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Abstract:  

Ultrathin porous Ni(OH)2 sheets were grown on the surface of nano-chain CoB as 

cores via a facile two-step solution-based method at ambient conditions. The resultant 

CoB@Ni(OH)2 of 27.89 wt.% Ni(OH)2 loading has a high specific capacitance of 

1504.4 F g-1 at 0.5 A g -1, 1293.7 F g-1 at 2 A g-1 and 746.8  F g-1 at 6 A g-1. The 

excellent rate capability and stability of the material can be attributed to the CoB 

core’s high electrical conductivity and stable cycling behavior, of which the latter 

may also contribute a significant capacitance contribution. The rational combination 

of these two materials in core-shell format is also an introduction to the study of CoB 

as a supercapacitor electrode material. Moreover, the facile and scalable method for 

the synthesis of CoB@Ni(OH)2 places it as strong candidate for possible practical 

supercapacitor application. 
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Introduction  

High-performance supercapacitors are widely applied in the fields of mobile 

electronics, backup power supplies, and electric vehicles due to their high power 

density, fast charge/discharge, and long cycle life.[1] Transition metal oxides and 

hydroxides, such as RuO2, MnO2, Co3O4, NiO and Ni(OH)2, are examples of 

pseudocapacitive materials characterized by high reversible redox-based capacitance 

via oxidation state transitions.[2] However, due to their low electrical conductivity, 

their observed specific capacitance is much lower than that might be expected from 

their high theoretical specific capacities, especially at high current densities required 

for supercapacitor performance. As a result, high specific capacitance in 

pseudocapacitive oxide material is usually limited to very thin films.[3] Such films are 

impractical for commercial cells due to the much larger relative mass and volume 

contribution of the current collectors the films are formed on.  

Physically attaching pseudocapacitive oxide materials to materials such as 

particulate carbon[4] and conducting polymers,[5] either at the nano or micrometer 

scale of particle size, is frequently employed to improve oxide conductivity. Some 

reports have also shown that the practical capacitance of oxides is significantly 

improved using metal and metal alloys as conductive supports.[6, 7, 8, 9] Chen and 

co-workers showed that RuO2 and MnO2 supported on nanoporous Au or NiMn alloy, 

could reach high specific capacitances close to their theoretical values due to the 

provision of fast ionic conduction and excellent electron-proton transport.[8] However, 

both the high material cost of nanoporous Au and elaborate fabrication process of 
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electrochemical polarization narrows the practical applicability of these 

oxide@porous metal/alloy electrodes.[9] An oxy/hydroxide@ low-cost metal/alloy 

combination achieving the same high specific capacitance and cyclic stability, 

particularly through a facile large-scale production method, is therefore of obvious 

interest. 

Various reports show that transition metal borides, particularly CoB alloys, exhibit 

high specific capacitance and cycling stability as anode materials for aqueous 

batteries in alkaline electrolyte.[10-12] In contrast, their performance as supercapacitor 

material has received surprisingly little attention,[13] with CoB being no exception. 

However, CoB alloys have high electronic conductivity in the order of 103 S cm-1 

(similar to Co metal), which is around ten orders of magnitude higher than that of 

oxides/hydroxides (e.g. Ni(OH)2 in the order of 10-15 S cm-1).[11] This suggests CoB 

should either have high rate capability as a capacitance material and/or be useful as a 

conductive support for other capacitance material. In particular, Ni(OH)2, while low 

in conductivity, has high theoretical specific capacity (289.1 mAh/g), as well as 

well-defined redox behavior in alkaline electrolyte, and can form layered structures 

with large interlayer spacing theoretically supportive of high capacitance.[14] In the 

present study, we scrupulously aimed for a particle architecture that combines 

Ni(OH)2 nanoflakes supported on CoB nanochains. Through this novel structural 

design, the material has both high rate capability and high specific capacitance. 

Figure S1 shows the powder X-ray diffraction (XRD) patterns of CoB and 

CoB@Ni(OH)2. The XRD pattern of CoB has wide peak dispersion indicative of 
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amorphous structure. In the case of CoB@Ni(OH)2, beside the dispersion peak, two 

new small peaks appear at 2θ ~ 34.0 and 60.5o corresponding to the (100) and (111) 

planes of hexagonal phase ßNi(OH)2 (JCPDS Card No. 1–1047), thus indicating 

hybrid particle structure was obtained. Bulk composition analyses of the two samples 

by inductively coupled plasma (ICP), found the Co:B atomic ratio in the CoB sample 

to be ca. 2.2:1, and the Co:B:Ni atomic ratio in the CoB@Ni(OH)2 sample to be ca. 

10.43:4.74:1. The estimated mass percentage of Ni(OH)2 in the CoB@Ni(OH)2 

sample is ca. 12.26%. 
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Figure 1. SEM images of (a,b) CoB and (c,d) CoB@Ni(OH)2; TEM images of (e) 

CoB and (f, g) CoB@Ni(OH)2; SAED images lower right insets (e and f); EDS plots 

upper left inset (e) and lower right (g); (h) STEM elemental mapping image of 

CoB@Ni(OH)2, (i) Co, (j) B, (k) Ni, (l) O; and (m) overlapped elemental mapping 

image of Co, B, Ni and O in CoB@Ni(OH)2. 

Figure 1a-d shows scanning electron microscopy (SEM) images of CoB and 

CoB@Ni(OH)2. CoB formed uniform bead-like particles of ~50 to 250 nm that joined 

together as long chains (Figure 1a). This underlying chain structure was clearly 

maintained after Ni(OH)2 deposition, which formed a continuous covering on the CoB 

surface as nanoflakes (Figure 1c,b). The nanoflake structure is clearly visible in the 

transmission electron microscopy (TEM) images (Figure 1f and g). Energy dispersive 

spectroscopy (EDS) of CoB (upper left corner inset in Figure 1e) revealed the 
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presence of Co and B elements, and its selected area electron diffraction (SAED) 

pattern (lower right corner inset) formed a continuous hollow ring diffraction pattern 

typical of amorphous material[15], which correlates with the XRD result. The enlarged 

TEM image of CoB@Ni(OH)2 (Figure 1g) shows the Ni(OH)2 flocculent layer 

comprised ultrathin sheets, and the SAED pattern (lower right corner inset in Figure 

1f) displays several rings indicating Ni(OH)2 had polycrystalline structure. The EDS 

pattern of CoB@Ni(OH)2 (lower right corner inset in Figure 1g) revealed the presence 

of Co, B, Ni and O elements, and the scanning TEM (STEM) image (Figure 1h) and 

electron energy loss spectroscopic mapping (Figure 1i-l) shows uniform distribution 

of Co, B, Ni and O elements, which with overlapping (Figure 2m) reveals the 

core-shell structure distribution of these elements. 

X-ray photoelectron spectroscopy (XPS) analysis was carried out to identify the 

elemental composition and chemical states of the elements on the surface of 

CoB@Ni(OH)2. The survey spectra of CoB and CoB@Ni(OH)2 (Figure S2a) 

revealed the presence of Co and B elements in CoB and Co, B, Ni, O in 

CoB@Ni(OH)2. Figure S2b shows the Co 2p XPS spectrum of CoB contains the two 

characteristic peaks of Co 2p3/2 (781.8 eV) and Co 2p1/2 (797.8 eV) along with 

shake-up satellites. The two peaks clearly shift to higher binding energy compared to 

that of metallic Co or Co hydro/oxides,[16] resulting possibly from electron transfer 

from Co to B atoms. In contrast, shake-up satellites in the Co 2p XPS spectrum of 

CoB@Ni(OH)2 can hardly be observed, most likely due to signal suppression by the 

Ni(OH)2 shell, which offers further evidence of the CoB@Ni(OH)2 core-shell 
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structure. Similarly, the B 1s XPS signal (Figure S2c) clearly appears in the CoB plot, 

but is absent in the CoB@Ni(OH)2 plot. The B 1s XPS spectrum of CoB displayed 

two peaks, one at low binding energy (188.0 eV) that may correlate to the free form of 

elemental B, and the other at high binding energy (192.0 eV) to boron oxide.[17] The 

Ni XPS signal (Figure S2d) for CoB@Ni(OH)2 has two intense peaks centered at 

855.8 eV and 873.7 eV corresponding to Ni 2p3/2 and Ni 2p1/2 respectively, followed 

by clear satellite signals at high binding energy. These bands are characteristic of the 

Ni(OH)2 phase and are consistent with previous reports.[18, 19] In the O 1s spectrum of 

the Ni(OH)2 (Figure S2e), the main peak of 529.4 eV corresponds to metal-O 

bonds.[20]  

 

 

 

Figure 2. N2 isotherms and (Inset) the pore size distribution of CoB and 

CoB@Ni(OH)2. 

N2 isotherm analysis (Figure 2) was used to evaluate the porosity of CoB and 

CoB@Ni(OH)2. With increase of relative pressure, the adsorbed N2 volume by CoB 
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was much less than that of CoB@Ni(OH)2, indicating that CoB@Ni(OH)2 has higher 

porosity than CoB. The N2 isotherm of CoB forms the typical I isotherm shape of 

IUPAC classification, and the absence of uptakes and hysteresis loop suggests limited 

presence of pores.[21] In contrast, CoB@Ni(OH)2 produced a type II isotherm with an 

hysteresis loop starting at 0.47 relative pressure, indicating the presence of mesopores. 

The overall pore size distribution for CoB@Ni(OH)2, was thus in the mesopore size 

range with few micropores present (inset Figure 2). Furthermore, the BET surface 

area of CoB and CoB@Ni(OH)2 was 6.6 and 42.5 m² g-1 respectively, showing 

considerable surface area increase after Ni(OH)2 deposition due to the porous 

structure of the Ni(OH)2 shell.  
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Figure 3. (a) CV plots of the CoB and CoB@Ni(OH)2 electrodes at scan rate of 

50 mV s-1; (b) CV plots of the CoB@Ni(OH)2 electrode with 27.98 wt.% Ni(OH)2 at 

different scan rates from 5 to 100 mV s-1; (c) galvanostatic charge-discharge curves of 

the CoB and CoB@Ni(OH)2 electrodes with different Ni(OH)2 content at current 

density of 2 A g-1; (d) variation in specific capacitance of the CoB@Ni(OH)2 hybrid 
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with the mass percentage of the Ni(OH)2 shell; (e) Comparison of Nyquist plots of the 

CoB and 27.98 wt.% CoB@Ni(OH)2 electrodes; (f) Schematic of the CoB@Ni(OH)2 

hybrid, showing CoB core and Ni(OH)2. 

To evaluate the capacitive influence of Ni(OH)2 mass loading on CoB, NiCl2 

concentration was varied during synthesis to form different CoB@Ni(OH)2 hybrids of 

varying Ni(OH)2 wt.%. Their bulk composition, physical characterization including 

XRD, SEM, N2 and isotherms are provided in Table S1 and Figure S3-5. As seen in 

Table S1, the maximum mass percentage of Ni(OH)2 that can be achieved was 

27.89 wt.% at an NiCl2 concentration of 0.2 mmol, while retaining morphology and 

porous structure (Figure S3-5).  

The electrochemical behavior of CoB and CoB@Ni(OH)2 was studied using cyclic 

voltammetry (CV) and galvanostatic cycling, both using three-electrode cell 

configurations in 6 mol L-1 KOH solution. Figure 4a shows the CV plots of the CoB 

and CoB@Ni(OH)2 electrodes after activation at a scan rate of 5 mV s-1. It should be 

noted that Co(OH)2 forms on the CoB surface during the activation process in alkaline 

solution.[12, 22] The CV plot of CoB produced an oxidation peak at 0.347 V and a 

corresponding reduction peak at 0.151 V,[23, 24] whereas CoB@Ni(OH)2 produced an 

oxidation peak at ca. 0.430 V and a reduction peak at 0.265 V. The corresponding 

reversible reactions associated with these peaks respectively were considered to be:  

Co(OH)2 + OH → CoOOH + H2O + e   (1) 

Ni(OH)2 + OH → NiOOH + H2O + e   (2) 

Notably, all the CV curves of CoB@Ni(OH)2 show larger voltammetric current 
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than that of CoB, suggesting strong capacitive contribution from the Ni(OH)2 shell. 

Voltammetric current increase occurred with increase of Ni(OH)2 mass content, 

indicating CoB@Ni(OH)2 containing the highest Ni(OH)2 content of 27.98 wt.% 

would also have the highest capacitance. Moreover, the high current response from 

the 27.98 wt.% electrode (Figure 3b) maintained the same CV peak shape and 

potential gap between oxidation and reduction peaks as scan rate increased, indicating 

CoB@Ni(OH)2 had good capacitive reversibility.[24, 25] 

Figure 3c shows the galvanostatic charge-discharge plots of CoB and 

CoB@Ni(OH)2 at a current density of 2 A g-1. In all cases, the nonlinear charge 

curves are asymmetric to their corresponding discharge curves, which is commonly 

observed for pseudocapacitive materials.[26] Compared to the pristine CoB nanochains, 

all CoB@Ni(OH)2 hybrids produced high capacitance discharge curves, which 

correlates to the high current responses of their CV curves. Specific capacitance (Csp) 

was calculated from the discharge curves considering total CoB and Ni(OH)2 mass 

content Figure 4d. All the CoB@Ni(OH)2 hybrids produced higher Csp than that of 

CoB, which demonstrates the high capacitance contribution of the Ni(OH)2 shell. 

Specific capacitance increased with increased Ni(OH)2 loading from 12.26 wt.% to 

27.89 wt.% (at 1293.7  F g-1); equating to 7.76 F cm-2 with respect to relative 

electrode surface area (Cap, Figure 3d). The specific capacitance for CoB at 2 A g-1 

was 750 F g-1, and thus considerably smaller than that of the CoB@Ni(OH)2 

containing the highest mass percentage of Ni(OH)2. Figure 3e compares the 

electrochemical impedance spectra (EIS) of the two materials. Here, it can be seen the 



12 
 

CoB@Ni(OH)2 hybrid clearly has decreased overall equivalent series resistance (Rs, 

the real axis intercept) than CoB due to its higher specific capacitance.[27] 

The specific capacitance of Ni(OH)2@Mn2O3 hybrid with 27.89 wt.% Ni(OH)2 is 

quite attractive when compared with previously reported values of other 

core/Ni(OH)2-shell-based electrodes [18, 28] (Table S2). In particular, although some 

binder-free electrodes based on other core/Ni(OH)2-shell hybrid materials such as 

TiN@ Ni(OH)2,
[7] ZnO@Ni(OH)2,

[29] NiCo2S4@Ni(OH)2,
[30] NiMoO4@Ni(OH)2,

[31] 

ZnCo2O4@Ni(OH)2 
[32] have high specific capacitance, in general, complex synthesis 

steps and the limited loading density of the electrodes have predictably high 

manufacturing cost, thus hindering large-scale application possibilities. Therefore 

among the particle-based electrodes materials thus far produced, the present study’s 

material of 1293.7  F g-1 at 2  A g-1 is a significant achievement within the cost 

affective category considering its simple synthesis and high specific capacitance at 

high current density.  

Three physically properties of the Ni(OH)2/metal alloy combination, owing to its 

unique morphology and composition, may account for its overall high specific 

capacitance. Firstly, the Ni(OH)2 nanoflakes grown in situ on the CoB nanochains are 

well separated. This provides unhindered access for surface absorption and movement 

of OH electrolyte ions involved in capacitance. Secondly, as illustrated in Figure 3f, 

the electrolyte can theoretically reach the surface of the CoB core through the many 

mesopores in the Ni(OH)2 shell, as indicated by its pore size distribution (Figure 2 

inset). Here, since Co(OH)2 forms on the CoB surface during activation in alkaline 
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solution,[12, 22] mesopores in Ni(OH)2 could allow OH- electrolyte ions access to 

Co(OH)2 to participate in capacitance through Reaction (1), which suggests that the 

specific capacitance of CoB@Ni(OH)2 may derive from both CoB and Ni(OH)2. 

Thirdly, CoB provides a highly conductive support in CoB@Ni(OH)2 for rapid 

electron transport, which facilitates high specific capacitance at high current density 

[8]. 

 

  

 

Figure 4. (a) Galvanostatic charge-discharge curves of CoB@Ni(OH)2 (27.89 wt.%) 

at different current densities (0.5, 1, 2, 4, and 6 A g-1); (b) Current density dependence 

of specific capacitance of CoB and CoB@Ni(OH)2 (27.89 wt.%); (c) Cycling 

performance of both CoB and CoB@Ni(OH)2 electrodes during 2500 cycles at 2 A g-1; 
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and (d) Cycling stability of both CoB and CoB@Ni(OH)2 at different current densites.  

Figure 4 and Figure S7 compare the rate capabilities of CoB and CoB@Ni(OH)2 

(27.89 wt.%) at increasing current densities. Drop in specific capacitance occurred on 

both materials with current density increase, correlating with literature on other 

core/Ni(OH)2-shell-based materials.[18, 28, 29-32] Within the current range of 0.5 A g-1 to 

6 A g-1 (i.e. 3 mA cm-2 to 36 mA cm-2), CoB@Ni(OH)2 maintained a consistently 

higher specific capacitance than the CoB (Figure 4b). At 6 A g-1, the specific 

capacitance of CoB@Ni(OH)2 (746.8  F g-1) was 49.7% of that measured at 0.5 A g-1. 

Therefore, at 6 A g-1 the specific capacity of CoB@Ni(OH)2 was still ~2.0 fold higher 

than that of CoB (373.5  F g-1) at 0.5 A g-1. The overall ~50% drop in specific 

capacitance for both materials over the 12-fold increase from 0.5 to 6 A g-1 reveals 

both materials have high conductivity. 

The cycle life of CoB and CoB@Ni(OH)2 (27.89 wt.%) was evaluated over 2500 

continuous charge-discharge cycles at a current density of 2 A g-1 (Figure 4c). 

Interestingly, the specific capacitance of both electrodes gradually increased during 

the first 200 cycles, which is likely due in part to the activation processes involved the 

formation of Co(OH)2.
[12, 33] Both CoB and CoB@Ni(OH)2 hybrid exhibit good 

long-term electrochemical stability, as further evident from their very stable 

charge–discharge curves for the comparison between the first and last 8 cycles 

(Figure S8, with ~99% of coulombic efficiency). The specific capacitance loss for 

CoB@Ni(OH)2 after 2500 cycles was 15%. By contrast, 100% specific capacitance 

was retained for CoB, and this remarkable cycling stability appears to derive from the 
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stability of the capacitive Co(OH)2 passivation layer, which interestingly also appears 

to prevent B dissolving (reaction (3)), which would no doubt result in capacitance loss: 

B + 4OH-  →  H2BO3- + H2O + 3 e-  (3) 

The stability of CoB@Ni(OH)2 hybrid is also much greater than that of other 

reported core/Ni(OH)2-shell hybrid materials such as TiN@ Ni(OH)2,
[7] 

NiCo2S4@Ni(OH)2,
[30] NiMoO4@Ni(OH)2,

[31] ZnCo2O4@Ni(OH)2,
[32] and 

NiCo2O4@Ni(OH)2 
[34] as listed in Table S1. Therefore, CoB as the core in the 

core-shell CoB@Ni(OH)2 hybrid clearly promotes stability during cycling. To further 

explore the durability of CoB@Ni(OH)2 and CoB, cycling was carried out at 

progressively increased current densities (Figure 4d) and then returned to 2 A g-1. 

Remarkably, after 500 cycles at different current densities, and despite the abrupt 

changes in current density, the capacitance of CoB@Ni(OH)2 hybrid returned to 

1276.5 F g-1 at 2  A g-1 , equating to ~99 % of the initial capacitance (1293.7, F g-1 ). 

Furthermore, this capacitance maintained its level for another 100 cycles without 

noticeable decrease. Therefore, this final result indicates CoB@Ni(OH)2 has excellent 

durability at different current densities, which is an important merit for practical 

energy storage devices. 

Conclusions  

A facile, in situ synthesis method at room temperature was achieved to directly 

grow porous Ni(OH)2 nano-sheets on the surface of nano-chain CoB alloy for use as 

capacitive supercapacitor material. In this particular architecture, both the Ni(OH)2 
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shell and CoB core may act in capacitive charge storage, while the CoB core also 

serves as a conductive backbone for electron transport. Electrochemical evaluation 

revealed that the optimized CoB@Ni(OH)2 electrode delivers a high specific 

capacitance (1504.4 F g –1 ) at 0.5 A g –1 with good rate capability and cyclic stability.  

The excellent performance is attributed to synergetic contribution from the CoB core 

and the porous Ni(OH)2 shell. In conclusion, the uncomplicated synthesis method 

could be readily scalable, thus offering a means to produce material of high specific 

capacitance and high stability by a practical and cost effective means. 
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