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Abstract

Probabilistic inference offers a principled framework for understanding both behaviour and

cortical computation. However, two basic and ubiquitous properties of cortical responses

seem difficult to reconcile with probabilistic inference: neural activity displays prominent

oscillations in response to constant input, and large transient changes in response to stimu-

lus onset. Indeed, cortical models of probabilistic inference have typically either concen-

trated on tuning curve or receptive field properties and remained agnostic as to the

underlying circuit dynamics, or had simplistic dynamics that gave neither oscillations nor

transients. Here we show that these dynamical behaviours may in fact be understood as

hallmarks of the specific representation and algorithm that the cortex employs to perform

probabilistic inference. We demonstrate that a particular family of probabilistic inference

algorithms, Hamiltonian Monte Carlo (HMC), naturally maps onto the dynamics of excit-

atory-inhibitory neural networks. Specifically, we constructed a model of an excitatory-inhibi-

tory circuit in primary visual cortex that performed HMC inference, and thus inherently gave

rise to oscillations and transients. These oscillations were not mere epiphenomena but

served an important functional role: speeding up inference by rapidly spanning a large vol-

ume of state space. Inference thus became an order of magnitude more efficient than in a

non-oscillatory variant of the model. In addition, the network matched two specific properties

of observed neural dynamics that would otherwise be difficult to account for using probabilis-

tic inference. First, the frequency of oscillations as well as the magnitude of transients

increased with the contrast of the image stimulus. Second, excitation and inhibition were

balanced, and inhibition lagged excitation. These results suggest a new functional role for

the separation of cortical populations into excitatory and inhibitory neurons, and for the neu-

ral oscillations that emerge in such excitatory-inhibitory networks: enhancing the efficiency

of cortical computations.
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Author Summary

Our brain operates in the face of substantial uncertainty due to ambiguity in the inputs,

and inherent unpredictability in the environment. Behavioural and neural evidence indi-

cates that the brain often uses a close approximation of the optimal strategy, probabilistic

inference, to interpret sensory inputs and make decisions under uncertainty. However,

the circuit dynamics underlying such probabilistic computations are unknown. In partic-

ular, two fundamental properties of cortical responses, the presence of oscillations and

transients, are difficult to reconcile with probabilistic inference. We show that excitatory-

inhibitory neural networks are naturally suited to implement a particular inference algo-

rithm, Hamiltonian Monte Carlo. Our network showed oscillations and transients like

those found in the cortex and took advantage of these dynamical motifs to speed up infer-

ence by an order of magnitude. These results suggest a new functional role for the separa-

tion of cortical populations into excitatory and inhibitory neurons, and for the neural

oscillations that emerge in such excitatory-inhibitory networks: enhancing the efficiency

of cortical computations.

Introduction

Uncertainty plagues neural computation. For instance, hearing the rustle of an animal at

night, it may be impossible to ascertain the species, and thus whether or not it is dangerous.

One approach in this scenario is to respond based on a point estimate, usually the single most

probable explanation of our observations. However, this leads to a problem: if the probability

of the animal being dangerous is below 50%, then the single most probable explanation is that

the animal is harmless; and considering only this explanation, and thus failing to respond,

could easily prove fatal. Instead, to respond appropriately, it is critical to take uncertainty into

account by also considering the possibility of there being a dangerous animal, given the rustle

and any other available clues.

The optimal way to perform computations and select actions under uncertainty is to repre-

sent a probability distribution that quantifies the probability with which each scenario may

describe the actual state of the world, and update this probability distribution according to the

laws of probability, i.e. by performing Bayesian inference. Human behaviour is consistent with

Bayesian inference in many sensory [1–4], motor [5, 6] and cognitive [7–9] tasks. There is also

evidence that probabilistic inference is performed already in early sensory cortical areas [10,

11]. In particular, simple cells in the primary visual cortex (V1) respond maximally to Gabor

filter-like stimuli (i.e. edges), which have been shown to provide the most parsimonious expla-

nation of natural images in probabilistic theories of visual processing [12] (or mathematically

equivalent regularisation-based approaches [13]). Furthermore, more complex probabilistic

models can account for contrast invariant tuning [14] and complex cell properties [15], as well

as surround-suppression effects in neural data and behaviour [16].

The apparent success of probabilistic inference in accounting for a diverse set of experimen-

tal observations raises the question of how neural systems might represent and compute with

uncertainty [17]. Nevertheless, traditional models of neural computation ignore uncertainty,

and instead rely on circuit dynamics that find the single best explanation for their inputs [13,

18, 19]. More recent approaches do allow for the representation of uncertainty, including

distributional [20], doubly distributed [21], and probabilistic population codes [22–24], or

sampling-based network dynamics [11, 25, 26]. However, none of these previous models cap-

ture the rich dynamics of cortical responses. In particular, neural activities in the cortex show
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prominent intrinsic oscillations [27], and large transient changes in response to stimulus

onset, which are observed in V1 [28–30], and other cortical areas [31, 32]. In contrast, existing

neural models of probabilistic inference either have no dynamics and so predict stationary

responses to a fixed stimulus, or they have gradient ascent-like dynamics that display neither

oscillations nor transients, and eventually also converge to a steady-state response for a fixed

input. Moreover, these models typically violate Dale’s law, by having neurons with both excit-

atory and inhibitory outputs. While there have been excitatory-inhibitory (EI) network models

that did capture some of these aspects of cortical dynamics, these have rarely been linked to

any particular computation (but see [33, 34]), let alone probabilistic inference.

Here, we present an EI neural network model of V1 that performs probabilistic inference

such that it retains a computationally useful representation of uncertainty, and has rich, cor-

tex-like dynamics, including oscillations and transients. In particular, our network uses a sam-

pling-based representation of uncertainty [11, 25, 35], such that at any time it represents a

single plausible interpretation of the input, and as time passes it sequentially samples many dif-

ferent interpretations. In other words, the network represents the probability of different sce-

narios implicitly, by the frequency with which it visits their representations via its dynamics.

For instance, in the example above, neural activity at one moment would represent “danger-

ous”, then “not dangerous” at some later time, and then “dangerous” again, such that a deci-

sion about how to behave can then be made based on the proportion of the time neural

activity represents “dangerous” vs. “not dangerous”. Thus, a fundamental consequence of a

sampling-based representation for neural dynamics is that whenever there is uncertainty, neu-

ral activity will not settle down to a single fixed point but instead, it will continue to move

between patterns representing the different possible states of the world. More specifically, an

efficient sampling-based representation requires this continuous movement across state space

to be such that the rate at which (statistically independent) samples are generated by the

dynamics is as high as possible. We show that EI networks are ideally suited to achieve efficient

sampling by implementing a powerful family of probabilistic inference algorithms, Hamilto-

nian Monte Carlo (HMC) [36, 37].

HMC is based on the idea that it is possible to sample from a probability distribution by set-

ting up a dynamical system whose dynamics is Hamiltonian (Fig 1A). The state of such a

system behaves as a particle moving on a (high dimensional) surface, frictionless but with

momentum. The surface determines the potential energy of the particle, corresponding to the

negative logarithm of the probability distribution that needs to be sampled (such that high

probability states correspond to low potential energy). These dynamics speed up inference

because the momentum of the system prevents the random walk behaviour plaguing many

other sampling-based inference schemes. In particular, the particle will accelerate as it heads

towards the minimum of the potential energy landscape, but once it reaches that point, it

will have a large momentum, so it will keep moving out the other side (Fig 1A–1D). Our key

insight is that HMC dynamics are naturally implemented by the interactions of recurrently

coupled excitatory and inhibitory populations in cortical circuits. Due to these interactions,

our network possessed inherently oscillatory dynamics. Crucially, these oscillations were ideal

for speeding up inference, as they moved rapidly across the state space and hence represented

a whole range of plausible interpretations efficiently.

In the following, we first define the statistical model of natural visual scenes that served as

the testbed for our simulations of V1 dynamics. We then describe the HMC-based neural

network that implemented sampling under this statistical model. We demonstrate that our

dynamics sample more rapidly than noisy gradient ascent (also known as Langevin dynamics),

and therefore that the presence of oscillations and transients in our network speeds up infer-

ence. Next, we show by both theoretical analysis and simulation that our sampler reproduces
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three properties of experimentally observed cortical dynamics. First, our sampler has balanced

excitation and inhibition, with inhibition lagging excitation [38]. Second, our sampler oscil-

lates, and the oscillation frequency increases with stimulus contrast [30, 39]. Third, there is a

transient increase in firing rates upon stimulus onset, and the magnitude of this transient is

also modulated by stimulus contrast [30]. Thus, our work provides a principled unifying

account of these dynamical motifs by relating them to a fundamental class of cortical computa-

tions: probabilistic inference.

Results

The Gaussian scale mixture model and V1 responses

In order to model the dynamics of V1 responses, we adopted a statistical model that has been

widely used to capture the statistics of natural images and consequently to account for the sta-
tionary responses of V1 neurons in terms of probabilistic inference. We extended this model

to account for the dynamics of V1 responses.

The Gaussian scale mixture (GSM) model is relatively simple, yet captures some fundamen-

tal higher-order statistical properties of natural image patches by introducing latent variables,

u, coordinating the linear superposition of simple edge features and an additional latent vari-

able, z, determining the overall contrast level of the image patch [40] (Fig 2A). Formally, the

probabilistic generative model can be written as

P ðuÞ ¼ N ðu; 0;CÞ ð1Þ

Fig 1. An example of Hamiltonian dynamics. A. Movement of a particle under Hamiltonian dynamics (i.e.

with momentum) on a two-dimensional quadratic potential energy landscape (greyscale, darker means lower

energy) corresponding to a multivariate Gaussian probability density. The red arrows show the trajectory, with

each arrow representing an equal time interval. Note that the particle does not just go to the lowest potential

energy location: it picks up momentum (kinetic energy) as it moves, leading it to oscillate around the energy

well. B. A plot of position (red) and velocity (blue, the derivative of position) along one dimension. C. Plotting

velocity and position directly against each other reveals explicitly that the dynamics of the system is similar to

that of a harmonic oscillator. D. Plotting kinetic energy (KE) against potential energy (PE) reveals an

exchange between kinetic energy and potential energy that contributes to the system’s oscillatory behaviour.

doi:10.1371/journal.pcbi.1005186.g001
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P zð Þ ¼ T z; 0; 1; 0ð Þ ð2Þ

P xju; zð Þ ¼ N x; zAu; s2

xI
� �

ð3Þ

where N ð�;μ;ΣÞ is a multivariate distribution with mean μ and covariance Σ, T ð�; m;s2; yÞ is

a truncated (univariate) normal distribution with mean μ and variance σ2 truncated below

threshold θ (so that, in our case, z is non-negative), x is the grey levels of pixels in an image

patch, the columns of A include the edge-like features whose combinations are used to

explain images (Fig 2B), C describes their prior covariance (which is fitted to whitened data),

and s2
x ¼ 0:1 is the level of noise present in the images. (See Table 1 for all parameters in the

model, and Methods for details of the procedure used to set them.)

Crucially, assuming that V1 simple cell activities represent values of u sampled from the

posterior over u given an input x under the GSM, P (u|x), provides a natural account for a

number of empirical observations. (Conversely, inference of z may provide an account of com-

plex-cell activations [41–43], which we did not study in further detail here.) In particular, the

posterior mean of u, represented by the mean of model neuron activities, matches the across-

trial average responses of simple cells in V1 [14, 44]. Moreover, it can also be shown that the

posterior variance of u, represented by the variance of model neuron activities, captures

Table 1. Values of the parameters used in our simulations.

Parameter Value Role

C ð1 � s2
xÞðA

TAÞ� 1 prior covariance of u

A See Fig 2B and Methods edge-detecting filters represented by model neurons

s2
x 0.1 variance of observation noise

τ 10 ms membrane time constant

ρ2 13 s−1 rate at which stochastic vesicle release injects noise

Wuu, Wuv, etc. See Methods recurrent connection weights in the network

See Methods for details of the procedure used to determine the parameters. Oscillation frequency in the

network was jointly determined by several of these parameters (see Eq 8), the timescale of transients was

mainly determined by ρ (see S1 Fig).

doi:10.1371/journal.pcbi.1005186.t001

Fig 2. A. The graphical model representation of the Gaussian scale mixture model. The distribution over the observations (images), x, depends on two

latent variables, z and u. The vector u represents the intensity of edge-like features (see panel B) in the images. The positive scalar z represents the

overall contrast level in the image. B. The basis functions represented by u were 15 Gabor filters centred at five different locations, and with three

different orientations.

doi:10.1371/journal.pcbi.1005186.g002
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important aspects of the across-trial variance of V1 responses [11], namely the quenching of

neural variability with stimulus onset [45]. This is because, in the no-stimulus condition, we

have a blank image, x = 0. Under the GSM, x� zAu, so while it is possible to explain a blank

image by setting every single element of u very close to 0 (or, more generally, tuning u to be in

the nullspace of A), a far more parsimonious, and probable, explanation is that z (a single sca-

lar) is close to 0. Importantly, if z is close to 0, then x does not constrain u. Plausible values for

u therefore cover a broad range (defined by the prior over u), so u and hence neural activity,

can be highly variable. In contrast, if there is a stimulus, x ≉ 0, we must also have z≉ 0, in

which case x tightly constrains the range of plausible values of u (as x� zAu), leading to lower

variability. Moreover, the model naturally implements a form of divisive gain control: a very

large x can be accounted for by making z, rather than u, large [46]. This agreement between

the probabilistic model and empirically observed patterns of neural activity is our key motiva-

tion for choosing to use the GSM model as our testbed and asking what plausible neural net-

work dynamics may be appropriate for sampling from its posterior distribution.

Hamiltonian Monte Carlo in an EI network

To ensure efficient sampling from the posterior, we constructed network dynamics based on

the core principles of HMC sampling. The efficiency of HMC stems from its ability to speed

up inference by preventing the random walk behaviour plaguing other sampling-based infer-

ence schemes. In particular, it introduces auxiliary variables to complement the ‘principal’ var-

iables whose value needs to be inferred (u in the case of the GSM). Although this extension of

the state space seemingly makes computations more challenging, it allows inference to be sub-

stantially more efficient when dynamical interactions between the two groups of variables are

set up appropriately.

We noted that the particular interaction between principal and auxiliary variables required

by HMC dynamics is naturally implemented by the recurrently connected excitatory and

inhibitory populations of cortical circuits. Thus, the dynamics of our two-population neural

network that sampled from the GSM posterior were (Fig 3, see Methods for a full derivation):

_u ¼
1

t
Wuuu � Wuvv þ 1

2
t r2 Iinput

h i
þ rηu ð4Þ

_v ¼
1

t
Wvuu � Wvvv � Iinput

h i
þ rηv ð5Þ

where ηu and ηv denotes standard normal white noise (or, more precisely, the differential of a

Wiener processes), the W matrices are the recurrent synaptic weight matrices between the two

populations of cells (defined in the Methods), such that all their elements are positive, and

Iinput ¼
z
s2

x

AT x � zAuð Þ � C� 1u ð6Þ

is an input current. Under these dynamics, the principal ui and auxiliary variables vi corre-

sponded to the membrane potentials of individual neurons (or the average membrane poten-

tial of small populations of cells), and for any input x, the stationary distribution of u was

guaranteed to be identical to the corresponding posterior distribution under the GSM.

Network dynamics consisted of three components. First, recurrent dynamics implementing

HMC was specified by the first two terms in Eqs (4) and (5), Wuu u − Wuv v and Wvu u − Wvv v.

As the elements of the W matrices were all positive (see above), the recurrent circuit implied by

these dynamics had an EI structure, with u corresponding to excitatory cells and v to inhibitory

cells.
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Second, there was an input current Iinput, whose strength was scaled by the (inferred) level

of contrast, z (Eq 6). Note again that while this signal might increase with z, it is a prediction

error, so it has a highly non-trivial relationship with the resulting response. In fact, it can be

shown that the response actually saturates as contrast increases (and results in tuning curves

with contrast invariant width) [11]. This input current specified the probabilistic model by

conveying a prediction error, i.e. the difference between the input image, x, and the image pre-

dicted by the current activities of the excitatory neurons, zAu, plus a term penalizing the

violation of prior expectations about u. While the key focus of our paper is the EI circuit imple-

menting HMC, rather than the specific form for the input (of which the details depend on the

underlying probabilistic model, here the admittedly simplified GSM model), we suggest a

potential implementation of Iinput by a separate population of neurons directly representing

the prediction error (x − zAu) as in theories of predictive coding [18]. Such cells (perhaps in

the lateral geniculate nucleus, LGN) would have an excitatory connection from upstream areas

(the retina), representing the data, and an inhibitory disynaptic connection from the excitatory

cells, u. The output from these cells needs to excite the excitatory cells and inhibit the inhibi-

tory cells of our circuit, which can again be implemented via disynaptic inhibition. This form

of input is particularly well-suited to give strong, long-lasting activation of the EI circuit, as the

increase in excitation reinforces the decrease in inhibition.

Finally, the last term in Eqs (4) and (5) represented noise. Although these dynamics were

clearly simplified in that they were fundamentally linear, such dynamical systems have been

used to model a wide variety of neural processes [47–49]. Previous work has also shown that

neurons combining firing-rate nonlinearities with short-term synaptic plasticity and dendritic

nonlinearities can implement such effectively linear membrane potential dynamics [50, 51].

Moreover, such models have been found to provide a good match to the dynamics of cortical

populations at the level of field potentials [52], calcium signals [53], and firing rate trajectories

[49, 54]. We set the parameters of the network to lie in a biologically realistic regime (Table 1,

Methods).

Oscillations contribute to efficient sampling

When given an input image, our network exhibited oscillatory dynamics due to its intrinsic

excitatory-inhibitory interactions (Fig 4A). Intuitively, these oscillations were useful for infer-

ence as they allowed the network to cover a broad range of plausible interpretations of its

Fig 3. The architecture of the Hamiltonian network. The network consists of two populations of neurons,

excitatory neurons with membrane potential u, and inhibitory neurons v, driven by external input Iinput.

Neurons in the network are recurrently coupled by synaptic weights, Wuu, Wuv, Wvu and Wvv. Red arrows

represent excitation; blue bars represent inhibition.

doi:10.1371/journal.pcbi.1005186.g003
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input within each oscillation cycle. In order to assess more rigorously the computational use of

these oscillations, we compared our network to a non-oscillatory counterpart, called Langevin

sampling [55] (Methods). For a fair comparison of the two samplers, we set them up to sample

from the same posterior, and we kept the noise level ρ the same in them.

The Langevin sampler was constructed by setting the recurrent weights in our network (W

matrices) to zero. Although, in general, a Langevin sampler can still have recurrent connectiv-

ity, at least among the principal cells (by interpreting the dependence of Iinput on u as recurrent

connections [56]), these recurrent connections are necessarily symmetric and therefore funda-

mentally different in nature from the EI interactions that we consider here. As a consequence,

Langevin dynamics showed prominent random walk-like behaviour without oscillations (Fig

4B). Comparing the autocorrelation functions for the Hamiltonian and Langevin samplers

revealed that while their autocorrelation functions decayed at similar rates (controlled by the

timescale of the stochastic, Langevin component), the HMC had an additional, oscillating

component, allowing it to rapidly explore the state space (Fig 4C).

The oscillatory behaviour of our HMC sampler allowed it to explore a larger volume of

state space in a fixed time interval than Langevin sampling (Fig 4D and 4E). To compare the

sampling performance of HMC and Langevin dynamics rigorously, we measured for both of

them the error between a sample-based estimate of the posterior mean and the true mean of

the posterior. The samples from the Hamiltonian sampler took very little time to give a good

estimate of the mean (73 ms to get the mean square error to the level obtainable by a single

statistically fair sample), whereas samples from the Langevin model took *4 times longer

Fig 4. The Hamiltonian sampler is more efficient than a Langevin sampler. A, B. Example membrane

potential traces for a randomly selected neuron in the Hamiltonian network (A) and the Langevin network (B).

C. Solid lines: the autocorrelation of membrane potential traces in A and B, for Hamiltonian (red) and

Langevin samplers (blue). Dashed lines: the autocorrelation of the joint (log) probability for Hamiltonian (red)

and Langevin samplers (blue). Note that for the Hamiltonian sampler, the joint probability is over both u and v.

D, E. Joint membrane potential traces from two randomly selected neurons in the Hamiltonian network (D)

and the Langevin network (E), colour indicates time (from red to green, spanning 25 ms), grey scale map

shows the (logarithm of the) underlying posterior (its marginal over the two dimensions shown). F. Normalised

mean square error (MSE) between the true mean and the mean estimate from samples taken over a time t for

the Langevin (blue) and Hamiltonian dynamics (red), with 100 repetitions (mean ± 2 s.e.m.).

doi:10.1371/journal.pcbi.1005186.g004
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(273 ms, Fig 4F). This difference indicated that our HMC-inspired sampler used limited noise

far more efficiently than Langevin dynamics.

The efficiency of HMC is typically attributed to the suppression of the random walk behav-

iour of Langevin dynamics [37]. In our network, we were able to relate this effect more specifi-

cally to the appearance of oscillations. HMC dynamics had both an oscillatory and a stochastic

component (Fig 4A and 4C red), whereas Langevin dynamics had only the stochastic compo-

nent, so that it performed simple noisy gradient ascent, without apparent oscillations (Fig 4B

and 4C blue). In particular, oscillations in the HMC sampler had a time scale that was a factor

of 15 faster than that of the stochastic component shared with Langevin dynamics. This fast

time constant of the HMC sampler, τ, governed the effects of recurrent EI interactions, which

were mediated by the W matrices that the Langevin sampler lacked (Eq 32). These architectural

and dynamical differences implied a fundamentally different strategy for exploring the state

space of these networks. The fast oscillations in the HMC sampler deterministically explored

states in (u, v)-space that lay on an equiprobability manifold, while the slow time scale implied

by the input noise served to change this manifold stochastically (Fig 4D). Indeed, the autocorre-

logram of the energy (log posterior probability) in the HMC sampler (Fig 4C, red dashed

curve) was identical to the Langevin envelope of the autocorrelogram of states (Fig 4C, red

solid curve), indicating that energy only changed on the slow time scale governed by this sto-

chastic component and not on the fast time scale of oscillations. (Note that while moving along

equiprobability contours in the full joint (u, v) space, HMC dynamics may still cross probability

contours when projected to a low dimensional marginal, as shown in Fig 4D.) In contrast, Lan-

gevin dynamics could only rely on this slow stochastic component resulting in slow movement

across energy levels (Fig 4C, blue dashed curve) and the state space (Fig 4C, blue solid curve).

Balance between excitation and inhibition

As we saw above, the advantage of HMC over Langevin dynamics could be attributed to the

contribution of the recurrent connections, i.e. the Wuu u − Wuv v and Wvu u − Wvv v terms in

the dynamics (Eqs 4 and 5), which respectively expressed the difference between net excitation

and inhibition received by each excitatory and inhibitory neuron. (Note that this difference

was not affected by Iinput as the prediction error conveyed by the input is zero on average for

any input, by definition.) Importantly, for HMC to sample from the correct posterior, the

dynamics of excitatory cells needed to track the prediction error conveyed by Iinput, for which

the recurrent term needed to be zero on average, which in turn suggests that excitation and

inhibition needed to track each other across different stimuli (Fig 5A). Indeed, the only way

Fig 5. Excitation and inhibition are balanced in the Hamiltonian network. A. Trial-average excitatory

input vs. trial-average inhibitory input across trials (dots) for a randomly selected individual cell in the network.

B. Total inhibitory input to a single cell (blue) closely tracks but slightly lags total excitatory input (red) over the

course of a trial. C. The cross-correlation between the average excitatory and average inhibitory membrane

potentials shows a peak that is offset from 0 time.

doi:10.1371/journal.pcbi.1005186.g005
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we could obtain Hamiltonian dynamics that complied with Dale’s law was if the activity of

inhibitory cells tracked that of excitatory cells, i.e. if the network was balanced. As Langevin is

equivalent to having these terms set to zero, for HMC to realize its advantage over Langevin,

the variance of the recurrent term needed to be sufficiently large, which implied that the mag-

nitudes of net excitation and net inhibition each needed to be large and momentarily imbal-

anced (Fig 5B). These features, large excitatory and inhibitory currents that are tracking each

other with momentary perturbations, are thought to be fundamental properties of the dynam-

ical regime in which the cortex operates [38], and thus arise naturally from HMC dynamics in

our EI network. Furthermore, as expected in a network with an EI architecture, excitation led

inhibition in our network (Fig 5C).

Stimulus-dependent oscillations

Oscillations are a ubiquitous property of cortical dynamics [57], and we have shown above

that efficient sampling in HMC necessarily leads to oscillatory dynamics in general (Figs 4 and

5). However, when applied specifically to perform inference based on visual images (Fig 2),

our model also reproduced some more specific and robust properties of gamma-band oscilla-

tions in V1, namely that the precise frequency of these oscillations increases with stimulus con-

trast [30, 39] (Fig 6).

In order to extract an LFP from our model, in line with previous approaches (e.g. [58]), we

computed the sum of membrane potentials of all cells. (Using the sum of input currents

instead would have yielded qualitatively similar results.) The fact that LFP oscillations in our

model were in the gamma band, i.e. around 40 Hz, was simply due to our choice of a realistic

single neuron time constant, τ = 10ms. However, within this band, the modulation of the oscil-

lation frequency by the contrast of the input image was a more specific characteristic of the

dynamics of our network. As contrast increased, the amount of evidence to pin down u

increased, and so the GSM posterior from which the dynamics needed to sample became tigh-

ter [11]. At the same time, the recurrent EI interactions of the HMC dynamics which gave rise

to oscillations had a fixed time scale independent of the input (Eqs 4 and 5). Using the same

speed to traverse an equiprobability manifold of an increasingly tight posterior thus naturally

led to increasing oscillation frequencies.

To further quantify this intuition, we simplified the dynamics of our network by incorpo-

rating the effects of inhibition directly into the equations describing the dynamics of the excit-

atory cells (see Methods):

€u ¼ �
1

t2

z2

s2
x

�
1

1 � s2
x

� �

u � �uð Þ ð7Þ

where �u ¼ E ½ujx; z� is the (stimulus-dependent) mean of the posterior over u. This form

explicitly exposes that our sampler (in the limit studied here) underwent regular harmonic

oscillations, whose frequency increased with stimulus contrast, zgen (assuming that the inferred

value of z was sufficiently close to the actual stimulus contrast, i.e. z’ zgen), as

f ðzÞ ¼
1

2pt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

gen

s2
x

�
1

1 � s2
x

s

ð8Þ

Indeed, as predicted by these arguments, the network exhibited contrast-dependent oscilla-

tion frequencies both in its membrane potentials (Fig 6A) and LFPs (Fig 6B and 6C; note that

in B, we account for the fact that a “scale-free” noise process has 1/f frequency dependence

[59] by plotting power × frequency on the y-axis). Furthermore, the quantitative predictions
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made by Eq 8 were in close agreement with the results of numerical simulations in the the full

model, where z is not fixed, but is inferred simultaneously with u (Fig 6D).

Stimulus-dependent transients

When we computed firing rates in the model by applying a threshold to membrane potentials

(Eq 60), our simulations showed large, contrast-dependent transient increases in population

firing rate at stimulus onset (Fig 7A). (Were we to consider the average membrane potential,

this would not display such a large transient, because some neurons undergo positive tran-

sients, and others undergo negative transients, which cancel overall.) Such transients are also a

widely observed characteristic of responses in V1 [29, 30] (as well as other sensory cortices [32,

60]). These transients were also inherent to the dynamics of our network and were not trivially

predicted by simpler variants. For example, Langevin sampling did not give rise to any tran-

sient increase in firing rates—rates simply rose or fell towards their new steady state (Fig 7B,

most obvious for zgen = 0.5). Even Hamiltonian dynamics did not necessarily yield transients.

In particular, the full dynamics of our network inferred contrast, z, online together with the

basis function intensities u. Assuming instead that the brain knows z = zgen, or uses a fixed

value of z sampled from P (z|x), the dynamics became simple noisy harmonic motion.

Although harmonic motion can lead to transients when initialised properly, the transients

yielded by these dynamics were much smaller in magnitude which were near-impossible to

detect in simulated population firing rates (Fig 7C).

In order to understand how transients emerged in the full Hamiltonian dynamics of our

network, sampling u and z jointly, we focussed on the interaction between the dynamics of u

and the inferred value of z. For analyzing the asymptotic behaviour in the previous section, we

Fig 6. Oscillation frequency depends on stimulus contrast. A. The membrane potential response of one neuron to stimulus

onset across 4 trials (coloured curves) shows that the variability decreases and the frequency increases as stimulus contrast

increases. The true contrast of the underlying image increases left to right (zgen = 0.5, 1, and 2). B. Power spectrum of the LFP

(average membrane potentials) at different contrasts (coloured lines), showing that dominant oscillation frequency increases with

contrast. Note that we plot power × frequency on the y-axis, in order to account for the fact that noise from a “scale-free” process has

1/f frequency dependence [59]. C. Time-dependent spectrum (Gaussian window, width 100 ms) of the LFP (contrast levels as in A).

D. The simplified dynamics (x-axis, Eq 8) accurately predicted the dependence of oscillation frequencies on contrast (colour code as

in B) in the full network (y-axis).

doi:10.1371/journal.pcbi.1005186.g006
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assumed that z was constant (and equal to zgen). However, in general, z depended on the net-

work’s currently inferred value of u. In particular, z and u jointly accounted for the total con-

trast content of the input image x (Eq 3), and thus there was an inverse scaling between their

magnitudes. Using the 1D variant of Eq 7, x� zAu, so z� x/Au (Fig 7D). Here, we make use

of a separation of time scales between the dynamics of z and u, specifically that z will attain its

stationary value (distribution) much faster than u. This is because while the basis functions of

ui’s are localised Gabor filters, z depends on the whole image patch (or, conversely, on all the

ui’s), which means that the sensory evidence for z is much stronger than for u, and conse-

quently its distribution is much narrower, giving strong prediction error signals which rapidly

drive it to equilibrium. As z effectively set the stiffness of the ‘spring’ underlying harmonic

motions in our dynamics (Eq 7), the system had high (restoring) acceleration for low values of

|u| and low accelerations for high values of |u|, resulting in high magnitude excursions in u
(Fig 7E). Therefore, just after stimulus onset, u was small, so there was a large force in the posi-

tive direction (due to the large stiffness), causing a large acceleration. Eventually, u exceeded �u,

but by that point the stiffness, and hence the restoring force had fallen, so the system’s momen-

tum allowed it to move a long distance, certainly further than if the spring constant had been

fixed. This asymmetry in preferring upward to downward changes in |u| was only relevant

during initial transients as asymptotically the evidence in the image was sufficient to determine

z with high precision and so the dynamics of u became approximately linear (as in Eq 7). Thus,

the timescale of the transient was determined by the timescale at which inferences about z
attained their stationary distribution, which in turn scaled with ρ (S1 Fig).

Fig 7. Large, contrast-dependent firing rate transients in the model. A-C. Transients (or lack thereof) at

different contrast levels (colour) under the full dynamics (A), using Langevin dynamics (B), and under the full

dynamics when the value of z is fixed, z = zgen (C). Note different scales for firing rates in the three panels to

better show the full range of firing rate fluctuations in each case. D. Dependence of the inferred value of

contrast, z, on the currently inferred magnitude of basis function intensities, u, under the simplified dynamics

(blue). For reference, red shows the value of z when set to be fixed at z = zgen. E. There is asymmetry in €u as a

function of u, around the value of u = �u = 1, in the simplified model when z is inferred (blue) but not when it is

fixed (red). F. Transients predicted by the simplified dynamics (Eq 9, with parameters as in Fig 6D, and initial

conditions u(0) = 0.1 and _uð0Þ ¼ 0) are similar to transients under the full dynamics.

doi:10.1371/journal.pcbi.1005186.g007
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More formally, taking the 1D version of the simplified dynamics (Eq 7), and substituting

z� x/Au gives

€u ¼ �
1

t2

x2

s2
xA2u2

þ
1

1 � s2
x

� �

ðu � �uÞ ð9Þ

Simulating this simplified dynamical system did indeed yield large transients (Fig 7F)

which matched full simulations (Fig 7A) and recordings in macaque V1 [30] both in terms of

the transient timescale (*30 ms) and the dependence of transient magnitude on contrast level

(values of zgen). The fact that these large transients were retained in the model after such severe

approximations indicated that they were robust to the exact method used for determining z, as

long as it ensured that z was consistent with both x and u.

Discussion

Previously proposed mechanisms by which the cortex could either represent and manipulate

uncertainty or just find the most probable explanation for sensory data failed to explain the

richness of cortical dynamics. In particular, these models either had no dynamics or only gra-

dient ascent-like dynamics, whereas neural activity displays oscillations in response to a fixed

stimulus, and large transients in response to stimulus onset. Moreover, these models typically

violated Dale’s law, by having neurons whose outputs were both excitatory and inhibitory. We

demonstrated that it was, in fact, possible to perform probabilistic inference in an EI network

that displayed oscillations and transients. Moreover, having oscillations actually improved the

network, in that it was able to perform inference faster than networks that did not have oscilla-

tions. Our model displayed four further dynamical properties that did not appear, at first, to be

compatible with probabilistic inference: excitation and inhibition were balanced at the level of

individual cells [38], inhibition lagged excitation [38], oscillation frequency increased with

stimulus contrast [30], and there were large transients upon stimulus onset which also scaled

with contrast [28–30]. In sum, we have given an approach by which successful, inference-

based models of stationary activity distributions in V1 (e.g. [11]) can be extended to match the

dynamics of neural activity.

Our work suggests a new functional role for cortical oscillations, and for inhibitory neurons

that are involved in their generation: speeding up inference. We have demonstrated this role

in the specific context of V1, but our formalism is readily applicable to other cortical areas in

which probabilistic inference is supposed to take place, and similar stimulus-controlled tran-

sients and oscillations can be observed [61, 62]. Neural oscillations and probabilistic inference

have been linked previously, albeit in the hippocampus rather than sensory cortices [63]. The

main differences between the two approaches are that in previous work, oscillations were con-

trolled entirely externally, and implemented (approximately) an augmented sampling scheme

known as tempered transitions [64], whereas our work builds on the theory of Hamiltonian

Monte Carlo [37] to construct network dynamics that are intrinsically oscillating. This allowed

us to study the effects of the stimulus on these oscillations that previous approaches could not

address. Computationally, Hamiltonian Monte Carlo and annealing-based techniques, such

as tempered transitions, have complementary advantages in allowing network dynamics to

respectively explore a given posterior mode or traverse different modes efficiently. Thus, a

combination of these different approaches may account for concurrent cortical oscillations at

different frequencies.

While the statistical model of images underlying our network was able to capture some

interesting properties of the statistics of natural images, it was nevertheless clearly simplified,

in that e.g. it did not capture any notion of objects, or occlusion. Once such higher-order
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features are incorporated into the model, we expect a variety of interesting new dynamical

properties to emerge. For example, there should be strong statistical relationships between

low-level variables describing a single object, and hence strong dynamical relationships,

including synchronisation, between neurons representing different parts of the same object

[65, 66]. In the extreme, we might expect to see coherent oscillations between neurons repre-

senting the same object, providing a principled unifying perspective of bottom-up (e.g. con-

trast) and top-down influences (e.g. “binding by synchrony”) on cortical oscillations [67].

It will also be important to understand how local learning rules, modelling synaptic plastic-

ity, may be able to set up the weight matrices that we found were necessary for implementing

efficient Hamiltonian dynamics. For example, there might be two sets of learning rules operat-

ing in parallel, one set of rules which learns that statistical structure of the input, perhaps

mainly through the plasticity of excitatory-to-excitatory connections [68], and another which

tunes network dynamics, perhaps primarily by inhibitory plasticity mechanisms, to speed up

the inference process, without altering the sampled distribution [69].

Finally, while the type of linear membrane potential dynamics we used in our network

could be implemented using firing rate non-linearities in combination with synaptic and den-

dritic nonlinearities [50, 51], it will nevertheless be important to understand whether it is pos-

sible to perform inference in networks with more realistic non-linearities.

Methods

Sampler derivation

The sampler was derived by combining an HMC step, and a Langevin step to add noise and

ensure ergodicity. The most general equations describing HMC are given by

_u ¼
1

t

@ logP u; vjx; zð Þ

@v
ð10Þ

_v ¼ �
1

t

@ logP u; vjx; zð Þ

@u
ð11Þ

For the HMC step, there is freedom to specify the distribution of the auxiliary variable,

P (v|u, x), and freedom to set the noise distribution. Typically, the distribution of the

auxilliary variable is set to have 0 mean and be totally independent of u, so that

P ðvju; x; zÞ ¼ P ðvÞ ¼ N ðv; 0;M� 1Þ. However, we know that inhibitory cells do, in fact,

respond to input. We therefore chose to use

P vju; x; zð Þ ¼ P vjuð Þ ¼ N v;Bu;M� 1ð Þ ð12Þ

with a free choice for B and M, which we will discuss below (Setting the parameters). This

allowed us to split up these probability distributions into terms that are dependent, and

independent, of the data, x:

_u ¼
1

t

@ logP vjuð Þ

@v
ð13Þ

_v ¼ �
1

t

@ logP vjuð Þ

@u
�

1

t

@ logP ujx; zð Þ

@u
ð14Þ

In order to add noise without perturbing the stationary distribution, we perform a Langevin

step, that is, we simultaneously add noise and take a step along the gradient of the log-proba-

bility. Notably, this introduces a new time constant τL, that simply controls the rate at which
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noise is injected into the system. As such, τL is directly related to ρ,

r ¼

ffiffiffiffi
2

tL

s

ð15Þ

The dynamics therefore become

_u ¼
1

t

@ logP vjuð Þ

@v
þ

1

tL

@ logP u; vjx; zð Þ

@u
þ

ffiffiffiffi
2

tL

s

ηu ð16Þ

_v ¼ �
1

t

@ logP vjuð Þ

@u
�

1

t

@ logP ujx; zð Þ

@u
þ

1

tL

@ logP u; vjx; zð Þ

@v
þ

ffiffiffiffi
2

tL

s

ηv ð17Þ

Again, we can break up the P (u, v|x, z) terms into terms that are dependent, and indepen-

dent, of v:

_u ¼
1

t

@ logP vjuð Þ

@v
þ

1

tL

@ logP vjuð Þ

@u
þ

1

tL

@ logP ujx; zð Þ

@u
þ

ffiffiffiffi
2

tL

s

ηu ð18Þ

_v ¼ �
1

t

@ logP vjuð Þ

@u
þ

1

tL

@ logP vjuð Þ

@v
�

1

t

@ logP ujx; zð Þ

@u
þ

ffiffiffiffi
2

tL

s

ηv ð19Þ

Now, we compute these gradients, and convert them into a neural-network (see S1 Code)

@ logP vjuð Þ

@u
¼ � M Bu � vð Þ ð20Þ

@ logP vjuð Þ

@v
¼ BTM Bu � vð Þ ð21Þ

where the gradient of the posterior is the external input

Iinput ¼
@ logP ujx; zð Þ

@u
¼

1

s2
x

zAT x � zAuð Þ � Cu ð22Þ

We can thus write the dynamics of our neural network as

_u ¼
1

t
Wuuu � Wuvv þ

t

tL
Iinput

� �

þ

ffiffiffiffi
2

tL

s

ηu ð23Þ

_v ¼
1

t
Wvuu � Wvvv � Iinput

� �
þ

ffiffiffiffi
2

tL

s

ηv ð24Þ
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where

Wuu ¼ BTMB �
t

tL
MB ð25Þ

Wuv ¼ BTM �
t

tL
M ð26Þ

Wvu ¼ MBþ
t

tL
BTMB ð27Þ

Wvv ¼ Mþ
t

tL
BTM ð28Þ

Finally, we substitute τL = 2/ρ2.

Sampling z

The brain does not know zgen, so it must infer z together with u. We therefore inferred z and u

in parallel, using an additional HMC sampler for z.
In particular, we simply extended the dynamics with an additional element for z:

_z ¼
1

t
Wzzz � Wzvv þ

t

tL
Iinput

� �

þ

ffiffiffiffi
2

tL

s

Zz ð29Þ

_v ¼
1

t
Wvzz � Wvvv � Iinput

� �
þ

ffiffiffiffi
2

tL

s

Zv ð30Þ

where W is defined as above, with B = M = 1, and

Iintput ¼
@ logP u; z; xð Þ

@z
¼

1

s2
x

Auð Þ
T x � zAuð Þ � z ð31Þ

Langevin sampler

By setting the weight matrices implementing HMC, W, to 0, we obtain the Langevin step:

_u ¼
1

tL
Iinput þ

ffiffiffiffi
2

tL

s

ηu ð32Þ

Setting the parameters

The GSM model has three parameters, the Gabor features, A, the covariance matrix, C, and

the observation noise, s2
x. We set A using known properties of the visual system: the Gabor fil-

ters-like receptive fields of V1 simple cells. In particular, we define A as a bank of Gabor filters

at three orientations (0, π/3 and 2π/3), five locations (the centre, and corners, 1/6 image-widths

from the edge, where all measurements are in units of image height = image width). The

Gaussian envelope of the Gabors had minor axis 0.1, and major axis uniformly distributed
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from 0.1 to 0.5 (where these measurements are in units of image width, and give the standard

deviation along the relevant axis), and the sinusoid had wavelength 0.13 image-widths.

We can set C using the value for A, and the fact that retina and LGN are known to whiten

visual input [70]. For a particular image, x, and inferred contrast level, z, the posterior is

P ujx; zð Þ ¼ N u; z
s2

x
ΣðzÞAT x;ΣðzÞ

� �
ð33Þ

where

ΣðzÞ ¼ C� 1 þ z2

s2
x
ATA

� �� 1

ð34Þ

We know that the average posterior equals the prior [10, 71], and so the prior covariance C

should match the average posterior covariance (averaging over data, x, and other latent vari-

ables, z), i.e.

C ¼ E uuT½ � ¼ E z2

s4
x
ΣðzÞAT xxTAΣðzÞ þ ΣðzÞ

h i
ð35Þ

We make the ansatz that

C ¼ K ATAð Þ
� 1

ð36Þ

where K is an unknown constant. Substituting this guess into Eq (34), we see that Σ(z) simpli-

fies considerably:

ΣðzÞ ¼ K � 1 þ z2

s2
x

� �� 1

ATAð Þ
� 1

ð37Þ

and as the data are whitened (assuming this is true at any contrast level, i.e. Ex|z [xxT] = c(z) I,

with some c(z)), we indeed have

Eu uuT½ � / ATAð Þ
� 1

ð38Þ

confirming our ansatz.

In principle, we could find K by solving Eq (35) (by substituting Eq 36 to its l.h.s., and Eq 37

to its r.h.s.), however, in practice, we cannot because we do not know c(z) in Ex|z [xxT] = c(z) I.

Instead, we set K to ensure that the inputs, AT x, have the right covariance (note that it is only

possible to match the covariance of AT x, and not of x directly, because we are using an under-

complete basis). As the data is whitened, we expect

E AT xxTA½ � ¼ ATA ð39Þ

while the predictive distribution of the GSM results in

E AT xxTA½ � ¼ AT E z2½ �ACAT þ s2

xI
� �

A ð40Þ

Setting these expressions equal, substituting for C using our ansatz (Eq 36), and using

E [z2] = 1 gives

ATA ¼ K þ s2

x

� �
ATA ð41Þ

yielding the solution

K ¼ 1 � s2

x ð42Þ
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(Note that while this derivation is valid for the complete and undercomplete case, a more

complex analysis would be necessary for the overcomplete case.)

With these choices, the dynamics only depend on the probabilistic model through the prod-

uct (ATA)−1. This product controls the frequency spectrum: if (ATA)−1 has a very broad eigen-

spectrum (e.g. multiple orders of magnitude), then the system will sample at different rates

along different directions. This is not desirable: we want sampling to take place as fast as possi-

ble in every direction, not to be fast in some directions, and slow in others. If we were able to

set M to (ATA)−1, then we would indeed sample at the same rate in every direction [37], no

matter how broad the spectrum of (ATA)−1 (see “Deriving the 1D approximate model”,

below). However, to ensure that Dale’s law is obeyed, we need the elements of M to be non-

negative, so we set

B ¼ I ð43Þ

and

Mij ¼ max 0; ATAð Þ
� 1

ij

� �
ð44Þ

For the dynamics to be correct, we need this matrix to be positive definite. While this is not

guaranteed, we found that in practice the matrix turns out to satisfy this constraint. As M is

close to, but not exactly, (ATA)−1, the eigenspectrum of ATA will have some effect on our sam-

pler. In practice, our eigenvalues range over a factor of 5 without weakening our results.

Again, this is valid for the undercomplete and complete cases, and a more complex analysis

would be necessary for the overcomplete case.

Next, we consider the observation noise level, σx, which describes the noise-to-signal ratio

for neurons in the visual cortex. In particular, we take the input to be AT x. This input is made

up of two components, signal from the mean of P (AT x|u, z), and noise from its covariance,

(given by transforming Eq (3)). The covariance of this input (Eq 40) also breaks up into signal,

ð1 � s2
xÞA

TA, and noise, s2
xA

TA, terms, giving the signal to noise ratio as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x=ð1 � s2
xÞ

p
� sx.

To obtain a value for σx we perform a simple estimation. We take a V1 simple cell that inte-

grates N inputs from retinal ganglion cells (RGCs) (indirectly, via the LGN), each firing a Pois-

son spike train of average rate r, with a temporal integration window of Δt. In this case, the c.v.

(which corresponds to σx) is

sx ¼
s:d:

mean
¼

ffiffiffiffiffiffiffiffiffiffiffi
NrDt
p

NrDt
¼

1
ffiffiffiffiffiffiffiffiffiffiffi
NrDt
p ð45Þ

Based on the literature, we set the values of the relevant constants as

r � 1 s� 1 ð46Þ

[72],

Dt � 10 to 100 ms ð47Þ

[73],

N � 100 to 1000: ð48Þ

To obtain this range for N, we note that there are around 1000 RGCs in the stimulated

region in [30]. (This can be computed knowing the dependency of RGC density on eccentric-

ity [74], and that the stimulus has s.d. 0.5 degrees, so the total area is around 1 degree2, and is 3

to 5 degrees from the fovea, and then discounting, to account for the fact that not all of these

The Hamiltonian Brain

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005186 December 27, 2016 18 / 24



cells will be connected [75]). Thus, we obtain the interval

sx ¼
1
ffiffiffi
1
p to

1
ffiffiffiffiffiffiffiffi
100
p ð49Þ

of which we use the geometric mean:

sx ¼
1
ffiffiffiffiffi
10
p ð50Þ

To choose values for τL, τ and s2
v , we considered biological constraints. The external input

to the inhibitory cells is governed entirely by τ, suggesting that a biologically plausible value for

τ is 10 ms [76]. The scale of the recurrent input terms are governed by the product 1

t
M� 1, sug-

gesting that, to ensure the recurrent input has a biologically plausible timescale of 10 ms, we

should set M−1 to be O(1) (see Eq (44)).

Finally, we estimated τL, or equivalently the amount of noise per unit time, by comparing

the rate at which membrane potential variance increases in our equations, 2σ2/τL, to the rate of

increase given by stochastic vesicle release, the primary source of ‘noise’ in cortical circuits. If a

neuron is connected to s presynaptic neurons, firing with average rate r, and the variance of a

unitary EPSP is v, then stochastic vesicle release introduces variance at the rate srv. Setting

srv = 2σ2/τL allows us to find the Langevin timescale

tL ¼
2s2

srv
ð51Þ

However, estimating τL is difficult, because there are huge uncertainties in σ, s, r and v.

We therefore wrote our uncertainty about each parameter as a log-normal distribution,

P ð logxÞ ¼ N ð logx; mx; s
2
xÞ where x is one of σ, s, r, or v, and computed the induced distribu-

tion on τL. To specify the distributions, we wrote a range, from xl to xh, that, we believed con-

tained around 95% of the probability mass, taking the boundaries of the range to be two

standard-deviations from the mean in the log-domain, log xl = μx − 2σx and log xh = μx + 2σx.

To estimate the required ranges, we took values from the neuroscience literature. First, esti-

mates of firing rates vary widely, from around 0.5 Hz [77] to around 10 Hz [78]. Second, the

number of synapses per cell is usually taken to be around 10000. However, it is likely that there

are multiple synapses per connection [79], so there could be anywhere from 1000 to 10000

input cells for a single downstream neuron. Third, the average variance per spike is relatively

easy to measure, data from Song et al. [80] put the value at 0.076 mV2. As other measurements

seem roughly consistent [81], we use a relatively narrow range for v, from 0.05 mV2 to 0.1

mV2. Finally, the scaling factor, σ, could plausibly range from 2.5 mV to 7.5 mV, giving a full

(2 standard deviations, and both sides of the mean) range of membrane potential fluctuations

of 10 mV to 30 mV [82].

These ranges give a central estimate of τL = 150 ms, which we used in our simulations. In

agreement with this back-of-the-envelope calculation, we find that our sampler’s dynamics

match neural dynamics when τL lies in a broad range, from around 60 ms to around 400 ms

(see S1 Fig). While τL appears relatively large in comparison with typical neural timescales,

which are often around 10 ms, it should be remembered that τL parameterises the amount of

noise injected into the network at every time step, and as such, does not therefore have any

necessary link to other neural time constants.
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Altering the model so that ui and vi are always positive

One might worry that it is possible for ui (or vi) to go negative, meaning that they have their

influence on downstream neurons will have the wrong sign. However, it is straightforward to

offset u (and hence v, through Eq (12)), so that they rarely, if ever become negative. Moreover,

if we introduce the offset as

P uð Þ ¼ N ðu; b;CÞ ð52Þ

P ðxju; zÞ ¼ N ðx;A ðu � bÞ;CÞ ð53Þ

then this leaves the data distribution P (x), and hence the dynamics intact.

Deriving the 1D approximate model

_u ¼
1

t
M u � vð Þ ð54Þ

_v ¼
1

t
M u � vð Þ �

z
s2

x

AT x � zAuð Þ � Cu ð55Þ

Differentiating again yields

€u ¼
1

t
M _u � _vð Þ ð56Þ

substituting for _u and _v , and collecting the terms that depend on u, we obtain

€u ¼ �
1

t2
M

z2

s2
x

ATA � C� 1

� �

u � �uð Þ ð57Þ

where �u is the posterior mean of u with fixed z (see Eqs 33, 37 and 42)

�u ¼
z
s2

x

z2

s2
x

þ
1

1 � s2
x

� �

ATAð Þ
� 1 AT x ð58Þ

substituting M = (AT A)−1 (i.e. the ideal value for M), and C ¼ ð1 � s2
xÞ ðA

TAÞ� 1
(Eq (36)),

gives

€u ¼ �
1

t2

z2

s2
x

þ
1

1 � s2
x

� �

u � �uð Þ ð59Þ

Thus, for fixed z, each component of u evolves independently.

Simulation protocol

We simulated stimulus onset by first running the sampler until it reached equilibrium with no

stimulus, then turning on the stimulus. To represent no stimulus we sampled x from P (x|z = 0),

and to represent stimulus, we sampled x from P (x|z = zgen), where zgen 2 {0.5, 1, 2}.

Computing LFPs and firing rates

To make contact with experimental data, we also computed local field potentials (LFPs), and

firing rates. There are many methods for computing LFPs, we chose the simplest, averaging

the membrane potentials across neurons, as it gave similar results to the other methods, with-

out tuneable parameters. To compute firing rates, we used a rectified linear function of the
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membrane potential:

fiðtÞ ¼
uiðtÞ if uiðtÞ > 0

0 otherwise

(

ð60Þ

Supporting Information

S1 Fig. Our main results are robust to a range of ρ or equivalently τL.
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S1 Code. The code used to generate our simulations. See readme for further details.
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