When?	How?	Example
Diagnosis	Assessment of cell-free	BRAF mutation detectable in
Risk stratification for surgery	biomarkers e.g. DNA, RNA;	plasma of patients with PCP
Risk stratification of risk of	metabolites in the blood,	Identification of matrix
relapse	CSF, cystic fluid, or urine.	metalloproteinases in urine
Assessment of response to	A marker could be from the	of patient with recurrent ACP
radiotherapy	tumor itself or reflect	(Smith et al., 2007)
Early detection of relapse	hypothalamus	
Novel solid tumor therapies	Targeting pathways in the	The use of BRAF inhibitors in
	tumor tissue or targeting the	PCP (Alywin et al., 2015;
	host response to the tumor	Brastianos et al., 2016)
Novel cystic therapies	Targeting pathways leading to cyst formation	

TABLE 1: Opportunities for molecular pathology to influence clinical management of ACP

Novel therapies for sequelae	Novel treatments for	Attempted use of GLB1
	hypothalamic obesity	agonists in treatment of
		hypothalamic obesity
		(Zoicas et al., 2013)

Pathway	Evidence of Deregulation	Therapeutic Opportunities
WNT pathway (Martinez-Barbera & Buslei,	The majority of ACPs have somatic	The WNT pathway plays crucial roles in development
2015; Larkin & Ansorge, 2013; Kahn, 2014)	activating mutations in exon 3 of	and tissue homeostasis making it challenging to
	CTNNB1. These prevent	safely target.
	degradation of the protein β -catenin	Commonly disrupted in many tumor types
	leading to pathway activation.	considerable efforts are underway to target this
	Surprisingly nucleo-cytoplasmic	pathway however no therapies have been approved
	activation is only seen in a small	and few have made it to clinical trial. Any approach for
	proportion of cells, often correlating	craniopharyngioma must target the pathway
	with epithelial whorls and referred to	downstream of β -catenin.
	as "clusters."	
SHH pathway (Andoniadou et al., 2012;	SHH has been shown to be over-	Several SHH pathway inhibitors have been
Gump et al., 2015; Gomes et al., 2015; Gould	expressed in ACP in several studies.	developed, of which the smoothened inhibitor
et al., 2014; Sekulic et al., 2012; Lee et al.,	SHH is expressed by clusters in	vismodegib is licensed for use in basal cell carcinoma.
2014; Rhim et al., 2014)	human and murine ACP with PTCH1	Despite initial optimism SHH pathway inhibitors have
		been disappointing in tumors with paracrine signaling

	expressed in palisading epithelium	as opposed to mutational activation. In some cases
	suggesting paracrine signaling.	inhibition has resulted in tumor promotion.
EGFR pathway (Holsken et al., 2011; Stache	EGFR phosphorylated in human	Several generations of EGFR inhibitors have been
et al., 2014)	ACP clusters and cells neighboring	developed and are in routine use in some tumor
	invasion.	types, e.g., non-small cell lung cancer.
	EGFR phosphorylated in primary	
	ACP cultures. Inhibition reduces	
	migration.	
	EGFR phosphorylated in clusters in	
	xenograft model at leading edge of	
	tumor invasion.	
Inflammation (Pettorini et al., 2010; Martelli et	Inflammatory infiltrates (e.g.,	A possible mechanism of action of IFN α is through
al., 2014; Gong et al., 2014; Zitvogel et al.,	lymphocytes) are observed in tumor	modulation of the immune response.
2015)	specimens.	A range of agents are available for broad (e.g.
	High levels of IL6, ILA, TNF, and α -	steroids, NSAIDS) or more targeted immune
	defensins 1-3 have been identified in	suppression (e.g., anti-TNF, anti-IL6R agents) are

cystic fluid, and leakage can lead to	available and widely used in other conditions but with
inflammation.	minimal effect on tumors.
High levels of CXCR4 and CXCL12	
associated with increased	
recurrence.	
Clusters in murine ACP express high	
levels of inflammatory mediators.	