UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Planck 2015 results XXIV. Cosmology from Sunyaev-Zeldovich cluster counts

Ade, PAR; Aghanim, N; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, AJ; ... Zonca, A; + view all (2016) Planck 2015 results XXIV. Cosmology from Sunyaev-Zeldovich cluster counts. Astronomy & Astrophysics , 594 , Article A24. 10.1051/0004-6361/201525833. Green open access

[thumbnail of aa25833-15.pdf]
Preview
Text
aa25833-15.pdf - Published Version

Download (1MB) | Preview

Abstract

We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1−b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1−b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7σ) for the largest estimated value. We also examine constraints on extensions to the base flat ΛCDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base ΛCDM model.

Type: Article
Title: Planck 2015 results XXIV. Cosmology from Sunyaev-Zeldovich cluster counts
Open access status: An open access version is available from UCL Discovery
DOI: 10.1051/0004-6361/201525833
Publisher version: http://dx.doi.org/10.1051/0004-6361/201525833
Additional information: © ESO, 2016
Keywords: cosmological parameters / large-scale structure of Universe
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics
URI: https://discovery.ucl.ac.uk/id/eprint/1543033
Downloads since deposit
19Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item