
1

Interactions between synaptic homeostatic mechanisms: an attempt to reconcile BCM

theory, synaptic scaling, and changing excitation/inhibition balance

Tara Keck1, Mark Hübener2 and Tobias Bonhoeffer2

1. Department of Neuroscience, Physiology and Pharmacology, University College

London, 21 University Street, London, WC1E 6DE, UK

2. Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried,

Germany

Abstract:

Homeostatic plasticity is proposed to be mediated by synaptic changes, such as

synaptic scaling and shifts in the excitation/inhibition balance. These mechanisms are

thought to be separate from the Bienenstock, Cooper, Munro (BCM) learning rule, where

the threshold for the induction of long-term potentiation and long-term depression slides

in response to changes in activity levels. Yet, both sets of mechanisms produce a

homeostatic response of a relative increase (or decrease) in strength of excitatory synapses

in response to overall activity-level changes. Here we review recent studies, with a focus on

in vivo experiments, to re-examine the overlap and differences between these two

mechanisms and we suggest how they may interact to facilitate firing-rate homeostasis,

while maintaining functional properties of neurons.

Neuronal firing rate homeostasis is essential for proper circuit function. Numerous

theoretical models predict that without it, activity levels in the brain would rapidly become

extreme, thereby limiting coding and information storage capacity, and potentially resulting

in pathological states (1–5). Many synaptic homeostatic mechanisms that could maintain

appropriate firing rates have been theoretically proposed, and several of them have been

experimentally observed. These include synaptic scaling (6–10), changes in the ratio between

synaptic excitation and inhibition (11–17), and a sliding threshold model for the induction of

long-term potentiation (LTP) and long-term depression (LTD) (18–23). In addition, non-

synaptic homeostatic mechanisms, such as changes in neuronal excitability, either through

changes to ion-channel composition (15), or by movement of the axon initial segment (24,25)
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have been proposed to alter neuronal firing rates, thereby helping to maintain proper activity

levels.

The best-studied homeostatic mechanism is synaptic scaling, where in response to a

prolonged increase or decrease in neuronal activity, the weights of all synapses on a cell are

thought to scale down or up multiplicatively (8), thus homeostatically adjusting overall

synaptic drive and activity levels (Figure 1A). The multiplicative nature of scaling maintains

the relative weights of the synapses and thus the information stored in those weights (7). The

balance between excitation and inhibition (E/I balance) on a given neuron can also shift

accordingly when activity levels increase or decrease for an extended period. This shift can

occur through adjusting the number of synapses of each type (12,14,16,26), the relative

strength of those synapses (11,13–15)(Figure 1B), or the firing rate of the inhibitory neurons

themselves (11,27).

Alternatively, altered activity levels might not directly change overall synaptic weights,

but rather modify the synapses’ capacity to undergo plasticity in the future. The idea for such

a sliding threshold for Hebbian plasticity mechanisms, such as LTP and LTD, was originally

proposed in the Bienenstock, Cooper and Munro (BCM) learning rule (28), where decreases

in activity were postulated to result in a reduced threshold for the induction of LTP, effectively

promoting the strengthening of synapses and making LTD less likely. Conversely, increases in

activity were proposed to shift the threshold in the opposite direction to favor LTD. Thus,

activity levels would never reach extremes, as synaptic weights would consistently be

adjusted to prevent such a scenario, as has been tested experimentally (Figure 1C) (20,21).

The role of the sliding threshold model in firing rate homeostasis has often been

examined separately from synaptic scaling and shifts in E/I balance, and the sliding threshold

model and synaptic scaling have long been considered to be mechanistically distinct. This is

at least partly due to different experimental approaches at the respective times of discovery.

Specifically, the spatial scale and precision of the effects are thought to differ, as synaptic

scaling observed in reduced preparations seems to occur at all or most synapses (7), while

LTP and LTD (in the sliding threshold model) are by and large synapse-specific (22). However,

results from more recent experimental approaches suggest that there may be more

similarities than differences between these two concepts. Here we discuss the potential areas

in which these mechanisms may interact or overlap, particularly in in vivo preparations, and
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revisit whether the sliding threshold model is necessarily distinct from synaptic scaling and

shifts in E/I balance.

How might synaptic scaling and BCM theory overlap?

To date, synaptic scaling and the BCM theory of a sliding threshold have largely been

considered separate entities. One potential confound when considering these two

mechanisms is the nature of the experiments that have been used to investigate each

phenomenon. Many of the experiments examining the sliding threshold model have been

done in vivo or in acute slice preparations from mice that have previously undergone in vivo

manipulations of activity levels, for example, by depriving one eye from vision (20,21,29).

Until recently, experiments investigating synaptic scaling have mostly been carried out in in

vitro reduced preparations, where activity can be completely abolished (6–8), or following

sensory deprivation in vivo (9–11,13,15,30,31), where the exact nature of the changes in

activity levels and patterns (15) strongly influences the resulting characteristics of synaptic

scaling. Thus, many perceived differences between these models may emerge from

differences in activity following deprivation in their respective experiments. Here, we will

largely focus on these synaptic scaling experiments following in vivo deprivation so as to have

the best comparison to experiments investigating the sliding threshold model. Additionally,

we will focus on mouse visual cortex, where there have been sufficient experiments

addressing both synaptic scaling and sliding threshold plasticity, although many of the

properties observed in visual cortex have been found in other cortical areas too (for a review

see (32).

There are some compelling reasons for distinguishing between synaptic scaling and

the sliding threshold model for Hebbian plasticity. These include the multiplicative nature of

the change, which is key to the concept of synaptic scaling (8), but not to the sliding threshold

model, where despite the threshold change occurring cell-wide, individual synaptic weights

are altered according to the rules of LTP and LTD (22). There are also differences in the

molecular mechanisms involved in these two phenomena (18,22). We will discuss each of

these distinctions in turn, examining the experimental results and looking for common ground

between the two theories.

The first property that may distinguish synaptic scaling from the sliding threshold for

Hebbian plasticity is the fact that scaling is multiplicative. This property of synaptic scaling
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was originally observed in electrophysiological measurements of synaptic current amplitudes

compared across a population of cells at a single time point, where the pooled synaptic

responses increase (or decrease) multiplicatively by a given factor. While multiplicative

scaling has been shown to occur in both reduced preparations (7,8) and following in vivo

deprivation (9,10,13,30,31), this result does not necessarily mean that all synapses are

changed by the same factor, as is often implicitly assumed. Especially in in vivo preparations,

where activity is reduced, but not eliminated during sensory deprivation (11,13,30,33),

ongoing LTP and LTD will occur at individual synapses as a result of external stimuli, as well as

internally generated neuronal activity. These ongoing fluctuations in synapse strength will

ride on top of any synaptic scaling that occurs in response to decreased activity levels. Our

own work (13), where we chronically measured synaptic strength using spine size as an in vivo

proxy (34–39) under conditions of lowered activity levels, shows overall multiplicative scaling

both of spine size and mEPSC amplitude (measured with single time point electrophysiology).

Yet, not all spines get larger following deprivation, and some spines even decrease in size (13).

The overall multiplicative nature of scaling observed in these experiments is due to the fact

that even more spines get smaller under control conditions, so when changes are measured

across the population and compared between groups, the population as a whole shifts

multiplicatively. Thus, multiplicative scaling occurs on the cellular level, but the relative

weights of single synapses may change individually. These results are consistent with both,

multiplicative scaling of synapse strength, and a shift in the sliding threshold to favor LTP over

LTD after deprivation, since fewer individual synapses exhibit a decrease in size typically

associated with LTD (40).

The second perceived difference between synaptic scaling and the sliding threshold

for LTP/LTD induction rests in the underlying molecular mechanisms. One case in point is the

role of tumor necrosis factor (TNF)-α. It has been identified as a key mediator for synaptic 

scaling, but it does not seem to play a role for the induction of Hebbian mechanisms such as

LTP (41–43). However, while it is clear that TNF-α does not affect LTP directly, it remains 

unexplored, whether it affects the LTP/LTD threshold. Another example is the observation

that synaptic upscaling involves the insertion of the GluR2 subunit, while LTP is mediated by

GluR1 insertion (44). Similarly, synaptic downscaling can occur via changing the α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) unbinding rate from the

synaptic scaffold, which has not been implicated in LTD (45). Furthermore, also for LTP and
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LTD it is true that several mechanistically distinct forms have been described (46), reflecting

different pathways of the same phenomenon. Examples include metabotropic glutamate

receptor (mGluR) dependent LTP (47) or N-Methyl-D-aspartate receptor (NMDAR) dependent

LTP (48). Therefore, mechanisms associated with synaptic scaling could well represent an

additional molecular pathway of homosynaptic plasticity (i.e. LTP and LTD), or a completely

distinct form of plasticity.

Importantly, a majority of experimental work directly compares the mechanisms of

synaptic scaling with those underlying the induction of LTP or LTD, but not the those

associated with the sliding LTP/LTD threshold. Therefore, an additional important, yet

unanswered, question is whether synaptic scaling and the sliding BCM model share common

mechanisms. In theory, such mechanisms need not interfere with LTP or LTD directly, so they

could be distinct, but they would instead affect the overall likelihood of LTP or LTD induction.

Current knowledge of the molecular mechanisms for the sliding BCM model is limited.

Numerous studies have suggested that it is caused by a shift in the ratio of synaptic NR2A to

NR2B (49–54), which changes the resulting probability of LTP or LTD induction, but additional

mechanisms that specifically underlie the sliding threshold in the BCM model remain

unexplored. Further experiments that directly compare the molecular mechanisms of

synaptic scaling and the LTP/LTD sliding threshold are necessary to determine if they are

distinct.

In terms of their common characteristics, as discussed previously (22), both the sliding

threshold and synaptic scaling can create conditions that would promote firing rate

homeostasis. And despite changes occurring at individual synapses, the spatial scale of the

implementation of both synaptic scaling (55) and the sliding threshold model (22) is believed

to be cell-wide, but not necessarily evenly across all synapses. Theoretically, synaptic scaling

in vitro could be an extreme example, where after the complete removal of activity (as is done

in reduced preparations) the sliding threshold shifts to promote LTP in most synapses,

assuming that LTP can occur in the absence of action potentials.

Separating the two mechanisms is hampered by the fact that they are often observed

on similar time scales. Synaptic scaling is generally observed over a period of 24-48 hours

(7,13,30), but it can also occur over faster time courses of a few hours (56). For the sliding

threshold model, the majority of experimental evidence has been obtained using the

paradigm of monocular deprivation (18,20–23). Lid suture causes a decorrelation of activity
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and thereby LTD in deprived eye inputs, followed after 24 hours or more by a shift of the

sliding threshold that promotes LTP in active, spared eye synapses (18). Whether changes to

the sliding threshold model can occur more rapidly, as has been observed for synaptic scaling

(56), has yet to be investigated, and the relevant time course for detection of activity changes

triggering either synaptic scaling or shifts in the sliding threshold remains experimentally

unresolved. Theoretical work has examined the time scales for both the detection of activity

changes and the implementation of compensatory mechanisms. It was found that multiple

time scales appear to be relevant for both synaptic scaling and the BCM sliding threshold (4,5)

to maintain firing rate homeostasis. These results raise a number of questions regarding

plasticity time scales that will need to be addressed experimentally, but they confirm that

time courses for synaptic scaling and Hebbian mechanisms may prove to be more similar than

previously thought. So while synaptic scaling and the BCM theory of a sliding threshold for

Hebbian plasticity may have some mechanistic differences, many of their properties are

overlapping and as more directly comparable experimental data emerge, particularly in vivo,

it appears that the two concepts are not necessarily as mutually exclusive as once believed.

Interactions between BCM sliding threshold and E/I balance

The second synaptic homeostatic mechanism that is thought to maintain firing rate

homeostasis is a shift in the balance between synaptic excitation and inhibition on a given

cell. Whether and how the sliding threshold model for LTP and LTD induction acts on

inhibitory synapses onto excitatory neurons is a key determinant of how E/I balance would

change (57) and, to date, remains largely unexplored. Following a decrease in activity, the

LTP/LTD threshold could shift to promote LTP, as is the case in excitatory synapses.

Alternatively, to maintain firing rate homeostasis after deprivation, inhibitory synapses may

be more likely to undergo depression. If we consider the experimental data, mainly from

mouse visual cortex, a reasonably clear picture emerges. Under normal conditions, levels of

synaptic inhibition are balanced with excitatory synaptic drive (58) while ongoing inhibitory

plasticity facilitates the maintenance of the E/I balance (59,60). Following deprivation,

however, this balance shifts. Electrophysiological studies show that a drop in synaptic

inhibitory drive onto excitatory cells occurs within hours to days after deprivation (11–16,61).

In line with these results, experiments using chronic imaging to measure synaptic structures

also show that both pre- (14,26) and postsynaptic (12,16) components of inhibitory synapses
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are decreased in number and size after sensory deprivation. This observation is true for

excitatory cells in cortical layer 5 (13,14) and layer 2/3 (11,12,16) and it holds for a number of

deprivation paradigms including monocular eyelid suture (12,16,26), binocular retinal lesions

(13,14) and monocular enucleation (11). Reduced activity in the presynaptic inhibitory

neurons (11,27) is also likely to contribute to a reduction of overall inhibitory drive onto

excitatory neurons. Similar decreases in inhibitory synapse number and strength have

additionally been observed in somatosensory cortex (for a review, see (32).

A decrease in the strength and number of inhibitory synapses is reminiscent of LTD in

excitatory synapses (40), where a loss of synaptic structures occurs after the induction of

synaptic depression. Thus, one possible scenario is that following decreases in activity, the

sliding threshold is shifted to favor LTD in inhibitory synapses, consistent with the loss and

weakening of inhibitory synapses on excitatory cells. This prediction would suggest a model

in which observed shifts in the E/I balance in response to changing activity levels could be

achieved through sliding thresholds for LTP and LTD shifting in opposite directions for

excitatory and inhibitory synapses on the same excitatory cell (Figure 2). Experimentally,

there is evidence for such a relationship. Both endocannabinoids (62,63) and GABAB-Gi/o

protein signaling (60) have been shown to promote LTD at inhibitory synapses when

excitatory synapses on the same cell are undergoing LTP. Cannabinoid receptor blockade has

also been shown to prevent ocular dominance plasticity in layer 2/3 (64). The confirmation of

and exact details of the implementation of these opposite direction sliding thresholds do

however require further experimental investigation.

Computationally, opposite direction sliding thresholds for excitatory and inhibitory

synapses could be useful for the emergence and maintenance of stimulus selectivity in

excitatory cells. Recent evidence shows that neurons maintain their visual response

properties, specifically orientation preference and selectivity, following deprivation and

recovery during ocular dominance plasticity (65), and inhibition is known to play a key role in

shaping these receptive field properties (66–68). One possibility is that the specific subset of

inhibitory synapses involved in tuning are maintained throughout deprivation, which may

reflect a given subtype of presynaptic inhibitory neurons. Shifting the threshold to promote

LTD in individual inhibitory synapses, rather than universally decreasing all inhibitory synapses

via a synaptic scaling-like mechanism, would in theory allow for a subset of active inhibitory

synapses to be maintained at their pre-deprivation levels. Thus, the specific inhibitory
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synapses that play a role in shaping orientation and direction selectivity of the excitatory

neurons could be maintained (1,66,68), whereas other inhibitory synapses that are

responsible for maintaining the overall inhibitory tone (68), could be depressed to facilitate

the shift in E/I balance, in turn helping to homeostatically restore firing rates.

Conclusions

Here we have outlined some commonalities between the BCM sliding threshold model and

the synaptic homeostatic mechanisms of synaptic scaling and changing E/I balance and have

discussed how they could actually work together. Recent experimental evidence suggests that

the often separately considered mechanisms for maintaining firing rate homeostasis may

share some properties. Further experiments will be necessary to determine the overlap and

interaction between synaptic scaling and BCM sliding threshold for Hebbian plasticity

induction, as well as the potential role for BCM theory in changing inhibitory synapses. Finally,

in one example we have discussed how the overlapping nature of these concepts may even

help explaining how the brain achieves plasticity without losing essential functional

properties of neurons.

Figure legends

Figure 1: Different mechanisms of firing rate homeostasis. A) Synaptic scaling. Morphological

representation of synapse size before and after activity changes. Increases in activity causes

synapses to decrease in size; decreases in activity, cause synapses to increase in size. B)

Morphological representation of changes to the E/I balance. Increases in activity cause

inhibitory synapses (red) to increase; decreases in activity cause inhibitory synapses (red) to

decrease. C) Sliding threshold for LTP and LTD induction. Increases in activity cause the

threshold (dashed line) to shift such as to promote LTD induction. Decreases in activity cause

the threshold to shift such as to make LTP more easily inducible.

Figure 2: Possible interactions between the sliding threshold model and the shifting E/I

balance. A) An increase in activity causes the threshold for excitatory synapses (black dashed

line) to shift such that LTD is favored, while the threshold for inhibitory synapses (red dashed
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line) shifts to favor LTP. For a decrease in activity the inverse holds true. B) The resulting E/I

balance from such sliding threshold shifts.

Acknowledgements: We thank Frank Sengpiel for comments on the manuscript. This work

was supported by the European Research Council (T.K.) and the Max Planck Society (M.H.,

T.B.).

References

1. Litwin-Kumar A, Doiron B. Formation and maintenance of neuronal assemblies through
synaptic plasticity. Nat Commun. 2014;5:5319.

2. Marder E, Prinz AA. Modeling stability in neuron and network function: the role of
activity in homeostasis. BioEssays News Rev Mol Cell Dev Biol. 2002 Dec;24(12):1145–
54.

3. Tetzlaff C, Kolodziejski C, Timme M, Wörgötter F. Synaptic scaling in combination with
many generic plasticity mechanisms stabilizes circuit connectivity. Front Comput
Neurosci. 2011;5:47.

4. Zenke F, Agnes EJ, Gerstner W. Diverse synaptic plasticity mechanisms orchestrated to
form and retrieve memories in spiking neural networks. Nat Commun. 2015 Apr
21;6:6922.

5. Zenke F, Hennequin G, Gerstner W. Synaptic plasticity in neural networks needs
homeostasis with a fast rate detector. PLoS Comput Biol. 2013;9(11):e1003330.

6. Burrone J, O’Byrne M, Murthy VN. Multiple forms of synaptic plasticity triggered by
selective suppression of activity in individual neurons. Nature. 2002 Nov
28;420(6914):414–8.

7. Turrigiano GG. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell. 2008
Oct 31;135(3):422–35.

8. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling
of quantal amplitude in neocortical neurons. Nature. 1998;391(6670):892–6.

9. Goel A, Lee HK. Persistence of experience-induced homeostatic synaptic plasticity
through adulthood in superficial layers of mouse visual cortex. J Neurosci.
2007;27(25):6692–700.



10

10. Desai NS, Cudmore RH, Nelson SB, Turrigiano GG. Critical periods for experience-
dependent synaptic scaling in visual cortex. Nat Neurosci. 2002;5(8):783–9.

11. Barnes SJ, Sammons RP, Jacobsen RI, Mackie J, Keller GB, Keck T. Subnetwork-Specific
Homeostatic Plasticity in Mouse Visual Cortex In Vivo. Neuron. 2015 Jun 3;86(5):1290–
303.

*This study demonstrates that the homeostatic recovery of activity following sensory
deprivation occurs in a subnetwork specific manner, such that groups of excitatory and
inhibitory cells that are co-active prior to deprivation either undergo recovery of activity or
become inactive as a group.

12. Chen JL, Villa KL, Cha JW, So PTC, Kubota Y, Nedivi E. Clustered dynamics of inhibitory
synapses and dendritic spines in the adult neocortex. Neuron. 2012 Apr 26;74(2):361–
73.

**Using repeated in vivo imaging, this study shows that changes of inhibitory synapses occur
in close proximity to changes in excitatory synapses following sensory deprivation. These
results suggest there may be local coordinated synaptic changes that alter E/I balance.

13. Keck T, Keller GB, Jacobsen RI, Eysel UT, Bonhoeffer T, Hübener M. Synaptic scaling and
homeostatic plasticity in the mouse visual cortex in vivo. Neuron. 2013 Oct
16;80(2):327–34.

*Using a combination of structural and functional in vivo imaging, this study demonstrates an
in vivo structural correlate of synaptic scaling. The authors show that the observed
homeostatic mechanisms are associated with a recovery of activity levels in vivo following
sensory deprivation.

14. Keck T, Scheuss V, Jacobsen RI, Wierenga CJ, Eysel UT, Bonhoeffer T, et al. Loss of sensory
input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex.
Neuron. 2011 Sep 8;71(5):869–82.

15. Maffei A, Turrigiano GG. Multiple modes of network homeostasis in visual cortical layer
2/3. J Neurosci. 2008;28(17):4377–84.

16. van Versendaal D, Rajendran R, Saiepour MH, Klooster J, Smit-Rigter L, Sommeijer J-P, et
al. Elimination of inhibitory synapses is a major component of adult ocular dominance
plasticity. Neuron. 2012 Apr 26;74(2):374–83.

**This study uses chronic two-photon imaging to follow structural correlates of inhibitory
synapses on excitatory cells in mouse visual cortex. The authors show that sensory
deprivation causes a rapid decrease in inhibition, specifically on dendritic spines that harbor
excitatory synapses.

17. van Versendaal D, Levelt CN. Inhibitory interneurons in visual cortical plasticity. Cell Mol
Life Sci CMLS. 2016 May 18;



11

18. Cooper LN, Bear MF. The BCM theory of synapse modification at 30: interaction of
theory with experiment. Nat Rev Neurosci. 2012 Nov;13(11):798–810.

19. Dudek SM, Bear MF. Homosynaptic long-term depression in area CA1 of hippocampus
and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U A.
1992;89(10):4363–7.

20. Kirkwood A, Rioult MC, Bear MF. Experience-dependent modification of synaptic
plasticity in visual cortex. Nature. 1996 Jun 6;381(6582):526–8.

21. Rittenhouse CD, Shouval HZ, Paradiso MA, Bear MF. Monocular deprivation induces
homosynaptic long-term depression in visual cortex. Nature. 1999 Jan
28;397(6717):347–50.

22. Smith GB, Heynen AJ, Bear MF. Bidirectional synaptic mechanisms of ocular dominance
plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci. 2009 Feb 12;364(1515):357–
67.

23. Smith GB, Bear MF. Bidirectional ocular dominance plasticity of inhibitory networks:
recent advances and unresolved questions. Front Cell Neurosci. 2010;4:21.

24. Grubb MS, Burrone J. Activity-dependent relocation of the axon initial segment fine-
tunes neuronal excitability. Nature. 2010 Jun 24;465(7301):1070–4.

**The authors have detected a novel mechanism for the control of neuronal excitability:
chronic activation of cultured hippocampal neurons causes the axon initial segment to move
distally, thereby lowering neurons’ excitability. Cessation of chronic activation reverts the
process.

25. Kuba H, Oichi Y, Ohmori H. Presynaptic activity regulates Na(+) channel distribution at
the axon initial segment. Nature. 2010 Jun 24;465(7301):1075–8.

26. Chen JL, Lin WC, Cha JW, So PT, Kubota Y, Nedivi E. Structural basis for the role of
inhibition in facilitating adult brain plasticity. Nat Neurosci. 2011 May;14(5):587–94.

27. Kuhlman SJ, Olivas ND, Tring E, Ikrar T, Xu X, Trachtenberg JT. A disinhibitory microcircuit
initiates critical-period plasticity in the visual cortex. Nature. 2013 Sep
26;501(7468):543–6.

**The authors use in vivo electrophysiology to demonstrate that following sensory
deprivation in visual cortex, reduction in the firing rates of parvalbumin positive inhibitory
neurons are essential for ocular dominance plasticity in excitatory neurons during the critical
period.

28. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron
selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci
Off J Soc Neurosci. 1982 Jan;2(1):32–48.



12

29. Kind PC, Mitchell DE, Ahmed B, Blakemore C, Bonhoeffer T, Sengpiel F. Correlated
binocular activity guides recovery from monocular deprivation. Nature. 2002 Mar
28;416(6879):430–3.

30. Hengen KB, Lambo ME, Van Hooser SD, Katz DB, Turrigiano GG. Firing rate homeostasis
in visual cortex of freely behaving rodents. Neuron. 2013 Oct 16;80(2):335–42.

*This is the first study to directly demonstrate firing rate homeostasis in vivo. Chronic
recordings from freely behaving rats show that visual deprivation causes a drop in firing rate,
which completely recovers within 2-3 days, despite ongoing deprivation.

31. Ranson A, Cheetham CEJ, Fox K, Sengpiel F. Homeostatic plasticity mechanisms are
required for juvenile, but not adult, ocular dominance plasticity. Proc Natl Acad Sci U S
A. 2012 Jan 24;109(4):1311–6.

32. Gainey MA, Feldman DE. Multiple shared mechanisms for homeostatic plasticity in
rodent somatosensory and visual cortex. Philos Trans R Soc Lond B Biol Sci. 2017; In
press.

33. Hengen KB, Torrado Pacheco A, McGregor JN, Van Hooser SD, Turrigiano GG. Neuronal
Firing Rate Homeostasis Is Inhibited by Sleep and Promoted by Wake. Cell. 2016 Mar
24;165(1):180–91.

**The authors record chronically from neurons in rat visual cortex to study firing rate
homeostasis in vivo. Following visual deprivation, firing rate gradually returns to a cell specific
set point. Surprisingly, they find that homeostatic rebound is limited to wake periods, but
halted during sleep.

34. Asrican B, Lisman J, Otmakhov N. Synaptic strength of individual spines correlates with
bound Ca2+-calmodulin-dependent kinase II. J Neurosci. 2007;27(51):14007–11.

35. Beique JC, Lin DT, Kang MG, Aizawa H, Takamiya K, Huganir RL. Synapse-specific
regulation of AMPA receptor function by PSD-95. Proc Natl Acad Sci U A.
2006;103(51):19535–40.

36. Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H. Dendritic spine
geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal
neurons. Nat Neurosci. 2001;4(11):1086–92.

37. Noguchi J, Nagaoka A, Watanabe S, Ellis-Davies GC, Kitamura K, Kano M, et al. In vivo
two-photon uncaging of glutamate revealing the structure-function relationships of
dendritic spines in the neocortex of adult mice. J Physiol [Internet]. 2011

38. Noguchi J, Matsuzaki M, Ellis-Davies GC, Kasai H. Spine-neck geometry determines
NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron. 2005;46(4):609–22.

39. Zito K, Scheuss V, Knott G, Hill T, Svoboda K. Rapid functional maturation of nascent
dendritic spines. Neuron. 2009;61(2):247–58.



13

40. Nagerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T. Bidirectional activity-dependent
morphological plasticity in hippocampal neurons. Neuron. 2004;44(5):759–67.

41. Greenhill SD, Ranson A, Fox K. Hebbian and Homeostatic Plasticity Mechanisms in
Regular Spiking and Intrinsic Bursting Cells of Cortical Layer 5. Neuron. 2015 Nov
4;88(3):539–52.

**This study uses in vivo electrophysiology to demonstrate layer 5 cell subtype- specific
responses to sensory deprivation in barrel cortex. These results suggest that homeostatic
mechanisms are implemented in a subcircuit specific manner in vivo.

42. Kaneko M, Stellwagen D, Malenka RC, Stryker MP. Tumor necrosis factor-alpha mediates
one component of competitive, experience-dependent plasticity in developing visual
cortex. Neuron. 2008 Jun 12;58(5):673–80.

*Monocular deprivation reduces closed eye responsiveness in the visual cortex, while open
eye inputs are strengthened. The authors show that the latter component is lost in mice

deficient for tumor necrosis factor- (TNF). Likewise, lack of TNF- also causes a loss of
homeostatic synaptic scaling in the visual cortex in vitro. The authors conclude that open eye
strengthening after monocular deprivation is not mediated by competition, but rather is a
homeostatic process.

43. Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature. 2006
Apr 20;440(7087):1054–9.

44. Gainey MA, Hurvitz-Wolff JR, Lambo ME, Turrigiano GG. Synaptic scaling requires the
GluR2 subunit of the AMPA receptor. J Neurosci Off J Soc Neurosci. 2009 May
20;29(20):6479–89.

45. Tatavarty V, Sun Q, Turrigiano GG. How to scale down postsynaptic strength. J Neurosci
Off J Soc Neurosci. 2013 Aug 7;33(32):13179–89.

46. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004 Sep
30;44(1):5–21.

47. Anwyl R. Metabotropic glutamate receptor-dependent long-term potentiation.
Neuropharmacology. 2009 Mar;56(4):735–40.

48. Volianskis A, France G, Jensen MS, Bortolotto ZA, Jane DE, Collingridge GL. Long-term
potentiation and the role of N-methyl-D-aspartate receptors. Brain Res. 2015 Sep
24;1621:5–16.

49. Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends
Neurosci. 1996 Apr;19(4):126–30.

50. Bear MF. Bidirectional synaptic plasticity: from theory to reality. Philos Trans R Soc Lond
B Biol Sci. 2003 Apr 29;358(1432):649–55.



14

51. Bear MF, Cooper LN, Ebner FF. A physiological basis for a theory of synapse modification.
Science. 1987 Jul 3;237(4810):42–8.

52. Philpot BD, Espinosa JS, Bear MF. Evidence for altered NMDA receptor function as a basis
for metaplasticity in visual cortex. J Neurosci Off J Soc Neurosci. 2003 Jul 2;23(13):5583–
8.

53. Philpot BD, Sekhar AK, Shouval HZ, Bear MF. Visual experience and deprivation
bidirectionally modify the composition and function of NMDA receptors in visual cortex.
Neuron. 2001 Jan;29(1):157–69.

54. Quinlan EM, Philpot BD, Huganir RL, Bear MF. Rapid, experience-dependent expression
of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci. 1999 Apr;2(4):352–7.

55. Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing
neuronal function. Cold Spring Harb Perspect Biol. 2012 Jan;4(1):a005736.

56. Ibata K, Sun Q, Turrigiano GG. Rapid synaptic scaling induced by changes in postsynaptic
firing. Neuron. 2008 Mar 27;57(6):819–26.

57. Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. Inhibitory plasticity balances
excitation and inhibition in sensory pathways and memory networks. Science. 2011 Dec
16;334(6062):1569–73.

58. Xue M, Atallah BV, Scanziani M. Equalizing excitation-inhibition ratios across visual
cortical neurons. Nature. 2014 Jul 31;511(7511):596–600.

59. D’amour JA, Froemke RC. Inhibitory and excitatory spike-timing-dependent plasticity in
the auditory cortex. Neuron. 2015 Apr 22;86(2):514–28.

60. Wang L, Maffei A. Inhibitory plasticity dictates the sign of plasticity at excitatory
synapses. J Neurosci Off J Soc Neurosci. 2014 Jan 22;34(4):1083–93.

61. House DRC, Elstrott J, Koh E, Chung J, Feldman DE. Parallel regulation of feedforward
inhibition and excitation during whisker map plasticity. Neuron. 2011 Dec 8;72(5):819–
31.

62. Chevaleyre V, Takahashi KA, Castillo PE. Endocannabinoid-mediated synaptic plasticity
in the CNS. Annu Rev Neurosci. 2006;29:37–76.

63. Chevaleyre V, Castillo PE. Endocannabinoid-mediated metaplasticity in the
hippocampus. Neuron. 2004 Sep 16;43(6):871–81.

64. Liu C-H, Heynen AJ, Shuler MGH, Bear MF. Cannabinoid receptor blockade reveals
parallel plasticity mechanisms in different layers of mouse visual cortex. Neuron. 2008
May 8;58(3):340–5.

65. Rose T, Jaepel J, Hübener M, Bonhoeffer T. Cell-specific restoration of stimulus
preference after monocular deprivation in the visual cortex. Science. 2016 Jun
10;352(6291):1319–22.



15

**Using repeated functional imaging, this study shows that following monocular deprivation,
cells in visual cortex recover to have the same properties as prior to deprivation, including
their ocular dominance index and their orientation preference.

66. Lee S-H, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, Masmanidis SC, et al.
Activation of specific interneurons improves V1 feature selectivity and visual perception.
Nature. 2012 Aug 16;488(7411):379–83.

67. Mao R, Schummers J, Knoblich U, Lacey CJ, Van Wart A, Cobos I, et al. Influence of a
subtype of inhibitory interneuron on stimulus-specific responses in visual cortex. Cereb
Cortex N Y N 1991. 2012 Mar;22(3):493–508.

68. Tremblay R, Lee S, Rudy B. GABAergic Interneurons in the Neocortex: From Cellular
Properties to Circuits. Neuron. 2016 Jul 20;91(2):260–92.



Synaptic scaling Excitation/Inhibition balance Sliding threshold model

Activity 
decrease

Activity 
increase

Activity 
decrease

Activity 
increase

Figure 1

A B C

Activity 
decrease

Activity 
increase

LTP

LTD

Sy
n

ap
ti

c 
w

ei
gh

t 
ch

an
ge

Stimulation strength

Stimulation strength

LTP

LTD

LTP

LTD

Stimulation strength

+

_

Sy
n

ap
ti

c 
w

ei
gh

t 
ch

an
ge +

_

Sy
n

ap
ti

c 
w

ei
gh

t 
ch

an
ge +

_



Activity 
decrease

Activity 
increase

E/
I b

al
an

ce

Figure 2

LTP

LTD

A

Stimulation strength

B

Sy
n

ap
ti

c 
w

ei
gh

t 
ch

an
ge

LTP

LTD

Stimulation strength

Excitatory synapses

Inhibitory synapses

LTP

LTD

Stimulation strength

Excitatory synapses

Inhibitory synapses

v

v

+

_
Sy

n
ap

ti
c 

w
ei

gh
t 

ch
an

ge

+

_

Sy
n

ap
ti

c 
w

ei
gh

t 
ch

an
ge

+

_


