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State redistribution is the protocol in which given an arbitrary tripartite quantum state,
with two of the subsystems initially being with Alice and one being with Bob, the
goal is for Alice to send one of her subsystems to Bob, possibly with the help of
prior shared entanglement. We derive an upper bound on the second order asymptotic
expansion for the quantum communication cost of achieving state redistribution with
a given finite accuracy. In proving our result, we also obtain an upper bound on
the quantum communication cost of this protocol in the one-shot setting, by using
the protocol of coherent state merging as a primitive. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4949571]

I. INTRODUCTION

State redistribution is a fundamental protocol in quantum information theory and serves as a
primitive for various other information theoretic protocols, such as state merging, coherent state
merging, and quantum channel simulation and rate distortion in the presence of quantum side
information (see, for example, Refs. 1 and 2 and references therein). It can be described as follows.
Suppose Alice and Bob share a tripartite state ρABC with the systems A and C being with Alice
and the system B being with Bob. Let ψABCR denote a purification of ρABC, with R being the
inaccessible, purifying reference system. In addition, Alice and Bob are allowed to share entangled
states. The task is for Alice to transfer the state of her system A to Bob, possibly with the help of the
prior shared entanglement, such that the purity of the global state is preserved. Alice and Bob can
both do local operations (LO) on systems in their possession and Alice can send qubits to Bob, i.e.,
she is allowed one-way quantum communication (QC) with Bob. The minimum number of qubits
needed for this task is referred to as the quantum communication cost of the protocol.

This protocol was first introduced by Devetak and Luo,3 but only an outer bound was proved.
It was studied by Devetak and Yard4,5 in the so-called “asymptotic independent and identically
distributed (i.i.d.) setting,” in which Alice and Bob share multiple (say n) identical copies of the
state ρABC, instead of just one. The quantum communication cost, Q, in this setting is defined as the
minimum rate of quantum communication from Alice to Bob needed so that the error incurred in
achieving the goal (of transferring the states of the systems labelled by A from Alice to Bob) van-
ishes in the asymptotic limit (n → ∞). Let the corresponding rate of entanglement consumption18

be denoted as E. Devetak and Yard4 proved that state redistribution is possible in this setting if and
only if Q and E satisfy the following bounds:
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Q ≥ 1
2

I(A; R|B), Q + E ≥ H(A|B). (1)

Here I(A; R|B) denotes the conditional mutual information of the state ρABR B TrCψABCR, and
H(A|B) is the conditional entropy of ρAB. In fact, this provided the first operational interpretation of
the quantum conditional mutual information.1,4

In this paper, we first consider state redistribution in the “one-shot setting” in which Alice and
Bob share a single copy of the state ρABC. Instead of requiring that the error incurred in the protocol
vanishes asymptotically, it is natural in this case to allow for a small but non-zero error ε > 0.
We refer to the minimum number of qubits which are needed to be transferred in this case as the
ε-error one-shot quantum communication cost. We derive an upper bound on this quantity in terms
of the smooth min- and max-entropies of one-shot information theory (see, e.g., Refs. 9 and 10 and
references therein).

Our ultimate goal is to derive an upper bound on the second order asymptotic expansion for
the quantum communication cost of state redistribution, for n identical copies of the state ρABC,
with an error of at most ε. We establish that, for any tripartite state ρABC, and any given ε ∈ (0,1),
an upper bound on the quantum communication cost of achieving quantum state redistribution of
ρ⊗n
ABC

, with an error of at most ε, can be expressed in the form

an + b
√

n + O(log n),
here the first order coefficient a is equal to 1

2 I(A; R|B) (as expected from the result of Devetak and
Yard4). We obtain an explicit expression for the second order coefficient b, which depends on both
the state ρABC and the allowed error threshold ε.

A simple corollary of the above expansion is the following result: in the asymptotic i.i.d. sett-
ing,4 state redistribution can be achieved if Alice sends qubits at a rate (1/2)I(A; R|B) to Bob (as is
implied by (1)).

Our result employs the protocol of coherent state merging6,19 which is described in the one-shot
setting as follows. One starts with a tripartite pure state ψABR, where the system A is with Alice, B
is with Bob, and R denotes the purifying reference system. Alice and Bob do not share any entan-
glement at the start of the protocol. The aim is for Alice to transfer the state of the system A to Bob
and at the same time generate entanglement with him. Alice and Bob can both do local operations
on systems in their possession and Alice can send qubits to Bob. The quantities of interest are the
quantum communication cost and the entanglement gain: the former is the minimum number of
qubits that Alice needs to send to Bob in order to achieve the state transfer (up to a given finite
accuracy) and the latter is the maximum entanglement created in this process. In previous work8 we
obtained bounds on these quantities under the constraint that the error incurred in the protocol was
at most ε (for an arbitrary but fixed ε ∈ (0,1)).

It is easy to see that this protocol can be considered as a special case of state redistribution:
the system C which Alice has at the start of state redistribution can be viewed as quantum side
information; then coherent state merging corresponds to the case in which no such side information
is available to Alice. In this sense, state redistribution can be used as a primitive for coherent
state merging. However, Oppenheim7 proved that the reverse is also true: state redistribution can
be achieved in the asymptotic i.i.d. setting by using coherent state merging as a primitive. In this
paper we make use of this idea, and employ the bounds on the quantum communication cost and
entanglement gain for one-shot coherent state merging,8 to obtain an upper bound on the quantum
communication cost for one-shot state redistribution. We would like to point out that the same upper
bound derived in this paper here was also independently obtained in the work by Berta, Christandl
and Touchette.17

In Section II we define the entropic quantities in terms of which our results, Theorems 1 and 3,
are expressed, and state some of their relevant properties. In addition, we define the operational
quantities of one-shot coherent state merging which we employ in our proof of Theorem 1. In
Section III we give a precise definition of the operational quantity that we study, namely, the
quantum communication cost of ε-error one-shot state redistribution and state our first theorem
(Theorem 1) which consists of an upper bound on this cost. In Section IV we recall the protocol
of coherent state merging, which we use as a primitive in our proof of Theorem 1, which is given
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in Section V. The statement and proof of our main result (Theorem 3), which consists of an upper
bound on the second order asymptotic expansion for the quantum communication cost of state
redistribution, are given in Section VI.

II. NOTATIONS AND DEFINITIONS

Let P(H ) denote the set of positive semi-definite operators acting on a finite-dimensional
Hilbert space H , and let D(H ) ⊂ P(H ) denote the set of density matrices (states) on H . Fur-
thermore, let D≤(H ) denote the set of subnormalized states.20 For any given pure state |ψ⟩ ∈ H ,
we denote the projector |ψ⟩⟨ψ | simply as ψ. For ωAB ∈ P(HA ⊗ HB), let ωA B TrBωAB denote its

restriction to the subsystem A. For ρ,σ ∈ D(H ), the fidelity is defined as F(ρ,σ) B Tr
√

ρσ
√
ρ.

We use the same expression for fidelity when either one of ρ or σ is subnormalized. For simplicity,
we denote a quantum operation (i.e., a completely positive trace-preserving (CPTP) map) Λ :
D(HA) → D(HB) as Λ : A → B. The identity map is denoted as id. A quantum operation on a
bipartite system, shared between two distant parties (say, Alice and Bob), which consists of local
operations on the two subsystems and quantum communication from Alice to Bob is said to be a
(one-way) LOQC map.

The results in this paper involve various entropic quantities. The von Neumann entropy of a
state ρA ∈ D(HA) is given by H(A)ρ = −TrρA log ρA. For a bipartite system, ρAB the conditional
entropy of the subsystem A given B is defined as H(A|B) = H(ρAB) − H(ρB). For a tripartite state
ρABC, the conditional mutual information of the subsystems A and B given C is defined as:

I(A; B|C) = H(B|C) − H(B|AC).
In addition to the above entropic quantities, we make use of the following generalized entro-

pies9,11 which arise naturally in one-shot quantum information theory:

Let ρAB ∈ D≤(HA ⊗ HB). For a bipartite state ρAB, the min-entropy of A conditioned on B is
defined as

Hmin(A|B)ρ = max
σB∈D(HB)

[−Dmax(ρAB∥IA ⊗ σB)] ,

where for any ρ ∈ D≤(H ) and ω ∈ P(H ), Dmax(ρ∥ω) is the max-relative entropy:12

Dmax(ρ∥ω) B inf{γ : ρ ≤ 2γω}.
For any ε ∈ (0,1), a smooth version of these quantities are given by

Dε
max(ρ∥ω) B min

ρ∈Bε(ρ)
Dmax(ρ∥ω)

Hε
min(A|B)ρ B max

ρAB∈Bε(ρAB)
Hmin(A|B)ρ, (2)

where for any state ρ ∈ D(H ), Bε(ρ) denotes the ε-ball around ρ and is defined as

Bε(ρ) B {ρ ∈ D≤(H ) : F2(ρ, ρ) ≥ 1 − ε2}.
The smooth conditional max-entropy is given in terms of the smooth conditional min-entropy

via the following duality relation:11,14,15

Let ρAB ∈ D(HA ⊗ HB) and let ρABC ∈ D(HA ⊗ HB ⊗ HC) be an arbitrary purification of
ρAB. Then for any 0 ≤ ε ≤ 1,

Hε
max(A|C)ρ B −Hε

min(A|B)ρ. (3)

We also make use of the Rényi entropy of order zero, which for a state ρ ∈ D(H ) is defined as

H0(A)ρ = log(rkρA),
where rkρA denotes the rank of ρA. Its smooth version for any ε ∈ (0,1) is given by

Hε
0 (A)ρ = min

ρ∈Bε(ρ)
H0(A)ρ.
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In order to obtain an upper bound on the second order asymptotic expansion for the quantum
communication cost, we make use of the second order asymptotic expansion for the smooth
max-relative entropy which was derived by Tomamichel and Hayashi in Ref. 13: for any ρ ∈ D(H )
and σ ∈ P(H ) with suppρ ⊆ suppσ, ∀ ε ∈ (0,1),

Dε
max(ρ⊗n∥σ⊗n) = nD(ρ∥σ) − √n s(ρ∥σ)Φ−1(ε2) + O(log n), (4)

where D(ρ∥σ) B Tr (ρ log ρ − ρ logσ) is the quantum relative entropy,

s(ρ∥σ) B V (ρ∥σ), with V (ρ∥σ) B Tr
�
ρ(log ρ − logσ)2� − D(ρ∥σ)2, (5)

being the quantum information variance, and Φ−1(ε) B sup{x ∈ R | Φ(x) ≤ ε} is the inverse of the
cumulative distribution function of a standard normal random variable.

III. ONE-SHOT STATE REDISTRIBUTION

Our first result is an upper bound on the ε-error quantum communication cost and the ε-error
entanglement cost of state redistribution. It is given by Theorem 1 below. Before stating it we need
the following definition.

Definition 1 (One-shot state redistribution). Consider a tripartite state ρABC shared between
two parties Alice and Bob, with the systems A and C being with Alice and the system B be-
ing with Bob. Let ψABCR denote a purification of ρABC, with R being the inaccessible, purify-
ing reference system. Let Alice and Bob have further registers A0, A1 and B0, B1, respectively.
A one-shot ε-error state redistribution protocol is then defined as a joint quantum operation
Λ : AC A0 ⊗ BB0 → C A1 ⊗ B1B′B, which is one-way LOQC (with the quantum communication
being from Alice to Bob) and such that

F
(
ρCA1B1B′BR,Φ

m
A1B1
⊗ ψCB′BR

)
≥ 1 − ε, (6)

where ρCA1B1B′BR B (Λ ⊗ idR)
(
ψABCR ⊗ Φk

A0B0

)
and Φk

A0B0
, Φm

A1B1
are maximally entangled

states of Schmidt rank k, m, respectively. Here, B′ is a local ancilla of Bob’s of the same size
as A. The quantum communication cost of the protocol, which we denote as q(1)

ε (ρABC,Λ), is the
minimum number of qubits that Alice needs to send to Bob for (6) to hold. Moreover, the number
(log k − log m) B e(1)ε (ρABC,Λ) is called the entanglement cost of the protocol.

The quantum communication and entanglement cost of ε-error one-shot state redistribution for
a state ρABC are then defined as

q(1)
ε (ρABC)B min

Λ
q(1)
ε (ρABC,Λ), (7)

e(1)ε (ρABC) B min
Λ

e(1)ε (ρABC,Λ), (8)

where the minimum is taken over all ε-error one-shot state redistribution protocols Λ.
Our first main result in this paper is given by the following theorem.

Theorem 1. Fix ε ∈ (0,1). Then for any tripartite state ρABC, there exists an ε-error one-shot
state redistribution protocol Λ, with quantum communication and entanglement cost given by

q(1)
ε (ρABC,Λ) = 1

2

(
Hε′

max(A|B)ψ − Hε′
min(A|RB)ψ

)
− 2 log ε′, (9)

e(1)ε (ρABC,Λ) = 1
2

(
Hε′

max(A|B)ψ − Hε′
max(A|C)ψ

)
, (10)

where ε′ = ε2/(√5 + 1)2, and ψAB and ψABR are the reduced states of a purification ψABCR of the
state ρABC.

In particular, the RHS of (9) and (10) provides an upper bound on the quantum communication
cost q(1)

ε (ρABC) defined by (7) and the entanglement cost q(1)
ε (ρABC) defined by (8), respectively.
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IV. ONE-SHOT COHERENT STATE MERGING: A PRIMITIVE FOR ONE-SHOT
STATE REDISTRIBUTION

The proof of Theorem 1 employs a result on one-shot coherent state merging (or FQSW)
proved in Ref. 8, which is given by Theorem 2 below. Before stating it, we need to introduce the
following definition.

Definition 2 (One-shot coherent state merging or FQSW). Consider a bipartite state ρAB shared
between Alice and Bob, with the system A being with Alice and the system B being with Bob.
Let ψABR denote its purification, with R being the inaccessible, purifying reference system. We
call a quantum operation Λ̃ : A ⊗ B → A1 ⊗ B1B′B one-shot ε-error coherent state merging of ρAB

if it is one-way LOQC (with the quantum communication being from Alice to Bob) and the state
ΩA1B1B′BR B

�
Λ̃ ⊗ idR

�
ψABR, is such that

F
(
ΩA1B1B′BR,Φ

m
A1B1
⊗ ΨB′BR

)
≥ 1 − ε, (11)

where Φm
A1B1

denotes a maximally entangled state of Schmidt rank m. Here, B′ is a local ancilla of
Bob’s of the same size as A. The number log m is called the entanglement gain of the protocol and
denoted as ẽ(1)ε (ρAB,Λ̃). Let q̃(1)

ε (ρAB,Λ̃) denote the corresponding quantum communication cost,
that is, the minimum number of qubits that Alice needs to send to Bob for (11) to hold.

Theorem 2 (Ref. 8). Fix ε ∈ (0,1). Then for any bipartite state ρAB, there exists an ε-error
one-shot coherent state merging protocol, Λ̃, with entanglement gain and quantum communication
cost, respectively, given by Ref. 21,

ẽ(1)ε (ρAB,Λ̃) = 1
2


Hε′

0 (A)ψ + Hε′
min(A|R)ψ


+ log ε′, (12)

q̃(1)
ε (ρAB,Λ̃) = 1

2


Hε′

0 (A)ψ − Hε′
min(A|R)ψ


− log ε′, (13)

where ε′ = ε2/(√5 + 1)2, and ψA and ψAR are the reduced states of a purification ψABR of the state
ρAB.

Remark. The proof of the above theorem8 relies on a decoupling argument and ensures the
existence of a unitary operator U and an isometry V , such that ε-error one-shot coherent state
merging is achieved if (i) Alice acts on the state of her system A with U, (ii) sends q̃(1)

ε qubits to Bob,
and (iii) Bob acts on the composite state of the qubits that he receives from Alice and the state of his
system B by the isometry V .

V. PROOF OF THEOREM 1

For any tripartite state ρABC, an expression for the quantum communication cost of an ε-error
one-shot state redistribution protocol, for any fixed ε ∈ (0,1), can be obtained by a direct application
of one-shot coherent state merging, if we simply consider Alice to transfer the state of her system A
to Bob, without exploiting the additional system C which is in her possession. In this case, we can
consider C to be part of the reference system. From Eq. (13) of Theorem 2 we then infer that state
redistribution can be achieved by the transfer of the following number of qubits from Alice to Bob:

∆q =
1
2
[Hε′

0 (A)ψ − Hε′
min(A|CR)ψ] − log ε′, (14)

where ε′ is as stated in Theorem 1. Meanwhile, from Eq. (12) of Theorem 2, the amount of
entanglement generated is

∆e1 =
1
2
[Hε′

0 (A)ψ + Hε′
min(A|CR)ψ] + log ε′. (15)

However, one-shot state redistribution can be achieved at a lower quantum communication cost
than that given by (14) above. A simple way to see this is by employing the one-shot version of a
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novel construction which was introduced by Oppenheim7 in the asymptotic i.i.d. setting. In it the
system C plays the role of a coherent relay as explained below (see also Figure 1).

For this construction, it is convenient to split the two-party protocol between Alice and Bob
into a three-party protocol, by considering the system C to be in the possession of a third party (say,
Charlie). The construction is implemented through the following steps:

Step 1. One-shot ε-error coherent state merging from Alice to Charlie: Let us denote this protocol
by Λ̃. It results in the transfer of Alice’s state ρA to Charlie (with an error of utmost ε), with the
simultaneous generation of entanglement between them. By Eq. (12) of Theorem 2, the number of
ebits of entanglement generated at this stage is given by

∆e2 B
1
2


Hε′

0 (A)ψ + Hε′
min(A|BR)ψ


+ log ε′. (16)

From the remark given after Theorem 2 it follows that this step can itself be broken down into
two steps:7 (i) Alice applies a unitary transformation denoted by a unitary operator U (say) on her
system A and sends the required number of qubits (needed to implement a one-shot ε-error coherent
state merging protocol Λ̃) to Charlie. This number is given by the right hand side of Eq. (13) of
Theorem 2, with the replacement of R by BR. This is because in this case BR play the role of the
reference. (ii) Charlie then does the corresponding decoding isometry V (say) on the composite state
of the qubits that he receives from Alice and the system C in his possession. After applying V , the
resulting output will be ∆e2 ebits, shared between him and Alice, and a remaining subsystem S in
Charlie’s possession.

Step 2. Ebit repackaging: Charlie sets aside his share of the ebits that were generated from the
previous step and replaces them by those that he shared with Bob at the start of the protocol. He then
applies V † to the joint state of the latter and S.

Note that the above steps effectively result in the transfer of ∆e2 qubits from Alice to Bob.
Hence, instead of sending ∆q qubits (given by (14)), Alice (or, in this three-party description,
Charlie) only needs to physically send (∆q − ∆e2) qubits to Bob, in order to achieve ε-error
one-shot state redistribution. From (14) and (16) we then infer that there exists an ε-error one-shot

FIG. 1. The ε-error one-shot state redistribution protocol using one-shot coherent state merging and ebit repackaging. Shares
of the state ρABC are represented by circles, while shared entanglement is represented by wiggly lines. The protocol of ebit
repackaging is contained in the dashed rectangle. Due to the ebit repackaging, ẽ(1)ε (ρAB, Λ̃) qubits (highlighted in red and
given by (12) of Theorem 2) are effectively sent to Bob without being physically transferred. Here Λ̃ denotes the coherent
state merging protocol from Alice to Charlie.
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state redistribution protocol, Λ, with quantum communication cost,

q(1)
ε (ρABC,Λ) = ∆q − ∆e2

=
1
2

(
−Hε′

min(A|CR)ψ − Hε′
min(A|BR)ψ

)
− 2 log ε′

=
1
2

(
Hε′

max(A|B)ψ − Hε′
min(A|BR)ψ

)
− 2 log ε′, (17)

where the last line follows from duality relation (3), since ψABCR is a pure state.
To show the entanglement cost of the ε-error one-shot state redistribution protocol, note that the

naive protocol (that treats C as part of a reference system) generates ∆e1 amount of entanglement.
However, the protocol of ebit repackaging trades ∆e2 amount of generated entanglement into quan-
tum communication. Thus the entanglement cost of the ε-error one-shot state redistribution protocol
is

e(1)ε (ρABC,Λ) = −(∆e1 − ∆e2)
=

1
2

(
−Hε′

min(A|CR)ψ + Hε′
min(A|BR)ψ

)
=

1
2

(
Hε′

max(A|B)ψ − Hε′
max(A|C)ψ

)
. (18)

This completes the proof of Theorem 1.

VI. SECOND ORDER ASYMPTOTICS

Consider the situation in which Alice and Bob share n identical copies of the state ρABC. In
this case, it follows from Theorem 1 that an upper bound on the quantum communication cost,
q(1)
ε (ρ⊗n

ABC
), for state redistribution is given by the following:

q(1)
ε (ρ⊗nABC) ≤

1
2


Hε′

max(An |Bn)ψ − Hε′
min(An|RnBn)ψ


− 2 log ε′,

=
1
2


−Hε′

min(An|CnRn)ψ − Hε′
min(An|RnBn)ψ


− 2 log ε′,

=
1
2
[ min
σCnRn

Dε′
max(ψAnCnRn∥IAn ⊗ σCnRn)

+ min
ωBnRn

Dε′
max(ψAnBnRn∥IAn ⊗ ωBnRn)] − 2 log ε′

≤ 1
2
�
min
σCR

Dε′
max(ψ⊗nACR∥I ⊗nA ⊗ σ

⊗n
CR)

+min
ωBR

Dε′
max(ψ⊗nABR∥I ⊗nA ⊗ ω

⊗n
BR)

�
− 2 log ε′, (19)

where ψAnBnCnRn ≡ ψ⊗nABCR
, with ψABCR being a purification of ρABC. The first equality follows

from duality relation (3), the second equality follows from definition (2) of the smooth conditional
min-entropy, the second inequality follows from the restriction of the minimization to a smaller set
and the fact that the reduced states of ψAnBnCnRn are tensor-power states. The minimizations in the
above equation are all over (normalized) states.

We now employ the second order asymptotic expansion of the max-relative entropy, given by
(4), which we recall here for convenience

Dε
max(ρ⊗n∥σ⊗n) = nD(ρ∥σ) − √n s(ρ∥σ)Φ−1(ε2) + O(log n).

Note that for ε ∈ (0, 1
2 ), Φ−1(ε) < 0 and hence the second term on the right hand side of the above

equation is positive.
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Substituting the above expansion for the smooth max-relative entropies, with the smoothing
parameter given by ε′ = ε2/(√5 + 1)2, in the last line of (19), we obtain: for any ε ∈ (0,1/2),

q(1)
ε (ρ⊗nABC) ≤ n

1
2
�
min
σCR

D(ψACR∥IA ⊗ σCR) + min
ωBR

D(ψABR∥IA ⊗ ωBR)�


+
1
2

min
σCR

�
−
√

nΦ−1(ε′2)�s(ψACR∥IA ⊗ σCR)


+
1
2

min
ωBR

�
−
√

nΦ−1(ε′2)�s(ψABR∥IA ⊗ ωBR)

+ O(log n),

≤ n
�1
2

I(A; R|B)ψ� − √nΦ−1(ε′2)1
2
�
s(ψACR∥IA ⊗ ψCR) + s(ψABR∥IA ⊗ ψBR)�



+O(log n). (20)

To arrive at the last line of (20), we used the following facts:
(i) ε′ < ε and hence Φ−1(ε′2) < 0;
(ii) for any bipartite state ρAB, minσB∈D(HB) D(ρAB∥IA ⊗ σB) = D(ρAB∥IA ⊗ ρB), which simply
follows from the fact that the relative entropy of two states is non-negative (see, e.g., Lemma 6
of Ref. 16)
(iii) For a pure state ψABCR, H(A|CR)ψ = −H(A|B)ψ, where ψACR and ψABR are the reduced states
of ψABCR.
(iv) I(A; R|B) = H(A|B) − H(A|BR).
Thus we have proved the following theorem, which constitutes our second main result:

Theorem 3. Fix ε ∈ (0,1/2). Then for any tripartite state ρABC, an upper bound on the second
order asymptotic expansion for the quantum communication cost of achieving state redistribution
with an error of at most ε, is given by

n
�1
2

I(A; R|B)ψ� − √nΦ−1(ε′2)1
2
�
s(ψACR∥IA ⊗ ψCR) + s(ψABR∥IA ⊗ ψBR)�


+ O(log n), (21)

where ε′ = ε2/(√5 + 1)2, and s(·∥·), defined by (5), denotes the square root of the quantum informa-
tion variance.

As a corollary of this theorem we recover the following result of Devetak and Yard4 stated
earlier: in the asymptotic i.i.d. setting, state redistribution for a tripartite state ρABC can be
achieved if Alice sends qubits at a rate (1/2)I(A; R|B) to Bob. This immediately follows from The-
orem 3 since the quantum communication cost Q in the asymptotic i.i.d. setting can be expressed in
terms of q(1)

ε (ρ⊗n
ABC

) as follows:

Q ≡ Q(ρABC) = lim
ε→0

lim
n→∞

1
n

q(1)
ε (ρ⊗nABC). (22)
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