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Abstract
Inspired by the notion that environmental noise is in principle observable, while fundamental noise
due to spontaneous localizationwould not be, we study the estimation of the diffusion parameter
induced bywave function collapsemodels under continuousmonitoring of the environment.We take
into account finitemeasurement efficiencies and, in order to quantify the advantage granted by
monitoring, we analyse the quantumFisher information associatedwith such a diffusion parameter,
identify optimalmeasurements in limiting cases, and assess the performance of suchmeasurements in
more realistic conditions.

1. Introduction

Spontaneous localizationmodels [1], in theirmany flavours and variations, were introduced from the late
eighties primarily as an attempt to unify the dynamics ofmicroscopic andmacroscopic systems, encompassing
measurement apparata, which customary quantummechanics only describes through ad hoc prescriptions that
cannot be relied to the fundamental dynamical principles.While suchmodels reproduce quantum and classical
mechanics in the extreme regimes of few (106) and verymany (1018) elementary constituents, they do deviate
substantially from standard quantummechanics in the intermediatemesoscopic regime. Asmolecular
interferometry [2, 3] and quantumopto-mechanics, especially in the levitating paradigm [4–6], are swiftly
advancing into thismesoscopicmiddle ground, there is currently a lively interest in designing and carrying out
experiments that would falsify either standard quantummechanics or its spontaneously localized variants
[7–13].

In a nutshell, spontaneous localizationmodels postulate the presence of an additional stochastic term in the
Schrödinger equation, that would be responsible for thewave-function collapse and the perceived
discontinuous dynamics of quantumprojectivemeasurements. This would essentially imply the existence of a
source of ‘fundamental’ decoherence, in the formofmomentumdissipation, acting on amesoscopic system,
such as a levitating opto-mechanical nanosphere. It has hence been recently noted that, if the sources of
‘environmental’ decoherence—due to the interaction and entanglement with the environment— arewell
known, the additional fundamental decoherence could be directly observed by tracking the system’s dynamics
[10–12].

The detection of fundamental effects over the background of environmental ones is however obviously
difficult, as the twomay take the same form and imply qualitatively similar effects. The primary intent of this
work is emphasizing that a possible distinction between fundamental and environmental decoherence is that,
while the former is unavoidable and beyond repair, the latter can in principle be reversed through
measurements: if the physical degrees of freedomof the environment are completely or partially accessible, one
can performmeasurements on them that partly restore information about the quantum state [14]. Drawing
from this notion, wewill hence consider the estimation of the free parameter of ‘quantummechanics with
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universal position localization’ (QMUPL) or of an equivalent function of the two parameters of the ‘continuous
spontaneous localization’ (CSL)wavefunction collapsemodel, under time-continuousmeasurements on the
environment of a quantumdegree of freedom, such as the centre ofmass of a levitated nanosphere [17]. The
latter will be our systemof reference, bearing inmind that similar results would apply tomore general settings.
Themonitoringwe consider, aided byMarkovian linear feedback, has the added bonus of stabilizing the
dynamics [18], so that wewill be in a position to base our investigation entirely on steady state properties and not
on the features of the transient dynamics, whichmay bemore elusive to record in practice.

As a further element of novelty, wewill not just consider specific empirical signatures of the different values
of the collapse parameter but instead address their systematic, ultimate discrimination by applying quantum
estimation techniques and deriving the quantumFisher information (QFI) associatedwith such a parameter
[19]. Thus, wewill quantify exactly the advantage provided by continuousmonitoring as a decrease in the
achievable uncertainty on the parameter estimation, and hence on the discrimination between different
theories.

Themanuscript is organized as follows: in section 2wewill introduce the basic of local quantum estimation
theory, alongwith the formulas for classical andQFI. In section 3wewill discuss the quantumdynamics of our
system, in particular presenting the stochasticmaster equation that describes the time-continuousmonitoring
of themechanical oscillator. In section 4we show our results on the estimation for the fundamental diffusion
parameter due to to spontaneous collapses: we shall derive analytical expressions for both theQFI and the
optimal finalmeasurement for parameter discrimination in limiting instances, and show the latter performs
remarkablywell in realistic situations too. Finally, section 5 concludes the paper with some final remarks.

2.Quantum estimation theory

Let us consider a family of quantum states g parametrized by a parameter γ that wewant to estimate. If one
performs ameasurement described by a positive operator valuedmeasure (POVM) { }Px , the ultimate limit on
the precision of any unbiased estimator for the parameter γ is set by theCramér–Rao bound [20]

( ) [ ( )] ( )g gMFVar 1 , 1

whereM is the number ofmeasurements performed,

( ) ( ∣ )( ( ∣ ))òg l g= ¶gF x p x p xd log 2

is the so-called (classical) FI, and ( ∣ ) [ ]g = Pgp x Tr x denotes the conditional probability describing thewhole
measurement process. By optimizing over all the possible POVMs, one derives theQuantumCramér–Rao
bound (QCRB) [21]

( ) [ ( )] [ ( )] ( ) g g gMF MHVar 1 1 , 2

where ( ) [ ]g = g gH LTr 2 is theQFI and Lγ is the symmetric logarithmic derivative that is implicitly defined by
the equation   ¶ = +g g g g g gL L2 . As apparent from equation (2), theQFI quantifies with howmuch
precision one can estimate the parameter γ independently from the specificmeasurement performed.
Geometrically, theQFI corresponds to the Buresmetric in theHilbert space [22]: large values of theQFI
correspond to large Bures distances between two quantum states g and g g+d obtained via an infinitesimal
variation of the parameter γ.We also remark that for single-parameter estimation it is guaranteed that an
optimal POVMsaturating theQCRB always exists [19].

3. The dynamics

Tofix ideas, we shall consider a single noisy continuous variable quantumdegree of freedom subject to a positive
definite harmonicHamiltonian and tomomentumdiffusion, as would be the case for a trapped nanosphere
undergoing heating via photon scattering, background gas collisions and blackbody radiation [23, 24]. In order
to simplify our treatment, we shall not include the typically smaller effects of position diffusion and friction [24],
which could be accounted for promptly within our formalismbut would not addmuch conceptual insight. The
additional stochastic term acting on the state vector according to theQMUPLmodel is equivalent to a
momentumdiffusion Lindblad superoperator entering themaster equation for the quantum state ñ. The same is
approximately true for the centre ofmass ofmotion ofmesoscopic objects in theCSLmodel, since the position
fluctuations are expected to bemuch smaller than themodel localization length and one can perform afirst
order expansion of the superoperator [9]. Hence, the overall dynamics we shall consider is the following:
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[ ˆ ] [ ˆ] ( )
   = = - + G

t
H x

d

d
i , , 3

where [ ˆ ˆ] =x p, i ( = 1), ˆ ( ˆ ˆ )w= +H x p 2m
2 2 and [ ˆ ] ( )† † †    = - +O O O O O O O 2. Themomentum

diffusion rate is the sumof two contributions: G = G + Genv fun, where envG is due to environmental effect, while

funG is fundamental. Our aim is analysing the estimation of funG . Notice that such a parameter is equivalent to the
only fundamental parameter ofQMUPL and constrains the parameters of theCSLmodels through the formula
fun csl ( )a l wG = rm m c

2 [9], wherem is themass of the object,α is a factor that depends on its geometry, and the
parameters rc and csll characterize themodel (the value for the intrinsic length scale is typically chosen at
»r 100nmc , while bounds on the collapse rate are currently placed at l = -  -10 sc

8 2 1 [25]). Sincewewill
consider only onemode, wewill assume that after having trapped the nanosphere and cooled itsmotion down
by sideband cooling, onewill either turn off or detune the driving field in order to decouple the nanosphere
motion and the cavityfield.Hence, wewill focus on the evolution of themechanical oscillator alone.

3.1. Time-continuousmonitoring
As already argued, in principle one can always counter the environmental decoherence bymonitoring the
environment. Here, we suppose tomonitor the nanosphere position through the scattered light, obtaining a
conditional dynamics described by the following conditionalmaster equation [26, 27]:

env [ ˆ] ( )   h= + Gt x wd d d , 4

where η denotes themonitoring efficiency, [ ] [ ( )]† †     = + - +O O O O OTr and wd represents a
standardWiener increment. As theHamiltonian Ĥ is quadratic in the position andmomentumoperators, the
evolution described by equation (4) sendsGaussian states intoGaussian states, and thus we can fully describe it
by looking at the evolution offirst and secondmoments. Remarkably, due to a very specific property of quantum
and classical conditional Gaussian statistics, one obtains [28, 29] that, while the evolution of thefirstmoments is,
as expected, stochastic, i.e. depends on the results of themeasurement performed on the environment, the
covariancematrix evolves deterministically (the details of theGaussian dynamics are explicitly given in the
appendix). Notice that the efficiency parameter [ ]h Î 0, 1 will allow us to describe realistic situationswhere the
environmental degrees of freedom are only partially accessible (as would be the case for the imperfect collection
of light scattered by a nanosphere). In principle there is no need to put an upper bound on η, and this is
particularly the case for levitating nanospheres, that have been studied and proposed for the possibility of
performing precisemeasurement via the directmonitoring of the trapping light scattered from the nanosphere
itself [30]. On the other hand, in several experimental implementations as [24], an additional ‘environment’,
completely under control andmeasurable, is added to the system, as ameasurement device. This will also cause
an extra diffusion rate devG and in this case the efficiency is upper bounded as dev dev env( )h G G + G . Note also
that setting h = 0 obviously yields the original, unmonitored dynamics. Aswe show in appendix, in this case the
dynamics does not admit a steady-state: this is due to the fact that, according to the unconditionalmaster
equation (3), there is no damping acting on themechanical oscillator.

For finitemonitoring efficiency, thanks to the deterministic evolution of the secondmoments, one can
prove that real-time linear feedback (i.e. real-time displacement in phase space depending on themeasurement
current) can be applied in order to obtain a steady statewith zerofirstmoments and thus remove the
stochasticity of the evolution [29].We remark here that this linear displacements will affect only the first
moments evolution, while the evolution of the covariancematrix will still correspond to the one obtained via the
stochasticmaster equation (4). Thismay not be the optimal strategy in terms of the estimation of funG , but wewill
nonetheless consider this regime inwhat follows and set the firstmoments to zero, as it does allow for a
deterministic steady state andwill let us illustrate the advantage granted by themonitoringwith a very compact,
entirely analytical treatment. Also, in an experiment, a stable steady state is certainlymuchmore desirable than a
stochastically fluctuating one, onwhich onewould have to perform an optimal discriminatingmeasurement
thatwould alsofluctuate stochastically. Now, if all the other dynamical parameters are known, the steady state
solutions of the equations for the covariancematrix reported in the appendix yield a family of Gaussian states
with zero firstmoments parametrized by the different values of funG . To assess the effectiveness of our strategy, in
the followingwewill calculate the quantumand classical FI for the parameter funG .

4. Fundamental diffusion estimation

As detailed above, wewant to assess the estimation of the parameter funG , whose information is encoded in the
Gaussian steady state obtained through themonitoring described by equation (4). In particular, wewill focus
only on the steady state covariancematrix solution sss of the Riccati equation (A2), as we can assume that the
firstmoments will be equal to zero. It should be remarked here that the linear driving needed to set the first
moments to zero does depend on the parameter funG weneed to estimate. And sowill the final optimal quantum
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measurement to be performed on the steady state. Howeverwe can invoke, as customary in local quantum
estimation problems, amulti-step adaptive protocol in order to solve this possible conundrum: one can apply
the optimal protocol valid for an initial rough guess of the parameter funG (say, in our case, funG = 0), estimate
the parameter through themeasurement just performed, and then refine the operation and optimal
measurement to be implemented given the latest estimate of the parameter. It has been shown in several cases
that, after a few adaptive steps, one obtains an estimator giving the true value of the parameter and saturating the
Cramér–Rao bound [31, 32].

Under these assumptions (Gaussian steady statewith zerofirstmoments), theQFI can be evaluated
analytically from the steady-state covariancematrix sss , as described in [33, 34]. The general analytical formulae
for the steady state covariancematrix sss and theQFI ssH are reported in the appendix.We start our analysis by
discussing the general properties of theQFI by looking atfigure 1. Firstly, it is apparent from the graph that the
QFI increasesmonotonically with the detection efficiency η, providing onewith a quantitative confirmation that
countering the environmental decoherence through continuousmeasurements would help in the estimation of
the collapse-induced diffusion. This proves also that our approach is useful in those cases where an additional
environment has to be added as ameasurement device [24], and as a consequence η is bounded because of these
limitations of the experimental setup. Also, theQFI decreasesmonotonically with funG , implying that, in
principle, smaller values of the parameter can be estimatedmore efficiently in terms of absolute error. Next, it is
instructive to consider the limiting case of perfectmonitoring efficiency (h = 1), where theQFI takes the
compact analytical form

ss
env fun env fun

env

fun env env fun( )
( )( )

( )( )
h = =

+ -

G + G G + G

w

w

G
G + G G + G

H 1
3

8 2
. 5

4

4

m

m
2

One can easily check that in the limit of both perfectmonitoring and zero fundamental decoherence ( funG = 0 ),
theQFI diverges. This can be intuitively understood by looking at how the steady state ss changes in theHilbert
space by varying the parameter of interest: as we have already remarked, for perfectmonitoring and zero
fundamental decoherence, the steady state is pure; however, increasing the value of funG from zero introduces a
diffusion that cannot be neutralized bymonitoring the environment and, therefore, amixed steady state (the
same reasoning applies to the case offixed funG = 0 andmeasurement efficiency η decreasing from the
maximumvalue). The abrupt change frompure tomixed states is responsible for the divergingQFI, and also
yields insight as to the identification of the optimal quantummeasurement saturating theQCRB, i.e. whose
classical FI is equal to theQFI. In point of fact, this argument singles out a dichotomicmeasurement
corresponding to projecting either on the steady state itself ss∣y ñor on the rest of theHilbert space, in order to be
sensitive to the change from a pure to amixed state. The corresponding POVM, described by the operators

ss ss∣ ∣y yP = ñá0 andP = - P1 0, is indeed optimal, as it can be shown to achieve theQCRB. This POVMcan
be realized by first applying the symplectic operation that sends the vacuum state into the pure steady state ss∣y ñ
(as one can observe from the analytical solution for sss , this operation involves some squeezing, that could be
obtained bymodulating the trap potential [35, 36]), and then by performing a vacuumprojection (which, in
optomechanics, could in principle be achieved by amapping of themechanical state onto the lightmode through

Figure 1.QFI ssH as a function of themonitoring efficiency η, for w = 1m , env wG = 10m and and for different values of the
estimated fundamental diffusion funG . From top to bottom: fun { }w w wG = 100, 40, 20m m m .
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red sideband driving, followed by ameasurement of the latter with an avalanche photodiode, that distinguishes
between zero and any positive number of photons).

The limits of perfect continuousmonitoring of the environment and zero fundamental decoherence are
clearly idealizations. However, the continuity of theQFI assures us that very high precision can be obtained in
their neighbourhood, i.e. for high but not perfect efficiency h 1and for the interesting case of small CSL
decoherence, when fun env G G 1.We have in fact also investigated the performance of the POVM just
described also for different values of η and funG , wherewe know it is no longer optimal. As apparent from
figure 2, the ratio between the classical FI and theQFI is still above 95% for a reasonably large region of values of
η and funG . This is particularly relevant since the optimalmeasurement, as is often the case, depends on the
parameter to be estimated; given these results, one can indeed apply the optimalmeasurement for the case of
zero fundamental decoherence, and still achieve a very high precision in themost interesting region of small, but
not zero, values of funG .

4.1. Signal-to-noise ratio and efficient estimation
More revealing than theQFI itself is the associated signal to noise ratio defined as the ratio between the estimated
value and its standard deviation, i.e.

fun

fun

≔
( )

( )G
G

S
Var

. 6

Abound on the signal-to-noise ratio can be easily determined from equations (2) to (5) in the case of perfect
monitoring, and reads

fun

env

env

fun env fun env

fun

env

fun

env
( )( ) ( ) G

G

+ -

+ +
h=

G
G + +

G
G

G
G

w w

G G G

S M

3 4

8 1 2
71

1

1 4 4
2

m
2

m
2

which, in the regime fun env G G 1, goes like fun env( )G GM 4 (let us remind the reader thatM is the number of
estimation runs), and hence vanishes as funG vanishes.

As a further piece of analysis, one can consider the dependence of the ultimate signal to noise ratio csl( )S on
themechanical frequency wm in theCSLmodel, where wm and the oscillatormassm determine funG . For perfect
efficiency, this reads

Figure 2.Ratio between the classical FI for the POVM introduced in themain text (optimal for perfectmonitoring and no collapses),
and theQFI ssH as a function of themonitoring efficiency η and of the ratio between fundamental decoherence funG and
environmental decoherence envG (the environmental decoherence is kept fixed to env wG = 10m ).
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env env

csl

env

env env

( )( )
( )( ) ( )

 b
b w b w

+ -

+ G + Gh

w
b

w

w b w
=

G

+ G G +
S M

3 4

8 2
, 81

4

m m

m m

m
2

m

with cslb = a l
mrc

2 . This is a decreasing function of wm, confirming that oscillators at lower frequencies (which,
however, aremore challenging to cool down to the quantum regime)would prove advantageous in this context,
as already indicated in proposals such as [12], where an ion trap, rather than optical tweezers, was considered.

Themost convincing evidence for the advantage granted by the continuousmonitoring comes from
considering the number ofmeasurements needed to achieve a signal to noise ratio of one as a function of the
monitoring efficiency η.We considered the plausible scenario of CSLwith csll = - 10 8 2, for a hypothetical
nanosphere of radius = =r r 100 nmc , mechanical frequency ( )w p =2 135 kHzm and subject environmental
diffusion env ( )pG =2 11 kHz, andwe report the results infigure 3. It can be seen that, for example fixing

csll = -10 8, the number of runs goes from around onemillion for the unmonitored case to around 3× 103 for
perfectmonitoring. Hence, one concludes that environmentalmonitoringwould help in designing experiments
able to improve the existing bounds on funG .

4.2. Finite time analysis
All the results reported above have been derived considering themechanical oscillator steady state. In order to
validate such an analysis, we investigate the transient dynamics of theQFI and in particular its ratio with theQFI
obtained at steady state. The results are plotted for experimentally reasonable values of the parameters in
figure 4.We focus in particular on small values of the fundamental decoherence parameter funG , but we have
numerical evidence that similar results are obtained for larger values. As can be seen from the graph, the ratio
goes indeed to one in a relatively small time (with our parameters, around m30 s for efficiency h = 0.5 and
around m50 s for perfectmeasurement, h = 1), i.e. the steady-state precision on the estimation of the
parameter funG can be safely obtained atfinite time. It should be also noticed from the inset, that even atfinite
time, theQFI for perfect efficiency is always larger than the one corresponding tofinite efficiency (h = 0.5 in
our plot).

5.Discussion

It should be noted that our estimation analysis assumed perfect knowledge of all the dynamical parameters other
than our target funG . Thismay be particularly delicate, especially in regard to the environmental diffusion envG ,
whichwould have to be inferred fromother parameters through theoretical considerations [37]. Quantum
estimation theory could however be adapated to allow for uncertainties in dynamical parameters other than the
estimated one (see e.g. [38, 39]). In the optomechanical paradigm, one could also take into account the coupled
lightfield: the extension of the present study to the full, two-mode optomechanical system, and the
identification of associated optimal global detection strategies, will be an interesting development of this line of
enquiry.Moreover one can also investigate how to exploit the information obtained through the time-

Figure 3.Measurements needed to get a signal-to-noise ratio larger than one as function of η and for csll = -10 8 (other parameters
are set considering a nanosphere of radius = =r r 100 nmc , withmechanical frequency ( )w p =2 135 kHzm andwith
environmental diffusion env ( )pG =2 11kHz) .
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continuousmonitoring in order to improve the estimation of the parameters of interest, as, for example
described in [40], where the time-continuous estimation of a classical stochastic process coupled to a dynamical
system is studied in detail. Regardless of such issues, which are common to all investigations into fundamental
decoherence, it is crucial to remark that the schemes we described have the power to falsifywave function
collapse theories, in the sense that they can rule out regions in the noise parameters space by setting upper
bounds to the diffusion rates, which hold even in the presence of unknown additional noise. In this regard, our
study unambiguously highlights the substantial advantage thatmonitoring environmental decoherencewould
grant. Notice also that the practical feasibility of suchmonitoring is certainly within current experimental
capabilities, since it has already been demonstrated to other aims in several set-upswhere our formalism applies
[41, 42]. Our suggestion is hence timely and has potential for immediate practical impact in the effort to falsify
collapse theories. In our schememonitoringwould be, in a sense, an active way of ‘putting aside the
impediments ofmatter’ that hinder the detection of fundamental effects,much in the same fashion as friction
was standing in theway ofGalileo’s analysis of free fallmotion [43].
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Appendix. Analytical solution of theGaussian dynamics

Herewewill provide the formulas describing the time-evolution of themechanical oscillator under time-
continuousmonitoring as prescribed by the stochasticmaster equation (4). Aswementioned above, thewhole
dynamics preserve theGaussian character of the quantum state and thus can be fully described in terms of the
firstmoments vector ˆá ñr and of the covariancematrix s of the quantum state ñ, defined in components as
ˆ [ˆ ]á ñ =r rTrj j and [{ˆ ˆ ˆ ˆ } ]s = - á ñ - á ñr r r rTr ,jk j j k k for the operator vector Tˆ ( ˆ ˆ)= x pr , . In formulae one
obtains [28, 29]:

ˆ ˆ ( )sá ñ = á ñ -A t Br r wd d d , A1

T T ( )s s s s s= + + -
t

A A Q BB
d

d
, A2

Figure 4.Ratio between theQFIHt obtained for the state at time t and the steady stateQFI ssH as a function of the evolution time t, for
( )w p =2 135 kHzm , env ( )pG =2 11 kHz and fun wG = -10 5

m , and for an initial thermal state with th =n 100 average phonons.
Inset: QFIHt, in logarithmic scale, as a function of time (same parameters values and initial state of themain plot).
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where wd is a vector ofWiener increments such that T{ } =  tw wd , d d and thematrices read

( )w
w

=
-

⎜ ⎟⎛
⎝

⎞
⎠A

0
0

, A3m

m

env fun( ) ( )= G + G
⎜ ⎟⎛
⎝

⎞
⎠Q

0 0
0 2

, A4

env ( )h= G⎛
⎝⎜

⎞
⎠⎟B 0 2

0 0
. A5

The existence of a steady-state for a continuouslymonitored quantum systems has been discussed in [29]. It is
shown that equation (A2) has a stabilizing solution if and only if the pair ofmatrices ( )B A, is detectable, i.e.

[ ] ( )l l¹ " =l l l lB Ax x x x0 : with Re 0, A6

that is whenever information on the degrees of freedom that are not strictly stable under the driftmatrix A, is
obtained in themeasurement output ˆá ñB r .Wefind that, in our system, this condition ismet for every non-zero
efficiency h<0 1. It is on the other hand known that, for nomonitoring (h = 0), the system is not stable as
no damping terms are present in the driftmatrixA.

The steady state covariancematrix can be derived analytically as

ss
env env

env env

( )

( )

( )
s =

w w

h
w

h

w
h

w

w h

¡ -

G
¡ -

G

¡ -
G

¡ ¡ -

G

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
, A7

2 2

2 2

m m m

m m

m

where

env env fun( ) ( )w h¡ = + G G + G4 . A8m
2

As a further proof that this covariancematrix can be obtained at steady-state via continuousmeasurements and
feedback, one can easily check that, for h<0 1, it satisfies the necessary and sufficient condition derived in
[29]: ss ss s s+ +A Q 0.

Notice that, typically, the steady state above is a squeezed state, in the sense that its smallest eigenvalue will be
smaller than one.Obtaining the decomposition, in terms of diagonal single-mode squeezers and orthogonal
phase shifters, of the symplectic operation that relates the vacuum state to this steady state is a straightforward
task, that just requires one to diagonalise thematrix sss .

The correspondingQFI for the estimation of the parameter funG can be easily evaluated by using the formula
[34]

ss
ss ss

ss

ss

ss

[( ) ] ( )
( )s s

m

m

m
=

¢

+
+

¢

-

-

H
1

2

Tr

1
2

1
, A9

1 2

2

2

4

where ss ss ss[ ] [ ] sm = =Tr 1 det2 represents the purity of the state, and primed quantities corresponds to
derivative with respect to the parameter funG . By applying it to the steady-state covariancematrix in
equation (A7), one obtains

ss
env fun

env fun env env fun

[( ) ( ) ] ( )
( )[ ( ) ]

( )h w h w
h

=
G - - + ¡ + G - ¡

¡ G + G G - G + G
H

1 3 3

8
. A10m m

2 2 2

References

[1] Bassi A, LochanK, Satin S, Singh TP andUlbrichtH 2013Rev.Mod. Phys. 85 471
[2] Gerlich S et al 2011Nat. Commun. 2 263
[3] ArndtMandHornberger K 2014Nat. Phys. 10 271
[4] ChangD et al 2010Proc. Natl Acad. Sci. USA 107 1005
[5] Romero-IsartO, JuanM,Quidant R andCirac J I 2010New J. Phys. 12 033015
[6] Gieseler J, Deutsch B,Quidant R andNovotny L 2012Phys. Rev. Lett. 109 103603
[7] Romero-IsartO 2011Phys. Rev.A 84 052121
[8] BahramiM, PaternostroM, Bassi A andUlbrichtH 2014Phys. Rev. Lett. 112 210404
[9] Nimmrichter S,Hornberger K andHammerer K 2014Phys. Rev. Lett. 113 020405
[10] Vinante A, BahramiM, Bassi A,UsenkoO,Wijts G andOosterkampTH2016Phys. Rev. Lett. 116 090402
[11] Li J, Zippilli S, Zhang J andVitali D 2016Phys. Rev.A 93 050102
[12] GoldwaterD, PaternostroMandBarker P F 2016Phys. Rev.A 95 010104
[13] AbdiM,Degenfeld-Schonburg P, SametiM,Navarrete-BenllochC andHartmannMJ 2016 Phys. Rev. Lett. 116 233604
[14] Let usmention here that another, possibly complementary, strategy to distinguish between fundamental and environmental quantum

noise could be offered by dynamical decoupling techniques [15, 16]

8

New J. Phys. 18 (2016) 103040 MGGenoni et al

http://dx.doi.org/10.1103/RevModPhys.85.471
http://dx.doi.org/10.1038/ncomms1263
http://dx.doi.org/10.1038/nphys2863
http://dx.doi.org/10.1073/pnas.0912969107
http://dx.doi.org/10.1088/1367-2630/12/3/033015
http://dx.doi.org/10.1103/PhysRevLett.109.103603
http://dx.doi.org/10.1103/PhysRevA.84.052121
http://dx.doi.org/10.1103/PhysRevLett.112.210404
http://dx.doi.org/10.1103/PhysRevLett.113.020405
http://dx.doi.org/10.1103/PhysRevLett.116.090402
http://dx.doi.org/10.1103/PhysRevA.93.050102
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.94.010104
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.116.233604


[15] ArenzC,Hillier R, FraasM andBurgarthD2015Phys. Rev.A 92 022102
[16] Hillier R, ArenzC andBurgarthD 2015 J. Phys. A:Math. Theor. 48 155301
[17] TaylorMA, Janousek J, Daria V, Knittel J, Hage B, BachorH-A andBowenWP2013Nat. Photon. 7 229
[18] GenoniMG et al 2015New J. Phys. 17 073019
[19] ParisMGA2009 Int. J. Quant. Inf. 7 125
[20] CramerH 1946MathematicalMethods of Statistics (Princeton, NJ: PrincetonUniversity Press)
[21] HelstromCWandKennedy R S 1974 IEEETrans. Inf. Theory 20 16

Braunstein S andCaves C 1994Phys. Rev. Lett. 72 3439
[22] SommersH-J et al 2003 J. Phys. A:Math. Gen. 36 10083
[23] Romero-IsartO et al 2011Phys. Rev.A 83 013803
[24] Rodenburg B,Neukirch L P,Vamivakas AN andBhattacharyaM2016Optica 3 318
[25] Adler S L 2006 J. Phys. A:Math. Gen. 40 2935
[26] Gardiner C andZoller P 2004QuantumNoise (Berlin: Springer)
[27] WisemanHMandMilburnG J 2010QuantumMeasurement andControl (NewYork: CambridgeUniversity Press)
[28] GenoniMG, Lami L and Serafini A 2016Contemp. Phys. 57 331
[29] WisemanHMandDoherty AC 2005Phys. Rev. Lett. 94 070405
[30] Libbrecht KG andBlack ED2004Phys. Lett.A 321 99
[31] BrivioD, Cialdi S, Vezzoli S, Teklu B, GenoniMG,Olivares S and ParisMGA2010Phys. Rev.A 81 012305
[32] Berni A,Gehring T,Nielsen BM,HandchenV, ParisMGA andAndersenUL 2015Nat. Photon. 9 577
[33] Monras A arXiv: 1303.3682 [quant-ph]
[34] PinelO, Jian P, TrepsN, Fabre C andBraunD2013Phys. Rev.A 88 040102
[35] HeinzenD J andWinelandD J 1990Phys. Rev.A 42 2977
[36] RashidM, Tufarelli T, Bateman J, Vovrosh J, HempstonD,KimMS andUlbrichtH arXiv:1607.05509 [quant-ph]
[37] ChangDE, Regal CA, Papp S B,WilsonD J, Ye J, PainterO, KimbleH J andZoller P 2010Proc. Natl Acad. Sci. USA 107 1005
[38] VidrighinMD,Donati G,GenoniMG, Jin X-M,KolthammerWS, KimMS,Datta A, BarbieriM andWalmsley I 2014Nat. Commun.

5 3532
[39] SzczykulskaM, Baumgratz T andDatta A 2016Adv. Phys.: X 1-19
[40] NgS, Ang S Z,Wheatley TA, YonezawaH, FurusawaA,Huntington EHandTsangM2016Phys. Rev.A 93 042121
[41] WieczorekW,Hofer SG,Hoelscher-Obermaier J, Riedinger R,Hammerer K andAspelmeyerM2015 Phys. Rev. Lett. 114 223601
[42] Li Y L,Millen J and Barker P F 2016Opt. Express 24 1392
[43] Galilei G 1638TwoNew Sciences On the Shoulders of Giants ed SHawking (London: Penguin)

9

New J. Phys. 18 (2016) 103040 MGGenoni et al

http://dx.doi.org/10.1103/PhysRevA.92.022102
http://dx.doi.org/10.1088/1751-8113/48/15/155301
http://dx.doi.org/10.1038/nphoton.2012.346
http://dx.doi.org/10.1088/1367-2630/17/7/073019
http://dx.doi.org/10.1142/S0219749909004839
http://dx.doi.org/10.1109/TIT.1974.1055173
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1088/0305-4470/36/39/308
http://dx.doi.org/10.1103/PhysRevA.83.013803
http://dx.doi.org/10.1364/OPTICA.3.000318
http://dx.doi.org/10.1088/1751-8113/40/12/S03
http://dx.doi.org/10.1080/00107514.2015.1125624
http://dx.doi.org/10.1103/PhysRevLett.94.070405
http://dx.doi.org/10.1016/j.physleta.2003.12.022
http://dx.doi.org/10.1103/PhysRevA.81.012305
http://dx.doi.org/10.1038/nphoton.2015.139
http://arxiv.org/abs/1303.3682
http://dx.doi.org/10.1103/PhysRevA.88.040102
http://dx.doi.org/10.1103/PhysRevA.42.2977
http://arxiv.org/abs/1607.05509
http://dx.doi.org/10.1073/pnas.0912969107
http://dx.doi.org/10.1038/ncomms4532
http://dx.doi.org/10.1103/PhysRevA.93.042121
http://dx.doi.org/10.1103/PhysRevLett.114.223601
http://dx.doi.org/10.1364/OE.24.001392

	1. Introduction
	2. Quantum estimation theory
	3. The dynamics
	3.1. Time-continuous monitoring

	4. Fundamental diffusion estimation
	4.1. Signal-to-noise ratio and efficient estimation
	4.2. Finite time analysis

	5. Discussion
	Acknowledgments
	Appendix. Analytical solution of the Gaussian dynamics
	References



