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Abstract

Inspired by the notion that environmental noise is in principle observable, while fundamental noise
due to spontaneous localization would not be, we study the estimation of the diffusion parameter
induced by wave function collapse models under continuous monitoring of the environment. We take
into account finite measurement efficiencies and, in order to quantify the advantage granted by
monitoring, we analyse the quantum Fisher information associated with such a diffusion parameter,
identify optimal measurements in limiting cases, and assess the performance of such measurements in
more realistic conditions.

1. Introduction

Spontaneouslocalization models [1], in their many flavours and variations, were introduced from the late
eighties primarily as an attempt to unify the dynamics of microscopic and macroscopic systems, encompassing
measurement apparata, which customary quantum mechanics only describes through ad hoc prescriptions that
cannot be relied to the fundamental dynamical principles. While such models reproduce quantum and classical
mechanics in the extreme regimes of few (<10°) and very many (=>10'®) elementary constituents, they do deviate
substantially from standard quantum mechanics in the intermediate mesoscopic regime. As molecular
interferometry 2, 3] and quantum opto-mechanics, especially in the levitating paradigm [4—6], are swiftly
advancing into this mesoscopic middle ground, there is currently a lively interest in designing and carrying out
experiments that would falsify either standard quantum mechanics or its spontaneously localized variants
[7-13].

In a nutshell, spontaneous localization models postulate the presence of an additional stochastic term in the
Schrodinger equation, that would be responsible for the wave-function collapse and the perceived
discontinuous dynamics of quantum projective measurements. This would essentially imply the existence of a
source of ‘fundamental’ decoherence, in the form of momentum dissipation, acting on a mesoscopic system,
such as a levitating opto-mechanical nanosphere. It has hence been recently noted that, if the sources of
‘environmental” decoherence—due to the interaction and entanglement with the environment— are well
known, the additional fundamental decoherence could be directly observed by tracking the system’s dynamics
[10-12].

The detection of fundamental effects over the background of environmental ones is however obviously
difficult, as the two may take the same form and imply qualitatively similar effects. The primary intent of this
work is emphasizing that a possible distinction between fundamental and environmental decoherence is that,
while the former is unavoidable and beyond repair, the latter can in principle be reversed through
measurements: if the physical degrees of freedom of the environment are completely or partially accessible, one
can perform measurements on them that partly restore information about the quantum state [14]. Drawing
from this notion, we will hence consider the estimation of the free parameter of ‘quantum mechanics with

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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universal position localization’ (QMUPL) or of an equivalent function of the two parameters of the ‘continuous
spontaneous localization’ (CSL) wavefunction collapse model, under time-continuous measurements on the
environment of a quantum degree of freedom, such as the centre of mass of a levitated nanosphere [17]. The
latter will be our system of reference, bearing in mind that similar results would apply to more general settings.
The monitoring we consider, aided by Markovian linear feedback, has the added bonus of stabilizing the
dynamics [18], so that we will be in a position to base our investigation entirely on steady state properties and not
on the features of the transient dynamics, which may be more elusive to record in practice.

As a further element of novelty, we will not just consider specific empirical signatures of the different values
of the collapse parameter but instead address their systematic, ultimate discrimination by applying quantum
estimation techniques and deriving the quantum Fisher information (QFI) associated with such a parameter
[19]. Thus, we will quantify exactly the advantage provided by continuous monitoring as a decrease in the
achievable uncertainty on the parameter estimation, and hence on the discrimination between different
theories.

The manuscript is organized as follows: in section 2 we will introduce the basic of local quantum estimation
theory, along with the formulas for classical and QFI. In section 3 we will discuss the quantum dynamics of our
system, in particular presenting the stochastic master equation that describes the time-continuous monitoring
of the mechanical oscillator. In section 4 we show our results on the estimation for the fundamental diffusion
parameter due to to spontaneous collapses: we shall derive analytical expressions for both the QFI and the
optimal final measurement for parameter discrimination in limiting instances, and show the latter performs
remarkably well in realistic situations too. Finally, section 5 concludes the paper with some final remarks.

2. Quantum estimation theory

Let us consider a family of quantum states ¢, parametrized by a parameter - that we want to estimate. If one
performs a measurement described by a positive operator valued measure (POVM) {II, }, the ultimate limit on
the precision of any unbiased estimator for the parameter +yis set by the Cramér—Rao bound [20]

Var(y) = 1/[MF(7)], (eY)

where M is the number of measurements performed,
F) = [dx p(xi0)(@.log p(xim))

is the so-called (classical) FI, and p (x|y) = Tr[g,1l,] denotes the conditional probability describing the whole
measurement process. By optimizing over all the possible POVMs, one derives the Quantum Cramér—Rao
bound (QCRB) [21]

Var(y) 2 1/IMF(y)] = 1/IMH ()], ©))

where H (y) = Tr[o, Lf] is the QFI and L., is the symmetric logarithmic derivative that is implicitly defined by
the equation 2 0,0, = L, 0, + 0,L,.Asapparent from equation (2), the QFI quantifies with how much
precision one can estimate the parameter -y independently from the specific measurement performed.
Geometrically, the QFI corresponds to the Bures metric in the Hilbert space [22]: large values of the QFI
correspond to large Bures distances between two quantum states ¢, and ., 4, obtained via an infinitesimal
variation of the parameter . We also remark that for single-parameter estimation it is guaranteed that an
optimal POVM saturating the QCRB always exists [19].

3. The dynamics

To fix ideas, we shall consider a single noisy continuous variable quantum degree of freedom subject to a positive
definite harmonic Hamiltonian and to momentum diffusion, as would be the case for a trapped nanosphere
undergoing heating via photon scattering, background gas collisions and blackbody radiation [23, 24]. In order
to simplify our treatment, we shall not include the typically smaller effects of position diffusion and friction [24],
which could be accounted for promptly within our formalism but would not add much conceptual insight. The
additional stochastic term acting on the state vector according to the QMUPL model is equivalent to a
momentum diffusion Lindblad superoperator entering the master equation for the quantum state p. The same is
approximately true for the centre of mass of motion of mesoscopic objects in the CSL model, since the position
fluctuations are expected to be much smaller than the model localization length and one can perform a first
order expansion of the superoperator [9]. Hence, the overall dynamics we shall consider is the following:

2
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% Lo— it o1+ T DI, 3
where [%, p] =i (5= 1), H = wy (82 + p?)/2and D[O] o = 000" — (0'0p + p0O'0)/2. The momentum
diffusion rate is the sum of two contributions: I' = I}, + If,,, where Tspy is due to environmental effect, while
[}yn is fundamental. Our aim is analysing the estimation of [},,. Notice that such a parameter is equivalent to the
only fundamental parameter of QMUPL and constrains the parameters of the CSL models through the formula
Tiun = a/ides)/ (Mwpy 12) [9], where m1 is the mass of the object, o is a factor that depends on its geometry, and the
parameters r. and Acg characterize the model (the value for the intrinsic length scale is typically chosen at
. &~ 100nm, while bounds on the collapse rate are currently placed at A. = 1078%2 s71[25]). Since we will
consider only one mode, we will assume that after having trapped the nanosphere and cooled its motion down
by sideband cooling, one will either turn off or detune the driving field in order to decouple the nanosphere
motion and the cavity field. Hence, we will focus on the evolution of the mechanical oscillator alone.

3.1. Time-continuous monitoring

As already argued, in principle one can always counter the environmental decoherence by monitoring the
environment. Here, we suppose to monitor the nanosphere position through the scattered light, obtaining a
conditional dynamics described by the following conditional master equation [26, 27]:

do= Lo dt + V??Fean[f]y dw, 4

where 77 denotes the monitoring efficiency, H[O] o = Og + 00" — Tr[o (O + O)] 0 and dw represents a
standard Wiener increment. As the Hamiltonian H is quadratic in the position and momentum operators, the
evolution described by equation (4) sends Gaussian states into Gaussian states, and thus we can fully describe it
by looking at the evolution of first and second moments. Remarkably, due to a very specific property of quantum
and classical conditional Gaussian statistics, one obtains [28, 29] that, while the evolution of the first moments is,
as expected, stochastic, i.e. depends on the results of the measurement performed on the environment, the
covariance matrix evolves deterministically (the details of the Gaussian dynamics are explicitly given in the
appendix). Notice that the efficiency parameter € [0, 1] will allow us to describe realistic situations where the
environmental degrees of freedom are only partially accessible (as would be the case for the imperfect collection
of light scattered by a nanosphere). In principle there is no need to put an upper bound on 7, and this is
particularly the case for levitating nanospheres, that have been studied and proposed for the possibility of
performing precise measurement via the direct monitoring of the trapping light scattered from the nanosphere
itself [30]. On the other hand, in several experimental implementations as [24], an additional ‘environment’,
completely under control and measurable, is added to the system, as a measurement device. This will also cause
an extra diffusion rate Iy, and in this case the efficiency is upper bounded as 7 < I'yev/(Tyev + Lenv)- Note also
that setting 7 = 0 obviously yields the original, unmonitored dynamics. As we show in appendix, in this case the
dynamics does not admit a steady-state: this is due to the fact that, according to the unconditional master
equation (3), there is no damping acting on the mechanical oscillator.

For finite monitoring efficiency, thanks to the deterministic evolution of the second moments, one can
prove that real-time linear feedback (i.e. real-time displacement in phase space depending on the measurement
current) can be applied in order to obtain a steady state with zero first moments and thus remove the
stochasticity of the evolution [29]. We remark here that this linear displacements will affect only the first
moments evolution, while the evolution of the covariance matrix will still correspond to the one obtained via the
stochastic master equation (4). This may not be the optimal strategy in terms of the estimation of I, but we will
nonetheless consider this regime in what follows and set the first moments to zero, as it does allow for a
deterministic steady state and will let us illustrate the advantage granted by the monitoring with a very compact,
entirely analytical treatment. Also, in an experiment, a stable steady state is certainly much more desirable than a
stochastically fluctuating one, on which one would have to perform an optimal discriminating measurement
that would also fluctuate stochastically. Now, if all the other dynamical parameters are known, the steady state
solutions of the equations for the covariance matrix reported in the appendix yield a family of Gaussian states
with zero first moments parametrized by the different values of I7n. To assess the effectiveness of our strategy, in
the following we will calculate the quantum and classical FI for the parameter [3,,.

4. Fundamental diffusion estimation

As detailed above, we want to assess the estimation of the parameter I3, whose information is encoded in the
Gaussian steady state obtained through the monitoring described by equation (4). In particular, we will focus
only on the steady state covariance matrix solution oss of the Riccati equation (A2), as we can assume that the
first moments will be equal to zero. It should be remarked here that the linear driving needed to set the first
moments to zero does depend on the parameter [}, we need to estimate. And so will the final optimal quantum
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Figure 1. QFI Hgg as a function of the monitoring efficiency 7, for wy, = 1, Teny = wp/10 and and for different values of the
estimated fundamental diffusion [§yn. From top to bottom: Tjyn = {wn/100, wy,/40, wy,/20}.

measurement to be performed on the steady state. However we can invoke, as customary in local quantum
estimation problems, a multi-step adaptive protocol in order to solve this possible conundrum: one can apply
the optimal protocol valid for an initial rough guess of the parameter I}, (say, in our case, Iyyn = 0), estimate
the parameter through the measurement just performed, and then refine the operation and optimal
measurement to be implemented given the latest estimate of the parameter. It has been shown in several cases
that, after a few adaptive steps, one obtains an estimator giving the true value of the parameter and saturating the
Cramér—-Rao bound [31, 32].

Under these assumptions (Gaussian steady state with zero first moments), the QFI can be evaluated
analytically from the steady-state covariance matrix oss, as described in [33, 34]. The general analytical formulae
for the steady state covariance matrix gss and the QFI Hgg are reported in the appendix. We start our analysis by
discussing the general properties of the QFI by looking at figure 1. Firstly, it is apparent from the graph that the
QFl increases monotonically with the detection efficiency 7, providing one with a quantitative confirmation that
countering the environmental decoherence through continuous measurements would help in the estimation of
the collapse-induced diffusion. This proves also that our approach is useful in those cases where an additional
environment has to be added as a measurement device [24], and as a consequence 7 is bounded because of these
limitations of the experimental setup. Also, the QFI decreases monotonically with T%,, implying that, in
principle, smaller values of the parameter can be estimated more efficiently in terms of absolute error. Next, it is
instructive to consider the limiting case of perfect monitoring efficiency (7 = 1), where the QFI takes the
compact analytical form

ATy W

Tfun vV W'rzn + 4leny (Teny + I'tun)
8(Lony + Tiun) @leny + Tun)

3+

Hss(n=1) =

(€)

One can easily check that in the limit of both perfect monitoring and zero fundamental decoherence (It;, = 0),
the QFI diverges. This can be intuitively understood by looking at how the steady state pgs changes in the Hilbert
space by varying the parameter of interest: as we have already remarked, for perfect monitoring and zero
fundamental decoherence, the steady state is pure; however, increasing the value of I}, from zero introduces a
diffusion that cannot be neutralized by monitoring the environment and, therefore, a mixed steady state (the
same reasoning applies to the case of fixed I3,, = 0 and measurement efficiency 1) decreasing from the
maximum value). The abrupt change from pure to mixed states is responsible for the diverging QFI, and also
yields insight as to the identification of the optimal quantum measurement saturating the QCRB, i.e. whose
classical FI is equal to the QFL In point of fact, this argument singles out a dichotomic measurement
corresponding to projecting either on the steady state itself |1)ss) or on the rest of the Hilbert space, in order to be
sensitive to the change from a pure to a mixed state. The corresponding POVM, described by the operators

[Ty = |bss) (¥ssland ITy = 1 — T, is indeed optimal, as it can be shown to achieve the QCRB. This POVM can
be realized by first applying the symplectic operation that sends the vacuum state into the pure steady state |¢)ss)
(as one can observe from the analytical solution for ogs, this operation involves some squeezing, that could be
obtained by modulating the trap potential [35, 36]), and then by performing a vacuum projection (which, in
optomechanics, could in principle be achieved by a mapping of the mechanical state onto the light mode through

4
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Figure 2. Ratio between the classical FI for the POVM introduced in the main text (optimal for perfect monitoring and no collapses),
and the QFI Hgg as a function of the monitoring efficiency npand of the ratio between fundamental decoherence I3, and
environmental decoherence Igpy (the environmental decoherence is kept fixed to Tgny = win/10).

red sideband driving, followed by a measurement of the latter with an avalanche photodiode, that distinguishes
between zero and any positive number of photons).

The limits of perfect continuous monitoring of the environment and zero fundamental decoherence are
clearly idealizations. However, the continuity of the QFI assures us that very high precision can be obtained in
their neighbourhood, i.e. for high but not perfect efficiency 7 < 1and for the interesting case of small CSL
decoherence, when Iyn/Teny < 1. We have in fact also investigated the performance of the POVM just
described also for different values of 7 and I'tyn, where we know it is no longer optimal. As apparent from
figure 2, the ratio between the classical FI and the QFl is still above 95% for a reasonably large region of values of
nand [3yn. This is particularly relevant since the optimal measurement, as is often the case, depends on the
parameter to be estimated; given these results, one can indeed apply the optimal measurement for the case of
zero fundamental decoherence, and still achieve a very high precision in the most interesting region of small, but
not zero, values of In.

4.1. Signal-to-noise ratio and efficient estimation
More revealing than the QFI itself is the associated signal to noise ratio defined as the ratio between the estimated
value and its standard deviation, i.e.

I;
S = —_-fun . (6)
\ Var Thun)
Abound on the signal-to-noise ratio can be easily determined from equations (2) to (5) in the case of perfect
monitoring, and reads
Tenv _ 1
L i i 14 4580 4 4 Trunleny
87]71 < \/M fun win Wm (7)
| )

which, in the regime [jyn/Teny < 1, goes like / MTjyn/(4Ieny) (let us remind the reader that M is the number of
estimation runs), and hence vanishes as I}, vanishes.

As a further piece of analysis, one can consider the dependence of the ultimate signal to noise ratio S© on
the mechanical frequency wy, in the CSL model, where wy, and the oscillator mass m determine I,. For perfect
efficiency, this reads
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Figure 3. Measurements needed to get a signal-to-noise ratio larger than one as function of and for A¢g) = 1078 (other parameters
are set considering a nanosphere of radius r = 7. = 100 nm, with mechanical frequency wy,/(27) = 135 kHz and with
environmental diffusion Ty, /(27) = 11kHz).

3+ 4Wm§env _ - Wm
S(csll) < mﬁ / \/Wm + 4leny (Teny + 8/ wm) (8)
n= >
/ 8(8 + Tenvwm) (B + 2lenvwm)

with G = % This is a decreasing function of wy,, confirming that oscillators at lower frequencies (which,

however, are more challenging to cool down to the quantum regime) would prove advantageous in this context,
as already indicated in proposals such as [12], where an ion trap, rather than optical tweezers, was considered.
The most convincing evidence for the advantage granted by the continuous monitoring comes from
considering the number of measurements needed to achieve a signal to noise ratio of one as a function of the
monitoring efficiency 1. We considered the plausible scenario of CSL with A¢s) = 1082, for a hypothetical
nanosphere of radius r = 1. = 100 nm, mechanical frequency wy,/(27) = 135 kHz and subject environmental
diffusion Tgny/(27) = 11 kHz, and we report the results in figure 3. It can be seen that, for example fixing
Acst = 1078, the number of runs goes from around one million for the unmonitored case to around 3 x 10 for
perfect monitoring. Hence, one concludes that environmental monitoring would help in designing experiments
able to improve the existing bounds on Ijp.

4.2. Finite time analysis

All the results reported above have been derived considering the mechanical oscillator steady state. In order to
validate such an analysis, we investigate the transient dynamics of the QFI and in particular its ratio with the QFI
obtained at steady state. The results are plotted for experimentally reasonable values of the parameters in
figure 4. We focus in particular on small values of the fundamental decoherence parameter I, but we have
numerical evidence that similar results are obtained for larger values. As can be seen from the graph, the ratio
goes indeed to one in a relatively small time (with our parameters, around 30 s for efficiency = 0.5 and
around 50 ps for perfect measurement, = 1), i.e. the steady-state precision on the estimation of the
parameter I}, can be safely obtained at finite time. It should be also noticed from the inset, that even at finite
time, the QFI for perfect efficiency is always larger than the one corresponding to finite efficiency (n = 0.5in
our plot).

5. Discussion

It should be noted that our estimation analysis assumed perfect knowledge of all the dynamical parameters other
than our target [3,,. This may be particularly delicate, especially in regard to the environmental diffusion Iy,
which would have to be inferred from other parameters through theoretical considerations [37]. Quantum
estimation theory could however be adapated to allow for uncertainties in dynamical parameters other than the
estimated one (see e.g. [38, 39]). In the optomechanical paradigm, one could also take into account the coupled
light field: the extension of the present study to the full, two-mode optomechanical system, and the
identification of associated optimal global detection strategies, will be an interesting development of this line of
enquiry. Moreover one can also investigate how to exploit the information obtained through the time-

6
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Figure 4. Ratio between the QFI H, obtained for the state at time tand the steady state QFI Hgg as a function of the evolution time ¢, for
W/ (2m) = 135 kHz, Teny/(27) = 11 kHz and T}y, = 1075wy, and for an initial thermal state with ¢4, = 100 average phonons.
Inset: QFI H,, in logarithmic scale, as a function of time (same parameters values and initial state of the main plot).

continuous monitoring in order to improve the estimation of the parameters of interest, as, for example
described in [40], where the time-continuous estimation of a classical stochastic process coupled to a dynamical
system is studied in detail. Regardless of such issues, which are common to all investigations into fundamental
decoherence, it is crucial to remark that the schemes we described have the power to falsify wave function
collapse theories, in the sense that they can rule out regions in the noise parameters space by setting upper
bounds to the diffusion rates, which hold even in the presence of unknown additional noise. In this regard, our
study unambiguously highlights the substantial advantage that monitoring environmental decoherence would
grant. Notice also that the practical feasibility of such monitoring is certainly within current experimental
capabilities, since it has already been demonstrated to other aims in several set-ups where our formalism applies
[41,42]. Our suggestion is hence timely and has potential for immediate practical impact in the effort to falsify
collapse theories. In our scheme monitoring would be, in a sense, an active way of ‘putting aside the
impediments of matter’ that hinder the detection of fundamental effects, much in the same fashion as friction
was standing in the way of Galileo’s analysis of free fall motion [43].
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Note added: After the completion of this work, we became aware of a related analysis where the QFIL is
employed to assess non-interferometric tests of wave-function collapse models (see S McMillen et al,
arXiv:1606.00070).

Appendix. Analytical solution of the Gaussian dynamics

Here we will provide the formulas describing the time-evolution of the mechanical oscillator under time-
continuous monitoring as prescribed by the stochastic master equation (4). As we mentioned above, the whole
dynamics preserve the Gaussian character of the quantum state and thus can be fully described in terms of the
first moments vector (#) and of the covariance matrix o of the quantum state g, defined in components as
(;) = Tr[tjoland oj = Tr[{#; — (fj), i — (f) } o]for the operator vector t = (X, p). In formulae one
obtains [28,29]:
d(f) = A(t)dt — oBdw, (A1)
do

o - Ao + A" + Q — oBF' @, (A2)
t
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where dw is a vector of Wiener increments such that {dw, dw'} = 1dt and the matrices read

0 Wm
a-(0 ) (43)
0 0
Q= (o 2Ty + Ffun))’ ()
B= ( ZWFG"V). (A5)
0 0

The existence of a steady-state for a continuously monitored quantum systems has been discussed in [29]. Itis
shown that equation (A2) has a stabilizing solution if and only if the pair of matrices (B, A)is detectable, i.e.

Bx), = 0 V x):Ax), = Ax, with Re[A] > 0, (A6)

that is whenever information on the degrees of freedom that are not strictly stable under the drift matrix A, is
obtained in the measurement output B (). We find that, in our system, this condition is met for every non-zero
efficiency 0 < 7 < 1.Itis on the other hand known that, for no monitoring ( = 0), the system is not stable as
no damping terms are present in the drift matrix A.

The steady state covariance matrix can be derived analytically as

\/wm(’r—wm) T —wn

ﬁrlrenv 2nLenv
- ) A7
Oss Tow Tm ( )
2nTeny [20m NTeny
where
T = ok + 4Teny Tenv + Tiun). %)

As afurther proof that this covariance matrix can be obtained at steady-state via continuous measurements and
feedback, one can easily check that, for 0 < 1 < 1, it satisfies the necessary and sufficient condition derived in
[29]: Aoss + 055 + Q 2> 0.

Notice that, typically, the steady state above is a squeezed state, in the sense that its smallest eigenvalue will be
smaller than one. Obtaining the decomposition, in terms of diagonal single-mode squeezers and orthogonal
phase shifters, of the symplectic operation that relates the vacuum state to this steady state is a straightforward
task, that just requires one to diagonalise the matrix o%s.

The corresponding QFI for the estimation of the parameter I, can be easily evaluated by using the formula
[34]

lTr[(U;slo'/ss)z] +2 ('u/ss)2

Hgs = ,
T2 1+,le§5 17“23

(A9)

where yigs = Tr[og] = 1 / \Jdet[oss] represents the purity of the state, and primed quantities corresponds to
derivative with respect to the parameter I. By applying it to the steady-state covariance matrix in
equation (A7), one obtains
_ Tenv[(1 = D)wm — (3 + N)Y] + Tun(wm — 37)

8T (Tenv + Ttun) [nzrénv — (Tenv + Tun)?]

(A10)

Ss
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