
Q2

Q1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

NeuroImage ∎ (∎∎∎∎) ∎∎∎–∎∎∎
Contents lists available at ScienceDirect
NeuroImage
http://d
1053-81

n Corr
E-m
1 Co

Pleas
journal homepage: www.elsevier.com/locate/neuroimage
Regression DCM for fMRI

Stefan Frässle a,n,1, Ekaterina I. Lomakina a,b,1, Adeel Razi c,d, Karl J. Friston c,
Joachim M. Buhmann b, Klaas E. Stephan a,c

a Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, 8032, Zurich,
Switzerland
b Department of Computer Science, ETH Zurich, 8032, Zurich, Switzerland
c Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
d Department of Electronic Engineering, NED University of Engineering & Technology, Karachi, Pakistan
a r t i c l e i n f o

Article history:
Received 6 November 2016
Accepted 28 February 2017

Keywords:
Bayesian regression
Dynamic causal modeling
Variational Bayes
Generative model
Effective connectivity
Connectomics
x.doi.org/10.1016/j.neuroimage.2017.02.090
19/& 2017 The Authors. Published by Elsevier

esponding author.
ail address: stefanf@biomed.ee.ethz.ch (S. Fräs
ntributed equally to this work.

e cite this article as: Frässle, S., et al
a b s t r a c t

The development of large-scale network models that infer the effective (directed) connectivity among
neuronal populations from neuroimaging data represents a key challenge for computational neu-
roscience. Dynamic causal models (DCMs) of neuroimaging and electrophysiological data are frequently
used for inferring effective connectivity but are presently restricted to small graphs (typically up to 10
regions) in order to keep model inversion computationally feasible. Here, we present a novel variant of
DCM for functional magnetic resonance imaging (fMRI) data that is suited to assess effective connectivity
in large (whole-brain) networks. The approach rests on translating a linear DCM into the frequency
domain and reformulating it as a special case of Bayesian linear regression. This paper derives regression
DCM (rDCM) in detail and presents a variational Bayesian inversion method that enables extremely fast
inference and accelerates model inversion by several orders of magnitude compared to classical DCM.
Using both simulated and empirical data, we demonstrate the face validity of rDCM under different
settings of signal-to-noise ratio (SNR) and repetition time (TR) of fMRI data. In particular, we assess the
potential utility of rDCM as a tool for whole-brain connectomics by challenging it to infer effective
connection strengths in a simulated whole-brain network comprising 66 regions and 300 free para-
meters. Our results indicate that rDCM represents a computationally highly efficient approach with
promising potential for inferring whole-brain connectivity from individual fMRI data.

& 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The human brain is organized as a network of local circuits that
are interconnected via long-range fiber pathways, providing the
structural backbone for the functional cooperation of distant
specialized brain systems (Passingham et al., 2002; Sporns et al.,
2005). Understanding both structural and functional integration
among neuronal populations is indispensable for deciphering
mechanisms of both normal cognition and brain disease (Bullmore
and Sporns, 2009). Neuroimaging techniques, such as functional
magnetic resonance imaging (fMRI), have contributed sub-
stantially to this endeavor. While the early neuroimaging era fo-
cused mainly on localizing cognitive processes in specific brain
areas (functional specialization), the last decade has seen a fun-
damental shift towards the study of connectivity as the fundament
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for functional integration (Friston, 2002; Smith, 2012).
Three different aspects of brain connectivity are typically dis-

tinguished. First, structural connectivity – that is, anatomical
connections such as long-range projections that make up white
matter and link cortical and subcortical regions. Structural con-
nectivity is typically inferred from human diffusion-weighted
imaging data or from tract tracing studies in animals. Second,
functional connectivity describes interactions among neuronal
populations (brain regions) as statistical relations. Functional
connectivity can be computed in numerous ways, including cor-
relation, mutual information, or spectral coherence (Friston, 2011).
Third, effective connectivity is based on a model of the interactions
between neuronal populations and how the ensuing neuronal
dynamics translate into measured signals.

While structural and functional connectivity methods have
provided valuable insights into the wiring and organization of the
human brain both in health and disease (for reviews, see Buckner
et al. (2013), Bullmore and Sporns (2009), Fornito et al. (2015),
Sporns et al. (2005)), they are essentially descriptive and do not
89
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allow for mechanistic accounts of a neuronal circuit – that is, what
computations are performed and how they are implemented
physiologically. By contrast, models of effective connectivity that
rest upon a generative model can, in principle, infer upon the la-
tent (neuronal or computational) mechanisms that underlie
measured brain activity. In other words, models of effective con-
nectivity seek explanations of the data, not statistical character-
izations. This is not only fundamentally important for basic neu-
roscience, but also offers tremendous opportunities for clinical
applications (Stephan et al., 2015).

The last decade has seen enormous interest and activity in
developing methods for inferring directed connection strengths
from fMRI data, such as Granger causality (GC; Roebroeck et al.,
2005) and dynamic causal modeling (DCM; Friston et al., 2003).
While GC operates directly on the data and quantifies connectivity
in terms of temporal dependencies, DCM rests on a generative
model, allowing for inference on latent neuronal states that cause
observations (Friston et al., 2013). While these methods have al-
ready made fundamental contributions to our understanding of
functional integration in the human brain, existing methods are
still subject to major limitations (for reviews on strengths and
challenges of models of effective connectivity, see Daunizeau et al.
(2011a), Friston et al. (2013), Stephan and Roebroeck (2012),
Valdes-Sosa et al. (2011)). For example, there is a fundamental
trade-off between the complexity of a model and parameter es-
timability: while biophysical network models (BNMs) capture
many anatomical and physiological details (Deco et al., 2013a; Jirsa
et al., 2016), their nonlinear functional forms, very large number of
parameters, and pronounced parameter interdependencies usually
render parameter estimation an extremely challenging computa-
tional problem (for discussion, see Stephan et al. (2015)). At pre-
sent, large-scale BNMs are therefore usually used for simulating
data, as opposed to inferring the strength of individual
connections.

In contrast to biophysical network models, generative models
like DCM rest on a forward model (from hidden neuronal circuit
dynamics to measured data) that is inverted using Bayesian prin-
ciples in order to compute the posterior probability distributions
of the model parameters (model inversion). To render this chal-
lenge computationally feasible, DCM typically deals with small
networks consisting of no more than 10 regions (but see Seghier
and Friston (2013)) whose activity has been perturbed by carefully
designed experimental manipulations. DCM for fMRI has also been
extended to cover resting state fMRI time series by modelling
endogenous fluctuations in neuronal activity. These neuronal
fluctuations can be treated as hidden or latent neuronal states
(leading to stochastic DCM; Daunizeau et al., 2009). Alternatively,
the second order statistics of neuronal fluctuations can be treated
deterministically within DCM for cross-spectral responses (Friston
et al., 2014a, 2014b). Irrespective of the particular form of DCM,
the restriction to a small number of nodes can be a major limita-
tion; for example, for clinical applications concerned with whole-
brain physiological phenotyping of patients in terms of directed
connectivity.

In this paper, we introduce a novel variant of DCM for fMRI that
has the potential to overcome this bottleneck and is suitable, in
principle, to assess effective connectivity in large (whole-brain)
networks. Put simply, the approach rests upon shifting the for-
mulation of DCM from the time to the frequency domain and
casting model inversion as a problem of Bayesian regression. More
specifically, we reformulate the neuronal state equation of a linear
DCM in the time domain as an algebraic expression in the fre-
quency domain. This transformation rests on solving differential
equations using the Fourier transformation. Using this approach
from the signal processing literature (e.g., Bracewell, 1999; Op-
penheim et al., 1999), we show that – under a few assumptions
Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
and modifications to the original framework – the problem of
model inversion in DCM for fMRI can be cast as a special case of a
Bayesian linear regression problem (Bishop, 2006). This regression
DCM (rDCM) is computationally extremely efficient, enabling its
potential use for inferring effective connectivity in whole-brain
networks. Note that rDCM is conceptually not unrelated to DCM
for cross-spectral responses mentioned above in the sense that
both approaches use spectral data features. However, rDCM is
formally distinct from cross-spectral DCM because it models the
behavior of each system node (in the frequency domain) rather
than the cross spectral density as a compact summary (of func-
tional connectivity among system nodes).

In what follows, we first introduce the theoretical foundations
of rDCM and highlight where the approach deviates from the
standard DCM implementation. We then demonstrate the face
validity and practical utility of rDCM for a small six-region net-
work, testing the robustness of both parameter estimation and
model selection under rDCM using simulations and an empirical
fMRI dataset on face perception (Frässle et al., 2016b, 2016c).
Having established the validity of rDCM for small networks, we
then proceed to simulations that provide a proof-of-principle for
the utility of rDCM for assessing effective connectivity in large
networks. The simulations use a whole-brain parcellation (66 re-
gions) and empirical connectivity matrix that was introduced by
Hagmann et al. (2008) and has been used by several modeling
studies since (e.g., Deco et al., 2013b; Honey et al., 2009), resulting
in a model with 300 free parameters.
Methods and materials

Dynamic causal modeling

DCM is a generative modeling framework for inferring hidden
neuronal states from measured neuroimaging data by quantifying
the effective (directed) connectivity among neuronal populations
(Friston et al., 2003). Specifically, DCM explains changes in neu-
ronal population dynamics as a function of the network’s con-
nectivity (endogenous connectivity A) and some experimental
manipulations. These experimental manipulations uj can either
directly influence neuronal activity in the network’s regions
(driving inputs C ) or perturb the strength of the endogenous
connections among regions (modulatory influences B). This can be
cast in terms of the following bilinear state equation:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ( )= + +

( )=

dx
dt

A u B x Cu
1j

m

j
j

1

This neuronal model is then coupled to a weakly nonlinear
hemodynamic forward model that maps hidden neuronal dy-
namics to observed BOLD signal time series (Buxton et al., 1998;
Friston et al., 2000; Havlicek et al., 2015; Stephan et al., 2007). In
brief, the hemodynamic model describes how changes in neuronal
states induce changes in cerebral blood flow, blood volume and
deoxyhemoglobin content. The latter two variables enter an ob-
servation equation to yield a predicted BOLD response. For reviews
on the biophysical and statistical foundations, see Daunizeau et al.
(2011a) and Friston et al. (2013).

Inference proceeds in a fully Bayesian setting, using an efficient
variational Bayesian approach under the Laplace approximation
(VBL) – meaning that prior and posterior densities are assumed to
have a Gaussian fixed form Friston et al. (2007). This scheme
provides two estimates: (i) The sufficient statistics of the posterior
distributions of model parameters (i.e., conditional mean and
covariance), and (ii) the negative free energy, a lower-bound ap-
proximation to the log model evidence (i.e., the probability of the
10.1016/j.neuroimage.2017.02.090i
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data given the model). The negative free energy provides a prin-
cipled trade-off between a model’s accuracy and complexity, and
serves as a measure for testing competing models (hypotheses)
about network architecture by means of Bayesian model compar-
ison (Penny et al., 2004; Stephan et al., 2009a).

Regression DCM

Neuronal state equation in frequency domain
In this section, we introduce a new formulation of DCM that

essentially reformulates model inversion as a special case of
Bayesian linear regression (for further details of the derivation,
see Lomakina (2016)). We thus refer to this approach as re-
gression DCM (rDCM). This approach rests on several modifica-
tions of the original DCM implementation that include:
(i) translation from the time domain to the frequency domain,
(ii) linearizing the hemodynamic forward model, (iii) assuming
partial independence between connectivity parameters, and (iv)
using a Gamma prior for noise precision. These changes allow us
to derive an algebraic expression for the likelihood function and
a variational Bayesian scheme for inference, which convey a
highly significant increase in computational efficiency by sev-
eral orders of magnitude. This potentially enables a number of
innovative applications – most importantly, it renders rDCM a
promising tool for studying effective connectivity in whole-
brain networks. The massive increase in computational effi-
ciency afforded by rDCM rests on the fact that standard (VBL)
inversion schemes require one to integrate a deterministic
system of neuronal dynamics to produce a predicted (hemody-
namic) response. This integration can be computationally de-
manding, especially for long time series. The beauty of sum-
marizing a time series (and underlying latent states) with its
Fourier transform is that one eludes the problem of solving
differential equations, enabling the solution of a compact, static
regression model.

In this initial paper, we focus on the simplest case – a linear
DCM – because bilinear models aggravate the derivation of an al-
gebraic expression for the likelihood function (but see the Dis-
cussion for potential future extensions of rDCM). Linear DCMs are
described by the following neuronal state equation

= + ( )
dx
dt

Ax Cu 2

This differential equation can be translated to the frequency
domain by means of a Fourier transformation. As the Fourier
transform is a linear operator, this results in the following ex-
pression




= + ( )
dx
dt

Ax Cu 3

where the Fourier transform is denoted by the hat symbol. We can
now apply the differential property of the Fourier transform




ω= ( )
dx
dt

i x 4

where = ± −i 1 is the imaginary number and ω the Fourier co-
ordinate. Substituting Eq. (4) into Eq. (3) leads to the representa-
tion of the neuronal state equation as an algebraic system in the
frequency domain:

 ω = + ( )i x Ax Cu 5

The system described in Eq. (5) is still linear with respect to the
model parameters, and the meaning of the parameters is
preserved.
Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
Observation model and measurement noise
Having re-expressed the neuronal state equation in the fre-

quency domain, we now turn to the observation model that
links hidden neuronal dynamics to measured BOLD signals. In
classical DCM, the observation model consists of a cascade of
nonlinear differential equations describing the hemodynamics
and a nonlinear static BOLD signal equation (Friston et al., 2000;
Stephan et al., 2007). These nonlinearities pose a problem for
our approach because they prevent a straightforward transla-
tion to the frequency domain. One possibility would be to lin-
earize these equations (as in Stephan et al. (2007)). In this initial
paper, however, we adopt a simpler approach: convolution with
a fixed hemodynamic response function (HRF). Multiplying Eq.
(5) with the Fourier transform of the HRF and making use of the
fact that a multiplication of the Fourier transforms of two
functions is equivalent to the Fourier transform of the con-
volution of these two functions, one arrives at the following
algebraic system:







 

 ( ) ( )ω

ω

⊗ = ⊗ +

= + ( )

i h x A h x Chu

i y Ay Chu 6B B

Here, ⊗ denotes the convolution and yB is the deterministic
(noise-free) prediction of the data. However, Eq. (6) is not an ac-
curate description for measured fMRI data, for two reasons: First,
while the neuronal activity x and BOLD response yB are continuous
signals, our measurements or observations are discrete. Second,
measured fMRI data is inevitably affected by noise.

To account for the discrete nature of the data (and the fact that
computers can only represent discrete rather than continuous
data), we use a discretized version of Eq. (6). This necessitates the
use of the discrete Fourier transform (DFT) and the discretization
of frequency and time:

⎜ ⎟⎛
⎝

⎞
⎠ω ω π= Δ = ≈ −

( )
π

m
m

i i i
NT T

e: 2
1

1
7

mi
N

2

where N represents the number of data points, T the time interval
between subsequent points, ωΔ the frequency interval, and

⎡⎣ ⎤⎦= … −m N0,1, , 1 a vector of frequency indices. In Eq. (7), we
have made use of a linear approximation to the exponential
function to obtain the final expression, which is also known as the
difference operator of the DFT. Plugging Eq. (7) into Eq. (6) leads to
the discrete representation of the (deterministic) BOLD equation in
the frequency domain:




⎜ ⎟⎛
⎝

⎞
⎠− = +

( )
π

e
y

T
Ay Chu1

8

mi
N B

B
2

where the hat symbol now denotes the discrete Fourier transform.
Having obtained an expression for discrete data, we now aug-

ment the model with observation or measurement noise. Here,
similar to the setting in classical DCM, we assumed the measure-
ment noise to be white for each region ⎡⎣ ⎤⎦= …i R1, , (or, more
precisely, the hemodynamic responses at each region to be whi-
tened following an estimation of their temporal autocorrelations)
with region-specific noise variances σi

2:

( )σ= + ϵ ϵ ~ ( )×y y I, 0, 9i B i i i i N N,
2

where ×IN N is the identity matrix. Inserting Eq. (9) into Eq. (8) gives
an expression for the measured fMRI signal

 ⎜ ⎟⎛
⎝

⎞
⎠ υ− = + +

( )
π

e
y
T

Ay Chu1
10

mi
N

2

The form of Eq. (10) is reminiscent of structural equation
models (McIntosh, 1998) and multivariate autoregressive models
(Roebroeck et al. 2005) in the frequency domain. In Eq. (10), υ is a
10.1016/j.neuroimage.2017.02.090i
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noise vector of the following form:

⎜ ⎟⎛
⎝

⎞
⎠υ = − ϵ̂ − ϵ̂

( )
π

e
T

A1
11

mi
N

2

While υ also has white noise properties, its dependence on the
endogenous connectivity parameters (A matrix) complicates the
derivation of an analytical expression for the likelihood function.
We circumvent this problem by an approximation, introducing a
partial independence assumption that regards υi as an in-
dependent random vector with a noise precision parameter τi. This
approximation means that potential dependencies amongst
parameters affecting different regions are discarded (i.e., inter-
dependencies are only considered for parameters entering the
same region). Effectively, this constitutes a mean field approx-
imation in which the (approximate) posterior factorizes among
sets of connections providing inputs to each node. This assumption
allows for an extremely efficient (variational) inversion of our
DCM. Heuristically, because DCM models changes in activity
caused by hidden states in other regions, this approximation
means that Eq. (10) can estimate the strengths of connections to
any given region by, effectively, minimizing the difference be-
tween observed changes in responses and those predicted by ob-
served activity elsewhere.

Given this approximation, we can re-write Eq. (10) as a stan-
dard multiple linear regression problem:

( )|θ υ υ υ τ= + ~ ( )
−

×Y X I, 0, 12N N
1

Here, we have defined Y as the dependent variable, X as the
design matrix (set of regressors) and θ as the parameter vector as
follows:

   



  



⎜ ⎟⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )( ) ∏| |θ τ θ τ

θ

=

= −

= … …

= … … ( )

π

=

−
×p Y X Y X I

Y e
y

T

X y y y h u h u h u

a a a c c c

, , ,

: 1

: , , , , , , ,

: , , , , , , , 13

m

i

R

i i i N N

i
i
N i

R K

i i i iR i i iK

1

1

2

1 2 1 2

1 2 1 2

where yi represents the measured signal in region i and uk the kth
experimental input to that region.

This derivation completes the reformulation of a linear DCM in
the time domain as a general linear model (GLM) in the frequency
domain. The resulting algebraic expression in Eq. (12) offers many
advantages, such as extremely efficient computation and ex-
ploitation of existing statistical solutions. The transfer to the fre-
quency domain also means that we can exploit knowledge about
the frequencies that contain useful information in fMRI; these are
constrained by the low-pass filter properties of neurovascular
coupling and the sampling frequency (cf. Nyquist theorem), re-
spectively. This means that sampling rate (TR) becomes an im-
portant factor, something that will be considered in our simula-
tions below.

Specification of regression DCM as a generative model
In order to turn the GLM in Eq. (12) into a full generative model

(Bayesian regression), we need to specify priors for parameters
and hyperparameters. While we keep the zero-mean Gaussian
shrinkage priors on connectivity parameters from classical DCM,
we chose a Gamma prior on the noise precision τ (not a log-nor-
mal prior as in classical DCM). This change was motivated by the
fact that Gamma priors serve as conjugate priors on precision for a
Gaussian likelihood, which simplifies the derivation of an
Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
expression for the posterior:

( )
( )

( ) ( )( ) ( )

( ) ( )

θ θ μ π

τ τ α β
β

α
τ

= Σ = Σ

= =
Γ ( )

θ μ θ μ

α
α β τ

− − − − Σ −

− −

−

p exp

p Gamma exp

; , 2

; ,
14

i i
i i

D
i

i i i

0 0
2

0

1
2 1

2

0 0
0

0

1

i
i

i
T

i
i

i

i

0 0
1

0

0
0 0

Here, μ0 and Σ0 are the mean and covariance of the Gaussian
prior on connectivity parameters, α0 and β0 are the shape and rate
parameters of the Gamma prior on noise precision, and Γ is the
Gamma function. In this paper, we adopted the standard neuronal
priors from DCM10 as implemented in the Statistical Parametric
Mapping software package SPM8 (version R4290; www.fil.ion.ucl.
ac.uk/spm). For the noise precision, we used α =20 and β =10 to
match the Gamma distribution closely to the first two moments of
the standard log-normal prior from DCM10.

Under this choice of priors, the posterior distribution over
connections to each region i and for the entire model, respectively,
then takes the form:

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )∏ ∏

| |

| |

θ τ θ τ θ τ

θ τ θ τ θ τ

∝

∝
( )= =

p Y X p Y X p p

p Y X p Y X p p

, , , ,

, , , ,
15

i i i i i i i i

i

R

i i i
i

R

i i
1 1

As already highlighted above, the formulation of rDCM re-
presents a special case of Bayesian linear regression (Bishop,
2006). If the noise precision were known, Eq. (15) could be solved
exactly. Since rDCM does not make this assumption, an analytical
solution is not possible and approximate inference procedures are
needed instead. Here, we chose a variational Bayesian approach
under the Laplace approximation (VBL; compare Friston et al.
(2007)) to derive an iterative optimization scheme.

Variational Bayes: a brief summary
This section provides a summary of variational Bayes (VB)

that hopes to enable readers with limited experience in varia-
tional Bayes to follow the derivation of the update equations for
rDCM below. Comprehensive introductions to VB can be found
elsewhere (e.g., Bishop, 2006). Generally speaking, VB is a fra-
mework for transforming intractable integrals into tractable
optimization problems. The main idea of this approach is to
approximate the true posterior ( )θ τp y m, , by a simpler dis-
tribution ( )θ τq y m, , . For VBL, ( )θ τq y m, , is assumed to have a
Gaussian form and can thus be fully described by its sufficient
statistics – that is, the conditional mean and covariance (Friston
et al., 2007).

Given such an approximate density, VB allows for achieving
two things simultaneously: (i) model inversion, i.e., estimating the
best approximation to the true posterior (under the chosen form
of q), and (ii) obtaining an approximation to the log model evi-
dence (the basis for Bayesian model comparison). This can be seen
by decomposing the log model evidence as follows:
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where F is known as the negative free energy and the second term
is the Kullback-Leibler (KL) divergence between the approximate
posterior and the true posterior density. Because the KL divergence
is always positive or zero (Mackay, 2003), the negative free energy
provides a lower bound on the log model evidence. The KL term
can thus be minimized (implicitly) by maximizing the negative
free energy. The latter is feasible because F does not depend on the
true (but unknown) posterior, but only on the approximate pos-
terior (see Eq. (16)), and can be maximized by gradient ascent
(with regard to the sufficient statistics of q).

To facilitate finding the q that maximizes F , a mean field ap-
proximation to ( )θ τq y m, , is typically chosen. For example, one
might assume that q factorizes into marginal posterior densities of
parameters and hyperparameters:

( ) ( ) ( )θ τ θ τ= ( )q y m q y m q y m, , , , 17

Under this mean field approximation, the approximate mar-
ginal posteriors that maximize F can be found by iteratively ap-
plying the following two update equations
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where, · q denotes the expectation with respect to q. While de-
riving the right-hand side terms (the so-called “variational en-
ergies”) can be complicated, once known they enable a very fast
optimization scheme.

Variational Bayes for regression DCM
Having outlined the basic concepts of variational Bayes, we

now present an efficient VBL approach for rDCM, which results
in a set of analytical update equations for the model para-
meters and an expression for the negative free energy. Under
the VBL assumptions, update equations for ( )θq Y X, and

( )τq Y X, – that is, for connectivity parameters and noise
precision, respectively – can be derived as shown by Eqs. (19)
and (20).

Given the mean field approximation or factorization of the
approximate posterior over subsets of connections (see
above), optimization can be performed for each region in-
dependently. Technically, this enables us to dissolve the pro-
blem of inverting a full adjacency matrix of endogenous con-
nectivity strengths into a series of variational updates in
which the posterior expectations of each subset (rows of the A
matrix) are optimized successively. Hence, without loss of
generality, we restrict the following derivation of the update
equations to a single region.

Update equation of θ:
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where Σ−
0

1 is the inverse prior covariance matrix on connectivity
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parameters, and ατ y and βτ y are the posterior shape and rate
parameters of the Gamma distribution on noise precision, re-
spectively. Here, we made use of τ =τ

α

β( )
τ

τ
q

y

y
, with · denoting the

expected value, and the fact that all terms independent of θ can be
absorbed by the constant term.

Update equation of τ :
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where N is the number of data points, and μθ y and Σθ y are the
mean and covariance of the posterior (Gaussian) density on
connectivity parameters, respectively. Here, we made use of

( )θ μ=θ θq y and the fact that all terms independent of τ can be
absorbed by the constant term. Comparing Eqs. (19) and (20) to
the logarithm of the multivariate normal distribution and to
the logarithm of the Gamma distribution, respectively, allows
one to derive a set of simple update equations for the sufficient
statistics of the approximate posterior densities ( )θq Y X, and

( )τq Y X, .

Final iterative scheme:
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Since the update equations for ( )θq Y X, and ( )τq Y X, are
mutually dependent on each other, we iterate their updates
until convergence to obtain the optimal approximate dis-
tributions. More precisely, in the current implementation of
rDCM, the iterative scheme proceeds until the change in τ falls
below a specified threshold (i.e., 10-10). In future implementa-
tions, we will explore the utility of using changes in variational
free energy within each iteration as the criterion for con-
vergence (for comparison, VBL typically uses a change in free
energy of 1/8 or less to terminate the iterations).

Having obtained expressions for the approximate posterior
densities for the connectivity and noise parameters, one can
derive an expression for the negative free energy F . As de-
scribed above, F serves as a lower-bound approximation to the
log model evidence which represents a measure of the “good-
ness” of a model, taking into account both its accuracy and
complexity (Friston et al., 2007; Mackay, 1992; Penny et al.,
2004; Stephan et al., 2009a). F is thus routinely used to for-
mally compare different candidate models and decide which of
them provides the most plausible explanation for the observed
data (Bayesian model selection, BMS). To do so, one needs to
131
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compute the actual value of F, given the data and (a current
estimate of the) approximate posterior; the following equa-
tions show how this is done in the case of rDCM.

As can be seen from Eq. (16), the negative free energy can be
cast in terms of the difference of the expected energy of the
system (i.e., log-joint) and the entropy of the approximate
posterior:
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In the following, we outline the derivation of the individual
components of the negative free energy (see Lomakina (2016)):

Expectation of the likelihood:
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where Ψ denotes the digamma function.

Expectation of the prior on θ:
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where D is the number of connections entering the region.

Expectation of the prior on τ :
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where Γ is the Gamma function.

Entropy of θ:
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Summing up the components from Eqs. (23)–(27) yields an
estimate of the negative free energy for each individual region. The
negative free energy for the full model can then be computed by
summing over all regions of the model

∑=
( )=

F F
28i

R

i
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Synthetic data: six-region DCM

We assessed the face validity of rDCM in systematic simulation
studies, generating synthetic data for which the ground truth (i.e.,
the network architecture and parameter values) was known. More
precisely, we generated data from 5 synthetic linear DCMs with
identical driving inputs but distinct endogenous connectivity ar-
chitectures (Fig. 1). For all models, two block input regressors u1
and u2 served as driving inputs and were specified to elicit activity
in x1 and x2, respectively. Each activation block lasted 14.5 s and
alternated with baseline periods of the same length.

While driving inputs were kept identical across models, varying
the endogenous connectivity patterns yielded models of different
complexity, with the most complex model consisting of 20 para-
meters (model 1) and the sparsest model of 12 parameters (model
5). Specifically, for model 1, feedforward and feedback endogenous
connections were set between x1/2 and x3/4, and between x3/4 and
x5/6. Additionally, reciprocal connections were assumed between
x3 and x4, as well as between x5 and x6. Model 2 resulted from
model 1 by discarding feedback connections, model 3 and 4 from
further removing reciprocal connections either at the highest or
intermediate hierarchical level, respectively, and model 5 by con-
sidering only feedforward connections from x1/2 to x3/4, and from
x3/4 to x5/6.

For each of these five models, 20 different sets of observations
were generated. To ensure the data were realistic, we sampled the
generating (“true”) parameter values of each simulation from the
posterior distributions of the endogenous and driving input
parameters reported in Frässle et al. (2016b). For each set of
models and observations, synthetic BOLD data was then simulated
under different conditions where we systematically varied the
signal-to-noise ratio (SNR¼[1, 3, 5, 10, 100]) and repetition time
10.1016/j.neuroimage.2017.02.090i
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Fig. 1. Five models encoding different effective connectivity patterns of a six-region
network utilized for generating synthetic data. For all models, driving inputs (C
matrix) were identical – that is, the two block input regressors u1 and u2 were
assumed to modulate neuronal activity in x1 and x2, respectively. On the contrary,
endogenous connectivity patterns varied across the five models, ranging from a
(relatively) complex model with 20 free parameters to a sparse model with 12 free
parameters. For the most complex model (i.e., model 1), feedforward and feedback
endogenous connections were set between x1/2 and x3/4, and between x3/4 and

x5/6. Additionally, reciprocal connections were assumed between x3 and x4, as well

as between x5 and x6. For the sparsest model (i.e., model 5), connections were
restricted to feedforward connections from x1/2 to x3/4, and from x3/4 to x5/6. The

number of free parameters for the remaining models (i.e., models 2–4) ranged
between these two “extremes” of the complexity spectrum. Note that the two
blocked input regressors u1 and u2 shown here represent only a section of the
driving input regressors (exemplifying the temporal relationship between the two
inputs), rather than the entire time course. The model architecture and the gen-
erating parameter values were motivated from a recent study on the effective
connectivity in the core face perception network (Frässle et al., 2016b, 2016c).
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(TR¼[2 s, 1 s, 0.5 s, 0.25 s, 0.1 s]). Here, SNR was defined as the
ratio between standard deviation of the signal and standard de-
viation of the noise (i.e., σ σ=SNR /signal noise), where the noise term is
specified as additive white Gaussian noise with zero mean. This
definition offers an intuitive measure of the ratio of the variability
of signal and noise, is a standard SNR measure in DCM and well
established for fMRI analyses more generally (Welvaert and Ros-
seel, 2013). Under this definition, SNR levels of fMRI time series
used for DCM are often 3 or higher; this is because these extracted
time series result from a principal component analysis (over nu-
merous voxels in local volumes of interest) that suppresses noise.
Evaluating the accuracy of parameter estimation and model se-
lection under the different settings of SNR and TR allowed us to
assess the performance of rDCM as a function of data quality and
sampling rate, respectively. Note that in all simulations of this
initial paper, we used a fixed (canonical) hemodynamic response
function. In future work, we will extend the model to account for
variations in HRF over regions (see Discussion).

Empirical data: core face perception network

For application of rDCM to empirical fMRI data, we used a
previously published fMRI dataset from a simple face perception
Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
paradigm (the same dataset from which the generating parameter
values in the simulations above were sampled). A comprehensive
description of the experimental design and data analysis can be
found elsewhere (Frässle et al., 2016b, 2016c); here, we only
briefly summarize the most relevant information (Figs. 2–4).

Participants and experimental design
Twenty right-handed subjects viewed either gray-scale neutral

faces (F), objects (O), or scrambled (Fourier-randomized) images
(S) in the left (LVF) or right visual field (RVF), while fixating a
central cross (cf. Fig. 5A). Stimuli were presented in a block design,
with each block lasting 14.5 s during which 36 stimuli of the same
condition were shown (150 ms, ISI¼250 ms). Subsequent stimulus
blocks were interleaved with a resting period of the same length
where only the fixation cross was shown.

Data acquisition and analysis
For each subject, a total of 940 functional images were acquired

on a 3-T MR scanner (Siemens TIM Trio, Erlangen, Germany) using
a T2*-weighted single-shot gradient-echo echo-planar-imaging
(EPI) sequence (30 slices, TR¼1450 ms, TE¼25 ms, matrix size
64�64 voxels, voxel size 3�3�4 mm3, FoV¼192�192 mm2, flip
angle 90°). BOLD activation patterns were analyzed using a first-
level GLM (Friston et al., 1995) to identify brain regions sensitive to
the processing of faces ([2*F]-[OþS]), as well as to the visual field
baseline contrasts (RVF, LVF). Six regions of interest (ROIs) were
selected, representing occipital face area (OFA; Puce et al., 1996),
fusiform face area (FFA; Kanwisher et al., 1997), and primary visual
cortex (V1), each in both hemispheres (Fig. 5A). Peak coordinates
of the ROIs were identified for each subject individually (to ac-
count for inter-subject variability in the exact locations). From the
individual ROIs, time series were extracted (removing signal mean
and correcting for head movements), which then entered rDCM
analyses.

rDCM analysis
The endogenous and driving input connectivity of the DCM was

specified as follows (Fig. 5B; model A): First, intra-hemispheric
endogenous forward connections were set between V1 and OFA,
and between OFA and FFA. Furthermore, reciprocal inter-hemi-
spheric endogenous connections were set among the homotopic
face-sensitive regions (Catani and Thiebaut de Schotten, 2008;
Park et al., 2008; Van Essen et al., 1982; Zeki, 1970). Second, inputs
representing the visual field of stimulus presentation drove neu-
ronal activity in the contralateral V1 (i.e., RVF influenced left V1,
LVF influenced right V1). Third, driving inputs representing the
presentation of faces (FP) elicited activity in the face-sensitive
areas OFA and FFA in both hemispheres (Frässle et al., 2016c).

Synthetic data: whole-brain DCM

In a final simulation analysis, we assessed the ability of rDCM to
infer effective connectivity in a large (whole-brain) network. To
this end, synthetic data was generated from a linear DCM in-
cluding 66 brain regions (Fig. 6A and Supplementary Table S1). The
network was defined on the basis of the Hagmann parcellation
(Hagmann et al., 2008), which has been utilized frequently for
whole-brain connectomics (e.g., Deco et al., 2013b; Honey et al.,
2009). To adequately capture the network characteristics of the
human brain – for instance, with regard to small-world archi-
tecture, node degree, path length, centrality of nodes, or mod-
ularity (Bullmore and Sporns, 2009) – the endogenous con-
nectivity architecture of our whole-brain DCM was based on the
average structural connectome provided by the diffusion-weigh-
ted imaging work by Hagmann et al. (2008). Specifically, we used
the matrix of average inter-regional fiber densities (Fig. 4 in
10.1016/j.neuroimage.2017.02.090i
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Fig. 2. Parameter recovery of rDCM in terms of the root mean squared error (RMSE). Each of the five subplots illustrates the results for one model (see Fig. 1 for a
visualization of the model space). Within each subplot, the RMSE is shown for various combinations of the signal-to-noise ratio (SNR) and the repetition time (TR) of the
synthetic fMRI data. The various settings of SNR (i.e., 1, 3, 5, 10, and 100) are shown along the x-axis of each subplot. The different TR settings are illustrated by the differently
colored curves and were as follows: 2 s (blue), 1 s (red), 0.5 s (green), 0.25 s (grey), and 0.1 s (black). Results show a clear (and expected) dependence of the RMSE on SNR and
TR, with parameter recovery becoming more accurate for better data quality (i.e., higher SNR) and higher sampling rates (i.e., shorter TR).

Fig. 3. Parameter recovery of rDCM in terms of the number of sign errors (SE). Each of the five subplots illustrates the results for one model (see Fig. 1 for a visualization of
the model space). Within each subplot, the number of sign errors is shown for various combinations of the signal-to-noise ratio (SNR) and the repetition time (TR) of the
synthetic fMRI data. The various settings of SNR (i.e., 1, 3, 5, 10, and 100) are shown along the x-axis of each subplot. The different TR settings are illustrated by the differently
colored curves and were as follows: 2 s (blue), 1 s (red), 0.5 s (green), 0.25 s (grey), and 0.1 s (black). Results indicate that rDCM recovers whether a connection was excitatory
or inhibitory with high precision, with sign errors only occurring for the most complex model (model 1). Notably, for model 1, sign errors were only observed for challenging
noise scenarios (i.e., SNR¼1). In all other cases, rDCM accurately recovered the sign of the true generating parameter.
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Hagmann et al. (2008)) and included all connections with a weight
larger than 0.06. This threshold ensured that, under randomly
sampling connection strengths from the prior densities, the sys-
tem remained stable (i.e., all eigenvalues of the endogenous con-
nectivity matrix were negative). As diffusion-weighted imaging
does not allow for detecting the directionality of fibers, connected
nodes were always coupled by reciprocal connections (i.e., two
separate parameters). This resulted in 298 connections, each of
which was represented by a free parameter in the endogenous
Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
connectivity (A) matrix of rDCM.
Additionally, two block input regressors, mimicking the pre-

sentation of visual stimuli in the left (LVF) and right visual field
(RVF), served as driving inputs, driving neuronal activity in the
right and left cuneus (primary visual cortex), respectively. In total,
this resulted in 300 neuronal parameters that had to be estimated
by rDCM (Fig. 6A).

For this model, 25 simulations with 20 observations (“subjects”)
each were created by sampling the generating parameter values
10.1016/j.neuroimage.2017.02.090i
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Fig. 4. Accuracy of Bayesian model comparison for rDCM. Each subplot illustrates
the model comparison results for a specific combination of the signal-to-noise ratio
(SNR) and the repetition time (TR) of the synthetic fMRI data. The various settings
of TR (i.e., 2 s, 1 s, 0.5 s, 0.25 s, and 0.1 s) are shown along the x-axis and the dif-
ferent SNR settings (i.e., 1, 3, 5, 10, and 100) are shown along the y-axis. For each
combination of TR and SNR (i.e., each subplot), a matrix is shown that summarizes
the fixed effects Bayesian model selection results for each of the five different
models (see Fig. 1 for a visualization of the model space). Specifically, each row in
these matrices represents the posterior model probabilities of all DCMs that were
used for model inversion (estimated) of the DCM that was used to actually generate
the synthetic fMRI data (true). Hence, each row signals whether rDCM was able to
recover the true data-generating model architecture among the five competing
alternatives. Hence, a diagonal structure (i.e., highest posterior probability on the
diagonal) indicates that rDCM was able to recover the model that actually gener-
ated the data. Note that higher posterior probabilities are color-coded in warm
colors (yellowish).

S. Frässle et al. / NeuroImage ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9
from the prior density over model parameters (multivariate nor-
mal distribution, see above). The 25 simulations differed with re-
gard to the SNR (i.e., 1, 3, 5, 10, and 100) and TR (i.e., 2 s, 1 s, 0.5 s,
0.25 s, and 0.1 s) settings that were used for generating synthetic
BOLD data.
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Results

Synthetic data: six-region DCM

Model parameter estimation
First, we tested, using 5 different models and under various

settings of SNR and TR, whether rDCM can reliably recover the
generating (“true”) parameter values in a small network of 6 re-
gions (Fig. 1). We quantified the accuracy of parameter recovery by
(i) the root mean squared error (RMSE) between true and esti-
mated parameter values, and (ii) the number of sign errors (SE),
that is, the number of parameters for which the estimated sign
differed from ground truth. The latter is a metric of interest be-
cause the interpretation of effective connectivity often boils down
to whether directed influences are excitatory (positive) or in-
hibitory (negative).

As expected, we found a dependence of the RMSE on both the
SNR and TR, with the overall pattern being highly consistent across
the different models (Fig. 2): RMSE decreased with higher SNR and
shorter TR (higher sampling rate). Notably, in the case of high SNR
data (SNR¼100) and ultra-fast data acquisition (TR¼0.1 s), rDCM
recovered the connection strengths of the generating parameters
almost perfectly (mean RMSEr0.02, for all models). While these
settings are not realistic for fMRI experiments, this is an important
Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
observation because it serves as a sanity check for our rDCM im-
plementation. For more realistic settings (TR¼1 s, SNR¼3), we
found the mean RMSE to range from 0.2870.01 (mean7std) for
model 2 to 0.4070.02 for model 1. With regard to sign errors,
rDCM could recover whether a connection was excitatory or in-
hibitory with high precision (Fig. 3). More precisely, for four
models (i.e., models 2–5), we have not observed any sign errors
regardless of the SNR and TR. For model 1, sign errors occurred
only for an SNR of 1, which represents a challenging SNR scenario
(Welvaert and Rosseel, 2013).

For comparison, we also assessed the accuracy of parameter
recovery using the default VBL implementation in DCM10 (as
implemented in SPM8, version R4290). In brief, VBL recovered the
generating parameter values with high accuracy with a mean
RMSEr0.2 and hardly any sign error, regardless of the particular
model. Sign errors only occurred for model 2 for the most chal-
lenging scenario (TR¼2 s, SNR¼1). This excellent performance of
VBL is not surprising given that VBL does not need to resort to
simplifying assumptions as made in the current implementation of
rDCM (in particular, assumptions of partial independence between
connectivity parameters). These assumptions affect the accuracy of
rDCM most severely for challenging scenarios with low SNR and
long TR. On the other hand, our analyses also indicated that for
short TRs (r0.5 s), and thus cases with a large number of data
points, VBL rarely converged within the limit of SPM8’s default
upper bound on iterations, which deteriorates parameter recovery
performance. Overall, our simulations demonstrate that for rea-
listic settings for SNR and TR, rDCM and VBL yield qualitatively
comparable results in terms of parameter recovery.

Bayesian model selection
In a next step, we aimed to establish the face validity of rDCM

with regard to Bayesian model selection under the different set-
tings of SNR and TR. To this end, we tested whether the model that
actually generated the data (the “true” model) was assigned the
largest model evidence – that is, for each of the 25�5 synthetic
datasets (with 20 observations/“subjects” for each dataset), we
inverted the five different DCMs and compared the negative free
energies by means of fixed effects BMS (Stephan et al., 2009a). To
this end, we computed the posterior model probability of the es-
timated model (Fig. 4). Notably, to rule out that any of our BMS
results were confounded by outliers (against which fixed effects
analyses are vulnerable), we additionally compared negative free
energies by means of random effects BMS (Stephan et al., 2009a;
as implemented in SPM12, version: R6685) and found highly
consistent results (data not shown).

As above, we observed the expected dependence of model se-
lection performance on SNR and sampling rate. Specifically, model
selection became more accurate for higher SNR and shorter TR. For
challenging scenarios with low signal-to-noise ratios (i.e., SNR¼1),
rDCM frequently failed to identify the correct model, except for
extremely fast data acquisitions (TR¼0.1 s) where we find perfect
recovery of the data-generating model architecture (Fig. 4, top
row). More specifically, in the case of noisy data, rDCM showed a
tendency to selecting the simplest of all models in our model
space (Model 5) for TRZ0.5 s. This “Bayesian illusion” – where a
simpler model, nested in a more complex data-generating model,
has higher evidence – is not an infrequent finding when dealing
with nested models that are only distinguished by parameters
with weak effects or strongly correlated parameters, whose effects
become difficult to detect in the presence of noise.

Having said this, given a reasonably high signal-to-noise ratio
in the synthetic fMRI data (i.e., SNRZ3), rDCM recovered the true
model in the vast majority of cases with hardly any model selec-
tion error (Fig. 4, rows 2–5). Even for relatively slow data acqui-
sitions (TR¼2 s), there was only one case for which a “wrong”
10.1016/j.neuroimage.2017.02.090i
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Fig. 5. Effective connectivity in the core face perception network as assessed with rDCM for an empirical fMRI dataset. (A) BOLD activation pattern shows regions that were
more activated during the perception of faces as compared to objects and scrambled images, as determined by the linear face-sensitive contrast: [2*F]-[OþS]. Reproduced,
with permission, from Frässle et al. (2016b) (top), as well as regions that were activated when stimuli were presented in the right (bottom, left) or left visual field (bottom,
right). Results are thresholded at a voxel-level threshold of po0.05 (FWE-corrected). (B) Two alternative models for explaining effective connectivity in the core face
perception network. Both models assumed the same endogenous connectivity (A matrix) – that is, intra-hemispheric feedforward connections from V1 to OFA and from OFA
to FFA in both hemispheres, as well reciprocal inter-hemispheric connections among the face-sensitive homotopic regions. Additionally, both models assumed driving inputs
(C matrix) to the four face-sensitive regions (i.e., OFA and FFA, each in both hemispheres) by the processing of faces (FP). Critically, model A (top) and model B (bottom)
differed in their driving inputs to left and right V1. While model A was biologically plausible by assuming that stimuli in the left (LVF) and right visual field (RVF) modulated
activity in the contralateral V1, model B assumed these driving inputs to be swapped. (C) Group level parameter estimates for the endogenous and driving input connectivity
of model A as estimated using rDCM (left) and VBL (right). Results are remarkably consistent across the two methods. The strength of each connection is displayed in terms of
the mean coupling parameter (in [Hz]). Significant (po0.05, Bonferroni-corrected) connections are shown in full color; connections significant at an uncorrected threshold
(po0.05) are shown in faded colors. L¼ left hemisphere; R¼right hemisphere; A¼anterior; P¼posterior; LVF¼ left visual field; RVF¼right visual field.
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model had higher model evidence compared to the generating
(“true”) model. More specifically, in the case of model 1 being the
“true” model, rDCM falsely assigned highest evidence to model 2,
suggesting that the presence of feedback connections can some-
times be difficult to detect – a finding which has been highlighted
previously (Daunizeau et al., 2011b).

Again, we compared rDCM to VBL by assessing model selection
performance for the default implementation of DCM10. As ex-
pected, VBL recovered the true model perfectly with no model
selection error. Consistent with our observations on parameter
recovery reported above, differences between rDCM and VBL were
Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
thus only observed for challenging scenarios (SNR¼1), where the
limitations of the current version of rDCM are likely to become
most severe. On the contrary, both rDCM and VBL provide accurate
model selection results for realistic SNR and TR settings.

Computational burden
To illustrate the computational efficiency of rDCM, we com-

pared run-times for rDCM with the time required to perform the
respective model inversion using the default VBL implementation
in DCM10 (as implemented in SPM8, version R4290). Specifically,
we evaluated the run-times for all different settings of TR, under a
10.1016/j.neuroimage.2017.02.090i
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Fig. 6. Parameter recovery of rDCM in terms of the root mean squared error (RMSE) and the number of sign errors (SE) for the large (whole-brain) network. (A) Endogenous
connectivity architecture (A matrix) among the 66 brain regions from the Hagmann parcellation. Endogenous connectivity was restricted to the most pronounced edges of
the human structural connectome by only selecting those connections for which an average inter-regional fiber densities larger than 0.06 has been reported in Hagmann
et al. (2008). Additionally, two block input regressors u1 and u2, mimicking the effect of visual stimulation in the right and the left visual field, were assumed to modulate
neuronal activity in left and right cuneus (primary visual cortex), respectively. The brain network was visualized with the BrainNet Viewer (Xia et al., 2013), which is available
as open-source software for download (http://www.nitrc.org/projects/bnv/) (left). An actual “observation” of the endogenous connectivity, generated by sampling connection
strengths from the prior density on the endogenous parameters (right). A complete list of the anatomical labels of the 66 parcels can be found in the Supplementary Table S1.
(B) The RMSE and (C) the number of sign errors are shown for various combinations of the signal-to-noise ratio (SNR) and the repetition time (TR) of the synthetic fMRI data.
The various settings of SNR (i.e., 1, 3, 5, 10, and 100) are shown along the x-axis of each subplot. The different TR settings are illustrated by the differently colored curves and
were as follows: 2 s (blue), 1 s (red), 0.5 s (green), 0.25 s (grey), and 0.1 s (black). (D) Number of sign errors (SE) for the different SNR and TR settings when restricting the
analysis to parameter estimates that showed a non-negligible effect size (i.e., the 95% Bayesian credible interval of the posterior not containing zero). For these parameters,
the number of SE was considerably reduced, suggesting that the sign of an endogenous influences (i.e., inhibitory vs. excitatory) could be adequately recovered for para-
meters of large effect size. L¼ left hemisphere; R¼right hemisphere; A¼anterior; P¼posterior; LVF¼ left visual field; RVF¼right visual field.
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fixed SNR of 3 because we expected SNR to exert a smaller impact
on run-times as compared to TR, which essentially determines the
number of data points. Our run-time results should be interpreted
in a comparative, not absolute, manner, given their dependency on
computer hardware.

Generally, model inversion under rDCM was considerably faster
than VBL across all TR values (Table 1). For instance, for TR¼1 s,
rDCM was on average four orders of magnitude faster than VBL.
Additionally, our analyses suggested that the computational
Table 1
Computational burden of rDCM and VBL quantified in terms of the approximate run-time
m1–m5, respectively) under various settings of the repetition time (TR) of the synthetic fM
ratio (SNR) of 3. Run-times are given as the mean7standard deviation of the 20 simul

Computational burden (s)

TR¼2 s TR¼1 s TR¼0.5 s

Mean7std Range Mean7std Range Mean7std Rang

rDCM m1 0.2070.12 0.14–0.72 0.2070.12 0.14–0.69 0.2370.13 0.17–
m2 0.1870.11 0.13–0.63 0.1970.10 0.14–0.62 0.2170.12 0.15–
m3 0.1670.11 0.11–0.62 0.1670.009 0.12–0.53 0.1870.11 0.13–
m4 0.1870.11 0.12–0.62 0.1970.10 0.14–0.61 0.2170.12 0.15–
m5 0.1970.11 0.12–0.67 0.2070.11 0.15–0.68 0.2370.14 0.17–

VBL m1 11577477 830–2498 358971153 2432–5448 793271169 6303
m2 19707563 893–2452 35667597 2380–4048 78117939 6859
m3 15927436 1075–2294 34977567 2507–4209 72287444 6715
m4 11777277 987–2283 26497469 2214–4295 66547693 5946
m5 819755 733–920 21667161 1930–2574 57257560 5217

Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
efficiency and feasibility of VBL-based DCM for large numbers of
data points (as would also be the case for DCMs with many re-
gions) rapidly diminishes. This behavior was not only reflected by
the long run-times reported in Table 1, which ranged from ap-
proximately 1,000–40,000 s per model inversion, but also (as
mentioned above) by the fact that for short TRs (and hence many
data points), the VBL algorithm rarely converged within the limit
of SPM8’s default upper bound on iterations (see the results for
TRr0.5 s in Table 1).
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s (in s) required for estimating a single linear DCM (i.e., model 1–5, here labelled as
RI data. Note that run-times are reported exemplarily for a realistic signal-to-noise

ations, as well as the range.

TR¼0.25 s TR¼0.1 s

e Mean7std Range Mean7std Range

0.79 0.2470.12 0.19–0.74 0.3770.41 0.26–2.10
0.72 0.2670.12 0.20–0.78 0.3770.37 0.26–1.94
0.62 0.2070.10 0.15–0.62 0.3370.32 0.23–1.70
0.74 0.2770.14 0.20–0.85 0.3770.38 0.26–1.98
0.82 0.2770.13 0.20–0.81 0.3870.40 0.26–2.08

–9986 1770471124 16484–19143 4363373904 40449–51119
–10349 148047760 14229–16357 3732272367 35248–41464
–7935 137417801 13198–16924 3573873265 32106–43923
–8289 1430171265 13387–18147 3379171838 32455–37599
–7184 1369171165 12422–15907 3201471934 30354–35322

10.1016/j.neuroimage.2017.02.090i
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Table 2
Computational burden of rDCM and VBL quantified in terms of the approximate
run-times (in s) required for estimating a single linear DCM (i.e., model A or model
B) of the intra- and inter-hemispheric connectivity in the core face perception
network. The run-times required for inverting the model are given as the
mean7standard deviation of the 20 subjects, as well as the range.

Computational burden (S)

Mean7std Range

rDCM Model A 0.2470.03 0.21–0.28
Model B 0.2670.04 0.21–0.32

VBL Model A 827.37233.4 519.7–1422.2
Model B 973.37371.7 491.6–1706.3
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By comparison, rDCM handles large amounts of data more
gracefully due to the algebraic form of the likelihood function. In
rDCM, model inversion took less than half a second, with no sig-
nificant increase in computation time when increasing the num-
ber of data points. This highlights the computational efficiency of
rDCM and points towards its suitability for studying effective
connectivity in very large networks, a theme we return to below.

It should be noted that in our comparative evaluation of rDCM
and VBL, there is an additional computational saving under rDCM’s
fixed form assumptions for the HRF. In other words, conventional
DCM optimizes the parameters of the hemodynamic response
function separately for each region. This means that the number of
parameters – that determines the number of solutions or in-
tegrations required to estimate free energy gradients – increases
linearly for hemodynamic parameters and quadratically for neu-
ronal (connectivity) parameters. This means that the VBL analyses
could be made more efficient by adopting the rDCM (fixed form)
assumptions for the HRF; however, the computational savings
would not be very marked because the key (quadratic) determi-
nant of computation time depends upon the number of
connections.

Empirical data: core face perception network

Model parameter estimation
We applied rDCM to an empirical fMRI dataset of a simple face

perception task, which had been used previously to investigate
intra- and inter-hemispheric integration in the core face percep-
tion network (Frässle et al., 2016a, 2016b, 2016c). Individual con-
nectivity parameters were estimated using model A (Fig. 5B, top),
which then entered summary statistics at the group level (one-
sample t-tests, Bonferroni-corrected for multiple comparisons).
We found all parameter estimates to be excitatory except for the
inhibitory self-connections (Fig. 5C, left). Specifically, we found
excitatory driving influences of visual stimuli (LVF and RVF) on
activity in right and left V1, respectively. Additionally, and in line
with the well-established role of bilateral OFA and FFA in face
processing, we found excitatory face-specific driving influences on
activity in all four regions of the core face perception network.
With regard to the endogenous connectivity, we found excitatory
connections both within each hemisphere and between homo-
topic face-sensitive regions in both hemispheres, suggesting inter-
hemispheric integration within the core face perception network –

in line with previous observations from functional (Davies-
Thompson and Andrews, 2012) and effective connectivity studies
(Frässle et al., 2016c).

In an additional analysis step, we assessed the effective con-
nectivity in the same model (i.e., model A) using DCM10 (as im-
plemented in SPM8, version R4290) in order to compare results
from rDCM and VBL qualitatively. Note that a quantitative match of
parameter estimates by rDCM and VBL cannot be expected since
the generative models of these two frameworks are quite different.
Three major differences are worth reiterating: First, while the
hemodynamic model in classical DCM is nonlinear and contains
region-specific parameters, rDCM models the hemodynamic re-
sponse as a fixed, linear convolution of neuronal states. Second,
rDCM uses a mean field approximation (or partial independence
assumption) that ignores potential dependencies amongst para-
meters affecting different regions. Third, in contrast to the log-
normal prior on noise variance in classical DCM, rDCM uses a
Gamma prior on noise precision. These differences in likelihood
functions and priors between rDCM and VBL translate into quan-
titatively different posterior estimates (see Eq. (15)).

Qualitatively, however, parameter estimates by VBL were very
similar to rDCM (Fig. 5C, right). In brief, all six driving inputs were
excitatory (although this was not significant for the face-specific
Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
driving input to left FFA when correcting for multiple compar-
isons). Similarly, the intra-hemispheric forward connections in
both hemispheres and the inter-hemispheric connections among
bilateral OFA were excitatory. One difference between VBL and
rDCM parameter estimates concerned the inter-hemispheric con-
nections among bilateral FFA, which were inhibitory for VBL. These
inhibitory effects, however, did not reach significance for the
connection from right to left FFA (t(19)¼-1.43, p¼0.17), and only at
an uncorrected statistical threshold for the connection from left to
right FFA (t(19)¼-2.79, p¼0.01).

Bayesian model selection
In order to evaluate the Bayesian model selection (BMS) per-

formance of rDCM in an empirical setting, we constructed a sec-
ond model (model B; Fig. 5B, bottom) and inverted this model
under rDCM and VBL, respectively. Importantly, in this alternative
model, the visual baseline driving inputs were permuted com-
pared to the original model (model A). In contradiction to neu-
roanatomy, model B thus proposed that visual stimuli presented in
the periphery entered ipsilateral V1 (i.e., LVF influenced left V1,
RVF influenced right V1). Hence, we expected both rDCM and VBL
to select model A as the winning model.

We used random effects BMS (Stephan et al., 2009a; as im-
plemented in SPM12, version: R6685) to compare the two alter-
native models based on their negative free energies. For both,
rDCM and VBL, model A was the decisive winning model with a
protected exceedance probability of 1.00 in either case (Rigoux
et al., 2014). This indicates that rDCM not only yields BMS results
comparable to VBL (with equally high confidence), but also selects
the expected and biologically more plausible model amongst two
competing hypotheses.

Computational burden
We evaluated the run-time of rDCM and VBL for both models A

and B. Again, we would like to highlight that the reported values
should be interpreted in a comparative, not absolute, manner as
they depend on the specific hardware and software settings.
Consistent with our previous observations in the context of si-
mulations, we found model inversion under rDCM to be on aver-
age three orders of magnitude faster than VBL (Table 2). More
precisely, rDCM was highly efficient taking less than half a second
per model, whereas the time required for model inversion under
VBL was on the order of 15 min.

Regression DCM for large-scale networks

Model parameter estimation
In a final step, we used simulations to evaluate the utility of

rDCM for inferring effective connectivity in a large (whole-brain)
network. We chose a network comprising 66 brain regions and
300 free connectivity parameters (Fig. 6A), where model structure
10.1016/j.neuroimage.2017.02.090i
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was based on the structural connectome provided by the diffu-
sion-weighted imaging work by Hagmann et al. (2008). As above,
we computed the root mean squared error (RMSE) and the num-
ber of sign errors (SE) to quantify the accuracy of parameter
recovery.

Consistent with our previous findings from the synthetic and
empirical dataset, we observed a dependence of both the RMSE
and SE on SNR and TR, indicating that parameter estimation im-
proved with increasing data quality (i.e., higher SNR) and sampling
rates (i.e., shorter TR). For a realistic setting of fMRI data (TR¼1 s,
SNR¼3), the RMSE was 0.2970.01 (Fig. 6B). In the case of high
SNR data (SNR¼100) and ultra-fast data acquisition (TR¼0.1 s),
the RMSE was 0.0970.02. While the RMSE for this case of “ideal
data” is larger than in the simulations using the much smaller six-
region network above, errors are still in an acceptable range, in-
dicating a promising scalability of rDCM.

It is worth highlighting that even for “ideal data”, one would not
expect rDCM (nor VBL or any other model inversion method) to
exactly recover the “true” parameter values that were used to si-
mulate the data. This is because Bayesian methods optimize the
posterior rather than the likelihood, and the influence of the prior
exerts a bias on model parameter recovery whenever the prior
mean does not coincide exactly with the parameter values used for
data generation. This can produce counterintuitive results: even
when both prior and likelihood have means of the same sign,
parameter dependencies (which arise from the mathematical form
of the likelihood function) can lead to a posterior mean of the
opposite sign (see Supplementary Fig. S1 for a graphical visuali-
zation). For pronounced parameter interdependencies (which are
unavoidable in large-scale models with hundreds of free para-
meters), this sign flipping can occur even when prior mean and
data mean (likelihood) are identical, provided their means are not
too far away from zero.

Given these considerations, it was unsurprising to find that
rDCM of the whole-brain model suffered from considerably more
sign errors than the small six-region DCMs described above
(Fig. 6C). Again, this was a function of SNR and TR: While only
4.071.9 sign errors occurred for high quality data (TR¼0.1 s,
SNR¼100), we observed 45.774.6 sign errors in more realistic
settings (TR¼1 s, SNR¼3), corresponding to an error rate of
15.271.5%.

As illustrated by Supplementary Fig. S1, the likelihood of sign
flipping having occurred is smaller for parameters whose posterior
mean deviates strongly from zero. In a second analysis, we
therefore restricted the evaluation of the sign errors to those
connections for which zero was not within the 95% Bayesian
credible interval of the posterior density. In this way, we asked
whether estimates of connections that provided sufficiently large
evidence for an effect could be trusted (in terms of revealing the
correct direction of influence). When focusing on these connec-
tions, sign errors were considerably reduced (Fig. 6D). Specifically,
Table 3
Computational burden of rDCM quantified in terms of the approximate run-times (in s)
with a realistic human structural connectome and 300 free parameters. Run-times are sh
time (TR) of the synthetic fMRI data. The run-times required for inverting the model are

SNR Computational burden (s)

TR¼2 s TR¼1 s TR¼0.5 s

Mean7std Range Mean7std Range Mean7std

1 1.770.3 1.2–2.3 1.870.4 1.3–2.7 1.470.2
3 1.670.4 1.1–2.7 1.770.6 1.2–3.1 1.470.3
5 1.670.4 1.2–2.8 1.870.4 1.4–3.0 1.470.2
10 1.770.4 1.2–2.6 2.470.3 1.9–3.0 1.570.2
100 1.870.4 1.5–2.6 2.070.3 1.5–2.9 1.570.1

Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
even for (relatively) slow image acquisitions and noisy data
(TR¼2 s; SNR¼1), the number of sign errors was in an acceptable
range (19.575.1, corresponding to an error rate of 6.571.7%). For
more realistic image acquisition and SNR settings (TR¼1 s;
SNR¼3), the number of sign errors reduced to 12.473.3 (error
rate of 4.171.1%). Ultimately, when approaching ideal data
(TR¼0.1 s; SNR¼100), hardly any sign error was observed
(2.271.1, corresponding to an error rate of 0.770.4%). This sug-
gests that parameter estimates representing a non-trivial effect
size (i.e., the 95% Bayesian credible interval not containing zero)
correctly indicate the direction of influences, rendering rDCM a
meaningful tool for inferring effective connectivity patterns in
large (whole-brain) networks.

Computational burden
We evaluated the run-time of rDCM for the whole-brain DCM

for all possible combinations of SNR and TR. Again, the reported
values should be interpreted in a qualitative, not absolute, manner
as they depend on the specific hardware and software settings. We
found model inversion to be extremely efficient even for such a
large number of brain regions and free parameters. More specifi-
cally, estimation of the model using rDCM took on average 2–3 s
(Table 3), suggesting that our approach scales easily with the
number of brain regions (data points) and, thus, makes inference
on the effective connectivity in large (whole-brain) networks
computationally feasible.
Discussion

In this paper, we have introduced regression DCM (rDCM) for
functional magnetic resonance imaging (fMRI) data as a novel
variant of DCM that enables computationally highly efficient
analyses of effective connectivity in large-scale brain networks.
This development rests on reformulating a linear DCM in the time
domain as a special case of Bayesian linear regression (Bishop,
2006) in the frequency domain, together with a highly efficient VB
inference scheme. Using synthetic and empirical data, we first
demonstrated the face validity of rDCM for small six-region net-
works before providing a simulation-based proof-of-principle for
using rDCM to infer effective connectivity in a large network
consisting of 66 brain regions, with a realistic human structural
connectome and 300 free parameters to be estimated.

Our initial simulations using a six-region network (a typical
size of conventional DCMs) indicated that, as expected, the accu-
racy of rDCM – with regard to both parameter estimation and
model comparison – varies as a function of the signal-to-noise
ratio (SNR) and the repetition time (TR) of fMRI data. Overall, our
results demonstrated reasonable performance with regard to
parameter recovery and model selection accuracy but also high-
lighted the importance of sufficiently high SNR (3 or higher) and
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required for estimating the large (whole-brain) DCM consisting of 66 brain regions,
own for various combinations of the signal-to-noise ratio (SNR) and the repetition
given as the mean7standard deviation of the 20 simulations, as well as the range.

TR¼0.25 s TR¼0.1 s

Range Mean7std Range Mean7std Range

1.1–1.7 1.870.3 1.2–2.4 3.170.2 2.8–3.4
1.1–1.8 1.770.3 1.4–2.4 3.270.2 2.8–3.5
1.1–1.9 1.870.4 1.3–2.5 3.270.2 2.9–3.7
1.2–1.7 1.870.3 1.3–2.4 3.070.3 2.8–3.9
1.3–1.7 1.670.2 1.3–2.0 3.270.3 2.8–3.8

10.1016/j.neuroimage.2017.02.090i
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fast data acquisition (TRo2 s) for veridical inference. In situations
where these conditions are not met (e.g., for subcortical regions
with inherently low SNR), the current formulation of rDCM might
not give reliable results. Our simulations suggest that the early
version of rDCM reported in this paper is particularly promising
when exploiting sophisticated scanner hardware and/or acquisi-
tion sequences that boost SNR and reduce TR. Fortunately, the
development trends in fMRI move in the required direction. For
example, high-field MRI (7 T and beyond) allows for considerably
higher SNRs (Duyn, 2012; Redpath, 1998) and 7 T MR scanners are
now becoming widely available. Similarly, the application of ultra-
fast inverse imaging and multiband EPI techniques enable very
high sampling rates (with TRs far below one second) with whole-
brain coverage (Lin et al., 2012; Moeller et al., 2010; Xu et al.,
2013). Alternatively, even conventional data acquisition focused on
regions of interest and using only a few slices enables TRs with
only a few hundred milliseconds (for a previous DCM example, see
Kasess et al. (2008)). Taking advantage of such methodological
advancements may help to further exploit the full potential of
rDCM for inferring effective connectivity from fMRI data. However,
whether the benefits of short TRs for rDCM translate from simu-
lations to real world datasets needs to be examined by empirical
validation studies; for example, by testing whether the accuracy of
connectivity-based decoding of diagnostic status (cf. Brodersen
et al. (2011)) is improved by short TRs.

Having established the validity of rDCM for six-region net-
works, we then provided a proof-of-principle that rDCM is suitable
for inferring effective connectivity in a whole-brain network
comprising 66 nodes, with connectivity according to the human
structural connectome reported in Hagmann et al. (2008) and 300
free parameters to estimate. These analyses suggested that rDCM
can adequately recover connectivity parameters in large networks
whose size is an order of magnitude larger than currently estab-
lished DCM applications. Importantly, our run-time analyses sug-
gest, that the approach scales easily and can be applied to much
larger networks, provided that enough data are available. Specifi-
cally, run-time analyses did not indicate a significant increase in
computation time when increasing the number of data points.
Even for the shortest TR, corresponding to roughly 13,500 data
points (per brain region), run-time was still only on the order of 2–
3 s. The striking efficiency of rDCM rests on the fact that – due to
the algebraic form of the likelihood function in the frequency
domain – the computationally most expensive operation on each
iteration is essentially the inversion of an N�N covariance matrix
(whereas, in VBL, it is the computation of an N�N Hessian, in
addition to integrating the state equation).

These findings suggest that rDCM has promising potential for
the exploration of effective connectivity patterns in large (whole-
brain) networks. We presently see four main application domains.
First, given the computational efficiency of rDCM – which only
requires few seconds for the inversion of whole-brain DCMs in-
cluding an estimate of the negative free energy as an approx-
imation to the log model evidence – it may serve as a useful tool
for network discovery (Biswal et al., 2010; Friston et al., 2011).
Second, it may enable the application of graph theoretical ap-
proaches to effective connectivity patterns from large networks,
which have so far been restricted to structural and functional
connectivity (for a comprehensive review, see Bullmore and
Sporns (2009), Rubinov and Sporns (2010)). Extending graph
theory to effective connectivity estimates in networks of non-tri-
vial size opens up exciting new possibilities for studying the
functional integration of the human brain. Specifically, given the
inherently directed network of the human brain, graph-theoretical
measure such as small-worldness, node degree, path length, cen-
trality of nodes, or modularity will only provide an accurate view
on the network topology underlying brain dynamics when
Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
accommodating the directionality of edges. Third, regardless of
whether brain-wide effective connectivity estimates are used by
themselves or undergo further (e.g., graph-theoretical) processing,
rDCM may serve useful for computational phenotyping of patients
with diseases for which global dysconnectivity is suspected, such
as schizophrenia (Bullmore et al., 1997; Friston and Frith, 1995;
Pettersson-Yeo et al., 2011; Stephan et al., 2006). Finally, due to its
high computational efficiency, rDCM would be ideally suited for
initializing the starting values of the VBL algorithm for standard
DCM analyses of effective connectivity. This could be achieved by
running rDCM repeatedly from multiple starting points (either
defined as a grid in parameter space or randomly chosen) and
using the model with the highest evidence to provide a starting
point for subsequent VBL under conventional DCM. This might not
only considerably speed up model inversion under the current
DCM framework but potentially also prevent the algorithm from
getting stuck in local extrema, against which local optimization
schemes like VBL are vulnerable (Daunizeau et al., 2011a).

So far, there has only been one study that extended DCM for
fMRI to larger networks (Seghier and Friston, 2013). This approach
used functional connectivity measures to provide prior constraints
that bounded the effective number of free parameters by essen-
tially replacing the number of nodes with a (lower) number of
modes (the principal components of the functional connectivity
matrix). Seghier and Friston (2013) described their approach by an
application to a network consisting of 20 regions, and it remains to
be tested whether this approach also generalizes to a larger
number of network nodes as required for whole-brain con-
nectomics under commonly used parcellation schemes (e.g., Deco
et al., 2013b; Hagmann et al., 2008; Honey et al., 2009).

Investigating connectivity in large-scale networks by means of
mathematical models has been addressed from a different meth-
odological angle using biophysical network models (BNM; Deco
et al., 2013a, 2013b; Honey et al., 2007, 2009; Sanz-Leon et al.,
2015; Woolrich and Stephan, 2013). BNMs of fMRI data typically
consist of up to 103 network nodes, where each node is re-
presented by a neural mass or mean-field model of local neuronal
populations. Nodes are linked by long-range connections which
are typically based on anatomical knowledge from human diffu-
sion-weighted imaging data or from tract tracing studies in the
macaque monkey. The resulting network dynamics are then fed
into an observation model to predict fMRI data. The complexity of
BNMs, however, has so far prevented estimating the strengths of
individual connections. Existing applications have typically fo-
cused on simulations under fixed parameters (Deco et al., 2013a;
Honey et al., 2007) or used a simplified model allowing for the
estimation of a global scaling parameter (Deco et al., 2013b). Cri-
tically, such a single parameter has an indiscriminative effect on all
connections, which cannot capture the selective changes in sub-
sets of long-range connections evoked by cognitive processes. The
ability of rDCM to estimate the strengths of individual connections
in large-scale networks may represent a starting point for further
convergence between DCMs and BNMs, as has been predicted
repeatedly in the recent past (Deco and Kringelbach, 2014; Ste-
phan et al., 2015).

Notably, whole-brain connectivity analyses face a number of
potential pitfalls and challenges, regardless whether structural,
functional or effective connectivity measures are obtained (Fornito
et al., 2013; Kelly et al., 2012). Among others, this includes the
correct identification of nodes and edges, the highly complex and
dynamic structure of noise in fMRI, and the development of rig-
orous statistical frameworks for the analysis of whole-brain
graphs. For instance, macroscopic criteria for parcellating the brain
into functionally meaningful and biologically valid nodes are only
just emerging (Glasser et al., 2016). Valid node identification is
critical for accurate mapping of inter-regional connectivity (Smith
10.1016/j.neuroimage.2017.02.090i
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et al., 2011) and ill-defined nodes can have profound impact on the
inferred organization of the brain as, for instance, derived from
graph-theoretical measures (Fornito et al., 2010). Similarly, statis-
tical frameworks need to be refined to address key challenges in
the analysis of whole-brain connectomes – including the multiple
comparison problem, graph thresholding, and the interpretation of
topological measures (Fornito et al., 2013). A systematic and
thorough assessment of these issues will therefore be of major
importance for whole-brain connectivity analyses in the near
future.

We would like to emphasize that the current implementation
of rDCM only represents a starting point of development and is
subject to three major limitations when compared to the original
DCM framework. First, due to the replacement of the hemody-
namic forward model with a fixed hemodynamic response func-
tion, rDCM does not presently capture the variability in the BOLD
signal across brain regions and individuals (Aguirre et al., 1998;
Handwerker et al., 2004). Critically, accounting for the inter-re-
gional variability is crucial to avoid confounds when inferring ef-
fective connectivity from fMRI data (David et al., 2008; Valdes-
Sosa et al., 2011). In forthcoming work, we will improve rDCM by
replacing the fixed HRF with a basis set of hemodynamic response
functions (i.e., a canonical HRF, and its temporal and dispersion
derivatives; Friston et al., 1998), which can capture variations in
the latency and duration of hemodynamic responses. This basis set
is almost identical to the principal components of variation with
respect to the hemodynamic model used in DCM, conferring bio-
physical validity to the set (Friston et al., 2000). An alternative
approach to account for inter-regional variability in hemodynamic
responses would be to use a linearized version of the hemody-
namic model in DCM as described in previous work (Stephan et al.,
2007).

Second, in its current implementation, rDCM ignores possible
interdependencies between connections that affect different re-
gions. This is because we assumed the measurement noise to be an
independent random vector with noise precision τ and neglected
its dependency on the endogenous connectivity parameters. We
will improve this approximation by introducing appropriate cov-
ariance components (similar to standard approaches to non-
sphericity correction in conventional GLM analyses; Friston et al.,
2002) and augment our inference scheme to estimate these ad-
ditional hyperparameters.

Third, rDCM is restricted to linear models (i.e., DCMs that in-
clude an A and C matrix) and thus cannot account for modulatory
influences by experimental manipulations (B matrix). A bilinear
extension to the rDCM approach is challenging in that the bilinear
term of the neuronal state equation in the time domain induces a
convolution of the experimental input and the noise term in the
frequency domain. This leads to a non-trivial structure of the error
covariance matrix. Addressing these three major limitations in
forthcoming extensions will further improve the utility of rDCM
for inferring effective connectivity among neuronal populations
from fMRI data.

Apart from addressing the limitations mentioned above, there
are two further important extensions that we will present in
forthcoming work. First, while the present model is designed to
work with experimentally controlled perturbations (the driving
inputs in rDCM) and hence task-related fMRI, it is possible to ex-
tend the model to describe the “resting state”, i.e., unconstrained
cognition in the absence of external pertubations. A second im-
portant advance concerns the introduction of sparsity constraints
to our approach (see Lomakina (2016)). This sparse rDCM (srDCM;
Frässle et al., in preparation) is of likely importance for the analysis
of large-scale networks – both because a complete description of
larger networks complicates interpretability, but also because the
available measurements may not offer sufficient information (i.e.,
Please cite this article as: Frässle, S., et al., (2017), http://dx.doi.org/
number of data points per parameter) to allow for precise esti-
mation of all connectivity parameters. The formulation of rDCM as
a linear regression problem makes this extension of rDCM
straightforward, as we can exploit well-established methods for
sparse linear regression and feature selection such as LASSO
(Tibshirani, 1996), elastic net regularization (Zou and Hastie,
2005), or Spike-and-Slab priors for Bayesian linear regression
(Hernandez-Lobato et al., 2013). The ensuing automatic pruning of
connections could be further informed by including information
about the strength or likelihood of anatomical connections (cf.
anatomically informed priors in DCM; Stephan et al., 2009b).
These methods all implement some form of sparsity hyperpriors
on the parameters; either implicitly or explicitly. An alternative to
these bespoke models of sparsity would be to use Bayesian model
reduction (Friston et al., 2016) where parameters are removed
(and thus connectivity graphs are reduced) using an efficient
scoring of models. In our context, this may represent an efficient
alternative way to introduce sparsity – based upon the posterior
densities furnished by rDCM. In summary, augmenting the current
rDCM approach with the ability to impose sparsity constraints
may result in a powerful tool for automatic “pruning” of whole-
brain graphs to the most essential connections.

Finally, we would like to emphasize that the analysis of effec-
tive connectivity in whole-brain networks will not only prove
valuable for studying the neural basis of cognitive processes in the
healthy human brain, but may also contribute to a deeper under-
standing of pathophysiology of psychiatric and neurological dis-
orders. A translational neuromodeling approach to neuroimaging
data has potential for establishing novel diagnostic and predictive
tools, enabling the emergence of Computational Psychiatry and
Computational Neurology (Deco and Kringelbach, 2014; Friston
et al., 2014a, 2014b; Huys et al., 2011; Maia and Frank, 2011;
Montague et al., 2012; Stephan and Mathys, 2014; Stephan et al.,
2015). Here, one important goal concerns the stratification of pa-
tients from heterogeneous spectrum diseases into mechanistically
more well-defined subgroups that have predictive validity for in-
dividual treatment responses. Despite some encouraging first
successes of insights into heterogeneous spectrum diseases based
on connectivity inferred from fMRI data (e.g., Anticevic et al., 2015;
Brodersen et al., 2014; Dima et al., 2009; Yang et al., 2014), con-
siderable challenges remain that have so far prevented the suc-
cessful transition to clinical applications (Stephan et al., 2015). The
computational approach introduced in this paper may serve useful
in this regard since rDCM represents a step towards a practical and
computationally extremely efficient approach to obtaining direc-
ted estimates of individual connections in networks of non-trivial
size, rendering computational phenotyping of whole-brain dy-
namics a feasible endeavour.
Software note

A MATLAB implementation of the rDCM approach introduced
in this paper will be made available as open source code in a future
release of the TAPAS Toolbox (www.translationalneuromodeling.
org/software).
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.neuroimage.2017.
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