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Abstract: Horizontal oitwater twephase flows are frequently encountered in many industrial
processebut the understanding of tdgnamic behaviour underlying the different flow patterns
is still a challenge. In this study, we first conduct experimehhorizontal oitwater flows in

a small diameter pipe, and collect the fluctuation signals from conductance frobezilti-
scalepowerlaw correlations othe oil-water flow structures are investigated using Detrended
Fluctuation Analysis (DFA) basexh themagnitude and sign decompositiortlé raw signals.
The analysis reveals thecaling behaviour of different flow structurdeve conductive flow
patterns are indentifiedased orthe magnitude and sign scaling exponents at different time
scalesln addition, thetransfer entropy (TE) in a state space is used to study the information
transferring characteristicef the oilwater mixture flowing past a conductance cress
correlation velocity probe. The results of TE indicate that the transferring infornoiajo@mds

on the flow conditions and can be used to show changes in the flow patterns
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magnitude and sign correlations, transfer entropy

1. Introduction
Horizontal oitwater twephase flows are frequently encountered in oil well production
and oil transportation. The modelling of the floarameters in such flows greatly depends on

the multiscale flow structures and the slippage between the two phases. Thus, investigating the
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nonlinear dynamic characteristics of-wiaiter flow structures is of significance for improving
the accuracy of meaeement and predictioof the flow parameters

The flow structures forming during ewater flows can be complex. In early studies they
were directly observed via imaging (Russtlal, 1959; Hassoet al, 1970; Arirachakaraat
al., 1989). Notably, Triéero et al (1995, 1997) carried out experimgof oil-water flows in a
horizontal pipe with an inner diameter of 50.8 mm and defined six flow patterns, i.e., stratified
flow (ST), stratified flow with mixing at interface (ST&MI), dispersion of wateviirand water
flow (DO/W&W), dispersion of water in oil and oil in water flow (DW/O&DO/W), dispersion
of oil in water flow (DO/W) and dispersion of water in oil flow (DW/O). Angeli and Hewitt
(1998, 2000) studied eWater flows in both stainless steel autylic test sections using a high
frequency impedance proland indentified a new thrdayer pattern. Lovick and Angeli
(2004a) grouped all patterns where there are two continuous phases at the top and bottom of
the pipe butvith drops of one phase intbe otherto just one pattern nametial continuous
(DC) flow. Chakrabartet al (2005) observedaterkerosene flowpatterns of smooth stratified
(SS), strafied wavy (SW), three layer (TL), plu@) and oil dispersed in water and water
(DO/WW), andpredicted the pressure drop considering the energy minimization between the
two phaseszZhaiet al (2015) from experimesin an acrylic pipe with a small inner diameter
of 20 mm presented a new flow pattern map in which the ST&MI pattern is subdivided in
four groupsin general theil-water flow patterns are significantly affected by the inlet design,
fluid properties, pipe diameter and material, pipe inclinatiorpaesence of additivéBrauner,
2003; Rodriguez and Oliemans, 2006; Wegmann and Rudwif Rohr, 2006; Grasst al,
2008; AFWahaibiet al, 2013; Ibarreet al, 2014; Abubakaet al, 2015. The variety and
complexityof theflow structuregpresengreat challengefr theiranalysisand prediction

In stratified flows theinstability of the oil-water interface is associated with the flow
pattern transitionSeveral studies have been carried out to investthateterfacial features.

Chakrabartet al (2007) designed a nantrusive optical probe tmvestigateoil-waterflows,



and used probabilitglensity function analysis and vaavelet multiresolution technique to
develop an indicatofor stratified flows. Barral and Angeli (2014) measured the wave
characteristicof stratified oitwater flows using wire conductance pes and investigated the
effects of flow conditions on the power spectrumtle# conductance signal. de Castro and
Rodriguez (2015)ound thatthe interfacial wavein stratified viscous oilvater flons could be
correlated usinthe Reynolds, Froude and Wardimensionless numberBhe interfacial wave
characteristics can be used in the -dimensional twefluid model (Edomwony+Otu and
Angeli, 2015; Liuet al, 2015; Picchet al,, 2015).

When dispersions occuthe local nonlinear dynamic characteristiege even more
complex. Lovick and Angeli (2004b) found that in dual continuous flows droplet concentration
and size decreased with increasing distance from theabdr interfaceKumaraet al. (2009,

2010) measured the local phase volume fraction alwtitae distribution in a 56 mm ID steel

pipe using a singlbundle gamma density meter and particle image velocimetry (PIV), and
found that the degree of mixing between the phases as well as the velocity and turbulence
profiles largely depend on the pipelination. Morganret al (2013) used lasdrased optical
diagnostic methods to measure droplet size, phase and velocity distributions in stratified and
dispersed liquidiquid flows, and found that the velocity profiles at the lower and upper parts
of the pipe correspond to those of laminar flow and turbulent flow respectiXiedy.et al

(2014) developed a parallel wire capacitance probe to measure theamasation velocity of
segregated and dispersedwdter flows in a horizontal pipe and indicated the dependence of
thecrosscorrelation velocity on the flow patterns.

Despite tle previous research efforts, the analysis ofnaiter flow patterns and their
transitions still presents significant challenges. Due to the interplay among many complex
factors such as turbulence, changable interfaces, and local relative movement lteéveen
phases, horizontal eiater flows exhibit highly irregular, and unsteady flow structures, which

give rise to dissipation, orderly and chaotic patterns. Thus, nonlinear analysis can be beneficial



for exploring the flow patterns and their transitions.

Nonlinear analysis methods of typhase flow systems have previously been studied by a
number of investigatorsléhnssoret al, 2006; van Ommeet al, 2011, particularly focusing
on state space analysis (van Omraeal., 2000;LIaur6 and Llop, 2006Caoet al, 2009; Zong
et al, 2010; Llopet al, 2012). In a recent papeve used an Adaptive Optimal Kernel Time
Frequency Representation (AOK TFR) to investigatdltve characteristic®f horizontal oit
water flows in terms of total energy and domirfaaquency (Zhaet al,, 2015). The AOK TFR,
however, fails to distinguish the dispersed flow pattednscause of theisimilarities in
frequency and total energy.

In this current study, for the characterization of the flow patterns we introduce a multi
sale nonlinear analysis method, which is widely usednalysis of physiologicalignals
(Ashkenazyet al, 2001) The longrange correlations of collected conductance signals are
investigated by decomposing the signal increment series into magnitudeyarserses and
extracting their scaling behaviodrinear and nonlinear properties underlying theveaiter
flows are revealed in terms of the magnitude and sign correlations. The obsewattoflow
patterns are identified using a combination of sgpkxponents of the magnitude and sign
serieslIn addition, transfer entropy analysis (Schreigteal, 2000) is used to uncover the flow
structure evolution of horizontal eiater flows based on the conductance signals collected

from a crosscorrelationvelocity probe.

2. Experiment set up and instrumentation

The experiments were carried out in the horizontawailer flow facility at Tianjin
University, shown in Fig. 1. The test fluids used are tap water and No. 15 industry white oil
with a viscosity 0fl1.984mPa-s. The densities of the oil and water phase$45 kg/mand
1000 kg/mi, respectively. Theoil-water interfacial tension is 0.035 N/niThe average
temperature at which the experimgnereperformedvas28°C . The experiments were carried

out by increasing the oil flow raté¢ a constant water flow rate. The water flow rate was then



increased to a next value and the procetaerepeated over thentire range of the oil flow
rates. The oil, Uso, and the water superficial velocitysy, varied from 0.106 to 2.579 m/s and
0.111 to 2.210 m/s, respectiveMeasurement range and accuracy of each oil flowmeter is
0.0050.8n/h with °0.5% (volumetric flowmeter), -2.4 ni/h with °1.5% (Roots type
flowmeter), 2.4-6m*h with °1% (turbine flowmeter), 22m¥h with °0.5% (turbine
flowmeter), and of each water flonmeter is 0.0018®.1767n/h with °0.35%
(electromagnetic flowmeter), D2.7m’/h with °0.25%(electromagnetic flowmeter2-9m/h

with °1% (Roots type flowmeter),-7m*h with °©0.35% (vortex flowmeter).
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Fig.1. Experimeral set up for horizontal civater twephase flows.

For each flow condition, thal and water phases are pumped from their respective storage
tanks and join at a-jlinction before enterinmto anacrylic section with 125 mm ID and 1.2 m
length. The mixtur¢hen enters into the 20 mm ID acrylic test section via a diverter. The probes
mounted on the test section include a ring conductance array probe, a conductance cross
correlation velocity probe and minonductance probes. Detailed dgstoons ofthe prolkes
can be found in Zhaat al. (2015).After the test sectigrthe mixture flows into a separation

tankwhere the two phases are left to sepa@tee the separator is full the experiments stop



and the two phases are returned to their respective stardge t

The measurement system of the ring conductance array wasbdescribed in detail in
Zhaiet al (2012. The response signals from the ring conductance array probe are collected by
channel 0 and 1 of an NI data acquisition card (PXI 4472). The LEBVsoftware (version
7.1) is used to configure the parameters of the data acquisition device, display and store the
sensor output signals. The signal sampling frequency is set at 2 kHz, and the sampling time is
30s. The measurement system of the conduaetarosscorrelation velocity probe is shown in
Fig. 2. The exciting electrodes &nd E are connected with a 20 kHz sinusoidal voltage signal,
while thesignal from themeasuring electrodes collected with I/V converting circuits. The
converted voltage signals are processed by a signal conditioning circuit consisting of a phase
sensitive demodulator, a lepassing filter and an amplifier. After that the signal conditioning

system outputs thepstream signal,, , and downstream signal at the same tim@.he

m,down
output signals othe conductance cros®rrelation probe are collected by channel 2 and 3 of
the NI data acquisition card. The signal sampling frequency is set at 6 kHz, and the sampling

timeis 30s.
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Fig.2. Measurement system of the conductance-casslation velocity probe.
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The fluctuation signals from the minonductance probes are used to indentify the flow

patterns, and the respective flow pattern rioayghe conditions studieid shown in Fig. 3. Six



flow patterns were observed in agreement with the fhattern classification proposed by
Trallero (1995). As was discussed by Zhai et al. (2015), the ST&MI is divided into four types.
In ST&MI flow of type | there are a few dropletsoand the oHwater interface. With further
increase of the oil and water flow rates, the number of the oil and water droplets gradually
increases, and this type of ST&MI flow is defined as type Il. ST&MI flow of type Il is
characterized by an eivater inerface with aggravated and complicated fluctuations at the
upper part of the pipe, while the drop entrainment is linked to the wavy interface. In ST&MI
flow of type IV the oil droplets disperse in the continuous water phase at the lower part of the

pipe,whereas few water droplets disperse in the continuous oil phase.
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Fig.3. Experimental flow pattern mégr thehorizontal oitwater twephase flows (Zhaét al, 2015).

3. Linear and nonlinear properties of oitwater flow structures

3.1 DFA algorithm

The Detrended Fluctuation Analysis (DFA) allows leagge correlations embedded in a
seemingly nosstationary time series to be detected. It also avoids the spurious detection of
apparent longange correlations that are an artefact of-astationariy (Penget al, 1995). In

the DFA algorithm, a time serieg(; with N data length is firstly integrated as:
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where S, . is the average of the time series. The integrated time series is then divided into
boxes of equal length In each box of length, a leastsquares liney, (k) is fitted to the data.
The integrated time serieg(y, is detrended by subtracting the local trepgk) in each box.

Thus, the roemeansquare fluctuationg () Is calculated:

F(n):&%[m L @

The above computation is repeated over all time scales (box size) to obtain the relationship
between g,y and n. If a linear relationship betweeg (y and n onadouble log graph

exist, the fluctuations can be characterized by a scaling expangin., the slope of the line
relating log=(y and log,. Values of 5 > 0.5 indicate the presence of positive correlation in

the time series,; = 0.5 indicateseitherthe absence @nycorrelation otthe presence of only
shortterm correlatios, andvalues of 5 <o.s indicate the presence af antcorrelation(Peng

et al, 1995; GomeZExtremereaet al.,, 2016).

3.2 Magnitude and sign DFA

The output fluctuation signal of a complex dynamic systam be characterized by it
magnitude (absolute value) and direction (sign). A given time series from a dynamic system
can be decomposed into magnitude and sign series such that their respective scaling properties
can be analyzed using DFA (Ashkenaty., 2001). In this study, the fluctuation signals from
the ring conductance array probe are decomposed into magnitude and sign series, and the DFA
algorithm is used to explore the midtale properties of the decomposed signals.

In the decomposition of éhoriginal signalss¢jy (Ashkenazyet al, 2001), the profile of
the increment series is first constructed @y -5 i 1 ). The increment series is then
decomposed into a magnitude serjpS()| and a sign serie$DS()] . If ps(jy -o0. the sign is

positive [DS(})] 4, if ps¢y <. the sign is negativg DS())] = %, while for psejy -o,



[DS(D] =0. Figure 4 shows the signals from the ring conductance array probe under different
flow patterns. As can be seen, the signals of ST flows have stable fluctuations, those of
DW/O&DO/W flow are very complex, and the signals of DW/O and DOAW$ have random
fluctuations in a very small range. Figure 5 shows the magnitude and sign series decomposed

from the ring conductance probe signal obtained during a DW/O&W flow.
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Fig.4. Fluctuation signals from the ring conductance probe under differenpatterns.
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Fig.5. Magnitude and sign series decomposed from the ring conductance probe signal.
Ashkenazyet al. (2001) proposed that the decomposed magnitude series carries the
nonlinear properties of the original time series, whilst the sign sexiates to the linear

properties. Specifically, positive correlations in the magnitude se4jgs>(.5) indicate the



nonlinearity of the original signals. In contrast, linear signals are characterized by an absence
of correlation @,,,=0.5) in the magnitudes series. decomposed sign series corgain
information about underlying dynamics, which is complementary and independent from the
original and magnitude series (Shayeganfar, 20R&3}itive correlation in the sign series

(a4, >0.5) indicatesthata linear property existin the original signals, whilst an uncorrelated

exponent in sign seriea( =0.5) suggests nonlinear properties.

3.3 Magnitude and sign correlations of different flow patterns

In this section we attempt to indentify the different horizontalaiter flow pattems by
investigating the magnitude and sign correlationthefring conductance array probe signals
The magnitude and sign DFA results of typical flow conditions are shown in Fig. 6 in which
DFA-2 (seconebrder polynomial fitting) is used (Het al, 2001 Zhaoet al, 2016). As can be
seen, the magnitude and sigh)-n planes present different scaling behavifaurrdifferent
flow patterns. Note that, as shown in Fig. 6(a), there is a distinct difference in the magnitude
Fm)-n Plane of ST and ST&MI flowgopen squaresyvhich probably can be used to indicate
flow pattern transitions between stratified and-statified flows.

The magnitude scaling exponentsalis ¢ n @ooc) and high (2 200) time scales are
respectively represented hy_ . and a!, . In Fig. 6(a) the scalg exponentsa !, of DO/W
flows (open circlespre obviously higher thain the other flow patterns, indicating the strong
nonlinearity of DO/W flowat long termsThe sign scaling exponent at high scale ¢oo) is
represented byg" . As shown in Fig. 6(b), the aling exponentsa® of ST flows indicate

sign sign

positive correlationga >0.5), whist the ones of other flow patterns indicate anticorrelations

sign

(al,<0.5) We conclude that the high values gf;  arise from the linear property of large

scale interface wagein ST flow, aad could be used to identifgtratified flows from

conductance probe signals.
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Fig. 6. Results of magnitude and sign DFA under typical flow conditions.
In addition, the scaling exponents , of all DW/O flows are calculated and their
average is1.049° o.03: indicating the similarity of DW/O flow withy, ¢+ noise (Pengt al,
1995). This result is in agreement with the nonconductive characteristics of DW/O flows.

Figure 7 shows the combined distribution of magnitude scaling expangptand sign

H
sign

scaling exponenta__ for thedifferent flow patternsfFor DO/W flowsthe magnitude scaling

exponenta,  ofis used as areplacement far_  in the vertical coordinate. Asan beseen,

H
sign

H
sign

the distribution ofa .. (or a

mag

) and a__ in the combined plane cdre usedd distinguish
five flow patterns of horizontal civater flows, i.e., ST, ST&MI, DW/O&DO/W, DO/W&W
and DO/W flows.

The combined scaling exponents of ST flows appear in zone A of Fighéfethe
magnitude scaling exponentg,,, change over a small range ahe sign scaling exponents
(0.7<a! <) show obvious positive correlations. This result is caused by the stable movement

sign
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of the oilwater interfacever a long time

For ST&MI flows, the combined scaling exponeafgpeain zone B. As can be seen, the
sign scalingexponents distribute in a much larger region, and mainly indésaisorrelations
(a;'gn <0.5) of large scale structures in ST&MI flow. This result agrees with the facthbat t
entrainment of droplets from the -eillater interfacencreases the nonlinearity the large scale
structure. In comparison with ST flows, the obvious nonlinearityraf oil-water interface in
ST&MI flow can also be characterized ke larger magnitude scaling exponents
(1.3<a,,, <.6).

For DW/O&DO/W flows(region C) the complicated droplelistribution and fluctuatios

of the interface result in weak linear characteristiaghefargescale structures. Thusesign

H
sign

scaling exponentsa_ . change between 0.1 and 0.3 suggesting anticorrelations. Meanwhile,
the magnitude scaling exponends,,, varybetween 1 and 1.3, indicating obvious leagge
correlations and nonlinear characteristics of this flow pattern.

For DO/W&W flows, the combined magnitude and sign scaling exponents distribute in
zones B and C, whicindicates that ajuasiinterface exigt as suggested in the literature
(Hadziabdic and Olieman2007) which makesthe DO/W&W pattern scaling exponest
similar to those of ST&MI and DW/O&DO/W flows.

For DO/W flows, the magnitude and sign scaling exponents distribute in zone D. The sign

H
sign

H
sign

scalingexponentsa <0.€) while the magnitude scaling

suggest antorrelations 0.2< a
exponers &, indicate positive correlations1(60<ay,, <1.97). This means that DO/W
flows show weak linear properties but obvious nonlinearity at long time saakshis result
is significantly depedent on the distribution of the dispersed oil droplets in the continuous

water phase.
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4. Nonlinear dynamic evolution characteristics of otwater flow structures

4.1 Transfer entropy

Schreiberet al (2000) proposedhe use oftransfer entropy (TE) to quantify the
information flow between two systems or between constituent subsystems of a complex system.
Recently, the transfer entropy has been usetksaribethe dynamis and uncover the casual
relationshipof information transfer iselected complex nonlinear systems|udingbiological,
climate and physical systa{Staniek and Lehnertz, 2008; Wang and Yu, 2012tlt., 2011;
Liang and Kleemar005).

In the calculation of transfer entropy (TE) (Schreiber, 2000), thedonensional time
series x =[x, x(2)...., x(\y] With n data length is firstly embedded into a state space with
a dimensiong and a delay timer . The reconstructed state space consists of a settef sta
vectors. Each state vector in thedimension space is represented by one coordinate point.
Hence, the ondimensional time series form a dynamic track in the state space, in whieh the
th state vector can be described as

X =[x, x(t 4), Xt 2 ..., qt (d 1)) (3)
wheret is a discrete value tim@dex. Meanwhile, another time series is also reconstructed

into a state space with the same embedded parameters, taitldl siste vector can be given as

13



Yo =[U0 Ut 4), (2§, f(t (d 1)) (4)

The calculation equation of the transferred@py can be given as

3 ap(ye [ %)
TE(X- V)= & WY ¥V, %‘)Ioggp , (5)
s @ Py )

whereu denotes the prediction time, i.e., a discrete value time interval, the arrow denotes the
direction of the transferring information, apalenotes the joint probability or the conditional
probability.
Equation (5 can be rewritten as a sum of four Shannon entropies according to
TE(X- V=8 %) -6x % X Sy Y () (6)
Thus, the problem amounts to computing this combination of different joint and marginal
differential entropies. A data efficient approach basetthenearest neighbours techniques and
the KraskoveStogbauerésrassbergeestimatoris used to calculate the Shannon differential
entropy (Kraskowet al, 2004; Vicenteet al, 2011). The estimator for the transfer entropy can
be written as
TE(X- V=y(B {Mn, B X9 . D+ ¢n.) (7)
where  is the number of the nearest neighbour in the neasghbours techniquesy,is the
number of the nearest neighbour along the direction 0f, («, is the digamma function, and
a1t Indicates an averaging over different time points.
For a Lorenz system described by—- (x y,y= xz = y z=xy -bz(lLOrenz,
1963), the THs calculatedetween system variablgsy andzwith s-10, b=sg/3and initial
value (1, 1, 1). Figure 8 shows the TE valterdifferent system variablemgainst thesystem
parameter which denotes Raylelgnumber. We can see that the TE analysis can effectively
indicate the information content and the direction (causality) of the transferring information in
alLorenz system. Spdmally, the transferring information betwerandy is dependent on the
value ofr andno remarkable causality is observed betwesamdy. The transferring information

from zto x is higher than that fromto z, indicating that is the information source amxds the
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information link, whilst the transferring information froyrto z is higher than that froratoy,

indicating thaty is the information source arzds the information link.
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Fig.8. TE between variables tiie Lorenz system with the variation of Rayleigh numbeirhe arrows

indicate the directions of theansferring information.

4.2 Transferring information of various oil-water flow structures

In this section, the TE of eWvater flowsis calculatedo highlight the nonlinear dynamic
evolution characteristics of the various flow structures. In the céloolaf the TE for the two
phase flows, the upstream electrodedvk of the crosscorrelation velocity probe are treated
as the information source, whildte downstream electrodes#, are the information link.
The fluctuation signals from the upstreaand downstream electrodes under typical flow
conditions are shown in Fig. 9. As can be seen, the upstream and downstream signals have
similar fluctuations, while the fluctuations of the downstream signal always follow those of the

upstream signal.
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Fig.9. Fluctuation signals from upstream and downstream electrodes of thearetation velocity probe
under typical flow conditions.

In the reconstruction of the state space for the-dimension signals, the embedded
dimension and the delay time are determined using the method of false nearest
neighbours (Abarbanel and Kennel, 1993) and the averaged mutual information method
(Liebert and Schuster, 1989), respectively. The values @nd  are both selected as 2. The
calculation results of TE ued different flow patterns are shown in Fig. 10.

When the water flow rate is low, as shown in Fig. 3, the flow patterns change from ST, to
ST&MI and then to DW/O flow with the oil flow rate increasing, and accordingly the TE in

Fig. 10(a) and 10(byecreass Specifically, the TE of ST flow is much higher, which is
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