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SUMMARY

Balancing the quantity and quality of dietary protein
relative to other nutrients is a key determinant of
evolutionary fitness. A theoretical framework for
defining a balanced diet would both reduce the enor-
mous workload to optimize diets empirically and
represent a breakthrough toward tailoring diets to
the needs of consumers. Here, we report a simple
and powerful in silico technique that uses the
genome information of an organism to define its
dietary amino acid requirements. We show for the
fruit fly Drosophila melanogaster that such ‘‘exome-
matched’’ diets are more satiating, enhance growth,
and increase reproduction relative to non-matched
diets. Thus, early life fitness traits can be enhanced
at low levelsof dietary aminoacids that donot impose
a cost to lifespan. Exome matching also enhanced
mouse growth, indicating that it can be applied to
other organisms whose genome sequence is known.

INTRODUCTION

Diets should ideally match the nutritional needs of their con-

sumers for important life history traits such as growth, reproduc-

tion, and lifespan. However, quantifying a balanced diet is chal-

lenging given the large numbers of nutrients involved. Among the

major macronutrients, the proportion of protein is especially

important, since relatively high levels that are important to sus-

tain early life fitness can also incur a heavy cost to lifespan (Le

Couteur et al., 2016; Soultoukis and Partridge, 2016). Thus, es-

tablishing protein balance is critical for understanding how diets

can be used to enhance lifelong health.
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Many organisms possess mechanisms to prioritize and main-

tain protein intake to a narrow range of values that are higher

than those optimal for longer-term health (Simpson and Rauben-

heimer, 2012). For example, when protein is relatively low in the

diet, total food intake is elevated to maintain protein intake,

causing overconsumption of other nutrients (Simpson and

Raubenheimer, 2005), a situation thought to contribute to

obesity. By contrast, when dietary protein content is high, total

food consumption is curbed such that energy may be undercon-

sumed—a formulation effectively exploited for weight loss, but

also associated with shortened lifespan in insects, mice (Le Cou-

teur et al., 2016; Lee et al., 2008; Solon-Biet et al., 2014), and hu-

mans (Levine et al., 2014). Thus, our evolutionary histories drive

consumption of imbalanced foods in amanner that is associated

with poor long-term health outcomes.

Investigations into why these trade-offs exist, and how they

might be reduced, form an intense area of research into how di-

etary restriction (DR) extends healthy lifespan (Piper and Bartke,

2008). A long-held idea, derived from life history theory, is that

DR improves lifespan by redirecting limiting resources away

from reproduction toward somatic maintenance (Kirkwood,

1977; Williams, 1966). However, supplementing the DR diet

with methionine (M) in flies can improve reproduction without

any cost to lifespan (Dick et al., 2011; Grandison et al., 2009).

Thus, enhancing dietary protein quality can increase early life

fitness without compromising lifespan. However, understanding

how to optimize dietary amino acid (AA) content is not trivial as it

represents a 20-dimensional balancing problem. Whereas a

theoretical framework is now established (Simpson and Rauben-

heimer, 2012), a quantitative, evidence-based approach to

optimal dietary balance design that does not rely on empirical

data has so far proved elusive. The discovery of such a definition

for major dietary components would be transformative: diets

could be designed to match the requirements of the consumer

without the need for lengthy trials. Here we report such a theory

for dietary AA balance.
(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. ‘‘Exome Matching’’ to Design Dietary AA Ratios

(A) Computationally, we assembled the proportional representation of each amino acid (AA) in each of D. melanogaster’s 19,736 genes. From these, the mean

proportional representation of each AA for all genes was determined. This ‘‘exome-matched’’ proportion is that in FLYAA.

(B) Comparison of the relative abundance of each AA profile in this study: MM1AA (mismatch1 AA), FLYAA, MM2AA (mismatch2 AA), and YAA (yeast AA). The ten

EAAs are listed first, followed by the non-essentials (gray text).
RESULTS AND DISCUSSION

In Silico Translation of the Drosophila Exome to Define
Dietary AA Proportions
Wehypothesized that the requirement of an animal for each AA is

encoded by its genome. Using the Drosophila melanogaster

genome, we translated in silico its 19,736 predicted protein-cod-

ing genes and derived the proportional representation of the 20

AAs (Figure 1A). This fly ‘‘exome-matched’’ AA ratio (FLYAA)

was substantially different from an AA proportion previously

referred to as HUNTAA during the development of a holidic

diet (Hunt, 1970; Piper et al., 2014), referred to here as MM1AA

(mismatched1 AA) (Figure 1B).

Exome-Matched Diets Alter Feeding Behavior
We tested if the matched diet (FLYAA) was perceived by flies as

preferable to MM1AA. In a two-diet choice assay, in which the

foods on offer were identical except that the ratio, but not the to-

tal mass, of AAs differed, female flies pretreated on AA-deficient
food spent more time on FLYAA than MM1AA (Figure 2A). To

assess if this preference was specific to the MM1AA versus

FLYAA choice, we designed another ratio (MM2AA) that was

equally mismatched to the fly exome translation as MM1AA,

but with a different proportion of all 20 AAs (Figure 1B). Again,

flies preferred FLYAA over MM2AA (Figure 2A). Interestingly,

the flies exhibited no preference for MM1AA or MM2AA. These

data indicate that in recovering from AA deficiency, flies that

selected a food were not exhibiting indiscriminate food neophilia

(Rozin, 1967), but instead specifically detected and chose the

matched AA ratio over MM.

To assess the appetitive values of each ratio, we pre-fed all

flies on a yeast-based diet and then measured their food intake

when restricted to holidic media containing each of the three AA

ratios. By pre-feeding a nutritious diet different from any of the

test diets, we ensured that subsequent feeding decisions were

neither biased by previous experience of the holidic medium,

nor redressing a gross nutritional deficit. Using the automated

fly feeding monitor flyPAD (Itskov et al., 2014) to track
Cell Metabolism 25, 610–621, March 7, 2017 611



Figure 2. Effect of AA Ratio on Drosophila Feeding

(A) Flies pre-starved for AAs were offered two diets differing only in the AA ratio (total mass fixed at 21.4 g/L). Flies preferred thematched ratio (FLYAA) over either

MM1AA or MM2AA (p < 0.03 in all trials). No preference was observed when the choice was MM1AA versus MM2AA (p > 0.29 in 8 trials, p = 0.02 in 1 trial) (nine

independent trials for MM1AA versus MM2AA, five independent trials each for FLYAA versus MM1AA and FLYAA versus MM2AA; chi-square test; 40 flies

per assay).

(B) After pre-feeding on a yeast-based diet, food intake of holidic mediumwas assessed using flyPAD. Flies on FLYAA ate significantly more (p = 0.03) than those

on MM1AA, but not MM2AA (p = 0.06). After outlier (gray data points) removal, comparison of FLYAA versus MM2AA became significant (p = 0.02), while

confidence in the difference between FLYAA and MM2AA increased (p = 0.01), indicating FLYAA has greater appetitive value than the MM diets (32 individually

housed flies monitored per treatment; Wilcoxon rank-sum test and Tukey’s test for outlier detection).

(C) Yeast intake was assessed using flyPAD after flies were pretreated on the indicated diets. Flies pretreated with either MM diet ate more than those pretreated

with FLYAA or a yeast-based diet (p < 0.001 for all comparisons), indicating that FLYAA is more satiating than either MMdiet (two independent trials with between

22 and 30 individually monitored flies per food type; linear model with trial and dietary pretreatment as fixed effects).

(D) The preference of flies for yeast (higher yeast preference index, YPI) or sugar (lower YPI) was scored after pretreatment on each of the four diets indicated.

FLYAA reduced YPI as effectively as yeast, andmore so than either MMdiet (20 independent trials for all conditions except 19 for yeast pretreatment; Dunn’s test

for pairwise comparisons; *p < 0.05; N.S., not significant). See also Figure S1.
consumption for 1 hr, flies on FLYAA ate significantly more than

those on MM1AA, and also weakly exceeded consumption on

MM2AA (p = 0.06 down to 0.02 after outlier removal; Figure 2B).

MM1AA consumption did not differ from MM2AA. FLYAA thus

had a higher appetitive value than either MM ratio. The rapidity

with which this behavior appeared shows that decisions about

food consumption precede any possible changes in egg laying

(see below). Thus, consistent with Corrales-Carvajal et al.

(2016) and Walker et al. (2015), the internal nutritional state of

the fly sets egg laying and feeding decisions in parallel, rather

than in series.

Flies are thought to derive their protein from microbes, in

particular yeasts, on decaying fruit (Markow, 2015). We as-

sessed the potency of each of our AA ratios to affect yeast con-

sumption using two different assays that have been used to infer
612 Cell Metabolism 25, 610–621, March 7, 2017
satiety (Itskov et al., 2014; Ribeiro and Dickson, 2010). For both,

flies were pre-fed one of the three AA ratios, and their yeast

feeding was then assessed in either a no choice (using flyPAD;

Figure 2C) or sugar/yeast (SY) choice situation (Ribeiro andDick-

son, 2010; Figure 2D). In both assays, flies pre-fed the yeast-

based diet or FLYAA ate less yeast than those pre-fed MM1AA

or MM2AA (Figures 2C and 2D). Because we measured con-

sumption of a common protein source (yeast) in the assays,

these results indicate that yeast consumption specifically re-

sponds to AA status. Furthermore, the exome-matched diet

was apparently an effective substitute for the natural proportion

of AAs found in their ecologically relevant context (i.e., yeast)

because pretreatment with FLYAA or a yeast-based diet

suppressed yeast intake to the same extent (Figures 2C and

2D). Finally, the two MM diets were similarly ineffective at



suppressing yeast appetite (Figures 2C and 2D), indicating that

their degree of mismatch, and not the relative abundance of

any one AA, was critical for informing the flies’ perception of pro-

tein quality.

Finally, we assayed food consumption when flies were main-

tained on the same diet as their pretreatment. During a 1 hr

period in flyPAD, flies maintained on FLYAA ate significantly

less (�20%) than those maintained on MM1AA (Figure S1).

Thus, the net effect of the enhanced phagostimulatory properties

and enhanced satiety value of FLYAA was a small reduction in

steady-state feeding relative to flies maintained on MM1AA.

Egg Production Is Quantitatively Predictable Using
Exome Matching
Next, we assessed the physiological value of each of the AA ra-

tios for egg production. In previous work, we found that the egg

laying of flies feeding on a yeast-based diet is limited by the

essential AA (EAA) M (Grandison et al., 2009). If this reflects a

stoichiometric limitation, then it should be predictable by the

most underrepresented AA in the food when compared with

the in silico-translated exome. We focused on the EAAs and

conditionally EAAs (see Experimental Procedures) because all

others can be acquired by de novo synthesis. More formally,

we propose Drosophila egg production should be limited by

the EAA with value r, where

r =mini di=pi; (Equation 1)

for EAA i, mini is the minimum, and di and pi are the relative con-

centration in the diet and translated exome, respectively.

In line with the experimental data, taking the AA content of

yeast (Grandison et al., 2009), we thus identifiedM as the limiting

EAA (Figure 3A). Using the same technique for MM1AA, we

identified arginine (R), which is essential for flies (Hinton, 1956),

as limiting (Figure 3A).

We confirmed this prediction of R limitation for egg laying

experimentally. Increasing or reducing R concentration alone

in the defined medium caused egg production to increase or

decrease to the same extent as when all AAs were altered

by the same amount (Figures 3B and S2A) and no other EAA

produced these responses. Interestingly, increasing R by half

yielded a quantitatively matched proportional increase in egg

laying, but with higher levels of supplementation, egg laying

only increased by �1.73 (Figure 3C). This attenuated response

could be explained by exome matching, which quantitatively

predicted this limitation by the next most limiting EAA in the

diet (M). Furthermore, the same calculations and tests for

MM2AA correctly identified isoleucine (I) as limiting and pre-

dicted the proportional change in egg laying from I addition until

the limit imposed by the next most restrictive AA (tryptophan, W)

at 1.613 I addition (Figure 3D). Together, these data indicate that

Drosophila egg laying is quantitatively governed by a limiting

EAA in the diet, which can be identified by exome matching.

Since egg production is constrained by the most limiting EAA

in the diet, all others are consumed in excess and must be

excreted, in flies largely as uric acid. Thus, the degree of AA

mismatch in a diet should be reflected in uric acid production.

We measured uric acid produced by flies after exposure to the

three AA ratios and found that those consuming MM diets had
equal amounts of uric acid, both significantly higher than flies

that consumed FLYAA (Figure S2B).

In Equation 1 above, because r will predict the limiting EAA for

egg laying on the current diet (diet 1), the proportional change

in egg laying when flies feed on a diet with a different AA ratio

(diet 2) should also be predictable according to r1/r2. We found

that exome matching predicted egg-laying outcomes for flies

on a range of concentrations of five different AA ratios (Figures

3E and 3F). In each case, both the identity of the most limiting

AA and the concentration of all predicted non-limiting AAs

were varied (Figure 3E), indicating that the most limiting EAA,

and no other AA in the mixtures, determined egg-laying output.

At intermediate and higher egg-laying rates, the data plateaued

at a level that was less than predicted. This level of egg laying at

the plateau corresponds to the maximum obtainable on our

optimal SY diet (2SY), indicating that at this rate of egg laying,

some other factor unrelated to nutritional ratios limits egg output

(Figures 3F and 3G). Up to this threshold, exome matching pre-

dicts the identity of themost limiting EAA and the extent to which

it modifies egg laying.

We found it remarkable that exome information that was

unweighted by transcriptome or proteome information could

accurately predict egg laying. We therefore assessed the effect

of a diet with AA proportions according to a published prote-

omics-derived measurement of Drosophila body composition

(PROTEOMEAA; Figure S2C; Sury et al., 2010). Over a range of

AA concentrations, the two diets had statistically indistinguish-

able effects, indicating that within the sensitivity of our assay,

accounting for gene expression differences did not improve

the accuracy of exome matching for egg laying (Figure S2D).

The failure of proteomics-based prediction to improve on that

from exome matching could have several explanations. On the

technical side, experimental determination of the proteome is

semi-quantitative and can be biased, while on the biological

side, measurements based on the whole fly proteome may not

detect the specific requirements for egg laying. For instance,

exome matching could be accurate because the genes tran-

scribed in the ovary use AAs in a ratio that is peculiarly repre-

sentative of the whole genome. To assess this, we ranked all

in silico-translated genes on the basis of how similar their pre-

dicted AA usage is to the average for thewhole translated exome

(Figure 4A). This revealed that the average ranking of the ovarian-

expressed transcripts (Chintapalli et al., 2007) was smaller than

expected by chance when compared with randomly selected

gene lists of the same size (p = 0.09, Catmap; Breslin et al.,

2004; Figure 4B). All other tissue gene sets were less similar to

the whole genome. Thus, the ovarian transcriptome may have

been constrained toward encoding AAs in the proportions

required to maximize future biomass production. This could

be particularly important within the confines of an egg, where

nutrient and waste exchange with the environment is not

possible and thus a balanced AA ratio facilitates development

while minimizing the danger of toxicity from accumulated nitro-

gen catabolites.

An Exome-Matched Diet Enhances Fly Growth
To test if exome matching is also relevant for growth, we reared

Drosophila larvae on a variety of AA ratios and measured egg to

adult development time. Development on the holidic medium is
Cell Metabolism 25, 610–621, March 7, 2017 613



Figure 3. Exome Matching Provides a Quantitative Assessment of Dietary AA Limitations
(A) Comparing the relative proportion of dietary essential AAs (EAAs; y axes) to that from in silico exome translation (x axis) reveals the most underrepresented,

and thus restricting (r), EAA in the diet (red point; M in graph left of panel andR to the right). If diet and translated exomewere perfectly matched, all points would lie

along the black line with slope = 1. Calculations are based on EAAs (dark gray points) and conditionally EAAs (mid-gray points) because undersupply of C or Y

reduces M or F, respectively. For MM1AA, reducing M to supplement C did not surpass the limitation by R. Non-essentials (light gray points) can be generated

de novo.

(B) Increasing or decreasing R concentration inMM1AAproduced a proportionally matched change in egg laying. This was not the case for another EAA, lysine (K)

(three trials; different letters represent significant differences, p < 0.05, Wilcoxon rank-sum test; five replicate vials per treatment per trial).

(C) Egg laying (green bars) increased in proportion to R addition up to�1.73, but not higher. Gray bars show egg-laying prediction if only constrained by R. Red

bars show the prediction from exome matching that M becomes a limiting AA at 1.713 R addition (representative of two trials; ten replicate vials per treatment

per trial).

(D) Adding isoleucine (I) to MM2AA increased egg laying (blue bars) in agreement with exome-matching prediction. Exome matching (red bars) predicts that W

becomes limiting at 1.613 I addition (representative of two trials; ten replicate vials per treatment).

(E) Five different dietary AA ratios and their relative AA proportions plotted against the proportions from exomematching. Predicted restricting EAA (r) highlighted

in red. The slope of the red line through r can be used to calculate the egg-laying differences between AA ratios (only EAA shown for clarity).

(F) Observed versus exome-matched predictions for egg laying on several concentrations of AA ratios shown in (E) (symbol colors matched between panels).

Black diagonal line shows observations = prediction. Egg laying plateaued at intermediate and high levels corresponding to the maximum egg laying attained on

concentrated yeast-based food (2SY; average shown by red data point adjacent to y axis ± SE; red shaded area).

(G) Observed and expected egg laying for three concentrations of MM1AA, MM2AA, and FLYAA. Egg laying increased similarly with each total AA mass

increment, but output was higher on FLYAA than either MM ratio for any given mass of AA (effect of AA ratio on egg laying, p < 0.0001; effect of AA mass,

p < 0.0001; p = 0.63 for interaction; generalized linear model). Egg laying plateaued at the level of rich, yeast-based food (2SY; 10.7 g, FLYAA versus 2SY, p = 0.5;

21.4 g, FLYAA versus 2SY, p = 1;Wilcoxon rank-sum test) (2–16 trials per condition; 10 replicate vials per condition per trial). See also Figure S2. All observed egg

laying data reported as mean ± SE.
delayed when compared with SY food due to limitation for

some unknown factor that is not related to the AA ratio (Piper

et al., 2014). It is possible, however, to establish conditions in

which growth is AA limited. Within this range, we again found

that the exome-matched FLYAA ratio was superior to MM1AA,

MM2AA, and a ratio based on the flies’ natural food source,

yeast (YAA; Figure 1B) and was again no different from

PROTEOMEAA (Figure 5A).

We found that themajordelay todevelopmentbetween ratiosat

10.7 g total AAmasswas caused by lengthening of the third instar
614 Cell Metabolism 25, 610–621, March 7, 2017
phase (Figure 5B). Nutrient-mediated delay in pupariation can be

attributed to a combination of reduced systemic insulin/IGF-like

signaling and lowered TOR signaling in the fat body and protho-

racic gland (Layalle et al., 2008). These combine to reduce growth

rate and delay the ecdysone peak that triggers pupariation, thus

extending the duration of the third instar stage to allow for some

degree of compensatory growth. Indeed, we found that the 4e-

BP protein, whose transcription is elevated with decreased IIS

(J€unger et al., 2003) and TOR (B€ulow et al., 2010), was lower in

FLYAA-reared larvae than those on MMAA diets (Figures 5C



Figure 4. Ovarian-Expressed Genes Use AA

in a Pattern Similar to that of the Whole

Exome Average

(A) In silico-translated genes were ranked (x axis)

from least to most similar based on how their AA

usage represented that of the whole exome

average (y axis).

(B) The average rank of ovarian-expressed genes

was lower than any other tissue, and was some-

what smaller than expected by chance (p = 0.09,

Catmap), indicating the ovary uniquely uses AAs in

a manner representative of the exome average.
and S3A), but the proportion of phosphorylated protein was not.

We also found no differences in the amount or proportion phos-

phorylated for S6k (data not shown). The effect on total 4e-BP

levels rather than phosphorylation status of either protein indi-

cates a longer-term response to the higher nutritional value of

FLYAA. We also found that at low AA concentrations, FLYAA

significantly increased the proportion of larvae surviving to adult-

hood over that in MM1AA, MM2AA, and YAA, as well as the body

mass andadultwing sizeof both adultmales and females (Figures

S3B–S3E). Thus, FLYAA improved several aspects of develop-

ment by providing a more nutritious substrate, even improving

on a ratio modeled on the flies’ natural food source.

Exome Matching Improves Dietary AA Ratios for Mouse
Growth
In the food industry, there are economic and environmental

benefits from improving the efficiency of biomass production

(Millward et al., 2008). To assess the potential utility of exome

matching for mammals, we searched the literature for examples

of rodent diets that had been designed to be AA limiting and for

which the identity of the limiting EAA had been verified experi-

mentally. In each instance, exome matching successfully identi-

fied the growth-limiting AA: R for rats fed an R-limiting diet

(Rogers and Harper, 1965), threonine (T) for rats fed the T-basal

diet in Koehnle et al. (2003), L for rats fed the L-basal diet in Hao

et al. (2005), and M for mice fed the 0.15% M diet in Miller et al.

(2005) (Figure S4).

To test the ability of exome matching to enhance mouse

growth under protein-limiting conditions, we designed iso-ener-

getic diets containing a constant mass of purified AAs whose

ratio was varied (Figure S5A). To ensure all treatment groups

had equal AA intake, meal sizes were standardized across treat-

ments to a mass that was entirely consumed before the next

meal. Under these conditions, purified AAs supplied in the pro-

portion found in casein (CASEINAA), the normal source of protein

in mouse chow, supported growth just as well as whole protein

(Figure S5B). During the initial linear growth phase (weeks

3–6.5), increasing CASEINAA concentration from 6% to 8% (by

33%) caused an �40% increase in growth rate (Figure S5C).

When we modified the AA proportion from CASEINAA to that

of the translated mouse exome (MOUSEAA), but maintained

total protein equivalents at 6%, initial growth rate improved by
Cell M
�31% in one trial and �33% in a second

(Figure 5D; Table S1) and resulted in

body mass differences that persisted
into adulthood (Figure S6A). At 24 weeks of age, we also found

that differences in the free AA profile of the hepatic portal vein

for MOUSEAA- versus CASEINAA-fed mice were positively

correlated with differences in dietary content (Figure S6B).

Although the initial growth rate improvement was somewhat

lower than the prediction of 48%, these data indicate that, similar

to flies, exome matching enhanced nitrogen source quality for

growth. For these same mice, those fed CASEINAA voluntarily

consumed �35% more water than those fed MOUSEAA (Fig-

ure 6A), consistent with a greater proportion of the AAs in

CASEINAA being inaccessible for growth and so increasing

the water demand for urinary excretion. Indeed, urinary nitrogen

excretion of mice that had developed on the diets for 20 weeks

(23 weeks of age) was greater for those fed CASEINAA than

MOUSEAA (Figure 6B).

The greater bodymass of mice developing onMOUSEAA than

on CASEINAA was in part attributable to greater lean mass,

with both the rate of accumulation and absolute level of lean

mass attained being higher (Figure 6C). Fat mass accumulation

was similarly increased (Figure 6C). Organs removed from

24-week-old mice revealed a significant increase in mass for

white adipose tissue, kidney, liver, and skeletal length, but not

for tissues whose size has previously been observed to be re-

fractory to dietary change (Shingleton, 2010), i.e., heart, thymus,

quadricep muscle, or brain (Figure S6C). Rearing on CASEINAA

and MOUSEAA yielded no differences at 24 weeks in fecal en-

ergy content, patterns of movement, or the respiratory exchange

ratio (RER), but mice fed CASEINAA showed greater thermogen-

esis (determined via indirect calorimetry) than did mice fed

MOUSEAA (Figures S6D and S6E). Thus, the enhanced energy

storage in MOUSEAA animals appeared to be a consequence

of reduced energy use for heat production.

Finally, because of their importance for health, we measured

several parameters of bone structure in femurs of 23-week-old

mice and found that cortical structure thickness, trabecular bone

mineral density, and trabecular volume ofMOUSEAA-fed animals

were significantly greater than those of mice fed CASEINAA

(Figure 6E). Thus, MOUSEAA is a higher-quality source of AAs

than CASEINAA for both growth and bone structure.

Interestingly, the enhanced quality of the MOUSEAA diet was

apparently perceived by the mice since when with ad libitum ac-

cess to food, young mice consumed �15% less food per gram
etabolism 25, 610–621, March 7, 2017 615



Figure 5. Effect of AA Ratio and Concentration on Development

(A) Dilutions of the total mass of AAs for each ratio lengthened fly development time. FLYAA supported quicker development than MM1AA, MM2AA, and YAA in

a manner that was less affected by AA dilution (for each comparison in both assays, effect of AA mass, p < 0.001; effect of AA ratio, p < 0.003; mass*AA ratio,

p < 0.03; linear model). Using the measured proteome for dietary AA ratio design showed no differences from exome matching (p > 0.4 for effect of AA ratio and

interaction with AA mass; linear model; dashed gray lines represent model estimates). Each panel represents a different trial group in which conditions were run

concurrently. Each panel shows data from three or more independent trials.

(B) Numbers for each developmental stage were scored at the indicated time points and expressed as a proportion of viable individuals in the assay. The

proportion at each stage changed over time and with AA ratio (p < 0.001 for effect of time, AA ratio, and their interaction), with an apparent extension of the third

instar stage for MM diets (*p < 0.05; data are from three trials with five replicate vials per treatment per trial; each vial contained between 24 and 29 viable

individuals; for linear model with mixed effects, vial, nested within trial, was assigned as a random effect). See also Figure S3.

(C) Third instar larvae were assessed for phosphorylated and total 4e-BP using western blots. Both forms had significantly lower levels for larvae from FLYAA than

from the MM diets (*p < 0.05; for linear model with mixed effects, AA ratio as a fixed effect and replicate blot as random effect; two rounds of gels and blotting of

each diet in triplicate were run; 4e-BP bands were normalized to total protein). Corresponding blotted image shown in Figure S3A.

(D) Mouse growth rate was significantly enhanced (p < 0.001) by changing a constant mass of AAs from the ratio found in casein (CASEINAA) to that of the

translated mouse exome (MOUSEAA). Data collected using five mice in each of four cages per food treatment. Points connected by colored dotted lines

represent mass averages per cage. One of two independent trials is shown. Linear mixed effects model: AA ratio, time, and their interaction were treated as fixed

effects, while the data from individual mice (nested within cages) and the slope of their mass accumulation were random effects. Heavy black dashed lines show

the data fit from the statistical model.
body mass of the 6% MOUSEAA diet than of 6% CASEINAA,

and this effect persisted through to adulthood (Figure S7A).

Thus, similar to flies, the exome-matched diet was both more

efficiently used and resulted in lower steady-state feeding.

To further test whether exome matching predicted AA

quality for mouse growth, we designed another MMAA ratio

(mmMOUSEAA; mismatch MOUSEAA) that differed from both

CASEINAA andMOUSEAA in the proportion of AAs, but was pre-

dicted to impose a similar growth limitation to CASEINAA. There

was little difference in growth rate between mice maintained on

CASEINAA or mmMOUSEAA (Figure 7A). Furthermore, exome

matching predicted T to be growth limiting in mmMOUSEAA

(Figure S7B), and when T was reduced by 30%, growth was
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reduced (Figure 7B). In contrast, reducing the concentration

of M by 30% did not alter growth (Figure 7C), consistent with

the exome-matching prediction that it was in 1.4-fold excess

(Figure S7B).

Finally, we compared growth of mice fed the exome-matched

diet to a cohort fed the recommendations for dietary AAs from

the National Research Council (NRC) (National Research Coun-

cil, 1995) or one matched to a profile based on AA analysis of

whole mice (BODYCOMPAA) (Kremen et al., 2013). Both are

based on empirical data and are used to inform optimal dietary

AA composition. We found no difference in initial growth rate

of mice fed MOUSEAA versus those fed NRCAA (Figure 7D),

while those assigned the diet based on body composition



Figure 6. Exome Matching Broadly Alters Mouse Physiology

(A) Mice on CASEINAA voluntarily consumed 35%more water than those on MOUSEAA (p = 0.001). Cumulative water consumption per cage shown with heavy

black dashed line showing statistical model fit. One of two independent trials is shown. Liner mixed effects model: AA ratio, time, and their interaction as main

effects, and cage and its interaction with time were random effects.

(B) After 20 weeks of development on the media, MOUSEAA mice excreted a smaller proportion of their ingested nitrogen in urine than those fed CASEINAA

(p = 0.03, Wilcoxon rank-sum test). Data show urinary nitrogen excretion from five individual mice. Collected in a single trial.

(C) Feeding onMOUSEAA caused a significant increase in the rate of accumulation of both fat (p < 0.001) and lean (p < 0.001) mass during 20 weeks of exposure.

Measurements are from each of five mice in four cages (cage averages, colored lines) for both diets. Data gathered from a single trial. Linear model with mixed

effects: AA ratio, ln(time), and their interaction were fixed effects, while the data from individual mice (nested within cages) and the slope of their mass

accumulation were random effects.

(D) At night, RER of all micewas significantly increased (p = 0.01), but therewas no effect of diet (p = 0.43, multivariate ANOVA). Total distancemoved bymice was

not different between diets (p = 0.85, t test). However, there was an increase in thermogenesis of mice on CASEINAA over those on MOUISEAA (p < 0.001), and

the increase was more pronounced at night (p = 0.025, diet*time of day interaction, multivariate ANOVA). Data shown are normalized to lean mass; analysis using

non-normalized data yielded the same outcomes qualitatively. Data are from eight individuals at 23–24 weeks of age from a single cohort.

(E) Mice that developed on MOUSEAA had significantly enhanced femur cortical thickness (p = 0.03), trabecular bone mineral density (BMD) (p = 0.01), and

trabecular volume (p = 0.44) when compared with those reared on CASEINAA. t test. Data collected from one trial. Seven animals per condition.

See also Figure S6.
showed significantly slower growth (Figure 7E). Although not

different in its effect during early linear growth, the NRCAA

diet did, however, support an �8% greater adult body mass

(Figure S7C) that whole-body MRI revealed was due to the

NRCAA-fed mice gaining fat, but not lean mass, at a faster rate

thanMOUSEAA-fed mice (Figure S7D). In further tests, we found

no differences in movement, fecal energy content, RER, heat

production, glucose tolerance, insulin tolerance, or any of the

measured bone quality metrics at 23–24 weeks of age (data

not shown). Thus, the enriched fat mass of the NRCAA mice

may be due to differences in fat biosynthesis.
In summary, exome matching provides an easily implemented

framework for establishing a high-quality nitrogen source for

mouse growth. We note that its quantitative accuracy in mouse

and fly growth was not as precise as for fly egg laying, perhaps

due to nutritional buffering by resident microbiota similar to

that observed in Schwarzer et al. (2016) and Wong et al.

(2014). Nonetheless, our data provide evidence that our

completely in silico method can be used for dietary AA design,

and that it performs equally as well as, if not better than, natural

diets or others that have been developed empirically over

decades.
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Figure 7. Exome Matching Alters Mouse Development, but Not Fly Lifespan

(A) CASEINAA and another MMAA profile (mmMOUSEAA) had similar, but significantly different (p < 0.05), growth rates.

(B and C) Reducing the AA (B) predicted to be limiting in mmMOUSEAA (T) reduced growth rate (p < 0.001), but reducing M (C), which was predicted by exome

matching to be in excess, did not (p = 0.22).

(D) No growth rate difference was detectable for mice feeding on MOUSEAA versus those maintained on NRCAA (p = 0.12). See also Figure S7.

(E) Mice fed a diet with AA proportions according to whole-body AA analysis (BODYCOMPAA) had significantly slower growth rate than those on MOUSEAA

(p = 0.01). Five mice in each of four cages per nutritional condition. Linear model with mixed effects: AA ratio, time, and their interaction were treated as fixed

effects; individual mice nested within cages and the slope of their mass accumulation were random effects.

(F) For flies, the relative concentrations of dietary AAs altered median lifespan (p < 0.001), but with no effect of AA ratio, either alone (p = 0.2) or to modify the

response to AA concentration (p = 0.55). Linear model with mixed effects: AA concentration and ratio as fixed effects and trial as a random effect. Medians from

four trials. A total of 100 flies per condition were used for all trials, except one in which 200 were used.
Low Concentrations of Exome-Matched AAs Avoid the
Lifespan/Reproduction Trade-Off
The relative concentration of protein in the diet has been shown

to modulate both early life fitness and lifespan, and can account

for the benefits of DR in flies andmice (Lee et al., 2008;Mair et al.,

2005; Skorupa et al., 2008; Solon-Biet et al., 2014). We therefore

assessed the response ofDrosophila lifespan to varying concen-

trations of MM1AA, MM2AA, and FLYAA. Consistent with our

previous observation (Piper et al., 2014), we found a marked in-

crease in lifespan with decreasing relative concentration of total

dietary AAs, an effect that was not modified by AA ratio (Fig-

ure 7F), unlike early life where the AA ratio strongly affected

growth (Figure 5A) and egg laying (Figures 3E and 3F).

Interestingly, considering the egg laying and lifespan pheno-

types together, their response differences caused flies on FLYAA

to exhibit a single dietary optimum for growth, reproduction,

and lifespan at a relatively low AA concentration (10.7 g/L).

In contrast, flies on the MM diets displayed separate optima

because egg laying and development required higher levels of
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AAs (at least 21.4 g/L) than the optimum for lifespan (10.7 g/L).

Thus, as we have observed previously (Grandison et al., 2009),

changing the dietary AA balance can establish a diet in which

the apparent trade-off between reproduction and lifespan is

avoided. Here we show that this balance can be established

by matching the dietary AA ratio to the in silico-translated

exome. In looking for correlated effects on nutrient signaling,

we found that total 4e-BP levels, but not the proportion phos-

phorylated, were reduced in the ovaries of adult flies exposed

to 10.7 g/L FLYAA when compared to those on the same con-

centration of AA in the MM diets (data not shown). In contrast,

4e-BP levels and phosphorylation were unaffected across the

same treatments when measured in adult flies from which the

ovaries had been removed. Thus, across all conditions we

measured, we found that 4e-BP levels changed with growth

and reproduction when measured in dividing tissue, and held

steady with unchanging lifespan when measured in non-dividing

tissue. These data are compatible with an explanation that tis-

sues vary in their sensitivity to AA ratios for modulating IIS and



TOR, and that these inter-tissue differences may be key to sepa-

rating the regulation of lifespan and reproduction.

Conclusion
Consuming a diet with a relatively low proportion of protein is

critical for lifelong health (Le Couteur et al., 2016). However,

the costs to early life vigor, reproduction, and low satiety value

(Gosby et al., 2011; Solon-Biet et al., 2015; Sørensen et al.,

2008) are major detractions. We show that an exome-matched

AA composition can reduce voluntary food consumption, and

that its enhanced value for growth and reproduction means it

can be supplied at low enough levels so as to avoid any cost

to lifespan. Given that these are all beneficial outcomes, it will

be interesting to determine if there is a physiological cost that

we have not yet measured.

It should be noted that the proportions of protein in our exper-

imental diets are particularly low when viewed in the light of an

average American diet containing �15% protein (Simpson and

Raubenheimer, 2005). While exome matching may be useful for

screening supplements used to treat protein-energymalnutrition

forAA imbalance, it is unlikely to enhancehumangrowth or repro-

duction in developed countries where protein is generally non-

limiting. However, because we have found that exome-matched

diets represent high-quality protein that suppresses steady-state

feeding at low concentrations, it is possible to envisage that diets

to reduce total food intake to enhance long-term health, or even

specifically to reduce the proportion of protein in the diet, e.g., for

the management of kidney disease (Santesso et al., 2012), could

be better achieved using exome matching.

Thus, the principle of exome matching provides a theoretical

template for dietary AA design that can enhance the biological

efficiency of food for the lifelong health of the consumer.

EXPERIMENTAL PROCEDURES

Additional details in the Supplemental Experimental Procedures.

General Fly Handling and Media

Except where indicated, all experiments were conducted with our female

Drosophila melanogaster (Dahomey). Stocks are maintained outbred and

experiments were conducted in controlled conditions: 25�C, 65% humidity,

and 12 hr:12 hr light:dark. Except where indicated, flies were reared on

13 SY food at standard density (Bass et al., 2007). Holidic media were

made according to Piper et al. (2014) with appropriate substitutions for each

of the different AA ratios (Table S2; Data S1).

Mouse Strain, Housing, and Diets

For each mouse experiment, 20 C3B6F1/J females per treatment were used,

housed in four groups of five under specific-pathogen-free (SPF) conditions.

Our parental mice were two inbred strains: C57BL/6J and C3H from the

Jackson Laboratory.

Except for ad libitum-fed animals, mice were pair fed. Water intake was

measured for each cage separately twice per week. Diets were manufactured

by Ssniff.

Mouse experiments were performed in accordance with the recommenda-

tions and guidelines of the Federation of the European Laboratory Animal Sci-

ence Association (FELASA), with all protocols approved by the Landesamt f€ur

Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Germany.

Exome Matching

A total of 21,070 proteins were retrieved from FlyBase (FB2008_05, released

May 30, 2008). From this, 821 proteins with length less than 100 AAs and

513 with length greater than 2,000 AAs were removed to generate a set of
19,736 non-extreme proteins. This trimming procedure was followed for all an-

imal genomes used. Formouse, Ensemble v 54 (May 2009, downloaded July 2,

2009) was used and for rat, Ensemble v 56 (September 2009, downloaded

January 19, 2009). The sum of each AA used in each protein was used to

generate its proportional AA usage, and this was combined for all proteins

to find the average AA usage for the predicted proteome.

To predict the most limiting EAA in a diet, the proportion of AAs in the food

was divided by the proportional representation of AAs in the translated exome

of the consumer. The EAA with the lowest value after this transformation was

considered limiting. If the requirement for either of the conditionally EAAs Y or

C exceeded the available supply, their requirement was met by subtracting a

mole of F or M, respectively, for each mole of AA required.

To design MM2AA, we determined the Euclidian distance from MM1AA to

FLYAA in 20-dimensional space (1 dimension per AA). We then found another

point, MM2AA, that was equidistant from FLYAA as MM1AA, but as far away

as possible from MM1AA. This procedure was also performed to generate

mmMOUSEAA, using CASEINAA and MOUSEAA as starting points.

Fly Diet Preference and Feeding Assays

For each trial of each feeding assay, a fresh generation of flies was reared to

avoid the possible confounding effects of memory-based decision making.

Holidic Diet Choice Assay

A four-arm choice apparatus modified from Cooper (1960) was used. Mated

females were AA deprived for 72 hr and acclimatized in the chamber, and their

subsequent location was counted hourly for �8 hr. The food preference index

(FPI) was calculated as (n flies on surface of food A� n flies on surface of food

B)/(n flies on surface of food A + n flies on surface of food B). Total AA mass in

food was fixed at 21.4 g/L.

SY Choice Assay

Groups of 3- to 5-day-old flies (15 females and 5 males) were maintained

on yeast-based food or holidic medium. After 72 hr, the flies were tested for

nutrient choice as described in Ribeiro and Dickson (2010).

flyPAD Monitoring of Feeding Behavior

w Dahomey flies were reared in the same medium as for the SY choice assay.

Mated adult flies were then maintained on either holidic or yeast-based

medium for the pretreatment period (3 days) and assayed using flyPAD, as

described in Itskov et al. (2014).

Measuring Fly Development

First instar larvae were picked onto test media and each developmental stage

scored at 25, 138, 258, and 330 hr after egg laying. Adult eclosion was scored

daily at 24 hr intervals. Body mass was measured for pairs of newly emerged

flies.Wingsweremeasured from theedgeof thedistal tip to theedgeof the alula.

Fly Uric Acid and TAG Measurements

After 16 hr on holidic medium, flies and medium were removed from the vial,

which was washed with 2 mL of 0.1 M sodium glycinate buffer (pH 9.2). Uric

acid was quantified spectrophotometrically using the Amplex Red Uric Acid

kit (Life Technologies). For TAG determinations, we used the Triglyceride Infin-

ity reagent (Thermo Scientific) and normalized levels to total protein.

Fly Westerns

The following antibodies were used: 4EBP1 (CST #4923), phospho-4EBP1

(CST #4923), S6K (custom-made, courtesy IHA, UCL), and phospho-S6K

(CST #9209).

Fly Lifespans

Lifespan assays were performed as described in Piper and Partridge (2016).

Replicates 1–3 were performed preparing the holidic medium as described

in Piper et al. (2014), but for the fourth replicate, the three AAs (I, L, and Y)

were added after autoclaving.

Mouse Physiological Measurements

Body fat content was determined by in vivo magnetic resonance tomography

imaging (time domain [TD] NMR).

Indirect calorimetry and movement were monitored over 48 hr for singly

housed mice in purpose-built cages (Phenomaster, TSE systems) maintained

at 22�C –23�C.
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Urea in urine from a 24 hr period was measured using the Urea Assay kit

(Sigma) from mice housed in metabolic cages (Tecniplast).

Portal Vein Plasma Metabolite Analysis

Portal vein blood samples were harvested from pair-fed female C3B6F1/J

mice at 23 weeks of age following a 1 g meal and 2 hr food deprivation.

Mice were euthanized and dissected, and portal vein blood was collected in

EDTA tubes. Analysis was performed by the Finnish Institute for Molecular

Medicine (FIMM).

Mouse Tissue and Bone Measurements

At 23 weeks of age, mice were euthanized using CO2 and organs were imme-

diately harvested and weighed. For bone density measurements, right femur

bones from 23-week-old mice were collected and scanned with a high-resolu-

tion mCT scanner (SkyScan 1176, Bruker). Trabecular and cortical bone re-

gions of distal femurs were selected with reference to the growth plate.

Bonemineral density was determined based on calibration with two phantoms

of known density (Bruker), which were scanned under the same conditions as

the bone samples.

Statistical Analyses

R (v3.2.0) and JMP (V11) were used for all statistical analyses. Generally, error

bars represent SEM.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, two tables, and one data file and can be found with this article

online at http://dx.doi.org/10.1016/j.cmet.2017.02.005.
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