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Abstract: Horizontal oil-water two-phase flows are frequently encountered in many industrial 

processes but the understanding of the dynamic behaviour underlying the different flow patterns 

is still a challenge. In this study, we first conduct experiments of horizontal oil-water flows in 

a small diameter pipe, and collect the fluctuation signals from conductance probes. The multi-

scale power-law correlations of the oil-water flow structures are investigated using Detrended 

Fluctuation Analysis (DFA) based on the magnitude and sign decomposition of the raw signals. 

The analysis reveals the scaling behaviour of different flow structures; five conductive flow 

patterns are indentified based on the magnitude and sign scaling exponents at different time 

scales. In addition, the transfer entropy (TE) in a state space is used to study the information 

transferring characteristics of the oil-water mixture flowing past a conductance cross-

correlation velocity probe. The results of TE indicate that the transferring information depends 

on the flow conditions and can be used to show changes in the flow patterns. 

Keywords: horizontal oil-water two-phase flow, flow pattern identification, flow structure, 

magnitude and sign correlations, transfer entropy 

1. Introduction 

Horizontal oil-water two-phase flows are frequently encountered in oil well production 

and oil transportation. The modelling of the flow parameters in such flows greatly depends on 

the multi-scale flow structures and the slippage between the two phases. Thus, investigating the 
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nonlinear dynamic characteristics of oil-water flow structures is of significance for improving 

the accuracy of measurement and prediction of the flow parameters. 

The flow structures forming during oil-water flows can be complex. In early studies they 

were directly observed via imaging (Russell et al., 1959; Hasson et al., 1970; Arirachakaran et 

al., 1989). Notably, Trallero et al. (1995, 1997) carried out experiments of oil-water flows in a 

horizontal pipe with an inner diameter of 50.8 mm and defined six flow patterns, i.e., stratified 

flow (ST), stratified flow with mixing at interface (ST&MI), dispersion of water in oil and water 

flow (DO/W&W), dispersion of water in oil and oil in water flow (DW/O&DO/W), dispersion 

of oil in water flow (DO/W) and dispersion of water in oil flow (DW/O). Angeli and Hewitt 

(1998, 2000) studied oil-water flows in both stainless steel and acrylic test sections using a high 

frequency impedance probe and indentified a new three-layer pattern. Lovick and Angeli 

(2004a) grouped all patterns where there are two continuous phases at the top and bottom of 

the pipe but with drops of one phase into the other to just one pattern named dual continuous 

(DC) flow. Chakrabarti et al. (2005) observed water-kerosene flow patterns of smooth stratified 

(SS), stratified wavy (SW), three layer (TL), plug (P) and oil dispersed in water and water 

(DO/WW), and predicted the pressure drop considering the energy minimization between the 

two phases. Zhai et al. (2015) from experiments in an acrylic pipe with a small inner diameter 

of 20 mm presented a new flow pattern map in which the ST&MI pattern is subdivided into 

four groups. In general the oil-water flow patterns are significantly affected by the inlet design, 

fluid properties, pipe diameter and material, pipe inclination and presence of additives (Brauner, 

2003; Rodriguez and Oliemans, 2006; Wegmann and Rudolf von Rohr, 2006; Grassi et al., 

2008; Al-Wahaibi et al., 2013; Ibarra et al., 2014; Abubakar et al., 2015). The variety and 

complexity of the flow structures present great challenges for their analysis and prediction. 

In stratified flows the instability of the oil-water interface is associated with the flow 

pattern transition. Several studies have been carried out to investigate the interfacial features. 

Chakrabarti et al. (2007) designed a non-intrusive optical probe to investigate oil-water flows, 
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and used probability density function analysis and a wavelet multiresolution technique to 

develop an indicator for stratified flows. Barral and Angeli (2014) measured the wave 

characteristics of stratified oil-water flows using wire conductance probes and investigated the 

effects of flow conditions on the power spectrum of the conductance signal. de Castro and 

Rodriguez (2015) found that the interfacial waves in stratified viscous oil-water flows could be 

correlated using the Reynolds, Froude and Weber dimensionless numbers. The interfacial wave 

characteristics can be used in the one-dimensional two-fluid model (Edomwonyi-Otu and 

Angeli, 2015; Liu et al., 2015; Picchi et al., 2015).  

When dispersions occur, the local nonlinear dynamic characteristics are even more 

complex. Lovick and Angeli (2004b) found that in dual continuous flows droplet concentration 

and size decreased with increasing distance from the oil-water interface. Kumara et al. (2009, 

2010) measured the local phase volume fraction and velocity distribution in a 56 mm ID steel 

pipe using a single-bundle gamma density meter and particle image velocimetry (PIV), and 

found that the degree of mixing between the phases as well as  the velocity and turbulence 

profiles largely depend on the pipe inclination. Morgan et al. (2013) used laser-based optical 

diagnostic methods to measure droplet size, phase and velocity distributions in stratified and 

dispersed liquid-liquid flows, and found that the velocity profiles at the lower and upper parts 

of the pipe correspond to those of laminar flow and turbulent flow respectively. Zhai et al. 

(2014) developed a parallel wire capacitance probe to measure the cross-correlation velocity of 

segregated and dispersed oil-water flows in a horizontal pipe and indicated the dependence of 

the cross-correlation velocity on the flow patterns.  

Despite the previous research efforts, the analysis of oil-water flow patterns and their 

transitions still presents significant challenges. Due to the interplay among many complex 

factors such as turbulence, changable interfaces, and local relative movement between the 

phases, horizontal oil-water flows exhibit highly irregular, and unsteady flow structures, which 

give rise to dissipation, orderly and chaotic patterns. Thus, nonlinear analysis can be beneficial 
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for exploring the flow patterns and their transitions. 

Nonlinear analysis methods of two-phase flow systems have previously been studied by a 

number of investigators (Johnsson et al., 2006; van Ommen et al., 2011), particularly focusing 

on state space analysis (van Ommen et al., 2000; Llauró and Llop, 2006; Cao et al., 2009; Zong 

et al., 2010; Llop et al., 2012). In a recent paper, we used an Adaptive Optimal Kernel Time-

Frequency Representation (AOK TFR) to investigate the flow characteristics of horizontal oil-

water flows in terms of total energy and dominant frequency (Zhai et al., 2015). The AOK TFR, 

however, fails to distinguish the dispersed flow patterns because of their similarities in 

frequency and total energy.  

In this current study, for the characterization of the flow patterns we introduce a multi-

scale nonlinear analysis method, which is widely used in analysis of physiological signals 

(Ashkenazy et al., 2001). The long-range correlations of collected conductance signals are 

investigated by decomposing the signal increment series into magnitude and sign series and 

extracting their scaling behaviour. Linear and nonlinear properties underlying the oil-water 

flows are revealed in terms of the magnitude and sign correlations. The observed oil-water flow 

patterns are identified using a combination of scaling exponents of the magnitude and sign 

series. In addition, transfer entropy analysis (Schreiber et al., 2000) is used to uncover the flow 

structure evolution of horizontal oil-water flows based on the conductance signals collected 

from a cross-correlation velocity probe. 

2. Experiment set up and instrumentation 

The experiments were carried out in the horizontal oil-water flow facility at Tianjin 

University, shown in Fig. 1. The test fluids used are tap water and No. 15 industry white oil 

with a viscosity of 11.984 mPa·s. The densities of the oil and water phases are 845 kg/m3 and 

1000 kg/m3, respectively. The oil-water interfacial tension is 0.035 N/m. The average 

temperature at which the experiments were performed was 28 o C . The experiments were carried 

out by increasing the oil flow rate at a constant water flow rate. The water flow rate was then 
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increased to a next value and the procedure was repeated over the entire range of the oil flow 

rates. The oil, Uso, and the water superficial velocity, Usw, varied from 0.106 to 2.579 m/s and 

0.111 to 2.210 m/s, respectively. Measurement range and accuracy of each oil flowmeter is 

0.005-0.8m3/h with 0.5%  (volumetric flowmeter), 0.1-2.4 m3/h with 1.5%  (Roots type 

flowmeter), 2.4-6m3/h with 1%  (turbine flowmeter), 5-22m3/h with 0.5%  (turbine 

flowmeter), and of each water flowmeter is 0.0018-0.1767m3/h with 0.35%  

(electromagnetic flowmeter), 0.1-2.7m3/h with 0.25% (electromagnetic flowmeter), 2-9m3/h 

with 1%  (Roots type flowmeter), 5-17m3/h with 0.35%  (vortex flowmeter).  

 

Fig.1. Experimental set up for horizontal oil-water two-phase flows. 

For each flow condition, the oil and water phases are pumped from their respective storage 

tanks and join at a T-junction before entering into an acrylic section with 125 mm ID and 1.2 m 

length. The mixture then enters into the 20 mm ID acrylic test section via a diverter. The probes 

mounted on the test section include a ring conductance array probe, a conductance cross-

correlation velocity probe and mini-conductance probes. Detailed descriptions of the probes 

can be found in Zhai et al. (2015). After the test section, the mixture flows into a separation 

tank where the two phases are left to separate. Once the separator is full the experiments stop 
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and the two phases are returned to their respective storage tanks.  

The measurement system of the ring conductance array probe was described in detail in 

Zhai et al. (2012). The response signals from the ring conductance array probe are collected by 

channel 0 and 1 of an NI data acquisition card (PXI 4472). The LABVIEW software (version 

7.1) is used to configure the parameters of the data acquisition device, display and store the 

sensor output signals. The signal sampling frequency is set at 2 kHz, and the sampling time is 

30s. The measurement system of the conductance cross-correlation velocity probe is shown in 

Fig. 2. The exciting electrodes E1 and E2 are connected with a 20 kHz sinusoidal voltage signal, 

while the signal from the measuring electrodes is collected with I/V converting circuits. The 

converted voltage signals are processed by a signal conditioning circuit consisting of a phase 

sensitive demodulator, a low-passing filter and an amplifier. After that the signal conditioning 

system outputs the upstream signal  and downstream signal  at the same time. The 

output signals of the conductance cross-correlation probe are collected by channel 2 and 3 of 

the NI data acquisition card. The signal sampling frequency is set at 6 kHz, and the sampling 

time is 30s.  

 

Fig.2. Measurement system of the conductance cross-correlation velocity probe. 

The fluctuation signals from the mini-conductance probes are used to indentify the flow 

patterns, and the respective flow pattern map for the conditions studied is shown in Fig. 3. Six 
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flow patterns were observed in agreement with the flow pattern classification proposed by 

Trallero (1995). As was discussed by Zhai et al. (2015), the ST&MI is divided into four types. 

In ST&MI flow of type I there are a few droplets around the oil-water interface. With further 

increase of the oil and water flow rates, the number of the oil and water droplets gradually 

increases, and this type of ST&MI flow is defined as type II. ST&MI flow of type III is 

characterized by an oil-water interface with aggravated and complicated fluctuations at the 

upper part of the pipe, while the drop entrainment is linked to the wavy interface. In ST&MI 

flow of type IV the oil droplets disperse in the continuous water phase at the lower part of the 

pipe, whereas few water droplets disperse in the continuous oil phase. 

        

Fig.3. Experimental flow pattern map for the horizontal oil-water two-phase flows (Zhai et al., 2015). 

3. Linear and nonlinear properties of oil-water flow structures 

3.1 DFA algorithm  

The Detrended Fluctuation Analysis (DFA) allows long-range correlations embedded in a 

seemingly non-stationary time series to be detected. It also avoids the spurious detection of 
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the DFA algorithm, a time series  with N data length is firstly integrated as: 

0.1 1

0.1

1

Qo (m
3
/day)

7060504030252015121086.44.43.62.88

Ⅲ Ⅱ

Ⅳ

Ⅰ

Uso (m/s)

U
s
w

 (
m

/s
)

 ST

 ST&MI

 DO/W&W

 DW/O&DO/W

 DO/W

 DW/O

3

4

5

6

8

10

15

20

30

40

50

60

Qw (m
3
/day)

( )S i



 

8 

1

( ) ( ( ) )
k

ave

i

y k S i S


                             (1) 

where  is the average of the time series. The integrated time series is then divided into 

boxes of equal length n. In each box of length n, a least-squares line  is fitted to the data. 

The integrated time series  is detrended by subtracting the local trend  in each box. 

Thus, the root-mean-square fluctuation  is calculated: 

                        (2) 

The above computation is repeated over all time scales (box size) to obtain the relationship 

between  and . If a linear relationship between  and  on a double log graph 
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. Figure 4 shows the signals from the ring conductance array probe under different 

flow patterns. As can be seen, the signals of ST flows have stable fluctuations, those of 

DW/O&DO/W flow are very complex, and the signals of DW/O and DO/W flows have random 

fluctuations in a very small range. Figure 5 shows the magnitude and sign series decomposed 

from the ring conductance probe signal obtained during a DW/O&W flow. 

 

Fig.4. Fluctuation signals from the ring conductance probe under different flow patterns. 

 

Fig.5. Magnitude and sign series decomposed from the ring conductance probe signal. 
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nonlinearity of the original signals. In contrast, linear signals are characterized by an absence 

of correlation ( ) in the magnitudes series. The decomposed sign series contains 

information about underlying dynamics, which is complementary and independent from the 

original and magnitude series (Shayeganfar, 2012). Positive correlation in the sign series 

( ) indicates that a linear property exists in the original signals, whilst an uncorrelated 

exponent in sign series ( ) suggests nonlinear properties. 

3.3 Magnitude and sign correlations of different flow patterns 

In this section we attempt to indentify the different horizontal oil-water flow patterns by 

investigating the magnitude and sign correlations of the ring conductance array probe signals. 

The magnitude and sign DFA results of typical flow conditions are shown in Fig. 6 in which 

DFA-2 (second-order polynomial fitting) is used (Hu et al., 2001; Zhao et al., 2016). As can be 

seen, the magnitude and sign  planes present different scaling behaviour for different 

flow patterns. Note that, as shown in Fig. 6(a), there is a distinct difference in the magnitude 

 plane of ST and ST&MI flows (open squares), which probably can be used to indicate 

flow pattern transitions between stratified and non-stratified flows. 

The magnitude scaling exponents at all ( ) and high ( ) time scales are 

respectively represented by  and . In Fig. 6(a) the scaling exponents  of DO/W 

flows (open circles) are obviously higher than in the other flow patterns, indicating the strong 

nonlinearity of DO/W flow at long terms. The sign scaling exponent at high scale ( ) is 

represented by . As shown in Fig. 6(b), the scaling exponents  of ST flows indicate 

positive correlations ( >0.5), whist the ones of other flow patterns indicate anticorrelations 

( <0.5). We conclude that the high values of  arise from the linear property of large-

scale interface waves in ST flow, and could be used to identify stratified flows from 

conductance probe signals. 
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Fig. 6. Results of magnitude and sign DFA under typical flow conditions. 
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of the oil-water interface over a long time. 

For ST&MI flows, the combined scaling exponents appear in zone B. As can be seen, the 

sign scaling exponents distribute in a much larger region, and mainly indicate anticorrelations 

( ) of large scale structures in ST&MI flow. This result agrees with the fact that the 

entrainment of droplets from the oil-water interface increases the nonlinearity of the large scale 

structures. In comparison with ST flows, the obvious nonlinearity of the oil-water interface in 

ST&MI flow can also be characterized by the larger magnitude scaling exponents 

( ). 

For DW/O&DO/W flows (region C), the complicated droplet distribution and fluctuations 

of the interface result in weak linear characteristics of the large-scale structures. Thus, the sign 

scaling exponents  change between 0.1 and 0.3 suggesting anticorrelations. Meanwhile, 

the magnitude scaling exponents  vary between 1 and 1.3, indicating obvious long-range 

correlations and nonlinear characteristics of this flow pattern. 

For DO/W&W flows, the combined magnitude and sign scaling exponents distribute in 

zones B and C, which indicates that a quasi interface exists as suggested in the literature 

(Hadziabdic and Oliemans, 2007) which makes the DO/W&W pattern scaling exponents 

similar to those of ST&MI and DW/O&DO/W flows. 

For DO/W flows, the magnitude and sign scaling exponents distribute in zone D. The sign 

scaling exponents  suggest anticorrelations ( ) while the magnitude scaling 

exponents  indicate positive correlations ( ). This means that DO/W 

flows show weak linear properties but obvious nonlinearity at long time scales, and this result 

is significantly dependent on the distribution of the dispersed oil droplets in the continuous 

water phase.  
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Fig.7. Combined distribution of the magnitude and sign scaling exponents for different flow patterns. 

4. Nonlinear dynamic evolution characteristics of oil-water flow structures 

4.1 Transfer entropy 

Schreiber et al. (2000) proposed the use of transfer entropy (TE) to quantify the 

information flow between two systems or between constituent subsystems of a complex system. 

Recently, the transfer entropy has been used to describe the dynamics and uncover the casual 

relationship of information transfer in selected complex nonlinear systems, including biological, 

climate and physical systems (Staniek and Lehnertz, 2008; Wang and Yu, 2012; Ito et al., 2011; 

Liang and Kleeman, 2005). 

In the calculation of transfer entropy (TE) (Schreiber, 2000), the one-dimensional time 

series  with  data length is firstly embedded into a state space with 

a dimension  and a delay time . The reconstructed state space consists of a set of state 

vectors. Each state vector in the -dimension space is represented by one coordinate point. 

Hence, the one-dimensional time series form a dynamic track in the state space, in which the t-

th state vector can be described as 

                 (3) 

where t is a discrete value time-index. Meanwhile, another time series  is also reconstructed 

into a state space with the same embedded parameters, and its t -th state vector can be given as 
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                   (4) 

The calculation equation of the transferred entropy can be given as 

          (5) 

where u denotes the prediction time, i.e., a discrete value time interval, the arrow denotes the 

direction of the transferring information, and p denotes the joint probability or the conditional 

probability.  

Equation (5) can be rewritten as a sum of four Shannon entropies according to 

         (6) 

Thus, the problem amounts to computing this combination of different joint and marginal 

differential entropies. A data efficient approach based on the nearest neighbours techniques and 

the Kraskove-Stögbauere-Grassberger estimator is used to calculate the Shannon differential 

entropy (Kraskov et al., 2004; Vicente et al., 2011). The estimator for the transfer entropy can 

be written as 

           (7) 

where  is the number of the nearest neighbour in the nearest-neighbours techniques, is the 

number of the nearest neighbour along the direction of ,  is the digamma function, and 

 indicates an averaging over different time points. 

For a Lorenz system described by , , (Lorenz, 

1963), the TE is calculated between system variables x, y and z with , and initial 

value (1, 1, 1). Figure 8 shows the TE values for different system variables against the system 

parameter r which denotes Rayleigh number. We can see that the TE analysis can effectively 

indicate the information content and the direction (causality) of the transferring information in 

a Lorenz system. Specifically, the transferring information between x and y is dependent on the 

value of r and no remarkable causality is observed between x and y. The transferring information 

from z to x is higher than that from x to z, indicating that z is the information source and x is the 
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information link, whilst the transferring information from y to z is higher than that from z to y, 

indicating that y is the information source and z is the information link. 

 

Fig.8. TE between variables of the Lorenz system with the variation of Rayleigh number r. The arrows 

indicate the directions of the transferring information. 

4.2 Transferring information of various oil-water flow structures 

In this section, the TE of oil-water flows is calculated to highlight the nonlinear dynamic 

evolution characteristics of the various flow structures. In the calculation of the TE for the two-

phase flows, the upstream electrodes E1-M1 of the cross-correlation velocity probe are treated 

as the information source, whilst the downstream electrodes E2-M2 are the information link. 

The fluctuation signals from the upstream and downstream electrodes under typical flow 

conditions are shown in Fig. 9. As can be seen, the upstream and downstream signals have 

similar fluctuations, while the fluctuations of the downstream signal always follow those of the 

upstream signal. 
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Fig.9. Fluctuation signals from upstream and downstream electrodes of the cross-correlation velocity probe 

under typical flow conditions. 

In the reconstruction of the state space for the one-dimension signals, the embedded 

dimension  and the delay time  are determined using the method of false nearest 

neighbours (Abarbanel and Kennel, 1993) and the averaged mutual information method 

(Liebert and Schuster, 1989), respectively. The values of  and  are both selected as 2. The 

calculation results of TE under different flow patterns are shown in Fig. 10. 
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consistent with the fact that ST flow is characterized by a stable interface with large wave 

lengths, which results in substantial information transferred from upstream to downstream 

locations. In ST&MI there is an entrainment of oil and water droplets around the interface which 

reduces the information transfer to downstream positions. This result indicates that TE could 

be used to identify the transition from ST flow to ST&MI flow. With further increase of the oil 

flow rate, the water phase disperses in the continuous oil phase in DW/O flows. The signals 

from the upstream and downstream electrodes indicate the characteristics of random noise due 

to the non-conductive flow. Thus, almost no information transfers from upstream to 

downstream, and the value of TE is low. 

When the water flow rate changes from 5 to 15m3/day, as shown in Fig. 3, the flow patterns 

changes from ST&MI flow to DO/W&DO/W flow and then to DW/O flow with increasing oil 

flow rate. As can be seen in Fig. 10(c) and 10(d), TE gradually reduces with increasing oil flow 

rate within ST&MI flows and suddenly increases when the DW/O&DO/W flow pattern occurs. 

This result indicates the differences between the segregated and the semi-dispersed flows. 

These can be compared against the transition criteria such as the one proposed by Torres-

Monzón (2006) for the boundary between ST&MI and DW/O&DO/W flows. Interestingly, in 

Fig. 10(c), 10(d) and 10(e), the TE of DW/O&DO/W flow increases first and then decreases. 

This behaviour may be attributed to the fluctuation characteristics and the location of the oil-

water interface. Specifically, when the oil flow rate is not very high, as shown in Fig. 11(a), 

there exists an unstable layer of oil-in-water and water-in-oil regions between two continuous 

phases. In this case, the large scale motion of the unstable layer in DW/O&DO/W dominates 

the information transmission and results in larger information content transferring from 

upstream to downstream. With the further increase in the oil flow rate, as shown in Fig. 11(b) 

and 11(c), the oil-water interface is very close to the bottom of the pipe and the water forms a 

thin layer, indicating the flow pattern transition from DW/O&DO/W to DW/O. In this case, the 

signal fluctuations of DW/O&DO/W flows are very similar to those of DW/O flows, which 
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leads to a decrease of TE. 

For DO/W&W flows, as shown in Fig. 10(e), the TE shows a decreasing tendency as the 

oil flow rate increases, indicating a similar information transfer characteristics to ST&MI flows. 

This result is probably caused by the quasi segregated nature of DO/W&W flows and is 

consistent with the scaling exponent distribution of DO/W&W flows in Fig. 7.  

At high water flow rate, the flow patterns change from DO/W to DW/O&DO/W with 

increasing oil flow rate. These patterns are characterised by random motions of the dispersed 

droplets and have homogeneous flow characteristics. In these patterns it is expected that similar 

flow structures pass the upstream and downstream electrodes. Accordingly, as shown in Fig. 

10(f), the transferring information is high and does not change with increasing oil flow rate.  
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Fig.10. Evolution characteristics of oil-water two-phase flow structures based on transfer entropy.  
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Fig.11. Signals from the mini-conductance probes under typical DW/O&DO/W flows. The letter P denotes 

the probes. Eight probes are fixed at equal distances in the pipe along the center line of the pipe cross-section. 

The low and high voltage levels in the signals represent the appearance of the nonconductive oil phase and 

the conductive water phase, respectively. (a) The signal fluctuations of probe 3 to probe 6 indicate an unstable 
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layer of oil-in-water and water-in-oil regions; (b) (c) Probe 1 to probe 7 are immersed in an water-in-oil 

region, whilst probe 8 is immersed in an oil-in-water region. Note that probe 3 and probe 4 indicate complex 

distributions of water droplets in the continuous oil phase.  

5. Conclusions 

There are obvious multi-scale characteristics in the horizontal oil-water two-phase flow 

structures, such as the interface fluctuations and the motion of the dispersed droplets. In this 

study, magnitude and sign Detrended Fluctuation Analysis (DFA) is used to uncover the 

nonlinear characteristics of the multi-scale flow structures. The magnitude and sign scaling 

exponents at different time scales are combined to distinguish the various flow patterns. The 

results of magnitude and sign DFA show a considerable potential in characterizing the multi-

scale dynamic behaviour underlying the complex oil-water two-phase flow systems. 

When the oil-water phases flow past a cross-correlation velocity probe, the information of 

the flow structures can be transferred from the upstream to downstream electrodes. The transfer 

entropy (TE) is calculated in a state space to indicate the information content of the flow 

structures transferring from upstream to downstream. The results indicate that TE can 

effectively reveal the dynamic evolution characteristics of the horizontal oil-water flow 

structures. It was also found that TE could indicate flow pattern transitions. 

The DFA and the TE analysis carried out in this study were based on the fluctuating signals 

collected from conductance sensors. In future work we plan to use distributed multiple sensors 

to explore local flow structures and to enhance the application of DFA and TE in the study of 

the dynamics underlying complex flow systems. 
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