2017 Resistance Mutations Update Volume 24 Issue 4 December 2016/January 2017

Special Contribution

2017 Update of the Drug Resistance Mutations in HIV-1

Annemarie M. Wensing, MD, PhD; Vincent Calvez, MD, PhD; Huldrych F. Ginthard, MD; Victoria
A. Johnson, MD; Roger Paredes, MD, PhD; Deenan Pillay, MD, PhD; Robert W. Shafer, MD;

Douglas D. Richman, MD

The 2017 edition of the IAS-USA drug resistance muta-
tions list updates the figures last published in November
2015. The mutations listed are those that have been
identified by specific criteria for evidence and drugs de-
scribed. The figures are designed to assist practitioners
in identifying key mutations associated with resistance
to antiretroviral drugs and, therefore, in making clinical
decisions regarding antiretroviral therapy.

The 2017 edition of the IAS-USA drug resistance mutations
list updates the figures last published in November 2015
The Q148K mutation was added to the bar for the integrase
strand transfer inhibitor dolutegravir, and the bars for multi-
nucleoside and nucleotide analogue reverse transcriptase
inhibitor (nRTI) resistance were modified to indicate specifi-
cally that thymidine analogue mutations do not affect sus-
ceptibility to emtricitabine and lamivudine.

Methods

The IAS-USA Drug Resistance Mutations Group is an inde-
pendent, volunteer panel of experts charged with delivering
accurate, unbiased, and evidence-based information on drug
resistance—-associated mutations for HIV clinical practition-
ers. The group reviews new data on HIV drug resistance to
maintain a current list of mutations associated with clinical
resistance to HIV-1. This list includes mutations that may con-
tribute to a reduced virologic response to a drug.

In addition, the group considers only data that have
been published or have been presented at a scientific con-
ference. Drugs that have been approved by the US Food and
Drug Administration as well as any drugs available in ex-
panded access programs are included (listed in alphabetic
order by drug class). User notes provide additional informa-
tion as necessary. Although the Drug Resistance Mutations
Group works to maintain a complete and current list of these
mutations, it cannot be assumed that the list presented here
is exhaustive.

Positions in bold generally indicate that particular caution
is warranted with use of a drug. For nucleoside and nucleo-
tide reverse transcriptase inhibitors, bold mutations indicate
signature mutations selected for by particular drugs that may,

alone or in combination with other mutations, result in a sub-
stantial reduction in drug susceptibility and clinical outcome.
For nonnucleoside reverse transcriptase inhibitors, bold mu-
tations indicate a substantial reduction in drug susceptibil-
ity or clinical outcome and that particular drugs should be
avoided if possible. For protease inhibitors, mutations at
bolded positions are associated with greater reductions in
drug susceptibility and virologic responses to therapy. Certain
protease inhibitors, particularly ritonavir-boosted darunavir,
have high genetic barriers to resistance and may still retain
considerable activity despite the presence of a mutation at
a bolded position. For the entry inhibitor enfuvirtide, bold
mutations may indicate a significant reduction in drug sus-
ceptibility or clinical outcome and that use of the drug should
be avoided if possible. For integrase strand transfer inhibitors,
bold mutations indicate a substantial reduction in drug sus-
ceptibility or clinical outcome for elvitegravir and raltegravir,
and these drugs should be avoided if possible. Dolutegra-
vir may still retain considerable activity in the presence of
bolded mutations if twice-daily dosing is applied.

Identification of Mutations

The mutations listed are those that have been identified by
1 or more of the following criteria: (1) in vitro passage exper-
iments or validation of contribution to resistance by using
site-directed mutagenesis; (2) susceptibility testing of labora-
tory or clinical isolates; (3) nucleotide sequencing of viruses
from patients in whom the drug is failing; (4) association
studies between genotype at baseline and virologic response
in patients exposed to the drug.

The development of more recently approved drugs that
cannot be tested as monotherapy precludes assessment of
the impact of resistance on antiretroviral activity that is not
seriously confounded by activity of other drug components
in the background regimen. Readers are encouraged to con-
sult the literature and experts in the field for clarification or
more information about specific mutations and their clinical
impact. Polymorphisms associated with impaired treatment
responses that occur in otherwise wild-type viruses should
not be used in epidemiologic analyses to identify transmit-
ted HIV-1 drug resistance.
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The figures are designed for practitioners to use in identi-
fying key mutations associated with antiretroviral drug resis-
tance and in making therapeutic decisions. In the context of
making clinical decisions regarding antiretroviral therapy,
evaluating the results of HIV-1 genotypic testing includes: (1)
assessing whether the pattern or absence of a pattern in the
mutations is consistent with the patient’s antiretroviral ther-
apy history; (2) recognizing that in the absence of drug (se-
lection pressure), resistant strains may be present at levels
below the limit of detection of the test (analyzing stored
samples, collected under selection pressure, could be use-
ful in this setting); and (3) recognizing that virologic failure
of the first regimen typically involves HIV-1 isolates with re-
sistance to only 1 or 2 of the drugs in the regimen (in this
setting, resistance emerges most commonly to lamivudine
or emtricitabine or nonnucleoside analogue reverse transcrip-
tase inhibitors).

The absence of detectable viral resistance after treatment
failure may result from any combination of the following
factors: the presence of drug-resistant minority viral popula-
tions, a prolonged interval between the time of antiretroviral
drug discontinuation and genotypic testing, nonadherence
to medications, laboratory error, lack of current knowledge
of the association of certain mutations with drug resistance,
the occurrence of relevant mutations outside the regions
targeted by routine resistance assays, drug-drug interac-
tions leading to subtherapeutic drug levels, and possibly
compartmental issues, indicating that drugs may not reach
optimal levels in specific cellular or tissue reservoirs.

For more in-depth reading and an extensive reference
list, see the 2008 IAS-USA panel recommendations for resis-
tance testing® and 2016 IAS-USA panel recommendations for
antiretroviral therapy® Updates are posted periodically at
www.iasusa.org.

Please send your evidence-based comments, including rel-
evant reference citations, to journal“at”iasusa.org or by fax
to 415-544-9401.

The Drug Resistance Mutations Group welcomes interest in
the mutations figures as an educational resource for practi-
tioners and encourages dissemination of the material to as
broad an audience as possible. However, permission is re-
quired to reprint the figures and no alterations in format or
content can be made.

Requests to reprint the material should include the name
of the publisher or sponsor, the name or a description of the
publication in which you wish to reprint the material,
the funding organization(s), if applicable, and the intended
audience. Requests to make any minimal adaptations of the

material should include the former, plus a detailed explanation
of the adaptation(s) and, if possible, a copy of the proposed
adaptation. To ensure the integrity of the mutations figures,
IAS-USA policy is to grant permission for only minor, preap-
proved adaptations of the figures (eg, an adjustment in size).
Minimal adaptations only will be considered; no alterations
of the content of the figures or user notes will be permitted.

Permission will be granted only for requests to reprint or
adapt the most current version of the mutations figures as
they are posted at www.iasusa.org. Because scientific under-
standing of HIV drug resistance evolves rapidly and the goal
of the Drug Resistance Mutations Group is to maintain the
most up-to-date compilation of mutations for HIV clinicians
and researchers, publication of out-of-date figures is coun-
terproductive. If you have any questions about reprints or
adaptations, please contact [AS-USA.
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MUTATIONS IN THE REVERSE TRANSCRIPTASE GENE ASSOCIATED WITH RESISTANCE TO REVERSE TRANSCRIPTASE INHIBITORS
Nucleoside and Nucleotide Analogue Reverse Transcriptase Inhibitors (nRTls)?
69 Insertion Complex® (affects all nRTIs currently approved by the US FDA)
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Nonnucleoside Analogue Reverse Transcriptase Inhibitors (NNRTIs)>™
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MUTATIONS Insertion
Amino acid abbreviations: A, alanine; C, cysteine; D, aspartate; . . .
E, glutamate; F, phenylalanine; G, glycine; H, histidine; |, isoleucine; Amino acid wild-type K v
K, lysine; L, leucine; M, methionine; N, asparagine; P, proline; _Am'"f’ acid position 65
Amino acid substitution R

Q. glutamine; R, arginine; S, serine; T, threonine; V, valine;

W, tryptophan; Y, tyrosine. conferring resistance
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MUTATIONS IN THE PROTEASE GENE ASSOCIATED WITH RESISTANCE TO PROTEASE INHIBITORSP*
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MUTATIONS IN THE ENVELOPE GENE ASSOCIATED WITH RESISTANCE TO ENTRY INHIBITORS
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Maraviroc See User Note

MUTATIONS IN THE INTEGRASE GENE ASSOCIATED WITH RESISTANCE TO INTEGRASE STRAND TRANSFER INHIBITORS®
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a. Some nucleoside (or nucleotide) analogue reverse transcriptase in-
hibitor (nRTI) mutations, like T215Y and H208Y,! may lead to viral hy-
persusceptibility to nonnucleoside analogue reverse transcriptase in-
hibitors (NNRTIs), including etravirine,? in nRTI-treated individuals.
The presence of these mutations may improve subsequent virologic
response to NNRTI-containing regimens (nevirapine or efavirenz) in
NNRTI-naive individuals*” although no clinical data exist for improved
response to etravirine in NNRTI-experienced individuals. Mutations at
the C-terminal reverse transcriptase domains (amino acids 293-560)
outside of regions depicted on the figure bars may prove to be impor-
tant for nRTI and NNRTI HIV-1 drug resistance. The clinical relevance
of these connection domain mutations arises mostly in conjunction
with thymidine analogue-associated mutations (TAMs) and M184V and
they have not been associated with increased rates of virologic fail-
ure of etravirine or rilpivirine in clinical trials#'° K65E/N variants
are increasingly reported in patients experiencing treatment failure
with tenofovir, stavudine, or didanosine. K65E usually occurs in mix-
tures with wild type. K65N gives an approximately 4-fold decrease in
susceptibility. Patient-derived viruses with K65E and site-directed mu-
tations replicate very poorly in vitro; as such, no susceptibility testing
can be performed "1

b. The 69 insertion complex consists of a substitution at codon 69
(typically T69S) and an insertion of 2 or more amino acids (S-S, S-A,
S-G, or others). The 69 insertion complex is associated with resistance
to all nRTIs currently approved by the US Food and Drug Administra-
tion (FDA) when present with 1 or more TAMs at codons 41, 210,
or 21513 Some other amino acid changes from the wild-type T at
codon 69 without the insertion may be associated with broad nRTI
resistance.

c. Tenofovir retains activity against the Q151M complex of muta-
tions.!> Q151M is the most important mutation in the complex (ie,
the other mutations in the complex [A62V, V751, F77L, and F116Y] in
isolation may not reflect multidrug resistance).

d. Mutations known to be selected by TAMs (ie, M41L, D67N, K70R,
L210W, T215Y/F, and K219Q/E) also confer reduced susceptibility to
all currently approved nRTIs!* except emtricitabine and lamivudine,
which in fact reverse the magnitude of resistance and are recom-
mended with tenofovir or zidovudine in the presence of TAMS. The
degree to which cross-resistance is observed depends on the specific
mutations and number of mutations involved.'>1®

e. Although reverse transcriptase changes associated with the E44D
and V118I mutations may have an accessory role in increased resis-
tance to nRTIs in the presence of TAMs, their clinical relevance is very
limited.!-2!

f. The M184V mutation alone does not appear to be associated with a
reduced virologic response to abacavir in vivo. When associated with
TAMs, M 184V increases abacavir resistance?*>

g. As with tenofovir, the K65R mutation may be selected by didano-
sine, abacavir, or stavudine (particularly in patients with nonsubtype-B
clades) and is associated with decreased viral susceptibility to these
drugs??#*?% Data are lacking on the potential negative impact of
K65R on clinical response to didanosine.

h. The presence of 3 of the following mutations—M41L, D67N, L210W,
T215Y/F, K219Q/E—is associated with resistance to didanosine?® The
presence of K70R or M184V alone does not decrease virologic response
to didanosine?’

i. K65R is selected frequently (4%-11%) in patients with some nonsub-
type-B clades for whom stavudine-containing regimens are failing in
the absence of tenofovir282

j. The presence of M184V appears to delay or prevent emergence of
TAMs3® This effect may be overcome by an accumulation of TAMs or
other mutations.

k. The T215A/C/D/E/G/H/I/LIN/S/V substitutions are revertant mutations
at codon 215 that confer increased risk of virologic failure of zidovu-
dine or stavudine in antiretroviral-naive patients>!? The T215Y mu-
tant may emerge quickly from one of these mutations in the presence
of zidovudine or stavudine3?

1. The presence of K65R is associated with a reduced virologic re-
sponse to tenofovir!® A reduced response also occurs in the presence
of 3 or more TAMs inclusive of either M41L or L210W."*> The pres-
ence of TAMs or combined treatment with zidovudine prevents the
emergence of K65R in the presence of tenofovir>*>¢ There are no
data to indicate differences in resistance patterns between tenofovir
disoproxil fumarate and tenofovir alafenamide because the active drug
component in both formulations is tenofovir.

m. There is no evidence for the utility of efavirenz, nevirapine, or rilpi-
virine in patients with NNRTI resistance.”

n. Resistance to etravirine has been extensively studied only in the
context of coadministration with ritonavir-boosted darunavir. In this
context, mutations associated with virologic outcome have been as-
sessed and their relative weights (or magnitudes of impact) assigned.
In addition, phenotypic cutoff values have been calculated, and as-
sessment of genotype-phenotype correlations from a large clinical da-
tabase have determined relative importance of the various mutations.
These 2 approaches are in agreement for many, but not all, mutations
and weights*#4% The single mutations L1001, K101P, and Y181C/I/V
have a high relative weight with regard to reduced susceptibility and
reduced clinical response compared with other mutations.#!*2 The
presence of K103N alone does not affect etravirine response.*? Accu-
mulation of several mutations results in greater reductions in suscepti-
bility and virologic response than do single mutations *3-4®

o. Fifteen mutations have been associated with decreased rilpivirine
susceptibility (K101E/P, E138A/G/K/Q/R, V179L, Y181C/1/V, H221Y,
F227C, and M2301/L) *¢%8 A 16th mutation, Y188L, reduces rilpivirine
susceptibility 6 fold * K101P and Y1811/V reduce rilpivirine suscep-
tibility approximately 50 fold and 15 fold, respectively, but are not
commonly observed in patients receiving rilpivirine.**-*! Mutations
at position 138 (most notably 138A) may occur as natural polymor-
phisms, especially in non-B subtypes®* K101E, E138K, and Y181C,
each of which reduces rilpivirine susceptibility 2.5 fold to 3 fold, oc-
cur commonly in patients receiving rilpivirine. E138K and to a lesser
extent K101E usually occur in combination with the nRTI resistance—
associated mutation M184I, which alone does not reduce rilpivirine
susceptibility. When M184I is combined with E138K or K101E, rilpi-
virine susceptibility is reduced about 7 fold and 4.5 fold, respective-
ly.51:5355 The combinations of reverse transcriptase-associated muta-
tions L1001 plus K103N/S and L1001 plus K103R plus V179D were
strongly associated with reduced susceptibility to rilpivirine. However,
for isolates harboring the K103N/R/S or V179D as single mutations, no
reduction in susceptibility was detected *8:5¢

p. Often, numerous mutations are necessary to substantially impact vi-
rologic response to a ritonavir-boosted protease inhibitor (PI).>” In some
specific circumstances, atazanavir might be used unboosted. In such
cases, the mutations that are selected are the same as with ritonavir-
boosted atazanavir, but the relative frequency of mutations may differ.

q. Resistance mutations in the protease gene are classified as “major”
or “minor.” Major mutations in the protease gene (positions in bold
type) are defined as those selected first in the presence of the drug
or those substantially reducing drug susceptibility. These mutations
tend to be the primary contact residues for drug binding and may
also be associated with reductions in virologic responses to therapy.
Minor mutations generally emerge later than major mutations and
by themselves do not have a substantial effect on phenotype. They
may improve replication of viruses containing major mutations. So
minor mutations are present as common polymorphic changes
in HIV-1 nonsubtype-B clades. Mutations in gag cleavage sites may
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confer resistance to all PIs and may emerge before mutations in prote-
ase. A large proportion of virus samples from patients with confirmed
virologic failure on a Pl-containing regimen is not found to have
PI resistance-associated mutations. Preliminary data from recent
studies suggest that several mutations in the Gag protein®® may be
responsible for reduced PI susceptibility in a subset of these patients.

r. Ritonavir is not listed separately, as it is currently used only at low
doses as a pharmacologic booster of other PlIs.

s. Many mutations are associated with atazanavir resistance. Their
impacts differ, with I150L, 184V, and N88S having the greatest effect.
Higher atazanavir levels obtained with ritonavir boosting increase the
number of mutations required for loss of activity. The presence of
M46l plus L76V might increase susceptibility to atazanavir when no
other related mutations are present.>

t. HIV-1 RNA response to ritonavir-boosted darunavir correlates with
baseline susceptibility and the presence of several specific PI resis-
tance-associated mutations. Reductions in response are associated
with increasing numbers of the mutations indicated in the figure bar.
The negative impact of the protease mutations 147V, 154M, T74P, and
184V and the positive impact of the protease mutation V82A on viro-
logic response to ritonavir-boosted darunavir were shown in 2 data
sets independently.®*¢! Some of these mutations appear to have a
greater effect on susceptibility than others (eg, 150V vs V111). The pres-
ence at baseline of 2 or more of the substitutions V111, V32I, L33F,
147V, 150V, 154L or M, T74P, L76V, 184V or L89V was associated with a
decreased virologic response to ritonavir-boosted darunavir.%*

u. The mutations depicted on the figure bar cannot be considered
comprehensive because little relevant research has been reported in
recent years to update the resistance and cross-resistance patterns for
this drug.

v. In Pl-experienced patients, the accumulation of 6 or more of the
mutations indicated on the figure bar is associated with a reduced
virologic response to ritonavir-boosted lopinavir®%* The product in-
formation states that accumulation of 7 or 8 mutations confers resis-
tance to the drug.®®> However, there is emerging evidence that specific
mutations, most notably 147A (and possibly 147V) and V32I, are as-
sociated with high-level resistance.®®®® The addition of L76V to 3 PI
resistance-associated mutations substantially increases resistance to
ritonavir-boosted lopinavir>®

w. In some nonsubtype-B HIV-1, D30N is selected less frequently than
are other PI resistance-associated mutations

x. Resistance to enfuvirtide is associated primarily with mutations in
the first heptad repeat (HR1) region of the gp41 envelope gene. How-
ever, mutations or polymorphisms in other regions of the envelope
(eg, the HR2 region or those yet to be identified) as well as coreceptor
usage and density may affect susceptibility to enfuvirtide.”®7?

y. The activity of CC chemokine receptor 5 (CCR5) antagonists is lim-
ited to patients with virus that uses only CCR5 for entry (R5 virus).
Viruses that use both CCR5 and CXC chemokine receptor 4 (CXCR4;
termed dual/mixed [D/M] virus) or only CXCR4 (X4 virus) do not re-
spond to treatment with CCR5 antagonists. Virologic failure of these
drugs is frequently associated with outgrowth of D/M or X4 virus from
a preexisting minority population present at levels below the limit of
assay detection. Mutations in HIV-1 gp120 that allow the virus to bind
to the drug-bound form of CCR5 have been described in viruses from
some patients whose virus remained R5 after virologic failure of a
CCR5 antagonist. Most of these mutations are found in the V3 loop,
the major determinant of viral tropism.”® There is as yet no consensus
on specific signature mutations for CCR5 antagonist resistance, so they
are not depicted in the figure. Some CCR5 antagonist-resistant virus-
es selected in vitro have shown mutations in gp41 without mutations
in V374; the clinical significance of such mutations is not yet known.

z. In site-directed mutants and clinical isolates, the mutation F121Y
has a profound effect on susceptibility to elvitegravir and raltegravir
and to a lesser extent to dolutegravir. Mutation R263K can be selected
in vivo during treatment with dolutegravir and raltegravir and results
in a 2- to 5-fold reduction in susceptibility to dolutegravir, elvitegravir,
and raltegravir.”5-8°

aa. Several mutations are required in HIV integrase to confer high-level
resistance to dolutegravir®! Cross-resistance studies with raltegravir-
and elvitegravir-resistant viruses indicate that Q148H/R and G140S in
combination with mutations L741/M, E92Q, T97A, E138A/K, G140A,
or N155H are associated with 5-fold to 20-fold reduced dolutegravir
susceptibility® and reduced virologic suppression in patients 83-8¢

bb. Seven elvitegravir codon mutations have been observed in integrase
strand transfer inhibitor treatment-naive and —experienced patients
in whom therapy is failing.87-%> T97A, which may occur as a poly-
morphism >* results in only a 2-fold change in elvitegravir suscep-
tibility and may require additional mutations for resistance.**%* The
sequential use of elvitegravir and raltegravir (in either order) is not
recommended because of cross-resistance between these drugs 72

cc. Raltegravir failure is associated with integrase mutations in at least
3 distinct, but not exclusive, genetic pathways defined by 2 or more
mutations including (1) a signature (major) mutation at Q148H/K/R,
N155H, or Y143R/H/C; and (2) 1 or more additional minor mutations.
Minor mutations described in the Q148H/K/R pathway include L74M
plus E138A, E138K, or G140S. The most common mutational pattern
in this pathway is Q148H plus G140S, which also confers the greatest
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