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Abstract 

Sexual reproduction is virtually universal among eukaryotes, suggesting that the last 

eukaryotic common ancestor was already sexual. It is very likely that the first sexual 

lineage already contained mitochondrial endosymbionts, each with its own genome of 

bacterial origin. In this thesis I develop a set of theoretical models that together form a 

framework for understanding the evolution of eukaryotic sex and further sexual traits—

mating types, uniparental inheritance, sexual dimorphism and the early sequestration 

of a protected germline in higher metazoans—as a consequence of mitochondrial 

endosymbiosis. 

First, I review currently dominating views on the origin of eukaryotes and 

selective forces that led to the evolution of meiotic sex early in the prokaryote-

eukaryote transition. Sex likely emerged as a direct consequence of the mitochondrial 

endosymbiosis, and was essential for the further evolution of eukaryotic genome 

complexity. In Chapter 2, I show that the evolution of sexual cell fusion in the nascent 

eukaryotic lineage might have been driven by cytoplasmic mixing, temporarily masking 

the detrimental effects of defective organelles. The model introduced in Chapter 3 

shows that self-incompatible mating types can evolve to ensure the efficient removal 

of mitochondrial mutations through asymmetric organelle transmission. 

Frequent observations of paternal leakage and heteroplasmy pose a 

substantial challenge to the current understanding of uniparental organelle inheritance. 

In Chapter 4 I show that the evolutionarily stable pattern of cytoplasmic inheritance 

depends on which sex—male or female—governs the destruction of paternal 

organelles. Maternal regulation favours complete elimination of sperm mitochondria, 

while paternal control supports paternal leakage and heteroplasmy. Intersexual 

competition over the control of cytoplasmic inheritance may have driven the repeated 

evolution of mechanisms enforcing uniparental inheritance. Finally, I analyse the 

dynamics of mitochondrial mutation segregation in the evolution of the metazoan 
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germline. High mitochondrial DNA replication error rates in bilaterians favour early 

germline sequestration, while in basal metazoans gamete quality is maximized through 

repeated cell divisions in non-sequestered germline stem cell lineages. 
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Impact statement 

The evolution of eukaryotic sexuality is a fundamental unsolved question. In this thesis, 

I present a set of mathematical models that together form a novel framework for 

understanding the evolution of eukaryotic sexuality as a consequence of mitochondrial 

endosymbiosis, with purifying organism-level selection against deleterious 

mitochondrial mutations playing a central role. This unified approach offers new 

solutions to unsolved or disputed questions in theoretical biology: the evolution of 

sexual cell fusion, the origin of self-incompatible mating types together with the 

asymmetric inheritance of cytoplasmic genes, the extraordinary diversity of 

mechanisms regulating mitochondrial inheritance, the persistence of heteroplasmy 

and paternal leakage and the evolution of early germline sequestration in metazoans 

with two sexes. This work therefore makes a major and potentially paradigm shifting 

contribution to our understanding of the evolution of eukaryotic sexual life cycles and 

developmental programmes in relation to mitochondrial genetics, laying the 

foundations for future theoretical and empirical research. 
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CHAPTER 1. EVOLUTION OF EUKARYOTIC COMPLEXITY 

VIA ENDOSYMBIOSIS AND SEX 
 

1.1 Summary 

Sexual reproduction with nuclear fusion and reciprocal recombination is nearly 

universal among complex eukaryotes, but its early evolution remains shrouded in 

mystery. Myriad theories on the evolution of sex exist, but most of them focus on the 

advantages of sex in contemporary complex organisms and do not explain how, when 

and why sex first arose. It is becoming increasingly clear, however, that sex evolved 

as part of the evolutionary transition from prokaryotes to eukaryotes, in a pre-

eukaryotic cell that already possessed mitochondrial endosymbionts. A new view is 

emerging in which sex is both a direct consequence of the bacterial-archaeal 

symbiosis, and a sine qua non for the further evolution of the genomic complexity of 

eukaryotes. Selective forces induced by the presence of at least two genomes of 

distinct origin within the same cell further shaped the evolution of eukaryotic 

reproductive strategies, from the evolution of two mating types with uniparental 

inheritance in protists, to sexes with extreme gamete-size dimorphism and sex-specific 

germline structure in multicellular eukaryotes. 
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1.2 Introduction 

At its core, sex is a process of genetic mixing: it creates sets of alleles and trait 

combinations different from either of the two parents. In eukaryotes, two reproductive 

cells—the gametes—fuse, homologous chromosomes are paired and recombined into 

novel permutations of maternal and paternal pieces that are then passed on to the 

offspring (Page and Howley, 2003). Although parts of the molecular machinery used 

in meiotic recombination are derived directly from their prokaryotic precursors (Marcon 

and Moens, 2005; Goodenough and Heitman, 2014), sex is a trait unique to 

eukaryotes. Bacteria and archaea acquire new genes through the mechanisms of 

horizontal gene transfer (HGT), sometimes referred to as “bacterial sex” (Narra and 

Ochman, 2006), but these mechanisms always operate unidirectionally, produce 

pangenomes with different sets of genes in closely related lineages, and do not involve 

cell fusion nor recombination across the full length of the chromosomes. In contrast, 

sexual gene exchange in eukaryotes is always reciprocal and operates only among 

the representatives of the same species, producing vertical lineages with allele 

combinations that belong to the same general gene set. 

Reproduction by the means of sex is strikingly ubiquitous among extant 

eukaryotes (Goodenough and Heitman, 2014; Speijer et al., 2015), in spite of 

numerous apparent advantages of clonal reproduction (Otto, 2009; Lehtonen et al., 

2012). A lineage of asexual females, for example, would produce twice as many 

offspring as the sexual one, avoiding the burden of bearing males that do not directly 

invest in producing offspring (Lehtonen et al., 2012), or finding a compatible and 

healthy mating partner. And yet very few eukaryotic species revert to obligate 

asexuality, and those that do, are usually relatively short-lived on the evolutionary 

timescale (Vrijenhoek, 1998; Simon et al., 2003). Sex is costly, but it also appears to 

be vital for the long-term survival of complex life.  
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The most prevalent view on the evolutionary advantages of sex is that meiotic 

recombination breaks up the associations between mutations at different loci, allowing 

selection to act on individual genes independent of their backgrounds within finite 

populations (Otto, 2009). Reciprocal recombination could improve the response to 

fluctuating selection, e.g. in individuals infected by rapidly evolving parasites (Jaenike, 

1978; Hamilton, 1980), or bring several beneficial mutations into the same lineage 

(Fisher, 1930). More notably, recombination increases the efficacy of selection against 

mildly deleterious mutations, what would otherwise irreversibly accumulate over time 

(Muller, 1964; Keightley and Otto, 2006). These canonical views were developed to 

account for the advantages of sex in modern eukaryotic populations, but do not tell us 

much about when, how and why sex first arose. Selective forces favouring sex at its 

origin could have been very different from the evolutionary pressures maintaining 

amphimixis in present-day populations of complex eukaryotes. 

Recent phylogenetic analyses have shown that the last common ancestor of 

all eukaryotes (LECA) was already capable of full meiotic sex, as the genes 

underpinning nuclear fusion and meiotic recombination are present in virtually all 

extant eukaryotic clades (Ramesh et al., 2005; Schurko and Logsdon, 2008; Speijer et 

al., 2015). Although the prokaryote-to-eukaryote transition left no evolutionary 

intermediates, there is little doubt that early eukaryotic evolution was largely shaped 

by the ancient endosymbiotic association between the archaeal host and bacterial 

ancestors of mitochondria (Martin and Müller, 1998; Lane and Martin, 2010). It is 

therefore very likely that the cell that first became sexual, although not necessarily a 

fully-featured eukaryote, already possessed mitochondrial endosymbionts; sex was 

among the myriad eukaryote-specific traits such as internal membrane systems, active 

transport networks and phagocytosis that evolved within the context of this unique 

archaeal-bacterial partnership. 

While canonical hypotheses for the evolution of sex are limited to population-

genetic effects of reciprocal recombination among nuclear genes (Kondrashov, 1993; 
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Otto, 2009), shifting the focus from meiosis in modern complex organisms to its very 

origin in the nascent eukaryotic cell points to the central role of energetic and genetic 

revolution following the acquisition of mitochondria (Lane, 2011; Garg and Martin, 

2016). Housing two genomes of distinct origin within the same cell had immense 

repercussions for the further evolution of complex life. If meiotic recombination is 

strictly reciprocal, the inheritance of mitochondrial genes is almost always biased 

towards one of the gamete classes or mating types, breaking the primordial symmetry 

of sex (Billiard et al., 2011; Birky, 2001). While this asymmetry is almost certainly 

related to the fundamental differences in genome structure, ploidy levels or the intricate 

interactions between the two genomes, the exact reasons behind it remain elusive 

(current explanations reviewed in Greiner et al., 2015). The sexual asymmetry is even 

more pronounced in higher eukaryotes characterized by true sexes with oogamy, 

where females produce few large oocytes and males specialize in mass-production of 

small and often motile sperm (Billiard et al., 2011). Once again, in an overwhelming 

majority of cases, mitochondria are transmitted through only one of sexes. 

Oogamy appears to have evolved multiple times, and is virtually universal 

among complex multicellular organisms such as algae, plants and animals, where the 

unit of selection is not an individual cell, but a large community of clonal cooperating 

cells all descending from a single zygote (Kirk, 2006). A vast majority of clonal cells in 

these organisms do not survive past a single generation, and specialize in providing 

support for germline—the only population of cells contributing genetic material, both 

mitochondrial and nuclear, to the future generations (Buss, 1987; Michod and Roze, 

2010). Often omitted from theoretical analyses of sex-role evolution, germline structure 

represents one of the most conspicuous sexually asymmetric traits of higher 

metazoans, with female germlines characterised by relatively low numbers of stem cell 

divisions, mitochondrial bottlenecks and atretic germ cell death (Krakauer and Mira, 

1999), and males producing gametes continuously throughout adulthood without any 

apparent constraints on germline cell division (Spradling et al., 2011). 
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The origin of eukaryotic sex, mating types and oogamous sexes, germline-

soma differentiation and traits involved in sexual selection have long dominated the list 

of the most puzzling questions in evolutionary biology. A recent surge of mitochondria-

centric research suggests that shifting our focus to the effects of the ancient 

mitochondrial endosymbiosis has the potential of eliminating much of the mystery that 

surrounded these problems for more than a century. In this introduction to the rest of 

the thesis, I discuss recent theoretical developments that establish links between the 

mitochondrial genetics, energetics and the evolution of eukaryotic sexuality, and how 

these views fit into the general framework of eukaryotic evolution. The emerging 

consensus is that the mitochondrial endosymbiosis was a chief driving force behind 

the evolution of sexual life cycles and traits, while sex itself was largely responsible for 

much of the genomic complexity characteristic of the eukaryotic domain. 

 

1.3 Endosymbiosis at the origin of eukaryotes 

For over a century the concept of endosymbiosis—cells living within cells—has figured 

prominently in evolutionary hypotheses for eukaryote origin (Mereschkowsky 1905, 

1910; Wallin, 1927; Sagan, 1967). The genomic data that became available within the 

last few decades confirmed the chimeric nature of eukaryotic genomes (Rivera et al, 

1998): in addition to genes that are unique to the eukaryotic domain, genes related to 

information processing and storage (translation, transcription, splicing, replication) are 

mostly related to archaea (Yutin et al., 2008; Koonin, 2010), while genes for metabolic 

processes are mostly of bacterial origin. This suggests that the symbiosis that gave 

rise to a complex eukaryotic cell involved an archaeal partner, as well as a bacterial 

partner or partners (Koonin, 2010; Guy et al., 2014; Martin et al., 2015), one of which 

gave rise to mitochondria. Critically, while the nature of the archaeal partner is 

becoming increasingly well understood (Guy et al., 2014; Spang et al., 2015; Zaremba-

Niedzwiedzka et al., 2017), eukaryotic genes of bacterial origin cluster with several 
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groups of present-day bacteria (Koonin, 2010), complicating the analysis and hindering 

the reconstruction of early eukaryogenic events. Not surprisingly, at least 20 different 

versions of the endosymbiotic theory have been proposed (Martin et al., 2015), and 

current data from gene phylogenies is not sufficient to dispel the ambiguity. 

 Several evolutionary hypotheses were historically centred around the 

assumption that the host cell that acquired mitochondria was already eukaryotic, and 

could have formed via an earlier fusion between members of bacterial and archaeal 

domains (“mitochondria late”, reviewed in Guy et al., 2014; Martin et al., 2015). More 

recently, many of these ideas were criticized in favour of an alternative theory—that 

the last eukaryotic common ancestor already possessed mitochondria—dedicated 

energy-producing organelles of bacterial origin (Müller et al., 2012). In this 

“mitochondria-early” view, the origin of mitochondria and the eukaryotic cell was the 

same event, and amitochondriate eukaryotes have never existed. 

Present-day eukaryotes that lack bona fide mitochondria bear highly simplified 

mitochondrion-related organelles (MROs)—hydrogenosomes and mitosomes (Tielens 

et al., 2002; Embley et al., 2003; Henze and Martin, 2003; Tovar et al., 2003; 

Stechmann et al., 2008; but see Karnkowska et al. (2016) for a recently documented 

loss of the organelle), found in anaerobes, some of which were once mistakenly 

thought to have been derived before the acquisition of mitochondria—the so-called 

Archezoa (Cavalier-Smith, 1983), including metamonads, parabasalids and 

microsporidia (van der Giezen and Tovar, 2005). Hydrogenosomes produce ATP by 

substrate-level phosphorylation, oxidizing pyruvate to form hydrogen, CO2 and acetate 

(Müller, 1988). ATP is then exported into cytosol via the standard mitochondrial 

ATP/ADP carrier (AAC). Furthermore, mitochondria and hydrogenosomes use protein 

import pathways of shared origin, and have conserved mechanisms of iron-sulphur 

cluster assembly. While mitosomes do not have a role in ATP production, they 

nevertheless retain the critical pathways of iron-sulphur cluster assembly (Tovar et al., 

2003). 



20 
 

The realization that mitochondria and hydrogenosomes share common 

ancestry has led Martin and Müller (1998) to propose one of the earliest “mitochondria-

early” theories—the so called hydrogen hypothesis. Based on molecular phylogeny, 

the endosymbiont that gave rise to mitochondria and MROs was of bacterial origin 

(Horner et al., 1996; Andersson et al., 1998), while the host was an archaeal cell (Cox 

et al., 2008; Williams et al., 2012; Spang et al., 2015). The hypothesis predicts that 

anaerobic metabolism of the bacterial ancestor of MROs produced molecular 

hydrogen as a waste product, which was then being used as an electron source for 

the autotrophic metabolism of the archaeon. Similar inter-domain symbiotic 

relationships with hydrogen as an electron transport intermediate are not rare (Stams 

and Plugge, 2009) and occur abundantly in Earth's crust and marine sediments. 

The “mitochondria-early” theories imply further large-scale endosymbiotic gene 

transfer from bacterial symbionts to the archaeal host chromosomes, replacing the 

host’s archaeal pathways and membranes with bacterial counterparts and 

“transforming the archaeon from within” (Timmis et al., 2004; Martin et al., 2015), even 

though the mechanism of the archaeal lipid membrane replacement is not clear (Gould 

et al., 2016). The endosymbiont was gradually transformed into an organelle—the 

process which involved the reductive evolution of the symbiont genome (Gray et al., 

1999; Timmis et al., 2004), evolution of protein transporters of inner and outer 

mitochondrial membranes (TIMs and TOMs, Dolezal et al., 2006; Kulawiak et al., 

2013), and, most notably, the ATP/ADP carrier (AAC) capable—at least in modern 

eukaryotes—of exporting mitochondrial ATP in exchange for cytosolic ADP 

(Klingenberg, 2008). The hydrogen hypothesis itself does not predict when or how the 

AAC was established, only that ATP export was not an initial benefit of the symbiosis 

(Martin and Müller, 1998). Indeed, given the complete absence of sequences 

homologous to AAC proteins among present-day prokaryotes, it is unlikely that the 

mitochondrial carrier proteins were present from the very beginning of the 

endosymbiosis. 
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More recently, a competing view has been presented in the phagocytic 

archaeon theory (Poole and Neumann, 2011; Martijn and Ettema, 2013)—a prokaryote 

possessing actin cytoskeleton, membrane vesicle trafficking machinery and capable 

of primitive phagocytosis, with bacterial genes acquired via multiple pre-endosymbiotic 

HGT events. In this view, the precursor of the nuclear membrane might have formed 

as a strategy to protect the host genome from frequent and destabilizing horizontal 

gene transfer events. The hypothesis draws support from multiple archaeal 

homologues of proteins involved in eukaryotic membrane trafficking systems, such as 

ESCRT-III complex (Koonin, 2015; Spang et al., 2015; Klinger et al., 2016; Zaremba-

Niedzwiedzka et al., 2017), and a recent attempt to resolve the order of eukaryogenic 

events via molecular phylogeny (Pittis and Gabaldon, 2016).  

While it is not known how the mitochondrial endosymbiont was acquired (Poole 

and Gribaldo, 2014), bona fide eukaryotic phagocytosis might not have been 

necessary given that cases of bacteria invading bacterial hosts—although not 

archaeal—are known (Guerrero, 1986; von Dohlen et al., 2001).  Archaeal sequences 

bearing similarity to the eukaryotic signature proteins do not all by themselves indicate 

the presence of phagotrophy either (Samson and Bell, 2009; Koonin, 2009; Makarova 

et al., 2010; Dey et al., 2016). Similarly, multiple independent HGT events into the 

archaeal host genome are not necessary to explain the apparent branching of 

eukaryotic sequences with multiple contemporary bacterial lineages—the same 

pattern is easily explained by a single endosymbiotic acquisition and continuous lateral 

gene transfer among the free living prokaryotes (Ku et al., 2015). 

As correctly noted by Poole and Gribaldo (2014) the current evidence—most 

notably, the lack of evolutionary intermediates in the prokaryote-eukaryote transition—

is in principle compatible with multiple hypotheses of eukaryote origin. Since key 

eukaryotic features are ancestral to the group, establishing the relative timing of their 

origins is difficult, if not impossible. Most attempts to resolve the order of eukaryogenic 

events, and to determine the nature of the symbiotic relationship, remain speculative.  
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1.4 Energetics of the prokaryote-eukaryote transition 

Morphological complexity of the eukaryotic cell is unparalleled in the bacterial world. 

The full set of hallmark eukaryotic traits was present in an already complex LECA—

the nucleus housing a relatively large genome organized into linear chromosomes, 

internal membrane systems such as the endoplasmic reticulum and Golgi, dynamic 

cytoskeleton, intracellular transport, peroxisomes, mitosis and meiotic sex, among 

many others (Koonin, 2010; Koumandou et al., 2013). The origin of this striking 

structural and genomic complexity in a pre-eukaryotic lineage poses a considerable 

and polarizing challenge to the current evolutionary theory: there are no true 

evolutionary intermediates between prokaryotes and eukaryotes, and phylogenetic 

analyses are limited by the chimeric nature of the eukaryotic genome and continuous 

horizontal gene transfer among prokaryotes of past and present (Koumandou et al., 

2013; Poole and Gribaldo, 2014). The timing and mechanism of mitochondrial 

acquisition occupies a central position in these debates. 

Lane and Martin (2010) approach the problem from a unique perspective of 

genome organization in relation to cellular bioenergetics. Large eukaryotic genomes 

with high protein expression levels are energetically costly, and this cost has to be met 

by the ATP produced mostly by respiratory chains embedded within bioenergetic 

membranes. In prokaryotes these membranes surround the cell, constraining the size 

and complexity of the individual due to shrinking surface-area to volume ratio. The only 

thermodynamically feasible way to make the transition, Lane and Martin (2010) argue, 

is through the endosymbiosis in which energy-generating membranes are internalized, 

while the size of local genomes needed to support the bioenergetic function of 

oxidative phosphorylation is reduced to a bare minimum. The acquisition of a 

mitochondrial organelle through endosymbiosis was therefore a critical event in 
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overcoming the bioenergetic constraints on prokaryotic genome size, and a 

prerequisite for the subsequent evolution of eukaryotic complexity. 

 

1.5 Transforming endosymbiont into an organelle 

Endosymbiotic hypotheses explain how the evolutionary transition from prokaryotes to 

eukaryotes was initiated. Lane and Martin’s (2010) energetic considerations suggest 

that the acquisition of mitochondria—or, to be more precise, conversion of the bacterial 

symbiont into an ATP-exporting organelle with a small genome—permitted the 

expansion of the host cell genome to the size typical for modern eukaryotes. While 

bacterial-archaeal endosymbioses with large-scale horizontal gene transfer events 

were not necessarily rare (Nelson-Sathi et al., 2012, 2015), the mitochondrion arose 

only once. Even in the light of these seminal hypotheses, it remains unclear how and 

under what selective forces a bacterium within the host’s cytoplasm acquired the 

protein import machinery of TIMs (protein translocators of the inner membrane) and 

TOMs (translocators of the outer membrane), and mitochondrial carrier proteins 

ultimately transforming it into an energy-producing organelle. Was the 

organellogenesis driven by the archaeal host cell or the endosymbiont? 

Gross and Bhattacharya (2009) argue that the symbiont-to-organelle 

transformation was driven by the host, endorsing the widespread view that the 

prokaryotic endosymbionts were essentially “enslaved” by the pre-eukaryotic host cell 

(Cavalier-Smith, 2006). The argument is based on the assumption of constant 

selective pressure on the host cell to optimize the ATP production of the nascent 

organelle for the benefit of the group, i.e. the host and its endosymbiont population. In 

this model, the evolution of mitochondrial protein importers started at the outer 

endosymbiont membrane with the establishment of nuclear-coded β-barrel TOM and 

SAM (outer-membrane sorting and assembly machinery) complexes. The host 

proteins then gained access to the intermembrane space and the inner membrane of 
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the bacterium, establishing the TIM translocase complexes and mitochondrial carriers 

such as the AAC. In the view of Gross and Bhattacharya (2009), the organellogenesis 

was already underway before the initiation of the endosymbiotic ATP export, and the 

endosymbiont genome was already reduced and unable to encode its own protein 

import complexes, hence the selective pressure for the host protein insertion into the 

bacterial endosymbiont membranes. 

An alternative view is that mitochondrial protein-import complexes and the 

mitochondrial solute carriers originated within the genome of the bacterial 

endosymbiont (Alcock et al., 2010). This view is supported by the apparent sequence 

homology and structural similarity of the main TIM and TOM complexes to  

contemporary bacterial proteins (Dolezal et al., 2006; Alcock et al., 2010), the curious 

observation that the import and assembly of TIM22—the complex responsible for the 

assembly of mitochondrial inner membrane carriers and TIM’s—is dependent on its 

own presence within the inner membrane (Neupert and Herrmann, 2007) and possibly 

their tight coevolution with the respiratory chain complexes (Kutik et al., 2007; Kulawiak 

et al., 2013), suggesting their origin within the same genome. The endosymbiont’s 

protein import machinery allowed the bacterium to reduce its genome size further, 

which quite possibly entailed a replicative advantage to individual endosymbionts. 

If this view is correct, carrier proteins of the mitochondrial carrier family (MCF) 

evolved independently of the mitochondrial protein import machinery of TIMs and 

TOMs, and before the relocation of key bacterial genes into the host’s genome, as their 

insertion into the inner membrane depended only on the pre-existing bacterial 

membrane protein insertion and assembly complexes, such as SecYEG and YidC 

(Driessen and Nouwen, 2008). The MCF proteins in organelles of modern eukaryotes 

transport a range of substrates, including carboxylates (malate, succinate, citrate), 

amino acids, nucleotides and dinucleotides (ATP, GTP, NAD+), and protons (Kunji, 

2004; Palmieri and Monné, 2016), but its original role in the nascent organelle remains 

unknown. One possibility is that it was used to import the cytosolic ATP to maintain 



25 
 

membrane potential at times of substrate shortage (Radzvilavicius and Blackstone, 

2015), as has been demonstrated in ischemic liver cells (Belous et al., 2003) and cells 

lacking mitochondrial DNA (Giraud and Velours, 1997; Buchet and Godinot, 1998), or 

to import partially-oxidized organics. 

 

1.6 Sex in the emerging complex cell 

Proteins and pathways of the complex LECA descend from the ancestral sequences 

of symbiotic partners, modified through evolutionary tinkering, protein re-targeting and 

de novo evolution of new sequences (Kurland and Andersson, 2000; Koonin et al., 

2004). LECA was already a complex cell with a nucleus, linear chromosome 

organization, internal membrane systems, motor proteins, mitosis and meiotic sex 

(Koonin et al., 2010). Some of these characteristic eukaryote features had to be 

established relatively early into the prokaryote-eukaryote transition, as the subsequent 

progress of the transition depended on their existence. The AAC is a prime example 

of such trait, as the massive energetically-constrained expansion of the proto-

eukaryotic genome size (Lane and Martin, 2010) hinges upon the presence of the 

mitochondrial ATP/ADP exchanger. Whether originating in the endosymbiont or the 

host genome, the hallmark eukaryotic traits were all brought together into the lineage 

leading to LECA, with no surviving intermediates or early branching semi-eukaryotic 

species. Lane (2011) convincingly argued, that this pattern of eukaryotic trait evolution 

can only be consistent with the early evolution of sex—cell fusion and frequent 

recombination, laying the groundwork for the evolution of vertical mode of inheritance. 

Genes required for nuclear fusion and meiosis permeate all eukaryotic groups, 

indicating that LECA was indeed a cell capable of eukaryotic sex (Ramesh et al., 2005; 

Schurko and Logsdon, 2008). This supports the view that the eukaryotic cell coevolved 

with sexual reproduction. What drove the evolution of sex in eukaryogenesis, however, 

is a matter of an ongoing debate. Alluding to the benefit of meiotic sex slowing down 
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the mutational meltdown, one group of theorists argues that sex evolved in response 

to the host genome damage generated by reactive oxygen species (ROS) produced 

within the mitochondrial respiratory chains (Gross and Bhattacharya, 2010; Hörandl 

and Hadacek, 2013; Speijer et al., 2015). Mitochondria of modern aerobic eukaryotes 

constitute a major source of intracellular ROS, where reduced complexes of the 

electron transport chain can readily donate electrons to molecular oxygen forming 

superoxide, hydrogen peroxide and, through Fenton chemistry, highly reactive 

hydroxyl radicals (Hallivell, 2006; Murphy, 2009). Gross and Bhattacharya (2010) 

argue that a single selective pressure—the rise in atmospheric oxygen levels and the 

mutagenicity of either environmental or internal ROS—can account for both the 

acquisition of mitochondria and the origin of sex. Aerobic bacterial symbionts in this 

model cleared the local environment of oxygen, which would have been toxic to the 

anaerobic archaeal host, although it is not clear why internalizing the source of reactive 

oxygen species would be selected for. Sex with reciprocal recombination among the 

host’s chromosomes in this model evolves from archaeal conjugation in response to 

the frequent ROS-induced damage to host’s genome. Likewise, in the model 

envisaged by Speijer et al. (2015), the pre-eukaryotic endosymbiosis occurs in an 

aerobic environment, where the phagocytic uptake of the bacterium results in high 

internal concentrations of reactive oxygen radicals within the cell, prompting the 

evolution of sex, peroxisomes, internal membranes and the protective nuclear 

compartment.  

Internalization of the bacterial symbiont provided the host with a source of not 

only ATP, but also new genes that were migrating into the host’s genome (Timmis, 

2004) and appear to be largely responsible for the initial host genome expansion. 

Koonin (2006, 2009) argues, that this unidirectional flow of DNA from decaying 

endosymbionts included bacterial self-splicing group II introns that induced structural 

transformations of the host’s genome. Proliferation and recombination of introns 
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scattered across the host’s genome was highly mutagenic, and caused disintegration 

of the circular prokaryotic chromosomes of the host into linear pieces.  

Lane (2011) reasons that small effective size of the nascent eukaryotic 

population—which was needed for the introns to fix in the first place (Koonin, 2009)—

and high mutation rate together with general genome instability strongly favoured the 

evolution of sex with cell fusion and frequent reciprocal recombination. This is in stark 

contrast to prokaryotes, which seem to be evading the effects of mutational meltdown 

through HGT and unidirectional homologous recombination within a population of large 

effective size. Variable numbers of newly formed straight chromosomes, imprecise 

chromosome segregation at cell division and variable sets of genes of endosymbiont 

origin created a strong selective pressure for the evolution of cell fusions and genome 

duplications, restoring fully viable chromosome sets and masking detrimental 

mutations (Garg and Martin, 2016). In this view, the emerging eukaryotic cell was 

rescued by the early evolution of sex via cell fusion and recombination, which stabilized 

the host genome allowing it to expand further, e.g. through the acquisition of 

endosymbiont DNA and gene duplications (Makarova et al., 2005).  

Cell fusion with cytoplasmic mixing curtails variance between host cells, 

reducing the efficacy of selection against detrimental symbionts on the level of the host 

(Chapter 2). Intermixing between the large endosymbiont populations of unrelated 

cells would therefore promote competition and facilitate the spread of selfish 

endosymbionts, to the detriment of the host cell (Radzvilavicius and Blackstone, 2015; 

Blackstone, 2016).  On the other hand, with synergistic interactions between 

deleterious endosymbiont mutations, cell fusion-fission cycles could in fact mask the 

deleterious effects of mitochondrial mutations (Chapter 2). Recent theoretical analysis, 

presented also in this thesis, suggests that this effect could easily drive the fixation of 

host-cell alleles inducing cell fusion within the population of clonal proto-eukaryotes 

(Radzvilavicius, 2016a).  Strikingly, the analysis predicts that when the cell fusion first 

arose in a nascent eukaryotic cell, it had to be frequent and clonal reproduction 
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relatively rare. This prediction is in agreement with the view that clonal cell divisions 

might have produced inviable combinations of the newly formed linear chromosomes, 

requiring frequent cell fusions, or even the syncytial state, to maintain viability (Garg 

and Martin, 2016). 

 

1.7 Fundamental asymmetry of eukaryotic sex 

In contrast to the fully symmetric recombination among nuclear chromosomes, 

mitochondrial inheritance in modern eukaryotes is virtually always biased towards one 

of the gametes (Birky, 2001). Typically, the gametes themselves belong to two or more 

self-incompatible mating types, with one of them contributing most of the mitochondrial 

DNA to the zygote, the organelle genomes of the other being discarded. While 

phylogenetic analyses trace the origin of sex before the last common ancestor of all 

eukaryotes, the mechanisms responsible for asymmetric inheritance of mitochondria 

are not conserved (Birky, 1995; Xu, 2005; Sato and Sato, 2013; Greiner et al., 2015), 

making the inference of the evolutionary timing of its origin virtually impossible. There 

is no reason to believe that the initial form of sex originating before LECA was already 

asymmetric in cytoplasmic transmission, but the ubiquity of the uniparental inheritance 

(UPI) among extant eukaryotes is nevertheless indicative of a strong and shared 

selective pressure favouring the asymmetry in transmission of mitochondrial genes. 

The earliest explanations for the prevalence of UPI invoked inter-genomic 

conflicts and envisaged the evolution of uniparental inheritance together with mating 

types or sexes (Cosmides and Tooby, 1981; Hastings, 1992; Hurst and Hamilton, 

1992; Hutson and Law, 1993), although others argue that mating types evolved for 

unrelated reasons (reviewed in Billiard et al., 2011). More recently, Lane (2011b) and 

Hadjivasiliou et al. (2012) suggested that uniparental inheritance evolved to improve 

the co-adaptation between nuclear and mitochondrial genomes, Christie et al. (2015) 

invoked simple selection against heteroplasmy, while Bendich (2013) argued that UPI 
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evolved as a mechanism of “DNA abandonment”, in which organelles carrying 

damaged DNA are discarded to prevent mutation accumulation. 

Greiner et al. (2015) maintains the view that uniparental inheritance 

suppresses the spread of selfish cytoplasmic elements, but leads to the accumulation 

of deleterious mutations in the long term, and that periodic reversals to the biparental 

mode of organelle inheritance are needed to halt Muller’s ratchet in mtDNA. While 

there was some early evidence of excess deleterious polymorphisms in non-

recombining mitochondrial genomes (Rand and Kann, 1996; Weinreich and Rand, 

2000), a recent analysis of larger gene sets in humans and flies showed that in spite 

of smaller effective population size, mitochondrial loci experience similar efficacy of 

purifying selection as loci in the recombining nuclear genome (Cooper et al. 2015). In 

contrast to Greiner’s predictions, uniparental inheritance could be the mechanism 

maintaining strong purifying selection against detrimental mitochondrial mutations. 

Theoretical analyses indeed show that UPI increases variance in the mutational load 

between individuals, facilitating purifying selection against detrimental mitochondrial 

mutations, while symmetric organelle inheritance promotes the accumulation of 

mitochondrial defects (Bergstrom and Pritchard, 1998; Hadjivasiliou et al., 2013; 

Radzvilavicius, 2016a). 

The fundamental asymmetry of sex is perhaps best reflected in complex 

multicellular organisms with two sexes—males, producing small and often motile 

sperm, and females producing large oocytes. Extreme gamete-size dimorphism 

appears to have evolved multiple times in organisms that already had mating types, 

and is virtually universal among complex multicellular organisms. For many, the 

satisfactory explanation for the evolution of oogamy has been provided by Parker et 

al. (1972) in what is known as the “disruptive selection” or the PBS model (Bell, 1978; 

Parker, 1978; Bulmer and Parker, 2002). Large immotile gametes in this model 

maximize their viability and survival, while numerous small and motile gametes evolve 

to increase the chance of successful fertilization, which under certain conditions leads 
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to divergence into females and males. Since multicellular development requires 

substantial initial investment, production of large eggs was predicted to correlate with 

organism size (Parker et al., 1972; Knowlton, 1974; Randerson and Hurst, 2001). 

On the other hand, gamete size dimorphism has been interpreted as a means 

to regulate organelle or endosymbiont inheritance (Cosmides and Tooby, 1981; Hurst, 

1990; Hastings, 1992). Even though UPI was already present in ancestral isogamous 

populations, given its apparent evolutionary instability it is still plausible that oogamy 

represents one of the mechanisms to reduce the amount of paternal organelles 

transmitted to the zygote.  This view is supported by empirical observations of males 

actively discarding their own mitochondrial DNA in spermatogenesis (Nishimura et al., 

2006; DeLuca and O’Farrell, 2012; Luo et al., 2013), even though the classical 

mathematical models predict that such paternally-controlled organelle destruction 

might not be possible to evolve (Randerson and Hurst, 1999; Hadjivasiliou, 2013; but 

see Chapter 4). 

Mitochondrial inheritance in a vast majority of complex multicellular eukaryotes 

is matrilineal, exerting disparate selective forces on female and male germline 

development. Allen (1996) proposed that female germline cells act to preserve 

“template” mitochondrial DNA by repressing oxidative phosphorylation and reducing 

the production of damaging ROS (reactive oxygen species), while male germ cells 

specialize in short-term energy production required for motility, actively transcribe their 

mitochondrial DNA and, since they normally do not pass their mitochondria to the 

zygote, do not employ the same defence mechanisms against mitochondrial damage. 

The hypothesis was supported by mitochondrial activity studies in jellyfish, flies and 

zebrafish (dePaula et al., 2013a, 2013b), although a different pattern with active 

mitochondria in gametes of both sexes has been observed in a bivalve mollusc with 

doubly-uniparental inheritance of mtDNA (Milani and Ghiselli, 2015). 

Consistent with the protective role of female germline is the observation that 

the number of germline cell divisions in females is typically lower than in males (Drost 
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and Lee, 1995; Crow, 2000), but only in higher metazoans with high mitochondrial 

copying error rates. In early-branching animals (e.g. Porifera, Anthozoa and Placozoa) 

with extremely low mtDNA evolution rates, gametes are generated from the multipotent 

stem cells that also give rise to somatic tissues. Mitochondrial quality in these 

organisms could instead be maximized through high numbers of cell divisions 

generating intra-cellular variance in mitochondrial mutation load and facilitating 

purifying selection (Radzvilavicius et al., 2015; Radzvilavicius, 2016a), or efficient 

molecular repair mechanisms (Hellberg, 2006). Likewise, the mitochondrial bottleneck 

in the female germline is thought to redistribute mtDNA variation from within the cell to 

between the gametes and organisms, facilitating purifying selection against defective 

mitochondria (Bergstrom and Pritchard, 1998; Roze et al., 2015; Haig, 2016), even 

though there is still no consensus on what causes the increase in variance, and 

whether it involves a significant reduction in mtDNA copy number beyond the normal 

level found in cells (Wai et al., 2008; Cao et al., 2007, 2009; Cree et al., 2009). 

Krakauer and Mira (1999) interpreted the massive atretic germ cell death in females, 

in which a vast majority of germ cells are eliminated, as an additional mechanism of 

mitochondrial quality control through the intra-organismal purifying selection. Recent 

experimental evidence in mice provided some evidence for the germline selection 

against severe mitochondrial mutations, although the exact mechanisms, again, are 

not known (Fan et al., 2008). While the results reported so far seem promising, further 

empirical studies with a broader variety of non-model organisms are clearly needed to 

elucidate the role of female germline organization in mtDNA quality preservation. 

 

1.8 Concluding remarks and structure of the thesis 

Unlike horizontal gene transfer in bacteria, eukaryotic sex involves reciprocal 

recombination across the full length of the chromosomes, resulting in vertical lineages 

that contain sets of alleles belonging to one particular, species-defining gene set. The 
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symmetry of nuclear gene exchange is in stark contrast to the high overall asymmetry 

of eukaryotic sex. Nowhere is the asymmetry of sexes more evident than in higher 

animals, where it manifests itself through the extreme divergence in sex roles: 

secondary sex characters such as ornaments or weapons in males, competing for 

mating opportunities with the choosier females. Strikingly, the sex-role divergence can 

be traced back to the gamete-size and number dimorphism—the core distinction 

between the two sexes (Trivers, 1972; Lehtonen et al., 2016), which itself is most often 

attributed to disruptive selection (Parker et al., 1972; Bulmer and Parker, 2002). 

More recent work, however, points to the key role of organelle genomes in the 

evolution of sexual asymmetry. Multiple traits of female germline development, such 

as the low number of germline cell divisions, metabolic and transcriptional quiescence, 

mitochondrial bottlenecks and atretic germ cell death can all be attributed to the 

fundamental need to preserve the quality of maternally inherited mitochondrial genes. 

Male germline in higher metazoans, on the other hand, can be seen as specializing in 

mass production of motile reproductive cells with no specific adaptations related to the 

mitochondrial quality, as mitochondrial genes are inherited mostly through the 

maternal germline. While not strictly associated with gamete size, uniparental 

inheritance of mitochondria can be viewed as one of the selective forces driving the 

evolution of oogamy, and, likely, the mating types. Sexual reproduction itself can be 

attributed to purifying selection against mitochondrial mutations in early eukaryotic 

lineages (Radzvilavicius, 2016a). 

In this thesis I take the extra-nuclear perspective to the evolution of eukaryotic 

sexual traits. In Chapter 2, I show that the evolution of sexual cell fusion in the nascent 

eukaryotic lineage might have been driven by cytoplasmic mixing, temporarily masking 

the detrimental effects of defective organelles. The model introduced in Chapter 3 

shows that self-incompatible mating types can evolve to ensure the efficient removal 

of mitochondrial mutations through the asymmetric organelle transmission. 
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Frequent observations of paternal leakage and heteroplasmy pose a 

substantial challenge to the current understanding of uniparental inheritance. In 

Chapter 4 I show that the evolutionarily stable pattern of cytoplasmic inheritance 

depends on which sex—male or female—governs the destruction of paternal 

organelles. Maternal regulation favours complete elimination of sperm organelles, 

while males could favour paternal leakage and heteroplasmy. Finally, in Chapter 5 I 

propose a new hypothesis on the origin of germline sequestration in metazoans in 

which purifying selection against mitochondrial mutations plays a central role. I develop 

a simple mathematical model that shows that high mtDNA copying error rates in 

bilaterians favour reduced numbers of germline cell divisions, while in basal 

metazoans with slow mtDNA evolution, mitochondrial quality is maximized through 

segregational drift in multipotent stem cell lineages with unconstrained division. 

 

1.9 Publications  

Several articles based on the material presented in this thesis have been published in 

peer-reviewed journals or submitted for publication. Chapter 2, with little modification, 

has been published in the Journal of Theoretical Biology (Radzvilavicius 2016a), while 

the stochastic model supporting some of the results presented within the same chapter 

has been published in Journal of the Royal Society Interface (Radzvilavicius and 

Blackstone, 2015). Chapter 4 is based on the article by Radzvilavicius, Lane and 

Pomiankowski recently submitted to Nature Ecology and Evolution, while the 

manuscript elaborating on the hypothesis of Chapter 5 has been published in PLOS 

Biology and is also stored in bioRxiv preprint server (Radzvilavicius et al., 2015). A 

critique on the recently proposed mitochondrial-erosion hypothesis for the evolution of 

eukaryotic sex (Havird et al., 2015) has been published in BioEssays (Radzvilavicius, 

2016b).  
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CHAPTER 2. EVOLUTIONARY DYNAMICS OF 

CYTOPLASMIC SEGREGATION AND FUSION: 
MITOCHONDRIAL MIXING FACILITATED THE EVOLUTION 

OF SEX AT THE ORIGIN OF EUKARYOTES 
 

2.1 Summary 

Sexual reproduction is a trait shared by nearly all complex life, but explaining its origin 

and evolution remains a major theoretical challenge. Virtually all theoretical work on 

the evolution of sex has focused on the benefits of reciprocal recombination among 

nuclear genes, paying little attention to the dynamics of mutation in the mitochondrial 

genome. Here I develop a mathematical model to study the evolution of alleles 

inducing cell fusion in an ancestral population of clonal proto-eukaryotes. Mitochondrial 

mixing masks the detrimental effects of faulty organelles and drives the evolution of 

sexual cell fusion despite the declining long-term population fitness. Cell-fusion alleles 

fix under negative epistatic interactions between mitochondrial mutations and strong 

purifying selection, low mutation load and weak mitochondrial-nuclear associations. I 

argue that similar conditions could have been maintained throughout eukaryogenesis, 

favouring the evolution of sexual cell fusion and meiotic recombination without 

compromising the stability of the emerging complex cell. 
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2.2 Introduction 

Sexual reproduction with gamete fusion and reciprocal recombination is among the 

traits shared by virtually all eukaryotes (Ramesh et al., 2005; Goodenough and 

Heitman, 2014; Speijer et al., 2015). Current views on the evolutionary advantage of 

sex have it that recombination among nuclear genes exposes the hidden genetic 

variation in finite populations, breaks up unfavourable allele combinations under 

fluctuating selection, or rescues the genome from the mutational meltdown (Otto, 

2009; Hartfield and Keightley, 2012). These views, however, are based on the long-

term effects of recombination, and do not directly explain when or how these traits first 

arose. It is becoming increasingly clear that sex first appeared as a part of the 

evolutionary transition from prokaryotes to eukaryotes, most likely after the 

endosymbiotic acquisition of mitochondria (Gross and Bhattacharya, 2010; Lane and 

Martin, 2010; Speijer et al., 2015). There is therefore more than just recombination to 

the origin of sex, and a full account of the evolution of sexual reproduction has to 

account for the complex relationship between mitochondrial symbionts and the host.  

The evolution of complex life can be conceptualized as a sequence of major 

evolutionary transitions (Buss, 1987; Maynard Smith and Szathmary, 1995). With each 

transition conflicts between the levels of individuality arise and have to be mediated for 

a stable higher-level unit to be established (Michod, 1997; Michod and Nedelcu, 2003; 

West et al., 2015). Conflict resolution often involves mechanisms reducing genetic 

variance within groups of lower-level units, eliminating the scope for defection and 

detrimental competition. In contrast, cell fusion allows for cytoplasmic mixing and the 

horizontal spread of detrimental mutants, facilitating evolutionary conflict and reducing 

the efficacy of purifying selection (Hastings, 1992; Bergstrom and Pritchard, 1998; 

Randerson and Hurst, 1999). The origin of cytoplasmic mixing at the early stages of 

eukaryogenesis therefore could have hindered the evolution of a stable higher-level 

unit—the eukaryotic cell (Radzvilavicius and Blackstone, 2015). While two mating 
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types and uniparental inheritance (UPI) might eliminate these issues in modern 

eukaryotes (Birky, 1995; Hadjivasiliou et al., 2013; Sato and Sato, 2013; Greiner et al., 

2015), the mechanism of asymmetric inheritance presumably would not have been 

present during the early evolution of sex. 

In their recent article, Havird et al. (2015) suggest a novel hypothesis for the 

evolution of eukaryotic sex, in which mitochondrial mutations play a central role. Owing 

to its high mutation rate, mitochondrial DNA (mtDNA) can quickly accumulate 

mutations compromising the function of the respiratory chain and diminishing a cell’s 

viability, which prompts the evolution of compensatory nuclear modifications that could 

restore the cell’s fitness. Recombination among the nuclear genes would potentially 

increase the rate at which new compensatory combinations of nuclear alleles are 

introduced, rapidly improving the match between the two genomes. While important in 

some ways, the hypothesis has several shortcomings (Radzvilavicius, 2016b) and 

does not account for one of the hallmark features of mitochondrial genetics—

cytoplasmic segregation (Rand, 2008, 2011)—which facilitates the elimination of 

mitochondrial mutations via purifying selection at the level of an organism. 

Another recent idea highlighting the role of mitochondria in the evolution of sex 

stems from the evolutionary history of endosymbionts and the biochemistry of cellular 

respiration (Blackstone and Green, 1999). Faced with stressful conditions constraining 

their growth and proliferation, proto-mitochondrial symbionts could have systematically 

manipulated the host cell phenotype using the by-products of oxidative 

phosphorylation. High emissions of reactive oxygen species (ROS), for example, could 

have served as a trigger for the host cell fusion and recombination, restoring favourable 

conditions for the endosymbiotic growth and proliferation. Similarly, for Speijer et al. 

(2015), mitochondrial acquisition gave rise to sex due to the ROS-induced genome 

damage and the need for frequent recombinational repair (see also Gross and 

Bhattacharya, 2010; Horandl and Hadacek, 2013). 

While it is very likely that sex evolved in a cell that already possessed 
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mitochondria (Lane and Martin, 2010; Lane, 2014; Speijer et al., 2015), the conditions 

favouring the emergence of cell fusion and cytoplasmic mixing under these 

circumstances have not received substantial attention. Multiple factors are likely to 

affect the evolutionary dynamics of mitochondrial mixing and segregation, including 

the intensity of purifying selection, mutation rate, epistatic interactions, intracellular 

competition and the properties of early cell cycles, but the relative importance of these 

effects in the early evolution of meiotic sex is not known. Here I introduce an infinite-

population model to study cytoplasmic segregation at the origin of sexual cell fusion. I 

analyse the spread of proto-nuclear alleles inducing cell fusion with cytoplasmic mixing 

under the effect of purifying selection against mitochondrial mutations. The model 

suggests a set of conditions promoting the emergence of sex in the form of eukaryotic 

cell fusion, and strongly supports the view that mitochondria could have represented 

one of the driving forces behind the origin of sexual life cycles. 

 

2.3 Mathematical model for cytoplasmic segregation 
and the evolution of sexual mixing 

 

2.3.1 Neutral segregational drift with clonal host reproduction 

The eukaryotic cell can be modelled as a collective of mitochondria within a cytosol 

that also contains the host genome (I assume here that similar conditions also applied 

early in eukaryogenesis, i.e. after the acquisition of mitochondria). Consider an infinite 

population of cells, containing ' mitochondria each and reproducing clonally. 

Mitochondria are found in one of two possible states, wild-type or mutant. Clonal 

reproduction is modelled by first duplicating the mitochondrial population of the cell 

and then randomly partitioning organelles to the two daughter cells through random 

sampling without replacement. A cell containing ( mitochondrial mutants will give birth 

to a daughter with ) mutations with probability 
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The frequency distribution for the number of mutants per cell 1(3) after one round of 

clonal reproduction will therefore change to 1()) = * ) ', 3 1(3).5
678  The process of 

cytoplasmic segregation modelled in this manner represents a type of neutral genetic 

drift, conceptually similar to the Wright-Fisher process (Ewens, 2004), but assuming a 

finite group size at all stages of the life cycle. 

For the initial frequency of mitochondrial mutations within the cell 98 = (8/', 

variance after ; clonal divisions is (see Appendix A for the details) 

Var ?@ = 98 1 − 98 1 − 1 −
1

2' − 1

@

. (2.2) 

Segregational drift therefore increases variance between host cells, which after a large 

number of clonal reproduction cycles converges towards 98 1 − 98 , where all mutants 

have either reached fixation within the cell or were replaced by the wild type 

mitochondria. It follows then that the probability of reaching fixation is equal to the initial 

mutant frequency 98. 

It can be similarly shown (see Appendix A) that neutral segregation increases 

the homogeneity within the cell. The probability for two segregating units within the cell 

to be identical by descent can be expressed as 

B@ =
Var ?@
98 1 − 98

= 1 − 1 −
1

2' − 1

@

. (2.3) 

After a large number of clonal divisions, the identity-by-descent probability approaches 

one, BC → 1, at which point the mitochondrial populations are fully clonal and no further 

change is possible.  

 

2.3.2 Evolution of cytoplasmic mixing 

Now consider a full population life cycle with mitochondrial mutation, selection and 

reproduction (Fig. 2.1). I assume an ancestral state without sex or cell-cell fusion, 
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where haploid hosts reproduce clonally as described above. The mode of reproduction 

is controlled by a single locus in the host’s haploid genome, h/H. Only mutants carrying  

a copy of the allele H can initiate a temporary cell fusion with a randomly chosen 

partner (steps 3a-3c in Fig. 2.1) before proceeding to standard clonal reproduction. 

The population state at generation E is represented by a ' + 1 ×2 matrix H(I) 

with the matrix element JK,@
(I)  depicting the frequency of cells with ( mitochondrial 

mutants and the nuclear state ; (; = 0, 1). The column vector H•,8
(I) therefore 

corresponds to the wild type population with allele h and column H•,"
(I)	contains entries 

pertaining to the cells with the nuclear allele H. 

Mutation. The genotype-changing events in the population life cycle can be 

represented as matrix operations changing the population state H(I). The population 

state after the mutation is therefore given by H(I,") = OH I , where O is 

Figure 2.1. Population life cycle with asexual and sexual modes of reproduction. Red 
circles represent deleterious mitochondrial mutants within the host cell, wild-type organelles 
are left blank. Steps 1–4 (solid arrows) represent the life cycle of clonally reproducing 
individuals. Steps 3a–3c (dashed arrows) occur only if one of the cells meeting at random is 
a carrier of the cell fusion allele H. 
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' + 1 × ' + 1  transition matrix, with the element PQ,R defined as the probability that 

a cell with S mutant mitochondria will contain T mutants after the transition. 

Mitochondrial mutation at the rate U is modeled as a binomial event, giving the 

transition probabilities 

PQ,R =
' − S
T − S

UQ/R 1 − U 5/Q. (2.4) 

Selection on the lower level. In the case where mutant mitochondria have a 

competitive advantage within the cell (“selfish” mutants), the mutation step is followed 

by selection on the lower level. Selection among mitochondria of the same cell is 

modelled as a random sampling with replacement, with the probability to select a 

selfish mutant proportional to its replicative advantage 1 + V. The population state after 

selection on the lower level is therefore H I,# = WH I," , where the binomial transition 

probabilities of matrix W are 

XQ,R =
'
T

S 1 + V
' + SV

Q ' − S
' + SV

5/Q
. (2.5) 

Selection between eukaryotic hosts. Selection at the higher level changes 

the relative genotype frequencies according to the host cell fitness. In matrix notation, 

the population state after selection is 

H I,Y =
Z[ H I,#

[\H I,# ]#	
, (2.6) 

where Z is the identity matrix, ]# is a column vector of ones 1,1 \, and [ is a column 

vector with the (-th element ^K = _(() corresponding to the fitness of a cell 

containing ( mutants. Following the models by Hadjivasiliou et al. (2013) and Kuijper 

et al. (2015), I assume that the relative fitness of the cell depends on the number of 

mitochondrial mutants ( and can be expressed as _ ( = 1 − ` ( ' a. Parameter 

` here represents the strength of selection and b determines the strength of epistatic 

interactions between mitochondrial mutations. Empirical studies suggest that in 

modern eukaryotes b > 1, leading to so-called phenotypic threshold effects (Rossignol 
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et al., 2003). The relative effect of each new mutation therefore increases with the 

overall mutation load. 

Reproduction and mitochondrial segregation. Cells carrying the nuclear 

allele H are capable of cytoplasmic fusion with the other H-type individuals as well as 

randomly chosen wild-type hosts h. Wild-type individuals do not initiate cell fusion, and 

mix their cytoplasmic contents only if randomly chosen by an individual carrying the 

allele H. The process of cell fusion in our model is represented by the convolution of 

corresponding genotype-frequency vectors, forming a temporary subpopulation of 

diploid zygotes each containing 2' mitochondria. Fusion is immediately followed by 

cell division with random partitioning of mitochondria between the two daughter cells. 

The population state after the sexual stage of the life cycle can then be expressed as 

H•,8
I,d = H•,8

I,Y ]5e"
\ H•,8

I,Y + f H•,8
I,Y ∗ H•,"

I,Y ,	

H•,"
I,d = f H•,"

I,Y ∗ H•,"
I,Y + f H•,8

I,Y ∗ H•,"
I,Y . 

(2.7) 

Asterisks here denote vector convolution, and ]5e"
\  is a row vector of ' + 1 ones, so 

that ]5e"
h H•,8

(I,Y) is the total frequency of the allele h. f is the transition matrix for the 

reductive cell division without the prior replication of mitochondria, implemented as 

selection without replacement with transition probabilities (Eq. 2.1) iQ,R = *(T|', S/2), 

where 	T ∈ 0,' , S ∈ 0,2' . 

The life cycle ends with the standard clonal replication, first duplicating the 

mitochondrial population within each cell and then partitioning the organelles between 

the two daughter cells. This gives the updated population state at the start of the next 

generation H Ie" = lH I,d , with transition probabilities (Eq. 2.1) mQ,R = *(T|', S), where 

T, S ∈ 0,' . 

The model is initialized in a random mitochondrial state H(8) so that the whole 

population initially consists only of the wild-type individuals, i.e. ]5e"
h H•,8

(8) = 1 and 

H•,"
8 = n. After the equilibrium is reached at time Eo, the allele H is inserted at a small 
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frequency p = 0.001, so that 	H•,"
Iqe" = p	H•,8

Iq  and H•,8
Iqe" = (1 − p)	H•,8

Iq . In the 

following I present the results based on the numerical solution of the above system of 

equations for both equilibrium and transient states, obtained for multiple values of 

U, V, `, ' and b.  

 

2.4 Mitochondrial variation and the fitness cost of 
cytoplasmic mixing 

2.4.1 Mitochondrial variation at the segregation–fusion equilibrium 

Let us first look into the effect of recurrent cell fusion on mitochondrial variance 

between cells generated by cytoplasmic segregation. Starting with a fixed number of 

mutants per cell (8 I allow for r clonal generations without cell fusion, followed by a 

single round of sexual reproduction. No mutation or selection occurs at this stage. 

The results show that the effect of cytoplasmic mixing opposes the constant 

increase of mitochondrial variance between cells generated by segregational drift (Eq. 

Figure 2.2. Cytoplasmic fusion opposes the effect of mitochondrial segregation of 
neutral mutations. Variance in the number of mutant mitochondria per cell increases in 
multiple rounds of clonal reproduction, but is reduced by cell fusion, resulting in an 
equilibrium when the two modes of reproduction alternate in time. r is the number of 
consecutive clonal generations without cytoplasmic mixing. The initial number of mutants 
per cell is (8 = 20 (vertical line). 
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2.2), establishing an intermediate equilibrium (Fig. 2.2). While segregational drift alone 

results in diverging cell lineages with clonal intracellular populations of mitochondria, 

increasing the frequency of sexual cell fusion relative to the number of clonal 

generations r reduces the mitochondrial variation between cells, at the same time 

reducing homogeneity within the cell. Given the importance of heritable variance for 

the efficacy of selection on the higher level, frequent cell fusion could result in 

diminished population fitness, which I investigate further. 

 

2.4.2 Mitochondrial mutation pressure 

Here I return to the full population life cycle and analyse the effects of cellular fusion  

on the long-term population fitness. Mitochondrial mutants arise at a constant rate U, 

but do not have an intra-cellular replication advantage over the cooperative organelles, 

i.e. V = 0. Cell fusion rate is controlled by keeping the frequency of nuclear allele H at  

a constant level 1s, while allowing the mitochondrial population to evolve freely. Given 

that a cell carrying the H allele fuses with a randomly selected partner, the overall rate 

of sexual reproduction can be expressed as t = 1s# + 2	1s 1 − 1s = 1s 2 − 1s . 

Owing to the effect of reduced variance in the number of mitochondrial mutants 

between cells, the long-term population fitness is reduced by increasing frequency of 

H (Fig. 2.3). In agreement with previous studies (Hadjivasiliou et al. 2013, 

Radzvilavicius et al., 2015), the detrimental effect of lower mitochondrial variance is 

more prominent with higher numbers of mitochondria per cell. Larger populations of 

segregating lower-level units dampen the effect of segregational drift (Eq. 2.2), 

reducing the efficacy of selection at the higher level. 

 

2.4.3 Fast replicating “selfish” mutants 

The fitness costs of cytoplasmic mixing can be exacerbated in the presence of so 

called “selfish” mitochondria—organelles that have gained mutations leading to the 
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faster reproduction rate but at the same time reducing their ability to participate in 

cooperative interactions. Selection at the lower level therefore increases the frequency 

of non-cooperative mitochondria, but cells with a significant proportion of selfish lower-

level units suffer a fitness cost and replicate slower. This is an example of the 

evolutionary conflict between levels of selection, endangering the stability of the 

higher-level unit—the nascent eukaryotic cell (Schable and Wise, 1988; Taylor et al., 

2002; Clark et al., 2012; Bastiaans et al., 2014). This time, I assume that mutants arise 

at a low rate (U = 0.0001) and proliferate mostly due to their ability to outcompete the 

cooperative mitochondria within the same cell.  

The results confirm that clonal reproduction (low 1s) coupled with purifying 

selection at the higher level suppresses selfish mitochondrial competition within the 

cell and maintains high population fitness (Fig. 2.4). Unable to spread horizontally in 

Figure 2.3. Frequent cytoplasmic mixing reduces the mean population fitness 
under mitochondrial mutation pressure. H is the cell fusion allele. ' is the total number 
of mitochondria per cell, U is the mitochondrial mutation rate and b is the strength of 
epistatic interactions. Selection strength is set to ` = 1, except for U = 0.05, where dotted 
lines show the effect of weaker selection with ` = 0.5. 
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the absence of cell fusion, selfish mutants affect only those cell lineages in which rare 

mutations occur, allowing selection at the higher level to rapidly eliminate the affected 

Figure 2.4. Fitness costs of cytoplasmic mixing can be exacerbated in the presence 
of selfish mitochondrial mutants. Cooperative interactions within groups of mitochondria 
break down more easily in larger groups ((a, b) vs. (c, d)) with strong epistasis and weak 
selection ` (e-f). Excessive competition among mitochondria can become costly to selfish 
organelles, increasing the mean population fitness, if fast replicating deleterious 
mitochondria overtake the cell before being able to spread (g-h). Mutation rate is set to U =
0.0001, selections strength ` = 1 unless indicated otherwise. Selfish advantage is set to 
V = 0.2 in (e) and (f). 
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individuals. There is, however, a critical frequency 1s at which the non-cooperative 

mitochondria start proliferating faster (Fig. 2.4a-f). Frequent cytoplasmic mixing 

reduces the mitochondrial variance between cells and therefore lowers the efficacy at 

which selection can eliminate the affected cells. The conditions are more permissive 

for selfish proliferation in populations with high numbers of mitochondria per cell (Fig. 

2.4a-d), weak selection and strong epistasis b (Fig. 2.4e, f). With increasing b the 

fitness function becomes increasingly flat at low (, allowing the non-cooperative 

mitochondria to reach high per-cell frequencies before they are eliminated by selection.  

Further increase in 1s pushes the equilibrium towards the lower population 

fitness by increasing both the number of mutants per cell and the amount of affected 

lineages. Eventually all cell lineages contain some non-cooperative mitochondria at 

which point the population fitness becomes nearly independent of the frequency of H 

(Fig. 2.4a-f). 

Interestingly, the equilibrium frequency of selfish mitochondrial mutants is not 

always a monotonic function of their relative replicative advantage V (Fig. 2.4g-h). 

There is a critical value of V correpsonding to the highest mutant load and the minimal 

population fitness. With the replicative advantage lower than the critical value of V, the 

mutant spread through the population is limited by their replication rate; for higher V, 

selfish mutants overtake their host cells too rapidly, allowing the purifying selection to 

efficiently suppress their further spread. 

 

2.5 Invasion of H allele 

In this section I consider an evolutionary scenario where alleles H are introduced into 

a population at a low frequency and evolve freely. The allele H changes the mode of 

reproduction by inducing temporary cell fusion with a randomly selected partner, 

mixing the mitochondrial populations of the two cells (Fig. 2.1). 
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2.5.1 Epistasis between mitochondrial mutations 

The results show that the cell-fusion allele H is able to invade, spread to an equilibrium 

frequency of 1s < 1 or reach fixation (1s = 1) (Fig. 2.5a, 2.6). The invasion occurs in 

spite of the curtailed long-term population fitness due to the lower variance in the 

number of mitochondrial mutants among invaders and weaker selection (Fig. 2.5b). 

The necessary condition for successful invasion is b > 1, i.e. negative epistasis 

between deleterious mitochondrial mutations. The detrimental effect of every new 

mutation has to increase with the total mutational load, as indeed is the case in modern 

Figure 2.5. Invasion of the cell-fusion allele H into an ancestrally clonal population. A 
nuclear allele inducing cytoplasmic fusion invades and can reach fixation (a), but its spread 
reduces the long-term population fitness (b). A single cell fusion-division event increases 
the frequency of intermediate cytotypes, and reduces the frequency of cells with extreme 
mutant numbers (c). The loss of mitochondrial variance reduces the efficacy of selection 
and is detrimental in a long term. However, the reduced frequency of extreme cytotypes can 
be beneficial in a short term (d), if the intermediate cytoplasmic states have a higher fitness 
than expected from the additive interactions, i.e. with negative epistasis (b > 1) (c). The 
fitness advantage can be maintained if the mito-nuclear linkage is weak, e.g. if half of the 
mitochondria are inherited from a randomly selected partner which would otherwise 
reproduce clonally. U = 0.04, b = 3 in (c) and (d), b = 2 in (a) and (b). The number of 
mitochondria per cell is ' = 50, V = 0. 
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eukaryotes. 

Cytoplasmic mixing increases the frequency of intermediate cytoplasmic 

states, reducing the frequency of cells with extreme mutant numbers (both high and 

low, Fig. 2.5c). This reduced variance has a long-term fitness disadvantage due to the 

weakened response to selection (Fig. 2.5b). However, with negative epistasis (b > 1), 

the intermediate cytotypes have a higher fitness than expected from the linear 

combination of the extremes, which gives the invading allele H a short-term advantage 

(Fig. 2.5d). Invaders choose their mating partners randomly and therefore the 

mitochondrial-nuclear associations remain weak. This allows the allele H to acquire a  

long-lasting advantage over the clonally reproducing subpopulation h (Fig. 2.5b), even 

though its spread inevitably curtails the population fitness in the long term. The 

advantage is lost with positive epistasis (b < 1), in which case both short- and long-

term effects of reduced mitochondrial variance become detrimental. 

 

2.5.2 Further conditions favouring the spread of H 

Under the pressure of deleterious mitochondrial mutations, the allele H spreads to high 

frequencies and fixes more readily with low mutation rates (Fig. 2.6a, b). Cytoplasmic 

fusion has a stronger evolutionary advantage with small mitochondrial population 

sizes, as segregational drift is more efficient in generating mitochondrial variance with 

small ' (Eq. 2.2). A similar trend is observed with selfish mitochondria having a 

replicative advantage over their wild-type counterparts, where fast replication of 

mutants, i.e. large V, diminishes the evolutionary advantage of the cell-fusion allele H 

(Fig. 2.6c, d). This time, there is a critical value of V corresponding to a distinctive drop 

of equilibrium allele frequency 1s to zero. This fast transition occurs once the 

replicative advantage of selfish organelles becomes large enough to rapidly reduce 

the fitness of fusing hosts, whereas the high-fitness asexual lineages remain resistant 

to their spread. As the allele H spreads due to its short-term fitness advantage, its 
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fixation is also facilitated by strong purifying selection at the higher level ` (Fig. 2.6e, 

f). 

Figure 2.6. Conditions favouring the evolution of sexual cell fusion. Reduced mutation 
rates, small mitochondrial populations and negative epistatic interactions all promote the 
evolution of sexual cell fusion under mitochondrial mutation pressure (a-b). In the presence 
of selfish mitochondrial mutants, competition at the lower level has to be suppressed before 
cell fusion can be established (c-d). Cellular fusion evolves more easily under strong 
purifying selection at the higher level (conditions favouring the fixation of H are less strict 
under large `, e-f). With alternating clonal and sexual life cycle stages, the number of 
consecutive clonal divisions r must remain low (g-h). Mutation rate in (c), (d), (f) and (h) is 
set to U = 0.0001, ` is the strength of selection, H is the allele inducing cell fusion with a 
randomly selected partner. 
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2.5.3 Alternating life cycles and mitochondrial-nuclear associations 

Consider now the case where mutants carrying the allele H are capable of inducing 

the cytoplasmic fusion only every r generations. It is indeed often the case in protists 

that individuals engage in sexual reproduction only occasionally, e.g. under stressful 

environmental conditions or starvation (Dacks and Roger, 1999; Goodenough et al., 

2007). Since the clonal stage of the life cycle would result in higher variance due to 

segregational drift, r is likely to affect the evolutionary success of the cell fusion allele 

H. Indeed, the model shows that increasing the number of consecutive clonal divisions 

in-between the sexual fusion events has a very strong effect opposing the spread of 

the fusion allele H (Fig. 2.6g, h). As few as 4-8 clonal cell divisions could be enough to 

prevent the invasion of the cell fusion allele H under all reasonable conditions 

investigated. 

The principal reason allowing the allele H to invade lies in the way that reduced 

mitochondrial variance affects mean fitness after every cellular fusion event. Reduced 

variance in the number of mutants gives a fitness advantage due to negative  

epistasis, but only if the association between the nuclear allele and the mitochondrial 

population of the same cell is temporary. This is most easily achieved through frequent 

fusions with randomly chosen partners that might otherwise reproduce clonally. With 

r = 1 mitonuclear associations are weakest, but become stronger when the same 

mitochondrial population persists within the lineage for several generations, i.e. r > 1. 

The detrimental long-term effects of reduced mitochondrial variation between the 

higher-level units become increasingly important as r grows. Fixation of the cellular 

fusion allele H therefore requires frequent cytoplasmic mixing, maintaining weak 

mitochondrial-nuclear associations. 
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2.6 Conclusions and discussion 

It is very likely, that sex appeared in a cell that already possessed mitochondria, but 

not mating types or mechanisms constraining the cytoplasmic inheritance. The model 

presented here shows that sexual cell fusion can evolve simply to promote 

mitochondrial mixing, which temporarily masks the detrimental effects of faulty or 

selfish endosymbionts or organelles. 

Low mitochondrial mutation rates allow cell fusion alleles to fix more readily 

(Fig. 2.6a, b). Admittedly, substantial variation in mitochondrial mutation rates among 

the extant eukaryotes makes the inference of the ancestral pace of mutation 

accumulation rather complicated. On the one hand, we know that evolution rates (a 

proxy for the true mutation rate) in intracellular symbiont genomes are typically 

elevated (Itoh et al., 2002; Marais et al., 2008). Mitochondrial evolution rates in higher 

animals, fungi and some plants can also be substantially higher than in their nuclear 

genomes (Lynch et al., 2006, 2008; Sloan et al., 2009). On the other hand, the mutation 

rate appears to be extremely low in most plants, early branching metazoans (Palmer 

and Herbon, 1988; Shearer et al., 2002; Huang et al., 2008) and many unicellular 

eukaryotes (Burger et al., 1995, 2013; Smith and Keeling, 2015). It is therefore not 

impossible that the initially high evolution rate at the beginning of the endosymbiotic 

association slowed down as the evolutionary transition progressed, facilitating the 

evolution of sex. High mutation rates in some present-day eukaryotes are then 

secondarily derived, perhaps owing to their high metabolic rates and active lifestyles. 

While the initial symbiotic association remains shrouded in mystery (Martin and 

Muller, 1998; Embley and Martin, 2006; Martin et al., 2015), with mitochondrial 

endosymbiosis entering an obligatory phase, selection against mitochondrial 

mutations, e.g. the ones affecting the respiratory function of the cell, likely increased 

in strength (higher `) providing conditions more permissive for the evolution of 

cytoplasmic mixing (Fig. 2.6e, f). Indeed, empirical data reveal substantial purifying 
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selection acting on mitochondrial populations in modern animals (Elson et al., 2004; 

Stewart et al., 2006; Castellana et al., 2011, Cooper et al., 2015). Similarly, as the 

evolutionary transition progressed, selfish mitochondrial competition also had to 

become suppressed (reduced V), through the proto-eukaryotic mechanisms of conflict 

mediation, e.g. honest signalling or reduced mitochondrial genomes (Radzvilavicius 

and Blackstone, 2015), thus promoting the evolution of cell fusion and sex (Fig. 2.6c, 

d).  

Extrapolating from fitness interactions in modern eukaryotes (Rossignol et al., 

2003), it is not unreasonable to assume negative epistatic interactions (b > 1) between 

detrimental mitochondrial mutations throughout eukaryogenesis, favouring the 

invasion of cell-fusion alleles (Fig. 2.6a). Indeed, with multiple mitochondria per cell 

and several copies of mtDNA per organelle, a critical number of deleterious mutations 

has to accumulate before cellular respiration is significantly impaired (Mazat et al., 

2001; Rossignol et al., 2003). Mitochondrial endosymbiosis therefore created a unique 

genetic system in which strong synergistic interactions between deleterious mutations 

favour the evolution of sexual cell fusion. This is in stark contrast to deleterious 

mutations in the nucleus (or prokaryotic genomes), where negative epistatic 

interactions seem to be relatively uncommon (Kouyos et al., 2007). 

Modern eukaryotes are capable of reproducing clonally in numerous 

consecutive generations, punctuated by occasional sex (Dacks and Roger, 1999; 

Goodenough et al., 2007). The model analysed here predicts, however, that when 

host-regulated cell fusion first arose, it had to be frequent—and clonal reproduction 

rare—in order to maintain the weak mitochondrial-nuclear associations responsible for 

the evolutionary advantage of cytoplasmic mixing, i.e. low values of r (Fig. 2.6g, h). 

Frequent cell fusion events might have been vital early in eukaryogenesis, since 

without the precisely coordinated chromosome and cell division machinery, 

consecutive reproduction cycles without cell fusion could have produced non-

functional chromosome numbers or gene combinations, rendering the emerging 
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eukaryotic cell unviable. Garg and Martin (2016) even proposed that sex could have 

arisen in a syncytial eukaryote ancestor, in which multiple early nuclei of variable gene 

content complemented each other, even though the life-cycle stage with a single 

nucleus per cell would have still been needed to maintain efficient selection against 

new deleterious mutations. Likewise, frequent cell fusions would have masked 

mutations and stabilized the emerging eukaryotic genome in the presence of intron 

bombardment and endosymbiotic gene transfer (Lane, 2011).  

One way to interpret the main result of this work is that the initial selective 

pressure driving the evolution of cell-cell fusion could have been mitochondrial, in 

which case the routine recombination among nuclear genes came as a fortunate side 

effect, maintaining the evolutionary advantages of sex past the evolution of the 

uniparental inheritance and until present day. Indeed, the molecular machinery for 

meiotic, reciprocal recombination had to evolve in the routine presence of cell fusion 

events, and the barrier separating eukaryotic sex from prokaryotic recombination might 

have never been crossed without mitochondria. The present work accounts only for 

the accumulation of deleterious mitochondrial mutations, but cell fusion could also 

benefit hosts in which the number of mitochondria fluctuates through random 

segregation and drift, as well as in the plausible case in which distinct mitochondrial 

haplotypes have complementary functions. Additionally, cell fusion could have been 

induced directly by protomitochondrial endosymbionts, through various manipulations 

of the host cell’s life cycle under stressful conditions (Blackstone and Green, 1999). It 

is therefore very likely, that multiple mechanisms promoting cell fusion were in place, 

with mitochondrial selection pressure contributing to the ease with which sexual 

reproduction combining cytoplasmic fusion and reciprocal recombination came into the 

widespread existence.  

 

2.7 Appendix A. Derivations 
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2.7.1 Variance and identity-by-descent relations 

Let y@ be a random variable denoting the number of mutants within a cell after ; rounds 

of clonal cell division, sampling without replacement ' mitochondria from the doubled 

population of 2'. The population mean is then simply equal to the initial number of 

mutants within the cell, E y@ = 38. Variance in the number of mutants can be 

expressed as 

Var y@ = E Var y@ y@/" + Var E y@ y@/" . (2.8) 

Given that the variance of the hypergeometric probability distribution used in sampling 

without replacement is 

Var y@ 3@/" =
3@/" ' − 3@/"

2' − 1
, (2.9) 

we can further write 

Var y@ = E
y@/" ' − y@/"

2' − 1
+ Var y@/" 	

= E
'y@/"
2' − 1

− E
y@/"#

2' − 1
+ Var(y@/")	

=
'

2' − 1
E y@/" −

1
2' − 1

E y@/"# + Var(y@/")	

=
38'

2' − 1
−

1
2' − 1

Var y@/" + 38# + Var y@/" 		

=
38 ' − 38
2' − 1

+ 1 −
1

2' − 1
Var y@/" . 

(2.10) 

Here 38 is the initial number of mutants within a cell. With the boundary condition 

Var y8 = 0  the solution is 

Var y@ = 38 ' − 38 1 − 1 −
1

2' − 1

@

. (2.11) 

Variance in the mutant frequency J@ = {|
5

  is then 

Var J@ = 18 1 − 18 1 − 1 −
1

2' − 1

@

. (2.12) 

The genetic diversity (or lack of it) within a cell can be expressed as a 
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probability that two randomly selected mitochondria within the cell will be identical by 

descent, 9@. In our random segregation model two lower-level units are considered 

identical if they are either descendants of the same parent, or different parents that are 

identical by descent themselves due to associations in previous generations. After ; 

generations we can then write 

9@ =
1

2' − 1
+ 1 −

1
2' − 1

9@/". (2.13) 

The above recursion is straightforward to solve for the parameter of non-identity ℎ@ =

1 − 9@. As initially all mitochondria within the cell are assumed to be unrelated, the 

boundary condition is ℎ8 = 1. It is then easy to show that 

ℎ@ = 1 −
1

2' − 1

@

, (2.14) 

and 

9@ = 1 − 1 −
1

2' − 1

@

. (2.15) 

Comparing this result to the expression for the variance after ; generations (Eq. 2.2), 

we notice that clonality within the cell is just a normalized mitochondrial variance 

between host cells,  

9@ =
Var 1@

18	 1 − 18
. (2.16) 

 

2.8. Appendix B. Stochastic dynamics of selfish 
mitochondrial mutations and evolution of cytoplasmic 
mixing  

2.8.1 Acknowledgement 

The work presented in this chapter stemmed in part from the collaboration with 

professor Neil W. Blackstone of Northern Illinois University, in which we made an 

attempt to integrate evolution of eukaryotic sex into the general framework of 
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eukaryogenesis as a levels-of-selection transition (Buss, 1987; Maynard Smith and 

Szathmáry, 1995). Trained under Leo Buss, Blackstone is one of the earliest 

proponents of the levels-of-individuality approach to understanding the evolution of 

biological complexity in general, and mitochondrial endosymbiosis in particular 

(Blackstone 1995; 2013; 2016). The individual-based model (Radzvilavicius and 

Blackstone, 2015), which I developed to evaluate the implications of selfish 

endosymbiont replication for the evolution of cell fusion within a finite population, fully 

supports and complements the results presented in this chapter. Here I only briefly 

introduce the model and the main results. 

 

2.8.1 Individual-based simulation model 

The individual-based simulation in its concept is identical to the deterministic infinite-

population model introduced earlier in this chapter and was designed to simulate the 

life cycle depicted in Figure 2.1. Each haploid organism is represented as an 

independent object in the C++ implementation of the model1, and the life-cycle events 

(symbiont mutation, intracellular selection within the group of ' symbionts, selection 

between cells, cell fusion and division, Fig. 2.1) are simulated explicitly within a 

population of 10,000 individuals. Selfish endosymbionts arise at a rate U and have a 

reproductive advantage 1 + ~, which essentially represents their selection coefficient 

within the group. Initially, cells reproduce clonally by first duplicating their cytoplasmic 

contents and then splitting into two. A rare mutation in the host nuclear locus H/h, 

however, can cause the host to temporarily fuse with a randomly chosen cell, mixing 

the endosymbiont populations before splitting into two daughter cells again. The 

probability of the mutant inducing a successful fusion within a single generation * can 

be adjusted, to account for facultative sexuality (* < 1). We analysed both the 

                                                
1 https://github.com/ArunasRadzvilavicius/ConflictAndSex 



57 
 

population state at equilibrium with fixed fusion rates, and the evolution of the host cell-

fusion allele H invading the clonal population after being introduced at a low frequency. 

 

2.8.2 Cytoplasmic fusion facilitates the spread of selfish symbionts 

First, we simulated a finite population at the dynamic equilibrium with fixed cell fusion 

rates. Mutant endosymbionts arise at a constant rate U = 10/� and proliferate faster 

than the wild-type endosymbionts within the cell, but purifying group-level selection 

favours cells with low numbers of selfish symbionts ( according to the concave fitness 

function _ ( = 1 − ( ' #.  Overall, the frequency of selfish mutants increases with 

the rising fusion rate in a pattern remarkably similar to the trends observed in the 

deterministic infinite-population model (Fig. 2.7). In populations dominated by clonally 

reproducing hosts, selection on the higher level is efficient enough at eliminating selfish 

symbionts, ensuring high levels of cooperation and high population fitness. Selfish 

endosymbionts that arise at a low mutation rate are mostly confined within isolated 

Figure 2.7. Mean population fitness at equilibrium as a function of cell fusion rate. 
Three curves correspond to three values of mutant reproductive advantage k. Owing to 
the horizontal spread of selfish mutants and reduced variance between the fusing hosts, 
there is a significant fitness cost associated with sexual mixing. With rare fusions, selfish 
proto-mitochondria arise and stay confined within distinct lineages, and are easily 
eliminated by selection, which results in high mean fitness. Increasing fusion rate allows 
for a limited spread of deleterious symbionts, leaving the rest of the population mutant-
free. A fast transition occurs after the critical rate of cytoplasmic mixing is reached, at which 
point most of the population is overtaken by the selfish proto-mitochondria. Endosymbiont 
mutation rate is set to 10/�. 
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vertical host-cell lineages, maintaining the rest of the population in a virtually mutant-

free state. This ensures high variance between higher-level units and facilitates 

purifying selection against fast replicating but deleterious endosymbionts. 

 In agreement with the deterministic dynamics in an infinite population (Fig. 2.4) 

increasing fusion frequency allows selfish endosymbionts to spread horizontally faster, 

reduces variance in fitness among the symbiont groups and hinders selection between 

host cells. As a consequence, the number of selfish endosymbionts grows rapidly as 

host cell fusions become more frequent (Fig. 2.7). The spread of selfish mutants is 

also favoured by large endosymbiont population sizes within the cytosol, reducing both 

the effect of segregational drift and the efficacy of group-level selection (Fig. 2.7b). 

 

2.8.3 Invasion of the cell-fusion allele 

Now, consider invasion of the cell-fusion allele H under the effect of purifying selection 

against selfish endosymbionts. Due to strong stochastic drift inherent to finite 

populations, measuring the allele frequency at equilibrium is impractical. To determine 

whether the cell-fusion mutant is favoured or opposed by selection, we instead 

calculate fixation probability of the allele H, by repeatedly running the simulation until 

Figure 2.8. Fixation probability of cell-fusion allele H in a finite population of clonally 
reproducing individuals. The number of endosymbionts per host cell is set to  ' = 50 
(a) or ' = 200 (b). Neutral mutants fix with probability 0.05. Selection favours the invasion 
of H under low values of selfish replication rate ~ and high rate of induced fusions *.  
Endosymbiont mutation rate is set to 10/d. 
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either fixation or extinction of the invader. For a neutral mutant evolving via drift alone, 

the fixation probability equals its initial frequency 18, since after a large number of 

generations the whole population must consist solely of the descendants of a single 

individual at generation 0. The fixation probability exceeds 18 if H is favoured by 

selection, and is lower if selection opposes its spread. 

Despite the long-term fitness cost brought into the population by the cell-fusion 

allele, the spread of H can be favoured by selection, but only with low values of selfish 

advantage ~ and high invader cell-fusion rate * (Fig. 2.8a, b). The invasion of H is more 

likely with smaller symbiont population sizes, and is only possible with negative 

epistatic interactions between endosymbiont mutations, i.e. a concave fitness function. 

As the reproductive advantage of selfish endosymbionts increases, however, the 

fixation probability of H drops, suggesting that the cell-fusion alleles would be strongly 

selected against. Easily explained in terms of long- and short-term effects of reduced 

between-group variance (see Section 2.5), these trends support the infinite-population 

results depicted in Figures 2.6c and 2.6d, and show that the general outcome of the 

model and the predictions of the main hypothesis, are independent of the assumptions 

on the population size. At the same time, the results suggest that there are conditions 

under which the fitness cost of cytoplasmic mixing can prevent sex from evolving; and 

any advantages of sex or recombination would have to outweigh these costs. 
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CHAPTER 3. EVOLUTION OF MATING TYPES DRIVEN BY 

PURIFYING SELECTION AGAINST MITOCHONDRIAL 

MUTATIONS 
 

3.1 Summary 

Sexual cell fusion combines genetic material of two gametes, but why the two 

reproductive cells have to belong to distinct self-incompatible gamete classes is not 

known. In a vast majority of sexual eukaryotes, mitochondria are inherited 

uniparentally from only one of two mating types, which is thought to facilitate purifying 

selection against deleterious mitochondrial mutations and limit the inter-genomic 

conflicts. It remains unclear, however, whether uniparental inheritance can drive the 

evolution of self-incompatible gamete classes under the dynamics of cytoplasmic 

segregation and mixing. Here I show that two mating types in eukaryotes could have 

evolved together with the asymmetric transmission of mitochondrial genes as a 

mechanism of mitochondrial quality control. I develop a mathematical model to 

explicitly study the evolution of two self-incompatibility alleles linked to the nuclear 

locus controlling the pattern of organelle inheritance. The invasion of mating types is 

opposed by the short-term fitness benefit of mitochondrial mixing under negative 

epistasis and the lower chance of encountering a compatible mating partner. 

Nevertheless, under high mitochondrial mutation rates and low gamete mortality, 

purifying selection against defective mitochondria can drive two mating types to 

fixation. The invasion is further facilitated by the paternal leakage of mitochondria 

under paternal control of cytoplasmic inheritance. In contrast to previous studies, the 

model does not rely on the presence of selfish cytoplasmic elements, providing a more 

universal solution to the long-standing evolutionary puzzle of two sexes.  
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3.2 Introduction 

Sex is among the traits universal to all complex life and was therefore already present 

in the last eukaryotic common ancestor. By combining the genetic material of two 

gametes, sexual cell fusion and meiotic recombination exposes the hidden genetic 

variation in finite populations, breaks up the unfavourable allelic combinations under 

fluctuating selection, and mitigates mutational meltdown (Otto, 2009; Hartfield and 

Keightley, 2012). In a vast majority of cases, the two mating partners belong to distinct 

self-incompatible gamete classes, i.e. mating types in isogamous protists or true sexes 

with anisogametes, but the selective forces behind this fundamental asymmetry 

remain elusive (Billiard et al., 2010). The existence of two gamete types in most 

eukaryotes is often regarded as an evolutionary conundrum, as it reduces the number 

of potential mating partners, which should be detrimental if the cost of finding a 

compatible gamete is high and the mating opportunities are limited. 

Several non-exclusive explanations for the emergence of self-incompatible 

gamete types in a unisexual population have been proposed (Billiard et al., 2010). Two 

mating types might have appeared together with bipolar gamete-recognition systems 

ensuring efficient inter-cellular signalling (Hoekstra 1982; Hadjivasiliou et al., 2015), to 

promote outbreeding (Charlesworth and Charlesworth, 1979, Uyenoyama, 1988) or to 

improve mitochondrial-nuclear coadaptation (Hadjivasiliou et al., 2012). Particularly 

appealing has been the idea that mating types emerged to ensure the asymmetric 

inheritance of cytoplasmic genetic elements. Indeed, in a vast majority of eukaryotes, 

only one gamete class transmits its organelles—mitochondria and chloroplasts—to the 

zygote, although uniparental inheritance is not always complete, with paternal leakage 

and heteroplasmy being relatively common (Breton and Stewart, 2015). Early 

theoretical studies supported the hypothesis (Hastings, 1992; Hurst and Hamilton, 

1992; Hutson and Law, 1993), but relied on the presence of the so-called “selfish” or 
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parasitic cytoplasmic elements, simplistic assumptions, and lacked generality or 

empirical support. 

A more general view of the evolutionary advantage of uniparental inheritance 

(UPI) is that it improves the efficacy of purifying selection against mitochondrial 

mutations (Bergstrom and Pritchard, 1998; Hadjivasiliou, 2013), and therefore confers 

a long-term fitness advantage. Mitochondrial mixing under biparental inheritance, on 

the other hand, limits the strength of selection at the level of a cell and is costly in a 

long term (Chapter 2). Asymmetric transmission of mitochondria therefore counters the 

mutational meltdown in mitochondrial genomes, and this may account for the highly 

efficient purifying selection operating even in the absence of recombination (Cooper et 

al., 2015). 

Of particular importance, a recent study explicitly accounting for the 

segregational drift of detrimental mitochondrial mutations found that the fitness benefit 

of UPI decreases in a frequency-dependent manner (Hadjivasiliou et al., 2013). As the 

frequency of the nuclear UPI allele increases, the fitness benefits increasingly spread 

to the biparental part of the population, limiting the invasion of UPI alleles. Due to the 

limited advantage of UPI and further fitness costs of reduced mating rate of self-

incompatible gametes, it has been concluded that UPI alone is unlikely to drive the 

evolution of two self-incompatible mating types in an ancestral unisexual population 

(Hadjivasiliou et al., 2013). The robustness and generality of these results, however, 

might be limited by the assumptions of the study; in particular, it was assumed that 

gametes unable to find a suitable mating partner in a single mating attempt incur a 

severe fitness cost and do not contribute to the next generation, putting the self-

incompatible gamete types at a strong disadvantage. Whether the asymmetric 

inheritance of mitochondria can facilitate the evolution of binary mating types under 

the mitochondrial mutation pressure and biologically realistic mating kinetics remains 

unclear. 
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Here I develop a mathematical model to investigate whether selection against 

deleterious mitochondrial mutations can drive the evolution of two self-incompatible 

mating types by establishing asymmetric transmission of mitochondrial genes. 

Mitochondria continuously accumulate mutations which are purged by selection on the 

level of the cell, with random mitochondrial drift generating additional variance at every 

cell division. Nuclear inheritance-restriction alleles regulate the selective destruction of 

mitochondria inherited either from the cell carrying the allele, or its mating partner with 

the opposite mating type. Mating kinetics play a central role in the model, with long 

mating periods and low gamete mortality rates favouring the invasion of self-

incompatible gamete classes. Strikingly, paternal leakage of mitochondria—an 

evolutionarily stable state under paternal control of cytoplasmic inheritance—can 

facilitate the evolution of binary mating types under negative epistasis between 

mitochondrial mutations. 

  

3.3 Modelling the evolution of uniparental inheritance 

3.3.1 Two modes of UPI regulation 

Mechanisms of uniparental inheritance vary substantially across eukaryotic species 

(Sato and Sato, 2013), but one general theme seems to be rather common: one of the 

mating partners tags its mitochondria with the mating-type specific marker protein, 

which is recognized by the partner’s molecular factors after the gamete union, leading 

to the eventual degradation of the marked organelles. In mammals, for example, sperm 

mitochondria are tagged by the recycling marker protein ubiquitin and destroyed by 

the egg’s cytoplasmic destruction machinery after the gamete union (Sutovsky et al., 

1999). Similarly, in basidiomycete yeast Cryptococcus neoformans, genes SXI1a and 

SXI2α located in opposite mating types are responsible for tagging and recognition of 

paternal mitochondria (Yan et al., 2007). 



64 
 

In the present work I assume that uniparental inheritance can be established in 

two ways, based on how the two gametes control organelle transmission (Fig. 3.1). 

First, a cell (wild-type nuclear allele B coding for biparental inheritance) can develop 

the ability to recognize and target for destruction a universal mitochondrial marker 

protein, at the same time protecting its own organelles from degradation, e.g. by 

ceasing the expression of the marker in its own mitochondria (allele Um, Fig. 3.1b). I 

term this mechanism the “maternal” mode of UPI, and the gamete destroying its 

Figure 3.1. Two modes of uniparental inheritance differ in the way organelle 
inheritance is controlled. In an ancestral state, mitochondrial surface proteins do not 
have corresponding nuclear-coded molecular factors targeting the organelles for 
destruction (a). Maternal mode of UPI arises with one of the gametes developing the 
ability to recognize the mitochondrial marker protein universal to the whole population, 
while protecting its own organelles e.g. by removing the tag (b). Similarly, in paternal 
mode of UPI, one of the gametes marks its mitochondria with a new universally 
recognizable marker, but loses the ability to target it for destruction in its own cytoplasm 
(c). Alternatively, the paternal gamete can simply remove a part of its own organelle 
population before fertilization. 
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partner’s mtDNA the “maternal gamete”—the definition which does not rely on the prior 

existence of mating types or sexes and merely reflects the fact that the gamete 

controlling the cytoplasmic inheritance eliminates its partner’s mtDNA, but not its own 

(Fig. 3.1b). Alternatively, a cell can start producing a new nuclear-coded and 

universally recognized mitochondrial marker, but lose the ability to recognize the tag 

in its own cytoplasm (allele Up). In this case the gamete essentially controls the 

inheritance of its own organelles, as stopping the expression of the mitochondrial tag 

protein would make them unrecognizable in the zygote. I term this mechanism the 

“paternal” mode of UPI (Fig. 3.1c). In gamete unions with identical alleles at the 

mitochondrial-inheritance locus, both mating partners lack either the mitochondrial 

marker or the corresponding molecular destruction machinery. The inheritance of 

mitochondria is therefore biparental in Um×Um and Up×Up gamete unions. 

 

3.3.2 Mating kinetics  

The rules governing the frequency of gamete unions of distinct mating types are 

expected to play a critical role in the origin and evolutionary stability of mating types 

(Iwasa and Sasaki, 1987). Rare additional mating types, for instance, are favoured in 

models where mating opportunities are limited and only a short period of time is 

available to locate a suitable mating partner, but the same models penalize the newly 

emerging self-incompatible gamete classes in populations where all gametes are 

initially compatible. Perhaps a more realistic assumption is that the mating period can 

be significantly longer than the duration of a single cell-fusion attempt, and that 

gametes can survive for a sufficiently long time until another suitable mating partner 

arrives before they are eliminated from the population. 

In this work I adopt the mating kinetics first developed in the models of Iwasa 

and Sasaki (1987), and Hutson and Law (1993). I assume a gamete pool in which the 

influx of gametes matches their removal due to random death and zygote formation. 
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The gamete influx rates are proportional to the allele frequencies within the infinite 

population, while gamete death rate is kept at a constant level Ä. Cells within the 

gamete pool form random pairwise associations at rate Å/2, and are removed from the 

pool if they are compatible and able to fuse. The allele frequencies in the next 

generation are calculated from the steady-state gamete-class frequencies within the 

mating pool. These frequencies correspond to the equilibria of the following system of 

equations 

d?Q
dE

=

−Ä?Q − Å?Q + Ä9Q + Å9Q 1 − ?É#

É∈Ñ.Ö.

	T9	T	T`	`Üá9 − àâ(1äETãáÜ

−Ä?Q − Å?Q 1 − ?Q + Ä9Q + Å9Q 1 − ?É#

É∈Ñ.Ö.

	T9	T	T`	`Üá9 − T;àâ(1äETãáÜ
 

(3.1) 

Here ?Q denotes the frequency of the genotype T in the gamete pool, while 9Q is the 

corresponding frequency within the infinite population. The sums here are over the 

self-incompatible gamete classes. I fix the mating rate at Å = 1 and vary only the value 

of the death rate Ä, as the steady-state frequencies of gamete classes depend only on 

the ratio of these rates Å/Ä. Under high gamete mortality rates this model recreates 

the dynamics observed by Hadjivasiliou et al., 2013. 

 

3.3.3 Population life cycle  

The model assumes an infinite population of unicellular haploid organisms, each 

containing ' mitochondria, and is in many ways similar to the model developed in 

Chapter 2. The population state can be represented by the ' + 1 ×; matrix H, where 

the matrix element JQ,R denotes the frequency of cells in a nuclear state S ≤ ; and 

containing ( mutant mitochondria. The horizontal index S enumerates all possible 

nuclear states including the mating type and the mode of mitochondrial transmission.  
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As in Chapter 2, mitochondrial mutation is represented by the transition H I," =

OH I ,	where the matrix element PQ,R represents the probability that a cell with S mutant 

mitochondria will have T mutants after the mutation event, 

PQ,R =
' − S
T − S UQ/R(1 − U)5/Q. (3.2) 

Mutation occurs in individual mitochondria, but selection acts on the level of the cell, 

i.e. on groups of mitochondria. In our model, cell fitness ^ directly depends only on the 

mitochondrial genotype. The updated population state after selection is then 

H I,# =
Z[ H I,"

[\H I," ]@
	, 

(3.3) 

where Z is the identity matrix. ]@ is a column vector of ones, so that H(I,")]@ is the row-

wise sum of H I,"  and [ is a column vector containing all possible values of 

mitochondrial fitness ^Q = 1 − Q
5

a
. Parameter b determines the magnitude of 

epistatic interactions between mitochondrial mutations. With b > 1 the fitness cost of 

every new mutation increases with the overall mutation load (negative epistasis). 

Negative epistasis between deleterious mitochondrial mutations leads to mitochondrial 

threshold effects, well known from empirical observations in eukaryotes (Rossignol et 

al., 2003). 

Gametes in the gamete pool fuse at random, according to their equilibrium 

frequencies ?Q. For asymmetric gamete unions, assuming that the gamete k is of 

maternal type, we have 

çÉé~
	(ê ë H•,É

I,# ) ∗ (í ë H•,é
I,# )

2ìîïñ?É?é
9É9é

, if	~	and	á	are	compatible

n, otherwise
 (3.4) 

An asterisk here denotes vector convolution, 9É is the frequency of cells in a nuclear 

state ~, i.e. 9É = ]•e"
h H•,É

I,#  and ?É is the corresponding equilibrium frequency in the 

gamete pool. The delta symbol ÄÉ¶é	 = 1 if ~ ≠ á and is 0 otherwise. The zygote-state 

vectors çÉé are scaled linearly to sum up to one. The two transition matrices ê(ë) and 
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í ë  are included to implement the mitochondrial inheritance bias where one of the 

gametes transmits more mitochondria than the other. We assume that the paternal 

gamete contributes ®' mitochondria through sampling without replacement, and that 

(2 − ®)' mitochondria come from the maternal gamete (® = 0, "
5
, … , "/5

5
, 1). The 

two transition matrices therefore have elements 

ΦQ,R
ë = 2 − ® '

T
S
'

Q
1 −

S
'

#/ë 5/Q
, (3.5) 

and 

ΨQ,R
ë =

S
T

' − S
®' − T

'
®'

/"
. (3.6) 

The life cycle is completed by two meiotic cell divisions restoring the haploid 

state. At the start of the next generation the genotype frequencies then are 

H•,É
Ie",8 = #̈ "̈ çÉÉ +

1
2

çÉé
é¶É	

. (3.7) 

I do not differentiate between çÉé and çéÉ, i.e. both state vectors indicate the same 

zygote type. ̈ " and ̈ # are transition matrices for the two meiotic divisions implemented 

as mitochondrial sampling without replacement. Their corresponding elements are 

? " Q,R =
2S
T

4' − 2S
2' − T

4'
2'

/"
, (3.8) 

and 

? # Q,R =
S
T

2' − S
' − T

2'
'

/"

. (3.9) 

The following results are based on the numerical solution of the above system of 

equations. 

 

3.4 Asymmetric sex before mating types: UPI 
facilitates purifying selection against deleterious 
mitochondrial mutations 
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Eukaryotic sex depends on molecular mechanisms for self/non-self-recognition and 

gamete attraction (Goodenough and Heitman, 2014); similar mechanisms likely 

existed in both the bacterial ancestor of mitochondria and the archaeal host in the form 

of quorum-sensing and biofilm-formation systems triggered by external conditions (Ng 

and Bassler, 2009; Fröls, 2013). With the prokaryotic ancestry of eukaryotic gamete 

attraction machineries, the initial proto-eukaryotic self-recognition system was likely 

symmetrical, i.e. initial forms of sexual reproduction did not involve differentiation into 

distinct gamete classes (Goodenough and Heitman, 2014; Heitman, 2015). Self-

incompatible mating types and sexes then could have been a later addition, driven, as 

I shall argue here, by purifying selection against mitochondrial mutations. 

Assuming that the initial form of sexual reproduction was unisexual, I first model 

the evolution of uniparental inheritance in an ancestral population without mating 

types. While all pairs of gametes are capable of mating, only the unions between Um 

and B (or Up and B) involve asymmetric transmission of mitochondria (Fig. 3.1). As I 

show in Fig. 3.2, both nuclear alleles Um and Up invade and can reach the frequency 

of Ü# = 0.5, but the invasion dynamics differ substantially between the two modes of 

UPI control.  

Starting at low allele frequencies, the invader Um attains one of two distinct 

equilibria, Ü" < 0.5 under low mutation rates and strong negative epistasis, or Ü# = 0.5 

under higher mutation rates (Fig. 3.2a)—the finding analogous to the modelling results 

of Hadjivasiliou et al. (2013). The analogous set of equilibria exists for the paternal 

invader Up, but this time Ü# = 0.5 is the only asymmetric equilibrium which can be 

reached starting from low initial mutant frequencies (Fig. 3.2a). In this case the 

combination of the mutation rate and the initial frequency must exceed the unstable 

equilibrium 0 < Ü"≠ < 0.5, the characteristic frequency of which approaches zero at high 

mutation rates. Paternal leakage of mitochondria relaxes the conditions for the 
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invasion of Up to the equilibrium Ü# (Fig. 3.2b), but at the same time hinders the invasion 

of Um under low mutation rates. 

Figure 3.2. Invasion of the uniparental inheritance alleles in a population without mating 
types. Equilibria for the maternal (Um) and paternal (Up) UPI alleles for strict uniparental 
inheritance π=0 (a) and asymmetric inheritance with mitochondrial leakage π=0.8 (b). 
Equilibria Ü" and Ü# (thick lines) are stable, while Ü"≠  and Ü#≠  indicate unstable states. Fitness 
advantage of the UPI mutants Um (c) and Up (d) with π=0 depends on their frequency, 
explaining the stability of equilibria in (a). Dashed line indicates the fitness landscape at the 
saddle point U = 0.03, where equilibria Ü" and Ü# coincide. The strength of epistasis b = 2, 
' = 50. The asymmetric inheritance increases variance in the mutation load allowing for more 
efficient purifying selection and giving a long-term advantage, while mitochondrial mixing 
under the biparental inheritance (BPI) increases the frequency of intermediate cytoplasmic 
states (e). But with negative epistasis between mitochondrial mutations (e), mitochondrial 
mixing results in higher fitness than would be expected under linear fitness interactions (f), 
giving BPI a short-term advantage. 
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What determines the equilibrium frequencies of UPI alleles in a population 

without mating types? The model shows that the fitness advantage of Um decreases 

as the allele invades from small frequencies (Fig. 3.2c), while the opposite is true for 

Up (Fig. 3.2d), determining the locations of equilibria Ü" and Ü#. This behaviour can be 

explained in terms of costs and benefits of asymmetric transmission of mitochondrial 

genes, and the statistical association of these benefits to the nuclear allele of 

mitochondrial inheritance control. 

Uniparental inheritance of mitochondria increases the frequency of extreme 

cytotypes underrepresented at the mutation-selection equilibrium, reducing the 

abundance of the common intermediate cytoplasmic states (Fig. 3.2e). This increase 

in mitochondrial variance facilitates purifying selection against deleterious mutations 

and gives the UPI mutant a long-term advantage over the biparental population. 

Nevertheless, under negative epistasis (Fig. 3.2e) intermediate cytoplasmic states 

have higher fitness than expected from the linear combination of the extremes, 

penalizing the UPI invader and giving the biparental inheritance a short-term benefit 

(Fig. 3.2f). These short-term fitness effects, however, are relevant only if the 

association between the cytoplasmic state and the nuclear allele of inheritance control 

is weak (e.g. with paternal leakage, when part of the mitochondrial population is 

inherited from the unrelated gamete); otherwise the long-term variance-based effects 

dominate. The stable equilibria Ü" and Ü# are located where short-term effects match 

the long-term fitness advantage of the UPI invader. 

Since the rate at which the resident B inherits the cytoplasm from the 

uniparental mutant rises with increasing frequency of Um, the short-term fitness gains 

of B increase, halting the invasion at Ü" < 0.5 or Ü# = 0.5. Paternal leakage associated 

with Um weakens the mito-nuclear associations and therefore reduces the strength of 

the long-term fitness effects. The opposite pattern of nuclear-cytoplasmic linkage 

applies to the invader with paternally-determined UPI: destroying part of one’s own 

mitochondria increases the level of transmission asymmetry, but weakens the 
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statistical associations between the mitochondrial population and the allele Up. As the 

allele Up invades from small frequencies, the rate of biparental unions Up×Up increases, 

but so does the overall frequency of uniparental transmissions. The short-term fitness 

gains of invading Up therefore increase with its overall frequency. As the invasion 

proceeds, the biparental unions between the identical gametes become more 

common, eventually reversing the trend of frequency-dependence (Fig. 3.2c, d).  

 

3.5 Evolving paternal leakage in UPI without mating 
types 

Suppose now that the level of paternal leakage ® is itself an evolvable trait, controlled 

by a single nuclear allele Up or Um. The number of organelles transmitted to the 

progeny from each gamete can indeed be regulated genetically, e.g. by controlling the 

expression of gamete-specific protein markers tagging the organelles for selective 

degradation (e.g. ubiquitin). What pattern of organelle inheritance would we expect to 

evolve in the population without mating types? I performed an evolutionary invasion 

analysis to find the evolutionarily stable states (ESS; Eshel, 1983; Geritz et al., 1998) 

for paternal leakage ® under both maternal and paternal modes of inheritance control. 

With the allele B fixed, I introduce the uniparental allele Up or Um corresponding to ® <

1, and find its equilibrium frequency. A new uniparental-inheritance allele (an invader) 

is then inserted with a value of ® different from the resident, and its spread is tracked 

until it either replaces the resident or is eliminated. The process is repeated for all 

values of ®, finding the uninvadable states. 

With maternal regulation of cytoplasmic inheritance, the sole non-invadable 

state with asymmetric transmission of mitochondria is the strict UPI, i.e. ®$%% = 0 (Fig. 

3.3a), at which the gamete Um discards all mitochondria inherited from B. As paternal 

leakage ® goes down, both the long-term fitness advantage of variance, and the 

nuclear-cytoplasmic associations become stronger. The equilibrium frequency of Um 
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at ®$%% increases with mutation rate, consistent with the role of UPI increasing the 

efficacy of purifying selection against mitochondrial mutations (Fig. 3.3b). Likewise, 

weaker epistatic interactions (b → 1) reduce the short-term fitness gains in symmetric 

gamete unions, and result in higher equilibrium frequencies of Um (Fig. 3.3b).  

Under paternal control of mitochondrial inheritance, the globally-attracting ESS 

lies between 0 ≤ ®$%% ≤ 1 (Fig. 3.3c), with the frequency of Up allele always at Ü# =

0.5. The deviation of ® to either side of its ®$%% is detrimental. With ® < ®$%% the 

asymmetry of mitochondrial inheritance increases, but the strength of the long-term 

Figure 3.3. Evolutionary stability of asymmetric cytoplasmic inheritance in a 
population without mating types. Pairwise invasibility plot shows that with maternal 
control of cytoplasmic inheritance, the only asymmetric ESS is the strict UPI, i.e. π=0 (a), 
with the frequency of Um at the ESS increasing with higher mutational load (b). Note that 
under different parameter values some resident states might not exist, as they do not 
invade the pure BPI state. In contrast, with paternal control the ESS can lie anywhere 
between the fully symmetric and strict uniparental inheritance (c), depending on mutation 
rates and epistatic interactions (d). 
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mitochondrial-nuclear associations is diminished, whereas with ® > ®$%%, the strength 

of genetic linkage increases, but the long-term effects of partial UPI are reduced—in 

both cases to the detriment of the invader. The analysis further shows that the value 

of ®$%% goes down with increasing mutation rate U and decreasing strength of epistasis 

b, as it reduces the short-term benefit of paternal leakage (Fig. 3.3d). The model 

therefore shows that limited mitochondrial mixing can be maintained in spite of its long-

term fitness costs, but only if the inheritance-restriction allele causes the selective 

destruction of organelles inherited from the same mating type (paternal gamete by 

definition), and if the epistasis is negative. This observation will be further explored in 

Chapter 4; here it serves to illustrate that stable paternal leakage can be maintained 

and therefore must be accounted for in the further analysis of mating type evolution. 

 

3.6 Invasion of self-incompatible mating-type alleles 
establishes the population-wide UPI 

The above analysis shows that in a population without mating types the following 

equilibria with asymmetric inheritance of mitochondria are possible, depending on 

mutation rates and the mode of UPI nuclear regulation: 

1) Um at Ü" < 0.5 with strict UPI (® = 0); 

2) Um at Ü# = 0.5 with strict UPI (® = 0); 

3) Up at Ü# = 0.5 with paternal leakage ( 0 ≤ ® ≤ 1). 

The stable equilibrium for the allele Up at Ü" > 0.5 (Fig. 3.2a, b) is not considered here, 

as it cannot be reached from low initial allele frequencies. These equilibria do not 

depend on the gamete mortality rate Ä, as all gametes are universally compatible in 

the absence of mating types. While the frequency of uniparental mutants Um or Up can 

reach 0.5, the overall rate of asymmetric unions cannot exceed 0.5 as long as 

biparental matings between identical gametes (Um×Um, Up×Up, B×B) are allowed. The 

biparental gamete unions can be eliminated, if a mutation in the intracellular signalling 
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system leads to the incompatibility of cells carrying the same allele at the mitochondrial 

inheritance locus.  

I next consider the invasion of self-incompatibility alleles Mt1 and Mt2, linked to 

either Um/Up or B. Due to the inherent symmetry of the system, the invasion of UmMt1 

under maternal inheritance regulation is in fact equivalent to invasion BMt2 under 

paternal control; similarly, the invasion of UpMt1 is equivalent to the invasion of BMt2 

under maternal regulation of cytoplasmic inheritance. It is therefore formally sufficient 

Figure 3.4. Invasion of self-incompatibility alleles Mt1 and Mt2 linked to the 
mitochondrial inheritance locus Um/B (Up/B). Due to the higher rate of uniparental 
gamete unions, UmMt1 (or BMt2 under paternal control) replaces the universally compatible 
allele Um (B), but to a lower frequency (a, b). Similarly, the self-incompatible BMt2 (UpMt1 
under paternal regulation) then increases in frequency at the expense of B (Up), as it makes 
the asymmetric gamete unions more frequent. The fitness advantage of the invading BMt2 
(UpMt1) increases with its frequency, assuming fixed frequencies of other alleles (c). The 
fitness advantage of UmMt1 (BMt2) over B (Up) also increases as BMt2 (UpMt1) invades, as 
less frequent biparental gamete unions reduce the short-term fitness advantage of the 
universal resident B (d). Arrows indicate the expected direction of evolution in the 
population consisting of UmMt1, BMt2 and B. Parameter values are b = 1.5, U = 0.03, ® =
0.2, Ä = 10/�. 
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to study the evolution under maternal control, as the case of paternal regulation can 

be obtained by simply reversing the order of allele invasion, given that the initial 

equilibrium state exists and is stable. 

First, consider the maternal allele Um at equilibrium and introduce the mutant 

form UmMt1. Self-incompatible gamete class UmMt1 invades and replaces Um, but to a 

lower frequency than the ancestral Um (Fig. 3.4a, b). Linkage to the mating type allele 

Mt1 ensures that symmetric unions between gametes carrying Um are forbidden, 

increasing the frequency of uniparental matings and therefore leading to the higher 

long-term fitness advantage of Um associated with more efficient removal of deleterious 

mutations. In a population consisting solely of UmMt1 and B, all gamete unions involving 

UmMt1 are therefore uniparental. At the same time, however, the subpopulation of B 

enjoys higher short-term fitness benefits of mitochondrial mixing in symmetric B×B 

unions, limiting the spread of the first mating type allele.  

Consider now the invasion of a second self-incompatibility allele Mt2 linked to 

B. The gamete class BMt2 spreads at the expense of B, as it reduces the frequency of 

fully symmetric gamete unions and ensures that BMt2 inherits fit mitochondria from 

UmMt1 uniparentally more often than the wild-type B. With the constant frequency of 

UmMt1, the fitness advantage of BMt2 over B increases with its frequency (Fig. 3.4c). 

The spread of BMt2 also increases the long-term fitness advantage of the first invader 

UmMt1 (Fig. 3.4d), as it reduces the short-term advantage of B. The spread of a second 

mating-type allele therefore reinforces the fitness advantage of the first, allowing both 

to reach high frequencies and even fix at low gamete mortality rates Ä (Fig. 3.4a, b). 

Similar dynamics are observed if the order of mating-type invasion is reversed, but the 

initial invasion of BMt2 is now favoured less, as the allele’s only advantage is the 

reduced frequency of symmetric gamete fusions. Under higher gamete mortality rates 

Ä, BMt2 does not invade unless UmMt1 is already present. Here I therefore focus on a 

more permissive case of UmMt1 invading first. 
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3.7 Conditions favouring fixation of mating types 

The two mating type alleles fix only if they are capable of replacing the universally 

compatible forms Um/Up and B. This is opposed by two forces: 1) the short-term fitness 

advantage of mitochondrial mixing in subpopulations without mating types, and 2) the 

mating rate disadvantage of gametes that can mate only with a subset of the 

population. The spread and fixation of Mt1 and Mt2 is favoured by factors increasing 

Figure 3.5. Invasion of mating-type alleles is favoured by weak epistasis between 
mitochondrial mutations. Self-incompatible mating types reach fixation under weak 
epistatic interactions, where the long-term fitness advantage of UPI is maximized. With 
stronger epistasis, the fixation of mating types is facilitated by intermediate levels of 
paternal leakage, indicating the importance of paternally regulated mitochondrial 
inheritance. Under strong negative epistasis and significant paternal leakage, mating types 
fail to replace the universally compatible gametes due to relatively weak long-term variance 
effects. Gamete death rate is set to Ä = 0.001, the mitochondrial mutation rate is U = 0.03. 
Genotypes in brackets correspond to paternal control of mitochondrial inheritance.  
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the long-term fitness effects of asymmetric transmission of mitochondria, and low 

gamete death rates Ä. 

First, regardless of the UPI regulation mode, the two self-incompatible mating 

types replace unisexual residents under weak epistatic interactions between 

mitochondrial mutations (b → 1, Fig. 3.5). The short-term fitness advantage of 

mitochondrial mixing in biparental gamete unions applies only to the case of negative 

epistasis between deleterious mutations (Chapter 2); at b = 1, for example, the 

uniparental invaders become universally advantageous, with their equilibrium 

frequency being limited only by the frequency of compatible mating partners. As the 

strength of negative epistatic interactions increases (b > 1), the short-term fitness 

effects of mitochondrial mixing become increasingly more important, opposing the 

spread of the two mating-type alleles. This effect can be partially alleviated in the 

presence of paternal leakage, as it tends to reduce the short-term fitness advantage 

of universally compatible gametes, favouring the invasion of mating types (Fig. 3.5). 

The results therefore indicate the importance of paternal regulation of mitochondrial 

inheritance, as paternal leakage can be evolutionarily stable only under paternal 

control of cytoplasmic inheritance (note that the ESS level of paternal leakage depends 

on the mutation rate and epistasis (Fig. 3.3d), but also changes as the mating types 

invade). Under strong epistasis and high levels of paternal leakage ®, however, the 

first mating type UmMt1 fails to replace the universal form Um, which subsequently 

prevents the invasion of Mt2 (Fig. 3.5). 

High mitochondrial mutation rates favour the spread of mating-type alleles 

linked to the mitochondrial-inheritance locus (Fig. 3.6). This is consistent with the long-

term effect of asymmetric mitochondrial transmission enhancing the efficacy of 

purifying selection against mitochondrial mutations due to higher variance in 

mitochondrial mutation load (Hadjivasiliou, 2013; Chapter 2). As expected, the 

evolutionary success of self-incompatibility alleles depends on the cost associated with 
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the lower frequency of  potential mating partners within the population, which in the 

model is represented by the gamete mortality rate Ä (Fig. 3.6). Under high mortality 

rates, gametes unable to find suitable mates are rapidly eliminated from the gamete 

pool; consequently, the universal gametes carrying B or Um/Up prevail. With low 

gamete death rates (Ä → 0), on the other hand, self-incompatible mating types can 

persist longer, waiting for an encounter with a compatible mating partner, which 

favours their invasion and eventual fixation (Fig. 3.6). Indeed, while gamete self-

Figure 3.6. Invasion of self-incompatible mating type alleles is favoured by high 
mutation rates and low gamete mortality. Self-incompatible gamete classes UmMt1 
(BMt2 under paternal control) and BMt2 (UpMt1) replace universal gamete types Um (B) 
and B (Up) under high mutation rates U and low gamete mortality rates Ä. The strength of 
epistasis is b = 1.4, the rate of paternal leakage of mitochondria is set to ® = 0.2. 
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incompatibility reduces the overall frequency of potential mating partners within the 

population, with the evolution of mating types and mating-type associated pheromone-

based intracellular attraction systems, gamete encounters are rarely random 

(Hadjivasiliou et al., 2015; Hadjivasiliou and Pomiankowski, 2016), and the part of the 

life cycle available for mate-finding could indeed be much longer than the time 

separating random encounters between mature reproductive cells. 

 

3.8 Discussion 

The existence of two sexes or mating types is often regarded as an evolutionary 

conundrum, as both males and females can mate only with one-half of the population. 

The fitness benefits of gamete differentiation must therefore exceed the costs 

associated with reduced mating opportunities. With the evolution of two mating types 

and associated asymmetric signalling systems (Hoekstra, 1982; Hadjivasiliou et al., 

2015; Hadjivasiliou and Pomiankowski, 2016), the encounters between gametes are 

not random, and the cost of being able to mate with only a part of the population might 

not be as high as assumed in previous studies (Hadjivasiliou et al., 2013). I showed, 

that two mating-type alleles linked to the mitochondrial-inheritance locus can spread 

to fixation driven by the long-term advantage of asymmetric transmission of 

mitochondrial genes, which increases the efficacy of purifying selection against 

detrimental mitochondrial mutations, even though their invasion is opposed by the 

short-term fitness benefits of mitochondrial mixing in the biparental part of the 

population, and the limited availability of potential mating partners. Two mating types 

should therefore be expected to arise with fast accumulation of mitochondrial 

mutations, and high gamete-survival rates ensuring that fitness costs associated with 

the need to locate a suitable mating partner are low. Additionally, the results show that 

paternal leakage of mitochondria can favour the evolution of mating types under 
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negative epistasis, suggesting that paternal control of cytoplasmic inheritance could 

have played an important role in the evolution of self-incompatible gamete classes. 

Can the model account for the evolution of more than two gamete classes? 

Multiple mating types with uniparental inheritance of mitochondria are indeed known. 

For example, in true slime mould Physarum polycephalum with several mating types, 

uniparental inheritance of mitochondria via selective organelle digestion follows a 

complex hierarchy according to the allele at one of the mating-type loci (Moriyama and 

Kawano, 2003). Consider the invasion of a third self-incompatible mating type Mt3, 

linked to the mitochondrial inheritance locus with one of the existing alleles, say Um. 

The invader can therefore mate with both initial gamete classes, but part of the gamete 

unions will remain biparental (UmMt3×UmMt1). The model shows that UmMt3 can invade 

only if it has a large initial mating-rate advantage, i.e. under gamete mortality rates Ä 

high enough to compensate for the long-term fitness disadvantage due to less frequent 

uniparental unions. Interestingly, unions between certain pairs of gamete types in 

Physarum polycephalum are indeed biparental, indicating that some of the mating-type 

alleles might have arisen simply because of their mating-rate advantage (Moriyama 

and Kawano, 2003). Similar selective pressure has been suggested as a driving force 

for the evolution of multiple mating types in fungi without mobile gametes (Hurst, 1995).  

The evolutionary stability of two mating types can therefore be explained by the 

high long-term fitness cost of biparental inheritance in the newly invading gamete class 

compared to the advantage of having more compatible mating partners. On the other 

hand, the model shows that a third mating type allele invades much more easily in 

tandem with a new allele at the mitochondrial-inheritance locus Um1 coding for a novel 

mitochondrial recognition and destruction machinery. In this case, unions between all 

three gamete types remain uniparental throughout the invasion. A stable population 

with three mating types at equal frequencies can therefore become established even 

at low gamete mortality rates Ä; the same remains true for subsequently invading 

mating-type alleles. Under these assumptions the number of mating types in the 
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population would seem to be limited only by the amount of distinct molecular 

mechanisms controlling the transmission of organelle genomes. This scenario, 

however, is critically dependent on the simultaneous invasion of two novel mutations 

at linked loci, both controlling vastly complex processes of mate recognition and 

mitochondrial destruction, and is therefore highly unlikely.  

How does the present analysis compare to the previous work suggesting that 

mating types could have evolved together with the uniparental inheritance of 

cytoplasmic genes? In the model of Hurst and Hamilton (1992), gamete classes evolve 

to eliminate the conflict between haploid organelle genomes inherited from distinct 

parents, where the selfish organelle destroys its opponent in the zygote (Hurst, 1995). 

Similarly, Hutson and Law (1993) considered the spread of “selfish” endosymbionts 

with fixed fitness costs. These authors have not considered intercellular dynamics nor 

mitochondrial segregation, both of which are now known to be of key importance in the 

evolution of uniparental inheritance (Hadjivasiliou, 2013; Chapter 2). Multiple cases of 

selfish organelles and genetic elements are known (Schable and Wise, 1998; Taylor 

et al., 2002; Clark et al., 2012), but it is unlikely that they occur at high enough 

frequencies to account for the striking universality of mating types with uniparental 

transmission of cytoplasm in eukaryotes. Selection against deleterious mitochondrial 

mutations, on the other hand, provides a more general explanation. Given the central 

role of mitochondria in eukaryotic metabolism, it is not surprising that mechanisms 

facilitating the removal of deleterious mitochondrial mutations are selected for. The 

evolution of two mating types with uniparental organelle transmission might therefore 

be a direct consequence of the requirement for high quality mitochondria in complex 

eukaryotes. 
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CHAPTER 4. SEXUAL CONFLICT EXPLAINS THE 

EXTRAORDINARY DIVERSITY OF MECHANISMS 

REGULATING MITOCHONDRIAL INHERITANCE 
 

4.1 Summary 

Uniparental inheritance of mitochondria is nearly universal among eukaryotes and is 

believed to facilitate selection against deleterious mitochondrial mutations and restrict 

inter-genomic conflicts. But this understanding of cytoplasmic inheritance is challenged 

by frequently detected paternal leakage of mitochondria and persistent heteroplasmy. 

It is typically assumed that paternal leakage and heteroplasmy are just episodic 

deviations from the general rule, indicating the breakdown of the uniparental 

inheritance machinery, and are not adaptive in their own right. In this chapter I present 

a new mathematical model for the evolution of nuclear alleles controlling the level of 

asymmetry in cytoplasmic inheritance under the effect of purifying selection. By 

explicitly considering the role of both sexes in the control of cytoplasmic transmission, 

I show that with maternal regulation, strict uniparental transmission is the only 

evolutionarily stable asymmetric state, whereas paternal leakage is stable under 

paternal control. Cytoplasmic mixing and heteroplasmy are therefore outcomes of the 

tension between selection on females and males, and occur even if the result is a long-

term fitness cost inflicted on both sexes. Competition over the control of cytoplasmic 

transmission explains the recurrent evolution of strikingly diverse mechanisms 

involved in controlling asymmetric organelle transmission. 
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4.2 Introduction 

Sexual reproduction in eukaryotes involves the fusion of nuclei from both gametes, but 

the inheritance of organelles containing their own DNA—mitochondria and 

chloroplasts—from only one of them (Birky, 1995; Sato and Sato, 2013; Greiner et al., 

2015). This pattern of uniparental inheritance (UPI) is nearly universal across 

eukaryotes, from isogamous protists with equal-sized gametes through to animals and 

plants with extreme gamete-size asymmetry (i.e. oogamy and diminutive sperm), and 

is believed to facilitate purifying selection against deleterious mutations (Bergstrom 

and Pritchard, 1998; Hadjivasiliou et al., 2015; Chapter 2; Chapter 3), restrict inter-

genomic conflicts (Eberhard, 1980; Cosmides and Tooby, 1981) and prevent 

heteroplasmy (Christie et al., 2015). Cytoplasmic mixing, in contrast, reduces inter-

individual variation, ultimately impeding the efficacy of selection against defective 

organelles or selfish genetic elements (Rand, 2008; Bastiaans et al., 2014).  

Asymmetric inheritance arises from active mechanisms beyond those due to 

simple gamete-size difference. Nuclear genes restrict organelle transmission from the 

incoming mating type gamete (maternal control) or from a mating type’s own cytoplasm 

(paternal control). Multiple attempts at modelling the evolution of asymmetric organelle 

inheritance have concluded that the lack of long-term linkage between the nuclear 

genotype and the maternally inherited cytoplasm should prevent the evolution of 

paternally-controlled organelle destruction (Hastings, 1992; Randerson and Hurst, 

1999; Hoekstra, 2011). These studies suggest that maternally-controlled elimination of 

paternal mitochondria should dominate in nature, which is indeed consistent with some 

empirical observations. In Ascidian tunicates, for instance, male organelles are 

prevented from entering the oocyte (Ursprung and Schabtach, 1965), while maternal 

autophagy machinery eliminates paternal mitochondria in Caenorhadbitis elgans (Sato 

and Sato, 2011; Al Rawi et al., 2011; Zhou et al., 2016). More notably, in the fungal 

plant pathogen Ustilago maydis, lga2 and rga2 genes expressed in mating type a2 are 
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responsible for the selective elimination of the opposite mating type’s mitochondrial 

DNA (mtDNA) after fusion, at the same time protecting the mtDNA of the mating type 

a2 (Fedler et al., 2009). 

In other cases, however, paternal mtDNA is eliminated without any involvement 

of the maternal mating type. For instance, paternal control of cytoplasmic inheritance 

has been shown to operate in Drosophila melanogaster, where mtDNA is actively 

degraded during spermatogenesis (DeLuca and O’Farrell, 2012). Similar elimination 

of mtDNA during spermatogenesis has been reported in fish and mice (Nishimura et 

al., 2006; Luo et al. 2013). In addition, the control of mitochondrial inheritance often 

involves both parents. Mitochondria in bovine and primate sperm are modified with 

ubiquitin, which serves as a signal for selective degradation after gamete fusion 

(Sutovsky et al., 1999). Similarly, in isogamous basidiomycete Cryptococcus 

neoformans, SXI1α in MATα and SXI2a in MATa are both required for the uniparental 

inheritance of MATa mitochondria (Yan et al., 2007). In all these cases, it appears that 

one mating type is responsible for tagging and the other for recognition and selective 

degradation of paternal organelles. It is clear that paternal involvement ensuring the 

asymmetric transmission of mtDNA is more important than current theoretical views 

predict. The striking diversity of both maternal and paternal mechanisms indicates 

repeated evolution, and presents an additional puzzle, given the seemingly universal 

advantage of organelle transmission from one sex. 

Another challenge to the current theoretical views came with the advent of next-

generation sequencing, demonstrating that paternal leakage of mitochondria and 

persistent heteroplasmy are not as rare as traditionally thought (Barr et al., 2005; Xu, 

2005; McCauley, 2013). Biparental inheritance has been documented in diverse 

groups of animals, including mammals, arthropods, fish and birds, involving both 

interspecific (Kondo et al., 1990; Kaneda et al., 1995) and intraspecific matings 

(Shitara et al., 1998; Schwartz and Vissing, 2002; Zhao et al., 2004; Kvist et al., 2003; 

Magoulas and Zouros, 1993; Sherengul et al., 2006; Wolff et al., 2013). These 
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observations show that mechanisms preventing the inheritance of paternal mtDNA 

might be leaky at best or prone to evasion and failure. While biparental transmission 

in hybrid crosses could be explained by incompatibilities of molecular organelle tagging 

and recognition machineries, it is not clear whether paternal leakage within isolated 

populations is just an episodic breach of a strict rule or is adaptive in its own right. The 

enigmatic case of doubly-uniparental inheritance in bivalve molluscs, where 

heteroplasmy in male somatic tissues is common, points towards the latter 

(Passamonti and Ghiselli, 2009), but the theoretical explanation is lacking. 

In this chapter I present a model of the evolution of uniparental inheritance 

controlled by either of the two isogamous mating types under the effect of purifying 

selection against mitochondrial mutations. In contrast to previous work, I assume that 

paternal leakage of mitochondria is an evolvable trait and use an adaptive dynamics 

approach to specify conditions under which strict UPI or varying degrees of paternal 

leakage are evolutionarily stable. I show that mitochondrial mixing can be selected 

under paternal control of cytoplasmic transmission and negative epistasis, and provide 

the first theoretical explanation for the prevalence of paternal leakage, heteroplasmy 

and the repeated evolution of diverse mechanisms of uniparental inheritance. 

 

4.3 Mathematical model 

Consider an infinite population of haploid unicellular organisms with two mating types, 

“maternal” MTmat and “paternal” MTpat, at equal frequencies. Each cell harbours ' 

mitochondria during the haploid stage of the life cycle. A single nuclear locus controls 

the pattern of mitochondrial inheritance, which can vary from strict uniparental 

inheritance (no paternal leakage, ® = 0) to complete biparental transmission (® = 1). 

The state of a population at any time E can be represented by the (' + 1)×2 matrix 

Jé(I), where index á denotes a mating type, á = 0, 	1. The matrix element JK,R
é(I)	then 
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represents the frequency of cells of mating type á, with ( mutant mitochondria and a 

nuclear state S (S = 0 for the wild–type allele and S = 1 for a mutant invader). 

The life cycle consists of discrete and non-overlapping generations with distinct 

steps for mutation, selection and mating (Fig. 4.1). I consider two mitochondrial states, 

wild-type and a mutant state with impaired respiration. Wild–type mitochondria mutate 

at rate U, but the reverse transition is ignored as the probability of a back-mutation is 

much lower. The state of the population at generation E and after the mutation step is 

therefore Hé I," = OHé I , where O is a (' + 1)×(' + 1) transition matrix. The matrix 

element PQ,R represents the probability that a cell with S mutant mitochondria will have 

T mutants after the transition, 

Figure 4.1. Model life cycle. The life cycle consists of discrete steps of mitochondrial 
mutation (1), selection between eukaryotic cells (2), random mating with cell fusion (3) and 
mitochondrial mixing (4), and division with random mitochondrial segregation (5). Paternal 
gamete (MTpat) contributes to the zygote only ®' out of its ' mitochondria, while the rest 
(2 − ®)' are sampled from the maternal gamete (MTmat). The amount of paternal leakage 
® is controlled by one of the mating types. Wild-type and mutant mitochondria are 
represented by small circles, while squares depict nuclear mating-type loci. 
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PQ,R =
' − S
T − S UQ/R(1 − U)5/Q. (4.1) 

Mutation is followed by selection, i.e. the change in genotype frequencies 

according to their fitness values. In our model, a cell’s fitness ^ depends only on the 

mitochondrial part of the genotype. The updated state of the population after selection 

is then 

Hé I,# =
Z[ Hé I,"

[\Hé I," ]#
	, (4.2) 

where Z is the identity matrix and ]# = 1,1 \ is a column vector of ones and [ is a 

column vector containing all ' + 1 possible values of mitochondrial fitness,^Q = 1 −

Q
5

a
. Parameter b determines the magnitude of epistasis between mitochondrial 

mutations. b = 1 corresponds to the simplest case of additive fitness, where the fitness 

cost of each new mutation does not depend on the total mutational load. With b > 1 

one has negative epistasis, where the fitness cost of several combined mutations is 

lower than expected under the additive model, but increases with every new mutation. 

This leads to the mitochondrial threshold effects observed in experimental studies 

(Shoffner et al., 1990; Miyabayashi et al., 1992; Rossignol et al., 2003). 

Individuals of opposite mating types fuse at random, forming a population of 

diploid zygotes containing 2' mitochondria each. Let çÆØ be a column vector with the 

T-th element representing the frequency of zygotes containing T mutant mitochondria 

and nuclear alleles ∞ = 0, 1 and ℎ = 0, 1, inherited from mating types MTmat and 

MTpat respectively. Zygote frequencies are then 

çÆØ = (ê ë H•,Æ
8(I,#)) ∗ (í ë H•,Ø

"(I,#)), (4.3) 

where asterisk denotes vector convolution and the two transition matrices ê(ë) and 

í ë  are included to implement the mitochondrial inheritance bias. I assume that the 

paternal mating type MTpat contributes ®' mitochondria through sampling without 

replacement, with (2 − ®)' mitochondria coming from the maternal mating type 
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MTmat via random sampling with replacement (® = 0, "
5
, … , "/5

5
, 1), although 

alternative sampling methods have been tested and shown to not affect the outcome. 

The two transition matrices then have elements 

ΦQ,R
ë = 2 − ® '

T
S
'

Q
1 −

S
'

#/ë 5/Q
 (4.4) 

and 

ΨQ,R
ë =

S
T

' − S
®' − T

'
®'

/"
. (4.5) 

The cell cycle is completed by the two-step meiosis restoring the haploid state. 

Genotype frequencies at the start of the next generation are then 

H•,±
8(Ie") = #̈ "̈ ç±8 + ç±" ,	

H•,±
"(Ie") = #̈ "̈ ç8± + ç"± , 

(4.6) 

Where ≤ = 0, 1, and "̈ and #̈ are transition matrices for the first and second meiotic 

divisions implemented as mitochondrial sampling without replacement. Their 

corresponding elements are 

? " Q,R =
2S
T

4' − 2S
2' − T

4'
2'

/"
, (4.7) 

and 

? # Q,R =
S
T

2' − S
' − T

2'
'

/"

. 
(4.8) 

To study the dynamics of the system, I consider the invasion of a mutant allele 

with a value of paternal leakage ® different from the resident population. The new allele 

is inserted into the population at a low frequency B = 0.005 at E	 = 	500, so that H•,"
é I =

BH•,8
é I/"  and H•,8

é I = 1 − B H•,8
é I/" , and its evolution is tracked until an equilibrium is 

reached. I consider all possible values of the trait ® and build the pairwise invasibility 

plots depicting the sign of the invasion fitness, i.e. the growth rate of the invader 

subpopulation when rare (Geritz et al., 1998). These plots determine the expected 

evolutionary outcomes and stable strategies when the trait value changes in small 
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discrete steps, but also give insight into the dynamics of the system with large effect 

mutations (Dieckmann, 1997; Geritz et al., 1998).  

 

4.4 With maternal control, strict UPI is the only 
asymmetric ESS 

In the conventional case, the maternal mating type MTmat regulates the contribution 

of paternal mitochondria to the zygote. Under maternal control, the invasion analysis 

recovers two boundary ESS corresponding to complete uniparental (® = 0) and 

biparental (® = 1) inheritance, and an unstable singular point ®∗ (0 < ®∗ < 1) in 

between (an evolutionary repeller, Fig. 4.2a). Fully uniparental inheritance is the only 

evolutionarily stable state with asymmetric inheritance, while intermediate values of 

paternal leakage cannot be maintained. 

If we assume that biparental inheritance of mitochondria is the ancestral state 

(® = 1), then the transition to maternally controlled exclusion of paternal mitochondria 

is not favoured with small effect mutations in ® and low mitochondrial mutation rates 

(Fig. 4.2). With high enough mutational rates and weak epistasis, biparental 

inheritance loses its local stability and complete uniparental inheritance (® = 0) 

becomes the sole evolutionary attractor (Fig. 4.2b). Under these conditions, small 

changes in ® will eventually lead to the evolution of purely uniparental inheritance of 

mitochondria imposed by the maternal gamete. The value of paternal leakage 

corresponding to the unstable singular point becomes higher (®∗ → 1) with increasing 

mutation rates (U) and weaker epistatic interactions (b → 1) (Fig. 4.2a-d).  

The local attraction towards either BPI or UPI under maternal control can be 

explained in terms of costs and benefits of asymmetric mitochondrial transmission 

under negative epistasis. If the invader has a lower value of paternal leakage ® than 

the resident, there is higher asymmetry of cytoplasmic inheritance and increased 

mitochondrial variance among the invaders. This boosts the efficacy of purifying 
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selection and improves population fitness over several generations, giving the mutant 

a long-term advantage (Bergstrom and Pritchard, 1998; Hadjivasiliou et al., 2013). 

More symmetric inheritance of mitochondria with higher values of ® in the invader, on 

the other hand, reduces the efficacy of selection, but increases the frequency of 

intermediate cytotypes, which under negative epistasis have higher fitness than the  

Figure 4.2. Pairwise invasibility plots for the maternally controlled asymmetric 
inheritance of mitochondria. Values of paternal leakage ® for which the invasion is 
successful are within the regions marked with “+”. Arrows show the direction of trait 
evolution assuming small mutational changes in ®. (a) For weak epistatic interactions 
(lower b) and low mutation rates, there are two evolutionarily stable states (filled circles), 
one at which mitochondria are symmetrically inherited from both gametes (® = 1), and the 
second at which there is full uniparental inheritance of mitochondria (® = 0). These are 
separated by a singular point between ® = 0 and ® = 1 which is an evolutionary repeller 
(open circle). (b) With higher mutation rates the zone of attraction to the asymmetric 
equilibrium (® = 0) increases, until the symmetric equilibrium is eliminated. (c-d) 
Increasing the degree of epistasis increases the short-term benefit of mixing mitochondria 
and weakens the attraction of the asymmetric equilibrium. The number of mitochondria 
was set to ' = 50. 



92 
 

linear combination of extreme phenotypes (the fitness of the mix is higher than the 

mean of the two initial fitness values, Fig. 4.3a). Symmetric inheritance of mitochondria 

can therefore give the invading allele a short-term fitness advantage (Fig. 4.3b).  

The evolutionary success of an invader is determined by the complex interplay 

between the long- and short-term effects of asymmetric mitochondrial inheritance, and 

the degree to which the nuclear allele that controls ® is associated with the resulting 

mitochondrial population. Long-term fitness effects are more relevant with strong mito-

Figure 4.3. Selective effects of more or less paternal leakage shown for the extreme cases 
of biparental (BPI) and uniparental inheritance (UPI) of mitochondria, ® = 1 and ® = 0 
respectively. (a) BPI (red) reduces mitochondrial mutation variance among offspring by 
increasing the frequency of intermediate cytotypes compared to UPI (blue). Note that the 
mode of inheritance does not alter the mean, only the variance in mutation frequency. The 
fitness function (grey curve) is concave, and assumes that a large number of mutants must 
accumulate before cell function is significantly undermined (epistasis b = 3). (b) This gives 
BPI a short-term mean fitness advantage (dotted lines) because intermediate cytoplasmic 
states have higher fitness than the mean of the extreme states. Mutation rate U = 0.04. (c) 
A uniparental mutant ® = 0 invades a population with paternal leakage of ® = 0.2 under 
maternal control due to the long-term benefit of asymmetric inheritance. (d) Biparental 
invader (® = 1) fixes within the resident population of ® = 0.8 due to the short-term fitness 
effects of mitochondrial mixing, even though this reduces the population fitness in the long 
term. Mutation rate is U = 0.01, epistasis b = 2 as in Fig. 4.2d. 
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nuclear linkage, while short-term effects dominate under weak statistical associations 

between the two genomes. Since (by definition) the mother passes on more 

mitochondria, the maternal nuclear alleles are always strongly linked to the 

mitochondrial population, and this association strengthens as the paternal contribution 

of mitochondria falls (i.e. with lower values of ®). The reverse is true for the paternal 

nuclear alleles, which leads to radical differences in the selection of maternal and 

paternal control (see below). 

With maternal control, the singular point 0 < ®∗ < 1 is located where the long- 

and short-term fitness effects are matched and the fitness landscape as experienced 

by a nearby mutation is virtually flat. An invader with a lower level of paternal leakage 

than the resident to the left of the singular point (i.e. ® < ®∗) increases both the 

mitochondrial variance and the strength of mito-nuclear linkage, and so invades due 

to the long-term fitness advantage and more efficient elimination of mitochondrial 

mutations (Fig. 4.3c). Conversely, to the right of the singular point (® > ®∗), an invader 

allowing more paternal leakage reduces both the variance and strength of the mito-

nuclear associations, and thus benefits mostly from short-term effects (Fig. 4.3d). 

Successful invasion on either side of the singular point therefore makes it an 

evolutionary repeller under maternal control of cytoplasmic inheritance (Fig. 4.2). 

 

4.5 Paternal leakage evolutionarily stable with paternal 
control of mitochondrial inheritance 

In the reverse case of paternal control, mating type MTpat determines what fraction of 

its own mitochondria is discarded, either before or after gamete fusion. Although the 

effect on the mitochondrial population of a zygote is the same as under maternal 

control, the evolutionary dynamics are significantly different. The nuclear gene 
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restricting paternal cytoplasmic inheritance is now patrilineally inherited and therefore 

is more weakly associated with its own mitochondrial population than the equivalent  

matrilineally inherited control allele. And the association weakens as the strength of 

restriction on paternal inheritance grows (i.e. lower values of ®). At the limit of ® = 0, 

all mitochondria are inherited from the maternal gamete, and therefore there is no 

association with the paternal nuclear allele. 

With paternal control, the analysis again recovers a singular point 

corresponding to an intermediate level of paternal leakage (0 < ®∗ < 1). However, this 

Figure 4.4. Pairwise invasibility plots for the paternally-controlled mitochondrial 
inheritance. Values of paternal leakage ® for which the invasion is successful are within 
the regions marked with “+”. Arrows show the direction of trait evolution, that is, the 
expected changes in the value of ® via recurrent invasion of mutants. (a) There is only 
one evolutionarily stable attractor at a singular point between ® = 0 and ® = 1. (b) 
Increasing mutation rates favour an ESS with less paternal leakage, consistent with the 
role of uniparental inheritance purging deleterious mitochondrial mutations. (c-d) 
Increasing the degree of negative epistasis (higher b) increases the short-term benefit of 
mitochondrial mixing, and favours higher levels of paternal leakage. The number of 
mitochondria was set to ' = 50. 
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point is now an evolutionarily stable attractor (Fig. 4.4), contrary to the case of maternal 

regulation. This point is a continuously stable equilibrium, which is attractive across 

the full range of values of ®. So an ancestral population with complete biparental 

inheritance of mitochondria (® = 1) or one with uniparental inheritance exclusively from 

the maternal gamete (® = 0) will evolve intermediate levels of paternal leakage. An 

ESS with more asymmetric inheritance (lower ®) evolves with higher mutation rates 

(U) and weaker epistatic interactions (b → 1) (Fig. 4.4). Only when the mitochondrial 

mutation rate is sufficiently low and epistasis sufficiently high do the maternal and 

paternal control equilibria coincide, with biparental inheritance being the evolutionary 

outcome (Fig. 4.4c).  

These results are explained once again by the balance between long- and 

short-term benefits of asymmetric inheritance, but this time with paternal control there 

is an opposite effect on the strength of mito-nuclear linkage. At the singular point ®∗, 

the long-term and short-term effects are in balance. An invader with ® < ®∗ increases 

the asymmetry in mitochondrial transmission and the long-term effect of variance, but 

weakens the genetic associations between the paternal nuclear allele and paternal 

mitochondria, to the detriment of the invader. Conversely, higher paternal leakage (® >

®∗) increases mitochondrial mixing, improving short-term fitness but undermining 

longer term outcomes. In this case, greater mixing strengthens genetic linkage, which 

is again harmful to the invader. This means that a singular point must necessarily be 

stable, since any deviation to either side is deleterious. 

 

4.6 Large mutational effects 

The analysis above considers small mutational steps. Previously published analyses 

considered large-effect mutations, but limited to two states, i.e. ® = 0 or 1 (Hastings, 

1992; Hadjivasiliou et al., 2012; 2013; Christie et al., 2015). Allowing arbitrary large-
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effect mutations, different dynamics with dimorphic states are uncovered. Under 

maternal control these arise because the fitness advantage of an invading allele is 

subject to negative frequency-dependence (Fig. 4.3c, d and Fig. 4.5a). An invader with 

a lower level of paternal leakage than the resident benefits from long-term fitness 

effects, but due to random mating these fitness benefits spread into the resident 

population. As the frequency of the invader rises, so does the fitness of the resident, 

reducing the invader’s advantage (Fig. 4.3c). Likewise, the fitness advantage of a 

mutant with higher ® than the resident is greatest at low frequencies (Fig. 4.3d). 

With small mutational changes in ®, the negative frequency-dependence is 

sufficiently weak that the invader always goes to fixation and leads to unitary stable 

states at ® = 0 or 1 (Fig. 4.2). But with large effect mutations, a successful invader 

does not always replace the resident allele, spreading to an intermediate frequency 

instead (Fig. 4.6). Dimorphic states always lie away from the main diagonal of the 

pairwise-invasibility plots, and therefore cannot be reached via small mutational 

Figure 4.5. The fitness advantage of the invader is frequency-dependent. (a) With 
maternal control, the fitness advantage of the invader declines with its frequency, leading to 
a stable equilibrium between 0 and 1. This leads to protected dimorphic states where the 
mutant invades but does not completely replace the resident, but these dimorphisms are not 
necessarily evolutionarily stable (Fig. 4.6). (b) Under paternal control of cytoplasmic 
transmission, the fitness advantage increases with allele frequency. The outcome of the 
invasion of paternal alleles is therefore always either fixation or extinction, i.e. dimorphic 
states cannot be established. In both cases the long-term advantage of asymmetric 
inheritance increases with the mitochondrial mutation rate U, since asymmetric inheritance 
increases the efficacy of purifying selection against deleterious mitochondrial mutations. ' =
50, b = 1.5, mutant with ® = 0.5 invading biparental population with ® = 1. 
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changes in ® (Fig. 4.6). When a further invader is introduced, if it spreads, it drives out 

one of the existing dimorphic alleles. The final stable endpoint is a dimorphic population 

consisting of individuals with complete uniparental (® = 0) and biparental (® = 1) 

inheritance, with the frequency of uniparental-inheritance alleles increasing with higher 

mutation rates and weaker epistasis (Fig. 4.6). In contrast, under paternal control the 

Figure 4.6. Dimorphic states with maternal control of mitochondrial inheritance, where 
the alleles for two distinct values of paternal leakage ®" and ®# coexist. Color represents 
the equilibrium frequency of the maternal allele for paternal leakage ®# in a protected 
dimorphism with ®". Arrows indicate the direction of evolutionary change in resident trait 
values, via recurrent invasions of a third mutant ®Y. Given that ®" < ®#, invader ®Y replaces 
the resident ®" if ®Y < ®"; the invader replaces ®# if ®Y > ®#, until the population reaches the 
evolutionarily stable coalition of coexisting ®" = 0 and 	®# = 1 (filled circles). (a) The 
dimorphic states lie away from the main diagonal (except for the close vicinity of the repulsive 
singular point). (b) Increasing mutation rates favour an evolutionarily stable coalition with 
higher frequencies of ®" = 0, which under weak epistasis can completely displace the 
biparental allele. (c-d) Increasing the degree of negative epistasis (higher b) increases the 
short-term benefit of mixing mitochondria and reduces the frequency of the strictly 
uniparental ®" = 0 at the dimorphic ESS. 
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fitness advantage of a mutant increases with its frequency (Fig. 4.5b). This means that 

all successful invaders eventually reach fixation, and stable dimorphic states do not 

exist. This is true for both small and large mutational change. 

Of greater general interest, large mutational effects were assumed in previous 

studies which concluded that paternal control of mitochondrial inheritance cannot 

evolve due to the lack of association between the nuclear modifier and the inherited 

mitochondria (Hastings, 1992; Randerson and Hurst, 1999; Hadjivasiliou et al., 2013). 

These studies considered whether a discrete mutational state with complete restriction 

of paternal inheritance (® = 0) invaded the ancestral condition of biparental inheritance 

(® = 1). As there is no association of the paternal control nuclear modifier with its 

mitochondria under strict uniparental inheritance, it cannot be favoured by selection. 

As I have shown here, with a continuous distribution of mutational states, paternal 

control can be associated with the inherited mitochondria over many generations, and 

this can favour asymmetric transmission with paternal leakage and persistent 

heteroplasmy, depending on the mutation rate and epistasis. 

  

4.7 Discussion 

Current theoretical views do not account for the active role of males in destroying their 

own organelles and cannot explain paternal leakage as anything more than a sporadic 

deviation from the rule of strict uniparental inheritance (UPI), in spite of its common 

occurrence. In this chapter I analysed the evolutionary stability of asymmetric 

inheritance of mitochondria, controlled by either of the two mating types, assuming 

small mutational steps and negative epistatic interactions between mitochondrial 

mutations. The analysis shows not only that paternally-regulated asymmetric 

transmission of mitochondria can evolve, but also that it is inherently associated with 

paternal leakage and heteroplasmy.  
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Consider that both maternal and paternal control of mitochondrial inheritance 

is possible. With low mutation rates, fully symmetrical biparental transmission is 

evolutionarily stable for both modes of inheritance regulation (Fig. 4.7). At higher 

mutation rates or with weak epistatic interactions, however, the two sex-specific ESS’s 

diverge (Fig. 4.7): maternal control favours strict uniparental inheritance (®¥µ∂ = 0), 

while paternal regulation favors an equilibrium with paternal leakage 0 < ®∑µ∂ < 1. As 

the mutation rate increases, these different equilibria become close but do not 

necessarily coincide, especially with stronger epistasis (Fig. 4.7a vs. 4.7b). This 

divergence implies competition over the control of cytoplasmic inheritance and cycles 

of repeatedly evolving maternal and paternal control mechanisms. 

With sufficiently high mutation rates, maternal control favours no transmission 

of paternal mitochondria (i.e. ®¥µ∂ = 0) and establishment of strict UPI (U > 0.005 in 

Fig. 4.7a or U > 0.02 in Fig. 4.7b). This could be achieved by the selective destruction 

of paternal mitochondria in the zygote, while protecting the maternal organelles as is 

known to occur in Ustilago maydis (Fedler et al., 2009). Now consider a newly evolving 

mechanism of paternal control that affects the number of sperm mitochondria surviving 

within the zygote and subverting part of the maternal organelle-destruction machinery. 

This could be achieved, for instance, by placing a ubiquitin tag on only a subpopulation 

of mitochondria during mammalian spermatogenesis. According to our results, the 

paternal mutation protecting some of its mitochondria would again spread to fixation, 

leading to an evolutionarily stable state with paternal leakage and persistent 

heteroplasmy. The short-term fitness advantage of mitochondrial mixing allows 

paternal-control mutations to fix, even though paternal leakage reduces the variance 

in the mutation load, hinders purifying selection against defective mitochondria and 

poses a long-term fitness cost to both mating types. The paternally regulated state 

could persist, or the cycle could start again with a new maternal mutation recognizing 

MTpat’s mitochondria and restoring strict maternal UPI. The competition over the 
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control of cytoplasmic inheritance with males benefiting from mitochondrial leakage 

and females favouring strict UPI, would therefore lead to the repeated evolution of 

molecular mechanisms recognizing or protecting paternal organelles, accounting for 

the high diversity of maternal and paternal UPI mechanisms observed in nature. 

These results have implications for the evolution of oogamy as a means to 

control the extent of cytoplasmic mixing. Among its various benefits (Parker et al., 

1972; Radzvilavicius et al., 2015), the development of a large female gamete packed 

with mitochondria can be viewed as a way to enforce the highly asymmetric 

transmission of mtDNA. Assuming that the size of the sperm mitochondrial population 

cannot readily be increased, oogamy provides a reliable mechanism of UPI, 

independent of the males’ ability to resist the active removal of their organelles after 

the gamete union, and limiting the extent of possible heteroplasmy. 

A central conclusion of this chapter is that paternal leakage can evolve as an 

indirect consequence of purifying selection against deleterious mitochondrial 

mutations, and the intrinsic differences in statistical associations between mitochondria 

Figure 4.7. Evolutionarily stable value of paternal leakage ®$%% depends on which 
mating type controls the destruction of paternal organelles. (a) The two 
evolutionarily stable values ®$%%(materal) and ®$%%(paternal) coincide at the fully 
symmetric state of biparental inheritance with low mutation rate U, but diverge as 
asymmetric inheritance becomes favoured with increasing mutation rates. (b) Strong 
epistasis (b = 2.0) favours more frequent mitochondrial mixing and higher levels of 
paternal leakage. Dotted lines indicate the frequency of the UPI allele 9(UPI) in a stable 
dimorphic state if large changes in ® are allowed. The number of mitochondria per cell 
was set to ' = 50. 
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and the nuclei of the two mating types. We should not exclude the possibility, however, 

that paternal leakage could provide a more direct sex-specific benefit (Wade and 

McCauley, 2005; Wade and Brandvain, 2009; Kuijper et al., 2015). These sex-specific 

effects could be utilized through the preferential segregation of mitochondrial 

haplotypes into distinct somatic tissues, cases of which are known (Magnacca and 

Brown, 2010; Burgstaller et al., 2014). The most striking example of such segregation 

occurs in bivalve molluscs with doubly-uniparental inheritance (DUI), where M-type 

mitochondria are transmitted exclusively through males’ germline (Passamonti and 

Ghiselli 2009). Remarkably, male (but not female) somatic tissues remain 

heteroplasmic in bivalves with DUI, which according to our model should indeed 

correspond to the ESS under paternal control of mitochondrial transmission. 

In contrast with previous analyses (Hadjivasiliou et al., 2012, 2013; Kuijper et 

al., 2015), paternal leakage in the present analysis is treated as an evolvable trait. It is 

subject to indirect selection that acts against deleterious mutations in the mitochondrial 

population. We can conclude that the evolutionarily optimal pattern of mitochondrial 

transmission critically depends on which mating type (or sex) controls the number of 

paternal mitochondria transmitted to the zygote. Males benefit from paternal leakage, 

since mitochondrial mixing increases the mean fitness of their progeny. Strict UPI is 

favoured by the maternal mating type, due to its long-term effect of increasing the 

efficacy of purifying selection. Tension between selection on males and females 

explains the seemingly unstable evolutionary pattern of UPI with multiple origins and 

reversals, the numerous mechanisms involved in the asymmetric transmission of 

mitochondrial genes, persistent heteroplasmy and paternal leakage. Our analysis 

therefore offers a simple way of understanding the extraordinary variation in the 

patterns of mitochondrial transmission around the central tendency towards 

uniparental inheritance. 
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CHAPTER 5. SELECTION AGAINST MITOCHONDRIAL 

MUTATIONS SHAPED THE EVOLUTION OF METAZOAN 

GERMLINE ARCHITECTURE 
 

5.1 Summary 

Basal metazoans such as corals and sponges generate gametes from pluripotent stem 

cell populations that also produce somatic cells, whereas most bilaterians sequester a 

unipotent germ cell lineage early in development. In spite of several long-standing 

explanations, the selective forces responsible for the evolution of early predetermined 

germline with a limited number of mitotic divisions remain unclear. In this chapter I 

propose that the mode of germline development in metazoans is determined by 

selection against mitochondrial mutations. A simple mathematical model supports the 

hypothesis, showing that the evolutionarily stable number of germline cell divisions 

depends on mitochondrial mutation rates. In organisms with low mitochondrial DNA 

copying-error rates, segregation of mutations over multiple cell divisions generates 

variation and allows selection to optimize gamete quality through high numbers of 

germline cell divisions. The new hypothesis successfully explains the absence of 

germline sequestration in basal metazoans and plants and the germline structure 

differences between males and females. 
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5.2 Introduction 

Higher animals generate reproductive cells in dedicated germ-cell lineages, separating 

primordial germ cells from the rest of the stem cell populations early in embryogenesis 

(Extavour, 2007). Basal metazoans, such as sponges and corals, on the other hand, 

generate gametes from the long-lived pluripotent stem cell lineages that also give rise 

to terminally differentiated somatic cells (Blackstone and Jasker, 2003; Extavour and 

Akam, 2003; Extavour, 2007). Based on the phylogenetic distribution of character 

states, it has been proposed that the last metazoan common ancestor produced 

gametes in a similar fashion, and did not segregate a dedicated germline from somatic 

stem cells (Blackstone and Jasker, 2003). While several hypotheses exist to explain 

the evolutionary advantages of reproductive division of labour into an immortal 

germline and “disposable” soma (Weismann, 1890; Kufopanou, 1994; Queller, 2000; 

Bendich, 2010; Simpson, 2012; Goldsby et al., 2014), very little is known about the 

evolutionary forces responsible for the origin of bilaterian-like germline architecture. 

Particularly intriguing are the sex-specific features of the germline, where a limited 

number of oocytes is produced in a relatively low number of germline cell divisions, 

while sperm are produced continuously through the male’s adulthood. 

In his seminal work on biological individuality as a derived animal trait, Buss 

(1983, 1987) proposed that germline sequestration in the early stages of embryonic 

development protects the multicellular organism from proliferation of non-cooperative 

defector cell lineages and their transmission across generations. Stable multicellularity 

requires cooperation between somatic and germ cell lineages, but selection on the 

lower level could favour cells that evolve selfish traits and increase their own replication 

rate to the detriment of the multicellular organism. Once a single lineage is set aside 

as a progenitor of all reproductive cells, selfish mutations that arise in a much larger 

somatic cell population are not included in the gametes and do not survive past a single 

generation (Michod and Roze, 2001). The only way for somatic cells to increase the 
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reproductive fitness of their kin is therefore by increasing the fitness of the multicellular 

organism they belong to through cooperation. In Buss’ view, germline sequestration 

was one of the key innovations in multicellular development, allowing the evolution of 

complex multicellular organisms with highly specialized somatic tissues. Frank (1996) 

argued that selection for host control over endosymbiont reproduction would similarly 

favour early germline sequestration, enforcing cooperation between symbionts in 

somatic cells.  While germline segregation reduces the chances for a selfish mutation 

to access the germline or found a new organism clonally, selfish conflict does not 

explain why early branching metazoans with no pre-determined germ-cell lineage 

manage to maintain relatively complex multicellularity, even though opportunities for 

selfish mutation to arise in multiple stem cell divisions abound. This implies that 

evolutionary conflict might not be the key force driving the evolution of early germline 

sequestration.  

Multipotent stem cell lineages giving rise to both reproductive and somatic 

tissues must necessarily exist in development of any multicellular organism, but how 

long multipotency is maintained differs significantly across metazoan groups (Juliano 

et al., 2010). Basal metazoans maintain these lineages throughout their lengthy 

lifetimes (Seipel et al., 2003; Funayama, 2010; Muller et al., 2004; Juliano et al., 2010), 

while bilaterians often lose pluripotency early in development (Extavour 2007), 

implying, by definition, an early origin of a unipotent germ cell lineage. Arguably, the 

number of germline cell divisions can be effectively regulated only in the latter case, 

and the real evolutionary advantage of the strict germline-soma distinction might in fact 

lie in the reduced number of mitotic germline stem cell divisions (Michod and Roze, 

2001).  Particularly illuminating in this regard are the sex-specific features of the 

germline architecture, where the number of mitotic germline divisions can differ 

significantly between males and females (Drost and Lee, 1995; Crow, 2000).  

Focusing on the evolution of germline by reducing the number of cell replication 

cycles shifts the problem specifically to bilaterian females, that, in contrast to male 
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spermatogenesis, very rarely maintain germline stem cells throughout adulthood 

(Spradling et al., 2011). Female gametes of higher animals are sequestered early in 

embryogenesis in a transcriptionally repressed state, with meiosis arrested in 

prophase I and mitochondria in a state of functional quiescence (dePaula et al., 2013). 

Strikingly, female gametes are usually large cells packed with mitochondria, with as 

many as 10ª copies of mitochondrial DNA in mammalian oocytes (Shoubridge and 

Wai, 2007). Mitochondrial DNA is usually inherited uniparentally: male mitochondria 

are either excluded from the zygote or destroyed on entry to the oocyte (Sato and Sato, 

2013; Chapter 4). Hence, from a mitochondrial point of view, male gametes are 

relieved of the constraints that operate on female germ cells, and do not need to 

function as a sequestered and protected environment. These traits point to 

mitochondrial function as being central to germline development and evolution. The 

possibility that selection for mitochondrial quality could have contributed to the 

evolution of the female germline has been raised before (Allen, 1996; Bendich, 2010; 

dePaula et al., 2013), but never formally addressed.  

 

5.3 Hypothesis: Purifying selection against 
mitochondrial mutations drives evolution of metazoan 
germline architecture 

Cell division in multicellular organisms is preceded by replication of both nuclear and 

mitochondrial genomes. DNA replication is a major source of deleterious mutations 

through copying errors and therefore repeated cell division inevitably leads to mutation 

accumulation. Within a single generation and in the absence of recombination, the 

number of mutations in the nuclear genome can only increase with time, due to both 

copying errors and background damage. While the mean number of mutations in 

mitochondrial genome also increases with time, random segregation of mitochondrial 
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mutations at every cell division generates variance in the number of mutations per cell, 

with some daughter cells containing fewer mutations than the parent cell. 

I propose that the mode of germline development in metazoans is determined 

by the competing effects of (1) the increasing mean number of mitochondrial mutations 

and (2) increasing variance in the number of independently segregating mtDNA 

mutations between gametes. Under low mtDNA copying error rates, mitochondrial 

variance generated via repeated stem cell division together with selection at the level 

of the organism is predicted to favour gamete production from the long-lived pluripotent 

stem cell lineages, characteristic of plants and basal metazoans. Increasing mtDNA 

mutation rates would then select for reduced numbers of germline cell divisions, 

leading to the derived state of early germline sequestration. As mitochondria in 

metazoans are inherited mostly maternally, these constraints do not apply to the male 

germline. While a similar argument can be made for mutation accumulation in the 

nuclear genome, the large numbers of germline stem cell replication cycles in males 

and basal metazoans suggests that nuclear mutations do not play a primary role in the 

evolution of germline development. 

 

5.4 Model of the germline evolution in multicellular 
organisms 

Consider an infinite population of multicellular organisms, each starting its 

development from a single cell containing M independently segregating mitochondria 

and undergoing º symmetric cell divisions (Fig 5.1). Similar to the models developed 

in previous chapters, the population state can be represented by two ' + 1 ×2 

matrices Hé, á = 0, 1 denoting the mating type. The matrix element JK,R
é  denotes the 



107 
 

frequency of zygotes in a nuclear state S = 0, 1 (wild-type or mutant) and with ( mutant 

mitochondria at the start of the generation.  

Mitochondrial replication introduces new mitochondrial mutations due to 

mtDNA copying errors at a rate U per cell division, a process represented by the 

transition matrix O with elements 

PQ,R =
' − S
T − S

UQ/R 1 − U 5/Q. (5.1) 

I also consider ‘background’ mitochondrial mutations due to oxidative or UV damage 

that arise even in the absence of replication, represented by the transition matrix Ω of 

the same binomial form as O, but with a different mutation rate Å (per generation). 

Figure 5.1. Modelling mitochondrial mutation dynamics in development of a 
multicellular organism. The number of cell divisions needed to produce gametes æ is 
an evolvable trait. Large æ indicates gamete production from the multipotent stem cell 
population as in basal metazoans (a), while low values of æ are characteristic of 
bilaterians that set aside their germ cell populations early in embryonic development (b). 
The mean number of mitochondrial mutations increases with every cell division due to 
copying errors, but segregational drift also increases variance in the mutation frequency 
(c). Increasing number of segregating units (M) reduces the variance, but not the mean 
(d). Copying error rate is set to U = 0.01 while the initial mutation frequency is set to 
0.24. 
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Every cell within an organism grows and splits into two, segregating its mitochondria 

randomly into the two daughter cells. Random drift due to the partitioning of 

mitochondria via sampling without replacement can be represented by the stochastic 

matrix l, so that 

mQ,R =
2S
T

2' − 2S
' − T

2'
'

/"

. (5.2) 

Within a single generation, the probability distribution for the number of mutant 

mitochondria between the daughter cells after ; divsions can be expressed as øK(;) =

lO @¿ K , where ¿ K  is the initial population state for a cell containing ( mutant 

mitochondria, that is  eQ
K = Ä(T, () (Kronecker delta). As the number of cell divisions 

increases, both the mean frequency of mutations within the cell and its variance 

increases (Fig. 5.1c), so that some cells contain fewer mutants than the zygote. Note 

that increasing mitochondrial population size within the cell ' dampens segregational 

drift and reduces variance in the mutant frequency (Fig. 5.1d). 

The fitness of an adult individual after º cell divisions is calculated as a mean 

value of its constituent cell fitness values, each of which is itself a function of the 

frequency of mutant mitochondria within the cell. For the sake of simplicity, I assume 

that mutations due to background damage accumulate mostly after the embryonic 

development is complete, which is true if the lifespan of the individual significantly 

exceeds the duration of embryogenesis. Starting with a zygote containing ( mutant 

mitochondria, adult fitness after º cell divisions can be approximated as 

_ º,( = [\Ω lO ¡¿ K . (5.3) 

The row vector [\ represents the cellular fitness function and has elements ^K 	=

	1 − ` ( ' a, where ` is selection strength and b is the strength of epistatic 

interactions between deleterious mutations. As in preceding chapters, I will only 

consider b ≥ 	1. 
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Selection changes genotype frequencies according to adult fitness, which is 

here taken as the mean fitness of all somatic cells. The updated population state after 

selection is 

Hé√ =
Z [\Ω lO ¡ \ Hé

[\Ω lO ¡Hé]#
= Ω[Hé] (5.4) 

Here ]# is a column vector of ones, so that Hé]# gives gamete frequencies 

independent of their nuclear alleles and the denominator is then simply the average 

fitness of a mating type á, the part of the nominator within curly brackets is the diagonal 

square matrix of adult fitness values, and  Ω is selection operator. Gamete frequencies 

after selection are then 

«•,8é = 	Ω lO »Ω Hé
•,8,	

«•,"é = 	Ω lO »√Ω Hé
•,". 

(5.5) 

Here æ is the number of germline cell divisions in wild-type organisms and æ≠ is the 

number of germline cell divisions in the mutant invader. 

Haploid gametes of the opposite mating types fuse at random. I only consider 

the case of uniparental inheritance of mitochondria from mating type 0. The zygote 

frequencies therefore can be expressed as 

ç… = À«•,…8 ]5e"
\ «•, " . (5.6) 

A pair of indices ()*) here denotes the diploid nuclear state of the zygote, so that a 

column vector ç…  contains frequencies of zygotes with nuclear allele ) = 0, 1 inherited 

from mating type 0 and * = 0, 1 inherited from mating type 1. The stochastic matrix À 

corresponds to resampling from ' to 2' mitochondria in cell fusions with uniparental 

inheritance, so that 

tQ,R =
2'
T

S
'

Q
1 −

S
'

#5/Q
. (5.7) 

The haploid life cycle concludes with two meiotic subdivisions, 

H•,±8 = #̈ "̈ ç±8 + ç±" ,	
(5.8) 
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H•,±" = #̈ "̈ ç8± + ç"± , 

with ≤ = 0, 1 and the two transitions matrices "̈ and #̈being the same as in Chapter 

4 (Eq. 4.7 and Eq. 4.8). 

To determine the evolutionarily stable number of germline cell divisions æ$%%, I 

consider the invasion of a mutant allele for the number of germline cell divisions 0 ≤

æ ≤ º different from the one fixed in the resident population. The new allele is inserted 

into the subpopulation of mating type 0 at a small frequency B = 0.005 and its evolution 

is tracked until either fixation or extinction. Only the case of strict uniparental 

inheritance of mitochondria is analysed here, and so nuclear modifiers reducing or 

increasing æ are neutral in mating type 1. I consider all possible values of æ and build 

the pairwise invasibility plots depicting the sign of the invasion fitness, i.e. the growth 

rate of the invader subpopulation when rare (Geritz et al., 1998). 

 

5.5 Evolutionary stable strategy of germline 
development depends on µ and β 

The main benefit of reducing the number of cell divisions in the germline is to reduce 

the net input of copying errors (U) in gametes (Fig. 5.1c, d). Setting gametes aside 

early in development rises the mean offspring fitness in the next generation, but comes 

at a cost of reduced segregational variance. When gametes are derived later in 

development, there is a higher chance for segregational drift to generate germ cells 

with lower or higher numbers of mitochondrial mutations than the organism mean, 

which facilitates selection among offspring and improves population fitness over 

generations. The tension between these two forces determines the mode of germline 

sequestration favoured by purifying selection against mitochondrial mutations. 

 Numerical analysis of the model recovers a single global attractor 0 ≤ æ$%% ≤

º, indicating the uninvadable endpoint of germline evolution (Fig. 5.2). Starting in any  
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monomorphic state, the population will eventually evolve towards the ESS indicated 

by the singular point in pairwise invasibility plots, at which point no further change is 

possible. The invasion attempt in all cases results in either extinction or fixation of the 

invader allele, that is, dimorphic states do not exist, and the pairwise invasibility plots 

reflect both the invasion fitness and the equilibrium frequency of the invader allele (0 

or 1). 

 When mitochondrial mutation input through copying errors (U) is low, the benefit 

of increased variance between gametes tends to outweigh the benefit of curtailing 

germline cell division early in development, favouring high values of æ$%% (Fig. 5.3a). 

Note that if copying errors were the only kind of mutation, then selection would always 

favour setting germ cells aside early in development. However, gametes continue to 

accumulate new mutations as a result of background damage (Å > 0), irrespective of 

the number of cell divisions and mitochondrial replication cycles, and even after the 

germline development is complete (Barritt et al., 2000). These mutations can only be 

Figure 5.2. Pairwise invasibility plots for the number of germline cell divisions æ. 
Values of æ for which the invasion is successful are within the regions marked with “+”. 
Arrows show the direction of trait evolution assuming small changes in æ, filled circles 
indicate positions of evolutionarily stable attractors corresponding to the number of 
germline cell divisions expected to evolve in the infinite population (a). Large values of 
æ are evolutionarily stable under low copying error rates U (b). The number of 
mitochondria per cell is set to ' = 50, background mutation rate per generation is Å =
0.01, b = 2, ` = 1.  
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segregated out though further rounds of cell division, favouring the increase in æ$%% 

with rising Å (Fig. 5.3a). 

 Not all mitochondrial mutations are necessarily lethal if fixed, and the efficacy 

of purifying selection for certain kinds of mutations can be low. This effect in the model 

is captured by selection strength ̀ , which can vary from 0 to 1. Interestingly, the results 

show that weak selection favours low numbers of germline cell divisions at the ESS, 

while strong selection is needed to maintain the advantage of late germ cell 

determination (Fig. 5.3b). The benefit of segregational drift in multiple cell divisions 

under high values of æ is the greater efficacy of selection acting on individuals of highly 

variable mitochondrial fitness. This benefit cannot be effectively realized under weak 

purifying selection, in which case early germ cell sequestration is expected to evolve. 

Figure 5.3. Evolutionarily stable number of germline cell divisions æ depends on 
mitochondrial mutation rates and selection strength. Increasing mtDNA copying error 
rate favours early germline sequestration, while high background mutation rates Å favour 
high numbers of germline cell divisions, i.e. production of gametes from constantly dividing 
multipotent stem cells throughout organism’s adult life (a). ' = 50, b = 2 and ` = 1	in the 
left panel. Increasing ' dampens the segregational drift, reducing variance in (/' and 
giving an additional advantage to late germline sequestration (b). The benefit of late 
gamete production (high æ at the ESS) is most apparent under strong purifying selection 
(` → 1), where the additional segregational variance could increase the efficacy of 
purifying selection. As in previous chapters, increasing epistasis b (the curvature of the 
concave fitness function) favours alleles associated with less variable mutation load 
among offspring due to the short-term fitness benefit of reduced genetic variance. Mutation 
rates are set to U = 0.0003 and Å = 0.01, the total number of cell divisions in soma is º =
20. 
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 The strength of segregational drift depends on the mitochondrial population 

size '. With large values of ', cell division generates less variance in the frequency 

of mitochondrial mutations per cell (/' (Fig. 5.1c, d), hindering purifying selection on 

the organism level. The loss of variance due to high ' can be compensated by more 

germline cell divisions, and the results indeed show that æ$%% increases with the 

number of mitochondria '. The benefit of the additional variance in (/' generated 

throughout germline development also depends on the strength of epistatic 

interactions between mitochondrial mutations, as the shape of the fitness function 

determines how changing variance affects mean adult fitness (see Chapter 2). Akin to 

the findings discussed in previous chapters where strong negative epistasis b gave a 

short-term advantage to nuclear modifiers reducing variance in (/',  increasing b in 

the present model favours germline sequestration earlier in development (lower æ$%%, 

Fig. 5.3b). 

 

5.6 Discussion 

Current theoretical explanations for the evolutionary advantage of the germline-soma 

differentiation have it that setting aside a dedicated germ cell lineage reduces the 

scope for evolutionary conflict within a multicellular organism, and reduces the 

mutational load in the nuclear genome (Buss, 1987; Michod and Roze, 2001; Goldsby 

et al., 2014). These views, however, cannot explain the lack of germline sequestration 

in basal metazoans nor the profound differences in germline architecture between 

males and females in higher animals. Here I developed a new hypothesis that locates 

the key driving force for the evolution of a dedicated germline in purifying selection 

against faulty mitochondria. Basal metazoans with low mtDNA copying error rates 

benefit from segregational variance generated via a large number of germline cell 

divisions, while high mitochondrial mutation rate per cell division favours early germ 

cell sequestration. Since mitochondria in most metazoans are inherited maternally, the 
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constraints on mitochondrial quality in the male germline are less stringent, explaining 

the sex-specific aspects of the germline architecture. In humans, for example sperm 

are produced continuously through life with around 400 germline cell divisions by the 

age of 30, while oocyte production requires only around 24 cell divisions (Drost and 

Lee, 1995; Crow, 2000). 

The mathematical model developed here suggests that with low copying-error 

rates U and high background mutation rates Å, the combination of segregational drift 

and purifying selection should improve mitochondrial quality over generations and 

favour high numbers of germline cell division cycles, eliminating the need for the early 

germline sequestration. Strikingly, these conditions appear to be true for basal 

metazoans and plants. Unlike vertebrate mitochondrial genomes, early branching 

metazoans including sponges, corals and placozoans all have very low mtDNA 

evolution rates (Shearer et al., 2002; Hellberg, 2006; Huang et al., 2008) and long lives 

(implying high per-generation background mutation rate Å) which readily explains why 

these major phyla lack a dedicated germline. Likewise, most plants likely have low U, 

with mitochondrial evolution rates 50-100 times lower than in animals (Knoop, 2004; 

Galtier, 2011), while being exposed to high levels of UV radiation in their phototrophic 

niche, plausibly contributing to high background mutation rate Å.  

Early germline sequestration is widespread in bilaterians and ctenophores 

(Blackstone and Jasker, 2003; Moroz et al., 2013). In line with the prediction of the 

model, both groups have high mitochondrial mutation rates, 10-50 times faster than 

their mean nuclear evolution rate (Lavrov, 2007; Pett et al., 2011). The metabolic 

quiescence of oocyte mitochondria reported by de Paula et al. (2013) can be 

interpreted as a mechanism reducing background damage Å, which in our model 

indeed favours reduced number of germline cell divisions (Fig. 5.3a).  While admittedly 

the overall trend of mitochondrial evolution rates across animals and plants does not 

allow us to differentiate between U and Å, there is some evidence that mitochondrial 
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evolution in bilaterians is dominated by copying errors, while background, or oxidative 

damage is more pronounced in plants and basal metazoans (Hellberg, 2006; Ameur 

et al., 2011). A more systematic evaluation of U and Å across the metazoan and plant 

groups would serve as an ultimate test for the present hypothesis.  

It has been previously suggested that metazoans derive from an ancestor 

specifying the fate of its germ cells in late post-embryonic development (Extavour, 

2007; Funayama, 2010). Sponges and most of cnidarians use similar strategies of 

gamete production from populations of endodermally derived pluripotent stem cells 

capable of giving origin to both somatic and reproductive cells (Agata et al., 2006). It 

is also very likely that gamete production from somatic or stem cell pools takes place 

in Placozoa (Blackstone, 2009), and could have been present in early lineages 

predating the Cambrian explosion (Mitchell et al., 2015). If the hypothesis presented 

here is correct, the evolutionary transition to the germline-soma distinction 

characteristic of bilaterians was driven by the increase in mitochondrial copying error 

rate U. 

Why did mitochondrial copying error rate increase in the lineage leading to 

bilaterians, and, very likely, ctenophores? An interesting possibility is that rising oxygen 

levels in late Neoproterozoic (Chen et al., 2015) allowed the evolution of predation, 

rising physical activity and larger body sizes of certain pre-bilaterian lineages (Sperling 

et al., 2013). Greater activity could have increased rates of tissue turnover, protein 

synthesis and the frequency of genome replication, inevitably rising the effective 

copying error rate per cell division U. The fundamental need to reduce the number of 

germline cell divisions could have culminated in the complete germline-soma 

distinction, allowing further somatic differentiation and the evolution of complex 

developmental processes characteristic of modern bilaterians. 
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CHAPTER 6. CLOSING REMARKS 
 

6.1 Utility of abstract models in evolutionary biology 

The modern evolutionary synthesis of the first half of the 20th century can be attributed 

in large part to the theoretical work of Sewall Wright, Ronald Fisher and JBS Haldane, 

uniting Darwinian selection with Mendelian heredity and genetics (Huxley, 1942; Crow, 

1987). The trio laid the foundations of the classical population genetics by studying 

mathematical models that in spite of multiple simplifications and approximations to 

maintain analytical traceability, elegantly captured the general trends of gene-

frequency change under selection, mutation, segregation and drift. The explanatory 

power and the impact of the earliest theoretical work in population genetics can hardly 

be overstated, with the mathematical models of Fisher and others now considered a 

fundamental component of modern evolutionary theory. 

But a handful of empirically inclined evolutionary biologists of the time doubted 

the utility of mathematical gene-pool models. Ernst Mayr, Haldane’s close friend and 

frequent correspondence partner (Rao and Nanjundiah, 2010), sharply criticized the 

highly reductionist approach of population genetics, and questioned whether 

mathematical theory can provide any novel contributions to the general understanding 

of evolutionary processes (Mayr, 1959). Mayr compared the mathematical models of 

Haldane and colleagues to random sampling from a bag full of coloured beans, 

referring to them as “beanbag geneticists” (Mayr, 1963): 

“The Mendelian was apt to compare the genetic contents of a 

population to a bag full of colored beans. Mutation was the exchange 

of one kind of bean for another. This conceptualization has been 

referred to as “beanbag genetics”. Work in population and 
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developmental genetics has shown, however, that the thinking of 

beanbag genetics is in many ways quite misleading. To consider 

genes as independent units is meaningless from the physiological as 

well as the evolutionary viewpoint...” 

Mayr’s criticism was largely unfounded, however, and could have stemmed 

from the plain misunderstanding regarding the true purpose of mathematical models, 

and unjustified expectations (Borges, 2008). While empirical insights guide modelling, 

the ultimate goal of mathematical modelling, as that of science in general, is to reduce 

the complexity of the world making interpretation and discovery easier, and to uncover 

regularities or laws capable of approximating the system’s future behaviour. Models 

are almost never intended to simulate the complex world as it is. Simplification of reality 

through modelling is intentional and the reductionism is meaningful, as it removes 

much of the complexity that is not strictly necessary to understand the most general 

rules governing the behaviour of a system, nor to make predictions of its future 

evolution. At the same time, models permit a broader exploration of what is 

theoretically possible, giving better understanding of why some outcomes and states 

are universal in nature, while others never occur. 

Nearly six decades later, the philosophical underpinnings that fuelled the Mayr-

Haldane dispute remain relevant (Servedio et al., 2014). The mathematical models 

developed in this thesis represent little more than a branch of beanbag-genetics, and 

as such are prone to the same kind of criticism that Wright, Fisher and many others 

were forced to endure. But not unlike Haldane (1964), I remain convinced of the 

explanatory and predictive potential of abstract mathematical models, provided that 

the readers’ expectations are reasonable and that the intention behind developing 

these models is not misinterpreted.  

It therefore needs to be stressed that theoretical models developed in this 

thesis were not designed to simulate any particular real-world system. Parameter 

values, such as mutation rates, selection coefficients, epistasis strength or the number 



118 
 

of germline cell divisions, do not (and need not) correspond to empirically measured 

values. Instead, these mathematical models should be treated as artificial complex 

systems abstracting the biological world, and designed to test specific hypotheses, to 

uncover hidden links between selective forces and parameters given a set of 

simplifying assumptions. Without mathematical models, abstract as they are, the one 

would be left with vague verbal assertions and conjectures, that, given the fundamental 

nature of problems investigated, would be nearly impossible to test empirically.  

 

6.2 Mitochondrial mutation dynamics provide a unified 
account of the evolution of eukaryotic sex 

I started this thesis with several fundamental assumptions—hypotheses on the origin 

and evolution of first eukaryotic lineages, that despite being backed by some empirical 

and theoretical work, remain criticized (Lynch and Marinov, 2015; Booth and Doolittle, 

2015). Perhaps most central to this work is the assumption of mitochondrial 

endosymbiosis arising early in prokaryote-eukaryote transition and being largely 

responsible for the further genetic and energetic transformations that shaped the 

nascent eukaryotic lineage, most notably, sex with whole-cell fusion. I also assumed 

that later in eukaryotic evolution, there has been a constant selective pressure to 

maintain the quality of mitochondrial genomes, strong enough to select for nuclear 

modifiers altering the organism life cycle and developmental programmes. Distancing 

myself from the solely nuclear perspective on the evolution of eukaryotic sex, I focused 

on the dynamics of mitochondrial mutations instead. 

Within the bioenergetic framework for understanding eukaryotic genome 

evolution (Lane and Martin, 2010; Lane et al., 2013; Allen, 1993; 2015) these 

assumptions are easily justifiable, and in fact form a part of the so-called evolutionary 

synthesis of bioenergetics and genetics, in which chemiosmotic energy transduction is 

seen as one of the central and most conserved aspects of life (Lane et al., 2013). The 
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assumption of a fundamental requirement for mitochondrial genome quality allowed 

me to develop a unified, self-consistent theoretical framework for the evolution of 

eukaryotic sexual traits, from the origin of sex itself to sexual dimorphism in higher 

eukaryotes and divergent sex-specific strategies of germline development. Within this 

framework, sex in the form of proto-eukaryotic host cell fusion evolves because 

cytoplasmic mixing masks detrimental fitness effects of mutant endosymbionts or 

faulty organelles, i.e. with cytoplasmic mixing, the fitness of the offspring in the next 

generation is on the average higher than their parents’. Recombination among proto-

nuclear chromosomes then follows, but only as a consequence, and not as a primary 

driver of cell fusion as the current theory predicts. I therefore suggest that evolutionary 

forces responsible for the origin of sex were different from the advantages of 

recombination that maintain sexual life cycles in modern eukaryotes (Otto, 2009). 

 Biparental inheritance of endosymbiont or organelle genes inevitably becomes 

deleterious in a long term, because cytoplasmic mixing lowers between-group variance 

in the mutational load and reduces the efficacy of purifying selection at the level of the 

host cell. Two mating types arise, with the coupling of mitochondrial inheritance locus 

to one of the mating types increasing variance and improving the efficacy of selection 

in the long term—the effect that is most significant under high mitochondrial mutation 

rates. Evolution of the two genetically determined mating types breaks the symmetry 

of sex, and lays the foundation for the further evolution of sexual dimorphism and 

sexual conflict. 

The extent of mitochondrial mixing at fertilization can be controlled by alleles 

linked to the maternal mating type contributing most of the zygote’s mitochondria, or 

to the opposite (paternal) mating type. I showed that strict uniparental inheritance 

evolves under maternal control, favouring the complete destruction of paternal 

cytoplasmic genes, whereas paternal control could favour mitochondrial mixing and 

support stable heteroplasmy. Since the evolutionary interests of two mating types or 

two sexes (later in evolution) diverge, competition over the control of cytoplasmic 
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inheritance can arise. These new findings suggest that inter-sexual competition could 

have been the main driving force behind the evolution of the extraordinary diversity of 

cellular mechanisms responsible for discarding paternal mitochondria.  

 With the advent of multicellularity, the fundamental requirement to maintain 

healthy mitochondrial populations led to the evolution of developmental programmes 

that facilitate purifying selection at the level of an organism, at the same time avoiding 

excessive mutation accumulation in female gametes. A restricted number of germline 

cell replication cycles, for example, could evolve in response to increasing mtDNA 

replication error rates in the metazoan lineage leading to bilaterians. If the 

“background” damage to mitochondrial DNA dominates, however, unrestricted stem 

cell division within the germline will remain evolutionarily stable, as it maintains high 

variance in the mutant load between gametes and improves the response to purifying 

selection between offspring. Interestingly, as males in higher metazoans do not pass 

on their mitochondria to future generations, these developmental constraints do not 

apply to spermatogenesis. As a consequence, even under high mitochondrial mutation 

rates, males can maintain actively dividing germline stem cell populations throughout 

adulthood, specializing in the mass-production of gametes rather than sequestration 

of a limited number of gamete precursor cells early in development.  

 

6.3. Implications for astrobiology 

One of the central questions in the field of astrobiology is what are the most 

fundamental shared principles that drive the evolution of life on Earth, and what are 

the most likely properties of cellular life evolving elsewhere in the universe (Billings et 

al., 2006). Although we are still far from detecting any signs of life beyond Earth or 

even estimating the probability of its existence, with the abundance of recent 

discoveries of planets and moons that might possess properties supporting biological 

life, the issue has never been more relevant. Arguably, abstract mathematical 



121 
 

modelling might become the major contributor towards understanding the most basic 

shared characteristics of cellular life, independent of the location of its origin. 

 Assuming that cellular life is in general likely to rely on pH gradients and 

chemiosmosis for energy transduction (Russell et al., 2014), by the conjectures of Lane 

and Martin (2010) it follows that complex multicellular life forms with large genomes 

could evolve only by the means of internalization of chemiosmotic membranes, either 

through endosymbiosis or some alternative mechanism. Based on these arguments, 

Lane (2015) further proposed that simple microbial life might be relatively common in 

the universe, given the plausible abundance of extra-terrestrial hydrothermal vent-like 

structures. But because of the strong bioenergetic constraints on what is achievable 

through natural selection, that does not necessarily imply the successful progression 

from bacterial to complex eukaryote-like life, which requires a rare evolutionary 

transition producing internal energy-generating membranes supported by their own 

local “genomic outposts”—the kind of transition that cannot result from small genetic 

changes gradually selected over time (Maynard Smith and Szathmáry, 1995). 

 While somewhat speculative, these assumptions suggest that the evolutionary 

pathway from asexual microbial life to highly complex multicellular organisms with two 

sexes, as detailed in the preceding chapters, could be a shared feature of all complex 

life and apply equally well to cellular life forms elsewhere in the universe—a 

consequence of strong bioenergetic constraints exerted on the seemingly unlimited 

potential of nuclear genetics. The evolution of sexual life cycles would be a must en 

route to complex life due to the fundamental need to maintain the integrity of large 

nuclear genomes, and could evolve through cell fusion initially masking the detrimental 

effects of mutations within cytoplasmic genes. This would create a selective pressure 

for the emergence of mechanisms restricting cytoplasmic inheritance and establishing 

the population with two mating types. The evolutionary transition to multicellularity 

would create new selective forces acting on developmental programmes, resulting in 

the fundamental differences in germline development between sexes: female-like 
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organisms protecting the cytoplasmic genes in early sequestered gametes and males 

specializing in mass production of reproductive cells that do not contribute their 

cytoplasmic genes to the next generation. The evolution of secondary sexual 

characteristics, sexual conflict and sexual selection would follow. 

As a final closing remark, it needs to be reiterated that the power of 

mathematical modelling in biology lies largely in its ability to reveal what is possible, 

without necessarily discovering the ultimate truth. The theoretical considerations 

presented in this thesis suggest one evolutionary pathway from primordial life to the 

biological complexity observed today, but many alternative pathways are possible. 

Given the enormous complexity of biological systems, it is very likely that multiple 

selective pressures and multiple intertwined trajectories have contributed to the 

evolution of phonotypes discussed in this work, obscuring the general picture. It is up 

to future research, theoretical and empirical, to identify the dominant pathways, and to 

bring us even closer to a complete understanding of the universal principles governing 

the evolution of complex life. 
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