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ABSTRACT
Objectives: Electronic health records offer the
opportunity to discover new clinical implications for
established blood tests, but international comparisons
have been lacking. We tested the association of total
white cell count (WBC) with all-cause mortality in
England and New Zealand.
Setting: Primary care practices in England (ClinicAl
research using LInked Bespoke studies and Electronic
health Records (CALIBER)) and New Zealand
(PREDICT).
Design: Analysis of linked electronic health record
data sets: CALIBER (primary care, hospitalisation,
mortality and acute coronary syndrome registry) and
PREDICT (cardiovascular risk assessments in primary
care, hospitalisations, mortality, dispensed medication
and laboratory results).
Participants: People aged 30–75 years with no prior
cardiovascular disease (CALIBER: N=686 475, 92.0%
white; PREDICT: N=194 513, 53.5% European, 14.7%
Pacific, 13.4% Maori), followed until death, transfer out
of practice (in CALIBER) or study end.
Primary outcome measure: HRs for mortality were
estimated using Cox models adjusted for age, sex,
smoking, diabetes, systolic blood pressure, ethnicity
and total:high-density lipoprotein (HDL) cholesterol
ratio.
Results: We found ‘J’-shaped associations between
WBC and mortality; the second quintile was associated
with lowest risk in both cohorts. High WBC within the
reference range (8.65–10.05×109/L) was associated
with significantly increased mortality compared to the
middle quintile (6.25–7.25×109/L); adjusted HR 1.51
(95% CI 1.43 to 1.59) in CALIBER and 1.33 (95% CI
1.06 to 1.65) in PREDICT. WBC outside the reference
range was associated with even greater mortality. The
association was stronger over the first 6 months of
follow-up, but similar across ethnic groups.
Conclusions: Clinically recorded WBC within the
range considered ‘normal’ is associated with mortality
in ethnically different populations from two countries,
particularly within the first 6 months. Large-scale
international comparisons of electronic health record

cohorts might yield new insights from widely
performed clinical tests.
Trial registration number: NCT02014610.

INTRODUCTION
A fundamental question in clinical medicine
is ‘what does this blood test result mean?’
Relevant evidence in answering this question
may come from examining the prognostic
significance of blood tests recorded in usual
clinical care. The direct clinical applicability,
large sample sizes and population base of
electronic health record cohorts, which are
increasingly available for research in different
countries, might provide opportunities to dis-
cover and replicate associations between clin-
ically recorded measurements and patient
outcomes. However, to date there have
been few international comparisons of the

Strengths and limitations of this study

▪ The main strength of this study is that we
showed similar associations of total white cell
count with mortality in two ethnically different
populations from different countries.

▪ Both cohorts were large and population-based,
avoiding the selection bias inherent in bespoke
cohorts with low response rates.

▪ A limitation of this study is that white cell count
and other covariates were measured only when
thought to be clinically necessary, so some cov-
ariate data were missing.

▪ As this is an observational study it can be used
to infer association but not causation, and
residual confounding may partly account for the
observed association between total white cell
count and mortality.
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prognostic validity of blood tests performed in primary
care, partly because of the challenge of accessing such
data, and harmonising the structure and coding of
electronic healthcare records between countries.
Nevertheless, such international comparisons might
help to evaluate the robustness of associations among
patients with different ethnic backgrounds and different
profiles of risk.
We chose to compare England and New Zealand

because they have different healthcare systems and eth-
nically different populations (the English population is
predominantly Caucasian, with small proportions of
South Asian or black ethnicities1 whereas New Zealand
contains a sizeable proportion of Māori, Pacific, Chinese
and South Asian people2). However, both countries
have pseudonymised primary care data linked with other
data sources available for research on a large scale,
making this type of study feasible. The data in both
countries includes laboratory values, medication, cardio-
vascular risk factors and death registrations (see online
supplementary table S1).
We studied one of the most widely performed blood

tests in primary care, the total white cell count. Despite
the ubiquity of this test, it is unclear how strongly a clin-
ically recorded ‘normal’ value in the general population
is associated with subsequent short-term and long-term
mortality. White cell counts vary between ethnic groups3

and are associated with inflammation, smoking, obesity
and high systolic blood pressure.4 Previous bespoke
cohort studies with white cell counts measured under
research conditions suggest a link between high white
cell count and increased risk of coronary disease5 6

and long-term mortality (see online supplementary
table S2).7–17 The largest previous study involved
438 500 government employees and their families in
South Korea and accrued 48 757 events,7 but the largest
study to compare ethnic groups was much smaller, with
only 1062 events (Reasons for Geographical and Racial
Differences in Stroke (REGARDS) study).8 As far as we
are aware, there are no general population studies of
white cell counts and mortality that used clinical rather
than research measures of white cell counts. However, it
is important to know the prognostic significance of
white cell counts measured for diverse indications in
usual clinical care. White cell count even within the
normal range can be affected by a range of chronic and
acute illnesses18 which prompts the question, not
answered in previous studies, as to whether it is more
strongly associated with short-term than long-term
prognosis.
Our objectives were (1) to use clinically recorded

white cell counts in diverse populations to replicate pre-
vious observations of the association of white cell count
with mortality and (2) to extend these observations by
comparing short-term and long-term associations, and
investigating interactions with ethnicity, age, sex and
smoking. This study was a new collaboration between
the CALIBER (ClinicAl research using LInked Bespoke

studies and Electronic health Records) programme in
England19 (primary care data linked to hospitalisation,
mortality and acute coronary syndrome registries) and
PREDICT in New Zealand20 (cardiovascular risk assess-
ments from primary care linked to hospital admissions,
mortality, dispensed medication and laboratory results).

METHODS
We carried out a cohort study using information
recorded in usual clinical care in electronic health
records in England and New Zealand. Characteristics of
data sources analysed in two countries are summarised
in online supplementary table S1.

CALIBER study population (England)
The study population was drawn from the CALIBER,19

which links four sources of electronic health data in
England: primary care health records (coded diagnoses,
clinical measurements, laboratory results and prescribed
medication) from general practices contributing to the
Clinical Practice Research Datalink (CPRD),21 coded
hospital discharges (Hospital Episode Statistics, HES),
the Myocardial Ischaemia National Audit Project
(MINAP)22 and death registrations. CALIBER contains
data from 244 general practices which consented to the
data linkage; these practices contained 3.9% of the
population of England in 2006. The linkage was carried
out in October 2010 by a trusted third party, using a
deterministic match between National Health Service
number, date of birth and sex. CALIBER studies have
demonstrated associations of age, sex,23 blood pres-
sure,24 neutrophil, eosinophil and lymphocyte
counts,25 26 and type 2 diabetes27 with initial presenta-
tion of cardiovascular diseases.
The study period was January 1997 to March 2010,

and patients were eligible for inclusion when they had
been registered for at least 1 year with a practice
meeting research data recording standards.

PREDICT study population (New Zealand)
In New Zealand, approximately one-third of general
practitioners use PREDICT, a web-based clinical decision
support application to assess cardiovascular risk for
primary prevention, and the PREDICT software captures
this information centrally including commonly mea-
sured risk factors for cardiovascular disease (smoking
status, diabetes status, gender, age, systolic blood pres-
sure).20 28 These risk assessment records are linked to
national databases of hospital admission data and mor-
tality using an encrypted New Zealand National Health
Index (NHI) number. Records were also linked with the
New Zealand Pharmaceutical Information database,29 a
national register of community dispensing, and TestSafe,
a repository of laboratory test results for the Auckland
and Northland region of the North Island of New
Zealand. TestSafe contains community and hospital
laboratory results from July 2006 onwards; prior to this
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date only hospital test results were available from this
source, or community tests which were also copied to
hospital services. White cell count results were linked to
PREDICT information using the encrypted NHI. This
study includes PREDICT patients assessed between 1
July 2005 and 24 July 2012, as full dispensing, laboratory
and outcome data were available for this period.

Ethical considerations
All data sources were pseudonymised and researchers
did not have access to direct patient identifiers. This
CALIBER study is registered on clinicaltrials.gov
(NCT02014610, https://clinicaltrials.gov/ct2/show/results/
NCT02014610).

Inclusion and exclusion criteria
In both countries, patients aged 30–75 years with no
prior history of cardiovascular disease (coronary artery
disease, cardiac arrest, ischaemic or haemorrhagic
stroke, transient ischaemic attack, abdominal aortic
aneurysm or peripheral arterial disease) and no use of
loop diuretics in the previous 6 months were eligible. In
PREDICT, prior cardiovascular disease was ascertained
by the cardiovascular risk assessment questionnaire and
hospitalisation records; in CALIBER prior cardiovascular
disease was identified in primary care (Read codes for
diagnoses) or hospitalisation records (International
Classification of Diseases, Tenth Revision (ICD-10)
codes) or an entry in the acute coronary syndrome regis-
try. The phenotyping algorithms for CALIBER have
been described in detailed in previous studies19 23–27

and are available on the CALIBER data portal (http://
www.caliberresearch.org/portal).
In CALIBER, patients entered the study on the date of

the first white cell count measurement after study eligi-
bility. In PREDICT, patients entered the study on the
date of the cardiovascular risk assessment. The most
recent measure of total white cell count up to 5 years
before or 2 weeks after cardiovascular risk assessment
was chosen. If no white cell count was available during
this period, it was considered missing.

Outcomes
The primary outcome of the study was all-cause mortal-
ity. We identified patients who had died by linkage to
the relevant national death registry, with follow-up in
New Zealand until 26 July 2012 and in CALIBER until
25 March 2010.

Other covariates
Cardiovascular risk factor information such as smoking
status, blood pressure and total:high-density lipoprotein
(HDL) cholesterol ratio were collected in PREDICT as
part of the cardiovascular risk assessment and were
largely complete. In CALIBER, we derived smoking
status (current smoker or non-smoker, to match the
PREDICT categories) using primary care records prior
to study entry, and extracted the most recent value of

continuous risk factors (blood pressure, total cholesterol
and HDL cholesterol) up to 1 year prior to study entry.
Total white cell counts can be affected by factors such

as infections, autoimmune diseases, medication and
haematological conditions. Similar to our recent
CALIBER studies on differential white cell counts,25 26

we sought to differentiate between a patient’s long-term
‘stable’ white cell count, and values obtained when the
patient had an ‘acute’ condition which may alter white
cell counts. We adapted a set of validated criteria pub-
lished by the eMERGE consortium30 (electronic Medical
Records and Genomics) for studying genetic determi-
nants of the stable white cell counts, which takes into
account cancer diagnoses, haematological diagnoses,
use of steroids or immune modulating medication,
recent vaccination and recent symptoms or diagnoses of
infection. We used prescription, symptom, diagnosis and
hospitalisation data in the primary care and secondary
care records in CALIBER to assess whether the patient
was clinically ‘acute’ or ‘stable’ at the time of the blood
test; see online supplementary material methods for
more details.
Diabetes status was assessed in CALIBER by a diag-

nosis of diabetes recorded prior to study entry in
primary care (as a Read code) or in a hospital admis-
sion (as an ICD-10 code in Hospital Episode
Statistics).27 In PREDICT, diabetes status was entered
by the general practitioner into the web-based cardio-
vascular risk assessment form. In addition, we consid-
ered patients to be diabetic if they had been
dispensed an oral hypoglycaemic agent or insulin in
the 6 months before assessment, or if they had been
hospitalised with a primary diagnosis of diabetes within
the previous 5 years.
New Zealand ethnicity data were recorded in

PREDICT and national data sources, and were classified
according to a standardised protocol,31 which prioritises
Māori then Pacific ethnic groups if more than one
ethnic group is recorded. Individuals were coded as
Māori, Pacific, Indian or other. ‘Others’ were mainly of
New Zealand European descent. In CALIBER, we classi-
fied ethnicity as white, black, South Asian (comprising
Indian, Pakistani or Bangladeshi) or ‘other’, according
to ethnicity recorded in primary care or during a hos-
pital admission.1

Statistical analysis
We performed analyses on CALIBER and PREDICT data
separately using a similar protocol. The primary analysis
used a Cox proportional hazards survival model.
Individuals were considered censored if they reached
the end of the study period alive (PREDICT) or trans-
ferred out of the practice (CALIBER). The white cell
counts were grouped into quintiles based on the distri-
bution of observed values in the CALIBER data, in
order to avoid assuming any particular shape for the
association. We split the top and bottom quintiles into
values within and outside the reference range to assess
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whether any associations observed were confined to
extreme values. As there is no consensus on reference
ranges in the literature, we used the reference range of
the laboratory of our local university hospital, which was
3–10×109 cells/L.
We assessed the proportional hazards assumption by

plotting the scaled Schoenfeld residuals against log
time.32 Survival models included the following cardiovas-
cular risk factors, chosen a priori: age, sex, total:HDL
cholesterol ratio, systolic blood pressure, diabetes status
and current smoking status.
All analyses were performed using R software (V.3) (R

Development Core Team. R: A language and environ-
ment for statistical computing. Vienna: R Foundation for
Statistical Computing, 2007.) using the survival
(Therneau T. A Package for Survival Analysis in S. R
package version 2.37–7, 2014. http://CRAN.R-project.
org/package=survival) package for Cox regression. We
handled missing covariate data using multiple imput-
ation, with 10 multiply imputed data sets, generated
using the mice33 and CALIBERrfimpute34 R packages (see
online supplementary methods). Supporting analyses
included assessment for interactions with age group,
smoking status, sex, ethnicity and whether the total
white cell count was measured when the patient was clini-
cally stable.

RESULTS
Comparison of England and New Zealand populations
We analysed 686 475 individuals in CALIBER and
194 513 individuals in PREDICT (figure 1). The median
age was 50 years in CALIBER and 55 years in PREDICT,
and 45% were men (table 1). There were marked

differences in ethnicity: the majority of patients in
CALIBER were white (92% of those with ethnicity
recorded, 383 428 out of 416 828), but in PREDICT just
over half were European (104 000/194 513, 53%), and
significant proportions of individuals belonged to Asian,
Indian, Pacific or Māori ethnic groups. There were also
differences between England and New Zealand in major
risk factors for mortality: the prevalence of smoking was
higher in England (24.2% vs 16.4%) but diabetes was
more prevalent in the New Zealand cohort (4.2% and
8.6%). In PREDICT, 139 030 individuals (71%) had at
least one white cell count recorded, and 77% (107 063/
109 874) of these records were taken within 1 year
before or 2 weeks after risk assessment. All patients in
CALIBER had a record of a white cell count (as it was
one of the inclusion criteria) (table 1). Patients in
CALIBER tended to be younger than those in PREDICT
(median age 50 vs 55) and were less likely to be diabetic
(4.2% vs 8.6%, p<0.001), but more likely to smoke (24%
vs 16%, p<0.001) (table 1).
In the PREDICT cohort, factors associated with non-

recording of white cell count included younger age,
current smoking, lower total:HDL cholesterol ratio,
higher systolic blood pressure, male gender and Māori
ethnicity (see online supplementary table S3).

Correlates of white blood cell count in England
and New Zealand
Lower white cell count was associated with Asian or
European ethnicity in PREDICT and black ethnicity in
CALIBER, whereas higher white cell count was asso-
ciated with South Asian ethnicity in CALIBER, and
Māori or Pacific ethnicity in PREDICT. Higher white cell
count was associated with current smoking, diabetes and

Figure 1 Patient flow diagrams

for CALIBER and PREDICT

studies. CALIBER, ClinicAl

research using LInked Bespoke

studies and Electronic health

Records.
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Table 1 Study population by gender and country

CALIBER (England) PREDICT (New Zealand)

Characteristics Women Men Overall Women Men Overall

N patients 401 997 284 478 686 475 86 084 108 429 194 513

Age in years, median (IQR) 49 (39, 60) 52 (42, 61) 50 (40, 60) 57 (50, 63) 52 (46, 60) 55 (47, 62)

N (%) with white cell count record* 401 997 (100%) 284 478 (100%) 686 475 (100%) 63 880 (74.2%) 75 150 (69.3%) 139 030 (71.5%)

White cell count (×109/L), median (IQR) 6.7 (5.5, 8.1) 6.6 (5.5, 8.0) 6.6 (5.5, 8.1) 6.6 (5.4, 8.0) 6.7 (5.6, 8.1) 6.6 (5.5, 8.0)

Ethnicity

N (%) with ethnicity recorded 256 726 (63.9%) 160 102 (56.3%) 416 828 (60.7%) 86 084 (100%) 108 429 (100%) 194 513 (100%)

White (CALIBER)/European (PREDICT) 235 140 (91.6%) 148 288 (92.6%) 383 428 (92.0%) 45 462 (52.8%) 58 538 (54.0%) 104 000 (53.5%)

South Asian (CALIBER)/Indian (PREDICT) 8140 (3.2%) 4810 (3.0%) 12 950 (3.1%) 6811 (7.9%) 9506 (8.8%) 16 317 (8.4%)

Pacific (PREDICT) – – – 12 810 (14.9%) 15 754 (14.5%) 28 564 (14.7%)

Māori (PREDICT) – – – 12 193 (14.2%) 13 777 (12.7%) 25 970 (13.4%)

Asian (PREDICT) – – – 7306 (8.5%) 8570 (7.9%) 15 876 (8.2%)

Black (CALIBER) 6373 (2.5%) 3261 (2.0%) 9634 (2.3%) – – –

Other 7073 (2.8%) 3743 (2.3%) 10 816 (2.6%) 1502 (1.7%) 2284 (2.1%) 3786 (2.0%)

Current smoker, n (%)† 87 540/385 575

(22.7%)

74 003/268 766

(27.5%)

161 543/654 341

(24.7%)

12 275/86 084

(14.3%)

19 518/108 429

(18.0%)

31 793/194 513

(16.4%)

Systolic blood pressure in mm Hg, median (IQR)† 130 (119, 144) 140 (128, 150) 134 (120, 148) 130 (120, 140) 130 (120, 140) 130 (120, 140)

Total:HDL cholesterol ratio, median (IQR)† 3.6 (2.9, 4.5) 4.4 (3.5, 5.3) 4.0 (3.2, 4.9) 3.6 (2.9, 4.4) 4.3 (3.5, 5.2) 4.0 (3.2, 4.9)

Diabetes at baseline, n (%) 12 741 (3.2%) 16 219 (5.7%) 28 960 (4.2%) 7764 (9.0%) 8882 (8.2%) 16 646 (8.6%)

Deaths during follow-up, n (%) 9636 (2.4%) 9961 (3.5%) 19 597 (2.9%) 892 (1.0%) 1338 (1.2%) 2230 (1.1%)

Follow-up time (years), median (IQR) 4.21 (1.96, 6.42) 3.75 (1.73, 5.97) 4.01 (1.86, 6.23) 2.23 (0.98, 3.78) 2.21 (0.99, 3.86) 2.22 (0.99, 3.83)

Year of enrolment, %

1998–2004 48.6% 42.6% 46.1% 0 0 0

2005–2008 40.9% 45.1% 42.6% 40.5% 31.7% 36.0%

2009–2010 10.6% 12.3% 11.3% 28.2% 43.9% 36.3%

2011–2012 0 0 0 31.4% 24.4% 27.8%

*In PREDICT, we used the most recent total white cell count within 5 years prior to 2 weeks after the cardiovascular risk assessment. In CALIBER, the study start date was the date of the white
cell count measurement, and patients without any white cell count measurement were excluded.
†In CALIBER, we used the most recent blood pressure and cholesterol measurements within 1 year prior to study entry. Blood pressure was available in 63.8% of people, total cholesterol in
32.0% and smoking status in 95.3%. In PREDICT, these measurements were taken at the time of the cardiovascular risk assessment, and were completely recorded.
CALIBER, ClinicAl research using LInked Bespoke studies and Electronic health Records; HDL, high-density lipoprotein.
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Table 2 Characteristics of study populations by category of white cell count

Total white cell count category (×109/L)

‘Normal’ range

Population <2.95 2.95–5.35 5.35–6.25 6.25–7.25 7.25–8.65 8.65–10.05 ≥10.05

N patients CALIBER 2718 145 968 135 107 141 491 133 816 68 708 58 667

PREDICT 248 28 908 28 312 29 136 27 466 13 203 11 757

Men, n (%) CALIBER 906 (33.3%) 58 242 (39.9%) 58 588 (43.4%) 60 565 (42.8%) 55 429 (41.4%) 27 092 (39.4%) 23 656 (40.3%)

PREDICT 92 (37.1%) 13 955 (48.3%) 15 565 (55.0%) 16 267 (55.8%) 15 362 (55.9%) 7250 (54.9%) 6659 (56.6%)

Age, median (IQR) CALIBER 50 (40, 60) 51 (41, 60) 51 (41, 61) 51 (41, 61) 49 (40, 60) 48 (38, 59) 46 (37, 58)

PREDICT 58 (52, 64) 56 (50, 63) 56 (48, 63) 55 (47, 62) 53 (46, 62) 52 (46, 61) 51 (45, 60)

Ethnicity, n (%):

White CALIBER 1491 (88.9%) 76 678 (90.3%) 72 833 (91.8%) 78 597 (92.1%) 76 628 (92.4%) 40 658 (92.7%) 36 543 (94.2%)

European PREDICT 143 (57.7%) 17 041 (58.9%) 15 849 (56.0%) 14 994 (51.5%) 12 934 (47.1%) 5798 (43.9%) 4987 (42.4%)

South Asian CALIBER 27 (1.6%) 1796 (2.1%) 2321 (2.9%) 2910 (3.4%) 3117 (3.8%) 1682 (3.8%) 1097 (2.8%)

Indian PREDICT 9 (3.6%) 2003 (6.9%) 2554 (9.0%) 3072 (10.5%) 3206 (11.7%) 1542 (11.7%) 1103 (9.4%)

Asian PREDICT 47 (19.0%) 4391 (15.2%) 3072 (10.9%) 2556 (8.8%) 1851 (6.7%) 737 (5.6%) 476 (4.0%)

Pacific PREDICT 17 (6.9%) 2763 (9.6%) 3669 (13.0%) 4681 (16.1%) 5178 (18.9%) 2793 (21.2%) 2788 (23.7%)

Māori PREDICT 22 (8.9%) 2034 (7.0%) 2531 (8.9%) 3171 (10.9%) 3725 (13.6%) 2074 (15.7%) 2205 (18.8%)

Black CALIBER 120 (7.2%) 3992 (4.7%) 1965 (2.5%) 1561 (1.8%) 1106 (1.3%) 549 (1.3%) 341 (0.9%)

Current smoker, n (%) CALIBER 318 (12.3%) 15 691 (11.3%) 20 415 (15.9%) 29 769 (22.1%) 39 694 (31.1%) 27 216 (41.5%) 28 440 (50.9%)

PREDICT 17 (6.9%) 1644 (5.7%) 2561 (9.1%) 3995 (13.7%) 5423 (19.7%) 3622 (27.4%) 3859 (32.8%)

Diabetes at baseline, n (%) CALIBER 75 (2.8%) 4307 (3.0%) 4840 (3.6%) 6071 (4.3%) 6710 (5.0%) 3740 (5.4%) 3217 (5.5%)

PREDICT 14 (5.6%) 1213 (4.2%) 1705 (6.0%) 2470 (8.5%) 3068 (11.2%) 1812 (13.7%) 1803 (15.3%)

Systolic blood pressure,

median (IQR)

CALIBER 130 (120, 144) 132 (120, 146) 135 (120, 148) 135 (121, 149) 135 (120, 149) 134 (120, 148) 130 (120, 145)

PREDICT 125 (112, 138) 130 (120, 140) 130 (120, 140) 130 (120, 140) 130 (120, 140) 130 (120, 140) 130 (120, 140)

Total:HDL cholesterol ratio,

median (IQR)

CALIBER 3.5 (2.8, 4.5) 3.7 (3.0, 4.5) 3.9 (3.2, 4.8) 4.1 (3.3, 5.0) 4.2 (3.4, 5.1) 4.3 (3.4, 5.3) 4.4 (3.5, 5.4)

PREDICT 3.4 (2.8, 4.3) 3.7 (3.0, 4.5) 3.9 (3.2, 4.8) 4.0 (3.3, 4.9) 4.1 (3.3, 5.0) 4.1 (3.4, 5.0) 4.2 (3.4, 5.1)

Acute condition at time of

white cell count measurement

CALIBER 925 (34.0%) 25 903 (17.7%) 22 569 (16.7%) 24 737 (17.5%) 25 438 (19.0%) 14 391 (20.9%) 15 842 (27.0%)

CALIBER, ClinicAl research using LInked Bespoke studies and Electronic health Records; HDL, high-density lipoprotein.
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higher total:HDL cholesterol ratio in both countries
(table 2).

Crude absolute risks of mortality
Median follow-up was 2.2 years in PREDICT and
4.0 years in CALIBER. The total number of deaths was
2230 in PREDICT and 19 597 in CALIBER. Crude
Kaplan-Meier curves showed a greater cumulative inci-
dence of mortality in the highest white cell count quin-
tile (≥ 8.65×109/L) in both populations (figure 2), with
a 5-year risk of 5.0% in England and 3.7% in New
Zealand. In CALIBER, the gradient of this curve was
steepest immediately after study entry, suggesting that
the association between white cell count and mortality
was particularly strong in the first few months.

Mortality associations: shape and associations in ‘normal’
range
HRs estimated from Cox models showed a ‘J’-shaped
association between white cell count and mortality; the
second quintile (5.35–6.25×109/L) was associated with
lowest risk. The multiply adjusted HR comparing the
highest and middle quintiles in CALIBER was 1.90 (95%
CI 1.82 to 1.99). We divided the highest and lowest quin-
tiles into white cell count values within and outside the
reference range and found that, compared with the
middle quintile, high values within the reference range
(8.65–10.05×109/L vs 6.25–7.25×109/L) were associated
with significantly increased mortality (adjusted HR 1.51
(95% CI 1.43 to 1.59) in CALIBER and 1.33 (95% CI
1.06 to 1.65) in PREDICT). In comparison, the HR for
diabetes in the CALIBER model was 1.41 (95% CI 1.34
to 1.48). For high white cell counts outside the refer-
ence range (≥ 10.05×109/L vs 6.25–7.25×109/L) the
associations were even stronger (adjusted HR 2.38 (95%

CI 2.27 to 2.51) in CALIBER and 1.86 (95% CI 1.48 to
2.34) in PREDICT) (figure 3). Low values of white cell
count outside the reference range (<2.95×109/L) were
also associated with greater mortality. The associations
from multiply adjusted models were slightly attenuated
compared with the models adjusted only for age and sex
(figure 3).

Short-term mortality associations
In the CALIBER cohort, the strength of association was
not constant over time; the HR for the highest white cell
count quintile decreased with time (Schoenfeld resi-
duals in online supplementary figure S1, p<0.0001 for
correlation with log time) (figure 4). We split the
follow-up time at 6 months, as there was no statistically
significant evidence of non-proportionality of hazards
after 6 months. The adjusted HRs for high white cell
counts outside the reference range (≥10.05×109/L vs
6.25–7.25×109/L) was 6.25 (95% CI 5.56 to 7.02) for the
first 6 months and 1.85 (95% CI 1.75 to 1.96) beyond
6 months.

Supporting analyses
There was a stronger association of high white cell count
with mortality among older people; comparing the
highest and middle categories (≥10.05×109/L vs 6.25–
7.25×109/L), the adjusted HR in CALIBER was 1.61
(95% CI 1.36 to 1.90) among those aged 30–45 and 2.56
(95% CI 2.40 to 2.72) among those aged 60 or over (see
online supplementary figure S2). The association of low
white cell count with increased mortality was slightly
stronger among current smokers, whereas the associ-
ation of high white cell count with increased mortality
was stronger among ex-smokers or never smokers (see
online supplementary figure S3).

Figure 2 Unadjusted Kaplan-Meier curves for all-cause mortality by total white cell count, in CALIBER and PREDICT. Graphs

are shown for top, middle and bottom quintiles of total white cell count. Patients with extreme high or low values are included. To

avoid clutter, the second and fourth quintiles are not shown. CALIBER, ClinicAl research using LInked Bespoke studies and

Electronic health Records.
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About one-fifth of patients in CALIBER (129 805/
686 475, 18.9%) were classified as having an ‘acute’ clin-
ical condition on the date of their total white cell count
measurement. The most common acute conditions were
a diagnosis of infection or symptoms suggestive of infec-
tion within the previous month (see online
supplementary table S4). The association of ‘stable’
white cell count with mortality was closer to linear

within the normal range than that for ‘acute’ white cell
count. Low normal white cell count (2.95–5.35×109/L)
was associated with greater mortality among acute mea-
surements (HR 1.18, 95% CI 1.09 to 1.28) but lower
mortality among stable measurements (HR 0.86, 95% CI
0.81 to 0.92) compared with the middle category (6.25–
7.25×109/L) (p for interaction <0.0001) (see online
supplementary figure S4). For high normal white cell

Figure 3 HRs for all-cause mortality by category of total white cell count. Categories are quintiles, with the top and bottom

quintiles divided into values within and outside the reference range. ‘Multiple adjustment’ comprised adjustment for age, sex,

smoking, diabetes, systolic blood pressure, ethnicity and total:HDL cholesterol ratio. p Values *<0.05, **<0.01, ***<0.001.

CALIBER, ClinicAl research using LInked Bespoke studies and Electronic health Records; HDL, high-density lipoprotein.

Figure 4 Adjusted HRs for all-cause mortality by category of total white cell count in CALIBER, by time period. Categories are

quintiles, with the top and bottom quintiles divided into values within and outside the reference range. HRs were adjusted for age,

sex, smoking, diabetes, systolic blood pressure, ethnicity and total:HDL cholesterol ratio. p Values *<0.05, **<0.01, ***<0.001.

CALIBER, ClinicAl research using LInked Bespoke studies and Electronic health Records; HDL, high-density lipoprotein.
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counts (8.65–10.05×109/L) the association with higher
mortality was stronger among stable white cell counts
(HR 1.52 compared with 6.25–7.25×109/L, 95% CI 1.43
to 1.63) than acute white cell counts (HR 1.31, 95% CI
1.20 to 1.43; p for interaction 0.0047) (see online
supplementary figure S4).
There were no statistically significant interactions with

sex (see online supplementary figure S5) or between
ethnicities in the English CALIBER data (see online
supplementary figure S6). In the New Zealand
PREDICT data, the associations were broadly similar
across ethnicities, but the HR associated with the highest
white cell count was slightly lower for Māori and Pacific
peoples than for Europeans (see online supplementary
figure S7).
The two methods of multiple imputation used in

CALIBER data (normal-based and Random Forest mul-
tiple imputation by chained equations (MICE)) yielded
almost identical estimates (see online supplementary
figure S8). Complete case analysis of PREDICT data
yielded similar estimates to the main imputed analysis
(see online supplementary figure S9).

DISCUSSION
As far as the authors are aware, this is the first large-scale
population-based assessment of a clinically recorded
blood test and mortality across two countries. We found
that clinically recorded white cell counts that would cur-
rently be considered ‘normal’ are associated with mortal-
ity in populations which differ in ethnic composition
and risk factors for mortality, and that this association
seems particularly strong within the first 6 months.

Feasibility and value of international comparisons
of electronic health record cohorts
We demonstrate the feasibility and value of making
international comparisons across heterogeneous primary
care electronic health record cohorts. The consistency
of associations between the two countries addresses con-
cerns of generalisability (different ethnicities with differ-
ent baseline white cell counts), selection bias (different
selection mechanisms in the two countries) and incom-
plete recording (different patterns of missing risk factor
information in the two countries) and the proliferation
of unreplicated research in medicine.35 36

Replication of studies measuring white cell counts under
research conditions
It was possible that the cut points used to define high
white cell counts in clinical settings (based on the distri-
bution of these measurements in healthy people) might
denote a threshold at which a clinically measured risk is
associated with higher mortality. This was the case, for
example for haemoglobin, where the WHO’s thresholds
for diagnosis of nutritional anaemia37 coincided with
the level below which mortality increases in patients with
coronary heart disease.38 Furthermore, since white cell

counts are measured clinically in hundreds of laborator-
ies in England without standardisation, it is possible that
measurement issues might dilute any associations. For
these reasons it is noteworthy that we replicated a
‘J’-shaped association between clinically measured total
white cell count and mortality, consistent with previous
studies of white cell counts taken and analysed under
standardised research conditions (see online
supplementary table S2).7–17

Individuals in the second quintile of white cell count
(5.35–6.25×109/L) had the lowest mortality risk, and
those in the highest quintile had the highest risk
(figure 3). At the lower end of the scale, increased risk
was restricted to patients with low white cell counts
outside the reference range (adjusted HR 5.61 compar-
ing groups <2.95×109/L and 6.25–7.25×109/L in
CALIBER). The increased risk of mortality observed in
patients with very low white cell counts may be because
of malnutrition or comorbidities such as cancer.
However, mortality risk was increased at ‘high normal’
levels of total white cell count within the laboratory ref-
erence range, that is, at levels which clinicians would typ-
ically consider ‘normal’ and would not contribute to
clinical decision-making. This association was stronger
than the association with diabetes.
A novel finding was that the association of white cell

count with mortality was strongest close to the time of
white cell count measurement, suggesting that it reflects
aspects of the patient’s current medical state. However,
significant but weaker associations persisted for several
years, suggesting that the white cell count is also a useful
long-term prognostic marker (figure 4).
Total white cell count is a marker of inflammation,

and there are a number of putative biological mechan-
isms which may explain the inflammation. Air pollution
may be one of the causes, as it can cause white cell
counts to increase acutely39 and is associated with
increased incidence of heart failure,40 ischaemic heart
disease and stroke.41 Another potential source of inflam-
mation is periodontitis, which is linked to higher white
cell count.42 43 The increased risk of mortality observed
in patients with very low white cell counts may be
because of other comorbidities or malnutrition, which
were not recorded in our data set.

Challenges in international electronic health record
studies
Since many countries have national data coded with the
ICD it might, at first glance, appear to be straightfor-
ward to make international comparisons. But there are
many challenges. First, ICD is most widely applied in
hospitalisations, rather than in ambulatory care. Second,
blood laboratory values (not part of ICD) are much less
widely available for research in national samples.
Initiatives to foster and promote international collabor-
ation (eg, the Global Alliance for Genomics and
Health44) may facilitate this. Legal and governance con-
siderations may restrict the sharing of electronic health
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record data as the patients have not been asked for indi-
vidual consent, so data may have to be analysed separ-
ately in the different countries, as in our study. We were
able to access English data locally and New Zealand data
remotely. We ran the same scripts to perform a similar
analysis but were unable to run a combined analysis on
the entire cohort. To address this problem, there is
much interest in methodologies for distributed analysis,
where the results of analyses at different locations are
combined without sharing the raw data.45

A key scientific challenge is to harmonise the format
of data from different sources, taking into account its
provenance. Differences in language, culture, organisa-
tion of the healthcare system and availability of data for
research may affect the types of data available and their
interpretation. For example, in CALIBER we had
records of prescribed medication but in PREDICT we
had records of dispensed medication. Diagnoses may be
recorded using different coding systems (eg, WHO
ICD-10 in the UK but ICD-10 Australian Modification in
New Zealand). Use of a common terminology (eg,
ICD-10, Systematized Nomenclature of Medicine
(SNOMED)-CT) would be beneficial. The information
models may also be different. Global efforts to standard-
ise the structure of medical records such as openEHR46

may help to alleviate this problem in the future, but
local knowledge of the healthcare system in each
country is essential.

Strengths
The main strengths of this study were the fact that two
cohorts were available in different countries. Both
cohorts were large and population-based, avoiding the
selection bias inherent in many bespoke cohorts with
low response rates.47

Limitations
A limitation of both studies is that white cell count was
measured only when it was thought to be clinically
necessary, so the probability that a patient has a white
cell count depends on a range of factors such as the
patient’s health-seeking behaviour and the doctor’s toler-
ance of uncertainty or propensity to investigate a
patient, as well as the patient’s clinical condition.
However, we found similar results to previous studies in
bespoke cohorts, in which blood testing for white cell
count was performed under standardised conditions
without any acute or chronic indication (see online
supplementary table S2).
Other weaknesses of the study relate to the variation

in time from recording of white cell count to cardiovas-
cular assessment (in PREDICT) and the amount of
missing data. Complete case analysis assumes there is no
selection bias caused by the removal of patients with
incomplete records. Multiple imputation relies on the
missingness mechanism being ‘missing at random’, that
is, whether a value is missing is independent of the value
itself conditional on all observed covariates.33 34

However, analyses in the two cohorts (with different
types of information missing) and analyses using differ-
ent methods for handling missing data yielded similar
results.
Finally, as this is an observational study it can be used

to infer association but not causation. Residual con-
founding may partly account for the observed associ-
ation between total white cell count and mortality; both
may be caused by an underlying chronic inflammatory
condition. Nevertheless, clinically a raised white cell
count may be useful in the early detection of such con-
ditions, enabling interventions to potentially mitigate
their adverse effects.

Clinical recommendations
It is well known that high white cell counts are asso-
ciated with acute infections,4 and clinicians typically
interpret the test in a binary sense—‘normal’ or ‘abnor-
mal’, with normality defined by the laboratory on the
basis of the distribution of measurements among
‘healthy’ individuals. We suggest that the white cell
count should be considered as a continuous scale, much
like blood pressure or cholesterol, for which there are
pragmatic treatment thresholds but clinicians under-
stand that the underlying association with risk is continu-
ous. As the total white cell count is a marker of systemic
inflammation, we suggest that patients with high normal
white cell counts who are apparently asymptomatic
should be assessed for potentially modifiable causes of
an inflammatory state, such as dental disease.

Research recommendations
We demonstrate the feasibility and value of international
electronic health record collaborations examining blood
markers. Future studies should investigate the differen-
tial white cell counts (as different white cell subtypes
have different functions and determinants in the
blood), investigate specific diseases rather than all-cause
mortality, and account for acute and chronic conditions
at the time of blood sampling. More broadly, we propose
that health technology assessment of clinical blood tests
should routinely involve large-scale ongoing electronic
health record research, to evaluate their associations
with mortality and a wide range of morbidity outcomes.
We recommend greater use of international replication
of new epidemiological findings to verify they are gener-
alisable to populations which differ in ethnic compos-
ition and prevalence of risk factors.

CONCLUSIONS
We discovered an association between white cell counts
and subsequent mortality, and replicated this finding in
a markedly different population from another country.
Large-scale international comparisons of cohorts
derived from electronic health records might help
identify new insights from widely performed clinical
tests.
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