UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Defining left ventricular remodeling following acute ST-segment elevation myocardial infarction using cardiovascular magnetic resonance

Bulluck, H; Go, YY; Crimi, G; Ludman, AJ; Rosmini, S; Abdel-Gadir, A; Bhuva, AN; ... Hausenloy, DJ; + view all (2017) Defining left ventricular remodeling following acute ST-segment elevation myocardial infarction using cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance , 19 (1) , Article 26. 10.1186/s12968-017-0343-9. Green open access

[img]
Preview
Text
art%3A10.1186%2Fs12968-017-0343-9.pdf - Published version

Download (1MB) | Preview

Abstract

BACKGROUND: The assessment of post-myocardial infarction (MI) left ventricular (LV) remodeling by cardiovascular magnetic resonance (CMR) currently uses criteria defined by echocardiography. Our aim was to provide CMR criteria for assessing LV remodeling following acute MI. METHODS: Firstly, 40 reperfused ST-segment elevation myocardial infarction (STEMI) patients with paired acute (4 ± 2 days) and follow-up (5 ± 2 months) CMR scans were analyzed by 2 independent reviewers and the minimal detectable changes (MDCs) for percentage change in LV end-diastolic volume (%ΔLVEDV), LV end-systolic volume (%ΔLVESV), and LV ejection fraction (%ΔLVEF) between the acute and follow-up scans were determined. Secondly, in 146 reperfused STEMI patients, receiver operator characteristic curve analyses for predicting LVEF <50% at follow-up (as a surrogate for clinical poor clinical outcome) were undertaken to obtain cut-off values for %ΔLVEDV and %ΔLVESV. RESULTS: The MDCs for %ΔLVEDV, %ΔLVESV, and %ΔLVEF were similar at 12%, 12%, 13%, respectively. The cut-off values for predicting LVEF < 50% at follow-up were 11% for %ΔLVEDV on receiver operating characteristic curve analysis (area under the curve (AUC) 0.75, 95% CI 0.6 to 0.83, sensitivity 72% specificity 70%), and 5% for %ΔLVESV (AUC 0.83, 95% CI 0.77 to 0.90, sensitivity and specificity 78%). Using cut-off MDC values (higher than the clinically important cut-off values) of 12% for both %ΔLVEDV and %ΔLVESV, 4 main patterns of LV remodeling were identified in our cohort: reverse LV remodeling (LVEF predominantly improved); no LV remodeling (LVEF predominantly unchanged); adverse LV remodeling with compensation (LVEF predominantly improved); and adverse LV remodeling (LVEF unchanged or worsened). CONCLUSIONS: The MDCs for %ΔLVEDV and %ΔLVESV between the acute and follow-up CMR scans of 12% each may be used to define adverse or reverse LV remodeling post-STEMI. The MDC for %ΔLVEF of 13%, relative to baseline, provides the minimal effect size required for investigating treatments aimed at improving LVEF following acute STEMI.

Type: Article
Title: Defining left ventricular remodeling following acute ST-segment elevation myocardial infarction using cardiovascular magnetic resonance
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/s12968-017-0343-9
Publisher version: http://dx.doi.org/10.1186/s12968-017-0343-9
Language: English
Additional information: © The Author(s). 2017 Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Keywords: LV ejection fraction, LV end-diastolic volume, LV end-systolic volume, LV remodeling, trabeculae and papillary muscles, ST-segment elevation myocardial infarction, infarct size, microvascular obstruction
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Inflammation
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Metabolism and Experi Therapeutics
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science > Clinical Science
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science > Pre-clinical and Fundamental Science
URI: https://discovery.ucl.ac.uk/id/eprint/1545049
Downloads since deposit
22Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item