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Summary 

The Eurasian ‘Silk Road’ is considered one the world’s most extensive overland trade 

networks, yet questions regarding the evolution of its ancient routes and the factors 

that shaped their geography remain unanswered.  This is especially problematic in its 

vast mountainous stretches, where harsh conditions and terrain are seen as 

impediments to travel.  We present a model that uses highland pasture quality to 

calculate optimized seasonal herding patterns of nomadic societies, who historically 

occupied the highlands of Inner Asia (750 m to 4000 m).  We illustrate variable routes 

of annual nomadic mobility as “flow accumulations” and aggregating 500 iterations of 

the model reveals a high-resolution flow network which simulates how centuries of 

seasonal nomadic herding could shape discrete routes of connectivity across the 

mountains of Asia.  Comparing the locations of known high-elevation Silk Road sites 

and the geography of these optimized herding flows shows a significant spatial 

correspondence in mountainous regions.  Thus, while routes surrounding lowland, 

oasis cities may have been influenced by other factors (not tested), our model 

suggests that the geography of highland Silk Road networks (750 m to 4,000 m) 

emerged slowly in relation to long-established seasonal mobility patterns used by 

nomadic herders in the mountains of Inner Asia.  
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Introduction 

Historians and archaeologists agree that Eurasia’s overland “Silk Roads” were 

defined by a complex network of pathways linking trade centers from China to the 

Eastern Mediterranean and beyond 1-3.   While lowland oases defined the geographic 

setting for large towns and cities, the vast mountainous regions lying between regional 

lowlands were an integral part of this transcontinental network4-6.  Current scholarly 

attempts to map the Silk Road’s pathways have focused on major centers, combining 

historical (chronological) information with spatial methods to “connect the dots” 

between sites throughout this lowland and highland system7,8.   These renderings rely 

primarily on terrain-based “least cost” travel algorithms to predict likely routes, which 

has been largely effective in lowland zones where research on economic networks and 

communication between urban centers is consistent with ease of travel7,8.   However, 

data summarized from more than 50 years of research concerning nomadic adaptive 

strategies in Asia’s highland elevations, suggests that “ease of travel” was not the 

dominant factor dictating mobility across the mountains9.   Variables fundamental to 

highland nomadic herding strategies, such as seasonal pasture quality and variation in 

annual mobility patterns, have not been reliably tested in light of Silk Road geography.  

Thus, it remains uncertain to what extent mobile pastoralist ecology in highland 

elevations contributed to the high elevation pathways of the Silk Road, which were 

essential for the wider network to function.  Our model uses variables relevant to 

mountain nomadism to simulate annual herding pathways across highland Asia 

without using known Silk Road sites as input.  Rather, we compare the resulting “flow” 

pathways simulated by our model with the historical locations of mountainous Silk 
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Road sites, effectively testing the relationship between nomadic mobility and the 

geography of Silk Road interaction across highland regions of Inner Asia.  

Central Asia’s geography of expansive deserts, oasis-like inland deltas, vast arid 

steppes, and high mountain ranges has influenced the evolution of domestic 

economies and interaction for millennia. The region’s first Neolithic farming societies 

were limited to low foothills of the Kopet Dag mountains10, with only minor 

expansions northward before the 3rd millennium BCE.  The extreme aridity of the Kyzyl 

Kum and Kara Kum deserts confined ancient agricultural economies (both farming and 

husbandry) to riverways and deltas, eventually channeling the spread of domestic 

crops (and animals) northward to the rain fed piedmont of the Inner Asian mountains, 

roughly 5,000 years ago11,12.  Within a diverse spectrum of nomadic herding 

economies that developed at this time across Eurasia, vertically transhumant 

pastoralism emerged as one of the most ancient and successful ecological strategies to 

exploit the increased productivity of summer highland grasslands in the mountains of 

Inner Asia13-15.  From the early 3rd to 2nd millennium BCE, mobile pastoralists 

fluoresced everywhere across Inner Asia’s mountain zones and fostered longstanding 

interactive spheres that spanned from the Hindu Kush to the highland ranges of the 

Altai Mountains and eastern Tian Shan in China16-23.   

Mobile pastoralists are recognized as important agents of exchange between 

ancient trade centers, east and west across Asia 24-27.  However, their influence in 

determining the geography of the routes and social nodes that underpinned historical 

Silk Road interaction is less explicitly documented and rarely quantified.   In an effort 

to understand if ecologically rooted nomadic mobility strategies in Inner Asia’s 

mountains impacted highland connectivity at a continental scale, we developed an 
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environmentally derived Flow Accumulation model that maps seasonally transhumant 

herding patterns across highland pasture zones (where this adaptation is relevant) and 

correlates the geography of these evolving pathways with the locations of Silk Road 

sites across the mountains of Inner Asia.  

 

Modeling nomadic mobility and connectivity across Asia: 

Archaeological and ethnographic evidence shows that for over 4,500 years 

seasonal herders exploited highland pastures in the summer when grass resources are 

rich, and return in winter to lower elevations where ecological conditions are 

favorable during colder months28,29. Across Inner Asia, extreme aridity limits intensive 

lowland herding during the summer, yet highland pastures become more productive 

and abundant as one moves up to elevations between 1,500 m and 3,000 m, with a 

high-altitude limit of roughly 4,000 m, beyond which vegetative growth is restricted 

(largely) by permafrost and short snow-free periods30.  Flow Accumulation modeling 

has been used effectively to simulate local seasonal nomadic migration ranges of 

Bronze Age pastoralists in highland areas of Kazakhstan, using archaeological and 

environmental parameters quantified from field-based archaeological survey data31.    

The ‘Pastoralist Participation’ or PastPart model (Extended Data, Fig 1; also 

Supplementary Information) simulates the aggregated seasonal mobility of domestic 

herd animals across a broad territory straddling Asia’s dominant mountain chains 

including the Hindu Kush (N. Afghanistan), the Pamir (Tajikistan), the Tian Shan 

(Kyrgyzstan, Kazakhstan, Xinjiang [China]), the Dzhungar (Kazakhstan) and the Altai 

Mountains (Kazakhstan, Russia, and Mongolia) (Fig. 1).  This region has been 

collectively called the “Inner Asian Mountain Corridor” (or IAMC), describing the 



 5 

territory of shared ecology and archaeology that linked Central and East Asian 

pastoralists and settled communities over the past 4,500 years16,32,33.  In historical 

times, this mountain corridor geographically overlaps with the highland territory of Silk 

Road connectivity and commerce, wherein a range of populations facilitated trans-

continental caravan trade and local interactions from antiquity to the early modern 

era 17,34. 

Briefly setting aside the diverse social factors that influence transhumant 

pastoralism in regional contexts, broadly documented variables that shape its 

expression across highland Inner Asia include: 1) seasonal geography of settlement 

and mobility; 2) grass (fodder) quality and distribution; 3) settlement density and 

population size; and 4) time.   We use these factors to simulate nomadic herding 

pathways throughout the mountains of Inner Asia and argue that transhumant herding 

mobility patterns shaped longstanding routes of connectivity which, through time, are 

reflected in the geography of highland Silk Road networks (750 m to 4,000 m).    

Our high-resolution flow model explicitly simulates the influence of natural 

pasture quality on the flows of domesticated herd animals between elevations of 750 

m and 4,000 m, which we take as our modeled elevation “range of interest” (ROI).  

This elevation range effectively delimitates the lowland and highland boundaries of 

mountain grassland ecology relevant to highland pastoralist mobility across Asia 

(Methods and Supplementary Information).  Of the 618 known Silk Road sites 

distributed within our broader study zone, 360 were located outside the modeled 

elevation ROI (i.e. lower than 750 m or higher than 4,000 m above sea level) (Extended 

Data Fig. 5a).  Lowland oasis regions were dominated by agricultural urban centers for 

which the variables underlying their connectivity have been shown to be dissimilar to 
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those at play in the mountains, where nomadic pastoralism is prevalent35,36 (see 

Supplementary Information for discussion).  In addition, modern irrigated agriculture 

and industrialization in these lowland areas today complicates comparable 

applications of remote sensing (Supplementary Information).  The PastPart model is 

designed using variables that influence seasonal pastoralist mobility in upland areas, 

where modern pasture vegetation is not heavily impacted by industrialization (see 

Methods).  

Using low population size and reclassified highland pasture quality as model 

constants, the accumulation of non-zero flow values defines herding pathways 

between piedmont settlement zones and highland pastures, whereas zero values 

represent areas without paths (Extended Data, Fig. 2-4).  By iterating our flow 

accumulation model 500 times, we simulate repeated nomadic migrations with 

variation through time, introducing parametric changes for each run in terms of winter 

campsite distribution and the distances and directions of seasonal herding mobility 

across the ROI (Methods).  The resulting map shows a network of pathways with 

positive flow accumulations, which was then compared spatially with the location of 

known sites from the Silk Road database (n=258) within the modeled elevation ROI 

(between 750 m to 4,000 m) (Methods).  Since these sites were not factors in the flow 

model, they serve as an independent proxy to compare highland Silk Road site 

geography with the cumulative mobility patterns of seasonal pastoralists across the 

mountains of Inner Asia.   To statistically validate this comparison, we also compared 

flow values with an equal number of randomly generated points (n=258) distributed 

across the elevation ROI, and iterated this process 200 times.  
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Results: 

A single iteration of the PastPart model produces a dendritic pattern of flow 

accumulations reminiscent of streams, simulating ecologically driven trajectories of 

herd mobility throughout the elevation ROI (Fig. 2a).  Each independent run produces 

a unique raster map illustrating considerable variation in the geography of flow 

accumulation from run to run.   A pattern of high-magnitude regional flow values (> 

30,000) begins to emerge after mathematically adding ten iterations of Flow 

Accumulation (sumFA_10) across the modeled elevation ROI (Fig. 2b). Mathematically 

summing 500 Flow Accumulation iterations (sumFA_500) generates an extensive 

network of inter-regional flows, which shape discrete pathways of connectivity across 

highland Inner Asia (Fig. 2c).   The resulting maps simulate the network of pathways 

that would emerge from the long-term accumulation of highland transhumant 

mobility across Asia, represented as raster cells with positive flow accumulation values 

in the aggregate flow maps.  Raster cells with a value of zero represent areas where no 

pathways converge in 500 iterations of the PastPart model.   

Out of the 258 Silk Road sites distributed within our modeled elevation ROI, we 

find that 148 (57.36%) fall on flow accumulation values greater than zero (Fig. 3a).  

When values at highland Silk Road site locations were extracted from a statistically 

buffered flow-accumulation map (created by averaging values of neighboring grid cells 

a distance of 2km from positive flow accumulations, see Methods), 192 (74.42%) 

highland Silk Roads sites fall on flow values greater than zero (Fig. 3b).  The buffered 

flow accumulation aggregate simulates the likelihood of spatial variation in grassland 

distribution through time and the possibility that sites might be built “close” but not 

“on” pathways (see Methods and Supplementary Information).   
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When flow values were evaluated using 200 iterated cohorts of 258 randomly 

generated points across the modeled elevation ROI (Extended data Fig. 5b, 

Supplementary Information), a mean number of 73.2 (28.37%) (St. Dev.= 6.92) fall on 

flow accumulation values greater than zero (Figure 3a).  The mean number of random 

points that fall on flow accumulation values greater than zero rises to 105.5 (40.91%) 

(St. Dev.=7.53) when the flow value at points was evaluated using the statistically 

buffered flow accumulation aggregate (figure 3b).    

The z-score of the counts of positive values extracted by the randomly 

generated point cohorts shows that the number of highland Silk Road sites falling on 

pathways simulated by our model is more than 10 standard deviations away from the 

mean of random points.  The p-values derived from a one sample t-test comparing the 

count distribution of positive flow values at randomized points against the number 

recorded at highland Silk Road sites indicate that highland Silk Road sites are 

significantly more likely to fall on pathways generated by the PastPart Model than are 

200 iterations of randomly generated cohorts of points (p< .001) (see Methods and 

Supplemental Information).  

 

Discussion 

The first conclusion we can draw from our results is that an extensive network 

of connectivity emerges as an aggregate effect of seasonal mobility amongst small and 

geographically sparse mobile herding populations across the highlands of Inner Asia.  

After 500 iterations, or the modeled equivalent of 20 human generations, flow 
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aggregations form a near-continuous geography of “pathways” that discretely connect 

over 70% of highland Silk Road sites (750m to 4,000 m)(Fig. 4, a-c).  

The results of the PastPart model offer an alternative to understanding the 

geography of the highland Silk Roads on the basis of topographic “ease of travel” and 

“connecting the dots” between known Silk Road sites (Fig. 5 a-c).  The aggregate flow 

accumulation maps illustrate in high resolution the argument that the mountainous 

portions of the Silk Road more likely developed as a series of short-distance 

exchanges, with travelers rarely covering long distances7,15.  Existing patterns of 

pastoralist movement through the mountains were rooted in local knowledge of the 

landscape, while informal or formal access to resources (fodder, water, etc.) was likely 

significant in the development of this diverse network37,38,39.  Our model also highlights 

potential pathways and connectivity in areas where historical Silk Road sites are less 

known archaeologically, such as west of Narat in Xinjiang China (Fig. 5a).  As such, it 

provides scholars the opportunity to target new regions for Silk Road research and 

exploration and to revise the history and cartography of interregional interaction on 

the basis of easily modeled variables (Fig. 5b, c).    

The earliest historical sources that describe transcontinental trade networks 

across overland Asia are dated to roughly 200 BCE5. Yet recent archaeological research 

from the region demonstrates that informal (i.e. pre-bureaucratic) relationships 

between mobile pastoralists and their neighbors resulted in extensive and complex 

distributions of commodities, technologies, and ideology, already by 2500 BCE16,40-41.  

Well-documented transmissions of domesticated grains, metallurgical technologies, 

and other materials and associated cultural practices occurred in the Bronze Age 

without the driving force of state-structured political authorities42,43.   Archaeologists 



 10 

instead relate these early diffusions to the evolution of interaction networks amongst 

pastoralist communities, whose seasonal mobility patterns brought them in contact 

with one another, especially in highland territories37,44.   Since the PastPart model 

illustrates how highland nomadic mobility could organically influence the formation of 

transcontinental connectivity and archaeology places the development of mountain 

herding economies as early as 2500 BCE, we argue that the foundational circuitry of 

vast trans-Asian networks likely emerged millennia before “Silk Road” interactions 

were historically documented6.  

 

Concluding remarks 

The PastPart model is intentionally agnostic to the many social factors that 

unquestionably shaped the dynamic interactive history of prehistoric and historical 

societies along the Silk Road. The aim of our model was confined to simulating the 

geography of highland nomadic flows as a simple equation between the ecology of 

seasonal herding mobility and the broad environmental distribution of pasture 

resources across Inner Asia’s mountains.   While our model does not fully provide 

explanations for the economic, institutional and cultural expressions that define the 

Silk Road archaeologically or historically, it does allow us to illustrate the important 

influence that small-scale mobility patterns can have in shaping macro scale 

networks23.  Indeed, one could speculate that major Silk Road centers east and west of 

the Inner Asian mountains may not have flourished without locally established 

channels of nomadic connectivity through this interstitial highland terrain. 

At its most fundamental, the PastPart model illustrates the potential ease by 

which highland herders likely found themselves – through their most basic of 
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economic strategies – paving the way for the enduring pathways of Silk Road 

participation across highland Asia.  Historical accounts typically cast large Silk Road 

oasis cities, political capitals, or market towns as dominant nodes within trans-

continental trade and economic networks across Asia1,45.  The centripetal forces of 

urban commerce, ideology, and political economy have been widely recognized from 

ancient sources as the dominant institutional factors underpinning lowland Silk Road 

evolution2,46.  Yet these sources also describe the participation of itinerant craftsmen, 

merchants, nomads, monks, and others whose Silk Road experiences unavoidably took 

them outside the orbits of these lowland oases into mountainous realms, where 

alternative logics of mobility and sociality had dominated for millennia23,27.  This 

implies that, at least in the highlands, the early geography of movement, connectivity, 

and interaction was not solely driven by urbanism, since few highland cities are 

documented in the mountains before the early medieval period 7.   

In its incipient stages, the scale and regularity of highland interaction was not 

directly comparable to the multi-dimensional economic system of Silk Road trade at its 

height.   Nevertheless, the spatial correlation between longstanding ecologically 

derived herding flows and the historically diverse range of known highland Silk Road 

sites (e.g. towns, caravanserais, mausoleums, religious centers, etc.) indicates that 

highland nomadic mobility intersected with institutional trends that resonated far 

beyond Asia’s mountainous region.   The ongoing task of archaeologists, historians, 

and anthropologists is to reexamine our interpretive assumptions about the scale and 

evolution of ancient connectivity in light of such modeled potential and seek more 

nuanced explanations from the regional and chronological details of contextualized 

data.  
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Figure Legends: 

Figure 1.   Geography of Inner Asian study zone (in color) and location of main Silk 

Road cities across Asia (55° N 60° E, 30° N 60° E, and 30° N 100° E, 55° N 100° E).  

 

Figure. 2.  Flow Accumulation pathways generated by the PastPart Model between 

highland pastures (green) and winter campsite (blue) zones (750 m to 4,000 m): (a) 

Detail of a single iteration of flows; (b) Detail of 10-iteration aggregate of flow 

accumulations; (c) Detail of 500-iteration aggregate of flow accumulations.  

“Randomized settlements” refer to the 5000 randomized points used in generating 

each iteration of flow accumulation in the PastPart model (a single iteration of points 

is shown).  

 

Figure 3:  Comparative percentages of non-zero values extracted from the PastPart 

model using 200 cohorts of 258 randomly generated points (left) vs. 258 actual Silk 

Road sites (arrow) within the modeled elevation ROI (750 m to 4,000 m).   

a) Values extracted from the aggregate of 500 iterations of flow accumulations (mean 

percentage of random pts with non-zero values =.2837 vs. Silk Road sites .5736,  Z-

score > 10), One sample t-test, p< .01 (Supplementary Info, Source Data). b) Values 

extracted from the statistically buffered aggregate of 500 iterations of flow 

accumulations (mean percentage of random pts. = .4091 vs. Silk Road sites .7442, Z-

score > 10), One sample t-test, p< .01 (Supplementary Info, Source Data).  Arrow 

indicates the percentage of non-zero values extracted at known Silk Road sites in the 

modeled elevation ROI.   
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Figure 4.   Geographic correspondence between known highland Silk Road sites (750 m 

to 4,000 m elevation) and 500 aggregated simulated flow accumulations of the 

PastPart model.   Detailed sub-regional maps (a-c) illustrate the magnitude of flow 

accumulation values extracted at Silk Road sites located within the modeled elevation 

ROI.  Point numbers correspond to site names listed in the field “ObjectID_1” found in 

the Silk Road dataset (Source Data).  

 

Figure 5. Comparative geography of proposed Silk Road corridors calculated using 

least-cost (ease-of-travel) algorithms (black and blue lines) to connect known 

archaeological/historical sites7 (Source Data link) and the simulated herding flow 

pathways from 500-aggregate runs of the PastPart model (yellow and red “flow” 

aggregates).  Notable differences between modeled “ease-of-travel” corridors and 

ecologically derived flow accumulation pathways are visible in the inset detail maps (a-

c).  PastPart flow accumulation pathways illustrate in panel (a) likely highland Silk 

Road routes between Narat (61) and Karkara (18) and alternative highland passes to 

the immediate east of the Turugart Pass (31) toward Kashgar (133); (b) a potentially 

undocumented corridor of the Silk Road into the Tibetan Plateau to the south of 

Dunhuang (406) (China); (c) a number of alternative networks of connectivity across 

the western Himalaya and Pamir Mountains, for example diverse routes from Kashgar 

(133) to Tashkurgan (345). 
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Captions for Extended Data figures: 

Extended Data, Figure 1.  Flowchart of the PastPart model workflow yeilding a 
summed aggregate of 500 runs of Flow Accumulation within the modeled elevation 
ROI (750 m – 4,000 m).  Inputs: 1) model source directory 2) NDVI data. 3, 4, 5, 6) 
DEM images. 7, 8, 9, 10) model parameter files: settlement_class.txt, sheep_class.txt 
pasture_class.txt, vegetation_class.txt.  Outputs: 1) processing geodatabase 2) 
results geodatabase 3) NDVI converted to GRID format. 4, 5, 6, 7) DEM images 
converted to GRID format 8)   study area DEM 9) study area NDVI 10) probablity 
surface 11) cost surface 12) weight raster 13) 5000 random spatially balanced points 
14) cost distance raster 15) flow direction raster 16) flow accumulation raster.  
Processes: 1) Create geodatabases 2) load files to processing geodatabase 3) mosaic 
DEM files and clip images to study area 4) create model inputs: a) classify study area 
DEM using settlement_class.txt to create probability surface b) classify NDVI using 
vegetation_class.txt create vegetation priority raster c) classify DEM using 
sheep_class.txt to create highland flow weight raster 5) generate spatially balanced 
random settlements (n=5000) 6) calculate cost distance 7) calculate flow direction 8) 
calculate flow accumulation 9) sum flow accumulation rasters. Variables: 1) number 
of iterations 2) Current iteration value 3) number of output points.  Unused data: 1) 
output backlink raster 2) output drop raster.  
 

Extended Data, Figure 2. Detailed view of the seasonal highland/lowland division of 

the elevation range of interest (ROI) (750 m to 4,000 m).  Highland “summer” zones 

(green) are defined from 1500m-4000m above sea level, and “winter” campsite zones 

(blue) are defined from 600m-1500m above sea level.  Prominent Silk Road cities are 

mapped for geographic reference. 

 

Extended Data, Figure 3. Detailed view of one run of spatially balanced random points 

distributed throughout in the winter campsite elevation.   In total, 5000 points were 

generated (for each of the 500 runs the PastPart model) in the winter campsite 

settlement elevation range (600 m to 1500 m) across the entire study zone (map 

inset).  Each iteration of sites recalculates (along with the reclassified vegetative 

weight raster) the “cost distance” map across the modeled elevation ROI (750 m to 

4,000 m). 
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Extended Data, Figure 4. Upper) Detail of reclassified vegetative weight raster 

(veg_priority) overlaid with one run of randomized foothill points (n=5000) simulating 

winter campsites.  Lower) Detail of the cost distance raster (CD_x) calculated using 

5000 randomized “winter settlement” points and the vegetative weight raster.  Each 

of the 500 iterations of new points changes the geographic distribution of “low cost” 

travel between weighted pasture zones (750 m to 4,000 m) and the lower elevations – 

effectively causing variations in the flow accumulations from pastures to hypothetical 

settlements in the foothills with each iteration.  

 

Extended Data, Figure 5. Upper) Distribution of known Silk Road Sites (n=258) in 

relation to the modeled elevation ROI (750 m to 4,000 m, in grey); Lower) Distribution 

of a single run of randomized test points (n=258) generated in relation to the modeled 

elevation ROI (in grey).  200 runs of random test point cohorts were calculated in the 

modeled elevation ROI.  
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Methods 

 

Modeling Pastoralist mobility as flow accumulation:  Overview 

The ‘Pastoralist Participation’ (PastPart) model provides a quantitative 

simulation of the macro-regional footprint of transhumant (mountain) pastoralism 

across mountainous regions of Inner Asia.  The model was designed using the 

Geographic Information Systems software ArcGIS (ESRI) and then executed in Python 

utilizing ArcGIS’s native Python geoprocessing tools. The full programming codes and 

datasets necessary for executing the PastPart model are presented as a unified Python 

script in Supplementary Information.  

The PastPart model adapts the hydrological tool Flow Accumulation in ArcGIS 

to simulate seasonal herding “flows” between rich mountain pasture zones and a 

delimited lowland winter settlement zone within a modeled elevation “range of 

interest” or ROI (750 m to 4000m).  This ROI encompasses archetypical elevation zones 

of seasonal settlement and highland pastures historically documented amongst Inner 

Asian transhumant herders (Supplementary Discussion).   

To start, we populated the representative lowland elevation zone with 5000 

randomized points to simulate winter nomadic campsites across the whole study 

territory. We then generated seasonal herding flows from rich highland pastures 

toward these lowland points using the relative productivity of mountain grassland 

types (in terms of pasture fodder quality) as the determining factor for direction and 

distance from the highlands toward the randomly generated points.  We iterated this 

process 500 times, each time using a newly randomized distribution of lowland points 

to recalculate the parameters of flow accumulation from 4,000 m to the 
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highland/lowland boundary of 750 m, effectively simulating 500 years of herding 

mobility across the ROI.    

Next, the iterations of simulated flow accumulation were summed 

mathematically, resulting in aggregated flow maps that amplify the predominant 

geography of high-magnitude segments of herding flows through time.   Aggregate 

flow maps were calculated using 10 summed iterations (sumFA_10) and 500 summed 

iterations (sumFA_500) for comparison and analysis.    

Using an independent database of all known Silk Road sites (n=618) that fall 

within the wider study zone we mapped the actual site locations over the aggregate of 

500 flow maps (sumFA_500).  Values were extracted from the aggregated flow 

accumulation pathways at each point that fell within the modeled elevation ROI 

(n=258, Extended Data, Fig. 5), allowing us to test the geographic overlap between the 

simulated herding flow accumulations and actual locations of the known highland Silk 

Road sites within the modeled ROI.  To account for variation through time, the overlay 

and value extraction process at highland Silk Road sites was repeated using a 

“buffered” aggregate flow accumulation map as well, for which flow values were 

averaged at a distance of two grid cells around the positive flow accumulations 

(below).   

Finally, we generated 200 iterations of spatially balanced random points using 

the same geographic extent of the modeled elevation ROI and same number of points 

as the known highland Silk Road sites (n=258, Extended Data, Fig. 5).  Each run of 

random points was sequentially draped over the aggregate flow accumulation map 

and the buffered flow accumulation map, and flow values were again extracted at 

each point.  We then tabulated the number of sites with extracted values greater than 
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zero (and those equal to zero) for each run of the 258 random test points.  The range 

of percentages of random sites distributed across the elevation ROI that intersect with 

zero and non-zero values was calculated for all 200 runs and statistically compared 

with the observed percentage of hits using actual highland Silk Road sites.  

 

Base datasets: Generating lowland and highland mask rasters 

The first step in mapping seasonal territories across the modeled ROI is to 

define discrete zones of winter lowland settlement and highland summer pastures 

(Extended Data, Fig.1).  The lowland settlement area was calculated using four Global 

Multi-Resolution Terrain Elevation Data (GMTED2010) with a pixel resolution of 30-

arcs seconds (roughly 1km).  These four raster datasets were joined using the Mosaic 

tool in ArcGIS and then the map extent was constrained to the boundaries of the study 

zone, reducing file size and operative efficiency (Fig. 1).  The elevation values of the 

clipped DEM were reclassified in ArcGIS using the Reclassify tool.   Cell elevation values 

from 600 m to 1,500 m were reclassified to a value of  “1” and all other elevations to 

“Nodata”.  The positive values of this raster were then reclassified again to a value of 

0.5 for use as a “probability mask” for random point generation.  This mask raster 

dictates that each pixel has a 50/50 likelihood to receive a random point per iteration 

of the model (see “creating random lowland settlements” below).    

The clipped DEM raster was also used to create an elevation mask to delimit 

summer pasture zones using the same Reclassification tool, this time reclassifying 

elevation ranges between 750 m to 4000m to the value “1”.   The resulting output 

raster maps include a winter lowland probability mask (settle_zone) that defines the 

area to contain winter settlements, and a summer highland mask (graze_msk) for use 
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in generating a vegetative cost surface (below).  The territorial interface between 

winter and summer zones is between 750 m and 1,500 m elevation.  

 

Base dataset: lowland winter settlements 

Based on elevations of archaeologically and historically documented pastoralist 

campsites in the Dzhungar Mountains of SE Kazakhstan and the Malguzar Mountains 

of Uzbekistan 17,31,44,50, we populated the winter lowland raster (settle_zone) with 

5,000 randomly placed points using a Spatially Balanced random point generator tool 

in ArcGIS (Extended Data, Fig. 3; Supplementary Information). The randomized 

settlement generation was iterated 500 times.  The resulting point file (settle_x) 

represents hypothetical “winter” lowland settlement locales, where “x” refers to the 

specific iteration of random points.  The Spatially Balanced point generator 

determines the location of points without any discriminating factors other than 

elevation and the 50% probability mask applied to each cell. Each random point was 

minimally separated from the next by a Euclidian distance of 1000 m.  

 

Base dataset: vegetation cost surface using NDVI  

Landcover types within the elevation ROI were derived from a 250 m resolution, global 

Normalized Difference Vegetation Index (NDVI) image.  This data set is a 7-day average 

of NDVI values calculated from multispectral eMODIS imagery taken in the month of 

August 200847.  August was selected since late summer is the time of maximum 

pasture productivity across most of the study zone (Supplementary Information). The 

geographic extent of the NDVI image (NDVI_08) was clipped to our study zone 

boundaries making it smaller, more manageable, and relevant to our model ROI.  We 
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used the highland “graze_msk” raster to select those NDVI value ranges that fall within 

the modeled elevation ROI and the resulting values were classified using ‘geometric 

interval sampling’ of the clipped eMODIS NDVI image, with heads-up correction of 

value-ranges based on botanical cohorts at known elevation boundaries and 

corresponding field documentation of grassland composition in test areas across the 

study zone 48 (Supplementary Information).  The NDVI value ranges within the ROI 

were reclassified in ArcGIS and assigned relative values of 1, 3, 12, 25, 100, or 200 

according to relative fodder quality and range productivity of highland grassland 

mosaics (such as mountain meadows, alpine meadows, arid steppe etc.) at various 

elevations recorded across Inner Asia37 (Extended Data, Fig. 4).  The reclassified NDVI 

value ranges are as follows: 

 
eMODIS NDVI Value range: reclass value 
 
-2000-400 : 200; 

 
400-2300 : 100;  

 
2300-3738 : 25;  

 
3738-4959 : 12;  

 
4959-6497.820560 : 3; 

 
6497.820560-8429.674740 : 1 
 
8429.674740 -10000 : 100 

 

The reclassified landcover weight raster (veg_priority) was then exported and 

used as a constant dataset in subsequent steps of the PastPart model (Supplementary 

Information).  

 

Modeling Flow Accumulation  

The Flow Accumulation algorithm in ArcGIS uses a recursive calculation to add 

values to grid cells based on a “flow direction” raster, which is typically derived from a 
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cost surface or Digital Elevation Model.  In hydrological modeling, it is typical to use 

reclassified topographic factors (i.e. elevation, slope, etc.) as a cost surface to derive 

flow direction.  In modeling a cost surface for hydrological flows high elevation would 

be classified as more costly than low elevation, so water would flow downslope.  

Conceptually, of course, the cost surface and flow direction can be derived from any 

set of weight parameters or values.   

 

Iterating Cost Distance, Flow Direction, Flow Accumulation.  

The first step in calculating flow accumulation is to generate a cost distance 

map, using the Cost Distance tool in ArcGIS.  The Cost Distance tool calculates a 

weighted travel coefficient for each grid cell between selected points.  For each 

iteration of the model (x), we used the lowland settlement points (settle_x) along with 

weighted vegetation raster (veg_priority) to quantify a corresponding cost distance of 

travel (CD_x) across the elevation ROI (Extended Data, Fig 4).  

The cost distance raster (CD_x) is subsequently used as an input for the Flow 

Direction tool in ArcGIS.  This step generates a flow director raster (FD_x) with 

direction values assigned for each grid cell, which define the likelihood of one of eight 

possible directions that a given cell can flow toward the next cell, according to the 

least cost.  

The flow direction raster (FD_x) is then used as input for the Flow 

Accumulation tool in ArcGIS, along with an optional ‘weight raster’ that loads source 

grid cells with a constant value.   In our case, we calculated a weight raster 

(sheep_100) by assigning a value of 100 to pixels from the two best classes of highland 

pasture (values 1 and 3 in veg_priority).  Conceptually this assigns 16 units (of 
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figurative herd animals) per hectare (grid cell size is 250 x 250 m, or 6.25 ha) – a value 

consistent with a (low) average range capacity for Inner Asian highland grasslands48.   

Using the constant weight raster (sheep_100) and the flow direction raster (FD_x) as 

input to the flow accumulation tool, a hypothetical count of ‘animals’ flowing from the 

best pastures into each cell across the ROI.  Since distance was calculated in reference 

to the 5000 low elevation settlements (settle_x), the resulting flow accumulation 

values in each cell illustrates the likely convergence of flow into each cell toward the 

lowlands with preference toward quality pasture, until flow is limited by uniformly 

high cost (reverse flow is not allowed).  

 

Modeling flows through time: 

The binary division of seasonal occupation into two discrete elevation ranges 

generates a condition whereby each run of the model reflects the potential flows of 

herds within a theoretical year (i.e. one seasonal migration of highland to lowland 

travel or vice versa).  The PastPart model was iterated 500 times (fx(1500)) to reflect 

500 unique yearly flow patterns of seasonal migration. For each f x a new distribution 

of randomized settlements (settle_x) was generated for use along with the vegetative 

weight raster (veg_priority) as input to calculate iterations of the Cost Distance (CD_x), 

Flow Direction (FD_x), and Flow Accumulation (FA_x) rasters.  A Python script was then 

used to access the project geodatabase and sum the individual runs of the model, 

producing aggregated flow rasters (Supplementary Information).  Examples of 10 

(sumFA_10) and 500 (sumFA_500) mathematical aggregates were produced for 

analytical purposes (Fig. 2; Extended Data, Fig. 5).   
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Statistics: Silk Road locations vs. random points: 

To quantify the spatial correspondence between independently documented 

Silk Road sites and simulated flows from the PastPart model, we compiled a database 

of all known georeferenced Silk Road site locations from the Old World Trade Routes 

(OWTRAD) and the ICOMOS thematic study archives7,8.  Silk Road sites located outside 

the extent of our general study zone (see Fig. 1) were removed from the dataset, 

leaving a total of 618 known locations in the functional database (the table of Silk 

Road sites is available for download online in Supplementary Information).  We then 

draped these sites over the sumFA_500 flow accumulation raster map and extracted 

flow magnitude values at each site using the Extract to Point function in ArcGIS (using 

the interpolate at point option).  Given that the PastPart model only generates flow 

accumulations within the modeled elevation ROI (between 750 m and 4,000 m), we 

discarded from analysis those sites that lie outside the possible range of the simulated 

flows, leaving a total of 258 sites within the modeled elevation ROI as representative 

of “highland” Silk Road geography.   

Next we generated 200 unique iterations each consisting of 258 random points 

using the Create Spatially Balanced Random Points function in ArcGIS, defined by a 

spatial probability mask equal to the extents of the modeled elevation ROI (roi_prob, 

value=.5)(Extended Data, Fig. 5).  We then extracted flow accumulation values for each 

iteration of random points (n=258) from the sumFA_500 flow map using the Extract to 

Point function, described above.   For each cohort of random points within the ROI, we 

again tabulated the percentage of points with no flow correspondence (value = 0), and 

those with positive correspondence (value > 0). Non-zero flow values reflect cells 

where at least two cells flow together, thus even small positive values represent the 
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furthest extent of flow pathways – or in terms of the model – the first convergence of 

otherwise uniformly distributed herd animals (Supplementary Discussion).   

 

Calculating a statistically “buffered” map of aggregated flow accumulations: 

Our methodology also aims to accurately represent the impact of variation in 

the model parameters—such as shifts in pasture resources and changing mobility 

strategies through time —on the geography of flow accumulations, as well as the fact 

that the Silk Road site database has inherent geo-positional error that cannot be 

assessed statistically due to the diversity of sources for the data.  Many sites in the 

database have a qualitative “reliability rating” that assesses the accuracy of their 

latitude and longitude coordinates, but without ground-truthing each site, we take the 

reported coordinates a priori.   

To account for such potential errors, temporal variation, as well as the fact that 

relevant sites might be located “near” but not directly “on” a modeled flow pathway, 

we calculated Focal Statistics at a distance of two grid cells (~2 km) around each cell in 

the sumFA_500 raster with a non-zero flow value (Supplementary Information).  We 

used the Focal Statistics too in ArcGIS to calculate the mean value of each cell within 

the search radius and then generated a new raster (FocStat).   The resulting map of 

illustrates the geographic effect of 2km buffer zone of positive values around the 

original courses of non-zero flow accumulations.  Using the Extract to Points tool we 

repeated the process of extracting flow values from this “buffered” Focal Statistics 

raster (FocStat), again using the 258 Silk Road sites and each of the 200 iterations of 

258 randomized test points within the modeled elevation ROI.   
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Comparing model performance between known Silk Road sites and randomized 

locations: 

We calculated the percentages of positive flow values extracted from both 

highland Silk Road sites and from each of the 200 runs of randomized points (Fig. 3a, b, 

Supplementary Information). Since we can only accurately assess the probability that 

258 actual Silk Road sites fall along a path within our study zone (since these are the 

only sites known), we used a similarly scaled dataset for comparison, with the same 

potential for distribution.  Thus, statistically, both datasets have a theoretically equal 

“spatial” potential to be located on (or off) a path in the (same) analyzed area.  In both 

cases, sites with positive values represent the locations that geographically intersect 

with the aggregated flow accumulation map (sumFA_500) or the buffered aggregated 

flow accumulation raster (FocStat of sumFA_500), respectively.  

Using these data, we calculated the mean counts and percentages of non-zero 

flow accumulation values from the 200 runs of randomized sites.  For example, 

random run 7 had 77 observations with flow accumulation values greater than zero 

(out of 258 randomized points) or 29.84% direct hits on the aggregated flow 

accumulation map (sumFA_500) (Supplementary Info).  The same randomized point 

run 7 had 109 observations with values greater than zero out of 258 randomized 

points, or 42.25% hits on the buffered aggregated flow accumulation raster (FocStat of 

sumFA_500).   

We then used the distribution of positive values from the randomized points to 

compare with count and percentages of positive flow accumulationvalues recorded at 

the highland Silk Road dataset and computed a Z- score.  As an additional comparison, 

we performed a one-sample t-test using both counts and percentages of non-zero 
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values from the 200 runs of randomized point in the ROI and the actual percentage of 

non-zero values from the Silk Road dataset (Fig. 3,ab).  
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