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Abstract 
 
Identifying socio-spatial patterns through geodemographic classification has proven utility 
over a range of disciplines. While most of these spatial classification systems include a plethora 
of socio-economic attributes, there is arguably little to no input regarding attributes of the built 
environment or physical space, and their relationship to socio-economic profiles within this 
context have not been evaluated in any systematic way. This research explores the generation 
of neighbourhood characteristics and other attributes using a geographic data science approach, 
taking advantage of the increasing availability of such spatial data from open data sources. We 
adopt a SOM (Self-Organizing Maps) methodology to create a classification of 
Multidimensional Open Data for Urban Morphology (MODUM) and test the extent to which 
this output systematically follows conventional socio-economic profiles. Such an analysis can 
also provide a simplified structure of the physical properties of geographic space that can be 
further used as input to more complex socio-economic models. 
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1. Introduction 
 
Geodemographics is a field of quantitative geography that engages in the analysis and 
classification of populations into discrete classes based on socio-economic and built 
environment characteristics of small-area geography. Simply put, geodemographics is the 
“analysis of people by where they live” (Sleight, 1997, p. 16). Such classifications have 
demonstrated utility over a range of public and private sector applications (Longley, 2005; 
Longley and Goodchild, 2008; Reibel, 2011; Singleton and Spielman, 2013). A 
geodemographic analysis is essentially a data reduction methodology that aggregates 
populations, so that correlations between sub-populations can be drawn upon with ease. It 
involves the process of producing key statistics of a particular area, on the basis of the 
characteristics of its residents and their contexts. 
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Geodemographic applications were initially developed as a strategy in order to analyse and 
systematically document socio-spatial segregation. The associated data reduction methods  
were established in the 1970s (Webber, 1978), although a wider review and interpretation 
would extend right back to the ‘human ecology’ studies from the Chicago School of Sociology 
in the 1920s (Burgess, 1925), social area analysis in the 1950s (Shevky and Bell, 1955) and the 
factorial ecologies of the 1970s (Janson, 1980). Despite the fact that geodemographics has 
evolved considerably over the years (Singleton and Spielman, 2013), the conceptual 
background of geodemographics is still wedded to the principle that people tend to align 
themselves with the behaviour and aspirations of the local communities in which they live.  
The inferential nature of the aggregations relies on the notion of societal homophily, or in other 
words, that “birds of a feather flock together” (Harris et al., 2005). As such people who live 
close by (e.g. in the same neighbourhood) are more likely to have commonalities in attributes 
and behaviours than a randomly selected group of people.  
 
Although geodemographic frameworks can capture a wide set of input attributes, current 
classification systems typically include little to no input of explicitly spatial attributes regarding 
the built and physical attributes of neighbourhoods. There is, however, an abundance of 
variables that might be collected on the built forms and relative locations that underpin 
neighbourhood differentiation. For instance, proximity to certain amenities is important to 
residential decisions such as transport nodes, parks, retail and healthcare-facilities. There has 
for example been extensive research into the topic of analysing relationships between 
accessibility and urban development patterns, (e.g. land use- transportation interaction (LUTI) 
models); and connectivity has been advanced as a key feature in shaping urban residential 
dynamics and socio-spatial segregation (Dear, 2002). Research on residential decisions has 
also attracted a lot of attention over the years, particularly through hedonic modelling. While 
most of the relevant research focuses on the importance of work location (Van Ommeren et al., 
1999; Renkow and Hoover, 2000), there is strong evidence that certain demographic groups 
favour some relative locations over others, and that the nature and configuration of the local 
built environment and land-use characteristics is also relevant (Hui et al., 2007). For instance, 
individuals with children often favour greenspace and recreational opportunities nearby, while 
those without children prefer smaller residences that offer closer proximity to central services 
(Colwell et al., 2002). Other characteristics may impact the area as unfavourable, negative 
externalities, such as high-speed roads or railway tracks within the vicinity of the 
neighbourhood (Parkes et al., 2002). It is unclear how exactly such characteristics impact upon 
residential decisions as there are many synergies involved across life cycles (Kim et al., 2005). 
For instance, moderate proximity (200m to 300m) to a green space may mitigate negative 
effects of noise pollution (Gidlof-Gunnarsson and Ohrstrom, 2007). 
 
Some census variables reflect limited built environment characteristics, for instance housing 
type and population densities. For classification systems that have been developed entirely 
from census variables, such as the publicly open ONS (Office of National Statistics) Output 
Area Classification (OAC) for 2011, attributes such as density can however be misleading; the 
arbitrary nature of the geographic extents of the administrative areas for which population 
measurements are offered renders comparisons between the physical features ineffective. Other 
proprietary geodemographic classifications, such as Mosaic by Experian (Nottingham, UK) 
and Acorn by CACI (London, UK) include some measures of relative location (CACI, 2013; 
Experian, 2014). However, to what precisely these attributes pertain, how they are used in the 
clustering process and the weight they are assigned in the final classification remains obscure, 
because of the commercial sensitivities that are inherent in ‘black box’ commercial solutions 
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(Singleton and Longley, 2009). 
 
In this paper, we test whether specific and multidimensional urban morphologies 
systematically correspond with socio-economic characteristics at the neighbourhood level. In 
order to identify and analyse such attribute patterns, we adopt a geodemographic approach, 
which involves the creation of a classification for a national extent, based upon clustering at 
the small area level. In essence, we try to identify the physical and built environment 
characteristics that might be used to supplement neighbourhood typologies. 
 
2. Open Data Inputs 
 
This research captures a variety of physical attributes collected for a small-area geography, and 
in order to enhance reproducibility, replication and extension these inputs are assembled from 
Open Data sources (Singleton et al., 2016). We produce a classification at the 2011 UK Census 
Output Area level for the 181,408 Output Areas (OAs) that make up England and Wales. One 
of the main providers of geographical data for England and Wales is the national mapping 
agency Ordnance Survey (OS), and there are many datasets available within their repository, 
with varying degrees of granularity, depending on whether they are publicly accessible or 
available for purchase. As this paper focuses on Open Data sources, we use OS Open Map - 
Local, the most recent and detailed open OS vector data product currently available (Ordnance 
Survey, 2015). However, within different contexts, such data might also be supplemented by 
other national mapping agency data, or perhaps alternative sources such as OpenStreetMap 
(www.openstreetmap.org). The OS vector data product provides a variety of information 
including outlines of buildings, street network with hierarchy, railways, woodland areas, 
surface water and important functional sites.  
 
While the OS Open Map – Local provides the main source of these data, there were a few other 
sources within England and Wales deemed of utility. These included data about listed buildings 
and historic parks and gardens supplied by the Historic England Archive 
(https://services.historicengland.org.uk/NMRDataDownload/) which is regularly updated 
(November 2015 update used here) and also under Open Data License. For beautiful Wales, 
the corresponding provider is the Cadw heritage organisation, (available through the UK data 
Service, https://data.gov.uk/dataset/listed-buildings-in-wales-gis-point-dataset), although the 
data are slightly outdated (September 2011). Commercial buildings for local retail centres were 
identified using data from the Local Data Company, an Open version of which is available 
through the ESRC Consumer Data Retail Centre. Finally, we included aggregated data on 
housing type from the 2011 Census supplied by the Office for National Statistics (ONS). 
Unfortunately, there are currently no Open Data available on building age or height. 
 
Table 1 below summarizes the range of inputs used to derive measures featured in this analysis. 
 

Table 1. Description of the spatial dataset compiled. 
 

Variable	Name	 Variable	Description	

D1:	OA	Boundaries	
181,408	Output	Area	boundaries,	as	defined	by	the	2011	Census.	All	other	data	were	
spatially	joined	with	their	respective	OAs	that	they	fall	into	(data	features	were	split	
when	falling	into	more	than	one	OA).	

D1:	Buildings	 12,878,666	Building	objects	represented	as	polygons.	Note	that	these	areas	do	not	
represent	individual	households.		

D2:	Road	Network		 Road	network	is	represented	as	line	segments,	approximate	to	the	road	centre.	The	
categories	include	‘Motorway’,	‘Primary	Road’,	‘A	Road’,	‘B	Road’,	‘Minor	Road’,	
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‘Pedestrianised	Street’,	‘Local	Street’	and	‘Private	Road	Publicly	Accessible’,	as	well	as	
their	‘Collapsed	Dual	Carriageway’	counterparts.	

D3:	Woodland		 Areas	of	trees	represented	as	polygons,	described	as	coniferous	and	non-coniferous.		

D4:	Functional	Sites	/	
Important	Buildings		

120,677	Building	polygons	that	can	be	found	within	functional	sites.	They	are	categorised	
into	themes	such	as	Air	Transport,	Education,	Medical	Care,	Road	Transport	and	Water	
Transport,	which	are	further	classified	into	numerous	more	discrete	classes.	

D5:	Railway	Stations	
and	Tracks	

Railway	tracks	and	tunnels	represented	as	lines	(in	this	instance	we	used	tracks	only	in	
the	analysis)	and	Railway	Stations	defined	as	points.	

D6:	Surface	water	
Polygons	of	surface	water.	small	rivers	and	streams	are	represented	as	lines	and	were	
not	included	in	the	dataset.	The	dataset	was	also	supplemented	with	‘sea	water’,	derived	
from	the	country’s	coastline.	

D7:	Registered	Historic	
Buildings	 406,496	listed	historic	buildings	defined	as	points,	which	were	geolocated.	

D8:	Registered	Parks	
and	Gardens	

2,007	Polygon	features	with	extents	of	the	parks	/	gardens,	classified	as	I,	II*,	or	II,	from	
most	to	least	important.	For	Wales,	the	372	sites	were	identified	from	points	from	a	
“Named	Places”	dataset	and	given	an	approximate	200m	radius.	

D9:	Retail	Centres	
1,312	Retail	Centres	across	the	England	and	Wales.	There	is	no	recent	update	for	this	
dataset	which	dates	back	to	2004.	The	centres	are	only	depicted	as	points	and	have	no	
typology	attached.	We	assumed	an	average	radius	of	200m	to	convert	them	to	areas.		

D10:Housing	Type		 Percentage	of	households	that	are	classified	by	the	Census	as	Detached,	Semi-detached,	
Terraced	or	Flat.	

D11:	Population	 Population	of	total	persons	per	OA.		

 
The classification presented later was created for Output Areas (LSOAs), and as such the input 
measures were assembled for this geography. These zones offer advantage over other 
administrative units in England and Wales since many other socio-economic classifications are 
offered at the OA level, such as the 2011 ONS Output Area Classification, thus making 
comparisons possible. Additionally, such geography also allows the incorporation of Census 
data which are distributed for these units. However, for the range of the derived measures that 
are described in the remainder of this section, there are problems with this approach. OA 
borders were designed to maximize within zone homogeneity in population characteristics 
(population normalization), without regard to the geographical features of the area (Martin et 
al., 2001; see Figure 1). As such, for proximity based inputs there were challenges about how 
such measures might be calculated, and to which area they should be attributed.  
 
A similar attempt to create such a dataset was made by the Department for Communities and 
Local Government in 2005, within the framework of the ONS Neighbourhood Statistics, 
described as Land Use Statistics. The dataset was described as a generalised land use database 
aggregated into OAs. The dataset contained estimates of built environment attributes, such as 
roads, paths, domestic and non-domestic buildings, domestic gardens, water, rail etc. Despite 
the fact that the proprietary OS Enhanced Basemap was used to create this resource, ONS 
classified it as experimental, as there were issues of accuracy, mainly arising because only the 
centroids of features were taken into account in class assignments of aggregations. 
 
To facilitate these methodological shortcomings, we adopted three different types of attribute 
measures for each OA that related to either two types of proximity measures including 
adjacency effects or intermediate effects; and additionally direct measures. The lattermost of 
these are simply attributes captured at the OA level, while the first two assume buildings as the 
initial unit of analysis which are then later assigned to OAs. Building polygon features serve 
as observations in this input dataset, and represent homogenous built-up areas which can 
include one or more households. A graphical representation of the model is described in Figure 
2. All of the attributes collated as input across all domains are summarised in Table 2. 
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Figure 1. Maps looking at the un-generalised Output Area borders (blue lines) around Sefton 

Park, Liverpool.  
 

Left: Notice how the area of the park is divided arbitrarily between proximal OAs (yellow hashed line pattern). 
Right: Output Area borders usually coincide with the street network, making simple street network–to-area 

assignments impracticable. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. The spatial data model used to process data and produce Output Area inputs to the 
classification. 

 
 

 
For both types of proximity measure, we used a series of spatial queries that identified buildings 
that fulfil certain criteria, for instance, which buildings are within a set distance of a major 
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street? The buildings that met each criterion were then assigned to OA aggregations with 
weights determined by their attributed area. Thus, within each OA, a ratio of the area of 
buildings meeting the criteria relative to the total built area was calculated for each of the 
attributes considered in the analysis. The necessity to differentiate between adjacency and 
intermediate proximity effects follows the logic that not all built environment characteristics 
have the same effect, and these effects may vary in scale. For example, when considering the 
location of a residential property, being adjacent to a very major road might be perceived as 
having a negative impact, given the noise / pollution associated with increased traffic volumes, 
whereas being near, but not adjacent to a busy road might be perceived as advantageous, given 
the enhanced connectivity this might facilitate. 
 
We defined adjacency effects to features measured within 100m linear distance, as commonly 
used in the literature on negative externality effects of built environment features, such as noise 
or pollution from roads (Rijnders et al., 2001). For intermediate effects a distance of 600m was 
used, on the basis of various western international definitions of “within walking distance”. 
The distance figure generally varies depending on the context of analysis, but distances 
between 300m and 900m are considered appropriate for urban features (Hui et al., 2007; Barbosa 
et al., 2007; Villeneuve et al., 2012; Vale, 2015). 
 
Outside of these distances we assume there are no adjacency or intermediate effects. The 
delineation of adjacency effects or intermediate effects brings additional practical 
considerations which relate to the overall density of the built environment features being 
considered. In common with practice when creating inputs to multidimensional classifications, 
preference should be for those attributes which in addition to theoretical rationale, also provide 
useful differentiation between areas (Spielman and Singleton, 2015). For example, in this 
application, when 600m buffers were used for major roads, this resulted in more than 50% of 
buildings meeting this criterion, providing only weak differentiation. These tasks were 
computationally expensive, as the complete dataset contains more than 12.8 million 
observations (building polygons). Thus the database was pre-processed into regional datasets 
which were then computed separately within the R coding language.  
 
Finally, there were two further types of direct measures: those which were derived from 
geographic features, and those which were simple inputs from secondary data. The derived 
direct measures included listed buildings and cul-de-sacs (dangling segments in the road 
network). The later of these was defined geocomputationally as the end of a line segment that 
did not intersect with any other such segment. A sensitivity of 10m was applied to this criterion 
in order to avoid topological errors and intermittent street segments. The results show that such 
measures can capture specific urban morphologies even at the small-area level  as we show in 
Figure 3. 
 
For the other non-derived direct measures, the variables were simply aggregated directly at the 
OA level, such as the housing type. Population density was calculated using a ratio of persons 
per total building area, which potentially would give more accurate results regarding housing 
conditions. The final OA attributes along with their descriptions are provided in Table 2.  
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Figure 3. Left: Attribute of Cul-de-sac ratio per OA at Kingston-upon-Hull, Yorkshire. 

Right: The ratio of listed (registered) buildings per OA area in Liverpool. 
 

Table 2. Built environment attributes used in the classification. 
 

Variables		 Variable	Description,	Aggregated	per	OA	Code	
Adjacent	effects	
1.	Major	Roads	 Percentage	of	the	area	of	buildings	that	the	centroid	is	within	100m	of	a	major	road	to	the	total	

building	area.	We	defined	major	as	those	of	type	“Motorway”,	“A	Road”	and	“Primary	Road”.		
2.	Arterial	Roads	 Percentage	of	the	area	of	buildings	that	their	centroid	is	within	100m	of	an	arterial	road	to	the	

total	building	area.	We	defined	Arterial	roads	as	those	with	type	“B	Road”.	
3.	Pedestrian	Roads	 Percentage	of	the	area	of	buildings	that	their	centroid	is	within	100m	of	a	pedestrian	road	or	

footway	to	the	total	building	area.	
4.	Railway	Tracks	 Percentage	of	the	area	of	building	units	that	their	centroid	 is	within	100m	of	railway	tracks,	

excluding	tunnels	to	the	total	building	area.	
5.	Woodland	Areas	 Percentage	of	the	area	of	building	units	that	their	centroid	is	within	100m	of	woodland	features	

to	the	total	building	area.	
6.	Surface	Water	 Percentage	of	 the	area	of	building	units	 that	 their	 centroid	 is	within	100m	of	 surface	water	

(inland)	 and	 seafront	 (calculated	by	 the	distance	 from	 the	 coastal	 line),	 but	 excluding	 small	
rivers	and	streams,	to	the	total	building	area.	

Intermediate	effects	
7.	Railway	Stations	 Percentage	of	the	area	of	building	units	that	their	centroid	is	within	600m	from	the	centroid	of	

a	railway	station	to	the	total	building	area.	
8.	Parks	&	Gardens	 Percentage	of	the	area	of	building	units	that	their	centroid	is	within	600m	from	the	registered	

site	extents	to	the	total	building	area.	
9.	Retail	Centres	 Percentage	of	the	area	of	building	units	that	their	centroid	is	within	600m	from	the	retail	centre	

centroid	plus	200m	to	the	total	building	area.	
10.	Schools	 Percentage	of	the	area	of	building	units	that	their	centroid	is	within	600m	from	the	sites	that	

are	identified	as	primary	through	secondary	education	to	the	total	building	area.		
11.	Higher	Education	 Percentage	of	the	area	of	building	units	that	their	centroid	is	within	600m	from	the	sites	that	

are	identified	as	further	and	higher	education	to	the	total	building	area.	
Direct	measures	 	
12.	Detached	Ratio	 Percentage	of	unshared	households	that	are	classified	by	the	2011	Census	as	detached	housing	

to	the	total	building	area.	
13.	Semi-Detached	Ratio	 Percentage	of	unshared	households	that	are	classified	by	the	2011	Census	as	semi-detached	

housing	to	the	total	building	area.	
14.	Terraced	Ratio	 Percentage	of	unshared	households	that	are	classified	by	the	2011	Census	as	terraced	housing	

to	the	total	building	area.	
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15.	Flat	Ratio	 Percentage	of	unshared	households	that	are	classified	by	the	2011	Census	as	Flats	to	the	total	
building	area.	

16.	Density	 Ratio	of	persons	to	total	building	area	(people/he).	
17.	Cul-de-sac	 Ratio	of	cul-de-sacs	or	dead-end	road	points	to	the	total	OA	area	(points/he).	
18.	Registered	Buildings	 Ratio	of	listed	buildings	to	the	total	OA	area	(points/he)	

 
 
3. A multidimensional classification of the built environment 
 
Methodologically, our cluster analysis follows a conventional approach as detailed in Harris et 
al. (2005); however, here we use only built environment data to create the typology. A common 
clustering technique used in geodemographic analyses is the iterative allocation – reallocation 
algorithm, known as k-means. Although this algorithm has been used in a variety of 
geodemographic applications, our dataset is sparsely populated, and k-means is known not to 
respond well to the non-Gaussian distributions that characterise such datasets (Everitt et al., 
2011).  
 
As such, in this framework we adopt the alternative technique of a Self-Organizing Map 
(SOM). A SOM is an unsupervised classifier that uses artificial neural networks to classify 
multidimensional observations in two-dimensional space based on their similarities (Kohonen, 
2001). A SOM typically organize observations by projecting them onto a plane, and through 
consecutive iterations finds the best configuration of observations so that every observation is 
most similar to the others closest to them. Typically, the SOM mapping process employs a 
lattice of squares or hexagons as the output layer, and the results are therefore easily mapped 
as they retain their topology. SOMs have many applications in a broad range of fields, from 
medicine and biology to image analysis and computer science. SOMs have also been tested as 
an alternative classifier of census data (Spielman and Thill, 2008; Arribas-Bel and Schmidt, 
2013) where they seem to perform well for socioeconomic data at the US Census tract scale. 
Arribas-Bel, Nijkamp and Scholten (2011) have also demonstrated the algorithm capabilities 
to measure urban sprawl in Europe using a similar attribute set, specifically six variables: 
connectivity, decentralization, density, scattering, availability of open space and land-use mix,. 
The technique also has the advantage of not assuming any hypotheses regarding the nature or 
distribution of the data, and responds well to geographic sensitivity. A further advantage of 
using a SOM is the capacity to visualise the structure of data values aiding initial data 
exploration. This feature can be very useful when analyzing datasets such as our built 
environment measures, where there are little to non a-priori hypotheses on their underlying 
distribution.  
 
As input to this analysis the dataset comprising the 18 variables described in Table 2 were 
transformed into z-scores in order to standardise the measures. The majority of the analysis and 
output production was performed in the R programming language using the “Kohonen” library 
(Wehrens and Buydens, 2007). More specifically, we adopted a SOM approach to cluster our 
input dataset using the methodology described by Spielman and Folch (2015). A relatively 
unexplored built environment classification with too many clusters would be difficult to 
interpret, so we selected a 4-by-2 hexagonal grid, which produces 8 distinct clusters. We 
implemented a hexagonal geodesic grid to project results. A geodesic plane forces the cells’ 
relations to “loop” around the edges, while the hexagonal representation is typically favoured 
over grids, as this configuration benefits from every cell having six immediate neighbours. The 
other main parameters of the SOM algorithm are the learning rate alpha, which we defined to 
progress linearly from 0.05 to 0.01 over fifty reconfigurations (updates), and the initial size of 
the neighbourhood, in this instance a distance chosen in such a way that two-thirds of all 
distances of the map units fall within the topological extents. The neighbourhood decreases 
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linearly during training until the algorithm reaches equilibrium. The algorithm has achieved 
equilibrium at ~25 iterations, meaning that no more changes to the observations’ configuration 
were required, with the mean distance to the closest unit in the map at 11.34. Once areas were 
assigned to clusters, we then implemented a radar plot to map their characteristics on the basis 
of the input variables as we show in Figure 4. 
 

	

Figure 4. Final cluster results produced by the SOM, with mean attribute centres per cluster.	
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This enabled classes to be labelled and the following short descriptions to be created: 

High Street and Promenades 
These clearly depicted areas represent the main retail centres of urban regions located 
along the main commercial streets. This cluster also includes areas with significant 
pedestrianised street network, especially along seafronts, where a lot of recreational and 
leisure venues can be found. 
 
Central Business District 
The area often called city centre. Typically, high-rise buildings with a lot of commercial 
and office spaces, hence the relatively low net population density.  These areas have 
proximity to the majority of public amenities, and have plenty of access vial major roads 
and railways. For moderate-size cities the title holds true, but in areas such as London 
they tend to be too expansive to be labelled as central (Figure 6). 
 
The Old Town 
The traditional town centre, usually close by the main high street. It is strongly defined 
by the amount of registered buildings. Typically, a lot of recreational facilities can be 
found there, like pubs and restaurants, along with many administrative buildings and 
some historical major roads. Although it does have a considerable amount of flats, 
densities remain low, potentially due to refurbishments and change of usage. 
 
Victorian Terraces 
These are typical neighbourhoods with terraced housing, average densities and some 
access to amenities. It is one of the few morphologies that can be found anywhere. 
 
Railway Buzz 
These areas are dominated by railway tracks and railway stations. They have no other 
major distinguishing attributes which may suggest that they are actually rather 
heterogeneous in physical structure. 
 
Suburban Landscapes 
These areas are typically of semi-detached houses, with good access to parks. They tend 
to be quite distant from town centres. They are primarily residential areas and close to 
schools. Cul-de-sacs are relatively common, probably because of organized 
developments and gated communities. 
 
Countryside Sceneries  
These areas are dotted with detached houses, and are located either near or within open 
countryside. Most rural villages fall into this category, along with some city fringe 
developments that lie beyond the classic suburbs. 
 
Waterside Settings 
The principal defining attribute of these neighbourhoods is their proximity to surface 
water such as rivers, canals or sea. Some of these areas are ports, industrial or post-
industrial sites. Distinctive infrastructure is arterial roads, i.e. roads wide enough to be 
used by lorries for the distribution of goods. 
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4. A Comparison of MODUM and OAC 
 
In order to test whether the Multidimensional Open Data Urban Morphology (MODUM) 
classification systematically follows the conventional OAC geodemographic classification, we 
correlate the two sets of output classes via a contingency table. Table 3 shows the frequency 
distribution of MODUM within OAC 2011. Supergroup 6 – Rural residents seems to be 
identified fairly well by the morphological features, with a correlation of more than 82%, 
followed by a small percentage of Waterside Settings and Suburban Landscapes. About half 
the areas categorized as suburban also fall into this category, which is to be expected taken into 
account that typologies tend to blend out at the urban edges.  The expansive central areas seem 
to be mainly populated by Supergroup 2 - Cosmopolitans and Supergroup 3 – Ethnicity 
Central. Moving out of the centre, Victorian Terraces seem to be scattered across three classes, 
Supergroup 4 - Multicultural metropolitans, Supergroup 7 – Constrained city dwellers and 
Supergroup 8 – Hard-pressed living. The suburban class is most interesting, as 43% of the 
areas classified as suburban is populated by areas identified as Hard-pressed living, while the 
other ~40% seems to be acknowledged. Generally speaking, unique classes in the MODUM 
classification such as the old city centre and railway-heavy areas seem to be equally dispersed 
among classes. Some further analysis could provide better insight as to why, and even reveal 
interesting patterns. Figure 5 provides two different sets of maps of the area of Bristol and 
Leeds, in order to demonstrate the overall pattern relationships between MODUM and OAC. 
 
 
Table 3. Contingency tables showing frequencies of OAC 2011 classes within MODUM. 

 
	 Output	Area	Classification	2011	-	Supergroup	Level	 	

MODUM	Cluster	
Description	

1	–	
Rural	

residents	

2	–	
Cosmopo
litans	

3	–	
Ethnicity	
central	

4	–	
Multi-
cultural	
metropol
itans	

5	–	
Urbani-
tes	

6	–	
Suburban

ites	

7	–	
Constrain
ed	city	
dwellers	

8	–	
Hard-
pressed	
living	

OA	
Amount	

1	-	Suburban	
Landscapes	 5.53%	 2.83%	 3.38%	 24.82%	 23.77%	 38.97%	 22.12%	 43.33%	 46788	

2	-	Railway	Buzz	 0.99%	 10.61%	 13.50%	 10.09%	 8.31%	 3.08%	 7.31%	 5.33%	 12186	
3	–	The	Old	Town	 0.25%	 17.87%	 5.35%	 0.58%	 4.05%	 0.05%	 4.76%	 0.30%	 2812	
4	–	Victorian	
Terraces	 1.20%	 14.43%	 16.56%	 43.93%	 24.59%	 1.79%	 39.38%	 34.98%	 49860	

5	–	Waterside	
Settings	 8.43%	 5.03%	 3.56%	 6.98%	 12.08%	 6.73%	 8.04%	 8.82%	 12468	

6	-	Countryside	
Sceneries	 82.45%	 2.05%	 0.43%	 2.91%	 18.89%	 47.79%	 2.14%	 3.90%	 3172	

7	–	High	Street	and	
Promenades	 1.07%	 6.20%	 4.28%	 3.00%	 4.03%	 1.50%	 4.98%	 2.47%	 1299	

8	–	Central	Business	
District	 0.08%	 40.99%	 52.94%	 7.68%	 4.26%	 0.09%	 11.27%	 0.88%	 52823	

Sum	(%)	 100.00	 100.00	 100.00	 100.00	 100.00	 100.00	 100.00	 100.00	 181408	

 
 
A chi-square test c2 (49, 181408) = 136280, p < .001 of the two categorical values shows that 
the two classifications have a significant relationship between them. We can measure the 
strength of the association by calculating the Cramer’s V value φc = 0.328, which indicates an 
important level of association, given that φc can take values between 0 (no association) and 1 
(complete association). 
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Figure 5. Built environment and socio-spatial patterns for the cities of Bristol (top) and 
Leeds (below).  

 
The two classifications, MODUM and OAC 2011, share many common locations, especially towards the city 

centre. In general, axial zones exhibit much more strongly in the morphological classification, while OAC 
seems to have a more “regionalized” patterning, at least within local extents. 
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Figure 6. Mapping the MODUM classification for the Greater London Area. 
 

4. Discussion and Further Research 
 
The development of MODUM illustrates that the production and analysis of a classification of 
the built environment using Big and Open Data can offer unique insights into some aspects of 
geodemographic structure of urban areas. The results capture through the multidimensionality 
of the data both microscopic and macroscopic identifiers of urban morphology. The 
classification can be used as input to more complex socio-economic models, increasing 
robustness. There is strong evidence that residential preference is a significant part related to 
form of the built environment, suggesting that there is an important dimension to residential 
decisions beyond homophily. This raises some logical discrepancies in current socio-economic 
geodemographic classifications; the conceptual “control by aggregation” does not account for 
these unobserved variables. For instance, one would expect house prices to drop significantly 
very close to railway tracks. However, these localized phenomena are aggregated in the general 
context of the area, and thus patterns get “smoothed away”, raising some issues about the 
success of geo-classifications (Voas and Williamson, 2001). While gathering this type of 
behavioural data would be next to impossible, their outcomes can be observed through peoples’ 
residential decisions on local morphology.  

Furthermore, the MODUM classification cannot only enhance socio-economic classifications, 
and take into account microscopic variation, but also it can also prove useful in itself; it can 
provide a simplified structure of the physical properties of geographic space that can be used 
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to explore correlations with other spatial phenomena, potentially in a variety of applications, 
from real estate and house prices to health and wellbeing. In a dynamic sense, it can be used 
by urban planners and investors in the built environment to identify the areas in which the 
physical preconditions exist for neighbourhood renewal or upscaling.  

On the other hand, the classification process described here is very specific to the underlying 
data and methodology. An inherent disadvantage of all geodemographic classifications is that 
lack of a single global optimization function during the classification procedure, making them 
highly susceptible to the operational decisions during the creation process (Openshaw and 
Gillard, 1978). However, geodemographics are nevertheless still valuable in many 
circumstances, mainly because they are practicable. Our own classification is easy to use, and 
offers the ability to append and update data as they become available, while keeping the same 
model infrastructure intact. In general, it meets the growing need for geodemographic systems 
that are open and versatile enough to handle the abundance of big data that are currently 
available. 
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