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Abstract 
The tortuosity of a structure plays a vital role in the transport of mass and charge in electrochemical 

devices. Concentration polarisation losses at high current densities are caused by mass transport 

limitations and are thus a function of microstructural characteristics. As tortuosity is notoriously 

difficult to ascertain, a wide and diverse range of methods has been developed to extract the 

tortuosity of a structure. These methods differ significantly in terms of calculation approach and 

data preparation techniques. Here, we review tortuosity calculation procedures applied in the field 

of electrochemical devices to better understand the resulting values presented in the literature. 

Visible differences between calculation methods are observed, especially when using 

porosity-tortuosity relationships and when comparing geometric and flux based tortuosity 

calculation approaches. 
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Nomenclature 
Parameters 

A Area 
BO Viscous flow parameter 
c Mole concentration 
d Thickness 
Deff Effective diffusion coefficient 

𝐷𝑖
𝑒𝑓𝑓

 Effective diffusion coefficient of a species 

Dbulk Bulk diffusion coefficient 
Di,K Knudsen diffusion coefficient 

𝐷𝑖𝑗
𝑒𝑓𝑓

 Binary diffusion coefficient 

𝑒𝛼𝑃𝐷𝐹
𝑖  

Speed of a species in the particle distribution 
function 

F Faraday constant 

𝑓𝛼𝑃𝐷𝐹
𝑖  Particle distribution function 

i Current density 
ilim Limiting current density 
Jeff Effective diffusion flux 
M Molar mass 
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n Equivalent electrons per mole of reactant 
𝑛̇𝑓𝑢𝑒𝑙 Molar flow rate of fuel gas 

NM MacMullin number 
p Pressure 

𝑝𝑓𝑢𝑒𝑙
0  Partial pressure of fuel at the gas inlet 

𝑞̇𝑒𝑓𝑓 Effective heat flux 
R Ideal gas constant 
〈𝑟2(𝑡)〉 Mean square displacement 
rP Mean pore radius 
T Temperature 
t Time 
Vphase Volume fraction of analysed phase 
w Mass fraction 
x Mole fraction 

xPDF 
Location of a species in the particle distribution 
function 

 

Symbols 

α Bruggeman exponent 

αPDF 
Direction of movement of a species in the 
particle distribution function 

γ Scaling factor 
δ Constrictivity 
ε Porosity 
𝜀

𝜏2
 Diffusibility or effective relative diffusivity 

κ Tortuosity factor 

κgeo 
Geometric based characteristic tortuosity 
factors 

κgeo Flux based characteristic tortuosity factors 
λbulk Bulk thermal conductivity 
μ Dynamic viscosity 
σbulk Bulk conductivity 
σeff Effective conductivity 
τ Tortuosity 
τC Characteristic tortuosity 

𝛺𝛼𝑃𝐷𝐹
𝑖  

Collision term of a species in the particle 
distribution function 

 

1. Introduction 
Electrochemical devices, including fuel cells and batteries, will play an increasing role in our live, 

particularly as we transition to a low-carbon economy. However, in order to accelerate their 

commercialization across a range of applications, an improved understanding of the underlying 

material characteristics is required. The importance of the effect of microstructure on the 

performance of electrochemical devices has been widely demonstrated1, which is why studies of 

microstructural analysis techniques2 are crucial for optimizing vital parameters. Among these 

parameters, tortuosity plays an essential role in mass transport and concentration polarisation 

resistance.3 Yet, calculating the tortuosity is not trivial, which is why a wealth of tortuosity 
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calculation methods has been developed, not only in the electrochemical community, but across 

many fields of research (optics, magnetism, geology, medicine, etc.), each with associated 

definitions and areas of application.4,5 

The microstructure of porous electrode and support layers in electrochemical devices is the main 

contributor to performance losses, especially in mass transport limiting operating regimes. This is 

valid for batteries, fuel cells and oxygen transport membranes alike, where tortuosity is used to 

relate the effective transport properties of diffusion and electric or ionic flux, to its respective bulk 

property. As such, tortuosity is an indispensable parameter in modelling and quantifying fuel cell6 

and battery behaviour.7 In addition, tortuosity serves as an input parameter in Newman-type models 

of battery performance8 and the Adler-Lane-Steele model for electrode kinetics.9 

Due to the importance of tortuosity for electrochemical devices, and the multitude of calculation 

approaches, this article reviews the use of tortuosity and various tortuosity calculation methods in 

the field of electrochemistry. These methods can differ considerably from each other in terms of 

calculation approach and data preparation techniques. Here, we deal with each in turn. 

2. Definition of Tortuosity 
In geometrical terms, tortuosity τ is defined as the fraction of the shortest pathway through a porous 

structure Δl and the Euclidean distance between the starting and end point of that pathway Δx, 

illustrated in Figure 1. As such, τ always amounts to a value equal to or greater than unity. In general, 

when analysing a porous structure, there exists only one shortest pathway and one tortuosity value. 

From this geometric perspective, constrictions or bottlenecks of the pore structure are not 

considered. The concept of tortuosity has been adopted in a variety of sciences4,5 such as gaseous 

mass transport and electronic and ionic conductivity through porous, functional layers. In these 

fields, tortuosity is applied in a broader way than just a simple geometric measure of the shortest 

path length; tortuosity is also used to quantify and describe the resistance of a structure to a flux. In 

this respect, the difference between “tortuosity” and “tortuosity factor” was coined by Epstein in 

1989,10 who used a capillary model to show that the tortuosity τ is the square root of the tortuosity 

factor κ, as presented in Eq. (1). 

The tortuosity factor accounts for both the additional path length and its change in velocity of a 

species when migrating through a porous structure. Epstein then applied this derivation in the field 

of diffusion, where the tortuosity factor is used to calculate the effective diffusion coefficient Deff 

based on the bulk diffusion coefficient Dbulk, shown in Eq. (2), which is also valid for ionic and 

electronic conductivities. The nomenclature distinguishing between κ and τ is adopted in this review 

and values are converted accordingly, where necessary. 

𝜅 = 𝜏2 Eq. (1) 
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Figure 1: Representation of the geometric definition of tortuosity, which is the fraction between the shortest path through a 
porous structure Δl and the Euclidean distance between the starting and endpoint of that pathway Δx 

𝐷𝑒𝑓𝑓 =
𝜀

𝜅
 𝐷𝑏𝑢𝑙𝑘 =

𝜀

𝜏2
 𝐷𝑏𝑢𝑙𝑘 Eq. (2) 

𝐷𝑒𝑓𝑓 =
𝜀 𝛿

𝜏
 𝐷𝑏𝑢𝑙𝑘 Eq. (3) 

 

Yet, the theory behind the tortuosity factor, is controversial, especially in the field of diffusive mass 

transport: van Brakel and Heertjes11, for example, defined a constrictivity factor δ to account for the 

variation in pore diameter along the diffusion pathway, which is included in calculating the effective 

transport property via Eq. (3). 

This constrictivity factor was later adopted by Holzer et al.12 who stated that the implementation of 

τ2 was used to explain high values of experimentally derived tortuosities. Consequently, the authors 

differentiated between two types of tortuosity:12,13 

1. That, which is acquired by indirect calculations based on experimental data τexp. 
2. And that, which is determined via geometric algorithms from reconstructed 3D volumes τgeo. 

Additionally, when analysing diffusive mass transport problems, depending on the diffusion 

mechanism taking place through a porous medium (ordinary, Knudsen and/or viscous diffusion)14 

and on the gases involved15, different tortuosity values may dominate. 

The geometric definition of tortuosity clearly suggests that there exists only one shortest pathway 

through a porous membrane. Yet, this pathway might not be the predominant diffusion pathway of 

gases and does not account for constrictive pores; not all molecules will be affected by the 

microstructure to the same extent when migrating through such a layer. The inherent difference of 

the mean free path between each gaseous species leads to different Knudsen numbers and thus, 

different diffusion pathways for different species at different temperatures, gas compositions and 

Δl

Δx
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transport regimes. It can thus be inferred, that for each species and each transport regime, a 

different tortuosity value is dominating. 

Moreover, in experimental approaches, tortuosity is not always presented explicitly, but is rather 

combined with porosity into a “diffusibility”16,17 or “effective relative diffusivity”18,19 value expressed 

as 
𝜀

𝜏2
. Additionally, in the field of battery research, tortuosity is contained in the MacMullin number 

NM, which relates the bulk conductivity of the electrolyte σbulk to the effective conductivity of the 

porous electrolyte σeff:20–23 

𝑁𝑀 =
𝜎𝑏𝑢𝑙𝑘

𝜎𝑒𝑓𝑓
 =
𝜏2

𝜀
  Eq. (4) 

 

The different definitions and applications of the term tortuosity, i.e. the differentiation between 

geometric and flux/conductivity based tortuosity, entail differences in their significance, 

interpretation and calculation approach. This is reflected by the vast number of tortuosity 

calculation approaches shown here. 

3. Porosity-Tortuosity Relationships 
Employing a porosity-tortuosity relationship is one of the most fundamental and straightforward 

approaches to derive a tortuosity (or effective medium property) of a porous structure. Such 

relationships, of theoretical or empirical origin, directly calculate a tortuosity value solely based on a 

porosity of a sample. 

In the comprehensive work by Shen and Chen,24 a review of past and present correlations is 

provided, among which the Bruggeman equation is the most well-known and most widespread 

relation in the field of electrochemistry.25 Eq. (5) presents the generally used form of the Bruggeman 

relationship, where α is the Bruggeman exponent which, in its standard form, is considered to be 

1.5. Recently, the authors have provided a translation and explanation of the mathematical 

formulation of Bruggeman which is used to derive the widely used model.26 

τ𝐵𝑟𝑢𝑔𝑔𝑒𝑚𝑎𝑛
2 = ε1−𝛼 Eq. (5) 

 

Whilst the history of the Bruggeman correlation can be traced back to the 1930s, its proliferation is 

not notable until the 1950s: Hoogschagen was one of the first to use the Bruggeman and Maxwell 

relation (cf. Eq. (6)) to validate experiments, where gas diffusion through glass spheres was 

measured. He observed, that values for the labyrinth factor (
1

𝜏2
) lay between the Maxwell and 

Bruggeman correlation, but slightly closer to the latter.16 

 

De La Rue and Tobias achieved similar results when measuring the effective conductivity values of 

liquid ZnBr2 electrolyte solution. A variety of non-conducting glass spheres of different sizes were 

embedded into the electrolyte to achieve different volume fractions. The conductivity as a function 

of volume fraction of the embedded phase was evaluated. As was the case in Hoogschagen’s 

publication,16 results lay between the Maxwell27,28 and Bruggeman relation.29 Since then, the 

Bruggeman equation has become a commonly used method to derive effective medium properties 

𝜏𝑀𝑎𝑥𝑤𝑒𝑙𝑙
2 = (

3 − 𝜀

2
) Eq. (6) 
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of porous structures in batteries30–34 and proton exchange membrane (PEM) fuel cells.35–44 

Moreover, it has been implemented as a standard addition to predicting microstructures in 

electrochemistry models, such as in the COMSOL Multiphysics modelling software (COMSOL, Inc.).23 

However, predictions given by the Bruggeman correlation are not always consistent with 

experimental results.23,45 As a consequence, researchers have adjusted the Bruggeman equation by 

altering the exponent α to fit experimental values. Thorat et al. 46 even included an additional scaling 

factor γ to correlate the Bruggeman model with their experiments, resulting in Eq. (5) to be 

extended to the following form: 

τ𝐵𝑟𝑢𝑔𝑔𝑒𝑚𝑎𝑛
2 = 𝛾 𝜀1−𝛼 Eq. (7) 

 

Thorat et al. used AC impedance spectroscopy and the polarization-interrupt method (cf. section 

4.2) to extract the tortuosity of a battery separator (Celgard 2400) and cathode samples (LiFePO4 

and LiCoO2). Tortuosity values of the battery cathode samples were plotted as a function of porosity 

and an exponential fitting curve was superimposed. The exponent of the fitting curve amounted 

to -0.53, which is equivalent to a Bruggeman exponent of 1.53 and thus, very close to its derived 

value. However, achieved tortuosities were almost twice as high as predicted by the standard 

Bruggeman relationship, which is why a scaling parameter γ amounting to 1.8 was introduced. This 

approach of adjusting α and γ was widely adopted showing, that depending on the analysed 

structure, both parameters can deviate visibly from the ideal values of 1 and 1.5, respectively.31,46–54 

A further refinement of this approach was realised by Zacharias et al.,52 who made α and γ a function 

of their battery electrode composition. For this, the dry weight fraction of graphite, carbon black and 

polyvinylidene fluoride were considered, resulting in higher γ values (2.5 and 2.6) and lower α values 

(1.27 and 1.28) compared to values from Thorat et al.46 

Table 1 and Figure 2 compare several derived Bruggeman exponents and scaling parameters for 

different porous materials for battery applications. These were each extracted as a function of 

several experimental measurement points and used to extrapolate the presented curves as function 

of porosity. It is notable, that even for this small class of materials, values for α and γ differ 

significantly from each other. The differences in manufacturing techniques, and also the differences 

of composition, pore size distribution and other microstructural characteristics of each battery layer 

contribute to such a large spread of values. Some of these derivations, however, achieve tortuosity 

values below unity when extrapolated to high porosity values, which is in contradiction to the 

definition and physical significance of τ. Moreover, a porosity of one necessitates a tortuosity of one. 

Yet, this is not achieved by all correlations. Both of these findings cast doubts on the usefulness of 

this method. As a consequence, the application and interpretation of α and γ values have to be 

analysed with caution. 

Hence, evaluating the validity of the Bruggeman correlation is still an ongoing field of research. 

Chung et al.55 used X-ray computed tomography and simulation techniques for an extensive study to 

evaluate the effect of battery membrane fabrication and processing methods on the tortuosity. In 

total, 16 LiNi1/3Mn1/3Co1/3O2 battery electrodes with varying weight ratios were manufactured and 

reconstructed using X-ray synchrotron tomography.56 Tortuosity was then extracted by simulating 

mass transport according to Fick’s law across the sample volume (see section 5.2). It was shown, that 

calculated tortuosity values always lie slightly above the Bruggeman correlation. For further 

investigation, samples based on the particle size distributions of the imaged samples were computer 

generated, for which the orientation and particle packing was varied. It was discovered, that 
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perfectly ordered particle distributions result in tortuosities close to the Bruggeman relationship 

throughout the range of porosity values.55 

Continuing work in the field of battery research from Wood and co-workers (cf.53,55,56) culminated in 

the development of an open source program called BruggemanEstimator.57 This program allows the 

extraction of the Bruggeman exponent α in each dimension of a 3D sample volume by using two 2D 

images, namely one top view and one cross-sectional view. The Bruggeman exponent of the sample 

is achieved by applying the differential effective medium approximation method introduced by 

Bruggeman. In comparison to previously obtained values, results calculated by the 

BruggemanEstimator software agreed well with numerical tortuosity calculation methods57 and has 

been recently applied in practice.58 This approach is similar to stereological methods which quantify 

3D properties based in 2D image slices.59 The advantage of stereology is the reduced experimental 

efforts necessary to extract results. However, Taiwo et al.2 recently concluded, that values based on 

stereological approaches may deviate visibly from 3D measurements. 

Table 1: Comparison of Bruggeman exponent and scaling parameter for battery layers fitted to experimental results 

Material γ α Reference 

Battery electrode 1 3.3 Doyle et al.47 
Battery electrolyte 1 4.5 Doyle et al.47 
Battery separator 1 2.4 Arora et al.31 
Battery electrode 1 5.2 Arora et al.31 
Battery electrode 1.8 1.53 Thorat et al.46 
Battery electrode 0.115 3.2111 Kehrwald et al.50 
Battery electrode 0.1146 3.159 Kehrwald et al.50 
Battery electrode 2.5 1.27 Zacharias et al.52 
Battery electrode 2.6 1.28 Zacharias et al.52 
Battery separator 0.667 2.43 Cannarella et al.51 
Battery separator 0.58 3.33 Cannarella et al.51 
Battery separator 1.77 1.77 Cannarella et al.51 
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Figure 2: Comparison of Bruggeman exponents and scaling parameters for different battery layers referenced in Table 1 

Moreover, a wide range of recent studies report conflicting results on the validity of the Bruggeman 

correlation when compared to calculations conducted using tomography techniques. Conclusions 

vary substantially as in some instances, simulations agree well with the Bruggeman correlation,33,55 

while considerable disagreement was observed in other cases.44,60–62 The reason for this seems to be 

sample specific, as heterogeneity and geometry are characteristics of porous materials that are not 

accounted for by the Bruggeman correlation. The aforementioned studies have shown that the 

characteristic shape of the analysed microstructure has considerable effects on the validity of the 

Bruggeman relation: spherical structures, which follow Bruggeman's initial hypothesis very closely, 

adhere to the correlation. The correlation, however, is less suitable for connected solid phases and 

complex porous networks. 

This is further complicated by the distinctions (or lack thereof) between geometrical and transport 

limiting tortuosity.63 Moreover, porosity-tortuosity relationships provide limited information in 

areas, where the analysed sample consists of several layers with different microstructural features 

Such as multi-layer battery separators51 which combine different properties into a single separator; 

i.e. each individual layer exhibits distinct structural properties, and for this reason, the simplified 

assumption of a homogenous sample volume made by the Bruggeman correlation is no longer valid. 

As a conclusion, it can be stated that porosity-tortuosity relationships are only applicable and 

reliable when executed across homogeneous microstructures which are similar to the 

microstructure used to derive the respective relationship. 
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4. Experimentally Derived Tortuosity 
Historically, the lack of detailed geometrical information on complex porous media in 3D has limited 

the ability of researchers to extract meaningful data on the tortuosity of a porous body. In the 

absence of this information, effective transport properties of porous structures have been derived 

experimentally by means of diffusion cell experiments16,17,64–70and electrochemical 

measurements.15,19,46,71 

4.1. Diffusion Cell Experiments 
As reviewed by He et al.72 diffusion measurement methods in the field of fuel cell research aim at 

extracting effective diffusion coefficients for distinct gas mixtures. Typically, a porous sample is 

mounted between an upper and a lower gas channel where two different gases enter the upper and 

lower chamber. Due to the concentration gradient across the porous material, diffusion of either gas 

to the opposite channel is induced. Measuring the concentration of either gas both streams allows 

the calculation of the diffusion fluxes across the membrane via a mass balance over the cell, as 

illustrated in Figure 3. The effective binary diffusion coefficient and in turn, the tortuosity of the 

sample, are subsequently derived by applying a suitable diffusion model. 

 

Figure 3: Mass balance over a Wicke Kallenbach diffusion cell to extract the diffusion flow rate across a porous sample 

The applicability of such models is dependent on the diffusion mechanism taking place through the 

porous medium (ordinary, Knudsen and/or viscous diffusion cf.14,73,74). The most direct diffusion 

model considering ordinary and Knudsen diffusion is the Fick model. For this, Fick’s law is extended 

by combining the Knudsen diffusion coefficient Di,K, (Eq. (8)) with the effective binary diffusion 

coefficient 𝐷𝑖𝑗
𝑒𝑓𝑓

 via the Bosanquet equation (Eq. (9)). Moreover, Fick’s model is capable of 

incorporating viscous flux via Darcy’s law, as presented by Eq. (10). In this case the model is referred 

to as advective-diffusion model.75 

In the following equations, rP is the mean pore radius, R is the ideal gas constant, T the temperature, 

M the molar mass, 𝐷𝑖
𝑒𝑓𝑓

 is the effective diffusion coefficient of a species, BO is the viscous flow 

parameter and μ is the dynamic viscosity and p the pressure and w the mass fraction. 

𝐷𝑖,𝐾 = −
2

3
 𝑟𝑃  

𝜀

𝜏2
 √
8 𝑅 𝑇

𝜋 𝑀
 Eq. (8) 
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Gas Channel 2
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 ̇     
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𝐷𝑖
𝑒𝑓𝑓

= (
1

𝐷𝑖𝑗
𝑒𝑓𝑓

+
1

𝐷𝑖,𝐾
)

−1

 Eq. (9) 

𝐽𝑖,𝐷 = −
1

𝑅  𝑇
 (𝐷𝑖𝑗

𝑒𝑓𝑓
 ∇𝑝𝑖 +

𝐵𝑂  𝑐𝑖
𝜇
 ∇𝑝) Eq. (10) 

 

While Fick's law assumes equimolar diffusion in a binary gas mixture, Mills76 suggested that diffusion 

follows equimass principles. By converting the molar concentration gradient of Fick’s first law into a 

gradient of mass fraction, the governing equation for equimass diffusion was achieved: 

𝐽𝑖,𝐷 = −𝐷𝑖
𝑒𝑓𝑓
 
𝑝

𝑅 𝑇
 

𝑀𝑖 𝑀𝑗

[𝑤𝑖 (𝑀𝑗 −𝑀𝑖) + 𝑀𝑖]
 ∇𝑤𝑖 Eq. (11) 

 

Again, the Bosanquet equation and Darcy’s law can be used to extend the formulation to cater for 

additional diffusion mechanisms besides ordinary diffusion. The effective diffusion coefficients are 

directly achieved via the above models which make their application straightforward. More complex 

models such as the Dusty Gas Model (DGM) 73 or Maxwell-Stefan Model (MSM), shown in Eq. (12) 

and Eq. (13), respectively, combine several diffusion modes a priori. The DGM, for example, includes 

expressions for ordinary, Knudsen and viscous flux, where x is the molar fraction: 

𝐽𝑖,𝐷
𝐷𝑖,𝐾

+ ∑
𝑥𝑗 𝐽𝑖,𝐷 − 𝑥𝑖 𝐽𝑗,𝐷

𝐷𝑖𝑗
𝑒𝑓𝑓

𝑛

𝑗=1,𝑗≠𝑖

= −
𝑝 ∇𝑥𝑖
𝑅 𝑇

+
𝑥𝑖  ∇𝑝

𝑅 𝑇
 (1 +

𝐵𝑂  𝑝

𝜇 𝐷𝑖,𝐾
) Eq. (12) 

 

The MSM uses the same correlation as the DGM, but neglects Knudsen diffusion effects. As a result, 

coefficients related to Knudsen diffusion drop out of equation Eq. (12) and result in the following 

formulation: 

∑
𝑥𝑗 𝐽𝑖,𝐷 − 𝑥𝑖  𝐽𝑗,𝐷

𝐷𝑖𝑗
𝑒𝑓𝑓

𝑛

𝑗=1,𝑗≠𝑖

= −
𝑝

𝑅 𝑇
 ∇𝑥𝑖 Eq. (13) 

 

The accuracy of these models has been discussed77 and evaluated in literature, predominantly by 

comparing them to measured concentration polarisation losses in SOFC anodes.78,79 In these 

experiments, the DGM achieved highest accuracy among the analysed models, which might be one 

reason for its widespread use in literature,79–83 while the simplicity but lower accuracy of the Fick 

model was frequently highlighted. However, in these cases, tortuosity is usually used as a fitting 

parameter to tailor calculation results to measured data. Consequently, the extracted tortuosity 

values are highly dependent on the accuracy of the applied model. 

One recent application of extracting the tortuosity of a porous sample via diffusion cell experiments 

was presented by Tjaden et al.84. In their analysis, a variety of binary gas mixtures were tested on a 

planar YSZ porous support layer of an oxygen transport membrane. It was shown, that the tortuosity 

for different binary gas mixtures is not a constant value but depends on the involved gaseous 

species. Due to the difference in mean free path between the different constituents, different 

diffusion pathways dominate and thus, different tortuosity values are achieved. For example, at 

ambient temperature, tortuosity based on the diffusive flux of CH4 in the CH4-N2 binary gas mixture 

amounted to approximately 2.3 while tortuosity of the N2 diffusion flux amounted to approximately 
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2.5. In addition, the authors showed, that tortuosity increased with increasing temperature: the 

average tortuosity of all binary gas mixtures increased from 2.36 to 2.73. 

Contrary temperature dependent behaviour of measured diffusion coefficients was observed by 

Zamel et al.17 A Loschmidt cell was used to measure the effective diffusion coefficient of a O2-N2 gas 

mixture migrating through carbon paper, which is commonly applied as gas diffusion layer in PEM 

fuel cells. When increasing the temperature from 25 °C to 80 °C, the bulk diffusion coefficient of the 

gas mixture, achieved via a resistance network model based on Fick’s law, increased from 

approximately 0.2 cm2/s to 0.275 cm2/s while the effective diffusion coefficient increased from 

approximately 0.05 cm2/s to 0.075 cm2/s. This causes the factor 
𝜀

𝜏2
 to increase by approximately 

11.5 % from 0.252 to 0.281. Thus, when considering a constant porosity value, the tortuosity 

decreases to the same extent. In addition, the authors compared the calculated diffusibility values to 

a set of porosity-tortuosity relationships, among others, the Bruggeman relation. In all cases, these 

relationships overestimate the effective diffusion coefficient (and thus, underestimate tortuosity), 

which was also observed by Tjaden et al.84 

The discrepancies in temperature dependence might be caused by the fundamental difference in 

microstructural aspects: while YSZ based porous structures are tailored to feature connected solid 

phases with specific porosities, carbon paper based gas diffusion layers are an accumulation of 

randomly oriented, fine fibres, typically with much higher porosity. The resulting differences in pore 

size distribution, mean pore diameter and porosity cause the observed diffusion mechanisms to 

differ visibly among such samples. 

4.2. Electrochemical Experiments 
Mass transport limitations play a vital role in electrochemical devices as they are responsible for 

concentration polarisation at high current densities. For example, as current densities increase, the 

fuel demand in a fuel cell increases linearly, as shown below, where 𝑛̇𝑓𝑢𝑒𝑙 the molar flow rate of fuel 

gas, i the current density, A the area, n the equivalent electrons per mole of reactant and F the 

Faraday constant:6 

𝑛̇𝑓𝑢𝑒𝑙 =
𝑖 𝐴

𝑛 𝐹
 Eq. (14) 

 

The fuel consumption rates at the active sites of a fuel cell are limited by the maximum diffusion rate 

of fuel through the porous structures. As introduced in previous sections, diffusive mass transport 

and as such, mass transport limitations, are a function of the complex microstructure of the involved 

porous membrane layers. Hence, microstructural parameters such as tortuosity are achievable by 

measuring concentration losses of fuel cells and applying gas diffusion theory. 

In this respect, SOFCs offer the possibility to investigate the effect of fuel gas compositions on the 

performance due to their wide fuel flexibility. A thorough study of on this topic was presented by 

Jiang and Virkar.15 As the effects of mass transport limitations are dominating under high current 

density operations, Jiang and Virkar modified Fick’s law to express the effective diffusion coefficient 

as a function of the limiting current density of the fuel cell under specific operating conditions. The 

resulting equation is presented thereafter, where ilim is the limiting current density, 𝑝𝑓𝑢𝑒𝑙
0  the partial 

pressure of fuel at the gas inlet and d is the thickness: 
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𝐷𝑒𝑓𝑓 =
𝑖𝑙𝑖𝑚

2 𝐹 𝑝𝑓𝑢𝑒𝑙
0  

𝑅 𝑇 𝑑
−
𝑖𝑙𝑖𝑚
𝑅 𝑇 𝛿

 
𝐴 𝑝
𝑛̇𝑓𝑢𝑒𝑙

 
Eq. (15) 

 

The limiting current density was measured experimentally from polarisation curves for a set of 

binary and ternary fuel gas mixtures including H2-H2O, CO-CO2, H2-He-H2O, H2-N2-H2O and 

H2-CO2-H2O, each under varying concentrations. Tortuosity values were then calculated by reversing 

the Bosanquet equation shown in Eq. (9). At 800 °C, the lowest tortuosity values were achieved for 

the H2-H2O mixture, which, on average, amounted to 2.23, while the highest tortuosity values were 

calculated for the H2-CO2-H2O mixture, amounting to 2.73. Moreover, in direct comparison between 

the two binary gas mixtures, it was revealed, that fuel cell performance was higher using H2 as fuel 

gas rather than CO which, besides the lower electrochemical activity of CO, was due to the 

significantly faster diffusion rate of H2. These results confirm the findings of different tortuosity 

values for different binary gas mixtures presented in the previous chapter. 

Brus et al.71 adopted the same methodology to compare electrochemically derived tortuosity values 

with an image based tortuosity calculation method, namely the random walk method (cf. section 

5.2.1). For their experiments, a button-type SOFC sample was manufactured to measure impedance 

spectra and polarisation characteristics at 700 °C and 800 °C. This way, the limiting current densities 

were extracted for H2 concentrations between 2.5 % and 90 % in N2 and inserted into Jiang and 

Virkar’s model. After these experiments, the 3D microstructure of the anode was reconstructed 

using FIB-SEM tomography and the random walk method was executed. For each hydrogen 

concentration and for both operating temperatures, a distinct tortuosity value is calculated whereas 

the random walk method results only in a single value as shown in Figure 4. Here, only the tortuosity 

values calculated for low hydrogen concentrations and as such, high concentration polarisation, 

were considered as accurate representative values. In these cases, the experimentally derived 

tortuosities agreed well with the random walk value. Hence, under standard fuel cell operating 

regimes, where activation and ohmic losses dominate, concentration losses and thus, the tortuosity 

of the porous layers affect the performance only slightly. 

However, experimental based tortuosity values are only valid for the specific experiment at hand. 

While the results between image and experimental based tortuosity values in the above case are 

close, this agreement might not be reproducible when the fuel gas composition changes. 

Figure 4 also shows that higher temperatures have a positive effect on tortuosity: for each fuel gas 

composition, the tortuosity is lower at higher a temperature, which can be explained by the higher 

catalytic activity and faster diffusion rate. Yet, aside of the effect of temperature, the influence of 

structural parameters such as the layer thickness on the tortuosity of SOFC anodes is of interest. This 

was investigated by Tsai and Schmidt,85–87 who, again, applied Jiang and Virkar’s approach for this 

purpose. While they observed the same dependency of tortuosity on H2 concentration as Brus et 

al.71, Tsai and Schmidt87 showed that electrode thickness had no effect on the achieved tortuosity 

values which is expected for steady state operation. 
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Figure 4: Comparison of experimentally and image based tortuosity values at different temperatures and for varying H2 
concentrations in N2 71 

Electrochemical experiments have also been applied to study microstructures of lithium-ion battery 

materials. Thorat et al.46 used polarization interrupt (or restricted diffusion) experiments88–90 and 

impedance spectroscopy to measure the tortuosity in electrode and separator layers. Using the 

polarization interrupt technique, Thorat et al. derived the tortuosity of two distinct active material 

films consisting of LiFePO4 and LiCoO2, respectively. On the other hand, AC impedance spectroscopy 

was carried out to determine the effective conductivity of the electrolyte in the separator and 

ultimately, the MacMullin number or the tortuosity of the separator itself. While the authors used 

the AC impedance experiments to validate the polarization interrupt experiments, the effect of 

porosity on the tortuosity of the active material films was in the centre of their research and led to 

the adjustment of the scaling factor to 1.8 and Bruggeman exponent α to 1.5346 as discussed in 

section 3. 

With the development of advanced manufacturing techniques, lithium ion battery electrode 

microstructures can be tailored and optimized to meet user and application specific demands. Bae et 

al.,91 for example, applied a two pronged approached to improve electrode design: first, using a 

modified model by Doyle and Newman92, the tortuosity of different electrode microstructures with 

periodically spaced flow channels, was calculated. Based on these results, LiCoO2 electrodes 

mimicking the modelled microstructures were manufactured using a co-extrusion procedure. In their 

model, electrodes with flow channel spacing equal to or smaller than the electrode thickness offered 

lowest tortuosity values. To validate these findings, charge and discharge curves of the 
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manufactured samples with large, medium and small channel spacing were measured. As predicted, 

the sample with finest and most closely spaced channels yielded highest specific capacity of 

approximately 8 mAh/cm2 at C-rates of one and two. The authors attributed this improved capacity 

to the lower tortuosity of their manufactured electrode, validating their model. 

In general, experimental setups can be adjusted to fit the operating conditions of the analysed 

specimen. However, as the derived results are fitting parameters, the tortuosity values are highly 

dependent on the applied model. Moreover, while fuel cell experiments can be highly versatile in 

terms of operating temperature and applied fuel gas, batteries are not subject to such variations. 

Hence, it appears to be easier to extract an overall valid tortuosity value for a battery layer than a 

fuel cell layer. 

5. Tortuosity Calculation in 3D Volumes 
The advent of sophisticated and easily accessible tomography methods has increased the amount of 

obtainable data of porous samples which fundamentally changed the perception of microstructural 

characterisation in 3D.93 Focused ion beam–scanning electron microscope (FIB-SEM) slice and view 

tomography,94 and X-ray computed tomography (X-ray CT)95 are among the most prominent 

methods of reconstructing a sample in three dimensions. Even though the operation and image 

acquisition of both method is radically different, comparative studies showed, that acquired data is 

identical when the resolution is the same.84,96,97 

 

Figure 5: Illustration of increasing resolution of X-ray CT scan of porous support layer of OTM for preparation of diffusion 
simulation 

In recent years, tomographic reconstruction of microstructures in electrochemical devices, 

illustrated in Figure 5, has become increasingly widespread, offering, the possibility to evaluate vital 

parameters, such as triple phase boundary length in SOFCs,98,99 connectivity,100 phase distribution101 

and tortuosity80,98 at different length scales.102 Additionally, the effect of microstructural parameters 

100 μm
10 μm

2.5 μm
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on the performance of electrochemical devices has been evaluated by generating synthetic 3D 

volumes in-silico.33,55,103,104 The purpose for this process is to directly evaluate the effect of specific 

microstructural variations such as porosity, pore size distribution, shape or packing orientation of 

particles on mass transport. 

There remains some confusion in the literature regarding the different definitions of tortuosity for 

the purpose of image based modelling: here, we distinguish between two main approaches in 

extracting tortuosity: 

1. Geometric based algorithms, which aim to determine the shortest path length through a 
porous structure by purely considering geometric aspects. 

2. Flux based algorithms, which mimic mass transport and diffusion behaviour, which is not 
taken into consideration in geometric based algorithms. These methods are further divided 
into the following two subsections: 

a. Voxel based algorithms that take the extracted dataset and directly execute tortuosity 
extraction techniques across the voxel domain of the analysed phase. 

b. Mesh based approaches which rely on generating a volume mesh of the analysed 
phase to prepare the sample for computational fluid dynamics (CFD) programs. 

It is evident, that the increase in development of such techniques correlates with the increasing 

accessibility of tomography equipment and high-performance computers. 

5.1. Geometrically Based Algorithms 
Geometric algorithms are commonly used to find the shortest pathway through a porous structure 

and thus, its tortuosity. The pore centroid method,62,102,105–107 the fast marching method 

(FMM),2,108,109 the distance propagation method,110 as well as or other shortest path search 

methods111,112 achieve this by being executed on the voxel domain of the analysed phase. These 

methods are straightforward in their application, as mesh preparation and refinement is not 

required. In addition, the results directly follow the initial definition of tortuosity, making them 

conceptually easier to interprete. Furthermore, apart from the pore centroid method, these 

algorithms create a distance map, which incorporates the distance of each pixel to the starting plane 

of the algorithm. Using the resulting distance map allows not only the identification of the shortest 

pathway, but also the generation of a tortuosity histogram (see Figure 6). 

The FMM achieves this by simulating an advancing front starting from one plane of the sample 

towards the opposite plane in the considered phase. The algorithm measures the time it takes for 

the front to reach each pixel on its way. By knowing the speed of advance of the front and the time 

it takes to arrive at a pixel, the distance between each pixel and the starting plane is achieved and 

tabulated in a distance map. Finally, tortuosity is calculated by dividing the shortest path length 

between two opposing planes by the Euclidean distance of the two endpoints of that path. 

Jørgensen et al.108 exploited the FMM based tortuosity histograms of a strontium-substituted 

lanthanum cobaltite (LSC) and gadolinia-substituted ceria (CGO) SOFC cathode, shown in Figure 6, to 

understand microstructural characteristics of each phase. In accordance with each phase’s volume 

fraction, LSC features higher tortuosity values than CGO. The distinct shapes and specifics of each 

phase’s tortuosity achieved by the FMM based histograms are able to provide more insight into the 

microstructural build-up of a sample compared to a single, mean tortuosity value. 
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Figure 6: Geometric tortuosity histogram achieved by FMM for all three phases of a SOFC cathode 108 

Yet, tortuosity histograms do not show, where the specific high or low tortuosity values are located 

within the sample. This, however, was realised by Chen-Wiegart et al.,110 who combined different 

tomography methods and distance propagation based tortuosity calculation approaches on various 

samples. Specimens included, among others, a LiCoO2 battery cathode, which was reconstructed 

using X-ray tomography. Geometric tortuosity values were then achieved by pixel counting and 

distance measuring techniques. The resulting values were not only represented as tortuosity 

histograms, similar to the ones presented in Figure 6, but also as 3D distribution across the battery 

cathode sample, as shown in Figure 7. The local variation in the image slices range from one to 2.5, 

which can also be ascertained from the tortuosity histogram. However, as tortuosity poses a 

resistance to mass and charge transport, the local tortuosity distribution is capable of pinpointing 

areas of low reactivity. It can be used to explain regions of increased charge transfer, areas of low 

fuel conversion, uneven charging or catalyst utilisation and degradation. Shearing et al.111 extended 

the approach of spatial distribution of geometric tortuosity to include additional characteristics such 

as volume specific surface area (VSSA) and porosity. A reconstructed graphite Li-ion battery 

electrode was segmented into a mosaic of equally sized volumes. For each tile, the aforementioned 

parameters were calculated and visualized to highlight the relation between them. While in most 

cases, tiles with high porosity featured low tortuosity, some sub-volumes exhibited low tortuosity 

paired with low porosity. Even though this combination seems counterintuitive, it emphasizes the 

complex interrelation between different microstructural parameters which are not always as clear as 

expected. 
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For comparative purposes, Chen-Wiegart et al. executed a diffusion simulation analogous to the one 

used in3 (cf. section 5.2.2) across the same sample volumes. It was shown that the results between 

the distance propagation and diffusion method of the pore phase in the LiCoO2 sample agreed well. 

However, when applying the same calculation approaches to two SOFC samples, the geometrically 

derived tortuosity values for the pore and YSZ phases were consistently below the diffusion based 

tortuosity methods. The difference might stem from the inherent difference between geometric and 

diffusion based considerations: the geometrically shortest path through a structure is not always the 

path of least resistance for a flux, owing to the presence of constrictions and pore necks. Further 

discussion on the differences of these considerations is presented in section 5.2. 

 

Figure 7: Geometric tortuosity distribution of the pore phase of the LiCoO2 battery cathode of yz (A), xz (B) and xy (C) planes 
110 

In contrast to the aforementioned algorithms, the pore centroid method does not provide a 

histogram of tortuosity values or spatial distribution of tortuosity, but rather arrives at one specific 

value of tortuosity along each dimension of a sample. The calculation algorithm follows the centre of 

mass of a phase of a 2D plane along the third axis of the volume. The length of the pathway going 

through each centroid is then calculated and used to determine the tortuosity as depicted in Figure 

8. Despite its shortcomings in comparison with the previous algorithms, the pore centroid is a 

standard option in image and volume processing programs such as Amira and Avizo (both FEI). As 

such, it is easily applied for comparative studies and capable of giving a quick tortuosity estimate. 

 

Figure 8: Illustration of the pore centroid method calculation approach which measures the distance d(n) of the centres of 
mass between two 2D image slices 

d(n)

n n+1 n+2 n+3 n+4



18 

Cooper et al. used the pore centroid method for comparison reasons when studying an SOFC107 and 

a battery electrode (cf. section 5.2.2).62 In 107, the tortuosity of the solid and pore phase of an LSCF 

SOFC cathode was determined by a variety of calculation algorithms, namely heat flux simulation (cf. 

section 5.2.2), Avizo XLab plugin, diffusion simulation (cf. section 5.2.1), random walk method (cf. 

section 5.2.1) and pore centroid method. These algorithms were executed across the same sample 

after imaging at 14 °C and 695 °C using synchrotron X-ray nano CT which have previously been 

extracted by Shearing et al.113 The pore centroid method produced the lowest tortuosity values for 

both phases at both temperatures and closely followed the Bruggeman relationship. Yet, the flux 

based calculation algorithms agreed well with each other as values lay between the heat flux 

simulation and the random walk method. The average tortuosity for the pore phase amounted to 

approximately 1.21 in all three dimensions at both temperatures and lay visibly below the values 

reported by Gostovic et al.105 using the same method. Large variability in homogeneity of a sample 

significantly affect the results achieved by the pore centroid method causing visible fluctuations. In 

this respect, Cooper114 pointed out, that if the analysed characteristic feature becomes small 

compared to the control volume, the centroid of each 2D plane will tend towards the centre, 

resulting in a tortuosity of unity which casts doubt on the applicability of this approach. 

5.2. Flux Based Algorithms 
Even though geometrically based tortuosity calculation algorithms can extract useful data 

concerning the distribution of geometric tortuosity across a sample, these algorithms do not mimic 

the flux like behaviour of transport phenomena. For example, small connections consisting only of 

one voxel would only contribute a negligible amount to the overall flux of transported species while 

they are fully included in the above calculation methods. As a result, flux based algorithms focus on 

simulating the transport mechanism at hand to extract the tortuosity of a sample. Here, this method 

is separated into two parts, namely voxel and mesh based calculation approaches. 

5.2.1. Voxel Based Calculation Methods 
Voxel based algorithms are directly executed across the voxel domain of the reconstructed volume. 

This means that for the methods introduced below, no additional re-tessellation or re-meshing steps 

are necessary after the sample has been segmented. In most cases, a binarised 2D image sequence is 

sufficient to operate the calculation procedure. 

One of the first applications of combining X-ray nano tomography with image based tortuosity 

calculation was presented by Izzo et al.,80 where X-ray CT was used to gather microstructural 

parameters of a porous SOFC anode including porosity, tortuosity and pore size distribution. The 

authors solved the Laplace equation of diffusive mass transport through the pore phase of the 

electrode as explained in a different publication of the group.115 Grew et al.116 applied the same 

methodology but extended its application to the solid phases of a Ni-YSZ SOFC anode. As effective 

ionic and electronic conductivity are affected by the tortuous nature of fuel cell electrode layers (cf. 

Eq. (2)), tortuosities of solid phases are equally as important as of pore phases. Yet, they were at 

least a factor of 1.2 higher. 

Their work was further refined in117 by calculating the representative volume element of the pore 

phase tortuosity by solving the Laplace equation using the same method. Cooper114 programmed a 

MATLAB (Mathworks) Laplace solver called TauFactor118 to extract the tortuosity of a two phase 

segmented 3D tiff stack as shown in Figure 9. The solver then determines the tortuosity in each 

dimension for both phases. In114, Cooper compared the results of the TauFactor solver to his 

previous work presented in107 revealing, that his solver gives similar results as the Avizo package 

XLab Thermo and the heat flux simulation. 
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Figure 9: Results of the TauFactor solver by Cooper 114 running across the pore phase of a porous sample showing the binary 
image map, the initial, linear concentration distribution and the concentration distribution at steady state 

Aside from solving the Laplace equation to arrive at the tortuosity of their sample, Izzo et al.80 

included the lattice Boltzmann method (LBM)119 to model multi-component gas transport coupled 

with an electrochemical model to visualize the H2 distribution in the anode. Due to the capability to 

model gaseous, ionic and electronic transport, the LBM became widely applied in fuel cell research 

also with the focus of extracting tortuosity in different phases of a functional layer.99,120–125 For this, 

the LBM uses the particle distribution function (PDF) 𝑓𝛼𝑃𝐷𝐹
𝑖 , which is a function describing the 

probability of encountering a particle of a species i at a certain location xPDF with a certain speed 

𝑒𝛼𝑃𝐷𝐹
𝑖  at a certain point of time t moving in a certain direction αPDF. 

The LBM consists of two steps, namely streaming and collision, which are carried out on each point 

of a lattice: during streaming, the particles migrate to adjacent lattice points while during collision, 

the interactions between particles at each lattice point governed by the collision term 𝛺𝛼𝑃𝐷𝐹
𝑖  are 

computed. Both steps are collectively expressed by the lattice Boltzmann equation:115,126 

𝑓𝛼𝑃𝐷𝐹
𝑖 (𝑥𝑃𝐷𝐹 + 𝑒𝛼𝑃𝐷𝐹

𝑖 , 𝑡 + 1) − 𝑓𝛼𝑃𝐷𝐹
𝑖 (𝑥𝑃𝐷𝐹, 𝑡) = 𝛺𝛼𝑃𝐷𝐹

𝑖  Eq. (16) 

 

Using this approach, Iwai et al.99 arrived at tortuosity values for each phase in the porous Ni-YSZ 

anode by calculating the effective diffusion coefficient and effective ionic as well as electronic 

conductivities of the respective phases. The anode sample was reconstructed based on FIB-SEM 

tomography, where the Ni and YSZ phases were identified via EDX mapping, to correlate the correct 

phase to the respective electron image. Table 2 compares the achieved tortuosity values for all three 

phases along each dimension using the LBM as well as the random walk method, which is introduced 

thereafter. It is evident, that the tortuosity values of the solid phases are higher compared to the 

pore phase, which is identical to findings presented by Chen-Wiegart et al.110 using a distance 

mapping approach. Nevertheless, values for the pore phase tortuosity are lower but comparable to 

values found by Izzo et al.80 However, due to the observed directional anisotropy of the solid phase 

tortuosities, Iwai et al. concluded, that the sample volume was not sufficiently large to present 

effective ionic and electronic conductivity values. Vivet et al.127 achieved similarly high Ni-phase 

tortuosity values using a finite difference method. However, due to the higher YSZ fraction in their 

sample, achieved YSZ tortuosities lay below the values reported by Iwai et al.99 

The aforementioned random walk method28,99,128–131 mimics a diffusion process by distributing a 

number of non-sorbing particles, so-called “walkers”, across the segmented voxel phase. The 

algorithm then starts a time step sequence, where at each step, every walker choses one 

neighbouring voxel as its next location. If that neighbouring voxel is of the same phase (e.g. pore 

phase), the walker migrates to that new location. However, if the chosen neighbouring voxel is of a 

different phase (e.g. solid phase), the walker remains at its current location and choses a different 

neighbouring voxel at the following time step. By repeating this sequence, the mean square 
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displacement 〈𝑟2(𝑡)〉 of the walkers in the analysed phase is calculated which, in turn, is used to 

achieve an effective diffusion coefficient Deff, where Vphase is the volume fraction of the analysed 

phase: 

𝐷𝑒𝑓𝑓 =
𝑉𝑝ℎ𝑎𝑠𝑒
6

 
𝑑〈𝑟2(𝑡)〉

𝑑𝑡
 Eq. (17) 

 

Tortuosity is then calculated by comparing the effective diffusion coefficient to the bulk diffusion 

coefficient through an empty volume of equal dimensions. The random walk approach was first 

formulated in the 1990s4,132,133 and found its way into electrochemistry via Kishimoto et al.,128 after 

having been used to extract the tortuosity of porous rocks.134 However, the obtained tortuosity is 

affected by the number of walkers and by the number of time steps chosen for the calculation. This 

is why, in99, 100,000 walkers and 10,000,000 time steps are chosen to ensure high accuracy of the 

results (cf. Table 2). 

Table 2: Tortuosity values for pore, Ni and YSZ phase of an SOFC anode calculated using the random walk method and LBM 
99 

  Random 
walk 

method 

Lattice 
Boltzmann 

method 

Pore phase 
x 1.43 1.42 
y 1.41 1.44 
z 1.33 1.35 

Nickel phase 
x 4.70 4.66 
y 5.43 5.43 
z 2.63 2.63 

YSZ phase 
x 5.28 5.26 
y 3.87 3.85 
z 3.14 3.14 

 

A similar, comparative study using the random walk method was carried out by Tariq et al.131 The 

tortuosity values of a Li-ion battery anode calculated by the random walk method was compared to 

results based on a sub-grid scale finite volume method explained by Kishimoto et al.135 As shown in 

Table 3, results for both methods agree excellently, revealing a higher tortuosity along the z-axis of 

the pore phase. The authors noted, that a representative volume element (RVE) analysis would 

reveal, if this anisotropy was persistent or if the high value was caused by a local heterogeneity. Yet, 

it was noted, that the computation time needed for the random walk method is only a fraction 

compared to the finite volume method. 

Table 3: Tortuosity values for graphite and pore phase using the random walk method and finite volume method 131 

  Random 
walk 

method 

Finite 
volume 
method 

Graphite 
phase 

x 1.57 1.56 
y 1.92 1.89 
z 2.59 2.57 

Pore phase 
x 1.42 1.42 
y 1.19 1.18 
z 2.39 2.37 
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5.2.2. Mesh Based Calculation Methods 
By applying the same tomography methods mentioned in the previous section, extracted datasets 

can be represented as volume meshes for additional analysis algorithms enabled, for example, by 

CFD or finite element software packages. These programs allow the simulation of heat, mass and/or 

charge transport through the generated mesh of the investigated structure to subsequently evaluate 

the tortuosity. In the data preparation process, parameters chosen for sample smoothing, surface 

repair and mesh generation affect mesh quality and thus the simulation results. Hence, care must be 

taken when choosing these parameters84 and sensitivity analyses should be carried out to verify the 

consistency of the chosen values. 

Pioneering work in this field was realized by Wilson et al.,98 who reconstructed an SOFC anode using 

FIB-SEM tomography. The tortuosity of the pore phase was then extracted to assess the mass 

transport limitations at high current densities. For this, the sample volume was converted into a 

finite element mesh to solve the Laplace equation in FEMLAB (now COMSOL Multiphysics). 

Extensive simulation work in the field of electrochemical devices using a similar approach as 

presented above has been carried out by Ivers-Tiffée and co-workers: initially based on COMSOL 

Multiphysics, the group developed the 3D finite element tool ParCell3D to model the behaviour of 

fuel cells136–139 and batteries.140 Joos et al.141 used this tool to investigate the representative volume 

element of tortuosity of an SOFC cathode for both phases, namely the pore and the mixed 

ionic-electronic conducting LSCF phase. In total, the RVE of porosity, volume specific surface area 

and tortuosity were calculated for three separate volumes, of which the latter one is presented in 

Figure 10. The results for both phases in sample volumes 1 and 3 agree excellently with each other, 

achieving a flat development for electrode thicknesses of lcat > 10 μm. However, the tortuosity of the 

LSCF phase in sample two takes an electrode thickness almost twice as long as for the other sample 

volumes to produce a flat curve. To follow the nomenclature of this review, it has to be pointed out, 

that τ in Figure 10 ought to be replaced by τ2. 
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Figure 10: Representative volume element analysis of the tortuosity factor for the pore and LSCF phase of an SOFC cathode 
as function of electrode thickness 141 

Besides COMSOL Multiphysics,142,143 researchers have calculated tortuosity by using programs such 

as Cast3M144 or custom made models, which focus on a specific electrochemical device, such as 

Batts3d.33,55,145 

In addition to simulating mass and charge transport, the tortuosity is also computable by exploiting 

the mathematical similarity between Fourier’s law of heat conduction and Fick’s law of diffusion 

shown in Eq. (18) and Eq. (19), where Jeff is the effective diffusion flux, c is the molar concentration, 

𝑞̇𝑒𝑓𝑓 is the effective heat flux, λbulk is the bulk thermal conductivity.84,102,146,147 By rearranging the 

temperature gradient, the heat flux and thus, the tortuosity can be calculated along each axis of a 

sample. Cooper et al.62 scanned a commercially available LiFePO4 battery cathode using X-ray 

synchrotron nano CT and investigated the tortuosity of the pore phase using heat flux simulation. A 

cube of 8.8 μm side length was cropped and meshed using an adaptive polyhedral volume mesh. The 

heat flux across the porous phase of the sample was simulated in StarCCM+ (CD-adapco) resulting in 

a temperature distribution across the analysed volume (see Figure 11), where the temperature of 

each mesh element can be understood as a concentration value of a migrating species. 

𝐽𝑒𝑓𝑓 = −𝐷
𝑏𝑢𝑙𝑘  

𝜀

𝜏2
 
(𝑐1 − 𝑐2)

𝑑
 Eq. (18) 

𝑞̇𝑒𝑓𝑓 = −𝜆
𝑏𝑢𝑙𝑘  

𝜀

𝜏2
 
(𝑇1 − 𝑇2)

𝑑
 Eq. (19) 

 

For further analysis, the sample was divided into eight non-overlapping sub-samples to compare the 

pore centroid and heat flux based tortuosity factors. To extract a single tortuosity value for each 

sub-volume, the concept of the characteristic tortuosity τC was introduced:62,84 
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𝜏𝑐 = 3 ∗ [(𝜏𝑥
−1) + (𝜏𝑦

−1) + (𝜏𝑧
−1)]

−1
 Eq. (20) 

 

The geometric based characteristic tortuosity factors (κgeo) were then plotted as a function of the 

flux based characteristic tortuosity factors (κflux). The resulting graph revealed a high degree of 

correlation following the equation Eq. (21). This equation reveals, that the simulation based 

tortuosity factor (and as such, tortuosity) is always higher than the geometric based value of the 

same sample in cases, where either value is > 1. As mentioned previously, geometric tortuosity 

algorithms do not take the effect of pore constrictions into account, which would affect a transport 

flux. This means that any connection consisting of only one voxel in diameter is fully considered in 

the calculation process while from a flux point of view, such a pore would not allow a significant 

amount of mass/charge to pass through. As a result, geometric based tortuosity values tend to be 

visibly lower compared to simulation based values.62,84 

𝜅𝑔𝑒𝑜 = 0.5 𝑙𝑛(𝜅𝑓𝑙𝑢𝑥) + 1 Eq. (21) 

 

 

Figure 11: Temperature distribution across the porous phase of an YSZ porous support membrane of an oxygen transport 
membrane 

It is common practice to subdivide a given sample volume into an array of smaller sub-samples and 

extract the tortuosity for each individually.50,141,148 Although non-trivial, this approach allows to 

extract similar conclusions as tortuosity histograms and tortuosity distribution maps (cf. section 5.1) 

using flux based methods. This approach reveals the homogeneity or heterogeneity of a sample, 

similar to tortuosity histograms, and pinpoints the locations of high or low tortuosity. Kehrwald et 
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al.50 were among the first ones to apply this methodology on a battery electrode by solving Fick’s 

law using the program Star-CD (CD-adapco) on a total of twelve sub-volumes. Local tortuosities 

showed differences of a factor of three, which might lead to inefficiencies during charging and 

discharging of the battery: Li+ ions will avoid areas with higher tortuosity, but seek areas with low 

tortuosity highlighting the need of homogeneous microstructures in this field to avoid uneven 

degradation.148 In addition, microstructural inhomogeneities might be the cause of failure 

mechanisms and material fractures.50 

5.3. Summary 
Table 4 lists pore phase tortuosity factors and tortuosity values for different image based calculation 

methods along all three axes of porous samples. Calculation approaches which only take geometric 

aspects into consideration show slightly lower values compared to flux based algorithms. It is thus 

imperative to distinguish between these two approaches as otherwise, misinterpretation may ensue. 

Furthermore, differences in tortuosity values are observed even when analysing the same type of 

samples. This can be explained by the chosen imaging resolution; higher resolution uncovers smaller 

pore structures and improves pore connectivity. This way, lower tortuosity values are obtained.102 

This finding is comparable to the analogy by Mandelbrot149 who stated that the length of a coastline 

is depending on the resolution of the map. Moreover, the size of the sample volume has to be 

sufficiently large so that extracted values are representative of the sample bulk.150 Hence, the higher 

the resolution, and the larger the extracted volume, the more likely the extracted values are 

accurate, and representative, and not affected by microscopic heterogeneities. 

However, when comparing the work by Wilson et al.98 and Iwai et al.99, who analysed the same type 

of sample using the same imaging technique achieving similar pixel sizes, no difference in 

tortuosities is observed even though Iwai et al. reconstructed a nine times larger sample volume. 

Similar findings are revealed when comparing Laurencin et al.144 and Tjaden et al.84 Yet, this does not 

contradict the previous statement as homogeneous samples will yield representative values even for 

small sample volumes. 

In addition, the above comparison revealed that different flux based tortuosity calculation 

algorithms yield comparable results, which was also affirmed when executing different algorithms 

on the exact same sample.99,131 This suggests that the choice of a flux based computation algorithm 

has a smaller effect on the results than sample preparation technique, imaging parameters and the 

structure of the sample itself, which includes pore size distribution and volume fractions of the 

constituent phases. The interplay between these additional parameters and the tortuosity is visible 

when inspecting the work by Wilson et al.98 and Izzo et al.80: while Izzo et al. presented higher 

tortuosity values, the porosity of their sample is a factor of 1.5 higher. Hence, the tortuosity itself 

does not give a full picture of the microstructure and the performance of the analysed sample, but 

has to be evaluated with respect to other microstructural characteristics.111,151 Also, care must be 

taken when applying purely continuum based models which do not account for Knudsen diffusion 

effects, such as the heat flux simulation. Such simplifications might cause visible differences 

between experimental and simulation based results.84 
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Table 4: Comparison of differently calculated tortuosity values along each dimension for pore phases of porous membranes 

Calculation 
Method 

Sample 
Tomography 

Technique 
Pixel Size 

Sample 
Volume 

Porosity Dimension τ2 τ Reference 

   [μm] [μm3] [-]  [-] [-]  

Laplace 
equation 

Ni-YSZ based 
SOFC anode 

FIB-SEM 0.0417 105.2 0.195 
x 2.10 1.45 

Wilson et al.98 y 2.20 1.48 
z 1.90 1.38 

Laplace 
equation 

Ni-YSZ based 
SOFC anode 

X-ray 0.0427 250.0 0.300 
x 2.94 1.71 

Izzo et al.80 y 3.28 1.81 
z 3.15 1.77 

Laplace 
equation 

Ni-YSZ based 
SOFC anode 

X-ray 0.008 13.8 0.180 
x 1.77 1.33 

Grew et al.116 y 1.51 1.23 
z Not presented 

Finite volume 
method 

Mesocarbon 
microbead 

based battery 
electrode 

X-ray 0.016 1,100.0 0.451 

x 2.01 1.42 

Tariq et al.131 
y 1.39 1.18 

z 5.61 2.37 

Lattice 
Boltzmann 
method 

Ni-YSZ based 
SOFC anode 

FIB-SEM 0.062 972.4 0.496 
x 2.03 1.42 

Iwai et al.99 y 2.06 1.44 
z 1.83 1.35 

Random walk 
method 

Ni-YSZ based 
SOFC anode 

FIB-SEM 0.062 972.4 0.496 
x 2.05 1.43 

Iwai et al.99 y 1.99 1.41 
z 1.78 1.33 

Random walk 
method 

Mesocarbon 
microbead 

based battery 
electrode 

X-ray 0.016 1,100.0 0.451 

x 2.03 1.42 

Tariq et al.131 
y 1.41 1.19 

z 5.72 2.39 

Heat flux 
simulation 

LiFePO4 
based battery 

electrode 
X-ray 0.020 3,000 0.410 

x 2.70 1.64 
Cooper et al.62 y 2.19 1.48 

z 3.32 1.82 
Heat flux 
simulation 

FIB-SEM 0.030 421.9 0.350 
x 2.82 1.68 

Tjaden et al.84 
y 2.72 1.65 
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YSZ based 
porous 

support layer 
z 3.10 1.76 

Heat flux 
simulation 

YSZ based 
porous 

support layer 
X-ray 0.0325 314.4 0.410 

x 3.13 1.77 
Tjaden et al.84 y 2.25 1.50 

z 2.96 1.72 

Heat flux 
simulation 

LiMn2O4 
based battery 

electrode 
X-ray 0.597 10,434,731 0.363 

x 8.29 2.88 
Shearing et al.102 y 2.31 1.52 

z 4.97 2.23 

Heat flux 
simulation 

LiMn2O4 
based battery 

electrode 
X-ray 0.065 75,164 0.380 

x 6.50 2.55 
Shearing et al.102 y 2.22 1.49 

z 3.96 1.99 

Laplace 
equation 

LSCF based 
SOFC 

cathode 
FIB-SEM 0.035 144.7 0.483 

x 1.82 1.35 
Joos et al.141 y 1.83 1.35 

z 1.88 1.37 

Laplace 
equation 

YSZ based 
porous 

support layer 
X-ray 0.060 46,656 0.470 

x 2.30 1.52 
Laurencin et al.144 y 2.80 1.67 

z 2.60 1.61 

Fast marching 
method 

YSZ based 
porous 

support layer 
FIB-SEM 0.030 421.9 0.350 

x 1.42 1.19 
Tjaden et al.84 y 1.25 1.12 

z 1.23 1.11 

Fast marching 
method 

YSZ based 
porous 

support layer 
X-ray 0.0325 314.4 0.410 

x 1.44 1.20 
Tjaden et al.84 y 1.25 1.12 

z 1.19 1.09 

Pore Centroid 
Method 

LiFePO4 
based battery 

electrode 
X-ray 0.020 3,000 0.410 

x 1.46 1.21 
Cooper et al.62 y 1.41 1.19 

z 1.58 1.26 
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6. Concluding Remarks 
The large number of tortuosity calculation methods is testimony of the significance of tortuosity in 

the field of electrochemistry. Here we have reviewed different tortuosity calculation approaches 

which span from porosity-tortuosity correlations and image based techniques to experimental 

methods. Among these, a certain trend is revealed: porosity-tortuosity relationships, such as the 

Bruggeman equation, are more common in battery and PEM research, while flux based algorithms 

are popular in SOFC research. Yet, each approach features distinct advantages and disadvantages. 

While easily applied, the Bruggeman relationship is only valid for spherical structures and unfit to 

predict accurate values for complex porous networks. When applying image based tortuosity 

calculation algorithms, one must be aware of the difference and significance of geometric and flux 

based tortuosity. Results of either calculation procedure differ visibly, where geometric values lie 

below flux based algorithms. Moreover, tortuosity values determined using experimental techniques 

are only valid for the specific experiment at hand, as changes in temperature, setup and gas 

composition affect the results. Also, tortuosity is usually used as a fitting parameter in these cases, 

making it highly dependent on the applied calculation model. Furthermore, when comparing flux 

based algorithms across similar sample types, it is shown, that tortuosity is a complex function of 

microstructural parameters and has to be interpreted while taking pore size distribution and volume 

fraction of constituents into consideration. However, purely continuum based models which do not 

consider Knudsen effects have to be applied with caution as they might be the reason for 

discrepancies between simulation and experimental values. Also, a unifying tortuosity calculation 

approach would be highly useful to make values, structures and manufacturing techniques across 

the field of electrochemistry comparable. For this, imaged based methods are most applicable as 

they can be applied to all types of microstructures and devices. Even though experimental 

approaches provide more practical results as their setup can be tailored to the actual operating 

conditions, image based methods are independent of the functionality or non-functionality of the 

specimen. However, sample volume and resolution have to be sufficiently high to result in 

representative values. 
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