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Virological Blips and Predictors of Post Treatment Viral
Control After Stopping ART Started in Primary HIV Infection
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Background: Few individuals commencing antiretroviral therapy
(ART) in primary HIV infection (PHI) maintain undetectable
viremia after treatment cessation. Associated factors remain unclear
given the importance of the phenomenon to cure research.

Methods: Using CASCADE data of seroconverters starting ART in
PHI (#6 months from seroconversion), we estimated proportions
experiencing viral blips (.400 copies followed by ,400 copies HIV-
RNA/mL without alteration of regimen) while on ART. We used Cox
models to examine the association between time from ART stop to loss
of control (2 consecutive measurements .1000 copies per milliliter)
and magnitude and frequency of blips while on ART, time from
seroconversion to ART, time on ART, adjusting for mean number of
HIV-RNA measurements/year while on ART, and other confounders.

Results: Seven hundred seventy-eight seroconverters started ART
in PHI with $3 HIV-RNA measurements. Median interquartile
range (IQR) ART duration was 16.2 (8.0–35.9) months, within
which we observed 13% with $1 blip. Of 228 who stopped ART,

119 rebounded; time to loss of control was associated with longer
interval between seroconversion and ART initiation [hazard ratio
(HR) = 1.16 per month; 1.04, 1.28], and blips while on ART (HR =
1.71 per blip; 95% confidence interval = 0.94 to 3.10). Longer time
on ART (HR = 0.84 per additional month; 0.76, 0.92) was associated
with lower risk of losing control. Of 228 stopping ART, 22 (10%)
maintained post treatment control (PTC), ie, HIV-RNA ,50 copies
per milliliter $24 months after ART cessation.

Conclusion: HIV viral blips on therapy are associated with
subsequent viral rebound on stopping ART among individuals
treated in PHI. Longer duration on ART is associated with a greater
chance of PTC.
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control (PTC)
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INTRODUCTION
Effective combination antiretroviral therapy (ART) con-

trols HIV-1 viral replication to levels below the limit of detection
of current laboratory assays,1–3 confers improved clinical out-
come,4 and prevents onward transmission.5 However, during
suppressive therapy many patients experience transient detectable
viremia, or “blips,”6 defined as detectable plasma viremia .50
copies HIV-RNA/mL which subsequently returns to,50 copies
without alteration of ART regimen.7,8 Among such individuals
subsequent viral failure remains infrequent if blip levels remain
low6,9 but, where virological failure ensued, the best predictor
was a blip magnitude of .400 copies HIV-1 RNA/mL.10,11

Furthermore, for most patients achieving HIV-RNA ,50 copies
per milliliter, approximately 1–3 copies of plasma HIV-RNA can
be detected using more sensitive assays.12

ART is not a cure for HIV-1 infection—a consequence of
an inaccessible reservoir of virally infected cells.13–15 Novel
approaches exploring “HIV-cure” strategies are under develop-
ment. At present, although not routinely recommended, the
only true test of “cure or remission” within the context of these
trials is to stop ART, but only where planned and carefully
monitored. It remains uncertain which individuals might be best
placed to safely interrupt therapy.

For rare individuals initiating ART in primary HIV
infection (PHI), plasma viremia remains undetectable after
treatment interruption (TI). This phenotype has been termed
post treatment control (PTC)16 and seems to be more common
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among individuals stopping treatment initiated during PHI;
a disease stage where the viral reservoir is smaller compared
with chronic infection,17,18 where immune dysfunction is less19

and ART induced immunological recovery is often better.20

Assessing PTC necessarily requires a TI. For most individuals,
a TI results in viral load rebound,21–23 which is more rapid
among those initiating in chronic infection than in PHI.
Furthermore, although this rebound has been shown to confer
an increased risk of all-cause mortality for those interrupting
ART initiated in chronic infection,15 viral recrudescence
increases the risk of onward transmission after TI, irrespective
of disease stage. Therefore, if TI is planned in the context of
cure research, it needs to be HIV-RNA guided and closely
monitored, as prolonged TI guided by CD4 has been shown to
increase morbidity/mortality.15 Predictive markers that can
evaluate individuals at increased likelihood of achieving PTC
will be valuable tools in the design of future cure trials.

Although the exact mechanisms underlying PTC
remain unknown, important predictors include low levels of
viral reservoirs before TI, early initiation of ART, and longer
duration of therapy.16 This is supported by data from the
SPARTAC trial24,25 where pre-TI levels of HIV-1 DNA also
predicted viral rebound26 after ART cessation and data from
early treatment studies in primates.27

The source and mechanism for viral blips remains
uncertain; however,28 and although blips may reflect
transient periods of reduced ART adherence,29,30 or
variations between viral load assays,31 the frequency and
magnitude of blips on ART might also be related to the size
of the proviral reservoir32,33 and intermittent immune
activation.34,35 We, therefore, explored the frequency,
magnitude, and predictive value of measured viral blips
on the probability of achieving PTC among a cohort of
treated HIV-1 seroconverters interrupting ART started
initiated in PHI.

METHODS

Data Source
We used pooled data from the CASCADE 2014 data

release in EuroCoord (www.EuroCoord.net) of seroconverter
cohorts across Europe, Australia, Canada, and Sub-Saharan
Africa. The collaboration has been previously described,36 in
brief date of HIV seroconversion in CASCADE is estimated
most commonly as the midpoint between the last documented
HIV negative and the first HIV-positive antibody test dates
with an interval of#3 years between the 2 dates (87%). Dates
of seroconversion for the remaining individuals (10%) is
estimated through laboratory evidence of acute infection
(HIV DNA polymerase chain reaction positivity in the
absence of HIV antibodies or antigen positivity with ,4
bands on Western blot), or as the date of HIV seroconversion
illness with both an earlier documented negative and a later
positive HIV test not more than 3 years apart (2%). Fiebig
staging is not part of the algorithm for estimating date of
seroconversion.37

All cohorts contributing to CASCADE received ethics
approval from their individual ethics review boards.

Inclusion Criteria
Only adults older than 16 years starting ART within 6

months of estimated HIV seroconversion (PHI) with at least 3
HIV-RNA measurements while on ART were eligible for this
analysis. Eligibility criteria and numbers, therefore, differ from
our previous publication on proportions achieving PTC.20

Blips
We characterized the proportion of individuals experienc-

ing blips while on ART initiated in PHI, and the associated exact
95% confidence intervals (CIs) for binomial distributed data. We
also identified individuals with multiple blips while on ART. We
used a modified definition of blip as a single plasma HIV-RNA
measure .400 copies per milliliter in a previously suppressed
individual followed by subsequent viral suppression (,400
copies per milliliter) without change in ART regimen.1 Any
magnitude of viremia episode was considered as a blip, as we
were interested in the effect of blips regardless of the reasons for
them. To be classified as having a blip or not, we included only
individuals with HIV-RNA measured with assays detecting
#400 copies per milliliter. Periods of unsuppressed viremia
occurring during ART changes were attributed to the change in
regimen and did not contribute to the analysis of blip rates.

In a sensitivity analysis on blip definitions, we defined
additional blip thresholds of HIV-RNA .50, .100, and
.200 copies per milliliter. The number of individuals
included in this sensitivity analysis was smaller than the
numbers included in the main analysis as fewer individuals
were measured with assays detecting lower values.

Loss of Viremic Control
We used Kaplan–Meier methods to describe time from

ART cessation to loss of viremic control and examined asso-
ciated factors using Cox proportional hazards models. Loss of
control was defined as the second of 2 consecutive HIV-1
RNA measurements .1000 copies per milliliter. Factors of
interest were time on ART, time between HIV-1 seroconver-
sion to ART initiation, plasma HIV-RNA at seroconversion,
ART initiation year, CD4 T-cell count at ART initiation, CD4
T-cell count at ART cessation, ART class, age at HIV-1
seroconversion, sex, HIV-1 transmission risk group, and
magnitude and frequency of blips while on ART. As rebound
is more likely to be observed in those with more frequent
measurements, we also adjusted for the mean number of HIV-
RNA measurements/year while on ART. This also served as
a proxy for adherence and engagement in care. Linear terms for
all continuous variables were used, as there was no evidence
for departures from linearity using natural cubic splines.38

We preformed several sensitivity analyses for the
analysis of loss of viremic control. We defined blips as
.50, .100, and .200 copies per milliliter, and we included
covariates on the magnitude and frequency of each blip
threshold. We also defined loss of control as the second of 2
consecutive HIV-RNA measurements greater than the given
blip threshold. In additional, we limited our analysis to
individuals who were on ART for at least 1 year before
stopping treatment.
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Post Treatment Controllers
PTC was defined as remaining ,50 copies per milliliter

for at least 24 months after ART stops. Once PTC was
achieved, we used a strict definition for loss of PTC status as
the first of 2 consecutive HIV-RNA measurements.50 copies
per milliliter. Because there were very few PTCs, we did not
formally analyze factors related to post treatment control.

RESULTS

Baseline Characteristics
Of 31,772 individuals in CASCADE, 22,688 were

defined as PHI in the ART era ($1995). Of these, 778 started
ART within 6 months of seroconversion and had at least 3 HIV-
RNA measurements. Of these, 228 (30%) subsequently stopped
ART; reasons for stopping ART are unknown.

Among the 778 individuals starting ART in PHI, the
majority were male (92%) seroconverting between 1995 and

2013 at median (IQR) age of 34 (28–42) years. Risk factors
for HIV-1 infection were sex between men (75%), sex
between men and women (17%), injecting drug use (4%), or
other/unknown (5%). ART regimens included Nucleoside/
Nucleotide Reverse Transcriptase Inhibitors NRTI back-
bone with protease inhibitor (PI) based (45%) or nonnucleo-
side reverse-transcriptase inhibitor based (37%) and other
triple combinations (18%). Median interquartile range (IQR)
time to ART initiation from seroconversion was 2.3
(0.7–4.1) months and median (IQR) time spent on ART
initiated in PHI was 16.2 (8.0–35.9) months. Initial
HIV-RNA measurement after HIV diagnosis was median
5.3 (4.5–5.9) log10 copies per milliliter and median CD4
at ART initiation was 477 (316–658) cells per cubic
millimeter, Table 1.

Baseline characteristics for the subset of individuals
subsequently stopping ART initiated in PHI (n = 228) were
similar to all those starting ART in PHI (n = 778), with the
exception of seroconversion year and time spent on ART, as

TABLE 1. Baseline Characteristics of Individuals Initiating ART Within 6 Months of HIV-1 Seroconversion, Those Subsequently
Stopping ART, and Post Treatment Controllers (PTC) in CASCADE

Started ART Subsequently Stopped ART PTC

Total, N 778 228 22

Sex, N (%)

Male 714 (92) 206 (90) 16 (73)

Female 64 (8) 22 (10) 6 (27)

Risk group

MSM 581 (75) 167 (73) 10 (45)

MSW 129 (17) 46 (20) 28 (36)

IDU 28 (4) 10 (4) 2 (9)

OTH 40 (5) 5 (2) 2 (9)

ART initiation class, N (%)

NNRTI 288 (37) 87 (38) 12 (55)

PI 347 (45) 103 (45) 7 (32)

3 N 95 (12) 32 (14) 3 (14)

3 Class 11 (1) 4 (2) 0

Fusion inhibitor 6 (1) 0 0

Integrase inhibitor 30 (4) 2 (1) 0

SC yr, median (IQR) 2004 (2000–2010) 2001 (1999–2005) 2001 (2000–2003)

SC age, yrs, median (IQR) 34 (28–42) 33 (28–41) 35 (28–39)

Time on ART, mo, median (IQR) 16.2 (8.0–35.9) 11.0 (4.2–21.3) 17.4 (6.3–27.6)

Time from SC to ART, mo, median (IQR) 2.3 (0.7–4.1) 2.2 (0.5–3.9) 3.1 (0.6–5.3)

Initial HIV-RNA (log10 copies/mL) 5.3 (4.5, 5.9) 5.3 (4.6, 5.9) 4.9 (4.6, 5.6)

# HIV-RNA measurements per year, median (IQR) 3 (1–4) 1 (1–4.2) 3.5 (1–4.0)

HIV-RNA at ART cessation (log10 copies/mL), median
(IQR)‡

— 0 (0–1.8) 0 (0–1.7)

CD4 at ART initiation 477 (316, 658) 494 (360, 701) 562 (230, 710)

CD4 at ART cessation, median (IQR) — 709 (519–917) 738 (506–890)

Blips, % (95% CI), % 1 blip, copies/mL

.50 13 (11 to 16), 78 11 (7 to 18), 87 7 (1 to 44), 0

.100 9 (7 to 12), 85 9 (5 to 16), 85 7 (1 to 42), 100

.200 6 (5 to 9), 79 9 (5 to 15), 77 9 (3 to 43), 100

.400 7 (6 to 9), 84 9 (6 to 14), 89 7 (2 to 36), 100

‡0 indicates undetectable HIV-RNA.
3 class, drugs from 3 or more classes; 3N, 3 nucleoside reverse-transcriptase inhibitors; IDU, injection drug use; MSM, men who have sex with men; MSW, sex between men and

women; NNRTI, nonnucleoside reverse-transcriptase inhibitors; OTH, other; SC, seroconversion.
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those subsequently stopping ART seroconverted in slightly
earlier years, median (IQR) 2001 (1999–2005), and spent
slightly less time on ART, median 11.0 (4.2–21.3) months.
Blip rates were similar among individuals starting ART in
PHI and individuals subsequently interrupting therapy,
Table 1.

Blips While on ART
Of those starting ART in PHI with HIV-1 plasma

HIV-RNA measured using assays detecting #400 copies
per milliliter, we observed 7% (95% CI: 6 to 9) of
individuals with 1 blip over 400 copies per milliliter, the
majority (84%) of whom we observed only 1 blip. Among
those that blipped over 400 copies per milliliter, median
(IQR) time to the first blip was 1.0 (0.6–2.5) year and,
among those with multiple blips, median (IQR) time
between blips was 0.7 (0.6–1.1) years. Median (IQR) time
to recover from a blip was 57 (32–111) days. Similarly, we
observed at least 1 blip in 13% (11–16), 9% (7, 12), and 6%
(5, 9) over 50, 100, and 200 copies per milliliter, respec-
tively, and the majority, again, of whom we observed only 1
blip. Blip rates were similar among those who subsequently
stopped ART, Table 2.

Factors Associated With Loss of Control After
Stopping ART

Among the 228 individuals stopping ART, 22 (10%)
individuals fulfilled the definition of PTC. Viral rebound was
observed in 119 (52%) individuals; 23%, 37%, and 45% were
observed to have rebounded by 3, 6, and 9 months,
respectively. Median (95% CI) time to rebound was 10.3
(7.6 to 16.4) months. Several factors were independently
associated with loss of control. Each blip .400 copies per
milliliter was associated with a 71% increased risk of loss of

control [hazard ratio (HR) = 1.71 (0.94, 3.10)], as was longer
interval between seroconversion and ART initiation [HR =
1.16 per additional month (1.04, 1.28)]. More frequent HIV-
RNA measurements while on ART were also associated with
loss of control [HR = 1.10 per mean additional measurement/
year increase (1.02, 1.17)] (Table 3).

Conversely, longer time spent on ART was indepen-
dently associated with a decreased risk in loss of control [HR
(95% CI) = 0.84 per 6 month increase (0.76 to 0.92)], as was
later year of ART initiation [HR = 0.91 (0.84, 0.98)] (Table
3). There was no evidence of an association between loss of
control and CD4 T-cell count at ART initiation, ART
initiation class, seroconversion age, sex, or HIV-1 trans-
mission risk group.

Using different blip thresholds, we observed an
increased risk of loss of virologic control per increase in
number of blips of similar magnitude to the results presented
for blips .400 copies per milliliter in Table 1, although this
did not reach statistical significance as fewer individuals
contributed to these analyses. For each additional blip we
found, HR = 1.96 (0.71, 5.38), 1.66 (0.88, 3.13), and 1.65
(0.90, 3.05) for blips of .50, 100, and 200 copies per
milliliter, respectively. Defining loss of control as
HIV-RNA .500 copies per milliliter resulted in similar
time to rebound (Fig. 1), and factors associated with
rebound remained the same as for the main analysis (data
not shown). Time from the start of ART to the first blip
was not associated with time to virologic rebound (data
not shown).

Restricting to individuals who had been on ART for
a year or more before stopping reduced the number of
individuals included in analysis to 91. Time spent on ART
and number of blips .400 copies per milliliter retained the
same magnitude of association, as in the main analysis,
although no longer remained statistically significant effects
for time spent on ART or number of blips .400 copies per

TABLE 2. Characteristics of Blips Among Individuals Initiating ART Within 6 Months of HIV-1 Seroconversion, Those Subsequently
Stopping ART, and Post Treatment Controllers (PTC) in CASCADE

Started ART Subsequently Stopped ART PTC

Total, N 778 228 22

Any blips*, % (95% CI), copies/mL

.50 13 (11 to 16) 11 (7 to 18) 7 (1 to 44)

.100 9 (7 to 12) 9 (5 to 16) 7 (1 to 42)

.200 6 (5 to 9) 9 (5 to 15) 9 (3 to 43)

.400 7 (6 to 9) 9 (6 to 14) 7 (2 to 36)

Time to first blip†, yrs 0.9 (0.5, 1.9) 0.8 (0.4, 1.2) 1.7 (1.2, 2.3)

Multiple blips‡, %, copies/mL

.50 22 (14, 33) 13 (3, 45) —

.100 15 (7, 27) 15 (3, 51) —

.200 21 (10, 37) 23 (6, 57) —

.400 16 (9, 29) 11 (2, 39) —

Time between blips§, yrs 0.7 (0.6, 1.1) 2.6 (1.0, 4.2) —

*Denominator changes with varying blip thresholds due to different number of individuals with the required lower limits of detection.
†Among those with at least 1 blip .400 copies per milliliter, median (IQR).
‡Percentage of individuals with multiple blips among those with at least 1 blip. One PTC had blips .50,100 copies per milliliter and 2 had blips .200,400 copies per milliliter.
§Among those with multiple blips .400 copies per milliliter, median (IQR).
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milliliter [HR = 0.90 (0.78, 1.03) and 2.31 (0.71,
7.48), respectively].

Post Treatment Controllers
Of the 228 individuals interrupting ART, 22 (10.3%)

achieved PTC status. ART initiation combinations for these
22 PTCs included nonnucleoside reverse-transcriptase inhib-
itor-based (n = 12; 55%), PI-based (n = 7; 32%), or triple
nucleoside reverse-transcriptase inhibitors (3N) (n = 3; 14%)
regimens. The proportion of PTCs for who we observed blips
while on ART was slightly lower compared with the 206
individuals interrupting ART not achieving PTC status. We
observed only 1 PTC with a blip .50 copies per milliliter,

compared with 14 [12% (7, 19)] of all other individuals. Post
treatment controllers also spent slightly longer time on ART
compared with all other individuals interrupting ART, median
(IQR) 17.4 (6.3–27.6) months for PTCs compared with 10.9
(3.6–19.0) months. The first HIV-RNA measurement after
HIV diagnosis was slightly lower among PTCs with a median
(IQR) 4.9 (4.6–5.6) log10 copies per milliliter compared with
5.3 (4.6–5.9) log10 copies per milliliter and the CD4 at ART
initiation was slightly higher among PTCs with a median
(562, 230–710) cells per mm3 compared with 493 (363–690)
cells per mm3 among the remaining 206 individuals inter-
rupting ART. Median number of HIV-RNA measurements
per year after ART interruption was similar among PTCs and
non-PTCs at 1 measure/year. Heterogeneity in time from
HIV-1 seroconversion to ART initiation was small because of
the inclusion criteria of starting ART within 6 months of HIV
seroconversion and was, therefore, similar between post
treatment controllers and all other individuals.

DISCUSSION
Using the large CASCADE dataset of individuals with

well-estimated dates of HIV seroconversion, we provide the
first evidence that frequency and magnitude of viral blips
while on ART initiated in PHI is associated with viral
rebound among individuals interrupting ART started in PHI.

The prevalence of PTC (defined by 2 years of undetect-
able viremia after TI) in our cohort is estimated to be 10.3%.
This is not dissimilar to other cohorts reporting PTC23,39–41

and slightly lower than the VISCONTI study (15.6%).16 That
said, most cohorts report few or none, including among early
treated populations.42–46 In comparison with VISCONTI, the
duration of ART was shorter in our cohort, but shorter time
from HIV diagnosis to ART initiation was also predictive of
PTC in both cohorts.

Although much data exist for the predictive value of
blips on subsequent viral failure among individuals on ART
in chronic stages of HIV disease,47–49 it is difficult to
extrapolate this to PTC. The source of viral blips on ART
is unclear. They may, for example, represent release of virus
from transient, random activation of latently infected cells,34

fluctuations in levels of persistent viral replication on ART,50

sanctuary sites of suboptimal antiretroviral penetrance,51 or
nonadherence to ART regimens. One explanation for our
findings is that initiating ART early in PHI results in fewer
viral blips of lower magnitude because of the smaller HIV-1
viral reservoir achieved among these individuals.52,53 Unfor-
tunately, samples were not available to determine HIV-1
DNA measurements to test this assumption, although this is
consistent with data from SPARTAC showing that levels of
total HIV-1 DNA measured at TI predict time to loss of
control.24

The associations observed in our cohort between timing
of ART initiation, duration of therapy, and PTC were linear
and, accordingly, we were unable to determine an optimal
period beyond which ART initiation after seroconversion
may be too late to achieve PTC. These are key questions that
need to be addressed in prospective studies to inform future
cure trial designs and help develop algorithms to predict

TABLE 3. Multivariable Analysis of the Factors Associated With
Virologic Rebound Among Those Stopping ART Initiated
Within 6 Months of HIV Seroconversion Using the CASCADE
Dataset

HR (95% CI) P

Time on ART (per 6-month increase)* 0.84 (0.76 to 0.92) ,0.001

Time from SC to ART (per month
increase)†

1.16 (1.04 to 1.28) 0.006

# blips .400 copies/mL
(per additional blip)

1.71 (0.94 to 3.10) 0.077

# mean HIV-RNA measurements/year
(per additional measurement)

1.10 (1.02 to 1.17) 0.005

HIV-RNA at SC (per log10 increase)‡ 1.15 (0.98 to 1.35) 0.086

ART initiation yr (per year increase) 0.91 (0.84 to 0.98) 0.016

Time from ART to viral suppression
(per month increase)‡§

0.99 (0.97 to 1.02) 0.93

CD4 at ART initiation (per 100
cells/mm3 increase)k

0.99 (0.90 to 1.08) 0.75

CD4 at ART cessation (per 100
cells/mm3 increase)k

1.10 (1.01 to 1.20) 0.035

ART class 0.33

NNRTI 1

PI 0.92 (0.57 to 1.48)

3 N 1.32 (0.74 to 2.36)

3 Class 0.24 (0.03 to 1.79)

Integrase inhibitor 0.77 (0.10 to 6.12)

SC age 1.00 (0.98 to 1.02) 0.77

Sex 0.49

Male 1

Female 0.75 (0.33 to 1.69)

HIV risk group 0.28

MSM 1

MSW 0.84 (0.44 to 1.58)

IDU 0.53 (0.14 to 2.03)

OTH 0.23 (0.03 to 1.73)

*Per 6 month increase.
†Per month increase.
‡Per log10 increase.
§HIV-RNA ,50 copies per milliliter.
kper 100 cells per mm3 increase.
3 class, drugs from 3 or more classes; 3N, 3 nucleoside reverse transcriptase

inhibitors; IDU, injection drug use; MSM, men who have sex with men; MSW, sex
between men and women; NNRTI, nonnucleoside reverse-transcriptase inhibitors; OTH,
other; SC, seroconversion.
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likelihood of PTC. Of note, while HIV-1 HIV-RNA and
initial CD4 count measurement at diagnosis of PHI are known
to predict disease progression,54 for those initiating immedi-
ate ART in our cohort, these parameters did not appear to
influence subsequent PTC status, suggesting that the mech-
anisms underpinning the 2 processes may be different.

Host genetic factors may also determine PTC status,
although we were not able to explore these factors. In the
VISCONTI cohort there was no evidence for enrichment of
protective HLA Class I alleles and only weak HIV-specific
immunity was observed.

The data presented from this large cohort should be
interpreted within the limitations of any observational study.
First, for those individuals with a measurable viral blip, we
assumed that ART was continuous through this period and
a viral blip is not the result of temporary poor adherence,
absorption, or the assay used; however, irrespective of the
cause, the presence of a blip predicted viral rebound and hence
must be incorporated into any algorithm for future HIV cure
trials.55 Second, reasons for ART initiation and subsequent
cessation for eligible individuals are unknown and those
stopping may differ in important characteristics from those
not stopping, although short-course ART in PHI was not an
uncommon treatment strategy by a number of clinicians during
the time.24,39,40 In any case, baseline HIV-RNA and CD4
measurements at ART initiation were similar for those sub-
sequently stopping and those not stopping ART. It is, therefore,
unlikely that reasons for stopping ART initiated in PHI were
related to outcome but we acknowledge, as with all observa-
tional studies, that unmeasured confounding factors may
remain, including in the choice of whether or not to initiate
ART in PHI. Third, the absence of data on ART adherence is
a limitation of these analyses, and blips may, therefore be, as
a result of periods of nonadherence or viral breakthrough. We
included the number viral load measurements as a surrogate of
adherence in the multivariate analyses. In any case, our findings
are of clinical relevance to clinicians as they highlight that

patients experiencing blips, regardless of the reason, are more
likely to experience viral failure on therapy56,57 and less likely to
achieve PTC if ART is stopped. Finally, frequency of
monitoring HIV-RNA and assay variability are likely to affect
blip detection, which may account for some of the observed
differences in the significance and proportion of intermittent
low-level viremia for ART-treated individuals.8,9 It is also
possible that frequency of HIV-RNAmonitoring could influence
the definition of virologic failure rate in this analysis or clinical
practise reflects concerns with ART adherence. The median
number of HIV-RNA measurements per year on ART were
similar to the frequency off ART [1 (1, 4.2) and 1.6 (1, 2.9),
respectively]. We have attempted to correct for measurement
frequency by including it as a variable in our Cox models. We
were not, however, able to correct for assay variability because of
the limited sample size and as it was unknown for .50%
of HIV-RNA measurements. In addition, we did not distinguish
between boosted and unboosted PIs but, to account for these
unmeasured changes in treatment quality over time, we adjusted
for ART initiation year. It is possible that newer more potent
ART regimens, including integrase inhibitors, not routinely
available at the time of this analysis, could additionally impact
on size of reservoir and viral blips on therapy.55

Stopping ART within the setting of a cure study should
be undertaken within close clinical and laboratory monitoring
and extrapolation of observational data into a study design in
terms of individual health risks and risks of onward viral
transmission must be made with caution. Both individual
potential risks and the risk of onward viral transmission,
should viral rebound ensue, also need to be taken
into account.

In conclusion, findings from this large observational
cohort of treated seroconverters stopping ART indicate that
the absence of viral blips .400 copies HIV-1 RNA/mL in
individuals treated with early ART, close to the time of PHI
diagnosis predicted a better chance of subsequent after
treatment viremic control after ART cessation.

FIGURE 1. Time from ART cessation to
virologic rebound, defined as HIV-RNA
$500, 1000 copies per mL, among those
stopping ART initiated within 6 months
of HIV seroconversion in CASCADE.
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