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Abstract. Let a D a.�/; � 2 R; be a smooth function quickly decreasing at in�nity.

For the Wiener–Hopf operator W.a/ with the symbol a, and a smooth function gWC ! C,

H. Widom in 1982 established the following trace formula:

tr.g.W.a// � W.g ı a// D B.aI g/;

where B.aI g/ is given explicitly in terms of the functions a and g. The paper analyses the

coe�cient B.aI g/ for a class of non-smooth functions g assuming that a is real-valued.

A representative example of one such function is g.t/ D jt j with some  2 .0; 1�.
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1. Introduction

Let aWR ! C be a function. On L2.RC/, RC D .0; 1/; de�ne the Wiener–Hopf

operator W.a/ with symbol a by

.W.a/u/.x/ D �C.x/
1

2�

Z

ei.x�y/�a.�/�C.y/u.y/dyd�; u 2 L
2.RC/;

where �C is the indicator of the half-line RC. If the limits are not speci�ed, we

always assume that the integration is taken over the entire line. We are interested

in the operator

g.W.a// � W.g ı a/; (1.1)

with a suitable function gWC ! C. In [16], see also [18], H. Widom proved that

this operator is trace class if

a 2 L
1.R/;

“

ja.�1/ � a.�2/j2

j�1 � �2j2
d�1d�2 < 1; (1.2)
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and established the following remarkable trace formula for the operator in (1.1).

For any function gWC ! C and any s1; s2 2 C denote

U.s1; s2I g/ D

Z 1

0

g..1 � t /s1 C t s2/ � Œ.1 � t /g.s1/ C tg.s2/�

t .1 � t /
dt; (1.3)

and introduce

B.aI g/ D
1

8�2

“

U.a.�1/; a.�2/I g/

j�1 � �2j2
d�1d�2: (1.4)

Both objects are well de�ned under the conditions of the next proposition:

Proposition 1.1. [see [16], Theorem 1(a)] Suppose that (1.2) is satis�ed, and let g

be analytic on a neighbourhood of the closed convex hull of the function a. Then

the operator (1.1) is trace class and

trŒg.W.a// � W.g ı a/� D B.aI g/: (1.5)

If a is real-valued, then the analyticity assumptions on g can be replaced by

some �nite smoothness, see [16], Theorem 1(b). In paper [10] the assumptions

on a and g are relaxed even further: the formula (1.5) is proved for real-valued a

under the assumptions that the integral in (1.2) is �nite and g belongs to the Besov

class B2
1;1.R/.

The quantity B.aI g/ is an object that one encounters very often in the theory

of Wiener–Hopf operators. It appears e.g. in [10], [11], [15], [16], [17], and [18]

as an asymptotic coe�cient in various trace formulas for truncated Wiener–Hopf

and Toeplitz operators with smooth symbols. Moreover, the function U.s1; s2I g/

is present in a variety of trace formulas for the same operators with discontinuous

symbols, see e.g. [1], [14], [12], [13], and references therein. Although the inte-

gral (1.3) is well de�ned for rather a wide class of functions g, the coe�cient (1.4)

itself has been considered so far for smooth functions g only. As observed in [16],

if g is twice di�erentiable, we can integrate by parts in (1.3) to obtain that

U.s1; s2I g/ D .s1 � s2/2

Z 1

0

g00..1 � t /s1 C t s2/.t log t C .1 � t / log.1 � t //dt:

Thus, assuming that g00 is uniformly bounded, we obtain the estimate

jB.aI g/j � C kg00kL1

“

ja.�1/ � a.�2/j2

j�1 � �2j2
d�1d�2;

with a universal constant C > 0, which guarantees the �niteness of B.aI g/

under the condition (1.2). However, in applications one often needs non-smooth



Trace formulas 1023

functions, see e.g. [3], [5], [6], [7], [8], and references therein. The main

aim of this paper is to investigate the coe�cient (1.4) for real-valued symbols

a and non-smooth functions gWR 7! C, described in Condition 3.1 further on.

A representative example of one such function is g.t/ D jt j with some  2 .0; 1�.

Surprisingly, even �niteness of B.aI g/ for such a function is far from trivial.

The main result (see Theorem 3.2) is a bound on the coe�cient B.aI g/ that

explicitly depends on the symbol a and function g. Formula (1.5) for non-smooth

functions g is proved in [8].

Henceforth by C and c with or without indices we denote various positive

constants whose precise value is of no importance. The value of constants may

vary from line to line.

2. Smooth functions g

Before embarking on the formulation of the main theorem we provide some useful

information on the smooth case. First we show how to extend formula (2.7) to

C
1;~-functions. Rewrite U.s1; s2I g/ in a di�erent way introducing the integral

V.s1; s2I g/ D

Z 1

0

g..1 � t /s1 C t s2/ � g.s2/

1 � t
dt: (2.1)

This functional is well de�ned for any ~-Hölder continuous function gWC ! C

with ~ 2 .0; 1�, and

jV.s1; s2I g/j � C~Œg�~ js1 � s2j~ ; for all s1; s2 2 C; (2.2)

where we have denoted

Œg�~ D sup
z;w2C;z 6Dw

jg.z/ � g.w/j

jz � wj~
:

If g is boundedly di�erentiable, then, integrating by parts once, we obtain

V.s1; s2I g/ D .s2 � s1/

Z 1

0

log.1 � t /g0..1 � t /s1 C t s2/dt: (2.3)

Due to the elementary formula

g..1 � t /s1 C t s2/ � .1 � t /g.s1/ � tg.s2/

t .1 � t /

D
g..1 � t /s1 C t s2/ � g.s1/

t
C

g..1 � t /s1 C t s2/ � g.s2/

1 � t
;
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we have

U.s1; s2I g/ D V.s2; s1I g/ C V.s1; s2I g/; (2.4)

so that in combination with (2.3) we obtain

U.s1; s2I g/

D .s2 � s1/

Z 1

0

log.1 � t /Œg0..1 � t /s2 C t s1/ � g0..1 � t /s1 C t s2/�dt:
(2.5)

Lemma 2.1. Suppose that g0 is ~-Hölder continuous with some ~ 2 .0; 1�. Then

jB.aI g/j � C Œg0�~

“

ja.�1/ � a.�2/j1C~

j�1 � �2j2
d�1d�2; (2.6)

with a universal constant C .

Proof. Since

jg0..1 � t /s2 C t s1/ � g0..1 � t /s1 C t s2/j � j1 � 2t j~Œg0�~ js1 � s2j~ ;

� Œg0�~js1 � s2j~ ; for all t 2 Œ0; 1�;

formula (2.5) gives

jU.s1; s2I g/j � C Œg0�~ js1 � s2j1C~ ; C D �

Z 1

0

log.1 � t /dt:

This leads to the proclaimed bound. �

The double integral in (2.6) is the standard Gagliardo–Slobodetski seminorm

of a in Ws;p.R/ raised to power p, where p D 1 C ~, and s D .1 C ~/�1, see

e.g. [9].

For the next theorem we rewrite the de�nition (1.4) of the coe�cient B.aI g/

as the principal value integral:

B.aI g/ D lim
"!0

B".aI g/; B".aI g/ D
1

8�2

“

j�1��2j>"

U.a.�1/; a.�2/I g/

j�1 � �2j2
d�1d�2:

(2.7)

Here and further we always assume that � > 0. In view of (2.4),

B".aI g/ D
1

4�2

“

j�1��2j>"

V.a.�1/; a.�2/I g/

j�1 � �2j2
d�1d�2: (2.8)
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This representation can be transformed into a di�erent formula for the coe�cient

B.aI g/, known in the literature, see e.g. [17], Proposition 5.4 or [2], formula (1.5).

For any m 2 R and n D 0; 1; 2 : : : ; denote

kuk.n/
m D max

0�k�n
sup
�2R

.1 C j�j/mCk ju.k/.�/j:

Theorem 2.2. Suppose that g0; g00 2 L
1.R/, and that kak

.2/
m < 1 with some

m 2 .0; 1/. Then the limit (2.7) exists and it is given by

B.aI g/ D
1

4�2

Z

lim
"!0

Z

j�1��2j>"

g.a.�1// � g.a.�2//

a.�1/ � a.�2/

a0.�1/

�1 � �2

d�1d�2: (2.9)

Moreover,

jB.aI g/j � C Œkg0kL1ka0k
.1/
mC1 C kg00kL1.ka0k

.0/
mC1/2�;

with a constant C > 0 independent of the functions a and g.

Before proving the above formula we point out some useful properties of the

Hilbert transform

Qu.�/ D
1

�
lim
"!0

Z

j���j>"

u.�/

� � �
d�; (2.10)

derived in [17], Lemmas 5.2 and 5.3.

Proposition 2.3. Suppose that kuk
.1/
m < 1 for some m 2 .0; 1/. Then

j Qu.�/j � C kuk.1/
m .1 C j�j/�m:

If, in addition, kuk
.1/
mC1 < 1 and

Z

u.�/d� D 0;

then

j Qu.�/j � C kuk
.1/
mC1.1 C j�j/�m�1:

The constants in the above inequalities do not depend on u.

Proof of Theorem 2.2. First we check that the integral on the right-hand side

of (2.9) is �nite. Observe that

u.�1I �2/ WD
@

@�1

V.a.�1/; a.�2/I g/ D a0.�1/

Z 1

0

g0..1 � t /a.�1/ C ta.�2//dt

D a0.�1/
g.a.�1// � g.a.�2//

a.�1/ � a.�2/
;

(2.11)
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so that

ku.�I �2/k
.1/
mC1 � C.kg0kL1ka0k

.1/
mC1 C kg00kL1.ka0k

.0/
mC1/2/;

uniformly in �2 2 R. Moreover,

Z

u.�1I �2/d�1 D 0;

and consequently, by Proposition 2.3,

j Qu.�I �2/j � C.1 C j�j/�m�1.kg0kL1ka0k
.1/
mC1 C kg00kL1.ka0k

.0/
mC1/2/;

uniformly in �2 2 R, where Qu.�I �2/ denotes the Hilbert transform of the function

u.�1; �2/ in the variable �1. Since

B.aI g/ D
1

4�

Z

Qu.�2; �2/d�2;

this leads to the required estimate.

Now we concentrate on the derivation of (2.9). To this end integrate (2.8) by

parts:

4�2
B".aI g/ D

1

"

Z

ŒV .a.�2 C "/; a.�2/I g/ C V.a.�2 � "/; a.�2/I g/�d�2

C

Z Z

j�1��2j>"

1

�1 � �2

@

@�1

V.a.�1/; a.�2/I g/d�1d�2:
(2.12)

By (2.11), the double integral on the right-hand side of (2.12) coincides with the

one in (2.9). To handle the �rst integral on the right-hand side of (2.12), note that

by (2.2) with ~ D 1,

jV.a.�2 ˙ "/; a.�2/I g/j

"
� C kg0kL1

ja.�2 ˙ "/ � a.�2/j

"

� C kg0kL1kak.1/
m .1 C j�2j/�m�1;

uniformly in " 2 .0; 1�, and that

lim
"!0

V.a.�2 ˙ "/; a.�2/I g/

"
D ˙a0.�2/g0.a.�2// D ˙

d

d�2

g.a.�2//:

Clearly, the integral of the right-hand side equals zero. Thus by the Dominated

Convergence Theorem the �rst term on the right-hand side of (2.12) tends to zero

as " ! 0, and the formula (2.9) is proved. �
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3. Non-smooth functions

3.1. Main result. We concentrate on the very special non-smooth case, which

is nonetheless interesting for applications. To distinguish from smooth functions,

we change the notation from g to f and assume that f satis�es the following

condition:

Condition 3.1. For some integer n � 1, some  2 .0; 1� and some x0 2 R, the

function f 2 C
n.R n ¹x0º/ \ C.R/ satis�es the bound

f n D max
0�k�n

sup
x 6Dx0

jf .k/.x/jjx � x0j�Ck < 1: (3.1)

The constants in all subsequent estimates may depend on n;  , but not on x0.

For a function f satisfying the above condition the bound holds:

jf .k/.x/j � f njx � x0j�k ; k D 0; 1; : : : ; n; x 6D x0: (3.2)

If n � 1, then the above condition implies that f is -Hölder continuous, and in

particular,

jf .x1/ � f .x2/j � 2 f 1jx1 � x2j ; for all x1; x2 2 R: (3.3)

For a function u denote

N.uI lı.WN;p// D

�

X

n2Z

max
0�k�N

� Z

.n;nC1/

ju.k/.�/jpd�

�
ı
p

�
1
ı

;

where ı 2 .0; 1�, p 2 .0; 1�. Now we can state the main result.

Theorem 3.2. Suppose that the function f WR ! C satis�es Condition 3.1 with

n D 2, and some  2 .0; 1�, x0 2 R. Let a be a real-valued function such that

a 2 W
N;p
loc .R/ with some p 2 .1; 1� and some N such that N � �1 C p�1. Then

the limit (2.7) exists and it satis�es the bound

jB.aI f /j � C f 1

“

j�1��2j>1

ja.�1/ � a.�2/j

j�1 � �2j2
d�1d�2

C C f 2ŒN.a0I l .WN �1;p//� ;

(3.4)

where the constant C is independent of the functions f , a, and the parameter x0.
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Note that the value of the right-hand side of (3.4) is preserved under the shift

a ! a C a0 with an arbitrary constant a0. If we assume that a � a0 2 L
 .R/ with

some constant a0, then the �rst integral in (3.4) can be estimated as follows:

“

j�1��2j>1

ja.�1/ � a.�2/j

j�1 � �2j2
d�1d�2 � 2

“

j�1��2j>1

ja.�1/ � a0j

j�1 � �2j2
d�1d�2

� 2

Z

ja.�/ � a0j d�:

3.2. Function f . Here we prove some elementary properties of the function f

satisfying Condition 3.1 with n D 2.

Lemma 3.3. If  2 .0; 1�, then for any t1 6D x0; t2 6D x0, and any ı 2 Œ0; 1�,

we have

jf 0.t1/ � f 0.t2/j � 2 f 2. min
j D1;2

jtj � x0j/�1�ı jt1 � t2jı : (3.5)

Proof. Suppose that either t1 > x0; t2 < x0, or t1 < x0; t2 > x0. According

to (3.2), for any ı > 0 we have

jf 0.t1/j � f 1jt1 � x0j�1

D f 1jt1 � x0j�1�ı jt1 � x0jı

� f 1. min
j D1;2

jtj � x0j/�1�ı jt1 � t2jı ;

(3.6)

Estimating f 0.t2/ in the same way we get the claimed bound.

Suppose now that t2 � t1 > x0 or t2 � t1 < x0. Then

jf 0.t1/ � f 0.t2/j � jf 00.�/jjt1 � t2j; with some � 2 .t1; t2/;

and hence, by (3.2),

jf 0.t1/ � f 0.t2/j � f 2jt1 � x0j�2jt1 � t2j:

Together with (3.6), this gives

jf 0.t1/ � f 0.t2/j � f 221�ı jt1 � x0j.�1/.1�ı/jt1 � x0j.�2/ı jt1 � t2jı ;

for any ı 2 Œ0; 1�. This leads to (3.5), as claimed.

The cases t1 > t2 > x0 or t1 < t2 < x0 are handled by exchanging the roles of

t1 and t2. �



Trace formulas 1029

3.3. Functional V . Let us derive some useful estimates for the functional V

de�ned in (2.1). As before, we assume that f WR 7! C in the de�nition (2.7)

satis�es Condition 3.1 with some  2 .0; 1�, n D 2 and x0 2 R.

First we make some straightforward observations. In view of (3.3) and (2.2),

jV.s1; s2I f /j � C f 1js1 � s2j : (3.7)

Furthermore, by de�nition (2.1) and by (3.3), for any � 2 .0; 1/, we have

jV.s1; s2I f / � V.r1; r2I f /j � C f 1j log �j.js1 � r1j C js2 � r2j /

C C f 1� .js1 � s2j C jr1 � r2j /j;
(3.8)

for any real s1; r1; s2; r2. This bound follows from (2.1) by splitting V into two

integrals: over .0; 1 � �/ and over .1 � �; 1/.

Now introduce

Y.s1; s2I f / D @s1
V.s1; s2I f / D

Z 1

0

f 0.s1.1 � t / C s2t /dt; (3.9)

X.s1; s2I f / D Y.s1; s2I f / � f 0.s1/; s1 6D x0: (3.10)

Lemma 3.4. Let f satisfy Condition 3.1 with  2 .0; 1�, n D 2 and x0 2 R, and

let ı 2 Œ0; / be some number. Then for all real s1 6D x0 and all real s2,

jX.s1; s2I f /j � 4. � ı/�1 f 2js1 � s2jı js1 � x0j�1�ı : (3.11)

Proof. Represent X in the form

X.s1; s2I f / D

Z 1

0

Œf 0..1 � t /s1 C t s2/ � f 0.s1/�dt:

First suppose that either s1 > x0; s2 � x0, or s1 < x0; s2 � x0. Then, by (3.5),

jf 0..1 � t /s1 C t s2/� f 0.s1/j

� 2 f 2.1 � t /�1�ı t ı js1 � x0j�1�ı js1 � s2jı ;

for any ı 2 Œ0; 1�. Consequently,

jX.s1; s2I f /j � 2 f 2js1 � s2jı js1 � x0j�1�ı

Z 1

0

.1 � t /�1�ı t ıdt:

The integral is bounded by . � ı/�1 for ı 2 Œ0; /, which leads to (3.11).
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Now suppose that either s1 > x0; s2 < x0, or s1 < x0; s2 > x0. According

to (3.5),

jf 0..1 � t /s1 C t s2/ � f 0.s1/j

� 21�ı f 2j.1 � t /s1 C t s2 � x0j�1�ı t ı js1 � s2jı

D 21�ı f 2js1 � s2j�1�ı

ˇ

ˇ

ˇ

ˇ

t �
s1 � x0

s1 � s2

ˇ

ˇ

ˇ

ˇ

�1�ı

t ı js1 � s2jı ; t 6D
s1 � x0

s1 � s2

:

Since  � 1 and js1 � s2j > js1 � x0j, we estimate

js1 � s2j�1�ı < js1 � x0j�1�ı :

Furthermore,
Z 1

0

jt � zj�1�ıdt �
2

 � ı

uniformly in z 2 Œ0; 1�. This implies (3.11). �

4. Two lemmas on integrals of polynomials

In this section we prepare two elementary results involving real-valued polynomial

functions a.

For a closed interval I � Rwe denote by jI j its length (the Lebesgue measure).

For a smooth function a on I we denote by kakLp its Lp-norm on the interval I .

Lemma 4.1. Let I 2 R be a closed interval, and let a be a real-valued polynomial.

Suppose that I contains at least N � 1 distinct critical points of the function a,

with some N D 1; 2; : : : . Let p 2 Œ1; 1� be arbitrary. Then for any  2 .0; 1� and

any two points �1; �2 2 I the bound holds

jja.�1/j � ja.�2/j j � ka.N /k


L
p jI j.N � 1

p /: (4.1)

If I contains exactly N � 1 distinct critical points of a, then the total variation

VarŒjaj I I � of the function jaj on the interval I satis�es the bound

VarŒjaj I I � � .N C 1/2ka.N /k


L
p jI j.N � 1

p /: (4.2)
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Proof. Assume without loss of generality that ka.N /kLp � 1. Since the interval I

contains at least N �1 distinct zeros of a0, by an elementary argument, the interval

I also contains at least N � 2 distinct zeros of a00, N � 3 distinct zeros of a000, and

eventually, at least one point �0, such that a.N �1/.�0/ D 0. This means that

ja.N �1/.�/j �

Z �

�0

ja.N /.�/jd� � ka.N /kLp jI j1� 1
p � jI j1� 1

p ; for all � 2 I:

From this bound we obtain consecutively that

ja.N �2/.�/j � jI j2� 1
p ; ja.N �3/.�/j � jI j3� 1

p ;

and, in general,

ja.k/.�/j � jI jN �k� 1
p ; k D 1; 2; : : : ; N � 1:

In particular, ja0.�/j � jI jN �1� 1
p , so that for any �1; �2 2 I we have

a.�1/ � a.�2/ D w.�1; �2/; jw.�1; �2/j � jI jN �1� 1
p j�1 � �2j � jI jN � 1

p :

Thus

jja.�1/j � ja.�2/j j � jw.�1; �2/j � jI j.N � 1
p

/;

as claimed.

In order to prove (4.2), note that the polynomial a has at most N distinct roots

on I , and hence there are at most N C 1 intervals where the polynomial a is sign-

de�nite. Using the additivity of total variation, it su�ces to prove that on each

of these intervals the total variation does not exceed .N C 1/ka.N /k


L
p jI j.N � 1

p
/.

Assume for simplicity that a.�/ � 0 for all � 2 I . Partition I into intervals ¹Ij º

on which the function a is monotone. Thus by (4.1),

VarŒjaj I Ij � � ka.N /k


L
p jI j.N � 1

p
/:

As the number of intervals Ij does not exceed N , we immediately obtain the

required bound. �

Lemma 4.2. Let I 2 R be a closed interval, such that jI j � r with some number

r > 0, and let a be a real-valued polynomial. Let  2 .0; 1�, p 2 Œ1; 1� and

N � �1 C p�1. Then the total variation VarŒjaj I I � of the function jaj on the

interval I satis�es the bound

VarŒjaj I I � � C .N C 1/2ka0k


W
N�1;p jI j.1�p�1/ ; (4.3)

and hence,
Z

I

ja0.�/jja.�/j�1d� � C .N C 1/2ka0k


W
N�1;p jI j.1�p�1/ ; (4.4)

with a constant C D C .r/ independent of a and N .
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Proof. Let Ik ; k D 1; 2; K; be non-empty closed intervals with disjoint interiors

such that I D
S

k Ik, and satisfying the following requirements:

� each Ik , k D 1; 2; : : : ; K � 1; contains exactly N � 1 critical points of a,

� the interval IK contains no more than N � 1 critical points of a.

By (4.2), for any k D 1; 2; : : : ; K � 1 we have

VarŒjaj I Ik � � .N C 1/2ka.N /k


L
p jIk j.N � 1

p
/

� r.N � 1
p

/�1.N C 1/2ka.N /k


L
1 jIk j;

(4.5)

where we have used that .N � p�1/ � 1. Furthermore, by (4.2) again,

VarŒjaj I IK� � .L C 1/2ka.L/k


L
p jI j.L� 1

p
/

� r .L�1/ .N C 1/2ka0k


W
N�1;p jI j.1� 1

p
/ ;

(4.6)

where L � 1 � N � 1 is the number of critical points on IK . By the additivity,

the inequalities (4.5) and (4.6) lead to (4.3). The left-hand side of (4.3) coincides

with that of (4.4) (up to a positive multiplicative constant). This completes the

proof. �

5. Proof of Theorem 3.2

We begin the proof of Theorem 3.2 with estimating B1.aI f /, which will produce

the integral term on the right-hand side of (3.4). The function f is assumed

to satisfy Condition 3.1. As before, all constants in the estimates below are

independent of the symbol a, function f , parameter x0, but may depend on

 2 .0; 1� and other relevant parameters unless otherwise stated.

Lemma 5.1. Assume that f is as speci�ed above. Then

jB1.aI f /j � C f 1

“

j�1��2j>1

ja.�1/ � a.�2/j

j�1 � �2j2
d�1d�2:

Proof. The required bound immediately follows from (2.8) and (3.7). �

The remaining part of the coe�cient B.aI f / is studied with the help of a

suitable partition of unity on R. For a function � 2 C
1
0 .R/ and numbers R > 0,

" 2 .0; R/, de�ne

D";R.aI �; f / D
1

4�2

“

"<j�1��2j<R

�.�1/
V .a.�1/; a.�2/I f /

j�1 � �2j2
d�1d�2: (5.1)
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In all the subsequent bounds the constants are independent of the cut-o� �, and of

the parameters "; R.

Theorem 5.2. Let � 2 C
1
0.�1; 1/, and let a 2 W

N;p.�2; 2/ with some p 2 .1; 1�

and N � �1 C p�1. Then

jD";R.aI �; f /j � C;ık�k
C

1 f 2R.1� 1
p

/ıAN;p.a/ ; (5.2)

for any ı 2 .0; /, uniformly in R 2 .0; 1� and " 2 .0; R�. Here

AN;p.a/ D ka0k
W

N�1;p ; (5.3)

where the norm is taken on the interval .�2; 2/.

Furthermore, the limit of D";R.aI �; f / as " ! 0, exists.

Note the following straightforward estimate:

ja.�1/ � a.�2/j � A1;p.a/j�1 � �2j1� 1
p ; �1; �2 2 .�2; 2/: (5.4)

Integrating (5.1) by parts we get

D";R.aI �; f / D D
.1/
";R.aI �; f / C D

.2/
";R.aI �; f / C D

.3/
" .aI �; f / � D

.3/
R .aI �; f /

(5.5)

with

D
.1/
";R.aI �; f / D

1

4�2

“

"<j�1��2j<R

�.�1/

�1 � �2

@

@�1

V.a.�1/; a.�2/I f /d�1d�2;

D
.2/
";R.aI �; f / D

1

4�2

“

"<j�1��2j<R

V.a.�1/; a.�2/I f /

�1 � �2

@

@�1

�.�1/d�1d�2;

and

D
.3/
" .aI �; f / D

1

4�2"

Z

Œ�.� C "/V .a.� C "/; a.�/I f /

C �.� � "/V .a.� � "/; a.�/I f /�d�;

(5.6)

Below we estimate each term separately.

Lemma 5.3. Suppose that � 2 C
1
0 .�1; 1/ and that a 2 W

1;p.�2; 2/, p 2 .1; 1�.

Then

jD
.2/
";R.aI �; f /j � C f 1 max j�0jR.1� 1

p
/A1;p.a/ ; (5.7)

uniformly in R 2 .0; 1� and " 2 .0; R�.
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Proof. By (3.7) and (5.4) we have

jV.a.�1/; a.�2/I f /j � C f 1A1;p.a/ j�1 � �2j.1� 1
p

/ ;

so that (5.7) follows immediately. �

For the next group of results we need to assume that a is a real-valued polyno-

mial.

Lemma 5.4. Suppose that � 2 C
1
0 .�1; 1/, and that a is a real-valued polynomial.

Then

jD.3/
" .aI �; f /j � C;ık�k

C
1 f 2".1� 1

p
/ıAN;p.a/ ;

for any ı 2 Œ0; /, p 2 Œ1; 1� and any N � �1 C p�1, uniformly in " 2 .0; 1�.

The constant C;ı may depend on the parameter N .

Proof. Without loss of generality assume that k�k
C

1 D 1. Represent

Z

�.� ˙ "/V .a.� ˙ "/; a.�/I f /d�

D ˙

Z Z "

0

Œ�0.� ˙ �/V .a.� ˙ �/; a.�/I f /

C �.� ˙ �/a0.� ˙ �/Y.a.� ˙ �/; a.�/I f /�d�d�

D ˙

Z Z "

0

Œ�0.�/V .a.�/; a.� � �/I f /

C �.�/a0.�/Y.a.�/; a.� � �/I f /�d�d�;

see (3.9) for the de�nition of the function Y . Let us simplify the formula for D
.3/
" ,

introducing the integrals

S
.˙/
1 D

1

"

Z

�0.�/

Z "

0

V.a.�/; a.� � �/I f /d�d�;

S
.˙/
2 D

1

"

Z

�.�/

Z "

0

a0.�/X.a.�/; a.� � �/I f /d�d�;

see (3.10) for the de�nition of X . Therefore

4�2
D

.3/
" .aI �; f / D S

.C/
1 � S

.�/
1 C S

.C/
2 � S

.�/
2 :
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By (3.7) and (5.4),

jS
.˙/
1 j �

C

"
f 1

Z

j�0.�/j

Z "

0

ja.�/ � a.� � �/jd�d�

�
C

"
f 1A1;p.a/

Z "

0

�.1� 1
p

/d�

� C f 1A1;p.a/".1� 1
p

/ :

To estimate S
.˙/
2 use (3.11) with ı 2 Œ0; / and (5.4) again:

jX.a.�/; a.� � �/I f /j � C f 2ja.�/ � a.� � �/jı ja.�/ � x0j�1�ı

� C f 2A1;p.a/ı j�j.1� 1
p

/ı ja.�/ � x0j�1�ı :

Therefore

jS
.˙/
2 j �

C

"
A1;p.a/ı f 2

Z "

0

�.1� 1
p

/ıd�

Z 1

�1

ja0.�/jja.�/ � x0j�1�ıd�:

By virtue of (4.4),

jS
.˙/
2 j � CA1;p.a/ı f 2 ".1� 1

p
/ıAN;p.a/�ı :

Since A1;p.a/ � AN;p.a/, the required bound follows. �

Lemma 5.5. Suppose that � 2 C
1
0 .�1; 1/ and that a is a real-valued polynomial.

Then

jD
.1/
";R.aI �; f /j � C;ı f 2 max j�jR.1� 1

p
/ıAN;p.a/ ; (5.8)

for any ı 2 Œ0; /, p 2 .1; 1� and any N � �1 C p�1, uniformly in R 2 .0; 1�

and " 2 .0; R�.

Proof. Without loss of generality assume that max j�j D 1. Since

“

"<j�1��2j<R

1

�1 � �2

�.�1/a0.�1/g0.a.�1//d�1d�2 D 0;

the integral D
.1/
";R can be rewritten as

“

"<j�1��2j<R

1

�1 � �2

�.�1/a0.�1/X.a.�1/; a.�2/I f /d�1d�2;

see (3.10) for the de�nition of the function X .
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By virtue of (3.11) and (5.4), for any ı 2 Œ0; / the integrand is bounded from

above by

C;ı f 2

ja.�1/ � a.�2/jı

j�1 � �2j
ja0.�1/jja.�1/ � x0j�1�ı

� C;ı f 2A1;p.a/ı j�1 � �2j.1�p�1/ı�1ja0.�1/jja.�1/ � x0j�1�ı ;

for all �1 where a.�1/ 6D x0. Assuming that ı > 0, and using (4.4), we obtain that

jD
.1/
";R.aI �; f /j � C;ı f 2R.1� 1

p /ıA1;p.a/ıAN;p.a/�ı :

As A1;p � AN;p, the bound (5.8) follows. �

Proof of Theorem 5.2. Collecting the bounds established in Lemmas 5.3–5.5, and

using the representation (5.5), we arrive at the bound (5.2) for a polynomial a.

For an arbitrary function a 2 W
N;p.�2; 2/, p 2 .1; 1�, and a number q � p,

1 < q < 1, �nd a polynomial Qa D Qa", such that

ka � Qak
W

N;q < A1;p.a/R�1

"4�1

: (5.9)

This implies that

AN;q. Qa/ � AN;q.a/ C A1;p.a/ � AN;p.a/.4
1
q

� 1
p C 1/: (5.10)

For subsequent calculations we assume without loss of generality that f 2 D 1

and k�k
C

1 D 1. In view of (3.8), for any � 2 .0; 1/ we have

jV.a.�1/; a.�2/I f / � V. Qa.�1/; Qa.�2/I f /j

� C j log �j.ja.�1/ � Qa.�1/j C ja.�2/ � Qa.�2/j /

C C� .A1;q. Qa/ j�1 � �2j.1� 1
q

/ C A1;p.a/ j�1 � �2j.1� 1
p

/ /;

where we have also used (5.4). Consequently,

jD";R.aI �; f / � D";R. QaI �; f /j �
C

"2
Œj log �jka � Qak



L
q C �A1;p.a/R�

�
C

"2
RA1;p.a/ .j log �j"4 C � /;

where we have used (5.9). Take � D "3�1
, so that

jD";R.aI �; f / � D";R. QaI �; f /j � CRA1;p.a/": (5.11)
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Let Qı be given by

Qı D ı
1 � p�1

1 � q�1
;

where ı 2 .0; /. By picking a suitable q one ensures that Qı <  as well.

Now use Theorem 5.2 for the polynomial Qa with the parameter Qı instead of ı,

remembering (5.10):

jD";R. QaI �; f /j � CR.1� 1
q

/QıAN;q. Qa/ � CR.1� 1
p

/ıAN;p.a/ :

Combining this bound with (5.11) we obtain (5.2).

Finally, the existence of the limit

lim
"!0

D";R.aI �; f /

follows from the fact that the right-hand side of (5.2) tends to zero as R ! 0,

" ! 0. �

Proof of Theorem 3.2. Let �k 2 C
1
0 .R/, k 2 Z, be a family of functions consti-

tuting a partition of unity subordinate to the covering of the real axis by intervals

.k�1; kC1/; k 2 Z. We may assume that the norms k�kk
C

1 are bounded uniformly

in k 2 Z. Represent B".aI f / as

B".aI f / D B1.aI f / C
X

k2Z

D";1.aI �k; f /:

The �rst term on the right-hand side is estimated by Lemma 5.1. Due to the

bound (5.2) the second term is bounded by C f 2N.a0I l .WN �1;p// . Further-

more, since the N-(quasi)-norm is �nite, the sum has a limit as " ! 0. This

completes the proof. �

6. A special case

In the previous Section, in the proof of Theorem 3.2, we use the covering of the

real axis by intervals .k�1; kC1/; k 2 Z that obviously all have length 2. Now we

derive an estimate for B.aI f / using a covering by intervals whose size is sensitive

to the rate of change of the function a. Let us describe in more precise terms the

conditions on a. Let � WR ! R be a positive function satisfying the condition

j�.�/ � �.�/j � �j� � �j; for all �; � 2 R; (6.1)
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with some � 2 .0; 1/. It is straightforward to check that

.1 C �/�1 �
�.�/

�.�/
� .1 � �/�1; for all � 2 J.�/ D .� � �.�/; � C �.�//: (6.2)

We call � the scale function. Let vWR ! R be another continuous positive function

such that

C1 �
v.�/

v.�/
� C2; for all � 2 J.�/; (6.3)

with some positive constants C1; C2 independent of � and �. We call v the

amplitude function. Since � < 1, one can construct a covering of R by open

intervals J.�j / centered at some points �j ; j 2 Z, which satis�es the �nite

intersection property, i.e. the number of intersecting intervals is bounded from

above by a constant depending only on the parameter �, see [4], Chapter 1.

Moreover, there exists a partition of unity �j 2 C
1
0 .R/ subordinate to the above

covering such that

j�
.k/
j .�/j � Ck�.�/�k; k D 0; 1; : : : ; (6.4)

with some constants Ck independent of j 2 Z.

It is convenient for us to use a covering with �nite intersection property,

constructed with the help of the function �=2 instead of � itself. Let

Ij D
�

�j �
�j

2
; �j C

�j

2

�

; �j D �.�j /; j 2 Z;

be intervals forming such a covering, and let �j 2 C
1
0 .R/; j 2 Z, be a subordinate

partition of unity satisfying (6.4).

Consider a symbol a 2 C
N .R/, satisfying the bounds

ja.�/ � a0j � C v.�/; ja.k/.�/j � Ck�.�/�kv.�/; k D 1; 2; : : : ; N; (6.5)

with some functions � and v described above, and with some constant a0.

In all the bounds below the constants are independent of the functions f , � ,

and v, but may depend on the parameter � and the constants in (6.3) and (6.5).

Theorem 6.1. Suppose that f satis�es Condition 3.1 with n D 2 and  2 .0; 1�.

Let �; v; a satisfy (6.1), (6.3), and let a satisfy (6.5) with some N � �1. Then

jB.aI f /j � C f 2

Z

v.�/

�.�/
d�: (6.6)
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A similar bound holds also for functions f with higher smoothness.

Theorem 6.2. Suppose that f WC ! C is a function such that f 0 is ~-Hölder con-

tinuous with some ~ 2 .0; 1�. Let �; v; a satisfy (6.1), (6.3), and let a satisfy (6.5)

with N D 1. Then

jB.aI f /j � C~kf 0k
C

0;~

Z

v.�/1C~

�.�/
d�: (6.7)

First we give a detailed proof of Theorem 6.1.

Represent B.aI f / as follows:

B".aI f / D
X

j 2Z

D";1.aI �j ; f /; (6.8)

see (5.1) for the de�nition ofD";R.� � � /. Split each summand into two components:

D";1.aI �j ; f / D D";Rj
.aI �j ; f / C DRj ;1.aI �j ; f /; Rj D

�j

2
:

Lemma 6.3. Suppose that the scaling function � satis�es (6.1) with some � 2

.0; 1/. If f satis�es the conditions of Theorem 6.1, then

X

j 2Z

jDRj ;1.aI �j ; f /j � C f 1

Z

ja.�/ � a0j

�.�/
d�: (6.9)

Proof. Assume without loss of generality that f 1 D 1 and a0 D 0. For all

�1 2 Ij we get from (6.1) that

�.�1/ �
2 C �

2
�j :

Thus for all �2 such that j�1 � �2j > �j =2 we have

�.�1/ � .2 C �/j�1 � �2j;

�.�2/ � �j�1 � �2j C �.�1/ � 2.� C 1/j�1 � �2j;

which leads to

c�.�.�1/ C �.�2// � j�1 � �2j; c� D
1

4.1 C �/
:

Therefore

jDRj ;1.aI �j ; f /j �

“

j�1��2j>c�.�.�1/C�.�2//

�j .�1/
jV.a.�1/; a.�2/I f /j

j�1 � �2j2
d�1d�2:
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By (3.7), the right-hand side does not exceed

C

“

j�1��2j>c��.�1/

�j .�1/
ja.�1/j

j�1 � �2j2
d�1d�2 C C

“

j�1��2j>c��.�2/

�j .�1/
ja.�2/j

j�1 � �2j2
d�1d�2:

Thus the sum over j is bounded from above by

C

“

j�1��2j>c��.�1/

ja.�1/j

j�1 � �2j2
d�1d�2 C C

“

j�1��2j>c��.�2/

ja.�2/j

j�1 � �2j2
d�1d�2

� C 0

Z

ja.�/j

�.�/
d�;

as claimed. �

Lemma 6.4. Let a satisfy (6.5) with some functions � D �.�/ and v D v.�/

satisfying (6.1) and (6.3). Suppose also that N � �1 and R � Rj . Then for any

ı 2 Œ0; / the bound holds

jD";R.aI �j ; f /j � Cı f 2Rı

Z

Ij

v.�/

�.�/1Cı
d�; (6.10)

uniformly in " 2 .0; R�.

Proof. Without loss of generality assume f 2 D 1. Let

Qa.�/ D a.�j C Rj �/; Q�j .�/ D �j .�j C Rj �/:

Thus by (6.4), k Q�j k
C

1 � C , supp Q�j � .�1; 1/ uniformly in j , and in view of (6.3)

and (6.5),

j Qa.n/.�/j � Cnv.�j /; for all � such that j�j � 2;

for all n D 1; : : : ; N , so that AN;1. Qa/ � C v.�j /, see (5.3) for the de�nition. Thus

by Theorem 5.2 with p D 1, and arbitrary ı 2 Œ0; /,

jD";Rj
.aI �j ; f /j D jD"R�1

j
;RR�1

j
. Qa; Q�j ; f /j � C.RR�1

j /ıv.�j / :

The right-hand side is trivially estimated by

CRı

Z

Ij

v.�j / ��1�ı
j d�:

By virtue of (6.1) and (6.3), this is bounded by the right-hand side of (6.10). This

completes the proof. �
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Corollary 6.5. Suppose that �inf D inf �.�/ > 0, and that R � �inf=2. Then for

any ı 2 Œ0; / the bound holds:

jD";R.aI 1; f /j � Cı f 2Rı

Z

v.�/

�.�/1Cı
d�; (6.11)

uniformly in " 2 .0; R�.

Proof of Corollary 6.5 and Theorem 6.1. Since the covering ¹Ij º possesses the

�nite intersection property, the bound (6.11) follows from the bound (6.10) by

summing over all j ’s.

Using the bound (6.10) with R D Rj we obtain that

jD";Rj
.aI �j ; f /j � C f 2

Z

Ij

v.�/

�.�/
d�;

uniformly in " 2 .0; 1�. In view of the �nite intersection property of the covering

¹Ij º, we get

X

j 2Z

jD";Rj
.aI �j ; f /j � C f 2

Z

v.�/

�.�/
d�:

In view of the representation (6.8) this bound together with (6.9) lead to (6.6). �

For Theorem 6.2 we give only a sketch of the proof. The details are either the

same as in the preceding proof, or they can be easily �lled in.

Sketch of the proof of Theorem 6.2. By (2.6), the proof reduces to estimating the

integral
“

ja.�1/ � a.�2/j1C~

j�1 � �2j2
d�1d�2:

As in Lemma 6.3 one can show that

X

j

“

j�1��2j>Rj

�j .�1/
ja.�1/ � a.�2/j1C~

j�1 � �2j2
d�1d�2 � C

Z

ja.�/ � a0j1C~

�.�/
d�
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Furthermore, if j�1 � �2j < Rj , �1 2 Ij , then by (6.5), (6.1), and (6.3),

ja.�1/ � a.�2/j � C v.�j /��1
j j�1 � �2j;

so that

“

j�1��2j<Rj

�j .�1/
ja.�1/ � a.�2/j1C~

j�1 � �2j2
d�1d�2

� C v.�j /1C~��1�~
j

Z

Ij

Z

j�1��2j<Rj

j�1 � �2j~�1d�2d�1

� C v.�j /1C~

� C

Z

Ij

v.�j /1C~��1
j d�:

Now, as in the proof of Lemma 6.4, the last integral is bounded by
R

v1C~��1d�.

This completes the proof of Theorem 6.2. �

We illustrate the usefulness of the bound (6.6) with the example of the symbol

a.�/ D aT .�/ D
1

1 C exp �2��
T

; (6.12)

where T 2 .0; T0�, T0 > 0 and � 2 R are some parameters. This symbol is nothing

but the Fermi symbol for non-interacting Fermions at positive temperature T and

chemical potential �, see e.g. [7]. We are interested in the small T behaviour,

whereas the value � is kept �xed. Assume for simplicity that � D 1. It is clear

that in a neighbourhood of the points � D ˙1 the derivatives of a grow as T ! 0.

It is straightforward to check that

ja.n/.�/j � Cna.�/.1 � a.�//.1 C j�j/nT �n; n D 1; 2; : : : ; (6.13)

and

a.�/.1 � a.�// � exp
�

�
j�2 � 1j

T

�

; � 2 R: (6.14)

Thus Theorem 3.2 with any p 2 .1; 1� leads to the estimate

jB.aI f /j � C f 1 C zC f 2T �NC 
p : (6.15)

The right-hand side is greater than C T �1, since N � �1 C p�1.
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Let us now estimate B.aT I f / in a di�erent way, by applying Theorem 6.1.

Since

.1 C j�j/nT �n exp
�

�
j�2 � 1j

2T

�

� Cn.jj�j � 1j C T /�n; Cn D Cn.T0/;

in view of (6.13) and (6.14), we have

ja.n/.�/j � Cn.jj�j � 1j C T /�n exp
�

�
j�2 � 1j

2T

�

; n D 1; 2; : : : :

This shows that a satis�es (6.5) with

a0 D 0; �.�/ D
1

2
.jj�j � 1j C T /; v.�/ D vˇ .�/ D .1 C j�j/�ˇ ;

with an arbitrary ˇ > 0. Consequently, by Theorem 6.1,

jB.aI f /j � C f 2

Z

.jj�j � 1j C T /�1.1 C j�j/�ˇ d�

� C f 2.j log T j C 1/:

This bound is clearly sharper than (6.15), and its precision (as T ! 0) is con�rmed

by the asymptotic formula for B.aT I f /, T ! 0, announced in [7] and proved

in [8].
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