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Abstract

This paper considers sliding mode control design for singular stochastic Markovian jump systems with uncertainties. A suitable
integral sliding function is proposed and the resulting sliding mode dynamics is an uncertain singular stochastic Markovian
jump system. A set of new sufficient conditions is developed which not only guarantees the stochastic admissibility of the
sliding mode dynamics, but also determines all the parameter matrices in the integral sliding function. Then, a sliding mode
control law is synthesized such that reachability of the specified sliding surface can be ensured. Finally, three examples are
given to demonstrate the effectiveness of the results.
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1 Introduction

Markovian jump systems (MJSs) have the advantage
of better representing physical systems with random
changes in both structure and parameters. Much recent
attention has been paid to the investigation of these sys-
tems (Fang and Loparo, 2002; Yue and Han, 2005; Xiong
and Lam, 2006). Singular systems have extensive appli-
cations in fields related to electrical circuits and power
systems (Yang, Zhang and Zhou, 2006; Lewis, 1986).
When singular systems experience abrupt changes in
their structure, it is natural to model them as singu-
lar Markovian jump systems (SMJSs) (Boukas, 2008;
Huang and Mao, 2010). In practice, these systems are
often corrupted by noise, for example Brownian motion.
Therefore it is of significance to study singular stochas-
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tic Markovian jump systems (SSMJSs).

Sliding mode control (SMC) has been recognized as an
effective strategy for control of systems with uncertain-
ties and nonlinearity (Hung, Gao and Hung, 1993; Ma
and Boukas, 2009). The sliding mode dynamics
is a reduced-order system and completely insensi-
tive to matched uncertainties (Utkin, Guldner and
Shi, 1999; Edwards and Spurgeon, 1998). Sliding mode
methods can also be applied to systems in the presence
of mismatched uncertainties (Yan, Spurgeon and Ed-
wards, 2005). To obtain similar levels of robustness from
a classical linear state feedback controller, high gain
is required (Young, Utkin and Özgüner, 1999) which
can be limiting in terms of controller saturation and
practical application. A novel augmented sliding mode
observer is presented for the augmented system of MJSs
and is utilized to eliminate the effects of sensor faults
and disturbances (Li, Gao, Shi and Zhao, 2014). Slid-
ing mode methods are successfully applied to uncertain
time-delay systems (Alwi and Edwards, 2008; Fridman,
Gouaisbaut, Dambrine and Richard, 2003; Yan, Spur-
geon and Edwards, 2013), interconnected systems (Yan,
Spurgeon and Edwards, 2010), stochastic systems (Niu,
Ho and Wang, 2007; Shi, Xia, Liu and Rees, 2006),
SMJSs (Wu, Su and Shi, 2012; Wu and Daniel, 2010; Wu
and Zheng, 2009). When a linear sliding function is
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used, the dimension of the resulting sliding motion will
be reduced and the regular form typically used for slid-
ing mode control design (Edwards and Spurgeon, 1998)
is necessary in order to solve the corresponding exis-
tence problem. When considering singular systems, this
regular form is available only if the column vector of the
input matrix B is a linear representation of that of the
derivative matrix E. In comparison, the integral-type
sliding function introduces a compensator whose dimen-
sion is equal to the dimension of the input vector and
the resulting sliding motion is of full order. In this case
the regular form typically adopted for sliding mode con-
troller design is not required and the integral-type slid-
ing function (Wu et al., 2012; Wu and Daniel, 2010; Wu
and Zheng, 2009) is suitable for any singular system. In
(Wu et al., 2012; Wu and Zheng, 2009), parameter ma-
trices Gi (G) in the sliding function need to be designed
in advance. If the selection of these parameter matrices
is not appropriate, additional conservatism will be intro-
duced into the stability analysis of the resulting sliding
mode dynamics. In order to decrease the conservatism,
these parameter matrices need be redesigned but no
constructive design approach is given. In (Wu and
Daniel, 2010), although a method of how to design all
the parameter matrices in the sliding function is given,
a particular constraint must be satisfied so that EBi for
system matrices E and Bi must have full column rank.

This paper considers the design of a SMC for a class of
uncertain SSMJSs. Key questions to be addressed are
stated as follows:
Q1. How to design a suitable sliding function such that
conditions developed for the stochastic admissibility of
the resulting sliding mode dynamics can determine all
the parameter matrices in the sliding function comple-
menting existing design methods?
Q2. How to analyze and synthesize a SMC law so that
the proposed approach can effectively reject the effect
of Markovian switching on the desired dynamic perfor-
mance of uncertain SSMJSs?

2 System representation and preliminaries

Consider a nonlinear SSMJS described as follows:

Edx (t) = [(A (rt) + ∆A (rt, t))x (t)

+B (rt) (u (t) + f (x (t) , rt))] dt

+D (rt)x (t) d̟ (t)

(1)

where x (t) ∈ R
n is the state vector, u (t) ∈ R

m is the
control input and ̟ (t) is a one-dimensional Brownian
motion satisfying E {d̟ (t)} = 0 and E

{

d̟2 (t)
}

=
dt, E {·} denotes the mathematical expectation of the
stochastic process or vector. The matrix E ∈ R

n×n may
be singular. It is assumed that rank (E) = r ≤ n. Ma-
trices A (rt) , B (rt) and D(rt) are known and real with
appropriate dimensions where B

(

rt
)

has full column

rank, ∆A (rt, t) is uncertain and satisfies

∆A (rt, t) = M (rt)F (rt, t)N (rt) (2)

where matrices M (rt) and N (rt) are known, and the
function matrix F (rt, t) is unknown and Lebesgue-
measurable with

FT (rt, t)F (rt, t) ≤ I

for all t ≥ 0; {rt, t ≥ 0} is a continuous-time Markov
process with right continuous trajectories taking values
in a finite set S = {1, 2, · · · , N} with the transition rate

matrix (TRM) Π
∆
= {πij} given by

P {rt+h = j |rt = i} =

{

πijh+ o (h) i 6= j

1 + πiih+ o (h) i = j
(3)

where h > 0, lim
h→0

o(h)/h = 0; πij ≥ 0 for j 6= i is

the transition rate from mode i at time t to j at time

t + h, which satisfies πii = −
N
∑

j=1,j 6=i

πij ; the nonlinear

term f (x (t) , rt) ∈ R
m represents the system nonlinear-

ity satisfying

‖f (x (t) , rt)‖ ≤ ϑrt ‖x (t)‖ ≤ ϑ ‖x (t)‖ , rt ∈ S (4)

where ϑrt > 0 is a constant and ϑ
∆
= maxi∈S (ϑi).

For each rt = i ∈ S, corresponding matrices or vectors
relating to rt in the system (1) are denoted with the
index i, for example, A (rt) = Ai, ∆A (rt, t) = ∆Ai (t),
and f (x (t) , rt) = fi (x) etc.

The unforced nominal system of the system (1) can be
described as

Edx (t) = Aix (t) dt+Dix (t) d̟ (t) (5)

A basic assumption and a definition are first introduced.

Assumption 1: For i ∈ S, rank(E) = rank([E Di]).

Definition 1 (Xu and Lam, 2006)

(i) The continuous SSMJS (5) is said to be regular if
det (sE −Ai) is not identically zero for every i ∈ S.
(ii) The continuous SSMJS (5) is said to be impulse-free
if deg (det (sE −Ai)) = rank(E) for every i ∈ S.
(iii) The continuous SSMJS (5) is said to be stochasti-
cally stable if for any x0 ∈ R

n and r0 ∈ S, there exists a
scalar M̃ (x0, r0) > 0 such that

lim
t→∞

E
{

∫ t

0
xT (s, x0, r0)x (s, x0, r0) ds |x0, r0

}

≤ M̃ (x0, r0)
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where x (t, x0, r0) denotes the solution under the initial
condition x0 and r0.
(iv) The continuous SSMJS (5) is said to be stochasti-
cally admissible if it is regular, impulse-free and stochas-
tically stable.

Lemma 1 (Xu and Hu, 2007): For given matri-
ces E,X > 0, Y , if ETX + Y ΛT is nonsingular,
then there exist matrices S > 0, L such that ES +

LΘT =
(

ETX + Y ΛT
)−1

, where X,S ∈ R
n×n,

Y, L ∈ R
n×(n−r), and Λ,Θ ∈ R

n×(n−r) are any matrices
with full column rank satisfying ETΛ = 0, EΘ = 0.

Lemma 2: Let M,F,N and P be real matrices of ap-
propriate dimensions with P > 0, FTF ≤ I and a scalar
ε > 0. Then

MFN +NTFTMT ≤ εMP−1MT + 1
ε
NTFTPFN

The proof is trivial, so it is omitted. �

Remark 1: From Lemma 2, when F = I, it follows that
MN+NTMT ≤ εMP−1MT+ 1

ε
NTPN , and when P =

I, it follows thatMFN+NTFTMT ≤ εMMT+ 1
ε
NTN .

3 SMC synthesis

In this section, a sliding surface is designed and the corre-
sponding sliding motion is analyzed. Then sliding mode
controllers are synthesized such that the closed-loop sys-
tem has the desired performance.

For the system (1), consider the following integral sliding
function:

s (t) = BT
i P̄iEx (t)−

∫ t

0

BT
i P̄i (Ai +BiKi)x (θ) dθ

(6)
where P̄i ∈ R

n×n andKi ∈ R
m×n are real matrices to be

designed with BT
i P̄iBi being nonsingular. It should be

noted that due to the assumption that Bi is full column
rank, the nonsingularity of BT

i P̄iBi can be ensured if
P̄i > 0 for i ∈ S.
Considering the solution of the system (1), it is straight-
forward to see that the term Ex(t) can be expressed by:

Ex (t) = Ex (0) +
∫ t

0
[(Ai +∆Ai (θ))x (θ)

+Bi (u (θ) + fi (x))] dθ +
∫ t

0
Dix(θ)d̟ (θ)

(7)

where the last term is the Itô stochastic integral. Thus,
from (6) and (7), it follows that

s (t) = BT
i P̄iEx (0) +

∫ t

0

[

BT
i P̄i (∆Ai (θ)−BiKi)

+BT
i P̄iBi (u (θ) + fi (x))

]

dθ +
∫ t

0
BT

i P̄iDix(θ)d̟ (θ)

(8)
This implies that the sliding function s (t) in (6) is well
defined for the system (1). Hence, if BT

i P̄iDi = 0, then

the sliding function is described by

s (t) = BT
i P̄iEx (0) +

∫ t

0

[

BT
i P̄i (∆Ai (θ)−BiKi)

+BT
i P̄iBi (u (θ) + fi (x))

]

dθ

(9)
From SMC theory, when the sliding motion takes place,
it follows that s (t) = 0 and ṡ (t) = 0. From (9),

ṡ (t) = BT
i P̄i (∆Ai (t)−BiKi)x (t)

+BT
i P̄iBi (u (t) + fi (x))

(10)

Further, from ṡ (t) = 0, the equivalent control can be
given by

ueq = Kix (t)−
(

BT
i P̄iBi

)−1
BT

i P̄i∆Ai (t)x (t)− fi (x)
(11)

Thus, by substituting the equivalent control (11) into the
system (1), the sliding mode dynamics can be obtained
as

Edx (t) = (Ai +BiKi +∆Ai (t)

−Bi

(

BT
i P̄iBi

)−1
BT

i P̄i∆Ai (t)
)

x (t) dt

+Dix (t) d̟ (t)

(12)

The following result is ready to be presented.

Theorem 1: The sliding mode dynamics (12) is stochas-
tically admissible if there exist scalars ε1i > 0, ε2i > 0,
matrices P̄i > 0, Li and S̄i for i ∈ S such that

























Ξi ∗ ∗ ∗ ∗ ∗
ε2iB

T
i −BT

i P̄iBi ∗ ∗ ∗ ∗
NiYi 0 −ε1iI ∗ ∗ ∗
NiYi 0 0 −ε2iI ∗ ∗

ΓTH−1DiYi 0 0 0 −Θi ∗
ΓTH−1ΨT

i 0 0 0 0 −Ji

























< 0

(13)
[

−P̄i ∗
MT

i P̄i −ε2iI

]

< 0 (14)

BT
i P̄iDi = 0 (15)

where Γ = [Ir 0]
T
, Ξi = πiiY

T
i ET + Y T

i AT
i + LT

i B
T
i +

AiYi + BiLi + ε1iMiM
T
i , Θi = ΓTGEYiG

TΓ, Ψi =
[√

πi1Y
T
i · · · √πii−1Y

T
i

√
πii+1Y

T
i · · · √πiNY T

i

]

, Ji =
diag {Θ1, · · · ,Θi−1,Θi+1, · · · ,ΘN}, Li = KiYi and

Yi =
(

EP̄i + S̄iR̄
T
)T

where R̄ ∈ R
n×(n−r) is any matrix

with full column rank and satisfies ER̄ = 0. Matrices G
and H are nonsingular satisfying GEH = diag{Ir, 0}.
Moreover, the parameter Ki in (6) is given by

Ki = LiY
−1
i (16)
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Proof: From (13), it follows that Yi is nonsingular. Be-

cause Yi =
(

EP̄i + S̄iR̄
T
)T

and ER̄ = 0,

Y T
i ET = EYi = EP̄iE

T ≥ 0 (17)

Denote

H−1YiG
T =

[

Yi11 Yi12

Yi21 Yi22

]

From (17), it is straightforward to see that Yi12 = 0 and
Yi11 is symmetric, which implies that Yi11 and Yi22 are
nonsingular. Therefore,

G−TY −1
i H =

[

Y −1
i11 0

−Y −1
i22 Yi21Y

−1
i11 Y −1

i22

]

and ΓTGEYiG
TΓ = Yi11 is nonsingular.

FromLemma 1, there existsXi
∆
= Y −1

i =
(

ETPi + SiR
T
)T

where Pi > 0, Si ∈ R
n×(n−r), and the matrix

R ∈ R
n×(n−r) is full column rank and satisfiesETR = 0.

It is clear to see that

H−TΓ
(

ΓTGEYjG
TΓ

)−1
ΓTH−1 = ETXj = ETPjE

(18)

By (13) and (14), it can be obtained that

(Ai +BiKi)
T
Xi +XT

i (Ai +BiKi) + ε1iX
T
i MiM

T
i Xi

+ 1
ε1i

NT
i Ni + ε22iX

T
i Bi

(

BT
i P̄iBi

)−1
BT

i Xi

+ 1
ε2
2i

NT
i FT (t)MT

i P̄iMiF (t)Ni +DT
i E

TPiEDi

+
N
∑

j=1

πijE
TPjE < 0

(19)
By Lemma 2, it follows from (19) that

XT
i Λi+ΛT

i Xi+DT
i E

TPiEDi+

N
∑

j=1

πijE
TPjE < 0 (20)

where
Λi = Ai+BiKi+∆Ai (t)−Bi

(

BT
i P̄iBi

)−1
BT

i P̄i∆Ai (t)

R can be rewritten as R = GT

[

0

Φ̄

]

where Φ̄ ∈

R
(n−r)×(n−r) is any nonsingular matrix. From Assump-

tion 1

GDiH =

[

Di1 Di2

0 0

]

Partition the matrices GΛiH, G−TPiG
−1 and HTSi in

a compatible way as follows

GΛiH =

[

Ai1 (t) Ai2 (t)

Ai3 (t) Ai4 (t)

]

G−TPiG
−1 =

[

Pi1 Pi2

Pi3 Pi4

]

and HTSi =

[

Si1

Si2

]

for i ∈ S. It is readily concluded that Ai4 (t) is non-
singular for i ∈ S. From Definition 1, the sliding mode
dynamics (12) is regular and impulse-free.

Consider the Lyapunov function candidate as V (x (t) , i)
= xT (t)ETPiEx (t) for the sliding mode dynamics (12).
Then the weak infinitesimal operator L of V (x (t) , i)
along the solution of the system (12) is given by

LV (x (t) , i) = xT (t)
(

ΛT
i Xi +XT

i Λi

+DT
i E

TPiEDi +
N
∑

j=1

πijE
TPjE

)

x (t)
(21)

From (20) and (21), it is straight forward to see that
there exists a scalar κ > 0, such that for each i ∈ S,

LV (x (t) , i) ≤ −κ ‖x (t)‖2

From the Generalized Itô formula, it yields

lim
t→∞

E
{∫ t

0

‖x (θ)‖2 dθ
}

≤ κ−1E {V (x(0), r0)}

Then, from Definition 1, the sliding mode dynamics (12)
is stochastically stable. This completes the proof. �

The objective now is to study the reachability. A SMC
law will be designed to drive the trajectories of the sys-
tem (1) into the designed sliding surface s (t) = 0 with
s(t) defined in (6) in finite time and maintain a sliding
motion there for all subsequent time.

Theorem 2: Suppose that the sliding function is given
in (6) where Ki and P̄i satisfy (13)-(15). Then, the tra-
jectories of the system (1) can be driven into the sliding
surface s (t) = 0 in finite time and then maintain the
sliding motion by employing the following SMC law:

u (t) = Kix (t)−
(

υ +
∥

∥

∥

(

BT
i P̄iBi

)−1
BT

i P̄iMi

∥

∥

∥

· ‖Nix (t)‖+ 1
2

∥

∥

∥

N
∑

j=1

πij

(

BT
j P̄jBj

)−1
∥

∥

∥
‖s (t)‖

+ϑ ‖x (t)‖
)

sign (s (t))

(22)

where υ is a positive constant.

Proof: Choose the following Lyapunov function:

V̄ (s (t) , i) =
1

2
sT (t)

(

BT
i P̄iBi

)−1
s (t)
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From (10), the weak infinitesimal operator L of
V̄ (s (t) , i) is given by

LV̄ (s (t) , i) ≤ −υ ‖s (t)‖ ≤ −τ V̄
1
2 (s (t) , i)

where τ
∆
=

√
2υ 1

maxi∈S

{

√

λmax(BT

i
P̄iBi)

−1

} > 0.

Then by denoting s (t0)
∆
= s0, it follows from (Kushner,

1967) that

E
{

V̄ (s (t) , i) |s0, t0
}

1
2 ≤ −τ

2
t+

√

V̄ (s0, r0) (23)

Since the left-hand side of (23) is nonnegative,
E
{

V̄ (s (t) , i) |s0, r0
}

reaches zero in finite time for

each i ∈ S, i.e., tr ≤ 2
√

V̄ (s0, r0)
/

τ . This implies that

E {s (t)} = 0 or P {s (t) = 0} = 1, for all t ≥ tr. This
proof is completed. �

Remark 2: From SMC theory, it follows that Theo-
rem 1 together with Theorem 2 guarantees that the cor-
responding closed-loop system formed by applying the
control (22) to the system (1) is stochastically admissi-
ble.

4 SMC with H∞ performance

In this section, a set of sufficient conditions will be de-
veloped under which the sliding mode dynamics of the
considered system is guaranteed to be stochastically ad-
missible with H∞ performance.

Consider the following SSMJS in the presence of external
disturbance:

Edx (t) = [(Ai +∆Ai (t))x (t) +Bi (u (t) + fi (x))

+Fiw (t)] dt+Dix (t) d̟ (t)

(24a)

z (t) = C1ix (t) + C2iw (t)
(24b)

where w (t) ∈ R
p is the disturbance input which belongs

to L
p
2 [0,∞); z (t) ∈ R

q is the controlled output; Fi, C1i

and C2i are constant matrices with appropriate dimen-
sions. Unless otherwise specified, the notation in (24) is
as in (1).

Assume the sliding function (6) is defined for the sys-
tem (24). Using a similar analysis as in Section 3, the

following sliding mode dynamics can be obtained:

Edx (t) = [(Ai +BiKi +∆Ai (t)

−Bi

(

BT
i P̄iBi

)−1
BT

i P̄i∆Ai (t)
)

x (t)

+
(

I −Bi

(

BT
i P̄iBi

)−1
BT

i P̄i

)

Fiw (t)
]

dt

+Dix (t) d̟ (t)

(25)
Definition 2: Given a scalar γ > 0, the sliding mode dy-
namics (25) is said to be stochastically admissible with
an H∞ performance level γ if it is stochastically admis-
sible with w (t) = 0, and under the zero initial condition,
for nonzero w (t) ∈ L

p
2 [0,∞),

E
{∫ ∞

0

zT (t) z (t) dt

}

< γ2

∫ ∞

0

wT (t)w (t) dt (26)

The following result is ready to be presented.

Theorem 3: Given a scalar γ > 0, the sliding mode
dynamics (25) is stochastically admissible with an H∞

performance level γ if there exist scalars ε1i > 0, ε2i > 0,
matrices P̄i > 0, Li and S̄i for i ∈ S such that (14) and
(15) hold and

[

Πi1 ∗
Πi2 Πi3

]

< 0 (27)

where

Πi1 =



















Ξi ∗ ∗ ∗ ∗
FT
i Σi ∗ ∗ ∗

ε2iB
T
i 0 −BT

i P̄iBi ∗ ∗
BT

i 0 0 −BT
i P̄iBi ∗

C1iYi C2i 0 0 −I



















Πi2 =















NiYi 0 0 0 0

NiYi 0 0 0 0

ΓTH−1DiYi 0 0 0 0

ΓTH−1ΨT
i 0 0 0 0















Πi3 = diag {−ε1iI,−ε2iI,−Θi,−Ji}

Σi = −γ2I + FT
i P̄iFi

and all other notation is as in Theorem 1. Moreover, the
parameter Ki in (25) is given by (16).

Proof: From Theorem 1 it is straightforward to see that
(25) with w (t) = 0 is stochastically admissible. Let
Jzw = E

{∫∞

0

[

zT (θ) z (θ)− γ2wT (θ)w (θ)
]

dθ
}

. Under
the zero initial condition, it is straightforward to see that

Jzw ≤ E
{[

x̃T (θ)
(

Υi +ΦT
i Φi

)

x̃ (θ)
]

dθ
}
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where

Υi =



















ΛT
i Xi +XT

i Λi +DT
i E

TPiEDi

+
N
∑

j=1

πijE
TPjE






∗

FT
i ΩT

i Xi −γ2I













,

Φi = [C1i C2i], Ωi = I − Bi

(

BT
i P̄iBi

)−1
BT

i P̄i,

x̃ (t) =
[

x (t) w (t)
]T

, the notation for Xi and Λi is the

same as in Theorem 1.
Using the same method as in the proof of Theorem
1, from (14) and (27) it follows that Jzw < 0 for all
t > 0. Therefore, for any nonzero w (t) ∈ L

p
2 [0,∞), (26)

holds. Hence according to Definition 2, this system is
stochastically admissible with an H∞ performance γ.
This completes the proof. �

Remark 3: Theorem 3 ensures not only all the param-
eter matrices P̄i and Ki in the sliding function (6) are
determined but also the stochastic admissibility con-
dition of the resulting sliding mode dynamics is satis-
fied at the same time. This shows that desired results
can be obtained without repeatedly adjusting values of
some parameter matrices as in (Wu et al., 2012; Wu and
Zheng, 2009) and without the constraint of EBi having
full column rank as in (Wu and Daniel, 2010). This an-
swers the first question (Q1).

Remark 4: When rank(E) = n, the considered system
is nonsingular. In this case, without loss of generality, it
is assumed that E = I. Then, the SSMJS (1) becomes
the following uncertain stochastic MJS:

dx (t) = [(Ai +∆Ai (t))x (t) +Bi (u (t) + fi (x))] dt

+Dix (t) d̟ (t)

(28)
SMC for a similar system to the stochastic MJS (28)
was studied in (Niu et al., 2007; Chen, Huang and Niu,
2007), with the same sliding function adopted as in (6)
with E = I, but the parameter matrices Ki (i ∈ S)
must be chosen to satisfy Ai+BiKi being Hurwitz prior
to solving matrices P̄i (i ∈ S). For the same reason
analyzed in Remark 3, the approach proposed here for
the stochastic MJS is improves the results in (Niu et al.,
2007; Chen et al., 2007) in this regard.

Theorem 4: Consider the SSMJS (24), the sliding func-
tion is given in (6), where P̄i,Ki (i ∈ S) are solutions of
(14), (15) and (27). State trajectories can be driven into
the sliding surface s (t) = 0 in finite time and remain

there by the following SMC law:

u (t) = Kix(t)−
(

υ +
∥

∥

∥

(

BT
i P̄iBi

)−1
BT

i P̄iMi

∥

∥

∥ ‖Nix(t)‖

+ϑ ‖x (t)‖+ 1
2

∥

∥

∥

N
∑

j=1

πij

(

BT
j P̄jBj

)−1
∥

∥

∥ ‖s (t)‖

+
∥

∥

∥

(

BT
i P̄iBi

)−1
BT

i P̄iFi

∥

∥

∥
‖w (t)‖

)

sign (s (t))

(29)
where υ is a positive constant.

Remark 5: Here, the second question (Q2) will be an-
swered, that is, how is the attraction of the sliding sur-
face maintained when the sliding surfaces change from
one to another under Markovian switching. From (29),
it is straightforward to see that the designed SMC is re-
lated to the sliding surface through the matrices P̄i and
Ki. It should be noted that the proposed SMC law de-
pends on the transition rates πij which reflect the effect
of Markovian switching, and prescribe the desired dy-
namic performance of the system. Compared with this
paper, in (Wu et al., 2012; Wu and Daniel, 2010) Gi

(i ∈ S) the designed SMC law is not related to Marko-
vian switching and the SMC law does not depend on the
transition rates πij directly.

Remark 6: It should be emphasised that it is difficult
to solve equation (15) as the matrices P̄i in (15) are
constrained by the inequalities (13) and (14). Indeed,
there is no general way to solve equation (15) with the
constraints (13) and (14) (Edward, Yan and Spurgeon,
2007). In order to apply LMI techniques to find possible
solutions, one possible choice is to replace the condition
(15) by the following approximate constraint, which will
reduce the search region for the solution Pi and facilitate
the design by combining the limitations (13) and (14):

(

BT
i P̄iDi

)T (

BT
i P̄iDi

)

< νI, (for all i ∈ S) (30)

where ν is a sufficiently small positive scalar. By using
the Schur complement, (30) is equivalent to

[

−νI DT
i P̄iBi

BT
i P̄iDi −I

]

< 0 (31)

The following minimization problems for Theorems 1
and 3 are defined:







min
ε1i>0,ε2i>0,P̄i>0,Li,S̄i

ν

s.t.(13), (14) and (31)






min
ε1i>0,ε2i>0,P̄i>0,Li,S̄i

ν

s.t.(14), (27) and (31)

It can be seen that if the global infimum ν approaches
zero, the corresponding solutions ε1i , ε2i, P̄i > 0, Li, S̄i

will satisfy (13)-(15) or (14), (15) and (27) respectively.
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Remark 7: When compared with the LQR algorithm
which is an automated approach to finding an appropri-
ate linear state-feedback controller, the proposed sliding
mode controllers (see for example (29)) are nonlinear and
have variable structure, and thus produce a sliding mo-
tion which is totally insensitive to matched uncertainties
(Edwards and Spurgeon, 1998) and also exhibits good
robustness to mismatched uncertainty (Yan, Spurgeon
and Edward, 2014; Yan et al., 2005). The discontinuous
terms in the proposed variable structure controllers ef-
fectively reject the effects of the matched uncertainties if
the magnitude of the switched element is larger than the
corresponding bounds on the uncertainties. Although
linear feedback control is straightforward to implement,
high gain may be required to reject the effects of uncer-
tainties if only linear state feedback is employed, partic-
ularly for systems with uncertainties where the bounds
are nonlinear (Young et al., 1999).

5 Numerical examples

Example 1 Consider a SSMJS (24) with two modes
and parameters as follows:

Mode 1: A1 =









1.5 −1 −1.2

1.3 1.6 1.1

0.6 0.8 −0.8









, B1 =









1.0

0.5

0.2









,

M1 =









0.1

0

0.1









, D1 =









0.1 0 0

0 0.2 0

0 0 0









, F1 =









0.1

0

0









,

N1 =
[

0.2 0.1 0.1
]

, C11 =
[

0.1 0 0.2
]

, C21 = 0;

Mode 2: A2 =









0.5 −0.6 0.7

1.2 2.4 −0.4

0.6 0.2 1.5









, B2 =









0.8

1.0

0.3









,

M2 =









0.2

0

0.1









, D2 =









0.3 0 0

0 0.1 0

0 0 0









, F2 =
[

0.1 0 0
]T

,

N2 =
[

0.3 0.2 0.1
]

, C12 =
[

0.2 0 0.3
]

, C22 = 0;

The other parameters for models 1 and 2 are given as
follows

E =









1 0 0

0 1 0

0 0 0









, Π =

[

−0.5 0.5

0.4 −0.4

]

,

f1 (x) = f2 (x) = 0.3 sin (t)x1,

γ = 1, F1 (t) = F2 (t) = 0.2 sin (t)

By Theorem 3 and Remark 6, it can be obtained that

P̄1 =









81.5 23.7 −466.7

23.7 20.6 −169.8

−466.7 −169.8 8830.5









,

P̄2 =









57.1 15.6 −204.2

15.6 30.8 −144.1

−204.2 −144.1 6328.8









,

K1 =
[

−0.6213 −75.4896 −18.8646
]

,

K2 =
[

8.4051 −34.5859 14.9472
]

, ν ≈ 1.2× 10−6.

Then, the sliding surface can be computed by (6). Let
the adjustable parameter υ = 1, then the SMC law can
be obtained by (29). For simulation purposes, the initial

condition is chosen as x(0) = [ 1 2 2.9 ]T. Simulation

results are shown in Figures 1 and 2.

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

 

 
x1
x2
x3

Fig. 1. The time response of the closed-loop system states

0 2 4 6 8 10
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

 

 
s

Fig. 2. The time response of the switching function s(t)

Example 2 Consider an electrical circuit that can be
given as a SMJS (Boukas, 2006). Assuming the voltage
u(t) is excited by a nonlinear disturbance (where the
nonlinear disturbance f(x) satisfies (4)), which can be
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illustrated in Figure 3. It can be seen that the switch
occupies three positions and switches from one position
to another in a random way. This random process is the
consequence of a random request which may come from
the choice of an operator. For this system, it is assumed
that the position of the switch follows a continuous-
time Markovian process {rt|t ≥ 0} in (3) and takes
three modes in S = {1, 2, 3}. For example, if rt occu-
pies state 2 at time t, it is depicted as rt = 2. Denot-
ing the electrical current in the circuit as i(t) and us-
ing the basic electrical current laws, it is obtained that
u (t) + f(x) = uR (t) + uL (t) + uC (t) ,uR (t) = i (t) R̄,
uL (t) dt = Ldi (t), a(rt)i (t) dt = duC (t),

where a (rt) =















1
C1

if rt = 1

1
C2

if rt = 2

1
C3

if rt = 3

, R̄ = R+△R, R is the

resistance with the uncertainty △R.

Fig. 3. Electrical circuit: singular circuit

Then the equation established above can be rewritten as
follows









L 0 0

0 0 1

0 0 0

















i̇ (t)

u̇L (t)

u̇C (t)









=









0 1 0

a (rt) 0 0

R̄ 1 1

















i (t)

uL (t)

uC (t)









−
[

0 0 u(t) + f(t)
]T

If x (t) =
[

i (t) uL (t) + uC (t) uC (t)
]T

is chosen, the

obtained system is equivalent to the following









L 0 0

L 0 1

0 0 0









ẋ (t) =









0 1 0

a (rt)− R̄ 0 −1

R̄ 1 0









x (t)

+
[

0 1 −1
]T

(u (t) + f (t))

Parameters are chosen as follows

L = 1, a1 = 1, a2 = 1.2, a3 = 1.5, R = 2, △R = 0.01,

f(x) = 0.5sin(t)x1, Π =









−1 0.4 0.6

0.9 −2 1.1

0.2 0.3 −0.5









By Theorem 1, it can be obtained that

P̄1 =









17.6206 0.5206 −7.8191

0.5206 61.6055 −2.2036

−7.8191 −2.2036 33.2896









,

P̄2 =









16.0577 0.5818 −7.5931

0.5818 62.0916 −2.2547

−7.5931 −2.2547 30.0298









,

P̄3 =









18.3454 0.4484 −9.1911

0.4484 60.4777 −1.8868

−9.1911 −1.8868 39.1067









,

K1 =
[

−2.6864 −2.8694 −0.3674
]

,

K2 =
[

−3.5209 −3.8764 −0.3897
]

,

K3 =
[

−2.1167 −1.8464 −0.5969
]

Then, the sliding surface can be computed by (6). Let
the adjustable parameter υ be υ=1. The SMC law can
be obtained by (22). Simulation results with the initial

condition x(0) = [ 0.5 −0.7 −1 ]T, are shown in Fig-

ures 4 and 5, which demonstrate the effectiveness of the
obtained results.

0 2 4 6 8 10 12 14 16 18 20
−5

−4

−3

−2

−1

0

1

2

3

4

 

 
x1
x2
x3

Fig. 4. The time response of the closed-loop system states

Example 3: Consider a two-mode SSMJS (24) without
uncertainty:

Mode 1: A1 =









1.5 −1 −1.2

1.3 1.6 1.1

0.6 0.8 −0.8









, B1 =









1

0.5

0.4









,
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20

40

60

80

100

 

 
s

Fig. 5. The time response of the switching function s(t)

D1 =









0.1 0.2 0

0.1 0.2 0

0 0 0









, F1 =









0.1

0

0









,

C11 =
[

0.1 0 0.2
]

, C12 = 0;

Mode 2: A2 =









0.5 −0.6 0.7

1.2 2.4 −0.4

0.6 0.2 1.5









, B2 =









0.8

1

0.4









,

D2 =









0.2 0.1 0

0.2 0.1 0

0 0 0









, F2 =









0.1

0

0









, C21 =









0.2

0

0.3









T

C22 = 0.

The singular matrix E is given by

E =









1 0 0

0 0.4 0

0 0 0









In order to compare the results obtained in this paper
with results in (Wu and Daniel, 2010), it is assumed that
π11 = −0.5. Then based on different values of π22, the
corresponding minimum values of γ will be calculated.
Table 1 presents the comparison of the minimum γ, for
different π22, between results using Theorem 3 in this
paper and Theorem 4 in (Wu and Daniel, 2010). It is
clear that the results obtained in this paper improve
the results given in (Xu and Lam, 2006) even when the
constraint of EBi having full column rank is satisfied.

On the other hand, if it is chosen that γ = 0.114, A1 =








α −1 −1.2

1.3 1.6 1.1

0.6 0.8 −0.8









, π21 = β, 0 ≤ α ≤ 4, 0 ≤ β ≤ 4, and

the other parameters are unchanged in this example, in

Table 1
Comparisons of minimum allowed γ with π11 = −0.5.

π22 −0.2 −0.3 −0.4 −0.5 −0.6 −1

a 0.2291 0.2293 0.2295 0.2296 0.2298 0.2302

b 0.0954 0.0957 0.0960 0.0962 0.0964 0.0968

Row a: The minimum γ from Theorem 4 of (Wu and Daniel,
2010)

Row b: The minimum γ from Theorem 3 in this paper

Figure 5, “ o ” represents the range of feasible solutions
using Theorem 3 in this paper, and “ * ” represents the
range of the feasible solutions using Theorem 4 of (Wu
and Daniel, 2010). This demonstrates that the method
obtained in this paper has certain advantages in some
cases.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 6. Comparison of the feasible region

6 Conclusions

In this paper, SMC laws have been designed for a class
of SSMJSs in the presence of uncertainties. A suitable
integral-type sliding surface is designed such that the
resulting sliding mode dynamics is stochastically admis-
sible. Investigation of stochastic MJSs is considered as
well using sliding mode techniques such that the corre-
sponding closed-loop systems are stochastically stable.
The conditions developed are easily testable and can be
regarded as complementary to the existing results avail-
able in the literature. Moreover, the effect of Markovian
switching has been overcome by the designed sliding
mode controller involving the transition rates of modes.
The application to several numerical examples shows the
practicability of the proposed method.
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