (1991) 

measured P3 responses to deviant tonal stimuli in NH and CI groups.  Response 

latencies were significantly longer in the CI group for 500-1000 and 500-2000 Hz 

changes, but not for 500-3000 Hz changes.  The authors proposed that latency may 

be a reliable indicator of signal detection and discrimination ability in CI users (see 

also Okusa et al. 1999).  In child CI listeners, Kileny et al. (1997) presented tonal or 

speech stimuli in a conventional P1-N1-P2 (and oddball) paradigm.  The authors 

observed that the type of stimulus appeared to have a consistent (but non-significant) 

effect on peak latencies, and responses to the speech stimuli exhibited the most 

delayed latencies.  They speculated that this trend might have reflected the greater 
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complexity involved in processing the speech stimulus contrast compared with the 

simpler loudness or frequency contrasts.  In the current study, complex speech 

stimuli were used, for which the salience of spectral changes would likely be reduced 

for the CI listeners (owing to reduced spectral resolution in the periphery).  As such, 

it is perhaps unsurprising that the CI participants displayed greater N1-P2 latencies 

than the NH participants. 

Whilst a global comparison of averaged responses is informative of how 

ACC responses broadly differ between NH and CI groups, it is also important to 

consider how individual responses differ, and whether such variations are predictive 

of speech perception performance.  To this end, the next section of this discussion 

considers the relationship between the ACC and speech perception performance in 

CI users. 

The Relationship between the ACC and Speech Perception Performance 

There have been several previous reports that certain CAEPs may be 

predictive of CI users’ speech perception scores, but generally these studies have 

used acoustically simpler stimuli than in the current study (Groenen et al. 1996b; 

Maurer et al. 2002; Roman et al. 2004; Alvarenga et al. 2012).  Whilst there have 

been some measurements of the ACC in CI participants, much work with this 

paradigm has been used to measure peripheral frequency selectivity.  Here, using 

direct stimulation via a research platform, pulse trains are presented on two 

sequentially stimulated electrodes (Brown et al. 2008; Hoppe et al. 2010; He et al. 

2014). The ACC observed from the change in presenting electrode has been 

considered an objective measure of electrode discrimination, as the size of the ACC 

is partially dependent upon the degree with which the two electrodes stimulate non-
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overlapping neural populations.  Consistent with this notion, ACC amplitude 

generally increases as the electrode pairs are increasingly separated (Brown et al. 

2008; He et al. 2014).  Significant correlations have been observed between such 

ACC responses and behavioural measures of electrode discrimination (Hoppe et al. 

2010; He et al. 2014), and speech perception in children identified with auditory 

neuropathy spectrum disorder (He et al. 2014).  Furthermore, Scheperle & Abbas 

(2015b) found that both the ACC to changes in the stimulating electrode and the 

ACC to spectral changes using rippled noise were predictive of the speech perception 

performance of their 11 adult CI users. 

 Concerning the current results, it is important to note that stimuli were 

presented acoustically, and participants listened through their speech processor on its 

clinically fitted, every-day setting.  As such, variability in the ACC response between 

subjects likely stems from multiple causes; from differences in the extent of 

surviving auditory processes after deafness, from differences in the peripheral 

effectiveness of the implanted array (i.e. insertion depth, electrode positioning, etc.), 

and differences in the optimisation of the participants’ clinical fittings (i.e. number of 

channels, stimulation rate, pulse duration, etc.).  As such, the current measure likely 

reflects individual differences across these related areas, and so provides a global 

assessment of performance in an everyday listening context. 

Brown et al. (2015) measured the ACC to changes in synthesized vowels (/ui/ 

and /iu/) presented via a loudspeaker in 10 Nucleus hybrid users, but did not find a 

significant relationship with speech perception scores.  In both Brown et al’s  2015) 

study and the current study, correlations between CAEP measures and behavoural 

performance were not significant.  Note however that Brown et al. (2015) tested 

participants with experimental MAPs, as opposed to those used in everyday listening 
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by the subject (with a four week acclimatisation period prior to testing).  Brown et al. 

(2015) tested 10 hybrid users, and the current study had 11 CI users (after removing 

two subjects).  In both cases, unless a strong relationship is present, it is difficult to 

observe significant correlations with such sample sizes.  Nonetheless, whilst the 

correlations observed in the current study were not significant, there do appear to be 

certain trends within the data set.  There is a general pattern for which the amplitudes 

of the N1 and P2 increased with improved speech perception performance.  This 

would be consistent with the previously observed CAEP results described above, and 

with the notion that worse performers received/encoded less spectral-change 

information than their better performing peers.  ACC response morphologies have 

been shown previously to change when the spectral-change information received 

differs, as certain aspects of all three of the peaks relate to the acoustic characteristics 

of the stimuli (Chapter 2; Shtyrov et al. 1998; Sharma & Dorman 1999; Martin & 

Boothroyd 2000; Sharma et al. 2000; Ceponiene et al. 2005; Hoonhorst et al. 2009; 

Anderson 2010).  As such, a reduction in ACC amplitude for poorer CI performers 

may represent poorer detection/encoding of the spectral changes in the stimuli.  

Differences in the relationship between the ACC and Speech Perception Performance 

for NH and CI Groups 

Chapter 2 detailed an experiment in which NH listeners were presented with 

the same vowel fricative sequences as was used in the current study, in either quiet or 

in the presence of speech-shaped noise.  The participants who performed worse at a 

behavioural SIN task showed larger P1 responses in quiet.  Furthermore, for all 

participants, as the noise increased, the amplitude of the ACC decreased as the 

spectral information was masked.  The larger sample size in Chapter 2 meant that we 
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could more confidently investigate individual differences in the ACC, including the 

morphology of the P1.  On the other hand, in the current study, the P1 in CI users 

was less reliably observed, and the global morphology of the ACC response was 

different to that of NH listeners. 

Looking at the results of Chapter 2 and this CI study together, it is plausible 

that the differences in response morphologies between CI and NH listeners may 

reflect the combination of different aspects of auditory cortical processing.  In 

Chapter 2, the tested NH participants were screened for normal-level audiometric 

thresholds.  As such, the group should have had reasonably similar peripheral 

processing (barring any undetected differences, such as hidden hearing loss).  The 

NH ACC results suggested that those with poorer SIN ability may apply greater pre-

conscious attention and cognitive effort to the speech stimuli, and potentially have 

reduced neural efficiency, proposing a relationship between higher level processing 

and obligatory cortical activity.  To clarify, because the participants had normal 

hearing, differences in peripheral hearing, whilst potentially present, should be 

relatively small, and therefore the individual differences in the morphology of the 

ACC are likely representative of higher level processing in these listeners (such as 

cognitive effort and neural efficiency).  In contrast, in the current CI study, although 

there are likely to be individual differences in central speech processing, the 

individual differences in their peripheral auditory pathway (i.e. neural survival, 

electrode positioning, etc.) are likely to be considerable.  As such, whilst the current 

ACC measure in CI users provides a meaningful index of performance in an 

everyday listening context, the effect on the ACC morphology of an interaction 

between peripheral and central factors is likely to be more heavily weighted towards 

peripheral factors in CI users than in NH participants. 
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Phase Coherence  

The final part of the study saw that phase coherence could successfully be 

measured in CI users.  There were no correlations seen between phase coherence and 

the behavioural measures of speech perception or with the ACC response, although 

again the sample size is quite small for a correlation analysis.  However, even the 

poor performers (IEEE % correct scores as low as 15.6%) showed entrainment to the 

amplitude envelope of the speech.  One might expect that the very poor performers 

would have lower phase coherence as it is likely that the majority of the stories 

would have been unintelligible, and phase coherence can sometimes be reduced with 

unintelligible stimuli (Peelle et al. 2013). 

The participants were not asked to attend to the stories and they continued 

watching the animated film without audio as the stories were played.  Due to reduced 

spectral resolution, in order for CI users to understand speech it is possible that they 

require more listening effort than NH listeners (Hughes & Galvin 2013; Pals et al. 

2013).  Without actively listening to the stories, it could be that for the majority of 

the participants the stimuli would have been unintelligible.  Neural oscillations do 

entrain to the amplitude envelope of unintelligible speech; however entrainment can 

be greater for intelligible speech (e.g. Peelle et al. 2013).  If the stories were 

unintelligible to all the participants in this study, it is unlikely that the phase 

coherence would not have predicted speech perception performance even if it 

potentially could.  Furthermore, telling participants not to concentrate on the stories 

and to watch an animated film does not necessarily mean that they will have all 

successfully ignored the stories.  Phase coherence to speech is effected by selective 

attention (Kerlin et al. 2010; Gomez-Ramirez et al. 2011; Ding & Simon 2012; 



 

 

116 

Horton et al. 2014), and so conceivably, some of the variation in the group could 

have been caused by attentional differences between individuals. 

A study similar to this one but where participants had to attend to the speech 

and answer comprehension questions would mean that the intelligibility of the stories 

could be measured and attention could be controlled.  This would allow for 

intelligibility to be used as a factor in the analysis, and effects of selective attention 

could be minimised.  Furthermore, a design that controls intelligibility could be 

useful, by ensuring that the stories were unintelligible to all (e.g. by using tone 

vocoding as in Millman et al. 2015) or intelligible to all (e.g. by using a sample of CI 

users with fairly high performance, but still with a range).  Although there are still 

many questions to be answered, this experiment shows that phase coherence can be 

measured in the majority of CI users and so research in this area is promising.  

3.5.1 Conclusion 

This study was designed to investigate CI users’ performance as close to as 

when in the real world as possible.  Participants were accepted with a variety of 

processors and fittings, and the study used a broad range of speech stimuli presented 

through a loud speaker.  Participants were also asked to keep their processors on 

their usual everyday comfortable setting.  As such, performance variability in the 

behavioural, ACC, and phase coherence measures likely stems from three causes; 

differences in auditory processing associated with the effects of deafness, differences 

in the peripheral effectiveness of the implanted array (i.e. electrode positioning), and 

differences in the optimisation of the participant’s clinical fitting  i.e. number of 

channels, stimulation rate, pulse duration, etc.). These three factors are undoubtedly 
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closely linked; for example, a well-fitted implant for any individual will need to 

factor in the peripheral functioning of the array (e.g. extra-cochlear electrodes), as 

well as individual preferences for certain MAP parameters (e.g. processing 

strategies), which while not fully understood, may be linked to both peripheral and 

central processing abilities.  Whilst any CAEP measure alone will be unable to 

disentangle such variables, if the aim of the measure is to assess optimum fitting 

parameters for everyday use, then a useful next step would be to investigate whether 

CAEPs are affected by MAP parameters, and if so, whether changes in CAEPs are 

indicative of listening preference and speech perception performance. 

The results of this study, add to the growing body of research measuring 

cortical neural activity in the CI population.  Results suggest that there are 

differences between the way the spectral change information is encoded in the 

auditory cortex between NH and CI listeners, with the ACC in CI listeners likely 

being more strongly influenced by individual variations in the spectral information 

encoded in the periphery.  However, there may also be some aspect of attention 

modulating the CI ACC response.  Entrainment of low frequency neural oscillations 

to speech in CI users was successfully measured, giving potential to further research 

using this technique in this group.  Notably, the CI artefact was able to be removed 

using DSS in all but two participants from all of the EEG data, giving promise to the 

broader use of electrophysiology in CI research.  
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4 Native Language Experience and 
the ACC 

4.1 Introduction 

So far, this thesis has explored the influence of peripheral auditory factors 

on the ACC.  The current chapter controls the peripheral auditory factors (i.e. 

normal-hearing, speech in quiet) and addresses a more central factor of speech 

perception, by measuring responses from listeners that differ in their native language 

experience.  During infancy, listeners start to become attuned to their native language 

(L1) speech sounds, so that by the time they reach the age of six months, individuals 

have started to become specialised to detect differences between L1 phonemes (Kuhl 

et al. 1992; Kuhl 1992, 1998; Werker 1994).  It has been suggested that this 

specialisation can interfere with L2 speech perception later in life, resulting in speech 

perception difficulties with certain non-native speech sound contrasts (e.g. Ringbom 

1992; Best 1995; Flege 1995; Kuhl & Iverson 1995; Hattori & Iverson 2009; Iverson 

et al. 2012).  Exactly where in the speech processing pathway this L1-L2 interference 

occurs is unknown, and often debated. 

Traditionally, theories of L2 speech processing have focussed on the effect of 

L1-L2 interference at the level of phonological categorisation.  For example, Best’s 

(1995) Perceptual Assimilation Model suggests that listeners’ perception of L2 

speech sounds is driven by how they assimilate these L2 sounds into their L1 

phonological categories.  Whereas, Flege’s  1995) Speech Learning Model suggests 

that a listener has separate subsystems of phonetic processing for L1 and L2 
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categories that exist in a common phonological space, and difficulty occurs when an 

L2 category that the listener is trying to learn is too close to an existing L1 category.  

However, recent L2 speech processing research has suggested that native language 

categories can interfere at a lower, more peripheral, level of speech processing than 

was previously thought.  For example, cross language differences have been found as 

early as the brainstem.  When listeners are presented with Mandarin tones, native 

Chinese listeners show a more robust FFR than English listeners, whereas when they 

are presented with language neutral variations in pitch, no cross language differences 

occur (Krishnan et al. 2005, 2009a, 2009b).  Encoding at the level of the brainstem is 

primarily thought to preserve or enhance the spectral and temporal signal transmitted 

by the auditory nerve, with little high-level processing occurring at this stage in the 

pathway.  Therefore, a cross language effect at this level suggests that differences in 

speech perception between listeners with different language backgrounds may stem 

from a more peripheral auditory level than is often thought. 

Evidence from neurophysiological studies using the MMN has shown that 

cross language differences can also be seen in the auditory cortex (Dehaene-

Lambertz 1997; Näätänen et al. 1997; Winkler et al. 1999).  For example, Näätänen 

et al. (1997), found a larger MMN response when Finnish participants were 

presented with the Finnish (and Estonian) vowel /e/ as a standard and the Finnish 

(and Estonian) vowel /ö/ as a deviant than when the deviant was the Estonian-only 

vowel /õ/.  On the other hand, the MMN elicited for the Estonian participants was 

about equal in both conditions.  Furthermore, Winkler et al. (1999) found that 

Hungarian native listeners without any experience of Finnish could not behaviourally 

discriminate between the Finnish vowels /e/ and /ä/, and no MMN response was 

observed to these stimuli in these subjects, whereas the opposite was found for 
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Hungarian natives who had learnt Finnish. Dehaene-Lambertz (1997) demonstrated 

that the MMN is larger for L1 stimuli than for foreign-language phonemes. She 

found that an MMN response was elicited when French native listeners were exposed 

to French phoneme contrasts, yet no MMN was found when using a contrast of Hindi 

phonemes at the same amplitude (Dehaene-Lambertz 1997).  Overall, these results 

support the notion of a language-specific element to the MMN response. 

Earlier cortical measures, however, including the onset P1-N1-P2 complex 

and the ACC are currently not considered to be affected by language experience 

(Sharma & Dorman 2000; Elangovan et al. 2011; An et al. 2013; Wagner et al. 2013).  

An et al. (2013) used an /iri/-/ili/ continuum with changing third formant frequency 

for an identification task and for ACC recording at the change from the initial vowel 

to the consonant (about 300 ms into the token).  They tested English (n = 5), Korean 

(n = 5), and Japanese (n = 5) participants and didn’t find any difference in the ACC 

in central locations between groups.  Wagner et al. (2013) tested the onset P1-N1-P2 

complex to word onsets that were legal in the Polish language and illegal in English, 

in English (n = 12) and Polish (n = 12) listeners.  Again they found no difference 

between the two language groups.  They did, however, find a later onset negativity 

(88-280 ms after onset) that was larger in the Polish group compared to the English 

group, which they attributed to an attentional effect, such as the broad processing 

negativity that occurs with selective attention (Hansen & Hillyard 1980; Näätänen & 

Picton 1987; Näätänen 1990; Alho et al. 1994). 

Research so far has shown that cross language differences can be found at the 

level of the brainstem (FFR; Krishnan et al. 2005, 2009a, 2009b) and at the level of 

the auditory cortex (MMN: Dehaene-Lambertz 1997; Näätänen et al. 1997; Winkler 

et al. 1999).  Furthermore, there may be cross-language attentional effects that can be 
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measured in the early auditory cortex (Wagner et al. 2013).  These results suggest 

that L1-L2 interference may span the length of the speech perception pathway, 

beginning with differences with neural encoding of the acoustic characteristics of 

speech, and ending with differences in perceptual categorisation of speech sounds.  

However, results of previous studies have shown that earlier cortical measures, such 

as the ACC are not affected by language experience (Sharma & Dorman 2000; 

Elangovan et al. 2011; An et al. 2013; Wagner et al. 2013).   

Chapters 2 and 3 suggested that when the effect of peripheral differences in 

detecting spectral changes were controlled (i.e. normal-hearing listeners), the 

morphology of the ACC was sensitive to higher level processing, such as attention, 

cognitive effort and neural efficiency.  Studies that have investigated the effect of 

language experience on the ACC have used a narrower range of speech sounds than 

in this thesis so far.  Iverson et al. (2016) used a multi-pair design (as in Chapters 2 

and 3), that allowed for observation of acute sensitivities of the ACC to phonological 

importance of stimuli and modulation of attention, that would go unmeasured with 

designs that involve just one or two contrasts.  They were able to view their ACC 

results on a two dimensional Euclidean space using multidimensional scaling (MDS).  

Furthermore, they were able to measure asymmetries in their ACC responses, where 

the response was different depending on which order the pair of stimuli were 

presented.  The current study explored the scope of this design for revealing cross 

language differences in the early auditory cortex, using both MDS and order 

asymmetries. 

Iverson et al. (2016) used two stimulus sets, the first contained four voiced 

and four voiceless fricatives, and the second contained eight vowels, to measure the 

ACC for all possible pairs within each stimulus set.  They then successfully applied 
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multidimensional scaling to the results to produce two dimensional perceptual spaces 

that related to voicing and place of articulation for fricatives, and height and front-

back articulation for vowels.  Multidimensional scaling (MDS) is a tool used to view 

the relative similarity of independent items.  With Iverson et al’s  2016) solutions, 

the closer together two fricatives (or two vowels) were on the MDS space, the 

smaller the ACC response was to that pair and vice versa.  They found that the P2 

peak amplitude minus the P1 peak amplitude provided the best fit into a two-

dimensional Euclidean space for both the vowels and the fricatives.  They compared 

the P2-P1 MDS solutions to solutions based on the cochlear-scaled spectral 

difference between their stimululus pairs.  They found that the MDS solutions were 

fairly predictable, in that they produced phonetically realistic perceptual spaces (e.g. 

the P2-P1 MDS vowel spaces looked much like a traditional vowel quadrilateral).  

However, the P2-P1 MDS spaces had greater representation of place of articulation 

(for fricatives) and front-back articulation (for vowels) on the horizontal plane, than 

the MDS solutions based on the spectral difference between the stimuli.  The authors 

suggest that the P2-P1 perceptual spaces were scaled more by the phonological 

importance of these dimensions than by the pure acoustic difference (Iverson et al. 

2016). 

Iverson et al. (2016) also found that the ACC response recorded to a pair of 

phonemes presented in one order was met with an asymmetry when the pair was 

presented in the opposite order.  They describe it as a broad negativity overlapping 

N1, similar to the processing negativity found in selective attention experiments 

(Hansen & Hillyard 1980; Näätänen & Picton 1987; Näätänen 1990; Alho et al. 1994; 

Iverson et al. 2016).  They suggest that this asymmetry effect was driven by the low 

frequency peaks in the stimuli, in that a greater asymmetry was seen when the 
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contrast consisted of one stimulus with a relatively flat spectrum and one with 

stronger low frequency peaks (i.e. for fricatives this is largely accounted for by 

voicing as voiced fricatives have greater low frequency peaks than voiceless 

fricatives).  They suggest that these strong low frequency peaks implicitly modulate 

attention giving rise to a greater negativity when these stimuli occur.  Order 

asymmetries have also been found in MMN experiments where with a pair of vowels, 

the amplitude of the MMN is larger or smaller depending on which vowel is the 

deviant and which vowel is the standard (Eulitz & Lahiri 2004; Ylinen et al. 2010; 

Scharinger et al. 2012). Furthermore, there are consonant (e.g. Kuhl et al. 2006) and 

vowel asymmetry differences often seen in infant and adult behavioural 

discrimination data (e.g. Kuhl et al. 1992; Polka & Bohn 2003, 2011), and in word 

learning studies with consonants (e.g. Altvater-Mackensen & Fikkert 2010; Altvater-

Mackensen et al. 2014).  Polka & Bohn (e.g. 2011) have found consistent 

asymmetries where discrimination is easier for vowel pairs going in the direction 

from the centre to the periphery of the F1-F2 vowel space than the other way around.  

They suggest that this is related to these peripheral vowels being perceptually salient 

or stable.  Furthermore, they suggest that these asymmetries only occur in adults for 

non-native contrasts, whereas for contrasts where native language experience 

requires the listener to perceive the vowels phonemically, the asymmetry effect is 

small or absent. 

The aim of this study was to investigate the effect of language experience on 

the ACC, using the P1, N1, and P2 peak amplitudes, and the asymmetry magnitude 

as seen in Iverson et al. (2016).  For this thesis, language experience was chosen, as 

peripheral hearing can be controlled (i.e. normal hearing listeners), whilst speech 

perception is manipulated without using peripheral factors (i.e. speech in quiet), in 
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order to compliment the experiments in Chapters 2 and 3 (i.e. speech in noise and CI 

users).  In this study, eight voiceless fricatives, ranging from bilabial to velar, were 

concatenated into sequences that included every possible pair, and were played to 

English (n = 15), Polish (n = 15), and Finnish (n = 15) native listeners.  The ACC 

response was recorded for each stimulus change.  The ACC magnitude was used to 

create similarity matrices that were analysed by non-metric MDS, and an acoustic 

analysis of the fricative stimuli was performed to enable the spectra of the stimuli to 

be compared to the ACC.  P1, N1, P2, and asymmetry measures, and their 

relationship to the spectra of the stimuli were used to investigate cross language 

differences between the groups. 

The three groups of listeners were selected for their varying native language 

experience of fricatives.  Finnish speakers have two voiceless and no voiced fricative 

sounds in their native language (voiceless: /f/, /s/, and /h/), English speakers have 

five voiceless and four voiced fricative sounds in their native language (voiceless: /f/, 

/θ/, /s/, /ʃ/, and /h/; voiced: /v/, /ð/, /z/, and /ʒ/), and Polish have five voiceless and 

five voiced fricative sounds (voiceless: /f/, /s/, /ʂ/, /ɕ/, /x/; voiced: /v/, /z/, /ʐ/, /ʑ/, and 

/ɣ/; Campbell & King 2011).  Polish has the largest fricative inventory of the three 

languages, and Finnish has the smallest.  Cross language differences in CAEPs are 

usually realised as a larger response for native stimuli compared to non-native 

stimuli (e.g. using the MMN; Dehaene-Lambertz 1997; Näätänen et al. 1997; 

Winkler et al. 1999), however the onset P1-N1-P2 complex and the ACC are 

currently not considered to be affected by language experience (Sharma & Dorman 

2000; Elangovan et al. 2011; An et al. 2013; Wagner et al. 2013).  Therefore, we 

expect that there will be no ACC magnitude differences between the three language 

groups.  On the other hand, Iverson et al. (2016) found an ACC asymmetry effect 
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using this design, and according to Polka & Bohn’s (2011) theory, listeners show 

larger asymmetries to contrasts that are not in their native language.  Therefore, 

although we may not see ACC magnitude differences between the three language 

groups, it is possible that the separate language groups will show larger asymmetries 

to contrasts that do not involve sounds that are in their native language.  

4.2 Experiment 6: The ACC to Fricatives in English, Finnish, 

and Polish Listeners 

4.2.1 Participants 

Fifteen English, 15 Finnish, and 15 Polish speaking, normally hearing adults 

contributed to the experiment (age range: 19-39).  Native speakers were defined as 

those whose first language was English, Finnish, or Polish, with no other language 

being spoken in their household before they started school.  All participants passed a 

hearing screening test by demonstrating thresholds of  20 dB HL for pure-tones 

presented in quiet at the octave frequencies between 250 and 8000 Hz. 

The experiment and recruitment for this study was approved by the 

University College London ethics committee.  All subjects provided their informed 

consent before beginning the experiment and were paid an honorarium for their time. 

4.2.2 Stimuli 

Sustained fricatives were recorded from one female trained phonetician who 

is a native Polish speaker with a high fluency in English.  The recordings were made 
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in a sound-proof booth with a 44.1 kHz sampling rate at 16 bits per sample.  Speech 

stimuli manipulations were then conducted in Praat (Boersma & Weenink 2013).  

For each recorded sound, a 750 ms segment that was deemed to be fairly static 

(minimal spectral change) was extracted from the recording.  The amplitude 

envelope of each segment was then flattened by calculating the envelope of the 

original recording (full rectification and a 50-Hz low-pass filter, scaled to a 

maximum value of 1), dividing the original recording by this envelope, and rescaling 

the amplitude to be equal across phonemes. 

The eight fricatives (Table 4.1) were then concatenated into a random order 

without replacement (the same stimulus could not appear twice in a row) to create 

five-minute sequences that included all possible pair transitions (i.e. 56 possible 

transitions).  The concatenation was done by splicing stimuli using 50 ms raised-

cosine overlapping transitions.  The duration of each stimulus was randomly jittered 

from 450-500 ms, with the segment randomly selected from the longer 750 ms 

recordings.  This minimised the possibility of any spectral discontinuity within the 

recorded stimuli from being consistently time-aligned to the spectral changes.  After 

the phonemes were concatenated into a five-minute sequence, the entire amplitude 

envelope was flattened to correct for amplitude fluctuations during the brief 

overlapping transitions.  Each five-minute sequence was used only once. 

The acoustic characteristics of fricatives are sometimes described in terms of 

spectral moments (mean, variance, skewness, and kurtosis; Jongman et al. 2000).  A 

spectral analysis of the stimuli was run using Praat (Boersma & Weenink 2013) to 

show the cochlear-scaled spectra and the four spectral moments for each of the 

fricatives (Figure 4.1 and Table 4.2).  Figure 4.1 shows that the stimuli appear to fit 

into two groups, those with a flatter response who have higher low frequency energy 
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(solid lines) and those with a peakier response who have lower low frequency energy 

with high frequency peaks (dotted lines).   
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Fricative Stimuli 

 

Table 4.1 Details of the eight voiceless fricative stimuli. 

Place of Present Present in

Articulation Native Native

Polish? Finnish?

International 

Phonetic 

Alphabet 

Present 

in Native 

English?

sh

pal

x

b

f

ɸ Bilabial No No No

YesYesLabiodentalf

May be 

retracted (s̠)

ap ɕ Alveo-palatal No Yes No

South Western 

dialects only

th ɵ
Dental non-

sibilant
Yes No No

YesYes
Alveolar 

sibilant
ss

ç Palatal No No No

ʃ
Palatal-

alveolar sibilant
Yes No No

x Velar No Yes No
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Figure 4.1 Graph showing the cochlear-scaled spectra of each of the eight stimuli.  The lines 

are split into two groups, those with a flatter spectral response (solid lines) and those with a 

peakier spectral response (dotted lines). 
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Table 4.2 The four spectral moments of the eight fricative stimuli. 

4.2.3 Apparatus 

All stimuli were presented binaurally via Praat (Boersma & Weenink 

2013).  A Fireface UC external audio interface (44.1 kHz sampling rate, 16 bits per 

sample) connected to Etymotic Research ER-1 insert earphones was used for 

stimulus presentation via a custom built headphone amplifier.  Stimuli were 

presented at 65 dB SPL, and the sound level was verified with a Brüel & Kjaer 4157 

artificial ear for insert earphones.   

An additional audio channel was used to provide stimuli timing information 

to the EEG system.  A custom converter was used to convert the audio signal into 

TTL pulses, which was recorded as a time-aligned trigger by the EEG 

Kurtosis

International 

Phonetic 

Alphabet 

Standard 

deviation 

(variance; Hz)

b ɸ 3907.82 3048.44 0.341.11

4.560.65

ap ɕ 4967.38 1669.15 4.011.70

f f 4771.23 3431.77 0.020.95

th ɵ 7354.42 3538.75 -0.43-0.01

x x 3644.58 2754.76 1.991.63

Centre of 

Gravity 

(mean; Hz)

Skewness

sh ʃ 4317.18 1142.37 12.552.96

pal ç 5864.44 2602.09 0.770.99

s s 7755.23 1723.68
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system.  Testing occurred in an electromagnetically shielded sound-proof booth that 

was kept at 19
o
C to minimize sweat artefacts.  Within the booth, mains electricity 

was turned off during testing to reduce electrical artefacts as far as possible.   

Evoked responses were recorded with a BioSemi ActiveTwo EEG system.  

Sixty-four active surface electrodes were placed in accordance with the international 

10-20 system.  Seven additional electrodes were placed on the left and right mastoid, 

left and right canthus, above and below the left eye, and on the tip of the 

nose.  Responses were recorded at a sampling rate of 2048 Hz. 

4.2.4 Procedure 

One block consisted of one five-minute sound file that was prepared before 

the session.  This was repeated six times (a new sound file each time) giving a total 

of approximately 240 repetitions for each possible pair (120 in each direction).  

During testing, participants watched a silent animated film, and were given the 

opportunity for a short break every 10 minutes. 

4.2.5 Analysis 

Data were processed offline in MATLAB (MathWorks 2013a), using the 

Fieldtrip (Oostenveld et al. 2011), EEGlab (Delorme & Makeig 2004), ERPlab 

(Lopez-Calderon & Luck 2014), and NoiseTools (de Cheveigné & Simon 2007, 

2008a, 2008b; de Cheveigné 2010, 2012, 2016; de Cheveigné & Parra 2014; de 

Cheveigné & Arzounian 2015) toolboxes.  For each electrode channel, data were first 

high pass filtered at 0.1 Hz (Butterworth filter, as implemented by the ERPlab 

plugins within EEGlab), and then referenced to the mastoid electrodes.  Using 
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Fieldtrip, the recording was then segmented into epochs spanning from 100 ms 

before to 350 ms after each stimulus onset.  Epochs were then baseline corrected to a 

100 ms window before the stimulus change.  Data were then low pass filtered at 30 

Hz (Butterworth filter, as implemented by Fieldtrip) and downsampled to a 512 Hz 

sampling rate.  Using NoiseTools, DSS was used to extract the ACC components for 

each subject, using a method that increased the signal-to-noise ratio of the neural 

signals, by selecting linear combinations of electrodes that maximised the 

repeatability of the ACC activity.  After visual inspection of the DSS components, 

the first three were selected and the response was taken as the projection of these 

three components back into sensor space at electrode FCz.  Epochs in which the 

signal amplitude exceeded 150 µV were rejected due to their high noise level, and 

the remaining epochs were averaged for each pair transition.   

Statistical analysis was run using R (R Core Team 2013).  For linear mixed-

model analyses the lmer function in the R package lme4 (Bates et al. 2015) was used, 

with type II analysis-of-variance tables calculated using the package CAR (Fox 

&Weisberg 2011).  MDS solutions were calculated using the classical-MDS 

procedure cmdscale within R (R Core Team 2013), using two dimensions and 

including a constant.  The plotted solutions were translated, rotated, reflected, and 

scaled, to produce plots that were visually comparable; as MDS solutions only 

display the relative similarity of items (i.e. the scaling is arbitrary). 

4.3 Results 

The scalp distributions in Figure 4.2 show that the average response across all 

pairs for each group is prominent in fronto-central locations, with the largest 
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response being found at FCz.  When looking at the average response at FCz for the 

English, Finnish and Polish groups (Figure 4.2), the English and Finnish responses 

look to be very similar, whereas the Polish response appears to be larger. 

 

Figure 4.2 Grand mean responses at FCz and scalp distributions for the English (blue), 

Finnish (black) and Polish (red) groups. The stimulus onset is at 0 s.  Scalp distributions are 

calculated for P2 (150-250 ms), and the colour ranges from -1.5 to +1.5 µV. 

Figures 4.3, 4.4 and 4.5 show the ACC responses for each language group for 

each possible pair of stimuli.  It is clear that for all the groups some of the pairs elicit 

a greater response (e.g. ɸ-s, ɸ-ʃ, f-ɕ and s-x) than others (e.g. ɸ-f, f-θ, f-x and ʃ-ɕ).  

The pairs that are eliciting a greater response appear to be those that are more 

spectrally different (Figure 4.1; e.g. /ɸ-s/).  Furthermore, there seems to be an effect 

of presentation of order (as seen in Iverson et al. 2016) between the response of the 

pair presented in one order compared to in the opposite order, and this asymmetry 

effect appears to be greater for a pair of fricatives that are more spectrally different 
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(i.e. more negative when going between fricatives with a flat spectrum to ones with 

high frequency peaks; Figure 4.1). 

 

Figure 4.3 English matrix plot for both pair directions (blue = marked order, red = reverse 

order) at FCz.  The y-axis shows +/- 2 μV, the x-axis shows time. 
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Figure 4.4 Finnish matrix plot for both pair directions (blue = marked order, red = reverse 

order) at FCz.  The y-axis shows +/- 2 μV, the x-axis shows time. 
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Figure 4.5 Polish matrix plot for both pair directions (blue = marked order, red = reverse 

order) at FCz.  The y-axis shows +/- 2 μV, the x-axis shows time. 
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are on the space, the greater the magnitude of the ACC response was when measured 

at the change between these two fricatives.  The P2 magnitude provided the best fit 

into a two-dimensional Euclidean space for all three groups (English: R
2
 = 0.81; 

Finnish: R
2
 = 0.67; Polish: R

2
 = 0.82).  P1 magnitudes provided slightly worse fits 

(English: R
2
 = 0.81; Finnish: R

2
 = 0.62; Polish: R

2
 = 0.80), and N1 magnitude 

provided the worst fits of the three peaks (English: R
2
 = 0.62; Finnish: R

2
 = 0.62; 

Polish: R
2
 = 0.36).  Figure 4.6 displays the MDS solutions for all three language 

groups based on P2 magnitude, and for comparison, the MDS solution based on 

cochlear-scaled spectral differences between the fricative pairs (R
2
 = 0.99).  The 

cochlear-scaled spectral difference between the fricatives was calculated by taking 

the RMS difference between the cochlear-scaled spectra (i.e. Figure 4.1) of each pair 

of fricatives. 
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Figure 4.6 Top panel: MDS solutions based on P2 peak values (mean of wave ±7 ms around 

the peak) at FCz (English: R2
 = 0.81, Finnish: R2

 = 0.67, Polish: R2
 = 0.82).  The solutions 

are based on the P2 peak difference in that the further away two fricatives are on the space, 

the greater the P2 value was when they were presented as a pair.  Bottom panel: MDS 

solution based on the cochlear-scaled spectral difference between stimuli (R2
 = 0.99).  The 

greater the spectral difference between two fricatives the greater the distance between them 

on the 2D space.  There are no axes displayed on the MDS solutions as they are meaningless, 

and the orientation of the plots are arbitrary; it is the distances between the fricatives that is 

important and used as a visual representation of the data. 
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solution in the top panel of Figure 4.6, /ç/, /ɕ/, /s/, and /x/ form an approximate 

square on the space, meaning that they are all an equal distance from each other, and 

so when each pair of those four fricatives was played in the stimulus chain the 

resulting P2 magnitude was approximately equal.  Whereas, in the same solution, /x/, 

/ʃ/, and /ɕ/ form a sharp triangle on the space, showing that /ʃ/, and /ɕ/ are 

approximately the same distance from /x/ (and so had the same size P2 magnitude), 

but are much closer to each other, showing that the resulting P2 magnitude when 

they were played in the stimulus chains was much smaller. 

The P2 MDS solutions (Figure 4.6) show that for all groups the middle 

sibilant fricatives (/ʃ/ and /ɕ/) with peakier spectra (Figure 4.1) are towards the top of 

the space, /s/ and /ç/ are towards the centre of the space in the vertical plane, and /s/ 

is pulled out to the right in the horizontal plane.  For all three groups the frontal /ɸ/, 

/f/, /θ/, which have flatter spectra  Figure 4.1) are all located towards the bottom of 

the space.  These solutions support the earlier observation that as the difference 

between the spectra of a pair increases, the ACC magnitude increases.  It appears that 

the general pattern formed by the position of the fricatives is similar for all three 

languages; however, the Finnish group shows tighter clustering with the frontal 

fricatives.   

The MDS solution based on the cochlear-scaled spectral difference between 

the fricatives shows a similar differentiation on the vertical plane with the frontal 

fricatives at the bottom of the space and the sibilant fricatives towards the top.  There 

is a greater differentiation along the vertical axis than the horizontal axis for the 

spectral difference solutions suggesting that, as for the P2 solutions, the vertical axis 

represents the spectra of the stimuli.  However, there is more differentiation on the 

horizontal plane for the P2 solutions than the spectral difference solutions.  It is not 
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clear what the horizontal plane represents in the P2 MDS solutions.  Iverson et al. 

(2016) found that the horizontal plane of their P2-P1 MDS solutions for fricatives 

represented place of articulation, however in the current study this does not appear to 

be the case.  For example, /f/ has a labiodental articulation and /x/ has a velar 

articulation, and both these fricatives are situated close together on the horizontal 

plane.   Alongside their vowel MDS solutions, Iverson et al. (2016) suggest that their 

solutions are scaled more by phonological importance rather than pure acoustic 

difference.  Although it is not clear what horizontal plane relates to in the current 

study, there is more differentiation on the horizontal plane for the P2 solutions than 

the spectral difference solutions, which suggests that the P2 solutions are not purely a 

representation of the acoustic difference between the fricatives. 

Relationship of P1 and P2 and spectral difference differs between language groups  

The multiple-pair design of this experiment was used to further explore the 

relationships of the P1, N1, and P2 amplitudes with the spectral differences between 

the fricatives, between the three language groups.  A mixed-effects model analysis 

was run using the lmer function in the R package lme4 (Bates et al. 2015).  Models 

were created with a by-subject random intercept, with the peak amplitude averaged 

across presentation order as the dependent measure (P1, N1, and P2 in separate 

models), and with language group, stimulus pair, and their interaction as fixed 

factors.  None of the models had a main effect of language (P1: χ
2
(2) = 0.60, p = .74; 

N1: χ
2
(2) = 0.79, p = .67; P2: χ

2
(2) = 2.82, p = .24), and they all had a main effect of 

pair (P1: χ
2
(27) = 161.75, p < .001; N1: χ

2
(27) = 87.21, p < .001; P2: χ

2
(27) = 

1050.35, p < .001).  Interestingly, there was a significant interaction between 
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language and pair for the P2 amplitude (χ
2
(54) = 84.22, p < .01), suggesting that the 

P2 peak amplitude was not the same for all three languages for every pair.   

To look at the interaction between language and stimulus pair for P2, a one-

way Anova was run on each individual pair between the three groups.  The results 

showed that the strongest interaction occurred where the Finnish group had a smaller 

P2 for /ɸ-s/ (F = 5.80, p = .01), the English has a smaller P2 for /f-ç/ (F = 3.51, p 

= .04), and the Finnish had a smaller P2 and the Polish had a larger P2 for /f-ɕ/ (F = 

3.55, p = .04).  There is also a milder cross language difference (although not 

significant) where the Finnish had a smaller P2 and the Polish had a larger P2 for /ɸ-

ʃ/ (F = 2.67, p = .09), and where the Polish had a larger P2 for /θ-s/ and /ʃ-x/ (F = 

3.08, p = .06; F = 2.74, p = .08).  When looking at the pairs where the interaction is 

occurring it is not clear what is causing this cross language difference.  It does not 

appear to be related to the different fricative inventories of the three language groups.  

For example, the interaction is not occurring only with contrasts that are native for 

one or two of the language groups or non-native for one or two of the language 

groups.  These results are somewhat clarified by relating them to the P2 MDS 

solutions.  The Finnish group had a smaller response for pairs involving the frontal 

fricatives than the other two language groups, and this is seen by tighter clustering in 

their MDS solution for the frontal fricatives.  The Polish group’s MDS, on the other 

hand, shows a greater differentiation between the fricatives, particularly the frontal 

fricatives, and this is relayed in the P2 amplitude cross language differences, where 

for certain contrasts (usually involving pairs of frontal and sibilant fricatives), the 

Polish response is larger than the other two groups.  Furthermore, in general, the 

interactions are only occurring for pairs with a large spectral difference (i.e. for 

contrasts between fricatives at the top and bottom of the spectral difference MDS 
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solution, and not for contrasts where the fricatives are both at the top or both at the 

bottom, Figure 4.6). 

As these cross language differences appear to occur with pairs where there 

was a greater spectral difference, an analysis using the cochlear-scaled spectral 

difference between the fricatives was considered.  As for the MDS solution, the 

cochlear-scaled spectral difference between the fricatives was calculated by taking 

the RMS difference between the cochlear-scaled spectra (i.e. Figure 4.1) of each pair 

of fricatives.  Models were created with by-subject and by-pair random intercepts, 

with the peak amplitude as the dependent measure (P1, N1, and P2 in separate 

models), and with language group, cochlear-scaled spectral difference, and their 

interaction as fixed factors.  For P1, there was no main effect of language (χ
2
(2) = 

0.59, p = .74), but there was a main effect of spectral difference (χ
2
(1) = 13.10, p 

< .001), and there was a significant interaction between language and spectral 

difference (χ
2
(2) = 13.75, p < .01).  For N1, there was a main effect of spectral 

difference (χ
2
(1) = 8.33, p < .01), but there was no main effect of language (χ

2
(2) = 

0.79, p = .67), nor a significant interaction between language and spectral difference 

(χ
2
(2) = 2.80, p = .25).  For P2, there was no main effect of language (χ

2
(2) = 2.81, p 

= .25), but there was a main effect of spectral difference (χ
2
(1) = 30.72, p < .001), 

and a significant interaction between language and spectral difference (χ
2
(2) = 30.54, 

p < .001). 

The main effects of spectral difference on all three peaks represents a positive 

relationship between the size of the response and the cochlear-scaled spectral 

difference between the pair of fricatives (P1: r = 0.46; N1: r = -.033; P2: r = 0.66).  

Furthermore, of the three peaks, P2 showed the strongest relationship between 

spectral difference and peak amplitude.  This supports Iverson et al. (2016) who 



 

 

143 

found that, of the three peaks, the P2 showed the most consistent relationship with 

spectral difference between pairs of vowels and fricatives.   

The interaction between language and spectral difference for the P1 and P2 

peaks is explored in Figure 4.7.  The interaction plots show that for both the P1 and 

P2, the Polish group has a steeper slope of peak amplitude and spectral difference 

than the other two groups.  For the P1, when the spectral difference between the 

fricatives in the pair was larger, the Finnish group had a smaller P1 amplitude than 

the other two groups, but when the spectral difference was smaller, the Polish had a 

smaller P1 than the other two groups.  For the P2, when the spectral difference 

between the fricatives in the pair was small, all three groups had a similar sized P2, 

whereas when the spectral difference was large, the Polish group had a bigger P2 

than the other two groups.  To explore the interaction further, Pearson correlations 

were used to describe the relationships between the P1 and P2 peak amplitudes and 

the cochlear-scaled spectral difference between the fricatives, averaged across 

subjects for each of the three language groups.  Significance was tested using linear 

mixed-models with by-subject and by-pair random intercepts, the peak as the 

dependent measure, and cochlear-scaled spectral difference as the independent 

measure.  A different model was calculated for each language group.  Both P1 and 

P2 were significantly correlated with spectral distances for the English (P1: r = 0.47, 

χ
2
(1) = 39.37, p < .001; P2: r = 0.69, χ

2
(1) = 24.15, p < .001), Finnish (P1: r = 0.25, 

χ
2
(1) = 7.46, p < .01; P2: r = 0.65, χ

2
(1) = 19.74, p < .001), and Polish groups (P1: r 

= 0.70, χ
2
(1) = 26.62, p < .001; P2: r = 0.77, χ

2
(1) = 39.37, p < .001).  The Polish 

group’s P1 and P2 responses had a stronger relationship to spectral difference than 

the other two groups’ (P1: vs English Z = -0.027, t = -2.62, p = .0090, vs Finnish Z = 

-0.037, t = -3.58, p < .005; P2: vs English Z = -0.052, t = -4.00, p < .001, vs Finnish 
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Z = -0.069, t = -5.30, p < .001).  Whereas, there was no significant difference when 

comparing the Finnish group’s to the English group’s P1 and P2 responses’ 

relationship to spectral difference (P1: Z = -0.010, t = -0.97, p = .33; P2: Z = -0.017, t 

= -1.31, p = .19). 

In the pair wise analysis, the Finnish group had smaller P2 responses for pairs 

involving the frontal fricatives and their MDS solution showed tighter clustering of 

the frontal fricatives than the other two language groups.  However, this effect seems 

to be independent from the spectral difference between the pairs, as for the P2 peak, 

the English and the Finnish groups have similar slopes, whereas it is the Polish group 

that is creating the interaction (Figure 4.7).  On the other hand, the pair wise result 

for the Polish group can be related to the interaction between language and spectral 

difference for the P2.  The Polish group showed a greater differentiation between 

fricatives in their P2 MDS solutions (particularly the frontal fricatives), they showed 

a larger P2 amplitude than the other two groups for certain contrasts (mainly between 

frontal and sibilant fricatives where there is a greater spectral difference), and they 

had a larger P2 amplitude than the other two language groups when the spectral 

difference between the fricatives was large. 
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Figure 4.7 Plots showing the interactions between language group and spectral difference 

between the fricatives for the P1 (left), and P2 (right) amplitudes, by showing linear 

regression lines of spectral difference versus P1/P2 peak amplitude for each language group. 

Relationship of asymmetry and spectral peakiness differs between language groups  

To explore the effect of presentation order seen in figures 4.3, 4.4, and 4.5, 

the asymmetry was calculated by taking the mean difference of the response when 

the pair was presented in one order compared to the other.  For this analysis, the 

cochlear-scaled spectral difference between the fricatives could not be used as a 

measure of the acoustic characteristics of the stimuli as it is a value without a 

direction (i.e. the mean loudness of the frequency components across the whole 

spectrum for a fricative on its own has little meaning, whereas it is the difference 

between the cochlear-scaled spectra of two fricatives that is interesting).  The 
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acoustic characteristics of fricatives are sometimes described in terms of spectral 

moments (mean, variance, skewness, and kurtosis; Jongman et al. 2000).  The values 

of these moments alone have meaning.  For example, a fricative with a low spectral 

standard deviation and a high kurtosis has a peakier spectrum than one with a high 

standard deviation and a low kurtosis.  The values of the spectral moments for each 

of the fricatives are described in the stimulus section (Table 4.2).  The spectral 

moments can be used in analysis with the asymmetry values, as the difference 

between the spectral moments between a pair of fricatives has direction.  For 

example, a negative difference in standard deviation for a pair of fricatives would 

mean that the first fricative had a lower standard deviation than the second, and then 

when presented in the opposite order the difference in standard deviation would be 

positive. 

Linear mixed models were created with the magnitude of the asymmetry as 

the dependent measure, each spectral measure as independent factors in separate 

analyses, and by-subject and by-pair random intercepts.  There were significant 

effects for centre of gravity (χ
2
(1) = 4.46, p = .035), standard deviation (χ

2
(1) = 85.93, 

p < .001), skewness (χ
2
(1) = 4.53, p = .033), and kurtosis (χ

2
(1) = 36.63, p < .001).  

In all models, there was a greater negativity when the stimuli changed from a 

relatively flat spectrum (e.g. /f/ or /ɸ/) to one with a peakier spectrum (e.g. /ʃ/ or /s/).  

The peakiness of the fricatives can be described using the spectral standard deviation, 

or kurtosis, in that the smaller the standard deviation and the larger the kurtosis, the 

peakier the fricative.  When these four models were compared, the best-fitting model 

had standard deviation as the independent measure (χ
2
(0) = 63.34, p < .001) and so 

this spectral moment was used for further analysis. 
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To explore any cross language differences in the asymmetries, a model was 

created with a by-subject random intercept, with the asymmetry magnitude as the 

dependent measure, and with language group, spectral standard deviation, and their 

interaction as fixed factors.  There was no main effect of language (χ
2
(2) = 1.39, p 

= .50), but there was a significant main effect of spectral standard deviation (χ
2
(1) = 

1165.45, p < .001), and a significant interaction between language and standard 

deviation (χ
2
(2) = 38.40, p < .001). 

A Pearson correlation showed that the main effect of spectral standard 

deviation on the asymmetry magnitude represents a strong negative relationship (r = 

-0.85, t = -14.51, p < .001).  This means that the more positive the asymmetry, the 

more negative the difference in spectral standard deviation between the stimulus pair 

is (i.e. the response is more negative when going from a fricative with high standard 

deviation to one with low standard deviation than the other way around).  The 

interaction between language and standard deviation for the asymmetry magnitude is 

explored in Figure 4.8.  The interaction plot shows that the English and Finnish 

groups have slopes that are very similar, whereas the Polish group’s shows a 

different, steeper slope between asymmetry magnitude and standard deviation.  To 

explore the interaction further, Pearson correlations were used to describe the 

relationship between the asymmetry magnitude and the standard deviation between 

each pair of stimuli across subjects for each of the three language groups.  

Significance was tested using linear mixed-models with by-subject and by-pair 

random intercepts, asymmetry as the dependent measure, and standard deviation as 

the independent measure.  A different model was calculated for each language group.  

Asymmetry and standard deviation were significantly correlated for all three of the 

language groups, with the Polish having the strongest relationship between 
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asymmetry and standard deviation of the three groups (English: r = -0.84, χ
2
(1) = 

66.57, p < .001; Finnish: r = -0.86, χ
2
(1) 83.35, p < .001; Polish: r = -0.87, χ

2
(1) = 

89.53, p < .001). 

 

Figure 4.8 Plot showing the interactions between language group and the spectral standard 

deviation between the fricatives for the asymmetry magnitude, by showing linear regression 

lines of spectral standard deviation versus asymmetry magnitude for each language group. 

4.4 Discussion 

Results of this study showed that the amplitudes of the P1, N1, and P2 were 

all related to the cochlear-scaled spectral difference between fricatives, with the P2 

having the strongest relationship.  Previously, the ACC was not thought to be 

effected by language experience (Sharma & Dorman 2000; Elangovan et al. 2011; 

An et al. 2013; Wagner et al. 2013), however in the current study, the relationships 

of the P1 and P2 to the spectral difference between fricatives were affected by the 
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language background of the listener.  Furthermore, there was an order asymmetry 

effect, in that the ACC response from a fricative with a flatter spectrum (higher 

spectral standard deviation) followed by a fricative with a peakier spectrum (lower 

spectral standard deviation) was more negative than the response to the same 

fricatives presented in the opposite order.  Furthermore, there was also a cross 

language difference for the asymmetry effect. 

Fricative inventory size 

In general, the Polish group were responsible for the cross language 

differences.  Compared to the other two language groups, the Polish group showed a 

greater differentiation between fricatives (particularly the frontal fricatives) in their 

P2 MDS solutions, they showed a larger P2 than the other two groups for certain 

contrasts (mainly between frontal and sibilant fricatives where there is a greater 

spectral difference), they had a larger P2 than the other two language groups when 

the spectral difference between the fricatives was large, and they showed a stronger 

relationship between asymmetry and standard deviation than the other two groups.  It 

is possible that this is because the Polish language has a larger fricative inventory 

than the other two language groups.  The Polish language includes five voiceless 

fricatives ranging from labiodental (/f/) to velar (/x/) and a further five voiced 

fricatives ranging from front to back.  Although the English language also has five 

voiceless fricatives (including /h/), these generally have a relatively frontal place of 

articulation, in that apart from /h/ they are all articulated in front of the hard palate.  

Furthermore, the English language only contains another four voiced fricatives, 

which again are articulated in front of the hard palate.  The Finnish language has the 

smallest fricative inventory size of the three language groups, containing only three 
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voiceless fricatives, including /h/, one of which is only used in some southern 

dialects or in loan words (/f/; Campbell & King, 2011). 

If fricative inventory size is driving the cross language differences in this 

study, one would expect the Finnish group to have shown smaller responses where 

the Polish group showed larger ones.  For some contrasts, the Finnish group did have 

a smaller P2 than the other two language groups (in particular, contrasts containing 

frontal fricatives), however this effect was not consistent.  A possible reason for this 

would be that while Finnish listeners only have a small number of fricatives in their 

native language, in reality, most adult native Finnish speakers have vast English 

experience and a high level of proficiency.  So although Finnish listeners have a 

small native fricative inventory, overall, they have experience nearing that of a native 

English speaker.  This means that their behaviour may lean towards being more like 

a bilingual, rather than a monolingual with English as an L2 (Segalowitz & Hulstijn 

2005). 

Implications for the P1, N1, and P2 

Previously, the P1 has not been thought to be sensitive to the magnitude of 

acoustic differences (Čeponienė et al. 2005) and it is often described as purely an 

obligatory or gating response to the onset of a sound (e.g. Pratt 2012).  However, in 

this study, the amplitude of the P1 increased with increasing spectral difference 

between fricatives.  Furthermore, there was an interaction between language group 

and spectral difference for the P1 amplitude.  When the spectral difference between 

the fricatives in the pair was larger, the Finnish group had a smaller P1 amplitude 

than the other two groups, but when the spectral difference was smaller, the Polish 

group had a smaller P1 than the other two groups.  It is possible that the P1 is not 
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purely at a level of general auditory perception as is often thought (e.g. Picton & 

Hillyard 1974; Pratt 2012) and this cross language difference gives evidence of 

speech specific processes occurring in the early auditory cortex.  Furthermore, results 

from Chapter 2 suggested that the P1 could be affected by cognitive effort and 

attention, suggesting that the P1 is susceptible to modulation by higher level 

cognitive processes. However, cross language differences have been seen as early as 

the brainstem using FFR (Krishnan et al. 2005, 2009a, 2009b), suggesting that 

differences in speech perception between listeners with different language 

backgrounds may stem from a more peripheral auditory level than is often thought.  

Therefore, this cross language difference with the P1 could also be a reflection of 

these peripheral auditory cross language differences.  Although it is not clear exactly 

where the cross language differences with the P1 amplitude are stemming from, the 

results of this study show that with a broad set of speech stimuli, these early speech 

specific differences can also be measured in the early auditory cortex before 

linguistic processes such as phonetic categorisation have occurred or completed. 

The N1 did increase in amplitude with increasing spectral difference, 

however, this relationship was the weakest of the three peaks, and the MDS solutions 

created using the N1 had the poorest fits.  This is surprising, as it is generally 

accepted that the N1 is driven by the magnitude of the acoustic change (Näätänen & 

Picton 1987; Picton 1990; Steinschneider & Dunn 2002), so it would be expected 

that at least compared to the P1, it would show a stronger relationship to spectral 

difference.  Furthermore, again since the P1 showed cross language differences, it 

would be expected that the N1 would also show these effects as it occurs later in the 

response (so further along the pathway), but this was not the case.  The asymmetry 

effect seen in the current experiment resembled that seen by Iverson et al. (2016), 
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and they suggested that the asymmetry effect interfered with the relationship 

between the N1 and the magnitude of spectral change.  They suggest this, because 

the asymmetry effect resembled the processing negativity found in selective attention 

experiments (Näätänen 1990; Alho et al. 1994; Iverson et al. 2016), and since the 

amplitude of the N1 is known to be modulated with attentional focus and the 

predictability of the stimuli (Näätänen & Picton 1987; Hillyard et al., 1973; Woldorff 

& Hillyard 1991), conceivably the asymmetry effect could have interfered with the 

relationship between N1 and the magnitude of spectral change.  In both Iverson et al. 

(2016) and the current study, the stimuli were presented in a random order and so it 

is unlikely that predictability of the stimuli would have suppressed the N1 response.  

However, if the asymmetry effect is driven to some extent by a modulation of 

attention, it could have interfered with the relationship between N1 and the 

magnitude of spectral change.   

Iverson et al. (2016) suggest that the P2 can be used to generate phonetically 

realistic multidimensional perceptual maps.  The results of this study support their 

finding using voiceless fricatives.  The solutions largely represented the spectral 

difference between the stimuli.  However there was more differentiation on the 

horizontal plane for the P2 solutions than the spectral difference MDS solutions, 

suggesting that the P2 solutions are not purely a representation of the acoustic 

difference between the fricatives.  Previous research has suggested that the P2 may 

have a role in the classification or categorisation of auditory stimuli, as it can be 

modulated by attention in order to identify a stimulus as a target (Garcia-Larrea et al. 

1992; Novak et al. 1992).  The results of the current study support the notion of the 

P2 being a measure that is affected by linguistic aspects of the stimuli rather than 

purely auditory processing, as it had a strong language interaction, in that for pairs 
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with a larger spectral difference, the Polish group had a larger P2.  Furthermore, the 

results of this study show that the P2 was the most consistent of the three peaks with 

a stronger relationship to spectral difference (supporting Iverson et al. 2016) and also 

with stronger cross language differences than the P1 and N1. 

Order asymmetries 

There was an order related negativity (the asymmetry effect) whereby a 

response from a fricative with a flatter spectrum (i.e. high spectral standard deviation 

and low kurtosis) followed by a fricative with a peakier spectrum (i.e. low spectral 

standard deviation and high kurtosis) was more negative.  Iverson et al. (2016) 

suggest that the asymmetry effect was acoustically driven, in that certain types of 

spectra may be inherently more likely to draw attention (in particular those with low 

frequency spectral peaks).  However, in the current study, this order related 

negativity also showed a cross language effect, in that when the difference in spectral 

standard deviation between a pair of fricatives was large, the Polish group showed a 

larger asymmetry than the other two groups.  This could suggest that the asymmetry 

effect is not purely caused by acoustic differences between the stimuli that modulate 

attention, but rather higher level linguistic processes.  However, as previously 

mentioned, a cross language difference does not automatically rule out peripheral 

acoustic factors, as cross language differences can be seen as early as the brainstem 

(Krishnan et al. 2005, 2009a, 2009b).  On the other hand, it is likely that the cross 

language difference seen here is not purely due to acoustical factors, but rather to do 

with the modulation of attention.  If in this study attention is modulated by the 

perceptual salience of the fricatives, it more likely that the level of attention 

modulation is different between language groups, rather than the way in which the 
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listeners are receiving the acoustic information of the spectral changes is different 

between language groups. 

Polka & Bohn (e.g. 2011) have found asymmetries in both adults and infants 

where discrimination is easier for vowel pairs going in the direction from the centre 

to the periphery of the F1-F2 vowel space than the other way around.  They suggest 

that this is related to the peripheral vowels being perceptually salient or stable.  The 

asymmetries seen in the current study are driven by the spectral peakiness (standard 

deviation and kurtosis) of the fricatives, in that when a fricative with a peakier 

spectrum follows one with a flatter spectrum, the fricative with the peakier spectrum 

is more perceptually salient and so inherently draws more attention, causing a more 

negative ACC response.  Therefore, it seems possible that the asymmetries seen with 

the ACC to speech are similar to the asymmetries seen with vowel discrimination, as 

they are both driven by the perceptual salience of the speech sounds.  However, 

Polka & Bohn (2011) have also found that adults’ asymmetries fade or disappear for 

native contrasts and are maintained or enhanced for non-native contrasts.  Based on 

Polka & Bohn’s  2011) theory, one would have expected that the separate language 

groups would have shown larger asymmetries to contrasts that do not involve sounds 

that are in their native language.  However, this was not the pattern seen in the 

current study.  The cross language difference did not only occur for contrasts that are 

native or non-native for one of the language groups.  In fact, for the contrasts where 

an asymmetry effect occurred, this effect occurred for all three language groups; it 

was the size of the asymmetry between language groups that caused the cross 

language differences, not whether or not the asymmetry was present.  Therefore, it 

seems that the vowel discrimination asymmetries and the fricative ACC asymmetries 

are not necessarily the same.  However, aspects of Polka & Bohn’s approach to 
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investigating the level of speech processing that is causing their asymmetries could 

be applied to the ACC asymmetries. 

Polka & Bohn (2011) suggest that the asymmetry effect in adults only occurs 

with tasks that tap into phonetic or phonemic processing of speech and not for tasks 

that facilitate general auditory processing of speech.  For example, they conducted a 

series of experiments with English and German adults using the German vowel 

contrasts /u/–/y/ and /ʊ/–/ʏ/ (Polka et al. 2005; Polka & Bohn 2011).  They used a 

go/no go task where the vowels were presented in /dVt/ syllables and the listeners 

had to respond at the end of each trial whether the vowel in a sequence of four had 

changed or not.  They found that English adults showed asymmetries in their 

performance, whereas the Germans’ performance was symmetrical.  They then 

reduced the inter stimulus interval (ISI) from 2.0 s to 500 ms, as reducing the ISI 

changed the task from one that facilitated phonetic processing of speech to one that 

increased access to auditory memory and reduced demands on phonetic encoding 

(Werker & Logan 1985; Werker & Tees 1984; Polka & Bohn 2011).  They then 

found that the asymmetries in the English group disappeared (i.e. neither group 

showed an asymmetry effect) and so they conclude that the asymmetry effect seen 

with vowel discrimination is not one of general auditory processing, but rather 

accesses phonetic processing of speech.  In the current study, it is not clear where the 

asymmetry effect is stemming from, whether it is an acoustically driven effect where 

the cross language differences reflect acoustic cross language differences (as 

measured in the brainstem; Krishnan et al. 2005, 2009a, 2009b), or whether it is an 

effect of phonetic or phonemic processing of speech and the cross language 

differences reflect this.  A study investigating the language background of listeners 

using the ACC with a multiple contrast design, where the stimuli varied in spectral 
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peakiness (i.e. standard deviation and kurtosis), but could not be categorised as 

phonemes of speech, could be useful in exploring the origins of the asymmetry effect 

and the cross language differences seen in this chapter. 

Behavioural perception and MDS solutions 

MDS solutions, such as the ones in this study, can be created using 

behavioural similarity rating data.  This is where the listener hears every possible 

pair of the stimuli, and rates (on a fixed scale) how similar they think the stimuli in 

the pair sound.  An example of how behavioural similarity data can be used to create 

MDS solutions that represent listeners’ perception of speech stimuli can be found in 

Iverson et al. (2003).  These authors ran an experiment using the English /r/-/l/ 

contrast in Japanese speakers (who have well documented problems with this 

contrast), German speakers (who do not have any problem with it but do not have an 

English /r/ in their language), and American English speakers.  Stimuli were created 

along a continuum with a changing F2 and F3, to create a two-dimensional grid of 

speech tokens with equal spacing (based on the Mel scale).  Listeners identified each 

of the stimuli in terms of their own language phoneme categories and rated whether 

they were a good exemplar of that category from 1 (bad) to 7 (good).  They were also 

played all possible pairs of the stimuli and asked to rate how similar they were from 

1 (dissimilar) to 7 (similar).  The results were then analysed using MDS.  The MDS 

solutions showed that the American English two-dimensional space was pulled apart 

in the middle, at the category boundary, with tokens that were identified as /r/ 

grouped together and tokens identified as /l/ grouped together, despite the physical 

acoustic distances between the tokens being equal.  On the other hand, the Japanese 

MDS solution showed that the listeners were identifying nearly all the tokens as the 
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same phoneme (alveolar flap) and so the distances between the stimuli on the MDS 

space were all very similar, much more like the physical stimulus grid.  It this case, 

the MDS solutions were used to demonstrate how the listeners’ perception of the 

stimuli was warped based on their native language. 

In the current study, in order to create behavioural MDS solutions, a task 

could be run where listeners would hear every possible pair of fricatives and would 

be required to rate how similar the two fricatives sound.  The results could then be 

plotted on a two-dimensional space, where the more similar the fricatives sounded to 

the listeners, the closer they would sit on the space and vice versa.  The behavioural 

MDS solutions could then be compared to the MDS solutions created using the P2 

magnitude and the acoustic differences between the stimuli (Figure 4.6).  If the 

listeners are using the overall cochlear-scaled spectral difference between the stimuli 

to judge how similar they sound then it would be expected that the behavioural MDS 

solutions would look similar to the solutions in Figure 4.6, with the fricatives with 

the peakier spectra grouped together, and the fricatives with the flatter spectra 

grouped together.  On the other hand, it is possible that the listeners would judge the 

similarity of the fricatives using other cues, such as place of articulation, where, for 

example, frontal fricatives would be grouped together as would the palatal fricatives.  

A behavioural measure of similarity in this study would be useful to see if the ACC 

responses related to the listeners’ behavioural perception of the stimuli, or if the cues 

that drive perception are different to those that drive the ACC response. 
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4.4.1 Conclusion 

The broad stimulus set and multi-pair design of this study has revealed cross 

language differences in the ACC that have not been previously seen.  In particular, 

the P2 showed a consistent relationship to the spectral difference between fricatives, 

and this relationship was modulated by native language experience.  Furthermore, an 

asymmetry effect was seen that appears to be a result of attention modulation to the 

salient acoustical features of speech sounds, and this effect was also influenced by 

native language experience.  The findings of this study indicate that there is potential 

for the ACC with a multiple contrast design to be used to explore the underlying 

neural processes behind cross language differences. 
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5 General Discussion 

The aim of this thesis was to investigate how the speech-evoked ACC is 

affected by manipulations of listening condition, and to explore the potential benefit 

of the measure for wider use in research and in the clinic.  The work presented in this 

thesis described three experiments that investigated the ACC in normal-hearing 

listeners in noise, cochlear implant users, and second language listeners.   

Chapter 2 detailed a study using a stimulus combination of four vowels and 

four fricatives in quiet and in noise to investigate how the ACC and the P1-N1-P2 

complex in normal-hearing listeners are affected by background noise, and how they 

relate to individual differences in SIN performance.  The results of this study showed 

that the underlying mechanisms of the ACC provided a more detailed representation 

of SIN than the P1-N1-P2 onset response.  Findings suggested that noise affects the 

various cortical peaks in a differential manner and that the general acceptance of the 

early cortical responses being purely obligatory may not be definitive.  Furthermore, 

results indicated that larger P1 amplitudes may reflect aspects of greater pre-

conscious attention and cognitive effort, and lower neural efficiency in poorer SIN 

performers.  Whereas, larger N1 amplitudes may reflect a greater resilience to noise 

and a better cortical representation of the acoustic information in the speech signal 

by better SIN performers. 

Chapter 3 described a study that presented cochlear implant (CI) users with 

the same fricative vowel stimuli as in Chapter 2, but presented in quiet only.  Here, 

the ACC was measured in a group of CI users and was compared to their behavioural 

speech perception performance.  The CI users’ neural entrainment to continuous 

speech was also measured and compared to their speech perception performance and 
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ACC responses.  The results of this study add to the growing body of research on the 

use of measuring cortical neural activity in the CI population.  Results suggested that 

there are differences between the way the spectral change information is encoded in 

the auditory cortex between NH and CI listeners, with the ACC in CI listeners being 

dominated by the spectral information they are receiving.  However, there may also 

be some aspect of attention modulating the CI ACC response.  Entrainment of low 

frequency neural oscillations to speech in CI users was successfully measured, giving 

potential to research using this technique in CI users.  Most notably, the CI artefact 

was able to be removed using DSS in all but two of the participants, from all of the 

EEG data, giving promise to the broader use of electrophysiology in CI research. 

Chapter 4 detailed an ACC study using a stimulus combination of eight 

voiceless fricatives played to native English, Finnish and Polish speakers.  The ACC 

magnitude was used to create similarity matrices that were analysed by non-metric 

MDS, and an acoustic analysis of the fricative stimuli was performed to enable the 

spectra of the stimuli to be compared to the ACC.  P1, N1, P2, and asymmetry 

measures, and their relationship to the spectra of the stimuli were used to investigate 

cross language differences between the groups.  The results revealed cross language 

differences in the ACC that have not been previously seen.  In particular, the P2 

showed a consistent relationship to the spectral difference between fricatives, and 

this relationship was modulated by native language experience.  Furthermore, an 

asymmetry effect was seen that appeared to be a result of attention modulation to the 

salient acoustical features of the speech sounds, and this effect was also influenced 

by native language experience. 
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5.1 Implications for the P1, N1, and P2 

Results of this thesis have reinforced the notion that the cortical peaks 

represent different aspects of auditory processing (Anderson et al. 2010; Zendel et al. 

2015), with different patterns being seen between the peaks in all three studies. 

P1 

Typically, the P1 is small in adults and so is often left out of analyses (e.g. 

Kaplan-Neeman et al. 2006; Parbery-Clark et al. 2011; McCullagh et al. 2012).  

However, the design of the studies in this thesis meant that many trials could be 

recorded in a short space of time, meaning that the P1 could be reliably measured 

and included in analyses (the response was very small in CI users, but still fairly 

reliable).  In this thesis, the P1 as part of the ACC has shown a graded response to 

the reduction in signal to noise ratio, and has shown graded sensitivity to spectral 

differences between fricatives, challenging views that the P1 is purely a gating 

response  e.g. Čeponienė et al. 2005; Pratt 2012).  Furthermore, it has shown 

sensitivity to SIN performance and native language experience of the listeners.  As 

the P1 is the smallest of the three peaks, it is possible that these sensitivities cannot 

be seen without a multiple contrast stimulus set and a large number of trials. 

In Chapter 2, the P1 magnitude in quiet was larger for poor SIN performers 

than better SIN performers.  Based on results from studies with musicians (Lee et al. 

2009; Strait et al. 2009; Zendel et al. 2015) and listening effort (Rao et al. 2010), it is 

possible that this greater P1 is due to the poor SIN performers subconsciously paying 

more attention and using more cognitive effort to listen to the acoustic cues in speech 

compared to the higher SIN performers, in order to aid them in SIN perception.  It 

could be that pre-conscious cognitive effort and attentional processes were effecting 
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the top-down modulation of responses, even though listeners were not actively 

attending to the stimuli.  Of the three peaks, the N1 is most often associated with an 

increase in amplitude with attention (Hillyard et al. 1973; Näätänen & Picton 1987; 

Woldorf & Hillyard 1991); however the results of Chapter 2 suggest that the P1 may 

also be modulated by certain aspects of subconscious attention or effort.  It is 

possible that these effects are not observed in studies where attention is modulated 

explicitly because they are masked by the broad processing negativity that can occur 

with attention (Hansen & Hillyard 1980; Näätänen & Picton 1987; Näätänen 1990; 

Alho et al. 1994). 

However, the effect seen on the P1 in Chapter 2 was somewhat contradicted 

in the following chapter.  In Chapter 3, CI listeners showed a smaller P1 (and P2) 

than NH listeners, and it was suggested that it could have been an effect of an 

attentional broad negativity modulating the amplitude of P1.  Due to reduced spectral 

resolution, in order for CI users to understand speech they require more listening 

effort than NH listeners (Hughes & Galvin 2013; Pals et al. 2013).  A reduced P1 and 

P2 amplitude (but a normal sized N1 amplitude) could reflect a combined effect of a 

broad negativity that occurs with attention (Hansen & Hillyard 1980; Näätänen & 

Picton 1987), making the P1, N1 and P2 all appear more negative (Näätänen & 

Michie 1979; Näätänen & Picton 1987; Michie et al. 1990, 1993).  

On the other hand, in Chapter 4 the P1 findings of Chapter 2 are supported.  

In Chapter 4, the amplitude of the P1 increased with increasing spectral difference 

between fricatives and this relationship was modulated by language experience.  In 

general, the cross language differences seen in Chapter 4 were caused by the Polish 

having larger responses (P1, P2, and asymmetries) for fricative contrasts with larger 

spectral differences, which is possibly due to the Polish language having a larger 
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fricative inventory than the English and Finnish languages.  However, when the 

spectral difference between fricatives was small (i.e. contrasts between fricatives 

with a similar cochlear-scaled spectra) the Polish group had a smaller P1 than the 

other two groups.  Whereas for the same contrasts (i.e. where the spectral difference 

between the fricatives is small) all three groups had the same sized P2.  This P1 

result could be explained in a similar way to in Chapter 2 where the P1 was smaller 

for better SIN performers.  Perhaps when the spectral difference between the 

fricatives is small, the Polish listeners use less cognitive effort than the other two 

groups because their larger native fricative inventory means that they have a greater 

sensitivity to small spectral differences in fricatives.  This reduction in cognitive 

effort compared to the other two language groups is then reflected in the P1.  If this 

is the case, it indicates that when compared to NH listeners, the CI users in Chapter 3 

did not have a smaller P1 because of greater cognitive effort or attention causing a 

broad negativity that increases the size of the N1 and reduced the sizes of the P1 and 

P2.  The differences in ACC morphology between CI and NH listeners could instead 

be due to purely peripheral acoustic factors, due to the differences between receiving 

sound through a CI and through a NH ear.  The P1 findings of this thesis as a whole 

suggest that it is possible that the P1 is not purely driven by general auditory 

perception as is often thought (e.g. Picton & Hillyard 1974; Pratt 2012), but rather 

higher level cognitive processes involved in cognitive effort, attention, and neural 

efficiency are able to modulate its magnitude. 

N1 

The N1 is thought to reflect the encoding of time-varying aspects of a sound, 

such as amplitude, spectral, and voice onset time changes (Sharma & Dorman 1999; 
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Martin & Boothroyd 2000; Sharma et al. 2000; Hoonhorst et al. 2009) and its 

amplitude varies with the magnitude of the acoustic change (Näätänen & Picton 1987; 

Picton 1990; Steinschneider & Dunn 2002).  Accurate cortical neural representations 

of the acoustic information in a speech signal are important for speech perception in 

noise (Anderson et al 2010; Parbery-Clark et al. 2011), and in Chapter 2, the 

magnitude of the N1 was larger for better SIN performers.  This may suggest better 

cortical representation of the acoustic information in the speech signal for better SIN 

performers (Parbery-Clark et al. 2011).  Furthermore, the N1 was the same 

magnitude in CI users as in NH listeners, which may suggest that the users were 

successfully receiving a certain level of the acoustical information of the spectral 

changes required for successful speech perception. 

The N1 was the most reliable peak to measure from CI users in Chapter 3, 

and it predicted some aspects of SIN ability in Chapter 2.  However, in Chapter 4, its 

relationship with spectral change in fricatives was the weakest of the three peaks, 

despite there being consistent evidence that it is driven by the magnitude of the 

acoustic change (Näätänen & Picton 1987; Picton 1990; Steinschneider & Dunn 

2002).  Furthermore, even though both the P1 and P2 were affected by the language 

experience of the listener, the N1 was not.  This result could be due to salient 

acoustical features of the stimuli modulating attention, which in turn overshadows 

complex acoustic and language N1 effects.  With selective attention, a broad 

negativity can occur (Hansen & Hillyard 1980; Näätänen & Picton 1987).  In 

Chapter 4, there was an order related negativity (the asymmetry effect) whereby a 

response from a fricative with a flatter spectrum (high spectral standard deviation 

and low kurtosis) followed by a fricative with a peakier spectrum (low spectral 

standard deviation and high kurtosis) was more negative than the response when they 
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are presented in the opposite order.  This asymmetry effect, in part, could be due to 

the salient acoustic features of the fricatives (i.e. peakiness) being inherently more 

likely to draw attention meaning that when changing to a peakier fricative, the ACC 

response is more negative (Iverson et al. 2016).  Therefore, these negativity effects of 

attention in Chapter 4 could have overshadowed any complex acoustic and language 

N1 effects, meaning that of the three peaks it showed the weakest relationship to the 

magnitude of the spectral change between fricatives, and it was not modulated by the 

native language experience of the listener.  As it seems possible that implicit 

attention modulation can occur from the acoustical characteristics of the stimuli, N1 

measurement and effects in future research may need to be handled with extra 

caution. 

P2 

This thesis supports that the P2 magnitude is graded with acoustic difference.  

In Chapter 2, the P2 magnitude (when measured in the ACC, not as part of the P1-

N1-P2 onset complex) showed a graded reduction in size as the SNR was decreased, 

and in Chapter 4, the P2 had a stronger relationship to the cochlear-scaled spectral 

difference between fricatives than the P1 and the N1 magnitudes.  Furthermore, the 

P2 magnitude was used to create MDS solutions that largely represented the spectral 

difference between the stimuli, however when compared to MDS solutions based on 

the cochlear-scaled spectral difference between the fricatives, there was more 

differentiation on the horizontal plane for the P2 solutions.  This suggests that the P2 

solutions are not purely a representation of the acoustic difference between the 

fricatives, but are perhaps more phonologically relevant, as with the MDS solutions 

created by Iverson et al. (2016).  Moreover, the P2 magnitude’s relationship to 
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spectral difference was modulated by native language experience, suggesting that the 

P2 is a measure that is affected by linguistic aspects of the stimuli rather than pure 

auditory processing. 

The results of this thesis have shown that the ACC is sensitive to language 

experience and SIN ability, and that it can be measured using a variety of speech 

stimuli in CI users.  This indicates its potential as a tool for examining speech 

perception for a variety of different conditions.  Furthermore, using multiple speech 

sounds and efficient stimulus presentation (i.e. sounds played in a random order 

changing every 350-400 ms), the ACC can be used to measure individual differences 

in normal-hearing listeners, and potentially in CI users.  

5.2 Hearing Loss Beyond the Audiogram 

Currently, there is a lot of interest in tools that can assess hearing 

performance beyond the audiogram and can assess people’s performance in real 

world listening conditions.  Even a mild hearing loss can make speech perception 

challenging, particularly in noise, a problem further increased with the extent of 

hearing loss.  As hearing thresholds increase, a listener’s ability to extract 

information from a speech signal decreases and so their speech recognition ability 

decreases (Boothroyd 1978; Walden 1984).  Hearing loss can usually be identified 

through an audiogram, however often speech processing difficulties arise from 

problems not associated with a loss of hearing.  For example, elderly listeners with 

normal audiometric thresholds and matched cognitive performance show reduced 

temporal encoding in comparison to younger listeners (Füllgrabe et al. 2015).  

Furthermore, certain younger listeners demonstrate complicated listening difficulties 
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that are not predicted by audiometric performance.  For example, children with 

auditory processing disorders (APD) that appear to be uncertain about following oral 

instructions, may have difficulties listening in background noise, and understanding 

fast or degraded speech, even though their peripheral hearing is normal (Jerger & 

Musiek 2000).   

Another example of auditory problems that do not show on an audiogram is 

the recently talked about ‘hidden hearing loss’  Schaette & McAlpine 2011).  Recent 

research has identified a form of ‘hidden’ hearing loss, which is a line of evidence 

that suggests that there may not be a distinction between a hearing loss as measured 

using conventional audiometric thresholds, and a hearing loss that affects 

performance in complex listening tasks, such as SIN.  In summary, animal work has 

identified that noise exposure that induces a temporary hearing threshold shift may 

also kill auditory nerve fibres with high firing thresholds and low spontaneous rates 

(Kujawa & Liberman 2009). Even after the temporary hearing threshold shift has 

returned to normal, the death of these cells has discreet effects on performance, such 

as reduced ABR Wave I amplitude at high levels.  The loss of high-threshold fibres 

is currently thought to lead to a remapping of auditory encoding to preserve the 

dynamic range of normal hearing. This remapping may, however, harm temporal 

processing, and so also harm such processes as speech recognition in noise. Work on 

this topic remains on-going, but could potentially account for hearing difficulties 

experienced by subjects with normal audiometric thresholds (e.g. elderly and APD 

populations, amongst others). Whilst the existence and effects of hidden hearing loss 

in humans remains to be established, there is currently renewed interest in 

developing and understanding hearing measures that may account for the 

phenomenon (For a review see Plack et al. 2014).   
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In this thesis, the ACC has proved sensitive to SIN performance differences 

in normal-hearing listeners.  Ageing, APD, and hidden hearing loss are all areas of 

research that could benefit from a robust cortical measure of speech perception that 

is sensitive to such differences.  The ACC with its efficient measurement, its 

sensitivity to language background and SIN performance of the listener, and its test-

retest reliability (Tremblay et al. 2003), alongside other speech measures, could 

prove useful in these areas of speech and hearing research that are not yet fully 

understood. 

5.3 In the Clinic 

For those with identified hearing loss, common treatments include hearing 

aids for those with a mild to severe loss, and cochlear implants for those with a 

profound loss.  However, even in quiet, those listening through hearing devices 

suffer unique challenges. For example, loss of directional information and reduced 

dynamic range/increased loudness recruitment affects hearing aid users, and cochlear 

implants are limited by poor frequency selectivity, greatly reduced dynamic range, 

an inability to provide fine temporal structure, amongst other factors. Challenges to 

speech perception can come from a broad range of issues, and for those using 

hearing devices, understanding SIN is commonly reported as very challenging. 

Currently in the clinic, speech perception post hearing aid fitting or cochlear 

implantation is measured using speech testing (e.g. Boothroyd 1968).  This involves 

the patient wearing their device, listening to words, and repeating them to the 

audiologist.  The audiologist can then compare their scores to pre-fitting.  This is a 

useful way of measuring a patient’s speech perception benefit from their device; 
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however, it involves patient cooperation.  Some patients are unable to undertake this 

kind of task and so it remains unclear how much speech they are able to perceive 

with their device.  Furthermore, it can take a significant amount of time before a 

patient is getting full benefit from their device.  For example, it can take up to two 

years for a CI patient to reach their peak speech perception scores (Oh et al. 2003). 

Therefore, an objective task that is able to predict speech recognition abilities would 

be very useful in the clinic. 

The ACC is objective, and shows some potential for measuring speech 

recognition abilities in CI users, however, larger subject numbers and further study is 

needed.  For example, it is not yet known how the ACC changes from immediately 

post implantation to multiple years post implantation.  Furthermore, there appears to 

be large individual variation, where by a large ACC response does not necessarily 

mean high speech perception performance.  However, it is possible that the ACC 

could be used to track an individual’s development, or used to ensure that the 

individual’s fitting is providing enough acoustic detail to allow for speech perception 

improvement.  A speech ACC response could be recorded immediately post 

implantation, and after each mapping.  Using the individual as their own control in 

this way, the ACC could be a useful objective measure of CI users’ development and 

performance. 

5.4 Conclusion 

This thesis has shown that the language experience of the listener and how a 

normal-hearing listener performs in a SIN task modulates certain aspects of the ACC.  

This supports recent literature suggesting that the ACC is not merely a measure of 
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general auditory detection as it is often described, but rather is a measure at the 

border between auditory and linguistic processing in the auditory cortex.  

Furthermore, results have shown the potential of cortical measures of speech 

perception for CI users.  Using multiple speech sounds and efficient stimulus 

presentation, the ACC can be used to measure individual differences in normal-

hearing listeners, and potentially in CI users.  The possible scope of the ACC beyond 

this is vast.  Investigation into its behaviour with more extensive language groups, 

normal-hearing listeners with speech processing difficulties, and clinical populations 

could prove fruitful for many areas of speech and hearing research.  
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