UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Optimization Based Methods for Partially Observed Chaotic Systems

Paulin, D; Jasra, A; Crisan, D; Beskos, A; (2018) Optimization Based Methods for Partially Observed Chaotic Systems. Foundations of Computational Mathematics 10.1007/s10208-018-9388-x. (In press). Green open access

[img]
Preview
Text
Beskos_Optimization Based Methods for Partially Observed Chaotic Systems_AOP.pdf - Published version

Download (1MB) | Preview

Abstract

In this paper we consider filtering and smoothing of partially observed chaotic dynamical systems that are discretely observed, with an additive Gaussian noise in the observation. These models are found in a wide variety of real applications and include the Lorenz 96’ model. In the context of a fixed observation interval T, observation time step h and Gaussian observation variance \sigma _Z^2, we show under assumptions that the filter and smoother are well approximated by a Gaussian with high probability when h and \sigma ^2_Z h are sufficiently small. Based on this result we show that the maximum a posteriori (MAP) estimators are asymptotically optimal in mean square error as \sigma ^2_Z h tends to 0. Given these results, we provide a batch algorithm for the smoother and filter, based on Newton’s method, to obtain the MAP. In particular, we show that if the initial point is close enough to the MAP, then Newton’s method converges to it at a fast rate. We also provide a method for computing such an initial point. These results contribute to the theoretical understanding of widely used 4D-Var data assimilation method. Our approach is illustrated numerically on the Lorenz 96’ model with state vector up to 1 million dimensions, with code running in the order of minutes. To our knowledge the results in this paper are the first of their type for this class of models.

Type: Article
Title: Optimization Based Methods for Partially Observed Chaotic Systems
Open access status: An open access version is available from UCL Discovery
DOI: 10.1007/s10208-018-9388-x
Publisher version: https://doi.org/10.1007/s10208-018-9388-x
Language: English
Additional information: © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
Keywords: Filtering, Smoothing, Chaotic dynamical systems, Gaussian approximation, Newton’s method, Concentration inequalities, 4D-Var
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Statistical Science
URI: https://discovery.ucl.ac.uk/id/eprint/1541351
Downloads since deposit
21Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item