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Abstract

Assume that M is a compact Riemannian manifold of bounded

geometry given by restrictions on its diameter, Ricci curvature and

injectivity radius. Assume we are given, with some error, the first

eigenvalues of the Laplacian ∆ on M as well as the corresponding

eigenfunctions restricted on an open set in M . We then construct a

stable approximation to the manifold (M,g). Namely, we construct

a metric space and a Riemannian manifold which differ, in a proper

sense, just a little from M when the above data are given with a small

error. We give an explicit logarithmic stability estimate on how the

constructed manifold and the metric on it depend on the errors in

the given data. Moreover a similar stability estimate is derived for

the Gel’fand’s inverse problem. The proof is based on methods from

geometric convergence, a quantitative stability estimate for the unique

continuation and a new version of the geometric Boundary Control

method.

1 Introduction

1.1 Inverse interior spectral data

Let (M, g, p) be a pointed compact Riemannian manifold, that is, (M, g) is
a compact Riemannian manifold without boundary and p ∈ M is a point
of the manifold. We denote by injM(p) the injectivity radius of (M, g) at p.
Also, by M

a
n,p, where n ∈ Z+, n ≥ 2, a > 0, we denote the collection of all

pointed compact manifolds of dimension n such that injM(p) ≥ a.
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Let ∆g be the Laplace operator on (M, g), where we use the sign conven-
tion where −∆g is a non-negative definite operator.

Let ϕj, j = 0, 1, 2, . . . be the complete sequence of L2(M)-orthonormal
eigenfunctions of −∆g and let λj be the corresponding eigenvalues. The
eigenvalues and the eigenfunctions are enumerated so that 0 = λ0 < λ1 ≤
λ2 ≤ . . . Note that ϕ0(x) = vol (M)−1/2, where vol stands for the volume on
(M, g).

For r0 > 0, let B(p, r0) ⊂ M be an open ball of radius r0 centered at
p. When r0 < injM(p), in the ball B(p, r0) there are Riemannian normal
coordinates X : B(p, r0) → Be(0, r0), where Be(r0) = Be(0, r0) ⊂ R

n is
the Euclidean ball of R

n of radius r0, centered at zero. When there is no
danger of misunderstanding, we use the coordinate map X to identify the
metric ball B(p, r0) on the manifold and the Euclidean ball Be(r0) on the
coordinate chart. Also, we identify the metric tensor g on B(p, r0) ⊂ M
and the corresponding tensor X∗g on Be(r0) ⊂ R

n and denote this metric
tensor by g(x) or gij(x), x ∈ Be(r0). Also we identify the restrictions of
the eigenfunctions ϕj to B(p, r0) ⊂ M with X∗ϕj on Be(r0) ⊂ R

n. We say
that a metric tensor gjk(x) on Be(r0) is a Riemannian metric in normal
coordinates, if gjk(x)x

jxk = |x|2 =
∑n

j=1(x
j)2, x ∈ R

n, and gjk(x)x
jξk = 0,

if x · ξ =∑n
j=1 x

jξj = 0.

Definition 1 Let (M, g, p) ∈ M
a
n,p. Then

(i) The pair, consisting of the ball (Be(r0), g|Be(r0)) on the Riemannian man-
ifold M and the sequence {(λj, ϕj |Be(r0)); j = 0, 1, 2, . . . } of eigenvalues and
eigenfunctions, is called the interior spectral data (ISD) of (M, g, p).

(ii) The pair, consisting of the ball (Be(r0), g|Be(r0)) and a finite collection
{(λj, ϕj |Be(r0)), j = 0, 1, 2, . . . , J0} of the J0 + 1 first eigenvalues and eigen-
functions, is called the finite interior spectral data (FISD) of (M, g, p).

In this paper we consider the problem of an approximate reconstruction of
(M, g, p) when we know only its FISD, namely, the first eigenvalues, λj < δ−1

with some small δ ∈ (0, 1) and the values of ϕj|B(p,r0) of the corresponding
eigenfunctions ϕj. Furthermore, we assume that we know all these objects
with some error.

To formalise the above, let B be a collection of elements

D = ( (Be(r0), h) , {(µj, ψj |Be(r0))}∞j=0 ) (1)
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where Be(r0) is a ball of Rn with centre 0 and radius r0, h is a Riemannian
metric on Be(r0) in normal coordinates, and the pairs (µj, ψj|Be(r0)) ∈ R ×
L2(Be(r0)) are such that 0 = µ0 < µ1 ≤ µ2 ≤ . . . . Also, for J0 ∈ N we define
a cut-off operator PJ0 that maps the data element D of the form (1) to

PJ0(D) = ( (Be(r0), h) , {(µj, ψj |Be(r0))}J0j=0 )

In particular, PJ0 maps the ISD of manifold (M, g) to the FISD of length J0.
Let BJ0 = PJ0(B).

We start with introducing a proper topology on the set B.

Definition 2 (Interior spectral topology.) Let δ > 0. For i = 1, 2, consider
the collections (

(Be(r0), hi) , {(µij, ψij)}
Ji
0
j=0

)
∈ BJi

0
,

where J i0 ∈ Z+ ∪ {∞}.
We say that these two collection are δ-close if the following is valid: There

are disjoint intervals

Ip = (ap, bp) ⊂ (−δ, δ−1 + δ), p = 0, 1, . . . , P,

such that

i) bp − ap < δ.

ii) For any µij, i = 1, 2 with |µij| < δ−1 there is p such that µij ∈ Ip.

iii) For p = 0, ni0 = 1. For any p ≥ 1, the total number nip of elements in
sets J i

p = {j ∈ Z+; µ
i
j ∈ Ip} coincide, i.e. n1

p = n2
p (= np).

iv) There is an orthogonal matrix O ∈ O(n), defining a transformation O :
Be(r0) → Be(r0), such that the metrics O∗h1 and h2 are Lipschitz δ-close on
Be(r0), i.e., for any ξ = (ξ1, . . . , ξn) ∈ R

n, ξ 6= 0,

(1 + δ)−1 ≤ (O∗h1)jk(x) ξjξk

(h2)jk(x) ξjξk
≤ 1 + δ, (2)

v) For any p there is a unitary matrix

Ap =
[
a
(p)
jk

]
j,k∈Jp

∈ U(np),
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such that

‖Ap · (O∗Ψ
1
p)−Ψ2

p‖(L2(Be(r0),h2))
np ≤ δ, (3)

‖A−1
p · ((O−1)∗Ψ

2
p)−Ψ1

p‖(L2(Be(r0),h1))
np ≤ δ. (4)

Here, Ψi
p is the vector-function {ψj}j∈J i

p
.

Above, (3) can be written also as

( np∑

κ=1

∫

L2(Be(r0))

∣∣∣∣
np∑

ℓ=1

a
(p)
j(κ),j(ℓ)ψ

1
j(ℓ)(O

−1x)− ψ2
j(κ)(x)

∣∣∣∣
2

(det(h2(x)))
1
2dx

) 1
2

≤ δ.

Remark 1 An appearance of the matrix O is due to the fact that Rieman-
nian normal coordinates associated with p are defined up to an orthogonal
transformation.

The appearance of the unitary matrices Ap is due to the possibility of a
non-continuity of the eigenfunctions with respect to small perturbations of an
operator which has an eigenvalue of multiplicity higher than one. However,
in one considers clusters of eigenvalues, the Riesz projection onto the span
of eigenfunctions corresponding to all eigenvalues in a cluster of eigenvalues
is stable in small perturbations.

A more detailed analysis to eigenvalues and eigenvectors is presented in
[39]. In particular, consider a compact Riemannian manifold, an interval
I = [a, b] such that a, b 6∈ σ(−∆g) and metric tensors g′ on the manifold M .
Let PI,g be the orthogonal projector, in L2(M, g), onto the space spanned the
eigenvectors of −∆g corresponding to the eigenvalues in the interval I. Then
it follows from Theorems IV.3.16 and VI.5.12 of [39] that if ‖g′ − g‖L∞(M)

goes to zero, then the eigenvalues of −∆g′ converge to those of −∆g′ and the
eigenprojectors satisfy ‖PI,g′ − PI,g‖L2(M,g)→L2(M,g) → 0. This implies that
the ISD of (M, g′) converges to the ISD of (M, g).

We note that in a more restricted context of Gelfand’s inverse problem
for a Schrödinger operator with simple spectrum in a domain in R

n a similar
topology was introduced by Alessandrini in [1], [2] who studied stability of
the corresponding inverse problem.

1.2 Manifolds of bounded geometry and the main result

In the future we consider the following class of pointed manifolds.
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Definition 3 (Riemannian manifolds of bounded geometry). For any n ∈
Z+ and R > 0, D > 0, i0 > 0, Mn,p(R,D, i0) consists of n-dimensional
pointed compact Riemannian manifolds (M, g, p) such that

i)

3∑

j=0

‖∇jRic(M, g)‖L∞(M) ≤ R,

ii) diam (M, g) ≤ D, (5)

iii) inj(M, g) ≥ i0.

Here Ric(M, g) stands for the Ricci curvature of M , diam (M, g) for the
diameter of M , and inj(M, g) for the injectivity radius of (M, g). At last, ∇
stands for the covariant derivative on (M, g).

Below we assume that i0 ≥ a so that Mn,p(R,D, i0) ⊂ M
a
n,p. Then we can

compare ISD of any two manifolds M i ∈ Mn,p(R,D, i0) using Definition 2.
To proceed we recall the notion of the Gromov-Hausdorff distance.

Definition 4 (GH-topology). Let (X i, di, pi), i = 1, 2 be pointed compact
metric spaces. Then the pointed Gromov-Hausdorff distance
dGH((X

1, d1, p1), (X2, d2, p2)) is the infimum of all ε > 0 such that there is a
metric space (Z, dZ) and isometric embeddings i1 : X1 → Z and i2 : X

2 → Z
which satisfy

dH(i1(X
1), i2(X

2)) < ε, dZ(i1(p
1), i2(p

2)) < ε.

Here dH denotes the Hausdorff distance in Z.

Our main result states a stability estimate for an approximate reconstruction
of a Riemannian manifold from its interior spectral data.

Theorem 1 Let n ∈ Z+, R,D, i0 and r0 ∈
(
0, min

(
i0
2
, π

2
√
K

))
be given. Let

(M, g, p) ∈ Mn,p(R,D, i0). Then there exists a constant δ∗ = δ∗(n,R,D, i0, r0)
such that, for all δ with

0 < δ ≤ δ∗, (6)

the following is true:
We get a constant C50 = C50(δ, n, R,D, i0, r0) and assume that we are given
a collection

(
(Be(r0), g

a) , {(µj, ϕaj ); j = 0, 1, 2, . . . , J0}
)

with J0 ≥ C50,
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that is δ-close to the interior spectral data ((B(p, r0), g) , {(λj, ϕj); j = 0, 1, 2, . . . }),
of the operator −∆g on (M, g, p).
Then we can construct a metric space (M∗, d∗M) such that

dGH(M, M∗) ≤ C43(
ln
(
ln 1

δ

))1/(72nC46)
. (7)

The coefficients δ∗, C43, C46, C50 are calculated in the proof.

The above inequality (7) combined with the sectional curvature bound
(15) below and the solution of the geometric Whitney problem [28, Thm. 1,
Cor. 1.9] implies the following stable construction result for the manifold M
in the Lipschitz topology. Recall that the for C1-diffeomorphic manifolds M1

and M2 the Lipschitz distance dL(M1,M2) is

dL(M1,M2) = inf
F :M1→M2

(
ln(Lip(F )) + ln(Lip(F−1))

)

where the infimum is taken over bi-Lipschitz maps F :M1 →M2 and Lip(F )
is the Lipschitz-constant of the map F , see [32].

Corollary 1 There are uniform constants K,C0 > 1 satisfying the follow-
ing. Let (M, g, p) ∈ Mn,p(R,D, i0), δ > 0, and the metric space M∗ be as
in Theorem 1. Using M∗ one can construct a smooth Riemannian manifold
(N, gN) that approximates the original manifold (M, g) so that the following
holds:
The manifolds M and N are diffeomorphic and their Lipschitz distance sat-
isfies the inequality

dL(M,N) ≤ C0K
1/3σ

2/3
0 , σ0 = C43

(
ln
(
ln

1

δ

))−1/(72nC46)
,

where |Sec(N)| ≤ C0K.
Moreover, the injectivity radius of the manifold N is such that

inj(N) ≥ min{(C0K)−1/2, (1− C0K
1/3σ

2/3
0 )inj(M)}.

Another consequence of (7) is the following stability estimate for the solutions
of the interior spectral problem.
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Corollary 2 Assume that M (1) and M (2) are two manifolds with M (i) ∈
Mn,p(R,D, i0, r0), i = 1, 2, and such that the ISD of M (1) and M (2) are
δ−close with δ ∈ (0, exp(−e)].
Then,

dGH(M
(1),M (2)) ≤ C84(

ln
(
ln 1

δ

))1/(72nC46)
. (8)

Notations: Here K is the uniform bound for the sectional curvature on
Mn,p(R,D, i0), see (15).
Here and later we will use notations c, C, C1, etc. for the constants that
depend only on n,R,D, i0, and the radius r0. We call such constants uniform
constants. When the constants depend also on other parameters we will
indicate this dependence explicitly. Given a set A we denote by χA(·) its
characteristic function (except for the Appendix, where χA(·) is a smooth
cut-off).

1.3 Earlier results and outline of the paper

The Gel’fand inverse problem, formulated by I. M. Gel’fand in 50’s [31], is the
problem of determining the coefficients of a second order elliptic differential
operator in a domain Ω ⊂ R

n from the boundary spectral data, that is, the
eigenvalues and the boundary values of the eigenfunction of the operator. In
the geometric Gel’fand inverse problem, a Riemannian manifold with bound-
ary and a metric tensor on it need to be constructed from similar data. For
Neumann boundary value problem for the operator −∆g on manifold M , the
boundary spectral data consists of the boundary ∂M , the eigenvalues λj and
the boundary values of the eigenfunction, ϕj|∂M , j = 1, 2, . . . The unique-
ness of the solution of the Gel’fand inverse problem has been considered in
[9, 11, 44, 45, 58, 37, 56]. The boundary spectral data is equivalent to the
Neumann-to-Dirichlet map for the wave equation or the heat equation on
the manifold (M, g), see [38]. The Gel’fand inverse problem on manifolds is
closely related to the geometric Calderon’s inverse problem [19] of determin-
ing the manifold (M, g) when one is given the Neumann-to-Dirichlet map for
the elliptic operator −∆g. In general setting, this problem is open but partial
results have been given e.g. in Euclidean domains in [7, 8, 42, 55, 59, 63, 68]
and on manifolds in [26, 27, 33, 50, 51, 54].

To formulate properly stability of the inverse problems, let us consider
first the Gel’fand inverse on a bounded domain Ω ⊂ R

2 with a smooth
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boundary ∂Ω and a conformally Euclidian metric gjk(x) = ρ(x)−2δjk. Here,
ρ(x) > 0 is a smooth real valued function. Then the problem has the form

(
−

2∑

k=1

ρ(x)2
(

∂

∂xk

)2

− λj

)
ϕj(x) = 0, in Ω, (9)

∂νϕj|∂Ω = 0.

The problem of determining ρ(x) from the boundary spectral data is ill-posed
in sense of Hadamard: The map from the boundary data to the coefficient
ρ(x) is not continuous so that small change in the data can lead to huge
errors in the reconstructed function ρ(x). Clearly this results in serious in-
stability when solving inverse problems numerically in various applications.
One way out of this fundamental difficulty is to assume a priori higher reg-
ularity of coefficients, that is a widely used trend in inverse problems for
isotropic equations, like (9). This type of results is called conditional sta-
bility results. For example, assuming in (9) that ρ1 and ρ2 are bounded in
some norm, max(‖ρ1‖Cm(Ω), ‖ρ2‖Cm(Ω)) ≤ c0 one can conclude that if the
boundary spectral data for ρ1 and ρ2 are “close”, then ‖ρ1− ρ2‖Ck(Ω) is small
with some k < m (see e.g. [1, 3, 41, 65] etc).

For inverse problems for general metric this approach bears significant
difficulties. The reason is that the usual Ck norm bounds of coefficients
are not invariant and thus this condition does not suit the invariance of
the problem with respect to diffeomorphisms. Moreover, if the structure of
the manifold M is not known a priori, the traditional approach is useless.
The way to overcome these difficulties is to impose a priori constrains in an
invariant form and consider a class of manifolds that satisfy a priori bounds
similar to (5), for instance for curvature, second fundamental form, radii of
injectivity, etc. Under such kind of conditions, invariant stability results for
inverse problems have be proven in [6, 28, 37, 52, 65]. In particular, for the
Gel’fand inverse problem for manifolds with non-trivial topology, an abstract,
i.e., a non-quantitative stability result was proven in [6]. There, it was shown
that the convergence of the boundary spectral data implies the convergence of
the manifolds with respect to the Gromov-Hausdorff convergence. However,
this result was based on compactness arguments and it did not provide any
estimates. In this paper our aim is to improve this result and to give explicit
estimates for an analogous inverse problem.

In this paper we consider a Gel’fand inverse problem for manifolds without
boundary. Then, as explained above, instead of assuming that the boundary

8



and the boundary values of the eigenfunctions are known we assume that
we are given a small open ball U ⊂M and the eigenfunctions ϕj are known
on this set. Similar type of formulation of the problem with measurements
on open sets have been considered in [22, 23, 24, 34, 46]. We show that the
ISD, that is, an open set U ⊂ M , the eigenvalues λj and the restrictions of
the eigenfunctions ϕj|U determine the whole manifold (M, g) in stable way.
Also, we quantify this stability by giving explicit inequalities under a priori
assumptions on the geometry of M . We emphasise that we assume that the
eigenfunctions are known only on an open subset U of M that may be chosen
to be arbitrarily small but still e.g. the topology of M is determined in a
stable way. We note that in spectral geometry a similar stability problem
was studied in [13, 35, 36]. Here the authors assumed that the knowledge
of the heat kernel on the whole manifold, however, these data is equivalent
to knowing the eigenvalues and the eigenfunctions and the eigenfunctions on
the whole manifold.

We now turn to a brief description of the basic techniques utilised in this
paper. The fundamental method underlying the reconstruction procedure
is the Boundary Control (BC) method in its geometric version using the
distance functions, see [9, 12, 37]. To consider the uniqueness of the inverse
problem, one assumes that a complete set of interior spectral data [47] is
given, see also [46, 34] and references therein. Using these data one can
determine the image of the interior distance map

RM :M → L∞(U0), RM(x) = rM,x,

where U0 = B(p, r0/25) ⊂ U = B(p, r0) and

rM,x(z) = dM(x, z), for z ∈ U0.

When RM(M) is equipped with the L∞-distance, RM(M) is homeomorphic
to M . However, in the general case it is not isometric to M . To make
RM(M) isometric to M , we need to do additional constructions for construct
an appropriate structure of Riemannian manifold on RM(M).
Although we deal with data on eigenvalues and eigenfunctions, the BC-
method applies to hyperbolic equations. The BC-method is based on two
tools: the Tataru-type Carleman estimates [66, 67], see also [16, 17, 53],
for the wave equation and the Blagovestchenskii identity [15] that gives the
Fourier coefficients of the waves generated by sources supported in U×R+. A
combination of these makes it possible to construct the set of the Fourier coef-
ficients of all functions supported in metric balls of an arbitrary radius R > 0

9



with centres in z ∈ U0, BM(z, R). Similarly, we can find the set FS ⊂ ℓ2 of
the Fourier coefficients of functions in L2(S) = {u ∈ L2(M); supp (u) ⊂ S}.
Here S is a finite intersection of the slices B(zℓ, α

+
ℓ )\B(zℓ, α

−
ℓ ), α

+
ℓ > α−

ℓ ≥ 0.
Here zℓ, ℓ = 1, . . . , O(τ−n), see (36), form τ -net in U0. In particular, the norm
of the closest element in FS to the element (1, 0, 0, . . . ) ∈ ℓ2 is equal to the
norm of the projection of the zeroth eigenfunction, ϕ0(x) = vol−1/2(M) to
L2(S). By computing such norms we can evaluate the volume of S.
When the ISD or FIS is given with errors, we introduce in this paper a new
slicing method in the reconstruction of a manifold that is robust in presence
of errors. Moreover, we estimate the errors in the constructions by using a
quantitative version of Tataru’s unique continuation theorem. These give us
a discrete approximation R∗ to RM(M) ⊂ L∞(U0). We then show that the
Hausdorff distance dH(R∗, RM(M)) is small, with a quantitative estimate of
this distance. At last, applying a properly modified result of [40], see also
[29], we obtain Theorem 1.

2 Geometric preliminaries

2.1 Properties of the manifolds of bounded geometry

Below, we define the norm of the space Ck(M) invariantly by

‖f‖Ck(M) :=

k∑

j=0

max
x∈M

‖∇jf(x)‖g. (10)

We use the notationCk(M ;E) for the space of Ck-smooth sections of a bundle
π : E → M and often use the short hand notation Ck(M ;E) = Ck(M) for
Ck-smooth sections of E or tensors fields when the bundle E is clear from
the context. Below, we denote balls on manifold M by B(x, r) = BM(x, r).

Also, we define the Hölder spaces Ck,β(M) = Ck+β
∗ (M) and the Zyg-

mund spaces Ck
∗ (M) by interpolation [14] of function spaces Ck(M), that is,

Cs
∗(M) = [Ck1(M), Ck2(M)]θ, for s = θk1 + (1 − θ)k2 ∈ R+ and θ ∈ (0, 1).

Note that Ck−1,1(M) ⊂ Ck
∗ (M) ⊂ Ck−1,β(M) for 0 < β < 1.

We say that {xj ; j = 1, 2, . . . , J} ⊂ M is an ε-net if, for every x ∈ M ,
there is xj such that d(xj, x) ≤ ε. Also, a set {yj; j = 1, 2, . . . , J} ⊂ M is
τ -separated if d(yj, yk) ≥ τ when j 6= k. Note that a maximal τ -separated
set is a τ -net. Using ε-nets one can define the Gromov-Hausdorff topology
as follows:

10



Let ε > 0 and consider pointed compact Riemannian manifolds (M i, gi, pi),

i = 1, 2. Let d̃GH((M
1, g1, p1), (M2, g2, p2)) be the infimum of those ε > 0

for which there are ε-nets {xij ; j = 1, 2, . . . , J(ε)} ⊂ M i, such that xi1 = pi,
and

|d1(x1j , x1k)− d2(x
2
j , x

2
k)| ≤ ε, j, k = 1, 2, . . . , J(ε).

Here di(·, ·) stands for the distance on (M i, gi).

The distance d̃GH((M
1, g1, p1), (M2, g2, p2)) is Lipschitz equivalent to the

distance dGH((M
1, g1, p1), (M2, g2, p2)).

In the future we need the following facts about the structure of the
class Mn,p(R,D, i0) with respect to the GH-topology. These results can be
found in or immediately follow from [5, 21] with further improvements in [6].
Namely, the class Mn,p(R,D, i0) is precompact in GH-topology. Its closure,

Mn,p(R,D, i0) consists of pointed Riemannian manifolds (M, g, p) with g ∈
C5

∗(M). Moreover, estimates (5) remain valid for (M, g, p) ∈ Mn,p(R,D, i0).

Note that by [32], the class Mn,p(R,D, i0) is compact also in Lipschitz

topology, that is, for any sequence (Mj , gj, pj) ∈ Mn,p(R,D, i0), j ∈ Z+,

there is (M, g, p) ∈ Mn,p(R,D, i0) and a subsequence jk → ∞ and bi-
Lipschitz maps Fjk : (Mjk , gjk , pjk) → (M, g, p) such that Lip(Fjk) → 1 and
Lip(F−1

jk
) → 1 as k → ∞. Note this implies also a stronger convergence in

the Cα-sense, see [5].
To achieve the desired smoothness of g, one needs to use some special

coordinates, e.g. harmonic coordinates. Note that, for any C18 > 1, there
is a uniform constant rH = rH(C18, R,D, i0) ∈ (0, i0) such that, for any
(M, g, p) ∈ Mn(R,D, i0) and x ∈ M , there are harmonic coordinates in
B(x, rH), that we denote by X : B(x, rH) → R

n. Moreover, in these coordi-

nates, the metric tensor (g
(H)
jk )nj,k=1 = X∗g, where the superindex H indicates

that we are in harmonic coordinates, satisfies

C−1
18 I ≤ (g

(H)
jk (x))nj,k=1 ≤ C18I, x ∈ X(B(x, rH)), (11)

‖g(H)
jk ‖C5

∗
(X(B(x,rH ))) ≤ C18.

Therefore, using [5, 21], with the terminology described in [60, Sec. 10.3.2],
we see that when (Mk, gk, pk) ∈ Mn(R,D, i0) and (Mk, gk, pk) → (M, g, p) in
the Gromov-Hausdorff topology as k → ∞, then for all β ∈ (0, 1) there are
C5,β-smooth diffeomorphism Fk :Mk →M such

F∗(gk) → g in C4,β(M), as k → ∞. (12)
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Considering the ordinary differential equations for geodesics in harmonic
coordinates, we see that, for all α ∈ (0, 1), there is a uniform constant Cα
such that the exponential map expx : BTxM(0, 2D) ⊂ TxM → M satisfies

‖expx‖C3,α(BTxM (0,2D);M) ≤ Cα. (13)

Here, C3,α(BTxM(0, 2D);M) is the space of C3,α-smooth functions from the
ball BTxM(0, 2D) ⊂ TxM to M , where the norm is defined using a suitable
partition of unity and harmonic coordinate neighbourhoods on M .

The inequality (11) implies that the Riemannian curvature tensor, RiemM ,
is uniformly bounded in C3

∗ (M) ⊂ C2,α(M),

‖RiemM‖C3
∗
(M) ≤ C19, (14)

and, in particular, its sectional curvature, SecM satisfies

‖SecM‖C3
∗
(M) ≤ K, (15)

where K is a uniform constant. Note that this inequality implies that there
is a uniform constant C1 > 1, such that for all (M, g, p) ∈ Mn,p(R,D, i0) and
x ∈M , we have

C−1
1 rn ≤ vol(B(x, r)) ≤ C1r

n, 0 ≤ r ≤ D. (16)

The class Mn,p(R,D, i0) consists of a finite number of diffeomorphic
classes of manifolds and there is σ = σ(R,D, i0) such that, if dGH(M

1,M2) <
σ, then M1 and M2 are diffeomorphic. Note that using Riemannian normal
coordinates decreases the smoothness of the metric tensor by 2, see e.g. [25].
Therefore, using [5] and [25], we see, that when (Mk, gk, pk) ∈ Mn(R,D, i0)
and (Mk, gk, pk) → (M, g, p) in the Gromov-Hausdorff topology as k → ∞,
then in the Riemannian normal coordinates, centred at suitable points,

g
(n)
k → g(n) in C2,β(Be(r)), r < rH . (17)

Here we denote by g(n) the metric tensor in normal coordinates.
In the following, we assume that

0 < r0 < min

(
i0
2
,

π

2
√
K

)
, (18)
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where K is the constant in (15). Then any ball B(x, r), r < r0 is geodesically
convex, see e.g. [20, Thm. IX. 6.1] or [57].

Let (M, g, p) ∈ Mn(R,D, i0), and consider the normal coordinates X :

B(p, r0) → Be(r0) ⊂ R
n. Let (g

(n)
jk (x))

n
j,k=1 = Xg, x = (x1, . . . , xn). Then

using estimates for metric tensor in the Riemannian normal coordinates, see
[60], we see that there is a uniform constant C2 = C2(β) > 1 such that

C−1
2 I ≤ (g

(n)
jk (x))

n
j,k=1 ≤ C2 I, for x ∈ Be(r0), (19)

‖(g(n)jk )
n
j,k=1‖C2,β(Be(r0)) ≤ C2.

Therefore, when dealing with Mn,p(R,D, i0), without loss of generality
we can take in (3) the L2-norm defined with respect to the Euclidian metric

rather than the metric h = (g
(n)
jk )

n
j,k=1.

We turn now to the spectral properties of manifolds in Mn,p(R,D, i0).
First, using Courant’s minmax principle, we see that, as dGH(Mk,M) → 0,
then ISD of Mk tend to ISD of M in the sense of Definition 2. We note that
this is valid even under less restrictive conditions then (5), in particular those
that allow collapsing, as is shown in [30], [46].

Second, by the compactness of Mn,p(R,D, i0), we can, for any σ > 0,
cover it by a finite number of balls, in the GH-metric, of radius σ. Using
Courant’s minmax principle, it then follows from the metric convergence
result (12) that there exists C3 > 1 such that, for any M ∈ Mn,p(R,D, i0),

C−1
3 j2/n ≤ λj(M) ≤ C3j

2/n, j = 0, 1, 2, . . . . (20)

Note that estimate (20) remains valid under a much weaker assumption that
Ric(M, g) is bounded from below, see [13].

Third, instead of harmonic coordinates, we can use coordinates made of
the eigenfunctions ϕj. It turns out, cf. [12, 6], that in a neighbourhood of
any x ∈ M there are ϕj(1;x), . . . , ϕj(n;x) which form a C6

∗ -smooth coordinate
system. Moreover, by the compactness arguments, there are N ∈ Z+, C >
1, r > 0 such that, for any M ∈ Mn,p(R,D, i0), x ∈ M , we can take j(ℓ; x) ≤
N, ℓ = 1, . . . , n and the metric tensor g in these coordinates satisfies (11).

Using the eigenpairs made of eigenvalues and the corresponding eigen-
functions, (λj , ϕj) of −∆g, we introduce the Sobolev spaces Hs(M), s ∈ R,

(21)

f(x) =

∞∑

j=0

fjϕj(x) ∈ Hs(M) if and only if ‖f‖2Hs :=

∞∑

j=0

〈λj〉s|fj|2 <∞,

13



where 〈λ〉 = (1 + λ2)1/2.

Remark 2.1. Using the compactness and interpolation arguments, it follows
from (19) that, instead of the L2(B(r0))-norm in condition iv) of definition
2, we can use a stronger, C2,β(B(r0)), β < 1, and Hs(B(r0)), s < 3, norms
in (3). However, we will not be using this fact.

Remark 2.2. Returning to C6
∗ -coordinates, we see from (20) that the above

definition ofHs(M), −6 < s < 6, is equivalent to the standard definition that
uses the covariant derivatives of functions, with the equivalence constants
that are uniform for all (M, g, p) in Mn,p(R,D, i0).

2.2 Distance coordinates

Proposition 1 For any β < 1, there are uniform constants τ0, ρ0 > 0,
C4, C6 > 1, C5 = C5(β) > 1 such that, for any (M, g, p) ∈ Mn,p(R,D, i0),
the following holds true: For τ ∈ (0, τ0) there is a maximal τ -separated
net in B(p, r0/4) with at most L − 1 points, where L = L(τ) ∈ Z+. Let
{z1, . . . , zL−1} ⊂ B(p, r0/4) be such a τ -net. Then,

(i) For all x ∈ M , there are n points zj(i) ∈ Z, j(i) = j(i; x), i =
1, 2, . . . , n such that the map X : B(x, ρ0) → R

n,

X : y 7→ (d(y, zj(1)), d(y, zj(2)), . . . , d(y, zj(n)))

defines C3,β-smooth coordinates in a ball B(x, ρ0), that is, X : B(x, ρ0) →
X(B(x, ρ0)) is a C3,β-smooth diffeomorphism and

‖DX‖L∞(B(x,ρ0)) + ‖DX−1‖L∞(X(B(x,ρ0)))) ≤ C4. (22)

Moreover, zj(i) can be chosen so that d(x, zj(i)) > 2−8r0 and the metric tensor
(gij)

n
i,j=1 = X∗g in these coordinates satisfies

C−1
4 I ≤ (gij(z))

n
i,j=1 ≤ C4I, for z ∈ X(B(x, ρ0)), (23)

‖gij‖C2,β(X(B(x,ρ0)) ≤ C5.

(ii) The map H :M → R
L−1 defined by H(x) = (d(x, zj))

L−1
j=1 satisfies

L−1 ≤ d(x, y)

|H(x)−H(y)| ≤ C6 (24)

for all x, y ∈M , x 6= y.
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Note that condition (23) implies that B(X(x), ρ0/
√
C4) ⊂ X(B(x, ρ0)) and

thus, after shifting the origin by X(x), we can speak about the covering of
M by a finite system of distance coordinate with images are of the form
Be(ρ0/

√
C4).

Observe also that the parameters τ0, ρ0, C5, C4, and C6 are uniform on
Mn,p(R,D, i0). Later, we will fix β = 1

2
and choose τ to depend on R,D, i0,

so that also parameters L = L(τ) and C5 = C5(β) will depend on R,D, and
i0.

Proof. (i) Recall that inj(M) ≥ r0 and let r1 = 2−10r0, where r0 < π/
√
K.

Below, we use the Sasaki metric on TM .
Consider a point x0 ∈ M and let p0 = p0(x0) ∈ B(p, 1

8
r0) be such that

ℓ = d(x0, p0) > 16r1. Then B(p0, 9r1) ⊂ B(p, 1
4
r0).

Let N = B(p0, 9r1) \B(p0, r1) and M1 =M \B(p, 9r1). We can consider
N as a layer that is glued to M1 along the surface ∂M1. Recall that the C1-
norm of the Ricci tensor RicM of M is bounded by a uniform constant and
the sectional curvature is bounded by the uniform constant K. Also, because
of the definition of r1, the second fundamental form of the surface Σ = ∂M1

is bounded by a uniform constant. These observations imply that we can
below use the considerations in [40, Section 4], with minor modifications. In
fact, these minor modifications are simplifications in the sense that in this
paper the metric is smooth across Σ, and thus one does not need to consider
the intersection angle of geodesics and the surface Σ as is done in [40].

Let ξ ∈ Sx0M be such that γx0,ξ(ℓ) = p0 and q0 = γx0,ξ(ℓ − 5r1). Then
considering the shortest geodesics connecting x0 to points in ball B(q0, r1),
and using the same arguments as in the proof of [40, Prop. 1], with a = r1
so that B(q0, a) ⊂ N , we see that there is a uniform constant c220 > 0
such that there are v0 ∈ Sx0M , t0 > 10r1 that satisfy y0 = γx0,v0(t0) ∈
B(p0, 6r1)\B(p0, 4r1), d(x0, y0) = t0, |t0− (ℓ−5r1)| < r1, and the differential
of the map ζ 7→ expx0(ζ) at ζ0 = t0v0 satisfies

min
η∈Tx0M\0

‖dexpx0 |ζ0(η)‖g
‖η‖g

≥ c220.

Let now t̃0 = t0−r1 and ỹ0 = γx0,v0(t̃0) ∈ B(p0, 7r1)\B(p0, 3r1). Also, let ζ̃0 =
t̃0v0 and note that the geodesic γx0,v0([0, t̃0]) from x0 to ỹ0 can be extended
to a distance minimizing geodesic γx0,v0([0, t̃0 + r1]) that does not intersect
B(p0, 2r1). Then the proof of [40, Lemma 4], with minor modifications, yield
that is a uniform constant c221 ∈ (0, r1) such the following holds:
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Let B := BTM((x0, ζ̃0), c221) ⊂ TM be a ball with center (x0, ζ̃0) ∈ TM
and radius c221 and let N = B(p0, 9r1) \ B(p0, r1). Then for all (x, tv) ∈ B,
where v ∈ SxM and t > 0, we have γx,v(t) ∈ N , the geodesic γx,v([0, t]) is
the unique shortest geodesics in M between its end points, and γx,v([0, t]) ∩
B(p0, r1) = ∅. Moreover, there are uniform constants C10, C51 > 1 such that
the differential DwF (x, w) = dexpx|w of the map

F : TM → M ×M,

F (x, w) = (x, expx(w))

satisfies

‖DwF (x, w)‖ ≤ C10, ‖(DwF (x, w))
−1‖ ≤ C51, for all (x, w) ∈ B. (25)

Let κ = min(r1, c221/C51) and V = {(x, w) ∈ B : F (x, w) ∈ B(x0, κ) ×
B(ỹ0, κ)}. Then B(ỹ0, κ) ⊂ B(p0, 8r1) \ B(p0, r1) and the above yields that
the restriction of the map F in V,

F |V : V → B(x0, κ)× B(ỹ0, κ)

is a diffeomorphism.
The above yields that there is uniform constant δ1 > 0 such that there

are wj ∈ Tx0M , j = 1, 2, . . . , n so that (x0, wj) ∈ V and

4δ1 ≤ ‖wj − wk‖g ≤ 4nδ1, for j 6= k, (26)

and moreover, BTM((x0, wj), 8nδ1) ⊂ V and

BTM((x0, wj), 2δ1) ∩BTM((x0, wk), 2δ1) = ∅, for j 6= k. (27)

Let yj = expx0(wj) ∈ N and define τ̂ = δ1/(2C51).Then,

B(x0, τ̂)× B(yj, τ̂) ⊂ F (BTM((x0, wj), 2δ1)). (28)

Moreover, then (25), (27), (28) and the definition of τ̂ yield that if x′ ∈
B(x0, τ̂) and y′j ∈ B(yj, τ̂), then

(x′, y′j) = F (x′, θj), where θj = sjηj, ηj ∈ Sx′M , sj = |θj|,

are such that (x′, θj) ∈ BTM((x0, wj), 2δ1) ⊂ V, sj > r1,

‖θj − wj‖g < 2C51 τ̂ ≤ δ1.
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These and (26) yield that ‖θj−θk‖g > 2δ1 and ‖ηj−ηk‖g > 2r−1
1 δ1 for j 6= k.

Since ∇d( · , y′j)|x′) = ηj, we have

‖∇d( · , y′j)|x′ −∇d( · , y′k)|x′‖g > 2r−1
1 δ1, for j 6= k. (29)

In particular, this yields that if z1, . . . , zL−1 ∈ B(p, r0/4) is a τ̂ -net
then there are k(j, x′) ∈ Z+ for which zk(j,x′) ∈ B(yj, τ̂). For such points
y′j = zk(j,x′) ∈ {z1, . . . , zL−1} the inequalities (29) are valid, This proves
(22) with ρ0 = τ̂ and and τ0 ≤ τ̂ with some suitable uniform constant
C5. Then, by using inverse function theorem and the C3,β-smoothness of
the exponential map and its inverse, see (13) and (25), to analyse the map
X(x′) = (‖exp−1

y′j
(x′)‖g)nj=1, we obtain the inequality (23) with some constants

C4 and C5 = C5(β). This proves claim (i) holds when τ0 ≤ τ̂ .
(ii) To start the proof, we observe that because of triangular inequality,

we have

|H(x)−H(y)| ≤ (L− 1)d(x, y). (30)

Next, we prove an opposite inequality to (30) with a uniform constant
when τ0 is sufficiently small. To show it, assume that the claim is not
valid. Then for all k ∈ Z+ there are τk > 0, such that τk ≤ 1

k
, manifolds

(Mk, gk, pk) ∈ Mn,p(R,D, i0), τk-nets {zkj : j = 1, 2, . . . , Lk} ⊂ BMk
(pk, r0/4)

that define functions Hk :Mk → R
Lk−1, Hk(y) = (dMk

(y, zkj ))
L−1
j=1 , and points

xk, yk ∈ Mk for which

lim
k→∞

|Hk(xk)−Hk(yk)|
dMk

(xk, yk)
= 0. (31)

Then, by [32], the class Mn,p(R,D, i0) is compact with respect to the Lips-

chitz topology and all elements in the class Mn,p(R,D, i0) are compact mani-
folds. Thus we can assume, by choosing a subsequence if necessary, that there
are (M, g, p) ∈ Mn,p(R,D, i0) and bi-Lipschitz maps Fk : (Mk, gk, pk) →
(M, g, p) such that

dM(Fk(pk), p) ≤
1

k
, Lip(Fk) ≤ 1 +

1

k
, Lip(F−1

k ) ≤ 1 +
1

k
.

Let now x̃k = Fk(xk), ỹk = Fk(yk), and z̃kj = Fk(z
k
j ). Again, by choosing a

subsequence if necessary, we can assume that x̃k → x̃ and ỹk → ỹ as k → ∞.
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Also, by using Cantor’s diagonalization argument, we can assume that for
all j ∈ Z+ we have limk→∞ z̃kj = z̃j .

First, we consider the case when x̃ 6= ỹ, so that

lim
k→∞

dk(xk, yk) = d(x̃, ỹ) 6= 0, dk(xk, yk) := dMk
(xk, yk). (32)

Then, for all q ∈ B(p, r0/4) and a sufficiently large k there is qk =
F−1
k (q) ∈ Bk(pk, r0/2) := BMk

(pk, r0/2). Also, there is zkj for which dk(z
k
j , qk) ≤

τk, and hence

d(z̃j , q) ≤ dk(z
k
j , qk) +

1

k
≤ τk +

1

k
≤ 2

k
.

This shows that S = {z̃j : j ∈ Z+} is τ̃ -net in B(p, r0/4) for arbitrary τ̃ > 0,
that is, the set S is dense in B(p, r0/4). By (31), we have limk→∞Hk(xk, yk) =
0. Hence for all j ∈ Z+, we have

d(x̃, z̃j)− d(ỹ, z̃j) = lim
k→∞

dk(xk, z
k
j )− dk(yk, z

k
j ) = 0,

and as the set S is dense in BM(p, r0/4), we see that

d(x̃, z̃) = d(ỹ, z̃), for all z̃ ∈ B(p, r0/4). (33)

Let p̃ = p̃(x̃, ỹ) ∈ BM(p, 27r1) ⊂ BM(p, 1
8
r0) be such that ℓx = d(x̃, p̃) >

16r1 and ℓy = d(ỹ, p̃) > 16r1. Then B(p̃, r1) ⊂ B(p, 1
4
r0). As in [6], we see

that if z ∈ ∂B(p̃, r1) is a closest point of ∂B(p̃, r1) to x̃, then the shortest
curve from z to x̃ is a normal geodesics. By (33), z ∈ ∂B(p̃, r1) is also a
closest point of ∂B(p̃, r1) to ỹ and the shortest curve from z to ỹ is a normal
geodesics. Moreover, then (33) implies that ℓx − r1 = ℓy − r1, and

x̃ = γz,ν(z)(s) = ỹ, (34)

where s = ℓx − r1 and ν(z) is the exterior normal vector of ∂B(p̃, r1) at z.
Now, equation (34) is in contradiction with (32). Hence, (32) is not possible.

Second, we consider the case when x̃ = ỹ, so that

lim
k→∞

dk(xk, yk) = d(x̃, ỹ) = 0. (35)

Then for sufficiently large k0 we have for all k > k0 that τk < τ̂ and
dk(xk, yk) ≤ ρ0. Then the inequality (22) implies that (31) can not be valid.
This proves (ii).
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Finally we note that, if z1, . . . , zL−1 is a maximal τ -separated net in
B(p, r0/4), then balls B(zj , τ/2) are disjoint. Then, using (16), we see that

L ≤ L(τ) ≤ C7 τ
−n + 1 (36)

with some uniform constant C7 > 0. This shows that L(τ) can be chosen to
depend only on D,R, and i0.

�

The above considerations leading to (36) bring about the following result

Lemma 1 There exist C13 > 0, C14 ≥ 1 such that, the following hold true:

(i) Let γ > 0. There exists a maximal γ separated set x1, . . . , xN(γ) in M
with

N(γ) ≤ Ñ(γ) = C13γ
−n, (37)

Moreover, the balls B(xk, 4γ) enjoy the finite intersection property with
constant C14, that is, the number of balls having a non-empty intersection is
bounded by C14.

(ii) Let γ > 0. There exist points z1, . . . , zN1(γ) which form a maximal γ-
separated net in B(p, r0/4) with N1(γ) ≤ Ñ(γ), and the balls B(zk, 4γ) enjoy
the finite intersection property with constant C14.

Proof. It remains to prove the finite intersection property. It follows from
(16) if we take into the account that B(xk, 4γ)∩B(xj , 4γ) = ∅ if d(xk, xj) ≥
9γ and B(xk, γ/2) ∩ B(xj , γ/2) = ∅. �

3 Wave equation: estimates and unique con-

tinuation results

Let (M, g, p) ∈ Mn,p(R,D, i0). On the manifold (M, g) we consider the
initial-value problem for the wave equation

∂2tw −∆gw = 0 in M × R, (38)

w|t=0 = v, wt|t=0 = 0,

and denote its solution by w = W (v).
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Our main interest lies in the case when v ∈ Hs
Λs(M), Λs > 0,

Hs
Λs
(M) = {v ∈ Hs(M) : ‖v‖Hs(M) ≤ Λs} (39)

and we assume in the following that 3/2 < s < 2.
Using the Fourier decomposition, we see that, if v ∈ Hs(M), then

w ∈ C(R;Hs(M)) ∩ C1(R;Hs−1(M)) ∩ C2(R;Hs−2(M)),

and

‖w‖C(R;Hs(M))∩C1(R;Hs−1(M))∩C2(R;Hs−2(M)) ≤ 3‖v‖Hs(M).

Thus, if T < 2D, then

‖w‖Hs(M×[−T,T ]) ≤ 6
√
T‖v‖Hs(M) ≤ CD‖v‖Hs(M) (40)

where

CD = 6〈D〉, 〈D〉 =
√
1 +D2. (41)

3.1 Unique continuation

Associated to the wave operator are the double cones of influence. To define
these, let V ⊂M be open, T ∈ R+. Denote by

Γ(V, T ) := V × (−T, T ).

Then the double cone of influence is given by

D(V, T ) := {(t, x); d(x, V ) + |t| < T}. (42)

Note that, by Tataru’s uniqueness theorem [66], [67], if u is a solution to the
wave equation

∂2t u−∆gu = 0, in M × (−T, T ),

which satisfies u = 0 in Γ(V, T ), then u = 0 in D(V, T ). However, for our
purposes we need an explicit estimate which follows from Theorem 3.3 in
[17]. To formulate the results we introduce, for

0 < γ < r0/16, r0/4 < T < 2D, (43)
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and z ∈M , the domains

Γ = Γ(z, T ) = B(z, r0/16)× (−T + r0/16, T − r0/16), (44)

D = D(z, γ, T ) = {(t, x) : (T − d(x, z))2 − t2 ≥ γ2, |t| < T − r0/16},
Ω(T ) =M × (−T + r0/16, T − r0/16).

Theorem 2 Let (M, g) ∈ Mn,p(R,D, i0). Let P = P (x,D) = ∂2t −∆g be the
wave operator associated with M . Assume that w(t, x) = 0 for all (t, x) ∈ Γ.
Then, for any θ < 1, there is c206 ≥ 1, such that the following stability
estimate holds true:

‖w‖L2(D(z,γ,T )) ≤ c206
‖w‖H1(Ω(T ))(

ln
(
1 +

‖w‖H1(Ω(T ))

‖Pw‖L2(Ω(T ))

))θ .

Therefore, for any 0 ≤ m ≤ 1,

‖w‖H1−m(D(z,γ,T )) ≤ cm206
‖w‖H1((Ω(T ))(

ln
(
1 +

‖w‖H1((Ω(T ))

‖Pw‖L2((Ω(T ))

))θm . (45)

Moreover there is c205 = c205(n,R,D, i0, r0, T ) such that

c206 = c205exp(γ
−c200), c200 = 58(n+ 1) + 1. (46)

Proof Theorem 2 follows from Theorem 3.3 in [17] with ℓ = r0/16 and
D(z, γ, T ) = S(z, r0/16, T, γ). Using that w = 0 in Γ, the domain Λ in the
final equation of Theorem 3.3 can be changed into D(z, γ, T ). Moreover, for
θ < 1, the function fθ(a, b), a, b > 0,

fθ(a, b) =
a

(
ln(1 + a

b
)
)θ , (47)

increases when either a or b increases. Thus, we can change ‖w‖H1(Ω1) and
‖Pw‖L2(Ω1) in Theorem 3.3 to ‖w‖H1(Ω(T )) and ‖Pw‖L2(Ω(T )). Let us also note
that, although the results in [17] are formulated for M ⊂ R

n, they can be
easily reformulated for an arbitrary compact Riemannian manifold. For the
calculation of (46) see the Appendix. Moreover, recall that the constants in
[17] explicitly depend on parameters c1, c2, c3 > 0 such that

c1|ξ|2 ≤ gjk(x)ξjξk ≤ c2|ξ|2, ‖gjk(x)‖C2,β(M) ≤ c3.
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Moreover, due to (19), these constraints and the estimates in [17] are uni-
formly valid on Mn,p(R,D, i0). �

Our main interest will be an estimate for v(·) = w(0, ·) in (38) in the
domain B(z, T−2γ). To analyse it, we need the following trace-type theorem.

Proposition 2 For any α > 1/2 there exists C11(α) such that the following
holds true:
1. Let r ≥ r0/16, z ∈ M and w ∈ Hα((−γ, γ);L2(B(z, r))). Then

‖w( · , 0)‖L2(B(z,r)) ≤ C11(α) γ
−α‖w‖Hα((−γ,γ);L2(B(z,r))) (48)

≤ C11(α) γ
−α‖w‖Hα(B(z,r)×(−γ,γ)).

2. Let T − 2γ ≥ r0/16, z ∈ M . Then, since B(z, T − 2γ) × (−γ, γ) ⊂
D(z, γ, T )

‖w( · , 0)‖L2(B(z,T−2γ)) ≤ C11(α) γ
−α‖w‖Hα(D(z,γ,T )). (49)

Corollary 3 Assume (43) and let θ ∈ [1/2, 1), ε2 ∈ (0,Λs] and v ∈ Hs
Λs
(M).

Denote by w = W (v) the solution to initial-value problem (38) and assume
that,

‖w‖L2(B(z,r0/16+γ)×(−T+r0/16, T−r0/16)) ≤ ε2. (50)

Then, calling β = θ2/2 and defining ε1 := E1(ε2; θ, γ,Λs), we get

‖v‖L2(B(z,T−2γ)) ≤ ε1, (51)

where E1(ε2; θ, γ,Λs) = c202
Λs

γ(2−θ/2)
(
ln
[
1 + γΛ

(s−1)/s
s ε

−(s−1)/s
2

])β ,(52)

and with C30 = C30(θ, n, R,D, i0, r0) such that

c202(θ, γ) = C30(θ)exp
(
γ−(c200 θ/2)

)
. (53)

Proof. Let the cut-off function η(x) ∈ C2
0 (B(z, r0/16 + γ/2)) be equal

to one in B(z, r0/16) and ‖η‖Ci(M) ≤ Cγ−i, i = 0, 1, 2. Then wη(x, t) =
(1− η(x))w(x, t) vanishes in Γ and we have (∂2t −∆)wη(x, t) = F, where

F (x, t) =
(
∆gη(x)

)
w(x, t) + 2g(∇η(x),∇xw(x, t)) (54)

=
(
∆gη(x)

)
(η̃(x)w(x, t)) + 2g(∇η(x),∇x (η̃(x)w(x, t))) .
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Here η̃(x) ∈ C2
0(B(z, r0/16 + γ)) is equal to one in B(z, r0/16 + γ/2) and

‖η̃‖Ci(M) ≤ Cγ−i, i = 0, 1, 2.
The L2−norm of the first term in the right hand side of (54) is bounded by
Cγ−2ε2. To estimate the norm of the second term, observe that,

‖η̃w‖Hs(M×(−T+γ,T−γ)) ≤ Cγ−sΛs,

where we have also used (40). Since

‖η̃w‖L2(M×(−T+r0/16,T−r0/16)) ≤ ε2, (55)

by interpolation arguments, we see first that

‖η̃w‖H1(M×(−T+r0/16,T−r0/16)) ≤ Cγ−1Λ1/s
s ε

1−1/s
2 (56)

Since supp(∇η)∩supp(∇η̃) = ∅, equations(55), (56) imply that the L2−norm

of the second term in right hand side of (54) is estimated by Cγ−1Λ
1/s
s ε

1−1/s
2 .

Since ε2 ≤ Λs, these yield

‖F‖L2(M×(−T+r0/16,T−r0/16)) ≤ Cγ−2Λ1/s
s ε

1−1/s
2 .

As s > 1, we have

‖wη‖H1(M×(−T+γ,T−γ)) ≤ Cγ−1Λs.

Using growth properties of the function fθ of form (47), it follows from The-
orem 2 that

‖wη‖H1−θ/2(D) ≤ Cc
θ/2
206

γ−1Λs(
ln
[
1 + γΛ

(s−1)/s
s ε

−(s−1)/s
2

])β . (57)

It follows from (49) with α = 1− θ/2 and (57) that,

‖wη(· , 0)‖L2(B(z,T−2γ)) ≤ CC11(α)
c
θ/2
206Λs

γ2−θ/2
(
ln
[
1 + γΛ

(s−1)/s
s ε

−(s−1)/s
2

])β . (58)

Next define α = (1− β)s+ β > 1/2. Then by interpolation,

‖ηw‖Hα(B(z,r)×(−γ,γ)) ≤ c201 ‖ηw‖α/sHs(B(z,r)×(−γ,γ)) ‖ηw‖
(s−α)/s
L2(B(z,r)×(−γ,γ)).
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Using the fact that supp(η) ⊂ B(z, r0/16 + γ), we can apply (48) with r =
r0/16 + γ, the previous inequality and (50), to obtain

‖η(·)w(·, 0)‖L2(B(z,T−2γ)) ≤ C11(α)γ
−αc201(CDΛs)

α/sǫ
β(s−1)/s
2

≤ C11(α)γ
β−αc201C

α/s
D Λs(

ln
[
1 + γΛ

(s−1)/s
s ε

−(s−1)/s
2

])β . (59)

Here at the last step we use the fact that X ≥ ln(1 + X) for X > 0, with

X = γΛ
(s−1)/s
s ε

−(s−1)/s
2 .

Recall that v(x) = wη(x, 0) + η(x)w(x, 0). Comparing (58) and (59), we
obtain equation (52). The coefficient c202 defined in (53) fulfills the inequality

c202 ≥ CC11(α)c
θ/2
206γ

θ/2−2 + C11(α)c201C
(1−β)+β/s
D γ(β−1)s,

by using (46) and a proper multiplicative coefficient C30 independent on γ.
�

Corollary 4 We define

E2(ε1; θ, γ,Λs) := Λs




γ

exp

[(
Λs

(ε1γ2−θ/2)
C30(θ)exp(γ−c200)

)1/β]




s/(s−1)

(60)

and observe that E2(ε1; θ, γ,Λs) = E−1
1 (ε1) with E1 given in (52).

In the following we can assume in (51) that:

0 < ε1 ≤ Λs. (61)

We then assume in (50) that

ε2 ≤ E2(ε1; θ, γ,Λs). (62)

From the growth properties of E2(ε1) it follows that

E2(ε1; θ, γ,Λs) ≤ ε1, ε1 ∈ (0,Λs]. (63)
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4 Computation of the projection

4.1 Approximate projections

Our ultimate goal is to approximately construct the values of the distance
functions from a variable point x ∈ M to all zℓ, ℓ = 1, 2, . . . , Ñ(σ), defined
in Lemma 1. The main step to achieve that is to approximately compute the
Fourier coefficients of the functions of form χΩv, where χΩ is the characteristic
function of some special subdomains Ω ⊂ M and v has a finite Fourier
expansion. These subdomains Ω are defined using distances to L points
{z1, . . . , zL−1, zi}, where i ∈ {L, . . . , Ñ(σ)} is arbitrary. For i ∈ {L, L +

1, . . . , Ñ(σ)}, we denote

Ki = {1, 2, . . . , L− 1} ∪ {i}

and define A(i) be the set of those α = (αℓ)
Ñ(σ)
ℓ=1 ∈ R

Ñ(σ) that satisfy conditions

αℓ = Aℓγ, such that Aℓ ∈ Z+ and r0/8 ≤ αℓ ≤ 2D, for ℓ ∈ Ki,

αℓ = 0, for ℓ 6∈ Ki. (64)

Next, we consider for a while a fixed index i ∈ {L, . . . , Ñ(σ)}. To construct
subdomains Ω, we start with more general observation sets Γ(α), α ∈ A(i),

Γ(α) =
⋃

ℓ∈Ki

Γ(zℓ, αℓ − γ). (65)

Then the corresponding double cone of influence is defined as

D(α) =
⋃

ℓ∈Ki

D(zℓ, γ, αℓ − γ) (66)

where Γ(zℓ, αℓ − γ), D(zℓ, γ, αℓ − γ) are given by (44) with T = αℓ − γ. Let

h(i) = (h
(i)
ℓ )

Ñ(σ)
ℓ=1 ∈ R

Ñ(σ) be such that

h
(i)
ℓ =

{
1, for ℓ ∈ Ki,

0, for ℓ 6∈ Ki.

At last, for b ∈ R, we define

M(α + bγh(i)) =
⋃

ℓ∈Ki

B(zℓ, αℓ + bγ). (67)

We have the following volume estimate.
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Lemma 2 Let α ∈ A(i), i = L, . . . , N(γ) and

A = A(α, γ) = {x ∈M : d(x, ∂M(α + γh(i))) ≤ 4γ}, (68)

where γ ≥ 0. There is a uniform C14 > 0 such that

vol (A) ≤ C14Lγ.

Proof. Let d(x, ∂M(α + γh(i))) ≤ 4γ. Then, for some ℓ ∈ {1. . . . , L},

αℓ − 3γ ≤ d(x, zℓ) ≤ αℓ + 5γ. (69)

Since ‖d expzℓ|v‖ is uniformly bounded on Mn,p(R,D, i0) for v ∈ TzℓM, |v| ≤
2D, the volume of the set of the points satisfying (69) is uniformly bounded
by C14γ. We obtain the claim by taking the union of these sets when the
index ℓ runs from 1 to L. �

Remark 2 It follows from the proof that ∂Mα is a closed set with vol (∂Mα) =
0. Therefore, in the following we would not distinguish between vol(Mα) and
vol(M int

α ) and similar type of objects occurring later.

Remark 3 We define b(s) as

b(s) = 1/2 for n = 2, 3 and b(s) = s/n for 3
2
< s < 2, n ≥ 4. (70)

By the Sobolev embedding Hs(M) → C(M), for n ∈ {2, 3}, and Hs(M) →
Lq(M), q = (2n)/(n − 2s) for n ≥ 4. Note that the norm of this map is a
uniform constant as the embedding can be done in harmonic coordinates that
are defined in balls having a uniform radius. This, together with the volume
estimate

vol (B(z, T + γ) \B(z, T − 2γ)) ≤ cγ, for T ≤ 2D, (71)

of Lemma 2 and the generalized Hölder inequality with q̃ > 1 such that q−1+
q̃−1 = 1

2
, imply that, with some c1(s) > 0,

‖χB(z,T+γ)\B(z,T−2γ) v‖L2(M) ≤ ‖χB(z,T+γ)\B(z,T−2γ)‖Lq̃(M) ‖v‖Lq(M)

≤ c(s)γb(s)‖v‖Hs(M). (72)
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Theorem 3 Let ε0 ∈ (0,Λs). There are γ0(ε0; s,Λs) and j0(ε0; γ, s,Λs), with
the following properties:
Let γ ≤ γ0(ε0; s,Λs). Assume that

u(x) =

j0∑

j=0

ajϕj(x) ∈ Hs
Λs
(M), j0 ≥ j0(ε0; γ, s,Λs)

and the eigenvalues and restrictions of eigenfunctions of −∆g,
(
λj, ϕj|B(p,r0)

)
, j = 0, 1, 2, . . . , j0,

be given. Then, for any i ∈ {L, . . . , Ñ(σ)} and α ∈ A(i), it is possible to
determine the Fourier coefficients (dj)

j0
j=0, dj = dj(α, i), such that

v(x) =

j0∑

j=0

djϕj(x)

satisfies

‖v − χM(α−2γh(i))u‖L2(M) < ε0. (73)

Moreover v ∈ Hs
(2C16(s,γ)Λs)

(M), where

C16(s, γ) = C17(s)γ
−s. (74)

Remark 4 The critical values considered in Theorem 3, that is, the func-
tions γ0(ε0; s,Λs) and j0(ε0; γ, s,Λs) are defined later. Namely,

γ0(ε0; s,Λs) =
1

(8Lc(s))1/(2b(s))

(
ε1
Λs

)1/(b(s))

, ε1 =
ε20

10Λs
, (75)

cf. (100), where c(s) is given in (72). As for j0, we have

j0(ε0; γ, s,Λs) = C20C16(s, γ)
n/s

(
Λs
ε2

)n/s
, (76)

cf. (86), where

ε2 = E2
( ε1
L
; θ, γ, C16(s, γ)Λs

)
,

cf. (83). Here E2 is defined in (60), C20 in Lemma 4 and C16 in Lemma 3
below.
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The rest of this section is devoted to the proof of Theorem 3 which is
divided into several steps.
In the subsections 4.2, 4.3 and 4.4 below, we keep the index i ∈ {L, . . . , Ñ(σ)}
fixed and omit marking the index when defining some new notations that de-
pend on i.

4.2 Cut-off estimates and finite dimensional projections

We start with a partition of unity associated with points {x1, . . . , xN(γ)}
defined in Lemma 1.

They determine a covering of M consisting of (2γ)-neighbourhoods of
these points, B(xℓ, 2γ), ℓ = 1, 2, . . . , N(γ). We construct next a partition of
unity using these neighbourhoods. To this end, using harmonic coordinates in
B(xℓ, 2γ) and C∞-smooth bump-functions in these coordinates, we construct
the C6

∗(M)-smooth functions ψℓ :M → R+, such that

‖ψℓ‖Ck,β(M) ≤ cik,βγ
−(k+β), k = 0, 1, 2, 0 ≤ β < 1;

supp (ψℓ) ⊂ B(xℓ, 2γ),

N(γ)∑

ℓ=1

ψℓ(x) = 1. (77)

Next we analyze a smooth cut-off of a function u ∈ Hs
Λs
(M) to M \M(α +

γh(i)).

Lemma 3 There exists

C16(s, γ) = C17(s)γ
−s (78)

with the following property:
Let u ∈ Hs

Λs
(M), i ∈ {L, . . . , Ñ(σ)} and α ∈ A(i). There exists uα ∈

Hs
1
2
C16(s, γ)Λs

(M) which satisfies

uα(x) = u(x), for x ∈M \M(α + 5γh(i)), (79)

uα(x) = 0, for x ∈M(α + γh(i)).

Proof. Define

uα(x) = Ψ(x)u(x), Ψ(x) =
∑

supp (ψℓ)∩M(α+γh(i))=∅

ψℓ(x). (80)
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Then, due to the finite intersection property of supports of ψℓ, see Lemma 1
and (77), and calling c230 = c230(K, n) the finite number of intersections,

‖Ψ‖Ck+β(M) ≤ c230ck,βγ
−(k+β), k = 0, 1, 2, 0 ≤ β < 1.

Since u ∈ Hs
Λs
(M), this implies the claimed properties of uα with an appro-

priate C17(s). �

We introduce sets of the finite-dimensional functions.

Definition 5 Let b = (bj)
j0
j=0 ∈ R

(j0+1) and F∗(b) be its Fourier coimage

F∗(b) =
j0∑

j=0

bjϕj ∈ L2(M).

For a > 0 the class of Fourier coefficients Cj0,s(a) is defined as

Cj0,s(a) := {b ∈ R
(j0+1);

j0∑

j=0

(1 + λ2j)
s|bj |2 ≤ a2}. (81)

Furthermore, if w = W (v) is the solution to the initial-value problem (38),
then, for c ∈ R

(j0+1), we denote

W(c) = W (F∗(c)) ∈ L2(M).

and, for any ε∗ > 0, α ∈ Ai, we denote

Cj0,s(ε∗; a, α) = {c ∈ Cj0,s(a) : ‖W (F∗(c))‖L2(Γ(zℓ,αℓ−γ)) ≤ ε∗, ∀ℓ ∈ Ki}.
Observe that b ∈ Cj0,s(a) if and only if v = F∗(b) satisfies

F∗(b) ∈ Hs
a(M). (82)

In the future, we always assume that

ε2 ≤ E2
( ε1
L
; θ, γ, C16(s; γ)Λs

)
, (83)

see (60) for E2.
In particular, this implies that if u ∈ Hs

C16(s,γ)Λs
(M) and w = W (u)

satisfies

‖w‖L2(Γ(zℓ,αℓ−γ)) ≤ ε2 ≤ E2(
ε1
L
; θ, γ, C16(s, γ)Λs), (84)

then, by Corollary 3 and (67), we have for ℓ ∈ Ki

‖w(0, ·)‖L2(B(zℓ,αℓ−2γ)) ≤
ε1
L
, ‖w(0, ·)‖L2(M(α−2γh(i))) ≤ ε1. (85)
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Lemma 4 Let Pj0 be the orthoprojection

Pj0v =

j0∑

j=0

〈v, ϕj〉L2(M) ϕj,

and v ∈ Hs
( 1
2
C16(s, γ)Λs)

(M). There is C20(s) such that, for any α ∈ A(i), if

j0 ≥ j0(ε2; γ,Λs) = C20C16(s, γ)
n/s

(
Λs
ε2

)n/s
, (86)

then

‖Pj0v − v‖L2(M) ≤
ε2

4〈2D〉1/2 . (87)

Proof. For v =
∑∞

j=0 bjϕj , we have

‖Pj0v − v‖2L2(M) =
∑

j>j0

|bj |2 ≤ λ−sj0

( ∞∑

j=0

|λj|s|bj|2
)

≤ |λj0|−sC16(s; γ)
2Λ2

s.

Using (20) this implies that

‖Pj0v − v‖2L2(M) ≤ Cs
3j

−(2s/n)
0 C16(s, γ)

2Λ2
s.

This inequality implies (87), if j0 satisfies (86) with

C20 = C
n/2
3 4n/s〈2D〉n/2s. (88)

�

Observe, that the condition ‖W (F∗(c))‖L2(Γ(zℓ,αℓ−γ)) ≤ ε∗ is equivalent to

∥∥∥∥(
j0∑

j=0

cj cos(
√
λjt)ϕj(x))

∣∣∣∣
Γ(zℓ,αℓ−γ)

∥∥∥∥
L2(Γ(zℓ,αℓ−γ))

≤ ε∗, ℓ ∈ Ki. (89)

Note, that if we know {(λj, ϕj|B(p,r0))}j0j=0, condition (89) can be directly
verified.
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Lemma 5 Let u ∈ Hs
Λs
(M) and uα be the function given by (80). Assume

that j0 satisfies (86). Then,

vα = Pj0uα ∈ F∗
(
Cj0,s(

1

4
ε2;

1

2
C16(s; γ)Λs, α)

)
. (90)

Proof. Since uα|M(α+γh(i)) = 0, then, by the finite speed of the wave propa-
gation, we have W (uα)|Γ(zℓ,αℓ−γ) = 0 for all ℓ ∈ Ki. In addition, by Lemma
4,

‖vα‖L2(M(α+γh(i))) ≤ ‖vα − uα‖L2(M) ≤
ε2

4〈2D〉1/2 . (91)

Therefore, for any ℓ ∈ Ki,

‖W (vα)|Γ(zℓ,αℓ−γ)‖L2(Γ(zℓ,αℓ−γ)) ≤
√
2Dε2

4〈2D〉1/2 ≤ 1

4
ε2. (92)

Moreover, since for any s̃, ‖vα‖H s̃(M) = ‖Pj0uα‖H s̃(M) ≤ ‖uα‖H s̃(M),
it follows from Lemma 3 that vα ∈ Hs

( 1
2
C16(s;γ)Λs)

(M). �

4.3 Minimisation algorithm

Assume that we are given a = (aj)
j0
j=1 ∈ R

(j0+1) so that

u = F∗(a) =

j0∑

j=0

ajϕj ∈ Hs
Λs
(M).

Our next goal is to use FISD to find a vector b ∈ Cj0,s(C16(s, γ)Λs) such that
F∗(b) is close to χM(α)F∗(a). To achieve this goal we will use a minimisation
method. Let ε1 satisfy

0 < ε1 ≤
ε20

10Λs
, with ε0 <

1

10
Λs. (93)

Let ε2 satisfy (83) and let

U := F∗ (C∗) , where C∗ = Cj0,s(ε2; C16(s, γ)Λs, α). (94)
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Definition 6 (i) A function v ∈ U is called an ε1-minimizer of the mini-
mization problem

min
h∈U

Lu(h), where Lu(h) = ‖h− u‖2L2(M), (95)

if v satisfies

‖v − u‖L2(M) ≤ Jmin + 5Λsε1, Jmin := inf
h∈U

‖h− u‖L2(M). (96)

(ii) A vector b = (bj)
j0
j=0 ∈ C∗ is an ε1-minimizer of the minimization problem

min
c∈C∗

La(c), where La(c) = ‖c− a‖2
R(j0+1) , (97)

if

‖b− a‖2
R(j0+1) ≤ Jmin + 5Λsε1, Jmin := inf

c∈C∗

‖c− a‖2
R(j0+1). (98)

Remark 5 Then b ∈ C∗ satisfies (98) if and only if v =
∑j0

j=0 bjϕj satisfies
(96). Note that La(c) = Lu(F∗(c)).

The problem of finding b ∈ C∗ satisfying (98) can be solved using the data
given in Theorem 3 with j0 satisfying (86). Indeed, for given c ∈ C∗ and

h = F∗(c) =
j0∑

j=0

cjϕj(x),

we have

Wh|B(p,r0)×R =

j0∑

j=0

cj cos(
√
λj t)ϕj|B(p,r0). (99)

Therefore, given {(λj, ϕj|B(p,r0))}j0j=0, we can evaluate ‖Wh‖L2(Γ(zℓ,αℓ−γ)) for
all ℓ ∈ Ki. Hence, c ∈ C∗ if and only if it satisfies (81), with a = C16(s, γ)Λs,
and (89) with ε∗ = ε2.
Summarizing the above, we can find b ∈ C∗ satisfying (98) by solving a
minimization problem for the functional ‖c− a‖2

R(j0+1) with c ∈ C∗.
Next we assume that, in addition to ε2 satisfying (83), γ satisfies

γ ≤ 1

(2Lc(s))1/(2b(s))

(
ε1
Λs

)1/(b(s))

, (100)

where b(s), c(s) are defined in (70), (72).
Now we are ready to consider the properties of the ε1-minimizers.
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Lemma 6 Let u ∈ Hs
Λs
(M) and assume that ε2 satisfies (83), j0 satisfies

(86) and γ satisfies (100). Let U be defined in (94).
(i) For all h ∈ U , we have

Lu(h) ≥ ‖u‖2L2(M(α−2γh(i))) − 2Λsε1 + ‖h− u‖2L2(M\M(α−2γh(i))). (101)

(ii) The function vα defined by (90), (80) satisfies vα ∈ U and

Lu(vα) ≤ ‖u‖2L2(M(α−2γh(i))) + 2Λsε2 + 2ε22 + ε21 (102)

≤ ‖u‖2L2(M(α−2γh(i))) + 2Λsε1 + 3ε21.

(iii) Moreover, vα is an ε1−minimiser,

Lu(vα) ≤ Jmin + 5Λsε1. (103)

Proof. (i) We have, for h ∈ U ,

‖h− u‖2L2(M) = ‖h− u‖2L2(M(α−2γh(i))) + ‖h− u‖2L2(M\M(α−2γh(i)))

≥ (‖u‖L2(M(α−2γh(i))) − ‖h‖L2(M(α−2γh(i))))
2 + ‖h− u‖2L2(M\M(α−2γh(i))).

Due to definition (82), (94) and the condition (83) it follows from (84),
(85) that ‖h‖L2(M(α−2γh(i))) ≤ ε1. Thus,

‖h− u‖2L2(M) ≥ ‖u‖2L2(M(α−2γh(i))) − 2Λsε1 + ε21 + ‖h− u‖2L2(M\M(α−2γh(i))),

which proves (101).
(ii) Recall that we consider u ∈ Hs

Λs
(M). We have

vα = (u− uα) + (uα − vα),

where uα is defined by (80) and vα by (90). Then, by (90), vα ∈ U . Moreover,

‖u− vα‖2L2(M) = ‖u− vα‖2L2(M(α−2γh(i))) + ‖u− vα‖2L2(M\M(α−2γh(i)))(104)

≤ (‖u‖L2(M(α−2γh(i))) + ‖vα‖L2(M(α−2γh(i))))
2 + ‖u− vα‖2L2(M\M(α−2γh(i)))

≤ ‖u‖2L2(M(α−2γh(i))) + 2Λs
ε2

〈2D〉1/2 +

(
ε2

〈2D〉1/2
)2

+2‖u− uα‖2L2(M\M(α−2γh(i))) + 2‖uα − vα‖2L2(M\M(α−2γh(i))),
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where we use the fact that ‖u‖L2(M) ≤ Λs and by (91), ‖vα‖2L2(M(α−2γh(i)))
≤

(
ε2

〈2D〉1/2

)2
. Observe, that by (79),

‖u− uα‖2L2(M\M(α−2γh(i))) ≤ ‖u‖2L2(M(α+5γh(i))\M(α−2γh(i))) (105)

≤ c(s)Λ2
sL

2γ2b(s) ≤ ε21.

Here the last inequality follows from the volume estimate of Lemma 2, the
Sobolev embedding estimate (72) and (100). Using (91), we see that

‖uα − vα‖2L2(M\M(α−2γh(i))) ≤
(

ε2

〈2D〉1/2

)2

.

Since 〈2D〉 ≥ 1, this inequality together with (104) and (105) yield the first
inequality in (102). To obtain the second inequality we use ε2 ≤ ε1, see (63).

(iii) The claims (i) and (ii) yield that

Lu(vα)− Jmin = Lu(vα)−min
h∈U

Lu(h)

≤
(
‖u‖2L2(M(α−2γh(i))) + 2Λsε1 + 3ε21

)
−
(
‖u‖2L2(M(α−2γh(i))) − 2Λsε1

)

≤ 5Λsε1,

where the last inequality follows from (93). These yield (103). As vα ∈ U by
(ii), the claim follows.

�

Lemma 7 Let u ∈ Hs
Λs
(M), ε1 satisfies (93), ε2 satisfies (83), j0 satisfies

(86) and γ satisfies (100).
Let v∗ =

∑j0
j=0 bjϕj be any ε1-minimizer of the minimization problem (95),

with b ∈ Cj0,s(ε2; C16(γ, s)Λs, α),. Then

‖v∗ − χ(M\M(α−2γh(i)))u‖2L2(M) ≤ ε20. (106)

Proof. Let v∗ ∈ U be any ε1-minimizer of the minimization problem (95),
i.e., we have ‖v∗−u‖2L2(M) ≤ Jmin+5Λsε1. By Lemma 6, the function vα ∈ U
and satisfies (103)). Thus an ε1-minimizer satisfies

‖v∗ − u‖2L2(M) ≤ ‖vα − u‖2L2(M) + 5Λsε1 (107)

≤ ‖u‖2L2(M(α−2γh(i))) + 7Λsε1 + 3ε21.
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On the other hand, since v∗ − u satisfies (101), (107) implies that

‖v∗ − u‖2L2(M\M(α−2γh(i))) ≤ 9Λsε1 + 3ε21. (108)

In addition, since v∗ ∈ U , see (94), w∗ = W (v∗) satisfies estimate (89).
As ε2 satisfies (83), it follows from (84), (85) that

‖v∗|M(α−2γh(i))‖2L2(M(α−2γh(i))) ≤ ε21.

Due to (93), this inequality together with (108), implies (106). �

Proof of Theorem 3. Assume that a := (aj)
j0
j=0 satisfies the hypothesis.

First we determine (bj)
j0
j=0 so that v∗ =

∑j0
j=0 bjϕj(x) is an ε1-minimizer of

(95) and v∗ ∈ U . Then we see from (106) that

‖χM(Γ(α−2γh(i))u−
j0∑

j=0

(aj − bj)ϕj‖L2(M) < ε0.

Thus, by setting dj = aj − bj , the function v(x) =
∑j0

j=0 djϕj(x) satisfies
equation (73).
Finally, since u ∈ Hs

Λs
(M) and v∗ ∈ Hs

(C16(s,γ)Λs)
(M), we see that v = u−v∗ ∈

Hs
(2C16(s,γ)Λs)

(M). This proves Theorem 3. �

4.4 Finite interior spectral data with error

Above we have obtained the necessary conditions on the bounds γ(ε0; s,Λs)
and j0(ε0; γ, s,Λs), see (100), (93), (86) and (83) for evaluation of parameters
γ and j0, in the case when there are no errors in FISD. Let us next consider
an approximate construction for the case when there is δ-error, in the sense of
Definition 2, in FISD. So, let δ > 0 and assume that we are given (Be(r0), g

a)
and a collection {(λaj , ϕaj |Be(r0)); j = 0, 1, 2, . . . , J0} that is δ-close to FISD,
that is, to (Be(r0), g) and {(λj, ϕj |Be(r0)); j = 0, 1, 2, . . .}, where J0 ∈ Z

+.

We recall that in this subsection we keep i ∈ {L, . . . , Ñ(σ)} fixed and
omit marking the index when defining some new notations that depend on i.

First observe that, due to Weyl’s asymptotics (20), in order to achieve
(86), we would require

δ < C−1
3 j

−2/n
0 . (109)
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Next recall that, by Definition 2, there are intervals Ip ⊂ R, p = 0, . . . , P
such that each interval Ip contains np eigenvalues λj and np approximate
eigenvalues λaj . Denote

J0 + 1 =

P∑

p=0

np, j0(ε0; γ, s,Λs) ≤ J0 ≤ C3 j0(ε0; γ, s,Λs). (110)

Let ϕ̃j, j = 0, 1, . . . , J0, be the orthonormal set

ϕ̃j(x) =
∑

λk∈Ip
apjkϕk(x), if λj ∈ Ip, (111)

where Ap ∈ O(np) is the matrix defined in Definition 2, item (v). Let Ep =
A−1
p = A∗

p. We use below the matrix E = diag (E1, E2, . . . , EP ) ∈ O(J0 + 1)

E = [ejk]
J0
j,k=0, ejk = 〈ϕ̃k, ϕj〉L2(M) (112)

and note that ejk = 0 if λj, λk do not lie in the same Ip.

Let b = (b0, b1, . . . , bJ0) ∈ R
J0+1 then, for b̃ = E(b) we have

J0∑

j=0

b̃jϕ̃j(x) =

J0∑

j=0

bjϕj(x),

and ϕ̃j is almost an eigenfunction, namely,

‖∆gϕ̃j + λjϕ̃j‖L2(M) ≤ δ. (113)

As δ < 1, we see easily that

J0∑

j=0

〈λaj + δ〉s|aj|2 ≤ Λ2
s implies

J0∑

j=0

〈λj〉s|aj |2 ≤ Λ2
s;

J0∑

j=0

〈λj〉s|aj|2 ≤ (
1

2
Λs)

2 implies

J0∑

j=0

〈λaj + δ〉s|aj|2 ≤ Λ2
s. (114)

Theorem 4 Let 0 < ε0 < Λs/10. Let also ε1 satisfy (93), γ satisfy (100),
ε2 satisfy (83) and j0 satisfy (86). There is C26 > 0 such that, if

δ < δ0(ε2, γ, j0,Λs) = C26 j
−1/2
0 (ε2; γ, s,Λs)

ε2
C16(γ, s) Λs

, (115)
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then the following holds true:
Assume that ã = (ã0, ã1, . . . , ãj0)

j0∑

j=0

〈λaj + δ〉s|ãj |2 ≤ Λ2
s, u(x) =

j0∑

j=0

ãjϕ̃j(x), (116)

and z1, . . . , zÑ(σ) ∈ B(p, r0/4) is a σ−net. Let ga|Be(r0) and (λaj , ϕ
a
j |Be(r0)), be

δ-close, in the sense of Definition 2, to FISD g|Be(r0) and (λj, ϕj|Be(r0)) of a
manifold (M, g, p) ∈ Mn,p(R,D, i).
Then, for any Γ(α) of form (65) with α ∈ A(i), it is possible to determine
c̃ = (c̃j)

J0
j=0, cj = cj(α), such that

v(x) =

J0∑

j=0

c̃jϕ̃j(x), c̃j = 〈v, ϕ̃j〉L2(M) (117)

satisfies

‖v − χM(α−2γh(i))u‖L2(M) < ε0. (118)

Proof. By (110) we have J0 ≥ j0(ε2; γ, s,Λs), and, taking ãj = 0 for j > J0,
we will assume further that ã ∈ R

J0+1.
For b̃ ∈ R

J0+1, denote

wa(x, t) = Wa(̃b) :=

J0∑

j=0

b̃j cos(
√
λaj t)ϕ

a
j (x), x ∈ Be(r0). (119)

Next, similar to (81), (82), we introduce

CaJ0,s(a) = {b̃ ∈ R
(J0+1) :

J0∑

j=0

〈λaj + δ〉s|̃bj |2 ≤ a2}; (120)

CaJ0,s(ε∗; a, α) = {b̃ ∈ CaJ0,s(a); ‖Wa(̃b)‖L2(Γ(zℓ,αℓ−γ)) ≤ ε∗, ℓ ∈ Ki}.

Let b̃ ∈ CaJ0,s(C16(γ, s)Λs) and w(x, t) be as follows

w(x, t) = W̃ (̃b) := (Wh)(x, t), x ∈M ; h(x) =

J0∑

j=0

b̃jϕ̃j(x). (121)
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Lemma 8 Let wa and w be defined by (119) and (121) with b̃ ∈ CaJ0,s(C16(s, γ)Λs).
There is C27 such that, if δ satisfies (115) with

C26 =
1

8C
1/2
27 〈2D〉3/2

, (122)

then

‖w − wa‖L2(Bg
e (r0)×(−2D,2D)) ≤

ε2
8〈2D〉 . (123)

Proof. Recall that Ip = (ap, bp) and let ωp be

ωp =
1

2
(ap + bp), p ≥ 1; ω0 = 0, (124)

and Jp = {j : λj ∈ Ip}. Due to (20), for j ∈ Jp,
∣∣√λj −

√
ωp
∣∣ ≤ cδ, |

√
λaj −

√
ωp| ≤ cδ, (125)

so that, for |t| ≤ 2D,

| cos(√ωp t)− cos(
√
λaj t)| ≤ c2D δ. (126)

Consider next the functions

w̃a(x, t) =

P∑

p=1

∑

j∈Jp

b̃j cos
(√

ωp t
)
ϕaj (x); x ∈ B(p, r0); (127)

w̃(x, t) =

P∑

p=1

∑

j∈Jp

b̃j cos
(√

ωp t
)
ϕ̃j(x), x ∈M.

As δ < 1, we have ‖ϕaj‖L2(Bg
e (r0)) ≤ 2. Thus, using (126), we obtain for

|t| ≤ 2D,

‖w̃a(·, t)− wa(·, t)‖2L2(Bg
e (r0))

≤ C J0

(
J0∑

j=0

b̃2j

)
δ2D2

≤ C〈2D〉2J0C2
16(γ, s)Λ

2
s δ

2. (128)
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Similarly, since (Wϕ̃j)(x, t) =
∑J0

k=0 akjϕk(x) cos(
√
λk t), we have

‖w̃(·, t)− w(·, t)‖2L2(Bg
e (r0))

≤ ‖w̃(·, t)− w(·, t)‖2L2(M) (129)

≤ Cδ(2D)2

(
J0∑

j=0

b̃2j

)
≤ C〈2D〉2C16(γ, s)

2Λ2
sδ

2.

Next, since by (3) ‖ϕ̃j − ϕaj‖L2(B(p,r0)) ≤ δ, we have

‖w̃(·, t)− w̃a(·, t)‖2L2(B(p,r0))
= ‖

P∑

p=1

∑

k∈Jp

cos(
√
ωpt) b̃j

(
ϕaj − ϕ̃j

)
‖2L2(B(p,r0))

≤ CJ0δ
2C2

16(γ, s) Λ
2
s. (130)

Using (128)–(130) together with (110), we see that there is C27 > 0 such that

‖w − wa‖2L2(Bg
e (r0)×[−T,T ]) ≤ C27 j0(ε0, γ, s,Λs) δ

2〈2D〉3C2
16(γ, s) Λ

2
s, (131)

where at the last step we use that δ < 1 and (110). Due to (115), equation
(123) follows from (131) taking into the account (122).

�

It now follows from (114) and (123) that

E CJ0,s
(
1

2
C16(γ, s) Λs

)
⊂ CaJ0,s(C16(γ, s) Λs) (132)

⊂ E CJ0,s(C16(γ, s) Λs),

E CJ0,s
(
1

4
ε2;

1

2
C16(γ, s)Λs, α

)
⊂ CaJ0,s

(
1

2
ε2;C16(γ, s)Λs, α

)

⊂ E CJ0,s(ε2;C16(γ, s)Λs, α).

Consider the quadratic function La : RJ0+1 → R,

Lã(c̃) =
J0∑

j=0

|c̃j − ãj|2, (133)

cf. (97). As E is an orthogonal matrix, we have for ã = Ea and c̃ = Ec

Lã(c̃) = La(c). (134)

39



Denote Ca = CaJ0,s(12ε2; Λs, α) and let b̃ ∈ Ca be a minimizer of Lã in Ca. Note
that now we do not anymore consider ε1-minimizers, but exact minimizers
of Lã. Since Ca is a bounded and closed set in R

J0+1 such minimizer exists.
This means that

Lã(̃b) = Jamin := min
c̃∈Ca

J0∑

j=0

|c̃j − ãj |2. (135)

Let b = E−1b̃ and denote

v∗(x) =
J0∑

j=0

b̃jϕ̃j(x) =

J0∑

j=0

bjϕj(x).

Next we follow the same steps as in the proof of Theorem 3.
First, we define a = (a0, . . . , aJ0) = E−1ã and consider the function

u(x) =

J0∑

j=0

ajϕj(x) =

J0∑

j=0

ãjϕ̃j(x)

Next we define the function uα(x) = Ψ(x)u(x) where Ψ is given in (80).
Then, let c = (cj)

J0
j=0, cj = 〈uα, ϕj〉L2(M), and by Lemmas 4 and 5, we have

c̃ = Ec ∈ E CJ0,s
(
1

4
ε2,

1

2
Λs, α

)
⊂ CaJ0,s

(
1

2
ε2,Λs, α

)
= Ca.

Using Lemma 6 (iii), we see then that

Jamin ≤ Lã(c̃) = La(c) ≤ Jmin + 5Λsε1. (136)

However, b̃ is a minimizer of Lã in Ca. Thus,

La(b) = Lã(̃b) = Jamin ≤ Jmin + 5Λsε1.

At last, since b ∈ E−1CaJ0,s(12ε2, Λs, α) ⊂ CJ0,s(ε2; Λs, α), the above shows

that b = E−1b̃ is an ε1-minimizer of La in CJ0,s(ε2; Λs, α). By Lemma 7 this
implies that v∗ satisfies (106). Then, choosing dj = aj − bj , j = 0, 1, . . . , J0,

we see that v =
∑J0

j=0 djϕ̃j satisfies (118). This proves Theorem 4. �
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5 Construction of the approximate interior dis-

tance maps.

Below we consider several indexes i ∈ {L, . . . , Ñ(σ)} and consider i as a
varying parameter.

5.1 Volume estimates

Our next goal is to approximately evaluate the volume of M(α). We have
the following result:

Lemma 9 There are uniform constants ε0(n,R,D, i0, r0) > 0, C33 > 0, with
the following properties:

Let ε0 ≤ ε0(n,R,D, i0, r0), γ < γ0(ε0, s), where γ0 is defined by (75) with
Λs = 1, and δ ≤ δ0(ε0, γ, s), where δ0 is defined by (115) with j0 given by
the rhs of (76) with Λs = 1 and ε2 given by (83). Assume that we are given(
ga|Be(r0); {λaj , ϕj|Be(r0)}J0j=0

)
, with J0 given by (110), which are δ−close to

FISD of M ∈ Mn,p(R,D, i0).

Let also i = L, . . . , Ñ(σ), α ∈ A(i), see (37) for Ñ(σ) and (64) and
considerations thereafter for A(i).

Then we can compute an approximate volume, vol a(M(α)), of the set
M(α) so that

|vol a(M(α))− vol (M(α))| ≤ C33ε0. (137)

Here M(α) is defined in (67) with b = 0.

Proof. Recall that

ϕ0(x) = vol (M)−1/2, F(ϕ0) = (1, 0, 0, . . . ), ‖ϕ0‖s = 1 for s > 0. (138)

By our assumption the interval I0 = (a0, b0) in Definition 2 contains only
the eigenvalue λ0 = 0. Thus ϕa0|Be(r0) is a δ-approximation of ϕ0|Be(r0). It
then follows from (16), (138) and Definition 2 (iii)–(v) that

∣∣∣∣ϕ
2
0 −

∫
Be(r0)

|ϕa0(x)|2dVga∫
Be(r0)

dVga

∣∣∣∣ ≤ cδ2. (139)
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Recall that the eigenfunction ϕ0(x) corresponding to the eigenvalue λ0 = 0
is the constant function ϕ0(x) = vol (M)−1/2. Using Theorem 4 we evaluate
the Fourier coefficients (c̃j)

j0
j=0 of v(x) which satisfies (118) with u = ϕ0. Let

vol a(M(α)) = vol a(M)

( j0∑

j=0

c̃2j

)1/2

(140)

Then, again using Theorem 4 together with (139), and the volume estimate
of M due to (16) we see that, with some uniform C > 0,

|vol a(M(α))− vol (M(α− 2γh(i)))| ≤ C(ε0 + δ).

Since vol (M(α)) − vol (M(α− 2γh(i))) < Cγ (cf. Lemma 2), the above
inequality implies estimate (137), if ε0 ≤ ε0(n,R,D, i0, r0) with a uniform
constant C33. Here we use the fact that δ < ε0, γ < ε0 for small ε0, see
(115), (75) where we take into account that 2/b(s) ≥ 1.

�

Next we show how to use FISD with errors to approximately find the
distances from various points x ∈M to points z ∈ B(p, r0/4). The principal
tool to achieve this goal is to approximately find the volumes of subdomains
of M obtained by the slicing procedure. We use slicing related to a small
parameter 0 < σ < τ/2 which will be chosen later so that if satisfies σ = p0γ
with p0 ∈ Z+.

For i ∈ {L, . . . , Ñ(σ)} and β ∈ A(i)∩(σN)L we use the notation M(β) for
domains defined in (67) with α replaced by β. We consider the intersection
of slices,

M∗
(i)(β) = {x ∈M ; d(x, zl) ∈ ((βℓ − 2σ), (βℓ + 2σ)), ℓ ∈ Ki} , (141)

that can be written as

M∗
(i)(β) =

⋂

ℓ∈Ki

(B(zℓ, βℓ + 2σ) \B(zℓ, βℓ − 2σ)).

To compute approximately vol (M∗
(i)(β)), we write it as

M∗
(i)(β) =

(
⋂

ℓ∈Ki

B(zℓ, βℓ + 2σ)

)
∩
(
⋂

ℓ∈Ki

B(zℓ, βℓ − 2σ)c

)

=

(
⋂

ℓ∈Ki

B(zℓ, βℓ + 2σ)

)
∩
(
⋃

ℓ∈Ki

B(zℓ, βℓ − 2σ)

)c

,
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where for Ω ⊂M, Ωc =M \ Ω.
Recall that σ = p0γ, where p0 ∈ Z+. Thus for ℓ ∈ Ki we have βℓ ± 2σ =

A±
ℓ γ, where A±

ℓ = Aℓ ± 2p0. Let us denote a±ℓ = aℓ ± 2p0γh
(i). Then

M∗
(i)(β) =

(
⋂

ℓ∈Ki

B(zℓ, α
+
ℓ )

)
∩
(
⋃

ℓ∈Ki

B(zℓ, α
−
ℓ )

)c

. (142)

To proceed, observe that, for any Ω, Ω̃ ⊂M ,

vol (Ω ∩ Ω̃c) = vol (Ω ∪ Ω̃)− vol (Ω̃),

vol (Ω ∩ Ω̃) = vol (Ω) + vol (Ω̃)− vol (Ω ∪ Ω̃),

vol
(
(Ω1 ∩ Ω2) ∪ Ω̃

)
= vol (Ω1 ∪ Ω̃) + vol (Ω2 ∪ Ω̃)− vol (Ω1 ∪ Ω2 ∪ Ω̃).

Thus, by induction,

vol

(
(
⋂

ℓ∈Ki

Ωℓ)
⋂

Ω̃c

)
=
∑

ℓ∈Ki

vol (Ωℓ ∪ Ω̃) (143)

−
n∑

ℓ 6=ℓ′=1

vol (Ωℓ ∪ Ωℓ′ ∪ Ω̃) + · · ·+ (−1)(L+1)vol

(
(
⋃

ℓ∈Ki

Ωℓ) ∪ Ω̃

)
− vol (Ω̃).

Returning to (142), we see thatM∗
(i)(β) has form (143) with Ωℓ = B(zℓ, α

+
ℓ ), Ω̃ =⋃

ℓ∈Ki
B(zℓ, α

−
ℓ ).

Since, for any α1, α2 ∈ A(i) we have

M(α1) ∪M(α2) =M(αm), where (αm)ℓ = max((α1)ℓ, (α2)ℓ),

it follows that all terms in (143) are of form vol (M(α)) for some α ∈ A(i).
Thus, using Lemma 9, we can approximately compute each term of (143) with
error C33ε0. Since there are 2L + 1 terms in (143), we obtain the following
result.

Lemma 10 There exists ε4(n,R,D, i0, r0) > 0 with the following property:
Let 0 < ε4 < ε4(n,R,D, i0, r0) and ε0 satisfies

ε0 ≤ C54ε4, where C54 =
1

C33(2L + 1)
. (144)
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Let δ > 0 satisfy conditions of Lemma 9 and ((Be(r0), g
a), {(λaj , ϕaj |Be(r0)); j =

0, 1, . . . , J0}) be δ-close, in the sense of Definition 2, to the FISD ((Be(r0), g),
{(λj, ϕj|Be(r0)); j = 0, 1, . . . }) of some M ∈ Mn,p(R,D, i0).

Let i ∈ {L, . . . , Ñ(σ)} and β ∈ A(i) ∩ (σN)L. Then, for any σ = p0γ > 0,
it is possible to evaluate approximate volumes, vol a(M∗

(i)(β)), of the sets
M∗

(i)(β) of form (141). Moreover,
∣∣∣∣vol

a(M∗
(i)(β))− vol (M∗

(i)(β))

∣∣∣∣ ≤ ε4. (145)

5.2 Distance functions approximation

We say that a function rM ∈ C0(B(p, r0/4)) is an interior distance function
if there is x ∈M such that

rM(z) = dM(x, z), for any z ∈ B(p, r0/4).

Notice that from now on we denote the distance on M by dM . Denoting such
rM(·) = rM,x(·), we have rM,x ∈ C0,1(B(p, r0/4)) ⊂ L∞(B(p, r0/4)).

The interior distance functions determine the interior distance map

RM : (M, g) → L∞(B(p, r0/4)), RM(x) = rM,x(·).

We note that the map RM or, more precisely, its image

RM(M) := {rM,x(·), x ∈M} ⊂ L∞(B(p, r0/4)), (146)

may be used to reconstruct (M, g). Namely, in [43], [37] it was shown how
to reconstruct (N, g|N), where

N :=M \B(p, r0/25). (147)

To this end we define

R∂N (N) = {r∂Nx ∈ L∞(∂N) : x ∈ N}, (148)

where
r∂Nx (z) = dN(x, z), for z ∈ ∂B(p, r0/25)

and dN is the distance in N . Later, in section 6.1 we show that RM(M)
or, more precisely, its approximation R∗, determines an approximation to
R∂N(N).
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Note that, in general, the metric dM induced on RM(M) from (M, g) is
different from the metric d∞ induced from L∞(B(p, r0/4)).

Our next goal is to construct a finite approximation R∗ to the set RM(M).
To this end, we use the volume approximations described in the previous
subsection.

First, let us define for z, z′ ∈ B(p, r0/2) an approximative distance da(z, z′)
to be the infimum of the lengths, with respect to the metric ga, of all piecewise
smooth paths µ : [0, 1] → B(p, r0) connecting z and z′. Assume that

δ < C44σ. (149)

Then Definition 3 (iv) implies that

|da(z, z′)− dM(z, z′)| ≤ C45σ. (150)

Let
{z1, . . . , zÑ(σ)} ⊂ B(p, r0/4), Ñ(σ) ≤ C13σ

−n

be a maximal σ-separated net in B(p, r0/4) with respect to the distance
function da, see (37). Moreover, assuming τ ≥ σ, let z1, . . . , zL−1 form a
τ -net in B(p, r0/4) with respect to metric da, see Lemma 1.

For any i ∈ {L, . . . , Ñ(σ)} and β ∈ R
Ñ(σ) we define a truncation operation

T (i) : RÑ(σ) → A(i), by setting

T (i)β = β̃ = (β̃ℓ)
Ñ(σ)
ℓ=1 ,

where β̃1 = β1, β̃2 = β2, . . . , β̃L−1 = βL−1 and β̃i = βi, and finally, β̃
(i)
ℓ = 0

for ℓ 6∈ Ki. To proceed, observe that for any x ∈ M \ B(p, 3r0/8 + σ) and

any ℓ = 1, . . . , Ñ(σ) there is βℓ(x) ∈ Z such that

βℓ(x)− σ ≤ dM(x, zℓ) ≤ βℓ(x) + σ.

Then, βℓ = βℓ(x) satisfies

B(x, σ) ⊂ B(zℓ, βℓ + 2σ) \B(zℓ, βℓ − 2σ).

Note that by (16), we have

ε4 ≤
1

4
C−1

1 σn. (151)
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Let β(x) = (βℓ(x))
Ñ(σ)
ℓ=1 ∈ R

Ñ(σ). Then, for any i ∈ {L, . . . , Ñ(σ)}, the
truncated element β(i)(x) = T (i)(β(x)) ∈ A(i) defines M∗

(i)(β
(i)(x)) such that

vol (M∗
(i)(β

(i)(x))) ≥ 4ε4, so that vol a(M∗
(i)(β

(i)(x))) ≥ 3ε4. (152)

These suggest the following

Definition 7 Let β = (βℓ)
Ñ(σ)
ℓ=1 , βℓ ∈ σZ+ and βℓ ≥ r0/8. We say that such

β is admissible, if for all i ∈ {L, L + 1, . . . , Ñ(σ)} the truncated element
β(i) = T (i)(β) ∈ A(i) satisfies

vol a(M∗
(i)(β

(i))) ≥ 3ε4. (153)

We define the set B = {β ∈ σZ
Ñ(σ)
+ ; β is admissible}.

Lemma 11 For any x ∈ M \ B(p, 3r0/8 + σ), there exists an admissible
β = (β1, . . . , βÑ(σ)) ∈ σNÑ(σ) such that

|dM(x, zℓ)− βℓ| ≤ 2σ, ℓ ∈ {1, 2, . . . , Ñ(σ)}.

Conversely, there is C28 > 0 such that, if β = (β1, . . . , βÑ(σ)) is ad-
missible, then there is x ∈ M \ B(p, 3r0/8 − C28σ) such that, for all ℓ ∈
{1, 2, . . . , Ñ(σ)},

|βℓ − dM(x, zℓ)| ≤ C28σ. (154)

Proof. The first statement follows from considerations before Definition 7.
On the other hand, assume that β = (βℓ)

Ñ(σ)
ℓ=1 ∈ B. Then equations (145)

and (153) guarantee that, for any i ∈ {L, . . . , Ñ(σ)} the truncated element
β(i) = T (i)(β) satisfies

vol (M∗
(i)(β

(i))) ≥ 2ε4, (155)

so that there is xi ∈ M∗
(i)(β

(i)), i ∈ {L, . . . , Ñ(σ)}. Thus, |dM(xi, zi)− βi| ≤
2σ and

|dM(xi, zℓ)− βℓ| ≤ 2σ, for all ℓ = 1, 2, . . . , L.
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Moreover, in view of (24), for j, k ∈ {L, . . . , Ñ(σ)},

dM(xj , xk) ≤ C6|H(xij −H(xk)| ≤ 4C6

√
Lσ.

The above two equations prove (154) for any x = xi with

C28 = 4C6

√
L+ 3. (156)

Moreover, since {zℓ}Ñ(σ)
ℓ=1 form a σ−net inB(p, r0/4), condition βℓ ≥ 3r0/8, ℓ =

1, . . . , Ñ(σ), implies that x ∈M \B(p, 3r0/8− C28σ).
�

For any ℓ = 1, . . . , Ñ(σ), let Vℓ ⊂ B(p, r0/4) be the corresponding Voronoy
region, i.e. the set of points z ∈ B(p, r0/4) for which zℓ is a closest point

among zk, k = 1, . . . , Ñ(σ). Note that as zk, k = 1, . . . , Ñ(σ), form a σ−net,

Vℓ ⊂ B(zℓ, σ). (157)

For any admissible β ∈ B we associate a piecewise constant function
rβ ∈ L∞(B(p, r0/4))

rβ(z) = βℓ, for z ∈ Vℓ, ℓ = 1, . . . , Ñ(σ). (158)

Let
R∗
> = {rβ(·) : β ∈ B } ⊂ L∞(B(p, r0/4)).

Choose a σ−net {x1, . . . , xN ′(σ)} ⊂ B(p, r0/2) by adding to z1, . . . , zÑ(σ) a

σ−net in B(p, r0/2) \B(p, r0/4). Next we define

rk(z) = da(xk, zℓ), for z ∈ Vℓ, k = 1, . . . , N ′(σ), ℓ = 1, . . . , Ñ(σ),

where da is defined before (150). Let

R∗
< = {rk(·) : k = 1, . . . , N ′(σ)} ⊂ L∞(B(p, r0/4)), and

R∗ = R∗
> ∪R∗

<. (159)

Lemma 12 We have

dH(RM(M), R∗) ≤ C29σ, where C29 = 2C28 + 2C45 + 1, (160)

where dH stands for the Hausdorff distance in L∞(B(p, r0/4)), C28 is defined
in (156) and C45 is determined in (150).
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Proof. By Lemma 11 and equation (157),

dH(R
∗
>, RM(M \B(p, 3r0/8))) ≤ (2C28 + 1)σ.

On the other hand, it follows from the definition (159) and (150) that

dH(R
∗
<, RM(B(p, r0/2))) ≤ (2C45 + 1)σ.

The above two inequalities imply (160).
�

6 Proof of Theorem 1 and Corollary 2

6.1 From interior distance functions to boundary dis-

tance functions

By standard estimates for the differential of the exponential map, see [60,
Ch. 6, Cor. 2.4] the diameter of the sphere ∂B(p, r), r < r0, is bounded

diam (∂B(p, r)) ≤ πr · sinh(
√
Kr)√

Kr
≤ πr cosh(

π

2
) ≤ 10 r, (161)

where we use condition (18). Let N =M \B(p, r0/25).

Lemma 13 Let x ∈M \B(p, r0/4) and y ∈ ∂N and z ∈ ∂B(p, r0/4), let

f(y, x, z) = dN(y, z) + dM(z, x), (162)

f(y, x) = min
z1∈∂B(p,r0/4)

f(x, y; z1),

where dN and dM are the distances in N and M , respectively. Then,

dN(y, x) = f(y, x) (163)

Proof. Clearly, as dM(z, x) ≤ dN(z, x) and a shortest curve in N from y to
x intersects the sphere ∂B(p, r0/4), we see that dN(y, x) ≥ f(y, x).

On the other hand let z′ = argminz(f(y, x; z)) and µ([0, f(y, x)] be the
corresponding union of the distance minimizing paths from y to z′ and from
z′ to x for which the minimum in (162) is achieved. Denote s1 = dN(y, z

′) and
consider µ([s1, f(y, x)]. We show next that µ([s1, f(y, x)] ⊂ N . If this is not
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the case, there would exists s1 < s2 < s3 < f(y, x) such that µ(s1), µ(s3) ∈
∂B(p, r0/4), µ(s2) ∈ ∂B(r0/25) and µ[s3, f(y, x)] ⊂M \B(p, r0/4). Then,

s1 ≥ r0

(
1

4
− 1

25

)
, s2 − s1 ≥ r0

(
1

4
− 1

25

)
, s3 − s2 ≥ r0

(
1

4
− 1

25

)
.(164)

On the other hand, consider a curve µ′([0, l]) which is parametrised by the
arclength and consists of the radial path from µ(s3) to y′ ∈ ∂B(r0/25) fol-
lowed by a shortest path along ∂B(r0/25) from y′ to y. Due to (161) and
(164),

l ≤ r0

(
10

25
+

1

4
− 1

25

)
< 3r0

(
1

4
− 1

25

)
≤ s3.

Taking the union of the path µ′([0, l]), connecting µ(s3) to y′, and the path
µ(s3, f(y, x)), connecting y′ to x, we get a contradiction to definition (163).
Thus, µ([s1, f(y, x)]) ⊂ N , i.e., dN(y, x) ≤ f(y, x).

�

Next, using the already constructed set R∗, see (159) together with Lem-
mata 12 and 13, we construct a set R∗(N) ⊂ L∞(∂N) which approximates
R∂N(N) defined (148).

Lemma 14 Let R∗ be the set given in (159), which satisfies (160) be given.
Then it defines a set R∗(N) ⊂ L∞(∂N) such that

dH(R
∂N(N), R∗(N)) ≤ C35σ, C35 = 2C29 + C45. (165)

Here C29 is defined in (160) and C45 is defined in (150).

Note that here we assume that δ satisfies (115), σ satisfies (151) with the
related equations for ε4, ε0, etc.

Proof The proof is based on the construction of R∗(N) which satisfies (165).
Observe first that it follows from the proof of Lemma 13 that, if x, y ∈

B(p, r0/4) \B(p, r0/25) ⊂ N , then

dN(x, y) ≤
r0
2
+

8r0
25
,

so that a shortest path in N connecting x and y lies in B(p, r0). Thus it
is possible, using (2), to construct an approximation r̃∂Nx : ∂N → R that
satisfies

‖r∂Nx − r̃∂Nx ‖L∞(∂N) ≤ C45σ, (166)
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cf. (150). Denote R∗
<(N) = {r̃∂Nx ; x ∈ B(p, r0/4) \B(p, r0/25)}, then

dH(R
∂N(B(p, r0/4)), R

∗
<(N)) ≤ C45σ, (167)

for δ < δ0, cf. construction of R∗
< in subsection 5.2.

Next, let

R∗
c = {r ∈ R∗ : min

z∈∂N
(r(z)) ≥ r0

8
}

For y, z ∈ B(p, r0/4) \B(p, r0/25) denote by daN(y, z) the distance between y
and z in the metric ga along the curves lying in B(p, r0/2) \B(p, r0/25). For
each r ∈ R∗

c we define

r̃∂N ∈ L∞(∂N) : r̃∂N(y) = inf
z∈∂B(p,r0/4)

(daN(z, y) + r(z)) ; (168)

R∗
>(N) = {r̃∂N(·) : r ∈ R∗

c}.

Then, with R∗(N) = R∗
<(N) ∪R∗

>(N), we have that

dH(R
∂N(N), R∗(N)) ≤ (C45 + 2C29)σ.

Here C45σ−error comes from an approximation of dN(y, z), z ∈ ∂B(p, r0/4),
see (150), and 2C29σ−error comes from approximating dM(z, x) and dN(y, z)
in formula (163), see (160). At last, we use again that δ satisfies the uni-
formly bound (115). �

Recall that the metric tensor g on B(p, r0) is a representation of a met-
ric in Riemannian normal coordinates and the C2,α-norm of the metric is
uniformly bounded. Using the fundamental equations of the Riemannian ge-
ometry, [60, Ch. 2, Prop. 4.1 (3)], we have that the shape operator S of the
surface ∂B(p, r), r < r0, can be given in the Riemannian normal coordinates
centered at p in terms of the metric tensor as S = g−1∂νg, where ν is the
unit normal vector of ∂B(p, r). Taking r = r0/25, we see that the C1,α-norm
of the shape operator S of ∂N is uniformly bounded. Also, by (18), the
boundary injectivity radius of (N, g|N) is bounded below by 24

25
i0. As the sec-

tional curvature of M and the second fundamental form (that is equivalent to
the shape operator) of its submanifold ∂N are bounded, the Gauss-Codazzi
equations imply that the sectional curvature of ∂N is bounded. As the met-
ric tensor of M is bounded in normal coordinates in B(p, r0), we see that the
(n− 1)-dimensional volume of ∂N = ∂B(p, r0/25) is bounded from below by
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a uniform constant. Thus by Cheeger’s theorem, see [60, Ch. 10, Cor. 4.4],
the injectivity radius of ∂N is bounded from below by a uniform constant.

Summarising the above, the Ricci curvature of (N, g|N) is uniformly
bounded in Cα, the second fundamental form of ∂N is uniformly bounded in
C1,α, and the diameter and injectivity radii of N and ∂N , and the bound-
ary injectivity radius of (N, ∂N) are uniformly bounded. By [37], using the
knowledge of the set, R∗(N) of approximate boundary distance functions,
which are C35σ−Hausdorff close to the set, R∂N(N) of the boundary dis-
tance functions of manifold (N, g|N), one can construct on the set R∗(N) a
new distance function d∗N : R∗(N)× R∗(N) → R+, such that

dGH((N, dN), (R
∗(N), d∗N)) ≤ C36(C35σ)

1/36, (169)

with a uniform C36 > 0.
Having constructed (R∗(N), d∗N) we can now construct an approximate

metric space (M∗, d∗M) which is C36(C35σ)
1/36− close to (M, dM). Indeed, let

x, y ∈ N and µ[0, l], l = dM(x, y) be a shortest between x and y. If µ[0, l] ⊂ N
then dM(x, y)) = dN(x, y). If, however, µ[0, l] intersects with B(p, r0/25)
then, due to the convexity of B(p, r0/25), there are 0 < s1 < s2 < l such that

µ[0, s1] ⊂ N, µ[s1, s2] ⊂ B(p, r0/25), µ[s2, l] ⊂ N.

Therefore, similar to Lemma 13, we obtain

Corollary 5 Let x, y ∈ N . Then

dM(x, y) = (170)

min

(
dN(x, y), min

z1,z2∈∂B(p,r0/25)
[dN(x, z1) + dM(z1, z2) + dN(z2, y)]

)
.

Next define, for r̃∂N1 , r̃∂N2 ∈ R∗(N),

d∗M(r̃∂N1 , r̃∂N2 ) = (171)

min

(
d∗N(r̃

∂N
1 , r̃∂N2 ), min

z1,z2∈∂B(p,r0/25)

[
r̃∂N1 (z1) + da(z1, z2) + r̃∂N2 (z2)

])

Using (170) together with (150), (169) and (2), we see that

dGH((N, dM), (R∗(N), d∗M) ≤ (2C36 + 1)(C35σ)
1/36 if C45σ ≤ (C35σ)

1/36.(172)
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Here (N, dM) is the manifold N with the distance function inherited from M
and δ < δ0, cf. (167).
Let us define the disjoint union M∗ = R∗(N) ∪ B(p, r0/25). Next we define
a metric d∗M on this set. To this end, consider first r̃∂N ∈ R∗(N), y ∈
B(p, r0/25). Recall, see the proof of Lemma 14, that the set R∗(N) is bijective
with R∗

c ∪ (B(p, r0/4) \B(p, r0/25)). In the case when r̃∂N is obtained from
r ∈ R∗

c , we define d∗M(r̃∂N , y) = r(y). Moreover, in the case when r̃∂N is
obtained from x ∈ B(p, r0/4) \B(p, r0/25), we define d∗M(r̃∂N , y) = da(x, y).
At last, if x, y ∈ B(p, r0/25), we take d∗M(x, y) = da(x, y).

It follows from (172) together with equations (150), (2), (160) and con-
siderations preceding Lemma 12 that

dGH((M
∗, d∗M), (M, dM)) ≤ (2C36 + 1)(C35σ)

1/36. (173)

Summarizing, we obtain

Lemma 15 Let R∗ satisfy (160) and M∗ = R∗(N)∪B(p, r0/25) with metric
d∗M . Then,

dGH((M, dM), (M∗, d∗M)) ≤ C47σ
1/36, C47 = (2C36 + 1)C

1/36
35 . (174)

6.2 Proof of Theorem 1

To prove the statement of the Theorem, we collect all the previous es-
timates. The aim is to find the relation between the final error ε (i.e.
dGH((M, dM), (M∗, d∗M)) ≤ ε) and the initial error δ. We proceed by fol-
lowing the chain of relations:

ε 7→ σ 7→ ε4 7→ ε0 7→ ε1 7→ γ 7→ ε2 7→ j0 7→ δ. (175)

By (174) we determine σ =
(

ε
C47

)36
and use it in (151), (144) and (93) with

Λs = 1 to calculate ε0 and ε1 so that

ε0 ≤
C54

4C1C36n
47

ε36n, ε1 ≤ C40ε
72n with C40 =

C2
54

160C2
1C

72n
47

. (176)

To proceed with γ, it follows from (100) that

γ ≤ C41ε
1/b(s)
1 , C41 = (2Lc(s))−1/(2b(s)). (177)
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Now use (115), (83), (86), (60) and (177) to get

δ ≤ C80ε
1

b(s)

(
s+n

2
+ s

s−1
(1+ n

2s
)
)

1

exp

[
s
s−1

(
1 + n

2s

)(
C30

C
2−θ/2
41

)1/β
L1/β

ε
(1+(2−θ/2)/b(s))/β
1

exp(
C

−c200
41

β
ε
−c200/b(s)
1 )

] ,(178)

i.e.

δ ≤ C80 ε
C39
1

exp
[
C81 ε

−C48
1 exp(C82 ε

−C49
1 )

] , (179)

with

C39 =
1

b(s)

(
s+

s

s− 1

(
1 +

n

2s

)
+
n

2

)
, C81 =

sL1/β

s− 1

(
1 +

n

2s

)( C30

C
2− θ

2
41

)1/β
,

C82 =
C−c200

41

β
, C49 =

c200
b(s)

, C48 =
1

β

(
1 +

2− θ
2

b(s)

)
, C80 =

C26C
s+n

2
+ s

s−1
(1+ n

2s
)

41

C
1/2
20 C

1+ n
2s

17

.

We use the inequality x ≤ exp(x) to bound from below the right hand side
of the estimate above to obtain, by calling C46 = max(C39, C48, C49, 1/(2n)),

δ ≤ 1

exp
[
exp((C−1

80 + C81 + C82)ε
−C46
1 )

] , (180)

Notice that (149) and (109) are also satisfied, by substituting to C80 the

quantity C85 = min(C−1
3 C80, C44/(C

36
47C

1/(2n)
40 )). Assuming 0 < δ ≤ exp(−e),

we get

(C−1
85 + C81 + C82)

ln
(
ln 1

δ

) ≤ εC46
1 , (181)

According to (93) with Λs = 1, the condition ε1 ≤ 1/1000 implies

δ ≤ C42, with C42 = min
(
exp(−e), 1/exp[exp[1000C46(C−1

85 +C81+C82)]]
)
.

Finally by using (176) and defining

C43 =
(C−1

85 + C81 + C82)
1/(72nC46)

C
1/(72n)
40
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we obtain (7). We also define δ∗ = C42. By (110) we define C50 = [C3j0(ε0; γ, s, 1)],
where [ ] denotes the integer part. Using (76) we get

C3j0(ε0; γ, s, 1) = C3C20
C
n/s
17

C
n+ n

s−1

41

ε
−1
b(s)

(n+ n
s−1

)

1 exp

[
nC81

sL1/β(1 + n
2s
)
ε−C48
1 exp

(
C82ε

−C49
1

)]
(182)

and then we substitute the ε1 obtained from (181) (with equality sign) in
order to get the δ dependency. This completes the proof of Theorem 1. �

6.3 Proof of Corollary 2

Let δ ≤ δ∗ = C42 and let the ISD of M (i), i = 1, 2 be δ−close.

Call ε =: ε(δ) = C43/
(
ln
(
ln 1

δ

))1/(72nC46). Now define the set

D =
(
(Be(r0), g

(1)), {λ(1)j , ϕ
(1)
j }J0j=0

)

where the index (1) is related to the IDS of M (1). For J0 sufficiently large
and by construction we see that the data D are δ-close to the ISD of both
M (1) and M (2). By Theorem 1 the metric space (M∗, d∗M) constructed with
these data is ε−close to both (M (i), d(i)), i = 1, 2, i.e.

dGH((M
∗, d∗M), (M (i), d(i))) ≤ ε, (183)

where ε is given by the right hand side of (7). We then conclude by triangular
inequality, see [18, Prop. 3.7.16], for any 0 < δ ≤ C42,

dGH((M
(1), d(1)), (M (2), d(2))) ≤ 2ε = 2C43/

(
ln
(
ln

1

δ

))1/(72nC46)
. (184)

We now extend this estimate to the case δ ∈ (0, exp(−e)], when C42 <
exp(−e). To this end, observe that the definition of the GH-topology and
(5) imply that, independently on δ,

dGH((M
(1), d(1)), (M (2), d(2))) ≤ D. (185)

By combining (184) and (185), and comparing them in δ = C42, we obtain
the inequality (8) with

C84 = 2max
(
1,

D

2ε(δ)|δ=C42

)
C43 = max

(
2C43, D

(
ln
(
ln

1

C42

))1/(72nC46)
)
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7 Appendix

7.1 Calculation of c206 in Theorem 2

In the following section we will not follow the notations of the article, since
all is derived from calculations done in [17].
Let α ∈ [1/3, 1), and T, ℓ, γ be defined as in Assumption A5, [17]. We define
the following Gevrey function as the smooth cut-off (see [61], Ex 1.4.9 for
definition):

χ1(t) = χ(1 + t)χ(1− t), with χ(s) = exp(−s α
α−1 ) for s > 0, χ(s) = 0 for s ≤ 0.

One can slightly modify the definition such that χ1 = 1 in a ball B1 ⊂ R,
χ1 = 0 outside the ball B2, and 0 ≤ χ1 ≤ 1. Observe that χ1 ∈ G

1/α
0 (R)

since:

|Dκχ1(v)| ≤ c0Xc
|κ|
1X |κ||κ|/α, with c0X = O(1), c1X = O

( 1

1− α

)
. (186)

Furthermore, define χδ(v) := χ1(v/δ), v ∈ R
M . Hence, Fv→ζχδ(v) = δMFv→δζχ1(v)

for ζ ∈ C, and calling c2X = 1/(eMc1X)
α we get

(187)

|Fv→ζχδ(v)| ≤ δMc0Xexp(δHB2(Imζ)− c2Xδ
α|Reζ |α) · Vol(supp(χ1), dv).

Product: For v ∈ B2(R
M),

|Dκχ1(v)χ2(v)| ≤ c0X,1c0X,1max{c1X,1, c1X,2}(max{c1X,1, c1X,2})|κ||κ||κ|/α.
We also recall and improve the coefficients in Lemma 2.1, [17], for L2 and
Hm:

c107 = c3

( 8

β1
Γ
( 1
α

) 1

α(c117)
1
α

) 1
2 1

(αc106)
1
α

, (188)

c108 = c107(1 + |Dm
x f |C0) + c107

(1 +m)
(m+1)

α

(αc106)
m
α

‖A(β1D0/µ)f(1−A(D0/µ))v‖1 ≤ c108e
−c106µα‖vsupp(f)‖m .
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In our application we are interested in the γ and (1 − α) dependency of
the geometric parameters, since both quantities tend to zero. We link these
coefficients with the following assumption:

αN =
1

2
that implies α1/r(n+1)

=
1

2
⇒ (1− α) ∼ rn+1 as α→ 1, (189)

with N = c170 and r defined in the following Table 1. From now on ∼ means
"up to a coefficient independent of γ or (1 − α)". Consequently, for χ1 and
c1X defined above, we get

c1X ∼ 1

1− α
∼ 1

γ58(n+1)
, |χ′

1|C0(Ω0) ∼ c1X , |χ′′
1|C0(Ω0) ∼ c21X .

We now consider the hyperbolic surfaces defined in Remark A.1. of [17] and
we calculate the corresponding Table A.3. in [17] (see also Table in [16]).
The lower indexes of the coefficients and the formulas in brecket correspond
to the ones used in [17, 16].
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Table 1
Name Order w.r.t. γ and (1− α)
Cl ∼ γ (4.7)-[17]
p1 ∼ γ2 (4.7)-[17]
dist{∂Ω0,Ωa}∼ γ2 (4.12)-[17]
|ψ′|Ck ∼ 1 (4.8)-[17]
dg(x, z) ∈ [ℓ, T − γ] (in Γ\ cylinder)
|∂kdg| ∼ 1 (4.6)-[17]
C3 ≥ 1
MP ≤ 1
M1 ≥ 1

(p1)2
= 1

γ4

M2 ≥ M1 =
1
γ4

λ ≥ max{M1, e,
1
C2

l
} = 1

γ4

φ0 ≥ e−1

φM ≤ e
R1 ≤ min{1, γ2, 1

λ
} = γ4

cT ∼ cT1 + cT2 = λ3 = 1
γ12

c100 ≥ 1
ǫ0 ≤ 1

(λ(1+λ)+cT )
= 1

λ3
= γ12

R2 ≤ min
{
R1,

Cl

(1+λ+cT /λ)
,
λ2C2

l

cT
,
(

1
c2TM1(1+λ2)

) 1
4
, ǫ0√

2M2
, λ

cT

(
1+λ2+λ2(1+λ)

)
}

,

= min{γ4, γ9, γ6, γ9, γ14, γ20} = γ20

σ ≥ cTR2 = γ8

τ0 ≥ M1

((
λ2 + cTR2

)2
+ |h|2C0(Ω0)

(1 +
(
λ+ cTR

2
2

)2
) + |q|2C0(Ω0)

)
= 1

γ20

R ≤ R2 = γ20

δ ≤ cTR
3
2 = γ48

r ≤ λ2C2
l R

3
2(

λ+cTR2
2

) = γ58

c1,T ≥
√(

M1

τ0
+ 1

λ

)
= γ2

c2,T ≥ √
M2(1+

|χ′

1|C0(Ω0)

τ0R
)+

c1,T√
τ0
c133 =

1
γ2
+ 1

γ8
(|χ′′

1|C0(Ω0)+
|χ′

1|C0(Ω0)

γ4
) ∼ c21X

γ8

c133 ≥ |χ′′

1 |C0(Ω0)

τ0R2 +
|χ′

1|C0(Ω0)

R
(1 + λ + cTR

2
2 +

|h|L∞(Ω0)

τ0
) = 1

γ20
(|χ′′

1|C0(Ω0) +
|χ′

1|C0(Ω0)

γ4
)
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We are now ready to calculate the coefficients used in the proof of Th.1.2
(resp. Th.3.3) in [17] (see the next Table 2 and the calculations below). First
we split each smooth localizer in time and space (see Remark 2.8 (4) in [17]):

b
(y − y0

R

)
= b
(t− t0

R

)
b
(x− x0

R

)
,

with b(t) = χ1(t) ∈ G
1/α
0 (R) and b(x) ∈ C2

0(R
n). Consequently the functions

f1(y), f2(y), f3(y) (see (2.21) in [17]) can be written as: f(y) = f(t)f(x), with
f(t) = D2

0bj−1(t)+D0bj−1(t)+bj−1(t) and f(x) = DrDsbj−1(x)+Drbj−1(x)+
bj−1(x), for bj−1(t) := b(2(t− tj−1)/r). Let v = b((y − yj−1)/r)uj−1, then

‖A
(3D0

ν

)
f(t)

(
1− A

(D0

ν

))
f(x)v‖1 ≤ ‖A

(3D0

ν

)
(D0f(t))

(
1− A

(D0

ν

))
f(x)v‖0

+‖A
(3D0

ν

)
f(t)

(
1− A

(D0

ν

))
(D0 +Dx + 1)(f(x)v)‖0 ≤ c108c152exp(−c106να)

with c108 calculated as in (188) with β1 = 3, m = 3, c3 = (r/2)c0X. Moreover,

c162,j = 2c162,j−1 + c153c164 + c155,j−1| − P2bj−1 + hs(x)Dxsbj−1|C0

+c107c152
(
1 + n2|gkr|C0 + |hs|C0

)
+ c155,j−1|2D0bj−1|C1 + c152c108

+c155,j−1|D0(2D0bj−1)|C0 + c152c107

+c155,j−1|2ngkrDkbj−1|C1 + c152c108n
2|gkr|C1

+c155,j−1|Dr(2g
krDkbj−1)|C0 + c107c152n

2|gkr|C1

∼ 2c162,j−1 +
(N2c21X

r2

)c3/21X

r1/2
+ c155,j−1(1 + |gkr|C1 + |hs|C0)

( |b′|0
r

+
|b′′|0
r2

+
|b′|20
r2

)
+

+
(Nc1X

r

)
c108(1 + |gkr|C1 + |hs|C0) ∼ c162,j−1 + c155,j−1

c21X
r2

c154,j = c162,j + c153c̃107 ∼ c162,j +
N2c31X
r2

Rn ∼ c162,j ∼ c155,j−1
c21X
r2

c116 ∼ γ4c2154,j

(Nc1X
γ48

)4
.

By applying Lemma 2.6 in [17] with cU = c152, cP = c153, cA = c154,j , one
obtains:

c155,j = c150(c152, c153, c154,j) ∼ c31X

√
c116
γ48

∼ N2c51X
γ46+58·2 c155,j−1,

c156 = min
( 1

18βc131
, c

1/α
132 , c

1/α
165 ,

c
1/α
106

3c131

)
=

c
1/α
106

3c131
∼ γ56α+58(n+1)(α+1)+28.
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Recalling that αN = θ = 1/2, we get c159 = c
− 1

αN−1(1−α)

156 > 1 and c160:

c159 ∼
( 1

γ56α+58(n+1)(α+1)+28

) 1

2γ58(n+1)

= exp
(−[56α + 58(n+ 1)(α+ 1) + 28]

2γ58(n+1)
ln(γ)

)
,

c158 = Nc155,N + 3Nc131c152

(
1 +

|b′|C0

r

)
c
−α/(1−α)
156 ∼ Nc131c152c

1/2
159

c160 =
(
ln(1 + ec159)

)1/2
+ 21/2c158 ∼ c158 ≤ exp

( 1

γc200

)
, c200 = 58(n+ 1) + 2

To obtain c206 we proceed as in Remark 3.8. of [17], by repeating the previous
calculations for different sets of translated hyperbolic surfaces. We get c206 ∼
c160, up to a multiple of i0, the lower bound of the injectivity radius. We call
c205 the multiplicative constant that includes all the geometric parameters
T, i0, D, r0, R, n.
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Table 2
Name Value Name Value
c2X = c102 =

1
(ec1X )α

c119 δc1X ∼ γ48c1X

c118 1+ |φ′|0(1+R2)+5n|φ′′|0,ρRρ+1
2 +

|φ′′|0(1 +R2
2) + σ(2 +R2

2) ∼ 1
γ8

c114 c21,T |g|2C1|χ1|2C2(1 + |ϕ′|4C0/δ4 +

|ϕ′′|2C0/δ2) ∼ c41X
γ12+48·4

c115 c22,T (|ϕ′|2C0 + 1)(33e−3/δ3)(1 +

|χ′
1|2C0/δ2) ∼ c61X

γ8·3+48·5

c121
c1X
δ

c122
c21X
γ44

c123 ∼ γ56·α

cα1X

c128
1

3α2
c123 ∼ c123 c110 c122

( 8Γ(1/α)

3[αc
1/α
123 (αc128)

1/α]

)1/2 ∼ c31X
γ44+56

c109 min(
√
ǫ δ/36, c128/2, 1) ∼ γ56·α

cα1X
c130

3c109
4δ

(
1
16

)5
∼ γ56·α−48

cα1X

c131 max(166
√
2, 16

63α−1
√
2ǫ0δ

c123
, 16

6
√
ǫ0δ

3
√
2

) ∼
cα1X

γ56·α−30

c135 rαc2X
1

4·3α ∼ γ58·α

cα1X

c137 min(1
2

(
c102δ

α (c130)α

(
√
2)α

+

δ c130
2
√
2

)
, 1
2
c102δ

α( 1
2
√
2
c130)

α) ∼
γ48·α

cα1X
cα130

c132 min(c135, c137) ∼ γ56·α·α

cα·α
1X

1
cα1X

c170 N ∼ 1
γ58(n+1)

c̃117 c2XR
α = (ec1X)

−αRα β 2 + ( 4
c̃117

)1/α ∼ c1X
R

(2.11)

c̃106
1
βα ∼ Rα

cα1X
c̃107 Rn+1c0X

(
8
β
Γ
(

1
α

)
1

α(c̃117)1/α

)1/2
1

(αc̃106)
1
α
∼

Rnc1X
c154,1 1 + c̃107 ∼ Rnc1X c155,1 max(c134, c136) =

max(c2.51Xγ
58(n− 3

2
),

c61X
γ180

) =
c61X
γ180

c153 1 + 2N
(
1 + n2|gkr|C0 +

|hs|C0

)( |b′|C0

r
+

|b′′|C0

r2
+ (N −

1)
|b′|2

C0

r2

)
∼ N2c21X

r2

c152 2
(
1 +N

|b′|C0

r

)
∼ Nc1X

r

c162,1 1 c117 (r/2)α 1
(ec1X)α

∼ rα

cα1X

c165 c117β
α/(3α4) ∼ rα

Rα ∼ γ38α c164
r
2
c0X
(
8
3
Γ
(

1
α

)
ec1X

α1/α(r/2)

)1/2 ec1X(3α4)
1
α

(α
1
α (r/2))

∼
c
3/2
1X

r1/2

c107 c164 ∼ c
3/2
1X

r1/2
c108

(
c107 + c107

44/α

(αc106)3/α

)(
1 + |b′|0

r
+

|b′′|0
r2

+ |b′′′|0
r3

)(
1 + |b′|0

r

)
∼ c

17
2

1X

r
15
2
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