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BLENDING LOW-ORDER STABILISED FINITE ELEMENT METHODS: A

POSITIVITY-PRESERVING LOCAL PROJECTION METHOD FOR THE

CONVECTION-DIFFUSION EQUATION

GABRIEL R. BARRENECHEA, ERIK BURMAN, AND FOTINI KARAKATSANI

Abstract. In this work we propose a nonlinear blending of two low-order stabilisation mech-
anisms for the convection-diffusion equation. The motivation for this approach is to preserve
monotonicity without sacrificing accuracy for smooth solutions. The approach is to blend a
first-order artificial diffusion method, which will be active only in the vicinity of layers and
extrema, with an optimal order local projection stabilisation method that will be active on the
smooth regions of the solution. We prove existence of discrete solutions, as well as convergence,
under appropriate assumptions on the nonlinear terms, and on the exact solution. Numerical
examples show that the discrete solution produced by this method remains within the bounds
given by the continuous maximum principle, while the layers are not smeared significantly.

1. Introduction

The design and analysis of stabilised finite element methods for convection–diffusion equations
remains a challenging problem. In particular if the method is required to have (close to) optimal
convergence where the exact solution is smooth, but to preserve the monotonicity properties of
the continuous problem in the vicinity of layers. The standard approach has been to combine a
linear stabilisation method that ensures accuracy in the smooth part of the solution and control
of the propagation of perturbations from layers with a nonlinear so-called shock-capturing term
that is designed to diminish, or ideally, eliminate the local spurious oscillations close to the layer.
For an overview and a critical evaluation of such methods we refer to [22, 23] and references
therein.

The design of such shock-capturing terms have typically been residual based [21, 14, 9],
matching residual based stabilisation methods such as SUPG. The idea that finite element shock-
capturing terms should be designed with the objective of satisfying a discrete maximum principle
was pioneered by Mizukami and Hughes in [35], and further discussed in [14, 9]. However
when symmetric stabilisation methods such as local projection stabilisation (LPS) or continuous
interior penalty (CIP) methods are used, classical shock-capturing terms appear to be less
natural. Instead, our objective in this paper is to explore the idea of designing a method that
switches from a low order, but monotone, method that acts in the vicinity of layers, to an
optimal, non monotone, method that is active in smooth regions. This main philosophy can be
tracked back to the seminal work [6], and has been explored in different guises since, especially
in the context of algebraic flux correction schemes in [40, 32, 33, 34], and more recently in the
work of Kuzmin et. al. [30, 28, 38, 27, 24, 29], and Guermond et al. [20, 19]. See also the

1Corresponding author: gabriel.barrenechea@strath.ac.uk
1991 Mathematics Subject Classification. 65N12, 65N30.

1



2 G.R. BARRENECHEA, E. BURMAN, AND F. KARAKATSANI

recent work [26] for an idea based on a low-order local-projection type method, applied to the
transport problem.

In this work we propose a particular realisation of the general approach described in the
previous paragraph. More precisely, we will develop an idea introduced in [4]. Therein it was
suggested that in the framework of a local projection method (or subgrid viscosity method),
where the stabilisation takes the form of a penalty on the gradient of uh minus the projection
of uh onto some smaller space, i.e. on ∇(uh − πHuh), a nonlinear switch α(uh) ∈ [0, 1] could
be introduced, ∇(uh − α(uh)πHuh) taking the value 1 in the smooth part and 0 close to layers,
hence turning off the projection part in the vicinity of layers. This makes the stabilisation
degenerate to first order viscosity in the non-smooth part of the approximate solution so that
the spurious oscillations are damped or even completely eliminated provided the mesh satisfies
certain geometric conditions.

It turns out, however, that since the parameters for the first order viscosity and the LPS-
term are of different magnitude, the idea can not be realised in this simple fashion, but instead
the first order linear diffusion and the high order stabilisation term must be blended together
locally using the nonlinear switch α(uh) (similar approaches have been advocated recently by
Ern and Guermond [16] and Badia and Hierro [1], using different stabilisation methods and
slightly different focus). Below we design a nonlinear LPS method based on these ideas. We
show that the method satisfies a discrete maximum principle under suitable assumptions on
the mesh (depending on the diffusion operator), that the nonlinear discrete problem admits
(at least) one solution and discuss what properties are required from the approximate solution
and the nonlinear stabilisation in order to obtain an optimal a priori error estimate for smooth
solutions, including the effect both of the linear and the nonlinear stabilisation operator. The
above results are, essentially, independent of the concrete definition of the blending parameter,
as long as it satisfies the basic requirements. We modify slightly two known limiters that have
been applied in the context of Algebraic Flux Correction (AFC) schemes, and use them as a
blending parameter. We then test them numerically, focussing on the accuracy and elimination
of spurious oscillations.

The rest of the manuscript is organised as follows. The remainder of this introduction will
be devoted to present the notations and necessary preliminary results. The bulk of this work is
Section 2, where we describe the linear diffusion and LPS methods used in this work, and the way
to blend them. An existence and convergence analysis is carried out, and the discrete maximum
principle is discussed, under rather general assumptions on the nonlinear switch α(uh). The two
definitions used for this switch are presented in Section 3, and are tested by several numerical
experiments in Section 4. Finally, we draw some conclusions and perspectives.

1.1. The model problem, notations and preliminary results. Throughout this work we
adopt standard notation for Sobolev spaces. In particular, for D ⊂ Rd we denote by (·, ·)D the
inner product in L2(D) (or L2(D)d, if necessary). For ` ≥ 0, we denote by ‖ · ‖`,D (| · |`,D) the

norm (seminorm) in H`(D). We will also adopt the usual convention that H0(D) = L2(D).
Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded polygonal (polyhedral) domain with a Lipschitz-

continuous boundary ∂Ω. We consider the steady-state convection-diffusion-reaction equation

−ε∆u+ b · ∇u+ σ u = f in Ω ,(1.1)

u = g on ∂Ω ,

where ε > 0, b ∈ W 1,∞(Ω), and σ ∈ L∞(Ω) stand for diffusion, convection, and reaction,

respectively, and f ∈ L2(Ω), g ∈ H
1
2 (∂Ω) are given functions. Just to simplify the presentation

we will suppose that ∇ · b = 0 in Ω. The weak problem associated to (1.1) is: Find u ∈ H1(Ω)
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such that u = g on ∂Ω, and

(1.2) a(u, v) = (f, v)Ω ∀ v ∈ H1
0 (Ω) ,

where a is the bilinear form given by

(1.3) a(u, v) := ε(∇u,∇v)Ω + (b · ∇u, v)Ω + (σu, v)Ω .

It is well-known (cf. [15]) that if the data of the problem satisfy σ ≥ σ0 ≥ 0 in Ω, then (1.2)
has a unique solution in H1(Ω). The solution of (1.2) also satisfies the following properties (see,
e.g., [17]).

Definition 1.1 (Strong maximum principle with σ ≥ 0). Assume that u ∈ C2(Ω) ∩ C(Ω̄).
If f ≥ 0 in Ω (resp. f ≤ 0 in Ω) and u attains a nonpositive minimum (resp. nonnegative
maximum) over Ω̄ at an interior point, then u is constant in Ω.

Definition 1.2 (Strong maximum principle with σ = 0). Assume that u ∈ C2(Ω) ∩ C(Ω̄). If
f ≥ 0 in Ω (resp. f ≤ 0 in Ω) and u attains a minimum (resp. maximum) over Ω̄ at an interior
point, then u is constant in Ω.

We now describe the main notations, and the main preliminary results for the discrete prob-
lems we will study in this work. Let Th be a family of shape-regular triangulations of Ω̄ into
disjoint d-simplices K. We denote by hK the diameter of K and h := max{hK : K ∈ Th}. We
associate with the triangulation Th the finite element spaces

(1.4) Vh := {χ ∈ H1(Ω) : χ|K ∈ P1(K)∀K ∈ Th}, and V0
h := Vh ∩H1

0 (Ω),

where, for ` ≥ 0, P`(D) is the space of polynomials of degree at most ` on D.
We let Fh be the set of the interior facets of Th, that is the set of (d− 1)-simplices which are

not included in the boundary ∂Ω, and let hF be the diameter of F ∈ Fh. In addition, for each
F ∈ Fh we denote by K+

F and K−F the two simplices in Th such that F = K+
F ∩ K

−
F and we

introduce the patch KF := K+
F ∪K

−
F . For an element K ∈ Th, we define the set of its facets as

F (K) := {F ∈ Fh : F ⊂ ∂K}. By JvKF we will denote the jump of a function v across F , and
will omit the subindex F when it is clear from the context.

For each vertex pi of Th we denote by ψi the associated nodal basis function, by Ωi the
set of simplices K which share pi, i.e. Ωi := {K ∈ Th : K ∩ pi 6= ∅}, and denote the set of
all facets of Ωi by F (Ωi). By F (pi) we denote the set of interior facets sharing pi, that is
F (pi) := {F ∈ Fh : F ∩ pi 6= ∅}. We also define the set of neighboring nodes of pi by

Si := {j 6= i : pj shares an interior edge with pi} .

Finally, for two vertices pi and pj belonging to the same simplex K ∈ Th, we denote by Eij
the edge connecting the vertices pi and pj , and Fi,K and Fj,K the facets in K opposite to pi and
pj , respectively.

We shall assume from now on that the mesh satisfies the following property:

Assumption 1.1. [Hypothesis of Xu and Zikatanov] For every internal edge Eij the following
inequality holds

(1.5)
1

d(d− 1)

∑
K⊃Eij

|ωKij | cot(θKij ) ≥ 0 ,

where ωKij is the (d−2)-dimensional simplex Fi,K ∩Fj,K opposite to the edge Eij, θij is the angle

between the facets Fi,K and Fj,K , and where
∑

K⊃Eij means summation over all simplexes K

containing Eij.
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In the two-dimensional setting, this hypothesis implies that the mesh is of Delaunay type,
this is, the sum of the two angles opposite to the same facet (edge) F is less than, or equal to,
π (for details, see [39]).

Finally, we introduce the discrete analogues of the maximum principle.

Definition 1.3 (Strong DMP). We say that the semilinear form ã(·; ·) satisfies the strong DMP
property if the following is valid: For all uh ∈ Vh and for all vertices pi ∈ Ω, if uh has a
local minimum (respectively, local maximum) on the vertex pi over Ωi, then there exist positive
constants aF , F ∈ F (pi), such that

(1.6) ã(uh;ψi) ≤ −
∑

F∈F (pi)

aF | J∇uhKF |

(respectively, ã(uh;ψi) ≥
∑

F∈F (pi)
aF | J∇uhKF |).

Definition 1.4 (Weak DMP). The semilinear form ã(·; ·) is said to satisfy the weak maximum
principle property if in Definition 1.3 we further assume that the local minimum is non-positive
(respectively, the local maximum is non-negative).

Observe that in the linear case the left hand side of (1.6) simply represents the scalar product
of line i of the system matrix and the vector of solution coefficients. Hence, since the right-hand
side of (1.6) is negative or zero, the satisfaction of this condition leads to a contradition whenever
the right-hand side f is non-negative and the solution is not a constant in Ωi.

2. A nonlinear local projection method

The method presented in Section 2.3 below will result as a natural blend of a linear diffu-
sion method and a local projection stabilised method. Hence, we describe first its two main
components.

2.1. A linear artificial diffusion method. We start by introducing a function ugh ∈ Vh such
that its trace approximates the non-homogeneous Dirichlet boundary condition g in (1.1). We
then propose the first discretisation method for (1.1): Find uh ∈ Vh such that uh − ugh ∈ V0

h
and

a(uh, vh) + aLD(uh, vh) = (f, vh)Ω ∀ vh ∈ V0
h ,(2.1)

where a(·, ·) has been defined in (1.3), and aLD(·, ·) corresponds to a linear diffusion stabilisation
term given by

(2.2) aLD(uh, vh) =
∑
F∈Fh

τF (∇uh ,∇vh)KF ,

where

(2.3) τF = c0 (‖b‖∞,KF + hF ‖σ‖∞,KF )hF ,

and c0 ≥ 0 is a constant. In addition to Assumption 1.1, we will assume that the mesh (and the
physical coefficients) satisfy the following assumption:

Assumption 2.1. For all interior node pi, the following relation holds

(2.4) max
E∈F (Ωi)

τE ≤
(

1 +
1

2C̃

)
min

E∈F (Ωi)
τE ,

where C̃ is the constant used in (2.14) below.
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In order that this method preserves positivity, we start by presenting the following preliminary
result (see [11] for its proof).

Lemma 2.1. If uh ∈ Vh has a local extremum on the vertex pi, then

(2.5) |∇uh|K | ≤
∑

F∈F (pi)

| J∇uhKF | ∀K ⊂ Ωi.

We shall next show that the parameters τF in (2.2) may be chosen such that the bilinear
form a(·, ·) + aLD(·, ·) satisfies a discrete maximum principle if the mesh satisfies Assumption
1.1. For simplicity we assume that d = 2 throughout the proof. The result can be extended to
the three-dimensional case by working as in [11].

Theorem 2.1. There exists a positive constant c? such that, if c0 > c?, then the bilinear form
a(·, ·) + aLD(·, ·) satisfies the weak DMP property.

Proof. Let us assume that uh has a local minimum on the interior vertex pi ∈ Ω over the
macro-element Ωi, and that uh(pi) ≤ 0. Under Assumption 1.1 it can be shown, [39, 36], that

(2.6) (∇uh,∇ψi)Ω = −
∑

F∈F (pi)

hF
2
| J∇uhKF | .

Furthermore, the convective term may be bounded as

(2.7) (b · ∇uh, ψi)K ≤
|K|
3
‖b‖∞,K |∇uh|K | .

If uh changes sign (or vanishes) in K, then using a Taylor expansion we deduce that ‖uh‖∞,K ≤
hK‖∇uh‖∞,K . Since ∇uh is constant in K, this leads to

(2.8) (σuh, ψi)K ≤
|K|
3
‖σ‖∞,KhK |∇uh|K | .

Note that if uh is negative in K, the reaction term (σuh, ψi)Ω is negative and the above inequality
holds trivially. In view of (2.5) and Lemma 2.1, we can thus derive the following bound for the
convection-reaction term

|(b · ∇uh + σuh, ψi)Ω| ≤
∑
K⊂Ωi

|(b · ∇uh + σuh, ψi)K |

≤ 1

3

∑
K⊂Ωi

|K|(‖b‖∞,K + ‖σ‖∞,KhK)
∑

F∈F (pi)

| J∇uhKF |.(2.9)

By using the shape regularity of the mesh, there exists a constant ρ > 1, independent of h, such
that

(2.10) |K| ≤ ρ min
F∈F (pi)

h2
F and hK ≤ ρ min

F∈F (pi)
hF , for all K ∈ Ωi.

Also, the number of the elements K of Ωi is bounded by a fixed number ηρ, again independent
of h. We can thus conclude that

(2.11) |(b · ∇uh + σuh, ψi)Ω| ≤
ρ ηρ

3

∑
F∈F (pi)

(‖b‖∞,KF + hF ‖σ‖∞,KF )h2
F | J∇uhKF |.

We finally analyse the artificial diffusion term. To do this, we define the following two (comple-
mentary) subsets of Ωi:

Ω−i := {K ∈ Th : K ⊂ Ωi , (∇uh,∇ψi)K ≤ 0} , Ω+
i := {K ∈ Th : K ⊂ Ωi , (∇uh,∇ψi)K > 0} .
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Using these sets the artificial diffusion term can be written as∑
F∈Fh

τF (∇uh ,∇ψi)KF =
∑
K⊂Ωi

( ∑
F∈F (K)

τF

)
(∇uh ,∇ψi)K

=
∑
K⊂Ω−

i

( ∑
F∈F (K)

τF

)
(∇uh,∇ψi)K +

∑
K⊂Ω+

i

( ∑
F∈F (K)

τF

)
(∇uh,∇ψi)K

≤ 3
(

min
E∈F (Ωi)

τE

) ∑
K⊂Ω−

i

(∇uh,∇ψi)K + 3
(

max
E∈F (Ωi)

τE

) ∑
K⊂Ω+

i

(∇uh,∇ψi)K

= 3
(

min
E∈F (Ωi)

τE

)
(∇uh,∇ψi)Ω + 3

(
max

E∈F (Ωi)
τE − min

E∈F (Ωi)
τE

) ∑
K⊂Ω+

i

(∇uh,∇ψi)K .(2.12)

Now, we analyse the last expression above term by term. First, using (2.6) the first term gives

(2.13) 3
(

min
E∈F (Ωi)

τE

)
(∇uh,∇ψi)Ω = −3

(
min

E∈F (Ωi)
τE

) ∑
F∈F (pi)

hF
2
| J∇uhKF | .

Next, for K ∈ Ω+
i , Lemma 2.1 gives

(∇uh,∇ψi)K ≤
∑

F∈F (pi)

| J∇uhKF |(1, |∇ψi|)K ≤
∑

F∈F (pi)

| J∇uhKF |C0hK ,

and then, the mesh regularity leads to

(2.14)
∑
K⊂Ω+

i

(∇uh,∇ψi)K ≤
∑

F∈F (pi)

| J∇uhKF |
∑
K⊂Ω+

i

C0hK ≤ C̃
∑

F∈F (pi)

hF
2
| J∇uhKF | .

Then, replacing (2.13) and (2.14) in (2.12), and using Assumption 2.1 we arrive at the following
final bound for the artificial diffusion term∑

F∈Fh

τF (∇uh,∇ψi)KF ≤ −3

(
min

E∈F (Ωi)
τE

) ∑
F∈F (pi)

hF
2
| J∇uhKF |

+ 3C̃

(
max

E∈F (pi)
τE − min

E∈F (pi)
τE

) ∑
F∈F (pi)

hF
2
| J∇uhKF |

≤ −3

2

(
min

E∈F (Ωi)
τE

) ∑
F∈F (pi)

hF
2
| J∇uhKF | .(2.15)

Gathering all the above computations, we obtain the following bound

ε(∇uh,∇ψi)Ω + (b · ∇uh, ψi)Ω + (σuh, ψi)Ω +
∑
F∈Fh

τF (∇uh,∇ψi)KF

≤ −
∑

F∈F (pi)

(
ε+

3

2
min

E∈F (Ωi)
τE −

2ρ ηρ
3

(‖b‖∞,KF + hF ‖σ‖∞,KF )hF

)
hF
2
| J∇uhKF | .

Thus, choosing

(2.16) c? ≥
4ρ ηρ

9

maxE∈F (Ωi)

{
(‖b‖∞,KE + hE‖σ‖∞,KE )hE

}
minE∈F (Ωi)

{
(‖b‖∞,KE + hE‖σ‖∞,KE )hE

} ,
the result follows. �
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Remark 2.2. It is worth remarking that, thanks to the regularity of the mesh, the constant c?
depends on σ and b, but not on the size of the elements.

Moreover, if the mesh is supposed to be weakly acute, then Assumption 2.1 is not necessary.
As a matter of fact, in this case we have (∇uh,∇ψi)K ≤ 0 for each K ∈ Ωi and (2.12) can be
replaced by ∑

F∈Fh

τF (∇uh ,∇ψi)KF =
∑
K⊂Ωi

( ∑
F∈F (K)

τF

)
(∇uh,∇ψi)K

≤ 3
∑
K⊂Ωi

min
E∈F (K)

τE (∇uh,∇ψi)K

= 3
(

min
E∈F (Ωi)

τE

)
(∇uh,∇ψi)Ω

≤ −3

(
min

E∈F (Ωi)
τE

) ∑
F∈F (pi)

hF
2
| J∇uhKF | ,(2.17)

and the result follows.
Finally, another possibility for removing Assumption 2.1 is to replace the artificial diffusion

introduced here by an edge oriented anisotropic diffusion of the form (in the two-dimensional
case)

aALD(uh, vh) :=
∑
F∈Fh

τF
∑

F̂∈F (KF )

h2
F̂
∇uh · tF̂∇vh · tF̂ ,

where tF denotes the tangential vector of the facet (i.e., edge in the two-dimensional case) F .
For details see [11].

We end this section by remarking that if σ = 0 then the last result can be strengthened. In
fact, the following corollary arises.

Corollary 2.1. If σ = 0, then the bilinear form a(·, ·) + aLD(·, ·) satisfies the strong DMP 1.3 .

2.2. A local projection method. For each F ∈ Fh we introduce the projection operator
GF : H1(KF )→ P1(KF )/R defined by

(2.18) (∇GFw,∇vh)KF = (∇w,∇vh)KF ∀ vh ∈ P1(KF )/R .

From its definition, GF is an orthogonal projection, and then it enjoys the following stability

(2.19) ‖∇GF v‖0,KF ≤ ‖∇v‖0,KF ∀ v ∈ H1(KF ).

Using GF we introduce the following local projection method: Find uh ∈ Vh such that uh−ugh ∈
V0
h and

a(uh, vh) + sh(uh, vh) = (f, vh)Ω ∀ vh ∈ V0
h ,(2.20)

where sh(·, ·) is the stabilisation term given by

(2.21) sh(uh, vh) =
∑
F∈Fh

γF (∇(I −GF )uh ,∇vh)KF ,

and

γF = γ0 min

{
hF (‖b‖∞,KF + ‖σ‖∞,KF hF ),

h2
F

ε

}
,(2.22)

where γ0 is a positive constant.



8 G.R. BARRENECHEA, E. BURMAN, AND F. KARAKATSANI

Remark 2.3. We now shed some light on the LPS terminology for Method (2.20). First, as
written, this method can be seen as a subgrid viscosity scheme, reminiscent of the one proposed
in [18]. A more LPS-oriented version of (2.20) would consist on replacing the stabilisation term
sh(uh, vh) by

(2.23) s̃h(uh, vh) =
∑
F∈Fh

γF

(
(I − G̃F )∇uh ,∇vh

)
KF

,

where G̃F∇uh ∈ (P0(KF ))d is the projection defined by

(2.24) (G̃F∇uh,vh)KF = (∇uh,vh)KF ∀vh ∈ (P0(KF ))d .

Since both G̃F∇uh and vh are constant vectors in KF we can easily see that

(2.25) G̃F∇uh =
|K+

F | ∇uh|K+
F

+ |K−F | ∇uh|K−
F

|KF |
.

On the other hand, since in (2.18) both ∇GFuh and ∇vh are constant vectors in KF , the
following holds

(2.26) ∇GFuh =
|K+

F | ∇uh|K+
F

+ |K−F | ∇uh|K−
F

|KF |
.

Consequently, ∇GFuh = G̃F∇uh and sh(uh, vh) = s̃h(uh, vh). This means that the present
method is indeed a LPS method.

As one further rewriting of (2.20), the stabilisation term may be rewritten as follows

(2.27) sh(uh, vh) =
∑
F∈Fh

γF
|K+

F ||K
−
F |

|KF |
J∇uhKF J∇vhKF ∀ uh, vh ∈ Vh.

Thus, Method (2.20) is one particular realisation of the Continuous Interior Penalty (CIP)
method proposed in [13] (see also [4], where a connection of this type has been used to carry out
the analysis).

We shall now discuss the convergence of the LPS method introduced in (2.20). We introduce
the norms ‖ · ‖LPS and ‖ · ‖CIP , respectively, as follows

(2.28) ‖v‖LPS :=
(
ε |v|21,Ω + ‖σ

1
2 v‖20,Ω + sh(v, v)

) 1
2
,

and

(2.29) ‖v‖CIP :=

ε|v|21,Ω + ‖σ
1
2 v‖20,Ω +

∑
F∈Fh

γF h
−1
F

|K+
F ||K

−
F |

|KF |
‖ J∇vK ‖20,F

 1
2

.

Furthermore, we let ih : H2(Ω)→ Vh denote the Lagrange interpolation operator satisfying

(2.30) ‖w − ihw‖0,K + hK‖∇(w − ihw)‖0,K ≤ Ch2
K |w|2,K for all w ∈ H2(K) .

The following result confirms the fact that the convergence of this method is optimal.

Theorem 2.2. Let u ∈ H2(Ω) be the solution of (1.1) and uh ∈ Vh its finite element approxi-
mation given by (2.20). Then

(2.31) ‖u− uh‖LPS ≤ C
(
ε+ ‖b‖∞,Ωh+ (σ−1

0 ‖∇b‖
2
∞,Ω + ‖σ‖∞,Ω)h2

) 1
2 h ‖u‖2,Ω.
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Proof. The error u − uh may be split as u − uh = (u − ihu) + (ihu − uh) =: ρh + eh. Then, we
have

(2.32) ‖u− uh‖LPS ≤ ‖u− ihu‖LPS + ‖ihu− uh‖LPS .
From (2.27) it follows that

(2.33) ‖eh‖LPS = ‖eh‖CIP ,
and thus, following the same steps as in [13], we have

(2.34) ‖eh‖CIP ≤ C
(
ε+ ‖b‖∞,Ωh+ (σ−1

0 ‖∇b‖
2
∞,Ω + ‖σ‖∞,Ω)h2

) 1
2 h ‖u‖2,Ω .

Moreover, the interpolation error ‖ρh‖LPS may be bounded as follows

‖ρh‖LPS =
(
ε |ρh|21,Ω + ‖σ

1
2 ρh‖20,Ω + sh(ρh, ρh)

) 1
2

≤ C

 (ε+ ‖σ‖∞,Ωh2)h2‖u‖22,Ω +
∑
F∈Fh

γF ‖∇(I −GF )ρh‖20,KF

 1
2

.(2.35)

By using the stability (2.19), (2.30), and the regularity of the mesh, we get

(2.36) ‖∇(I −GF )ρh‖0,KF ≤ ‖∇ρh‖0,KF ≤ Ch
2
F |u|22,KF .

This leads to the following bound∑
F∈Fh

γF ‖∇(I −GF )ρh‖20,KF ≤ C (‖b‖∞,Ω + ‖σ‖∞,Ωh)h3‖u‖22,Ω ,

and the desired result follows from (2.35) and (2.34). �

Remark 2.4. The same analysis can be carried out in the case σ0 = 0, but the error estimate
will depend on ε. More precisely, let πh denote the L2(Ω)-orthogonal projection onto V0

h, and
let us suppose that b · n = 0 on ∂Ω. Then, following analogous steps as the ones presented in
[7], we can show that there exists a constant C > 0, independent of h and ε, such that for all
vh ∈ V0

h the following holds
(2.37)

(u−πhu, b·∇vh)Ω ≤ C
(
‖b‖1,∞,Ω‖u− πhu‖0,Ω‖vh‖0,Ω + ‖b‖

1
2
∞,Ω‖h

− 1
2 (u− πhu)‖0,Ωsh(vh, vh)

1
2

)
.

Then, using this last inequality, the following bound can be obtained for the discrete error

(2.38) ‖eh‖CIP ≤ C
(
ε+ h+

‖b‖1,∞,Ωh2

ε

) 1
2

h‖u‖2,Ω ,

which leads to an estimate containing a term of the form hε−
1
2 . The negative power of ε gets

somehow compensated by the h in the numerator. This estimate is, nevertheless, only satisfactory
for sufficiently small h.

2.3. The nonlinear LPS scheme. As we could see in the last two sections, the linear diffusion
scheme (2.1) preserves the maximum principle, while the Local Projection Stabilisation scheme
(2.20) enjoys optimal convergence. Then, our purpose in this section is to blend these two
approaches, in such a way that the resulting scheme preserves positivity for rough solutions,
while keeping the optimal accuracy of the LPS scheme where the solution is smooth. The
method proposed reads as follows: Find uh ∈ Vh such that uh − ugh ∈ V0

h and

(2.39) ã(uh; vh) := a(uh, vh) + dh(uh;uh, vh) = (f, vh)Ω ∀ vh ∈ V0
h ,
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where the stabilisation term dh(· ; ·, ·) is defined as follows

(2.40)

dh(wh;uh, vh) =
∑
F∈Fh

τF αF (wh)(∇uh,∇vh)KF

+
∑
F∈Fh

γF (1− αF (wh))(∇(I −GF )uh ,∇(I −GF )vh)KF .

Here, for every F ∈ Fh, αF : Vh → [0, 1] is a continuous function of uh, and the parameters τF
and γF are defined in (2.3) and (2.22), respectively. For the moment, the only extra requirement
imposed on the functions αF is for them to satisfy αF (uh) = 1 whenever uh has a local extremum
in a node of KF . The following result is the first step towards proving the solvability of (2.39).

Lemma 2.5. Let τF and γF be defined by (2.3) and (2.22), respectively, and let Th : V0
h → [V0

h]′

be the nonlinear operator defined by

(2.41) [Thzh, vh] := a(zh + ugh, vh) + dh(zh + ugh; zh + ugh, vh)− (f, vh)Ω, zh, vh ∈ V0
h .

Then, there exist two positive constants C1, C2 such that

(2.42) [Thzh, zh] ≥ C1|zh|21,Ω − C2(‖ugh‖21,Ω + ‖f‖20,Ω) .

Proof. First, using the definition of Th and the ellipticity of the bilinear form a(·, ·) we obtain

[Thzh, zh] = ‖σ
1
2 zh‖20,Ω + ε|zh|21,Ω + dh(zh + ugh; zh, zh) + a(ugh, zh)

+ dh(zh + ugh;ugh, zh)− (f, vh)Ω.(2.43)

Using 0 ≤ αF (zh + ugh) ≤ 1 we arrive at

dh(zh + ugh; zh, zh) =
∑
F∈Fh

{
τF αF (zh + ugh)‖∇zh‖20,KF

+ γF (1− αF (zh + ugh))‖∇(I −GF )zh‖20,KF
}
≥ 0 .(2.44)

Moreover, the Poincaré inequality gives

(2.45)
|a(ugh, zh)| = |(σugh, zh)Ω + ε(∇ugh,∇zh)Ω + (b · ∇ugh, zh)Ω|

≤ C
(
‖σ‖∞,Ω + ε+ ‖b‖∞,Ω

)
‖ugh‖1,Ω |zh|1,Ω.

By using the orthogonality of GF , the mesh regularity, and the definitions (2.3) and (2.22) we
obtain that

|dh(zh + ugh;ugh, zh)| ≤
∑
F∈Fh

(τF + γF ) ‖∇ugh‖0,KF ‖∇zh‖0,KF

≤ Ch (‖σ‖∞,Ω h+ ‖b‖∞,Ω)‖ugh‖1,Ω |zh|1,Ω.

Summarising, Th satisfies

(2.46) [Thzh, zh] ≥ ε|zh|21,Ω − C
(
‖σ‖∞,Ω + ε+ ‖b‖∞,Ω

)
‖ugh‖1,Ω |zh|1,Ω − ‖f‖0,Ω‖zh‖0,Ω .

The claimed result can be derived by applying the Poincaré and Young inequalities to the last
relation. �

The solvability of (2.39) appears then as a corollary of the previous result.

Theorem 2.3. The discrete problem (2.39) has at least one solution.
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Proof. First, we notice that uh solves (2.39) if and only if Th(uh − ugh) = 0. Let K be any

positive constant satisfying K2 > C2
C1

(‖ugh‖21,Ω + ‖f‖20,Ω) and vh ∈ V0
h such that |vh|1,Ω = K.

Then, (2.42) gives

(2.47) [Thvh, vh] ≥ C1|vh|21,Ω − C2(‖ugh‖21,Ω + ‖f‖20,Ω) > 0.

Hence, since αF are continuous functions, the operator Th is continuous. This allows us to use
a consequence of Brower’s fixed point theorem (see, [37, p. 162, Lemma 1.4]) to deduce that
there exists z̃h ∈ V0

h such that |z̃h|1,Ω < K and Th(z̃h) = 0. Then, uh := zh + ugh ∈ Vh solves
(2.39). �

We end this section by making a short comment on the satisfaction of the discrete maximum
principle. If uh has a local extremum at an interior node, then αF (uh) = 1 for all F ∈ F (Ωi).
Hence

ã(uh;ψi) = a(uh, ψi) + aLD(uh, ψi) ,

and the proof of the discrete maximum principle for Method (2.39) follows from the proof of
Theorem 2.1.

2.4. Convergence of the nonlinear scheme. The error will be measured in the following
mesh-dependent norm:

(2.48) ‖|v‖|h :=
(
ε |v|21,Ω + ‖σ

1
2 v‖20,Ω + dh(uh; v, v)

) 1
2
.

As usual, we split the error e := u− uh as follows

(2.49) e = u− uh = (u− ihu) + (ihu− uh) := ρh + eh,

and start by noting that, using the orthogonality of GF , the definition of τF and γF , and standard
interpolation estimates, ρh can be bounded as

(2.50) ‖|ρh‖|h ≤ C
(
ε+ ‖b‖∞,Ωh+ ‖σ‖∞,Ωh2

) 1
2h ‖u‖2,Ω .

In general it is not possible to prove optimal convergence of the nonlinear scheme even for
smooth solutions regardless of the smoothness assumed. Here we will instead use the fact that
numerical evidence shows that the nonlinear switch is active on a small set of the whole domain
Ω. This then suggests an analysis that uses an a priori assumption the size of this subdomain and
on its distance to the local extrema of the exact solution. Making these assumptions disregards
the nonlinear coupling and is equivalent to considering a linear case where the switch αF is a
function of the space coordinate only. Nevertheless we believe that the resulting error analysis
below gives some insights in what is required from the nonlinear stabilisation method in order
for it to be both monotone and accurate.

Let

Sα := {K ∈ Th : max
F∈F (K)

αF (uh) > h2},

and assume that meas(Sα) = O(hs), with s ∈ R+. Observe that this means that the set on
which the first order viscosity is active must diminish under mesh refinement. Even if this is a
reasonable assumption for problems where the strong gradients are localized in space it can in
general only be verified a posteriori . To keep α = 1 in the vicinity of a local extremum, we must
have s ≤ 1.

Let r ∈ R+, let us define the set

Sh,ext := {x ∈ Ω : |∇u(x)| ≤ Chr|u|2,∞,Ω} ,
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and assume that

(2.51) lα := sup
x∈Sα

inf
y∈Sh,ext

|x− y| ≤ Chr.

Under these assumptions there holds

|dh(uh; ihu, ihu)|
1
2 ≤

 ∑
F∈Fh

τFαF (uh)‖∇ihu‖20,KF

 1
2

+ Ch
3
2 |u|2,Ω ,

where the second term is due to the linear stabilisation.
Since the extrema of uh are in an O(hr), r > 0, vicinity of the extrema of u, then we have

using the mean value theorem,

‖∇u‖∞,Sα ≤ lα|u|2,∞,Ω + ‖∇u‖∞,Sh,ext ≤ Ch
r|u|2,∞,Ω ,

and as a consequence

‖∇ihu‖∞,Sα ≤ C(‖∇(ihu− u)‖∞,Sα + hr‖u‖2,∞,Ω) ,

and it follows that taking the parts dh over Ω \ Sα and Sα separately we get

(2.52) |dh(uh; ihu, ihu)|
1
2 ≤ C(h

3
2 ‖∇u‖∞,Ω + h

1+s
2 (h+ hr)|u|2,∞,Ω + h

3
2 |u|2,Ω).

We see that to obtain optimal global convergence for smooth solutions we must have r = 1
2 , i.e.

the approximate local extremum is in an O(h
1
2 ) neighbourhood of an exact extremum, allowing

us to take s = 1. More generally we need to assume r + s/2 ≥ 1. Note also that the above
analysis shows that there is some flexibility regarding how quickly the nonlinear term has to be
turned off in zones where the solution is flat. Indeed if r is big, or more precisely the associated
contribution small, then s can be allowed to be smaller and hence Sα more spread out.

We also assume that there exists an interpolation operator ih with optimal approximation
properties satisfying

(2.53) (u− ihu, b · ∇eh) ≤ ‖h−
1
2 (u− ihu)‖0,Ω(dh(uh, eh, eh)

1
2 + h

1
2σ
−1/2
0 ‖∇b‖∞,Ω‖|eh‖|h).

If, as what we did in Remark 2.4, we assume that b · n = 0 on ∂Ω, this can be shown for the
L2-projection (see [7]).

Under these assumptions the convergence order of the nonlinear LPS scheme matches that of
the linear LPS scheme as we show in the following Lemma.

Lemma 2.6. Let us suppose that u ∈ W 2,∞(Ω). Then, there exists C > 0, independent of h
and ε, such that

(2.54) ‖|eh‖|h ≤ C
(
ε+‖b‖∞,Ωh+

(
‖σ‖∞,Ω + σ−1

0 ‖∇b‖
2
∞,Ω

)
h2
) 1

2h|u|2,Ω+Ch
1+s
2 (h+hr)|u|2,∞,Ω .

If in addition the coefficients s and r introduced above satisfy r + s/2 ≥ 1, then

‖|eh‖|h ≤ C(ε+ ‖b‖∞,Ωh+
(
‖σ‖∞,Ω + σ−1

0 ‖∇b‖
2
∞,Ω

)
h2)

1
2h|u|2,∞,Ω .

Proof. We start by noticing that, since, for a given wh ∈ Vh, then dh(wh; ·, ·) is a symmetric and
positive semi-definite bilinear form, and the following holds

(2.55) |dh(uh; eh, ihu)| ≤ dh(uh; eh, eh)
1
2dh(uh; ihu, ihu)

1
2 .
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Then, using the ellipticity of the bilinear form a, the properties (2.53) and (2.55) we get

‖|eh‖|2h =a(eh, eh) + dh(uh; eh, eh) = −(f, eh)Ω + a(ihu, eh) + dh(uh; ihu, eh)

=− a(ρh, eh) + dh(uh; ihu, eh)

≤‖|ρh‖|h‖|eh‖|h + (ρh, b · ∇eh)Ω + |dh(uh; ihu, ihu)|
1
2 |dh(uh; eh, eh)|

1
2

≤‖|ρh‖|h‖|eh‖|h + ‖h−
1
2 (u− ihu)‖0,Ω(dh(uh, eh, eh)

1
2 + h

1
2σ
−1/2
0 ‖∇b‖∞,Ω‖|eh‖|h)

+ |dh(uh; ihu, ihu)|
1
2 |dh(uh; eh, eh)|

1
2 .

The claim follows using standard approximation of ihu, the estimate (2.50) and (2.52) under
the assumptions made on s and r. �

Remark 2.7. Observe that trivially r = s = 0 holds, which results in the error estimate ‖|eh‖|h ≤
Ch

1
2 , which is the worst possible case.

3. Definition of αF

As was mentioned before, the only requirements imposed to the functions αF were that they
need to have a range in [0, 1], they need to take a value one when there is a local extremum in an
node of KF , and they need to be continuous. In the numerical results below we have used two
different definitions for this parameter. Both of them are modifications of known parameters
that have been used previously in the context of AFC schemes, and they respect one main
designing principle for this method, namely, the method should reduce to linear diffusion in the
vicinity of sharp layers and local extrema.

Since the numerical results presented in the next section are two-dimensional, we restrict the
presentation to two space dimensions (then, facets are edges). Nevertheless, the definitions can
be extended, without major difficulties, to the three-dimensional case.

3.1. The Zalesak-Kuzmin limiters. For this alternative we define the blending parameter
using the Zalesak-Kuzmin limiters. These limiters have been used extensively in the context
of AFC schemes (see, e.g., [25], and [3] for the analysis of the resulting method), and they
have been modified in such a way they satisfy the requirements of the analysis presented in the
previous sections.

Let A = (aij)i,j=1,...,N be the matrix arising from the Galerkin discretisation of (1.2) using
Vh as discrete space, and considering that homogeneous Neumann conditions are imposed at
the boundary. Then, for each pair i, j, we define dij = −max{aij , 0, aji}, and, for a function
wh ∈ Vh, we define the fluxes

fij = dij(wh(pj)− wh(pi)) .

We then introduce the coefficients P+
i , P−i , Q+

i , Q−i computed for i = 1, . . . , N in the following
way. First, these quantities are initialised by zero. Then we go through all pairs of indices
i, j ∈ {1, . . . , N} and perform the updates

P+
i := P+

i + max{0, fij} , P−i := P−i −max{0, fji} if aji ≤ aij ,
Q+
i := Q+

i + max{0, fji} , Q−i := Q−i −max{0, fij} if i < j ,

Q+
j := Q+

j + max{0, fij} , Q−j := Q−j −max{0, fji} if i < j .

After having computed the values P+
i , P−i , Q+

i , Q−i , i = 1, . . . , N , we define

R+
i := min

{
1,

Q+
i

P+
i + τ

}
, R−i := min

{
1,

Q−i
P−i + τ

}
, i = 1, . . . , N .
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Here, τ > 0 is a regularisation parameter. Furthermore, these quantities are set to 1 at Dirichlet
nodes, i.e.,

R+
i := 1 , R−i := 1 , if pi belongs to the Dirichlet boundary .

Finally, for any i, j ∈ {1, . . . , N} such that aji ≤ aij , we set

(3.1) αij :=

 R+
i if fij > 0 ,

1 if fij = 0 ,
R−i if fij < 0 ,

αji := αij .

It is worth mentioning that this algorithm is the one presented in [25] (that originates from the
ideas of [40]), to which the symmetry condition αij = αji has been added.

Then, adopting the convention that an internal edge F has endpoints xi and xj , the blending
parameter has been chosen as:

(3.2) αF (wh) := max
{

1− αij(wh) : pi and pj share an edge ofKF

}
.

3.2. A blending parameter based on the variation of uh. We use as blending parameter
a slight modification of the limiter recently proposed in [2], and whose definition is as follows.
First, for wh ∈ Vh, we define ξwh as the unique element in V0

h whose nodal values are given by

(3.3) ξwh(xi) :=

∣∣∣∑j∈Si wh(xi)− wh(xj)
∣∣∣∑

j∈Si |wh(xi)− wh(xj)|+ τ
.

Again, τ > 0 is a regularisation parameter. Then, on each F , αF is defined by

αF (wh) := max
{[
ξwh(pj)

]p
: pj is a vertex of KF

}
, p ∈ [1,+∞) .(3.4)

The value for p will determine the rate of decay of the numerical diffusion with the distance to
the critical points. A higher value for p will naturally reduce the amount of artificial diffusion
added to the scheme, thus providing sharper layers. The flip side of that coin is that a higher
value for p also makes the nonlinear system harder to solve, and it usually leads to a higher
number of iterations needed, and eventually non-convergence of the fixed point iterations if p it
too large. In our numerical experience, it is safe to consider values for p up to 10 or 15, but not
higher. The values used for every particular case are reported in the captions of the respective
figures.

It is important to remark that for both the above choices, the regularisation parameter τ
is needed in order to ensure continuity of the resulting nonlinear form. The downside of that
is that the blending parameter αF is not exactly one, but rather 1/(1 + τ) in the vicinity of
extrema. This, obviously, introduces a violation of the discrete maximum principle, but this
violation is of the order of τ , which is below the tolerance for the nonlinear iterations. Then, we
believe this does not affect the overall quality of the numerical results given by the method.

3.3. Linearity preservation. We end this section by stating that, provided with these two
blending parameters, then the method is linearity preserving on structured meshes. More
precisely, we will say that the mesh is symmetric with its internal edges if, for every edge
F ∈ Fh with end points pi, pj , then there exists an edge E ∈ Fh with enpoints pi and pk, and
pi−pj = −(pi−pk). Moreover, we will define the neighbourhood ωF := {K ′ ∈ Th : K ′∩KF 6= ∅}.
Then, supposing that the mesh is symmetric with respect to its internal nodes, then for all
v ∈ P1(ωF ) we have that αF (v) = 0 (for the case of the parameter given by (3.2) this is true
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under the extra condition that the convection field b is constant). As a consequence, denoting
dh(v; v, wh) =

∑
F∈Fh

dFh (v; v, wh), the following holds

(3.5) dFh (v; v, wh) = γF (∇(I −GF )v,∇(I −GF )wh)KF = 0 ,

for all wh ∈ Vh, where in the last step we have used that the function v is a linear polynomial
in KF . This means that the stabilisation disappears whenever the discrete solution is a linear
polynomial in a neighbourhood of the facet F . This property is believed to lead to better error
convergence in unstructured meshes, and there is numerical evidence supporting this statement
(see, e.g., [2], or the recent work [26] in the context of the transport equation), but a proof of
this fact is lacking.

4. Numerical experiments

In this section we present the result of different numerical experiments illustrating the per-
formance of the present method.

The nonlinear system (2.39) has been solved using the modified fixed-point algorithm proposed
in [23]. Defining the discrete residual as

(Rh(unh), vh) = a(unh, vh) + dh(unh;unh, vh)− (f, vh)Ω ,

then the fixed point iterations are stopped when the relative residual (i.e., the norm of the
residual divided by the norm of the right-hand-side) is smaller than, or equal to, 10−6 (unless
otherwise specified). All iterations have been started with the solution of the LPS method (2.20).

Concerning the design of the parameters c0 and γ0, we have adopted an empirical approach.
The parameter c0 has to be large enough for the method to respect the discrete maximum
principle. Since the formula (2.16) is not explicit, we have solved the problem using different
values, and, in order to add as little numerical diffusion as possible, we have retained the
smallest one for which the linear diffusion method respects the DMP. This value has changed
from problem to problem, and we report them in the appropriate captions. For the parameter γ0

more freedom is at hand, and the best results have been given using γ0 = 0.05 in all calculations.
Finally, concerning the regularisation parameter τ present in the definition of the blending
parameters αF , we have chosen them as the value τ = DOLFIN EPS = 3 × 10−16, where
DOLFIN EPS is a preseted value in FEniCS (all of our codes have been written in FEniCS, see,
e.g., [31]).

4.1. Two-dimensional examples. In this section we will solve the following benchmark prob-
lems. We always take Ω = (0, 1)2, ε = 10−5, σ = 0, and:

Example 1 (Convection skew to the mesh). Problem (1.1) is considered with b(x, y) = (cos(π/3), sin(π/3))T ,
f = 0, and the boundary condition u = g on ∂Ω, where

g(x, y) =

{
1, if x = 0 ,
0, else.

Our first objective was to compare both possible definitions of the blending parameters αF .
We have made numerous comparisons on this, and we just report here the result of a represen-
tative one, which helps us to draw some conclusions. We have solved Example 1 on a structured
mesh containing 2× 64× 64 elements, using both definitions for the parameter. The results are
depicted in Figure 1. A more detailed view can be seen in Figure 2 where cross-sections of the
solutions are depicted. From these results (and others that show the same pattern) we can ob-
serve that the blending parameters defined by (3.4) provide a solution which is sharper than the
one given by the use of (3.2). Also, the fixed point iteration tends to be much slower when using
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the blending parameters defined by (3.2) (in some cases we have even observed non-convergence
of the iterations, or convergence after several thousands of iterations). Then, from now on, we
will only consider method (2.39) provided with the blending parameters αF defined by (3.4).

Next, we solve Example 1 using an unstructured mesh containing 7, 970 elements. In Fig-
ure 3 we present the result for the method (2.39). For comparison, we also present the results
obtained using two alternative positivity preserving methods. The first one is the Algebraic
Flux-Correction (AFC) scheme from [25]. This scheme is usually linked to time-dependent
problems, but it was adapted to address steady-state problems in [25]. Its analysis has been
recently carried out in [3], where a description of its use for steady-state problems such as the
one solved in this work can be found. The second scheme is one recently proposed in [2], which
is a nonlinear edge diffusion scheme, using limiters related to the ones defined in (3.4), and that
can also be seen as an alternative flux limiter for the AFC schemes (see [2] for details).

For this example (and others as well) we see that the three methods provide qualitatively
similar solutions. A more detailed comparison can be observed in Figure 4, where cross-sections
along the lines y = 0.9 and x = 0.25 are depicted. For comparison, we have also included the
results obtained by the shock-capturing method proposed in [11], and the SUPG method (the
last one as an example of the reference linear method for the convection-diffusion equation).
These cross-sections show that the results obtained with method (2.39) are of similar quality to
both AFC and the edge diffusion method from [2]. As is to be expected though, the upwind
character of the flux limiters defined in [25] makes the AFC method better suited to approximate
outflow boundary layers (this has been observed in our numerical experience, not only for the
problems described in this work). Also, the overlapping character of method (2.39) makes it
more prone to add some more diffusivity to the problem. Despite this, the results show sharp
layers for all the methods, and sharper than the ones provided by the method from [11], while
respecting the discrete maximum principle.

We finally have solved this problem in a structured 2×40×40 mesh. The results are depicted
in Figure 5 for the same three elevations as before, and in Figure 6 for cross-sections. Essentially
the same comments made before are valid in this case.

Example 2 (A rotating convective field, two inner layers). Problem (1.1) is considered with
b(x, y) = (−y, x)T , f = 0, and the boundary condition

u = g on ΓD , ∂nu = 0 on ΓN ,

where ΓN = {0} × (0, 1), ΓD = ∂Ω \ ΓN , and

g(x, y) =


1, (x, y) ∈ (0.15, 0.45)× {0},
cos2

(
10π x−0.7

3

)
, (x, y) ∈ (0.55, 0.85)× {0},

0, else on ΓD.

This is a problem recently proposed in [26]. This example poses some more issues in the
convergence of the fixed-point iteration (especially for the AFC scheme). That is why we have
relaxed slightly the convergence criterion for this problem to stopping the iterations when the
normalised residual is smaller than 5 × 10−6. The results (in the same order as it was done
for the previous example) are depicted in Figures 7-8. In these figures we can observe that the
results from Method (2.39) and the methods from [2] and the AFC scheme are very close, and
the layers do not seem to have been smeared significantly, even close to the outflow. On the
other hand, for the three methods that respect the DMP, the trigonometric profile that has been
transported seems to have diffused slightly, as the result for the SUPG method shows. Since
the problem is highly convection-dominated, then its exact solution is close to the one of the
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Method min diff
AFC 1.16e-08 0.2066
BBK ED 0.0 0.1248
CURRENT METHOD 0.0 0.1449
BE05 02 0.01017 0.2691
SUPG 0.034 0.0580

Table 1. Results for the different methods for the mesh consisting of 2× 64× 64 elements.

transport problem (i.e., using ε = 0). This is why we add the profile of the solution of the
tranport problem (labeled as ”REFERENCE SOLUTION”) in the plots for reference.

Example 3 (A problem with two inner layers). Problem (1.1) is considered with b(x, y) =
(1, 0)T , boundary condition u = 0 on ∂Ω, and

f(x, y) =

{
16(1− 2x) if (x, y) ∈ [0.25, 0.75]2 ,
0, else.

This problem has been proposed in [23] as a benchmark for problems for which nonlinear
discretisations usually fail to provide satisfactory results. The exact solution is very close to
the quadratic function (4x − 1)(3 − 4x) in the region (0.25, 0.75)2, and is very close to zero
(but positive) elsewhere in Ω (this function is referred to as ’REFERENCE SOLUTION’ in
the cross sections presented below). Despite the fact that the exact solution is non-negative,
usually nonlinear methods give a numerical solution that is negative in some regions (see [23]
for a detailed discussion on this topic). This does not contradict the DMP property, as the
right-hand side f changes sign inside Ω, but it is somewhat upsetting. Elevations of the solution
provided by different methods are depicted in Figure 9, while cross-sections along the lines
x = 0.5 and x = 0.8 are depicted in Figure 10. The cross-sections along the line x = 0.5 show a
similar behaviour of all the methods, with all of them providing values around 1.06 (rather than
the ”reference” value of 1). Surprisingly, as we can observe in Figure 10, bottom, the SUPG
method seems to be the one that gives the most accurate results in this case (remember that the
exact solution to this problem is very close to zero for x ≥ 0.8). Out of the nonlinear schemes
tested, the present method and the method from [2] seem to be the most accurate ones.

Finally, to make a more detailed analysis for this problem, we have repeated the study carrried
out in [23] for this example. More precisely, we have computed the quantities

(4.1) min := − min
0.4≤x≤0.6

uh(x, y) , diff := max
x≥0.8

uh(x, y)− min
x≥0.8

uh(x, y) .

The results for the mesh of 2 × 64 × 64 elements are given in Table 1, where we can observe
that they confirm the discussion carried out in the last paragraph. The method that provides
the smallest oscillations in the region x ≥ 0.8 is the SUPG, followed by the current method and
the method from [2] (presenting results which are very close to each other). Concerning the
over and undershoots near the layers, the SUPG method does present an undershoot which is
noticeably larger than the one given by the nonlinear methods.

5. Conclusions and future work

In this work we have blended two different strategies. One of them is built to satisfy the
discrete maximum principle, and the other one converges optimally. This blend leads to a
nonlinear scheme which has been proven to possess at least one solution, and whose solution
does satisfy the DMP. The numerical results have shown that the numerical solution provided
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(a) (b)

Figure 1. Solution for the method (2.39) using the limiters given by (3.4) (left,
where 127 iterations were needed to reach convergence) and the ones given by
(3.2) (right, where 323 iterations were needed to reach convergence). For both
cases we used c0 = 0.3.

by this method remains within the bounds provided by the continuous one, while presenting
layers which are sharp. These results have also been compared to previously existing positivity-
preserving methods providing results which are comparable to the previously existing ones.
The final method is quite robust with respect to the convergence of the fixed point iterations.
In fact, for Method (2.39) with the blending parameters (3.4) we have not found an example
for which the fixed point iterative scheme does not converge. Still, for some examples the
convergence can be very slow, leading to several hundreds of iterations. Then, the search for
more efficient nonlinear iteration schemes than the fixed-point algorithm used in this work is an
open problem. Observe also that in the transient case the above positivity results carry over
for implicit time discretization using the backward Euler method following [10]. For explicit
methods on the other hand the situation is less clear. However we expect the method to be
stable, under a CFL condition, for both the explicit Euler method and the second order Runge-
Kutta method [12, 8, 5]. Positivity under explicit time stepping is more difficult to assess due to
the extended stencil of the LPS part of the stabilization. Nevertheless an upwind scheme using a
similar nonlinear mechanism as the one discussed here was shown to be stable and monotonicity
preserving for explicit time discretization of the transport equation in [8].

All these aspects, along with more theoretical topics such as a localised error analysis, are
potential directions of future research.
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(a)

(b)

Figure 2. Cross-sections, along the lines y = 0.9 (top) and x = 0.25 (bottom) of
the solution of (2.39) for both definitions of the blending parameters. In the label,
’METHOD 1’ refers to the use of the limiters given by (3.4), while ’METHOD
2’ refers to the use of (3.2).
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(a) (b)

(c)

Figure 3. Solution for Example 1 on the unstructured mesh with 7970 elements
obtained by the nonlinear LPS method (2.39) using p = 10 and c0 = 0.3 (top left,
234 iterations were needed to reach convergence). The results for the AFC scheme
are depicted in the top right (where 77 iterations were needed for convergence).
At the bottom, we depict the results obtained the method proposed in [2] with
p = 10 (where 426 iterations were needed to reach convergence).
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(a)

(b)

Figure 4. Cross-sections along the lines y = 0.9 (top) and x = 0.25 (bottom)
for Example 1. We depict the results of method (2.39) (’CURRENT METHOD’
in the label), the AFC scheme (’AFC’ in the label), the method proposed in [2]
(’BBK ED’ in the label), the method analysed in [11] ( ’BE05 2’ in the label,
using γcip = 0.3, cρ = 0.9), and the SUPG method.
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(a) (b)

(c)

Figure 5. Solution for Example 1 on the structured mesh with 2 × 40 × 40
elements obtained by the nonlinear LPS method (2.39) using p = 15 and c0 = 0.25
(top left, 252 iterations were needed to reach convergence). The results for the
AFC scheme are depicted in the top right (where 1191 iterations were needed
for convergence). At the bottom, we depict the results obtained the method
proposed in [2] with p = 15 (where 148 iterations were needed to reach conver-
gence).
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(a)

(b)

Figure 6. Cross-sections along the lines y = 0.9 (top) and x = 0.25 (bottom)
for Example 1. We depict the results of method (2.39) (’CURRENT METHOD’
in the label), the AFC scheme (’AFC’ in the label), the method proposed in [2]
(’BBK ED’ in the label), and the SUPG method.
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(a) (b)

(c)

Figure 7. Solution for Example 2 on the structured mesh using 2 × 80 × 80
elements. We depict the solutions for the nonlinear LPS method (2.39) using
p = 10 and c0 = 0.2 (top left, 110 iterations were needed to reach convergence).
The results for the AFC scheme are depicted in the top right (where 162 iterations
were needed for convergence). At the bottom, results obtained using the edge
diffusion method from [2] with p = 10, where 60 iterations are needed for con-
vergence.
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(a)

(b)

Figure 8. Cross-sections along the lines y = x (top) and x = 0.1 (bottom) for
Example 2. We depict the results of method (2.39) (’CURRENT METHOD’ in
the label), the AFC scheme (’AFC’ in the label), the method proposed in [2]
(’BBK ED’ in the label), the method analysed in [11] ( ’BE05 2’ in the label,
using γcip = 0.1, cρ = 0.5), and the SUPG method. Finally, ’REFERENCE
SOLUTION’ refers to the solution of the transport problem.
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(c)

Figure 9. Solution for Example 3 on the structured structured mesh using 2×
64×64 elements. We depict the results of the nonlinear LPS method (2.39) using
p = 8 and c0 = 0.4 (top left, 590 iterations were needed to reach convergence).
The results for the AFC scheme are depicted in the top right (71 iterations were
needed for convergence). At the bottom, results obtained using the method from
[2] with p = 8, where 945 iterations are needed for convergence.
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(a)

(b)

Figure 10. Cross-sections along the lines x = 0.5 (top) and x = 0.8 (bottom)
for Example 3. We depict the results of method (2.39) (’CURRENT METHOD’
in the label), the AFC scheme (’AFC’ in the label), the method proposed in [2]
(’BBK ED’ in the label), the method analysed in [11] ( ’BE05 2’ in the label, using
γcip = 0.2, cρ = 0.4), and the SUPG method. Here, ’REFERENCE SOLUTION’
refers to the parabolic profile which is very close to the exact solution of the
problem.


