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Abstract 

Preclinical research demonstrates that cannabinoids have differing effects in adolescent and 

adult animals, and human epidemiological research suggests that adolescent cannabis use has 

greater potential for harm than adult use. In chapters 1 and 2, I review this literature, 

describing the acute and non-acute effects of cannabis on memory, response inhibition and 

psychotic-like symptoms, with a focus on findings relating to adolescent populations and age of 

cannabis use onset. In chapter 3, I describe associations between adolescent cannabis use, IQ 

and educational performance, demonstrating that adjustment for potential confounders – most 

notably cigarette use – leaves cannabis use not associated with lower performance. In chapter 

4, I describe the first study to compare the acute effects of cannabis in human adolescent (n=20; 

16-17 years old) and adult (n=20; 24-28 years old) male cannabis users, in a placebo-controlled, 

double-blind cross-over design. After inhaling vaporised active or placebo cannabis, participants 

completed tasks assessing memory, inhibition, alongside physiological measures and subjective 

drug effects (e.g. “stoned”). Results showed contrasting profiles of adolescent resilience 

(blunted subjective, physiological and memory effects) and vulnerability (lack of satiety, 

impaired inhibitory processes). In chapter 5, in the same sample, I describe the acute psychotic-

like effects of cannabis. Cannabis increased psychotic-like symptoms and the incidence of 

speech illusions in both adolescents and adults, though some self-rated effects were heightened 

in adults. In chapter 6, in a reduced sample, I describe the acute effects of cannabis on 

anhedonia (as indexed by reward responsivity, hedonic capacity and self-rated anhedonia) in 

adolescents (n=13) and adults (n=13). Cannabis did not affect reward responsivity or hedonic 

capacity in either group, though adults but not adolescents reported self-rated increases in 

anhedonia. In chapter 7, I integrate my findings, discuss their implications, consider limitations 

and suggest directions for future research into the effects of cannabis use in adolescence.  
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1 Chapter 1. General Introduction 

In recent decades it has become clear that the brain continues to develop throughout 

adolescence. Alongside clear behavioural and cognitive changes, dramatic functional and 

structural changes occur in the teenage brain, with development extending into early adulthood 

(Casey, Jones, & Hare, 2008). Longitudinal MRI studies with large samples have now 

documented structural changes throughout childhood and adolescence. Grey matter volume and 

thickness increases throughout childhood, peaking in the late pre-teen years before decreasing 

over the teenage years into early adulthood (Giedd et al., 1999; Raznahan et al., 2011). 

Meanwhile white matter volume and integrity follows a more linear increase with age from 

childhood into adulthood (Giedd et al., 1999; Peters et al., 2012). While evidence for the precise 

mechanisms of these changes remains limited, grey matter reductions in adolescence are 

thought to reflect synaptic reorganisation and pruning, while white matter increases are thought 

to reflect increased myelination (Paus, Keshavan, & Giedd, 2008). 

With these revelations has come increased concern about the potentially harmful effects of 

adolescent substance use, and in particular cannabis use, on typical developmental trajectories 

(Lisdahl, Gilbart, Wright, & Shollenbarger, 2013; Lubman, Cheetham, & Yücel, 2015). 

Acutely, cannabis leads to pleasurable subjective feelings (“being stoned”), but also to transient 

cognitive impairment and psychotic-like experiences (Curran et al., 2016). Furthermore, 

cannabis users are often found to have impaired cognitive abilities relative to non-using controls 

when non-intoxicated, alongside an increased risk of psychotic disorders, and it has been 

suggested that earlier age of cannabis use may result in a greater risk of these putative harms 

(Crane, Schuster, Fusar-Poli, & Gonzalez, 2013).  

But, what is the empirical evidence to suggest that adolescent cannabis use has greater potential 

for harm than adult use? This question is the focus of my thesis.  
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1.1 Cannabis and adolescence 

An estimated 13% of 15-16 year olds in Europe and 23% of 15-17 year olds in the USA have 

taken cannabis in the previous year (Grucza et al., 2016; Hibell et al., 2012). Globally the 

median age of first cannabis use falls between 18-19 years old (Degenhardt et al., 2008; 

Degenhardt, Stockings, Patton, Hall, & Lynskey, 2016), indicating that approximately half of all 

cannabis users start before reaching adulthood. Worldwide, across all age groups cannabis is the 

most commonly used illicit drug (Degenhardt & Hall, 2012). Cannabis is disproportionately 

more prevalent in adolescence relative to other illicit drugs, as other drug use typically begins at 

an older age (for instance, globally the median age of first cocaine use falls between 21 and 24 

years Degenhardt et al. (2016)).  

To put adolescent cannabis use in context, in the previous month, cannabis was used by 7% 

(Europe) and 17% (US) of 15-16 year olds. By comparison in the previous month, 57% 

(Europe) and 24% (US) of this same age group used alcohol and 28% (Europe) and 7% (US) 

used cigarettes (Hibell et al., 2012; Miech et al., 2015). The rates of alcohol and cigarette use by 

European adolescents is therefore much higher than for cannabis use. Nevertheless, in the past 

decade there has been a substantial rise in the numbers of under-18’s receiving specialist 

treatment for cannabis use in the England, and many more adolescents receive treatment for 

cannabis than for alcohol problems (Figure 1.1) (NDTMS, 2014). Across Europe, an estimated 

1.8% of 14-17 year olds meet clinical criteria for addiction to cannabis, six times the rate (0.3%) 

of adults (18-64 years) (Wittchen et al., 2011). 
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Figure 1.1. The numbers of under-18’s in specialist drug treatment in England, according to 

primary drug - cannabis, alcohol and other illicit drugs - for which they are receiving treatment 

for. Data from Public Health England (NDTMS, 2014); figure provided by Tom Freeman 

(personal communication). 

 

1.2 Pharmacological effects of cannabis 

The main psychoactive ingredient of cannabis, delta-9-tetrahydrocannabinol (THC) produces 

the “stoned” effects that users seek. THC acts on the endocannabinoid (eCB) system, primarily 

as a partial agonist at cannabinoid CB1 receptors (CB1R), but also at CB2R, both of which are G 

protein-coupled receptors. CB1R are found mainly pre-synaptically at the terminals of central 

and peripheral neurons where they typically have inhibitory action on the release of excitatory 

and inhibitory neurotransmitters (Pertwee, 2005). CB1R are found throughout much of the brain, 

though particularly dense CB1R expression is seen in the hippocampus, prefrontal cortex (PFC), 

and amygdala, likely underlying the effects of cannabis on cognitive and memory function 

(Curran et al., 2016). CB2R meanwhile are found predominately in immune cells, where they 
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modulate immune cell migration and cytokine release. CB2R have more recently been found in 

neurons in the brain, though at much lower density than CB1R, and the function of these 

receptors is not yet known (Pertwee, 2014).  

In rodents, THC and other synthetic CB1R agonists alter levels of eCBs throughout many brain 

regions (Di Marzo et al., 2000; González et al., 2004), and studies with adult cannabis users 

have found altered eCB levels in cerebrospinal fluid (Morgan et al., 2013) and downregulated 

cortical CB1Rs (D'Souza et al., 2016; Hirvonen et al., 2012), relative to non-using controls. 

eCBs are neuroactive lipids that participate in a range of physiological processes including 

reward, motivation, emotional homeostasis, pain processing, and synaptic plasticity contributing 

to learning and memory. At present, the best-characterized eCBs are N-

arachidonylethanolamide (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) (Hillard, 

2015; Mechoulam, Hanuš, Pertwee, & Howlett, 2014) and both of these lipids exert agonist 

activity at CB1Rs and CB2Rs. eCBs are crucial in certain forms of neuronal plasticity, and THC 

has been shown to disrupt long-term potentiation (a model for learning and memory) and long-

term depression in preclinical studies (Zhu, 2006). 

While cannabis contains more than 100 cannabinoids alongside THC, in recent years particular 

focus has fallen on cannabidiol (CBD). CBD has a complex range of pharmacological actions.  

For example, although CBD has low affinity for CB1R it can attenuate CB1 agonist effects in 

brain even at low concentrations (e.g. providing functional antagonism of CB1R signalling) 

(Pertwee, 2008).  Conversely, CBD reduces the cellular reuptake and hydrolysis of the eCB 

AEA in the brain (Muniyappa et al., 2013; Pertwee, 2008). These findings, alongside human 

pharmacological work demonstrating that CBD can block some of the negative acute effects of 

THC (Englund et al., 2013; Morgan, Schafer, Freeman, & Curran, 2010), has led to increasing 

interest in CBD and its potential therapeutic value. 

1.3 Cannabis and adolescent development 
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While research into adolescent development of the eCB system remains in its infancy, it appears 

to undergo dynamic changes throughout adolescence (Ellgren et al., 2008), with evidence of 

increasing CB1R density of grey and white matter continuing into late adolescence (Romero et 

al., 1997; Rubino & Parolaro, 2015; Verdurand et al., 2011) (although also see (Ellgren et al., 

2008; N. L. Moore et al., 2010)), and changing levels of eCBs in the prefrontal cortex (PFC) 

and nucleus accumbens (NAc) throughout adolescence (Ellgren et al., 2008; Rubino & Parolaro, 

2015). If there is indeed greater CB1R expression in adolescence than adulthood, this may 

represent a developmental period during which the brain is particularly sensitive to exogenous 

cannabinoids (Lubman et al., 2015). The eCB system is also thought to play an important role in 

neural reorganisation and maturational processes occurring during adolescence (Bossong & 

Niesink, 2010; Lubman et al., 2015), including synaptic pruning (Bossong & Niesink, 2010) 

and white-matter development (Solowij, Yücel, et al., 2011). Indeed, the eCB system has 

recently been implicated in the maturational pruning of glutamatergic synapses (Rubino et al., 

2015) and development of GABA-ergic systems (Cass et al., 2014) in the PFC. Since exogenous 

cannabinoids affect the functioning of the eCB system, it is hypothesised that adolescent 

cannabis use may disrupt neurodevelopmental maturational processes during this period, such 

that adolescents are particularly susceptible to cannabis-related harms (Curran et al., 2016).  

There is accumulating evidence in humans that aspects of brain architecture are more disrupted 

by cannabis when individuals start using it during adolescence, although there is a scarcity of 

direct comparisons with adult users. Some structural imaging studies in adolescent and young 

adult cannabis users have reported decreased volume in several cortical and sub-cortical regions 

(Batalla et al., 2013) but findings across different studies vary considerably (Jacobus & Tapert, 

2014). For example, although structural differences between adolescent cannabis users and 

controls in orbitofrontal cortex (OFC) volume have been found, smaller volumes at 12 years of 

age were shown to predict cannabis use at 16, suggesting that differences in the OFC may be a 

vulnerability factor for use rather than a consequence (Cheetham et al., 2012). And although 

smaller hippocampal volumes in cannabis users have been associated with age of onset of use, 
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this association appears less consistent than does the association between reductions in the size 

of the hippocampus and the amount of use, suggesting that the structure of the hippocampus 

may be more affected by duration and intensity of exposure rather than by early use specifically 

(Lorenzetti, Solowij, Fornito, Ian Lubman, & Yucel, 2014).  

Diffusion tensor imaging (DTI) studies have found poorer white-matter integrity (indexed by 

both lower fractional anisotropy and higher mean diffusivity) in adolescents who use cannabis 

frequently compared with non-users (Clark, Chung, Thatcher, Pajtek, & Long, 2012; Jacobus et 

al., 2009; Jacobus, Squeglia, Infante, Bava, & Tapert, 2013; Jacobus & Tapert, 2014; Lubman et 

al., 2015), and reductions in those indices of white-matter integrity correlate with deficits in 

measures of cognitive performance. However, cannabis users were often also heavy users of 

alcohol or other drugs so whether these effects related to cannabis use specifically is unclear. 

Indeed, in a longitudinal study, Bava et al found that alcohol use but not cannabis use between 

scans predicted reduced white matter integrity at follow-up (Bava, Jacobus, Thayer, & Tapert, 

2013). Whether such findings represent causal relationships between adolescent cannabis use 

and brain structure is therefore difficult to determine.  

Perhaps the most compelling evidence for increased adolescent risk from cannabis use comes 

from associations between younger age of cannabis use onset and negative outcomes. However, 

while some have found such associations, as I will describe in this chapter (for cognition) and 

chapter 2 (for mental health), findings are limited and such studies are rarely able to rule out 

alternative explanations for their findings. Indeed, younger age of onset will typically result in a 

longer duration of cannabis use prior to study participation, and younger onset of cannabis use 

is often associated with heavier and more frequent use (Gruber, Sagar, Dahlgren, Racine, & 

Lukas, 2012) and cannabis dependence (Chen & Anthony, 2003; Chen, O’Brien, & Anthony, 

2005; von Sydow, Lieb, Pfister, Höfler, & Wittchen, 2002), all of which have also been 

demonstrated to predict poorer outcomes (Di Forti et al., 2014; Gruber et al., 2012; McGrath et 

al., 2010; Schoeler, Kambeitz, Behlke, Murray, & Bhattacharyya, 2016). Moreover, there are 

many vulnerability factors (for instance, social and economic disadvantage) that may contribute 
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to younger age of cannabis use onset (Degenhardt et al., 2016), such that it is inherently difficult 

to separate out the individual contribution of early cannabis use from other overlapping risk 

factors. Thus, while theoretically it can be argued that adolescent cannabis users may be 

particularly at risk of cannabis-related harms, the evidence to date is far from clear. 

1.4 Cannabis and cognition 

Acutely, cannabis consumption leads to a variety of intoxication effects (i.e. “feeling stoned”), 

including the positive effects that users seek (for instance, euphoria, laughter, and enhanced 

sensory perception) alongside more negative experiences that may not be desired (for instance, 

paranoia and anxiety). The extent of these different effects are thought to vary widely between 

users (Atakan et al., 2013; Green, Kavanagh, & Young, 2003), and while evidence is currently 

limited they are likely to be influenced not only by dose (Curran, Brignell, Fletcher, Middleton, 

& Henry, 2002) and route of administration (Ohlsson et al., 1981), but also by genetics 

(Morgan, Freeman, Powell, & Curran, 2016), cannabis use history (D'Souza, Ranganathan, et 

al., 2008), but also see (Ramaekers et al., 2016)), and the context in which cannabis is taken 

(Carlin, Bakker, Halpern, & Post, 1972). Alongside these subjective effects, cannabis also 

impacts on cognitive functioning. Acute effects on cognition are transient and likely contribute 

to the overall experience of feeling stoned. There is good experimental evidence that acutely 

cannabis leads to transient deficits of verbal and working memory, attention, inhibition and 

psychomotor function. However, whether there are more long-lasting cognitive effects of 

cannabis, outlasting the intoxication period, remains hotly debated.  

Throughout this thesis I will use the term “acute” to refer to transient effects resulting from 

cannabis or THC administration that are apparent during the period of subjective intoxication, 

and will use the term “non-acute” to refer to effects that outlast the intoxication period. While 

the terms chronic or persistent imply that these effects are long-lasting, my definition of non-

acute makes fewer assumptions about the underlying cause of such effects. Non-acute may refer 

to temporary effects from recent cannabis use (which nevertheless outlast subjective 
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intoxication), or to longer-lasting effects that persist after all cannabinoids are cleared from the 

body but are reversible, or to long-lasting effects that do not recover. The terms residual and 

sub-acute are often used to describe temporary effects from recent cannabis use, that are thought 

to recover once all cannabinoids are cleared from the system. However, it is often impossible to 

separate the different possible types of effect throughout much of the non-acute cannabis 

literature, and to my mind such terms make assumptions about the longevity of the effects.  

1.4.1 Associations between cannabis and cognitive function 

Cannabis use, and particularly frequent use, has been associated with longer lasting impairment 

of similar cognitive domains to those affected by acute doses. Furthermore, prospective cohort 

data suggests cannabis use is associated with lower IQ and poorer educational attainment (as 

will be covered in more detail in chapter 3). While the acute findings have been well-replicated, 

particularly for verbal memory effects, the evidence regarding non-acute effects is mixed and 

often insufficient to allow us to draw robust conclusions. While in the future, data from 

randomised controlled trials of medicinal cannabis may be able to provide strong causal 

evidence for or against non-acute cognitive effects of cannabis, to date our knowledge is 

dependent upon epidemiological observational evidence and preclinical work with non-human 

primates and rodents.  

A recent systematic review of the cognitive effects of cannabis in humans came to the following 

conclusions regarding non-acute use: 1) there is good evidence of associations between cannabis 

use and impairments of verbal learning and memory, and attention and attentional bias; 2) there 

is limited evidence of associations between cannabis use and impairments of psychomotor 

function; and 3) there is mixed evidence of associations between cannabis use and impairments 

of executive functions (including inhibitory processes) and decision-making (Broyd, van Hell, 

Beale, Yücel, & Solowij, 2015). 

In the following section I will focus my coverage more specifically on the evidence relating to 

the effects of cannabis on verbal learning and memory, working memory and response 
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inhibition. These domains have arguably received the most attention in terms of acute effects, 

and as such were chosen for my acute study described in chapter 4, though there is also limited 

evidence that cannabis may impact upon other cognitive functions, including psychomotor 

control, attention & executive function (Broyd et al., 2015). For each domain in turn (verbal 

learning and memory, then working memory, then response inhibition), I will introduce the 

tasks typically used to index it and then review the literature, in the following format. I will first 

review the evidence for the acute effects of cannabis on the domain in human adults. Given that, 

to date, no studies have assessed the acute effects of THC or cannabis in adolescents, I will then 

focus on preclinical studies in which the acute effects have been assessed in adolescent animals. 

Next, I will review the human epidemiological evidence linking cannabis use to non-intoxicated 

impairments in the domain, before reviewing the evidence to suggest that adolescent onset of 

use is more likely to lead to these impairments.  

1.4.2 Memory 

1.4.2.1 Verbal learning and memory 

Verbal learning and memory impairments are the most consistently reported effects of cannabis, 

both acutely and non-acutely. Such effects on memory are consistent with the extensive 

preclinical evidence of: the amnestic effects of cannabis in animal models; the high density of 

cannabinoid receptors in memory-associated brain regions such as the hippocampus, amygdala 

and PFC; and observations that THC induces disruption of plasticity (including long-term 

potentiation (LTP) and long-term depression (LTD)) in the hippocampus and decreases 

acetylcholine release in both the hippocampus and the PFC (Curran et al., 2016). 

Typically tasks indexing verbal learning and memory require participants to learn word lists or 

prose, followed by immediate and delayed recall and/or recognition tests. The pattern of 

performance across tests can tentatively indicate the specific memory processes that have been 

impaired. Impaired immediate recall (when free recall of the words or prose is tested 

immediately following stimuli presentation) suggests encoding deficits, while intact immediate 
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recall but impaired delayed recall (when free recall of the words or prose is tested after a delay 

since stimuli presentation) suggests consolidation (storage) deficits. Further, impaired recall of 

stimuli but intact recognition suggests retrieval deficits, but may also represent lower levels of 

encoding. For instance, recognition of previously presented stimuli likely requires a lower level 

of processing than free recall- that is, impaired recall of stimuli but intact recognition may 

instead suggest lower level encoding rather than retrieval deficits. Such interpretations should 

therefore be made with caution. 

1.4.2.1.1 Acute effects of cannabis on verbal learning and memory 

Acutely THC (Curran et al., 2002; D'Souza, Braley, et al., 2008; D'Souza et al., 2004; D'Souza, 

Ranganathan, et al., 2008; Englund et al., 2013; Liem-Moolenaar et al., 2010; Morrison et al., 

2009; Ranganathan et al., 2012; Theunissen et al., 2015) and cannabis (Morgan et al., 2010) 

reliably (though see (McDonald, Schleifer, Richards, & de Wit, 2003; Vandrey et al., 2013)) 

produce deficits of verbal learning and memory in minimal and frequent users, typically 

impacting upon both immediate and delayed free recall but not recognition memory. A number 

of early studies also demonstrated that delayed recall of stimuli presented prior to cannabis 

exposure was not affected (Abel, 1971; Darley, Tinklenberg, Roth, Hollister, & Atkinson, 1973; 

Dornbush, 1974). Together such findings suggest that THC impacts upon encoding of verbal 

information but not retrieval. 

Additionally, a number of studies report increased intrusions and false positives (that is, false 

recall of a word that was not presented) following THC (D'Souza, Braley, et al., 2008; D'Souza, 

Ranganathan, et al., 2008). Similar results appear for intravenous (IV), intrapulmonary (smoked 

or inhaled) and oral (ingested) administration of THC, though there have been no direct 

comparisons of task performance between administration routes. Deficits do not appear to be as 

a result of reduced information processing (Belmore & Miller, 1980) or deficient rehearsal 

during encoding (Darley, Tinklenberg, Roth, & Atkinson, 1974).  
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A small number of studies have assessed whether higher doses of THC lead to greater 

impairments, and typically support a dose-response relationship. Curran and colleagues (Curran 

et al., 2002) administered 0.0mg, 7.5mg or 15.0mg of THC orally to 15 cannabis users (using no 

more than once per week) in a within-subjects design, finding no impairment to word or prose 

recall following 7.5mg of THC, but considerable impairment of both immediate and delayed 

recall following 15.0mg of THC. Impairments peaked at 2 hours, coinciding with peak 

subjective effects and plasma THC levels. D’Souza and colleagues (D'Souza et al., 2004) 

administered 0.0mg, 2.5mg or 5.0mg IV THC to 22 cannabis users with no history of cannabis 

use disorder, in a within-subjects design, finding greater impairment to immediate and delayed 

recall following the larger dose. D’Souza et al subsequently replicated this dose-response 

finding for immediate recall in both frequent (n=30) and infrequent users (n=22), but for 

delayed recall only in non-users (D'Souza, Ranganathan, et al., 2008). Intriguingly the frequent 

users were minimally affected by both active doses on delayed recall, and even improved (non-

significantly) following the 2.5mg dose.  

A small number of studies have compared the effects of THC in frequent users to non-users 

(typically those with no recent use and a small number of lifetime exposures), with mixed 

findings. D’Souza, Braley, et al (2008) found no differences in the effect of IV THC on word 

recall between frequent (n=11) and non-users (n=17), while D’Souza, Ranganathan, et al (2008; 

described above) found that THC impaired frequent users on immediate and delayed recall to a 

lesser extent than non-users. While difficult to interpret with limited studies, this discrepancy 

may be related to the larger doses administered in the latter study (2.5mg and 5.0mg THC) 

relative to the former (0.03mg/kg, equivalent to 2.1mg at the mean body weight (72.3kg) of 

their participants).  

While most studies have administered THC alone, Morgan et al (Morgan et al., 2010) 

investigated the impact of cannabis content (THC, CBD) in a naturalistic within-subjects study 

of ‘at least monthly’ cannabis users. Participants were assessed in their own homes on both a 

drug-free day and after smoking their own cannabis. Two groups were compared, according to 
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the CBD content of their smoked cannabis. Despite no group difference in cannabis THC 

content, those who smoked cannabis with low levels of CBD (samples with less than 0.14% 

CBD; n=22) performed worse on immediate and delayed prose recall relative to those who 

smoked CBD-rich cannabis (samples with more than 0.75% CBD; n=22). Further Englund et al 

(Englund et al., 2013) administered 1.5mg IV THC following an oral pre-dose of placebo 

(n=26) or CBD (n=22). While CBD did not attenuate the impairing effect of THC on immediate 

recall, exploration of a trend level interaction showed that delayed recall was only impaired 

following the placebo pre-dose, but not following CBD. Together these studies suggest a 

potentially protective effect of CBD on the verbal memory impairing effects of THC. 

1.4.2.1.1.1 Age-related findings: acute 

To date, no studies have assessed the role of age of user, or age of cannabis use onset, on the 

acute effects of THC or cannabis on verbal memory or learning in humans. Verbal tasks are 

clearly not directly translatable to animal models, and as such much animal work on memory 

and learning has focused on spatial learning and novel object recognition paradigms.  

Preclinical evidence for increased adolescent vulnerability to acute effects of cannabis is mixed, 

with some suggesting acute cannabinoid treatment has a greater impairing effect on spatial and 

non-spatial learning (THC) (Cha, Jones, Kuhn, Wilson, & Swartzwelder, 2007; Cha, White, 

Kuhn, Wilson, & Swartzwelder, 2006) and object recognition (WIN) (Schneider, Schömig, & 

Leweke, 2008) in adolescent compared to adult rats. Others however report the opposite, with 

evidence of greater acute impairments in adult rodents - including impaired novel object 

recognition (WIN) (Fox, Sterling, & Van Bockstaele, 2009), and spatial learning (WIN) 

(Acheson, Moore, Kuhn, Wilson, & Swartzwelder, 2011). While the direct translation of such 

findings is limited given the differing constructs indexed, such findings do suggest that there 

may be age-related differences in the acute effects of cannabis on hippocampal-dependent 

memory in humans. Though, the use of the full CB1R agonist WIN rather than THC (a partial 

agonist with relatively weak CB1R affinity) also restricts translation to human cannabis use. 
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1.4.2.1.2 Non-acute associations between cannabis use and verbal learning and memory 

In 2003 Grant and colleagues performed a meta-analysis across broad neurocognitive domains 

of 11 studies comparing non-intoxicated cognitive functioning in cannabis users and non-users 

(I. Grant, Gonzalez, Carey, Natarajan, & Wolfson, 2003). The authors combined data from 623 

cannabis users, and 409 controls who had no or very limited cannabis exposure. Importantly 

while the analysis demonstrated no evidence of robust group differences on attention, simple 

reaction time, language, executive function, motor, and perceptual-motor performance, they did 

find small but robust impairments of learning (including immediate recall on word recall tasks) 

and retrieval (including delayed recall on word recall tasks) in cannabis users. The effect size 

(Cohen’s standardised mean difference, d) for learning was -0.24 (99% CIs: -0.41, -0.06) and 

for retrieval was -0.27 (99% CIs: -0.49, -0.04). Interestingly, meta-regression revealed that 

duration of cannabis use prior to study participation did not moderate the effect sizes. 

Since 2003 a large number of studies have further assessed associations between non-acute 

cannabis use and verbal learning and memory. In 2012 Schreiner and Dunn (Schreiner & Dunn, 

2012) conducted an updated meta-analysis, with matching inclusion criteria to Grant et al (I. 

Grant et al., 2003), though only including studies published since 2000. The authors combined 

data from 33 independent samples including adolescent and adult samples (1,010 cannabis 

users, 839 controls) and calculated effect sizes for the same eight domains as Grant and 

colleagues (2003), and also calculated a global effect size which summarised data across all 

domains. The analysis revealed a small overall group difference on global cognitive 

performance, alongside domain specific group differences for learning (Hedge’s g; -0.35 (95% 

confidence intervals (CIs): -0.55, -0.15)), retrieval (-0.25 (95% CIs: -0.47, -0.02)), attention, 

language, executive function, and motor performance. While Grant et al (2003) used Cohen’s d 

as an estimate of effect size and Schreiner and Dunn (2012) used Hedge’s g (g corrects for 

potential overestimation of effect that can occur in small samples by weighting effects by 

sample size), the magnitudes of d and g are comparable; similar estimates for learning and 

retrieval impairments were found in both the 2003 and 2012 meta-analyses. Schreiner and Dunn 
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(2012) further replicated the finding that duration of cannabis use prior to study participation 

did not moderate these relationships.  

Given concern throughout the literature that cannabis may have residual or sub-acute effects on 

cognition, potentially resulting from lingering cannabinoids stored in lipid cells (cannabinoids 

can often be detected in blood and urine one month or more following abstinence), Schreiner 

and Dunn (2012) then conducted a second meta-analysis, now including only those studies with 

a minimum abstinence period of 25 days (leaving 13 of 33 samples in the analysis). This second 

analysis revealed attenuated effect sizes for all individual domains and global performance, with 

all confidence intervals now crossing the null. This finding suggests that impairments may be 

temporary or reversible with abstinence, potentially resulting from residual circulating 

cannabinoids or from cannabis withdrawal. 

While there are limitations to the meta-analytic approach here, not least the combining of 

different tasks into one measure of a broad cognitive domain such as learning, this result 

highlights an important debate about the reversibility of putative impairments following 

abstinence from cannabis. Given that the non-acute cognitive deficits most often found in 

cannabis use groups mirror those typically found in acute studies, it is important to interpret the 

non-acute literature with the caveat that residual effects may be influencing findings. Though, to 

my knowledge the hypothesis that residual effects are due to cannabinoids still circulating in the 

body has yet to be directly tested. 

1.4.2.1.2.1 Age-related findings: non-acute 

A number of studies have compared verbal learning and memory in adolescent cannabis users 

relative to non-users or lighter users. Broadly these can be separated into those requiring short-

term abstinence (typically 12-24 hours) and those who monitored abstinence across a longer 

period of up to 1 month prior to assessment. 

Short-term abstinence 
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Harvey et al compared current weekly (n=34) to less than weekly (n=36) cannabis users aged 

13-18 years, following 12 hours of self-reported abstinence; weekly users had poorer immediate 

but not delayed word recall relative to placebo (Harvey et al., 2007). Dougherty et al compared 

current cannabis users (using at least 4 days per week for the past 6 months; n=45) to non-users 

(n=48) aged 14-17 years, following a minimum 18 hours monitored abstinence (confirmed by 

declining THC in urine between screening and testing sessions) (Dougherty et al., 2013). 

Cannabis users has poorer word recall (whether this reflected immediate/ delayed recall was not 

specified) relative to the non-users. Solowij et al (2011) assessed verbal memory in adolescent 

and adult (aged 16-20 years) regular cannabis users (n=52), regular alcohol users with no 

history of regular cannabis use (n=67), and controls with no regular substance use histories 

(n=62; (Solowij, Jones, et al., 2011)). Relative to both the alcohol users and controls, cannabis 

users (following at least 12 hours of abstinence, self-reported and corroborated via THC saliva 

levels) had poorer immediate and delayed recall, and recognition memory. These group 

differences persisted following covariate adjustment for premorbid functioning (as indexed by 

age 12 school verbal and numerical ability test results), and for group differences in mental 

health, tobacco and alcohol use and gender. 

Studies assessing verbal memory in adolescent cannabis users following short-term abstinence 

therefore typically demonstrate impairments relative to healthy controls, alcohol users, and less 

frequent cannabis users. However, without longitudinal studies assessing verbal learning and 

memory before cannabis exposure, these cross-sectional studies cannot indicate whether 

impairments occurred following cannabis exposure. 

Long-term abstinence 

A number of adolescent studies have monitored abstinence over an extended period of time 

before assessment. Hanson et al conducted a key longitudinal study over 3 weeks of monitored 

abstinence (abstinence confirmed by decreasing THC metabolites over regular serial urine tests) 

with weekly or more adolescent cannabis users (n=19) relative to non-user controls (n=21; aged 
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15-19 years) (Hanson et al., 2010). Immediate word recall impairments (they did not report 

delayed recall assessment) apparent in cannabis users after 2 days of abstinence, normalised to 

non-user performance following 2 weeks of abstinence and remained normalised after 3 weeks. 

A key strength of this study was the longitudinal design, while other studies have rarely taken 

baseline assessments to assess change over the period of abstinence.  

Mahmood et al similarly monitored abstinence for 22 days in cannabis users (n=65) and non-

user controls (n=65) aged 15-19 years, finding no group differences on immediate and delayed 

recall performance when assessed following abstinence (Mahmood, Jacobus, Bava, Scarlett, & 

Tapert, 2010). Winward et al monitored abstinence over 4 weeks, finding no differences 

between cannabis users (n=20) and non-users (n=55; aged 16-18 years) on immediate or 

delayed free recall, though cannabis users did have impaired delayed cued recall performance 

(Winward, Hanson, Tapert, & Brown, 2014). Medina et al similarly monitored abstinence over 

at least 23 days in monthly cannabis users (n=31) and non-user controls (n=34; aged 16-18 

years), finding no difference between groups on word recall (a composite measure including 

immediate and delayed recall and recognition memory), but poorer performance in the cannabis 

users on prose recall (composite measure as above) (Medina et al., 2007).  

Of interest, Jacobsen et al monitored cannabis abstinence (requiring a negative urine screen after 

one month to participate) in 20 daily tobacco smokers who used cannabis, relative to 25 daily 

tobacco smokers who did not use cannabis (aged 13-18 years) (Jacobsen, Pugh, Constable, 

Westerveld, & Mencl, 2007). Participants attended two sessions following 1 month of cannabis 

abstinence; on one occasion they smoked cigarettes as usual and on the other they abstained 

from nicotine for 24 hours prior to assessment. When tobacco smoking as usual, no differences 

were found on immediate and delayed recall between the cannabis users and non-users. 

Interestingly however, following 24 hours of nicotine abstinence, the cannabis users but not the 

non-users showed impairment of delayed recall. The authors therefore suggest that nicotine, 

acutely a cognitive enhancer (Heishman, Kleykamp, & Singleton, 2010), may be masking 

verbal memory deficits in cannabis users who also consume tobacco on a daily basis (that is, if a 
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participant smokes a cigarette soon before memory assessment, the nicotine dose may 

subsequently mask an impairment). 

Therefore, while assessing cannabis users after minimal periods of abstinence reliably detects 

verbal learning and memory impairments relative to non-users, assessments following two 

weeks or more of abstinence tend to report no or fewer performance impairments. While 

promising, a number of limitations of such studies must be considered. Sample sizes are 

typically small, particularly for monitored abstinence studies and the degree of cannabis use in 

both the cannabis use and control groups varies widely across studies. For instance, some 

included those who fulfil criteria for cannabis use dependence, while others excluded these 

users; others defined non-use as less than 5 lifetime uses, while others defined non-use as less 

than 40 lifetime uses. Another key issue for monitored abstinence studies is whether cannabis 

users who are motivated to quit for an extended period differ from typical cannabis users, 

potentially questioning the generalisability of such findings to other cannabis users.  

Associations with age of cannabis use onset 

It is therefore apparent that adolescent findings for verbal learning and memory (at least for 

immediate and delayed recall) are typically similar to those reported in adults (I. Grant et al., 

2003; Schreiner & Dunn, 2012). However, I am aware of no studies to date directly comparing 

adolescent and adult cannabis user groups; though studies have assessed whether a younger age 

of cannabis use onset predicts greater verbal memory problems. 

Solowij et al (as described above) found correlations between word recall (immediate and 

delayed) and both age of first cannabis use and age of first regular cannabis use (Solowij, Jones, 

et al., 2011) in 16-20 year old cannabis users (n=52). After adjustment for frequency and 

quantity of cannabis use, younger age of first regular cannabis use continued to predict poorer 

immediate and delayed recall; though they did not adjust for duration of cannabis use. Wagner 

et al assessed verbal word recall in 142 current and former cannabis users (self-reported 

abstinence of 12 hours minimum required; mean time since last use= 134 days) aged 18-35, 
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performing a median split by age of onset creating a group of early-onsetters (aged 11-14 years) 

and late-onsetters (aged 15-35 years) (Wagner, Becker, Gouzoulis-Mayfrank, & Daumann, 

2010). Participants were also classified by duration of use (short (0-30 months), long (36-240 

months)) and frequency of use (low (0-9 days per month), high (10+ days per month)). The 

authors report a three-way interaction of age of onset x frequency of use x duration of use for 

immediate recall. In the early on-setters, long relative to short duration of use predicted poorer 

immediate recall in both low and high frequency users; however, in the late-onsetters, long 

relative to short duration of use only predicted poorer immediate recall in high frequency users. 

However, alone, age of onset did not predict worse recall performance. These findings suggest 

there may be complex interactions between age of onset and cannabis use patterns, though the 

exploratory interaction finding requires replication before strong conclusions can be made. 

Recently Crane et al assessed verbal memory in 69 cannabis users aged 18-24 years (self-

reported abstinence on day of testing; time since last use ranged from 1-45 days) (Crane, 

Schuster, Mermelstein, & Gonzalez, 2015). The authors report an interaction between age of 

first regular use and gender, with earlier age of regular use predicting immediate and delayed 

recall performance in women but not men. 

Others however have found no relationship between age of cannabis use onset and verbal 

memory (Gruber et al., 2012; Tait, Mackinnon, & Christensen, 2011; Winward et al., 2014), and 

age of cannabis use onset did not moderate the relationship between cannabis use and 

impairment for any cognitive domain in the 2012 meta-analysis described above (Schreiner & 

Dunn, 2012). Though as the findings of Wagner et al (Wagner et al., 2010) and Crane et al 

(Crane et al., 2015) demonstrate, there may not be a simple relationship between age of onset 

and verbal memory, with gender differences and interactions with frequency and duration of use 

potentially influencing the relationship. Importantly associations between age of onset and 

verbal memory also cannot suggest causality, since there may be other common factors that 

influence both earlier age of substance use and poorer verbal memory. Moreover, as with all 

retrospective drug history measures, recall of age of cannabis use onset may be unreliable. 
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Relatedly, in a recent meta-analysis Schoeler and colleagues compared cannabis users and non-

users on various measures of verbal and working memory (Schoeler, Kambeitz, et al., 2016). 

They found no difference between the global memory effect size for early-onset (<17 years) 

relative to late-onset (≥17 years) cannabis users, suggesting that earlier onset of cannabis use 

was not associated with increased memory impairment. 

In summary, whether adolescent cannabis users have poor verbal learning and memory 

outcomes remains for debate, though promisingly a number of studies have demonstrated no 

evidence of deficits following abstinence of as little as two weeks. However, few studies have 

followed adolescent cannabis users into adulthood to assess any long-term effects adolescent 

use may be having on verbal memory functioning. 

1.4.2.2 Working memory 

Working memory refers to a cognitive system for the temporary storage and manipulation of 

remembered information (Baddeley, 1992). Such a system is clearly essential for successful 

day-to-day functioning, supporting many other cognitive functions including decision making, 

problem solving and selective attention. Whether cannabis affects working memory function 

has been widely assessed, though with very mixed findings, particularly in regard to the acute 

effects. 

Working memory has been assessed with a large number of different tasks, including the N-

back (0- 1- 2- or 3-back), digit span forwards and backwards (DSF, DSB), serial 7’s subtraction 

(S7), delayed matching to samples (DMTS), WAIS-III letter-number sequencing (LNS), 

CANTAB spatial working memory (SWM) and the Sternberg memory task (SMT). The 0-back, 

DSF and SMT, arguably require only maintenance and recognition of information. While 

specific task procedures vary, the other tasks have in common the requirement to maintain 

information and manipulate it ‘online’. Tasks also vary in their memory load (for instance, the 

1-back requires comparison of a stimulus to the stimulus immediately preceding, while the 2-

back requires comparison to the stimulus presented two before) and complexity (for instance, 
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‘easy’ and ‘hard’ DMTS versions requires memory of simple and complex shapes). Tasks are 

typically either spatial (spatial N-back, DMTS, SWM), requiring memory of the location of 

stimuli, or verbal (verbal N-back, DSF, DSB, S7, LNS, SMT), requiring memory of words or 

numbers presented either visually or auditory. Task performance is typically measured by 

accuracy and/or reaction time. 

As a quick aside, clearly working memory and verbal learning and memory are not fully 

dissociable domains. Indeed, simple maintenance of words or letters as demanded by a number 

of working memory tasks described above has a conceptually similar memory demand as 

immediate verbal recall tasks described previously, and working memory likely contributes to 

recall of recently processed stimuli on such tasks. However, working memory is distinct from 

other short term memory processes such as verbal learning and memory, since it enables the 

manipulation, rather than simple recall or recognition, of stored information.  

1.4.2.2.1 Acute effects of cannabis on working memory 

Maintenance 

Findings for the SMT consistently report an increased recognition reaction time following THC 

(Bossong et al., 2012; Hunault et al., 2009; Schoedel et al., 2011; Theunissen et al., 2015) or 

nabilone (Wesnes et al., 2009) relative to placebo, with some also reporting decreased accuracy 

(Bossong et al., 2012; Hunault et al., 2009; Wesnes et al., 2009). Meanwhile, Morrison et al 

(2009) reported decreased accuracy in 22 male cannabis users for the DSF following IV THC, 

while McDonald et al (2003) found no effect following oral THC in 37 cannabis users. Findings 

for the 0-back are more mixed, with some finding no impairment to accuracy or reaction time 

following THC administration on both verbal (Kollins et al., 2015) and spatial (Vandrey et al., 

2013) 0-backs, though Ilan et al found that THC increased reaction times on the spatial 0-back 

in 10 cannabis users (Ilan, Smith, & Gevins, 2004). Together these findings suggest that under 

some circumstances THC impairs maintenance of information even without any manipulation 

task demands, though inconsistent findings preclude strong conclusions. Of note, the 0-back has 
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a particularly low memory demand, while the SMT typically consists of a number of trials with 

increasing memory load, potentially accounting for the discrepancies between results on these 

tasks. 

Manipulation 

Mixed findings have also been reported for SWM, with increased errors following THC in 

minimal users but not in frequent users (D'Souza, Braley, et al., 2008) or occasional users 

(Ranganathan et al., 2012); potentially suggesting tolerance to the effects following even 

irregular cannabis use. Surprisingly, Makela and colleagues reported a decrease in errors 

following THC in 19 cannabis users, though this may represent practice effects, since this 

improvement only occurred when participants were randomised to receive placebo on the first 

occasion (Makela et al., 2006). 

THC is typically found to impair reaction times on the N-back task, though often not 

consistently across different memory loads (1- 2- and 3-back). Kollins et al (2015) found in 16 

cannabis users that THC increased reaction time on the verbal 3-back but not the 1- or 2-back 

(or as described above, the 0-back), though accuracy was not affected at any load. Meanwhile 

Vandrey et al found in 13 daily cannabis users that THC increased reaction time on the spatial 

1-back but not the 2- or 3-back (or as described above, the 0-back), and did not report accuracy 

(Vandrey et al., 2013). Ilan et al (2004) found that THC increased reaction time and decreased 

accuracy for the spatial 2-back (and as described above, increased reaction time on the 0-back), 

and Hart et al (n=24) found that THC increased reaction times but did not affect accuracy for 

the spatial 1- and 2-backs (Hart et al., 2010). Meanwhile, both Morrison et al (2009) and 

McDonald et al (2003) reported impaired DSB following IV THC. 

In summary, the acute effects of cannabis on working memory abilities, both maintenance and 

manipulation, remain unclear as a result of inconsistent findings. Such inconsistencies may be 

due to methodological differences- including differing doses, routes of administration, sample 

characteristics and small sample sizes. Moreover, different tasks pertaining to index similar 
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constructs nevertheless have differing components, memory demands, and difficulty levels, thus 

confusing comparison of effects found on different tasks. 

1.4.2.2.1.1 Age-related findings: acute 

As described above, to date no studies have administered cannabis to adolescents in a controlled 

study. Preclinical evidence for working memory effects of cannabis in younger animals is also 

limited, though in 14 adolescent rhesus monkeys Verrico and colleagues found that acute doses 

of THC but not placebo led to impaired spatial working memory, but not the earlier maturing 

object working memory (Verrico et al., 2012). Such findings suggest that the effects of cannabis 

may be dependent upon developmental stage of the cognitive function being measured. 

1.4.2.2.2 Non-acute associations between cannabis use and working memory 

In a recent meta-analysis Schoeler, Kambeitz et al (2016) compared working memory ability for 

cannabis users and non-users (including both adult and adolescent samples). They reported 

robust evidence of non-acute impairment in cannabis users on tasks of verbal working memory 

(Cohen’s d= 0.11 (95% CIs: 0.04, 0.17)) but not for visual/spatial working memory (d= -0.02 

(95% CIs: -0.26, 0.21)). Of note however, the global memory effect size (that is, including all 

memory measures for verbal memory, working memory and prospective memory) reduced by 

50% once the authors exclude studies including participants who had been abstinent for fewer 

than 10 days. 

1.4.2.2.2.1 Age-related findings: non-acute 

There are mixed findings for working memory impairments in adolescent cannabis users. Most 

studies have found no differences between users & non-users on various working memory tasks, 

even after short periods of abstinence (Jager, Block, Luijten, & Ramsey, 2010; Padula, 

Schweinsburg, & Tapert, 2007; Alecia Dager Schweinsburg et al., 2010; Whitlow et al., 2004). 

As described above, Hanson et al followed cannabis users aged 15-19 years over 3 weeks of 

monitored abstinence. Similar to their findings for verbal recall, at baseline the cannabis users 
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(n=19) performed lower on the LNS (a verbal working memory task) relative to non-using 

controls (n=21), but after three weeks of abstinence no groups differences were detected. 

However, some have found evidence of working memory impairments detectable following an 

extended period of abstinence. In a sample of 31 cannabis users aged 16-18 years, Medina et al 

found lower DSB performance after at least 23 days of monitored abstinence, relative to 34 non-

using controls (Medina et al., 2007). Similarly, as described above, Jacobsen et al (2007) 

monitored abstinence in 20 daily tobacco smokers who used cannabis, relative to 25 daily 

tobacco-only smokers who did not use cannabis (aged 13-18 years). Following one month of 

cannabis abstinence, the cannabis users showed a greater decrease in N-back performance with 

increasing memory load (for the 2-back relative to 1-back) than the tobacco-only smokers. 

Associations with age of cannabis use onset 

To my knowledge, one study has assessed the links between age of cannabis use onset and non-

acute working memory ability. Gruber et al (2012) found no difference in working memory 

performance (as assessed by both the DSF and DSB) between non-users (n=28), early-onset 

(<16 years; n=19) or late-onset (≥16 years; n=15) cannabis users, after 12 hours’ abstinence. 

Relatedly, as described above, in a recent meta-analysis Schoeler, Kambeitz et al (2016) 

compared cannabis users and non-users on various measures of verbal and working memory. 

They found no difference between the global memory effect size for early-onset (<17 years) 

relative to late-onset (≥17 years) cannabis users, suggesting that earlier onset of cannabis use 

was not associated with increased memory impairment. 

Repeated administration studies with adolescent animals 

Repeated administration studies with animals further suggest greater vulnerability to cannabis-

related harm in adolescents. Repeated adolescent THC exposure has been shown to lead to 

adulthood deficits in spatial working memory in rats (Rubino, Realini, Braida, Alberio, et al., 

2009; Rubino, Realini, Braida, Guidi, et al., 2009), though intriguingly a recent study instead 

found improved working memory in adult rats who had repeatedly self-administered the 
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synthetic CB1R agonist WIN55,212-2 (WIN) in adolescence (Kirschmann, Pollock, Nagarajan, 

& Torregrossa, 2016). Furthermore, in adolescent rhesus monkeys Verrico and colleagues found 

that repeated doses of THC led to impaired spatial but not object working memory (mirroring 

their acute findings described above), and prevented the maturational improvement in spatial 

working memory typically seen at that age, but did not affect the earlier developing object 

working memory Verrico, Gu, Peterson, Sampson, and Lewis (2014). However, there have been 

no direct comparisons of the working memory effects of repeated cannabinoid doses in 

adolescent versus adult rats, precluding conclusions about whether repeated adolescent exposure 

is particularly damaging. 

1.4.3 Response inhibition 

Response inhibition, and recently its putative association with age of cannabis use onset, has 

been a key area of research in the cannabis literature. However, whether cannabis use leads to 

impaired response inhibition remains unclear, with mixed evidence both acutely and non-

acutely. Response inhibition is an aspect of impulsivity, and can be broadly defined as “the 

process by which a prepotent, routine or dominant response is deliberately withheld” 

(Hampshire, Chamberlain, Monti, Duncan, & Owen, 2010). 

Response inhibition is typically assessed by one of three tasks: Stroop, go/no-go, or stop-signal. 

The Stroop colour-interference task has been used on occasion throughout the cannabis 

literature, though specific interpretation of the key outcome of interest (time to complete reading 

of list of color-incongruent words) is problematic since increased latency may reflect 

impairment of attentional processes or processing speed, rather than specifically impaired 

inhibitory function. As a result, the stop-signal and go/no-go tasks are now much more widely 

used across the response inhibition literature. However, while these two tasks are often 

interpreted interchangeably, the tasks fundamentally measure different functions.  

The stop-signal task measures “action cancellation”, requiring participants to inhibit already 

initiated responses. The key variable of interest is the theoretical speed at which an already 
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initiated response can be stopped (SSRT), calculated according to the horse-race model which 

conceptualises action as a competition to finish first between stopping processes and reaction 

processes, such that whichever process finishes first determines outcome (Logan & Cowan, 

1984). The SSRT represents the total time taken to attend to, process and execute an inhibitory 

response to the stop-signal. The stop-signal task can either utilise a tracking or non-tracking 

procedure. For the tracking procedure, the delay between stimulus and stop-signal is altered 

according to the participant’s performance with the aim of finding the delay at which the 

participant is able to inhibit their responses on approximately 50% of trials. The SSRT can then 

be calculated from this delay. For the non-tracking procedure, a number of different delays are 

pre-defined and utilised throughout the task, and the delay at which the participant is able to 

inhibit their responses on approximately 50% of trials has to be estimated from task 

performance.  

The go/no-go task meanwhile measures “action prevention”, requiring participants to prevent 

the initiation of a planned response. The key outcome of interest is the rate of commission errors 

(that is, failures to prevent initiation of the response). Stop-signal and go/no-go tasks have been 

shown to have both common and distinct networks of neural activation, suggesting action 

cancellation and action prevention engage similar but not identical functions.  

1.4.3.1 Acute effects of cannabis on response inhibition  

Acutely, the stop-signal task (both the tracking and non-tracking versions) has been most widely 

used, with most (Metrik et al., 2012; Ramaekers, Kauert, Theunissen, Toennes, & Moeller, 

2008; Ramaekers et al., 2006; Ramaekers et al., 2016; Van Wel et al., 2013) but not all 

(Ramaekers et al., 2011) studies reporting an impairing effect of THC or cannabis on task 

performance, though not always on the SSRT which is the task’s key measure of response 

inhibition. The wide number of dependent variables produced by this task can be problematic; 

studies typically report some combination of SSRT, accuracy on go-trials (that is, trials without 

a stop-signal), reaction time on go-trials, and additionally for the non-tracking version, 
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commission errors and omission errors. This can prevent meaningful comparison between 

different studies, and the option of choosing from many outcomes increases the possibility Type 

1 errors. The go/no-go task has also been used to a lesser extent, though contrary to the stop-

signal findings, some (Atakan et al., 2013; McDonald et al., 2003) but not all (Bhattacharyya et 

al., 2015) studies reported no effect of THC or cannabis on task performance (as measured by 

commission errors, omission errors and reaction time on go-trials).  

As with verbal memory, a limited number of studies have assessed whether there is a 

relationship between THC dose and inhibition task performance. Ramaekers et al administered 

the stop-signal (non-tracking) following two high doses of cannabis (equivalent THC: 

250μg/kg, 500μg/kg) or placebo to 20 occasional cannabis users (mean frequency of cannabis 

use= 3 days per month; aged 19-29 years; within-subjects design) (Ramaekers et al., 2006). The 

drug was administered via cannabis cigarettes, which were smoked. Placebo cigarettes 

contained only tobacco, while cannabis cigarettes contained both cannabis and tobacco.. Both 

active doses increased omission errors, though to a greater extent in the higher dose, suggesting 

a general reduction in task engagement and ability that increased with dose. Neither dose 

affected go-trial reaction time. The higher dose but not lower dose increased SSRT relative to 

placebo, suggesting impairment of response inhibition at the higher dose. Surprisingly, the 

lower dose but not higher dose increased commission errors, apparently contradicting the SSRT 

results. Relatedly, McDonald et al administered the stop-signal (tracking) and go/no-go tasks 

following two active THC doses (7.5mg, 15.0mg) or placebo (oral capsules) in 37 current 

cannabis users (mean frequency of cannabis use= 1.6 days per week; aged 18-45 years; within-

subjects design) (McDonald et al., 2003). THC increased SSRT on the higher but not lower 

dose, though mean values of SSRT at each dose suggest a linear dose-response relationship. 

Neither dose affected go-trial reaction times. THC did not affect performance on the go/no-go 

task (i.e. no increase in commission or omission errors and no increase in go-trial reaction time). 

Of particular importance, for instance to better inform drug-driving legislation, is the question 

of whether tolerance develops to the putative impairing effects of cannabis on response 
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inhibition following prolonged or heavy use. Ramaekers et al (Ramaekers et al., 2008) 

administered cannabis or placebo cigarettes (as described above (Ramaekers et al., 2011); active 

dose equivalent THC: 500μg/kg) to 12 occasional and 12 heavy cannabis users. Mean number 

of cannabis use exposures per year was 55 by the occasional users, and 340 by the heavy users. 

Performance on the stop-signal task (non-tracking) was affected by cannabis in both groups; 

SSRT increased and overall accuracy decreased following THC, but there was effect on go-trial 

reaction time. No differences on task performance were found between heavy and occasional 

users, suggesting a lack of tolerance to inhibitory effects of cannabis. Additionally, in a large 

study of 122 cannabis and cocaine users, vaporised cannabis (THC equivalent: 300μg/kg), oral 

cocaine, or placebo was administered in a double-blind cross-over study (Ramaekers et al., 

2016). Cannabis (and cocaine) increased commission errors, relative to placebo. (While not 

reported in this paper, previously published results from a subset of this larger sample (n=61) 

reported that cannabis did not affect SSRT or reaction time on go-trials (Van Wel et al., 2013)). 

Similar to findings above, cannabis use history (as defined by total number of cannabis use 

exposures in the past 3 months) did not correlate with commission error rate, again suggesting a 

lack of tolerance following heavier use. However, recent cannabis use did negatively correlate 

with subjective intoxication and psychomotor impairment, suggesting tolerance to these effects 

does occur with increased cannabis use. Meanwhile, an earlier study from the same group found 

no impairment of SSRT or commission errors on the stop-signal task following smoked 

cannabis in 21 heavy (mean number of cannabis use exposures= 374 per year) cannabis users 

(Ramaekers et al., 2011), though no relationships between cannabis use history and task 

performance were explored. 

The go/no-go task has been administered to a lesser extent following acute THC or cannabis, 

with more mixed findings. As described above, McDonald et al (2003) found no effect of oral 

THC on go/no-go performance. Similarly Borgwardt et al found no behavioural effect of oral 

THC (10mg) or CBD (600mg) relative to placebo on go/no-go performance in 15 minimal 

cannabis users (≤15 lifetime exposures) (Borgwardt et al., 2008). Meanwhile, Bhattacharyya et 
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al compared oral THC (10mg) to placebo in 36 minimal cannabis users (≤25 lifetime 

exposures), reporting an increase in commission errors and a decrease in go-trial reaction time 

following THC (Bhattacharyya et al., 2015). Similarly, Atakan et al found a trend-level increase 

in commission errors alongside no increase in go-trial reaction time, following oral THC (10 mg 

THC) relative to placebo in 21 minimal cannabis users (≤25 lifetime exposures) (Atakan et al., 

2013). 

In summary, THC and cannabis appear to influence stop-signal task performance; though this is 

not consistently reflected in impairment of SSRT. Increased commission errors alongside 

unaffected SSRT are difficult to interpret, possibly suggesting lack of task engagement or 

motivation rather than impaired response inhibition. Go-trial reaction time is typically 

unaffected by cannabis, suggesting that findings do not merely reflect a general slowing of 

responses following cannabis. Meanwhile, findings for the go/no-go task are more mixed, 

though methodologically these studies are more similar to each other (in terms of dose, route of 

administration and cannabis use history of participants). While this difference between tasks 

may reflect a specific impairing effect of THC on action cancellation but not action prevention, 

there are key differences to note between studies using each task. All studies described above 

utilising the go/no-go task administered THC orally, while the majority of studies assessing 

stop-signal performance administered THC via inhalation (smoked or vaporised). Given that 

route of administration has been shown to influence the time-scale and magnitude of some 

effects of cannabis (Chait & Zacny, 1992; Hart et al., 2002), such differences complicate 

comparability between task findings. Moreover, while studies of stop-signal performance have 

tested recreational cannabis users ranging from occasional to heavy users, studies of go/no-go 

performance have typically used participants with minimal cannabis exposure. Nevertheless, in 

the only study to date (to my knowledge) to administer both the stop-signal and go/no-go tasks 

(oral THC; recreational cannabis users), the authors reported no effect of drug on go/no-go 

performance, but increased SSRT on the stop-signal task (McDonald et al., 2003). 

1.4.3.1.1 Age-related findings: acute 
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To date, no studies have assessed the influence of age on the acute effects of cannabis or THC 

on response inhibition, either in humans or animals. Translational tasks to measure similar 

constructs to the stop-signal and go/no-go tasks i.e. response inhibition (rather than, for 

instance, the 5-choice serial reaction time task, which measures the ability to wait before 

executing a planned response (Eagle & Baunez, 2010)) have been developed for rodents in the 

past decade (Eagle, Bari, & Robbins, 2008)). However, the large number of sessions required to 

train animals on the task (for instance, see (Pattij et al., 2007)) is likely to preclude testing of 

adolescent rodents, given the short duration of rodent adolescence (e.g. in rats, adolescence is 

considered to last 15 days, from postnatal day (PND) 28 to 42, inclusive (Spear, 2000)). 

To my knowledge only one study to date has assessed the effect of cannabinoids on such tasks 

in adult rodents (Pattij et al., 2007). Adult Wistar rats were administered the synthetic CB1R 

agonist WIN at three doses (0.3mg/kg, 1.0mg/kg, or 3.0mg/kg) or vehicle, and performance on 

the stop-signal task was measured. WIN did not affect SSRT, but did decrease the rate of correct 

inhibitions (i.e. increased commission error rate) at the lowest dose. WIN did not affect the 

number of omission errors, but did increase reaction time on go-trials (though only in the two 

higher doses). While replications are required, preferably with THC rather than the more potent 

CB1R agonists often used in preclinical work (for instance, WIN is a full agonist), this study 

suggests that in a rodent model, cannabinoid agonists do not impair the ability to inhibit an 

already initiated response. 

1.4.3.2 Non-acute associations between cannabis use and response inhibition 

There is little evidence that adult cannabis users have non-acute impairment of response 

inhibition. While a few small studies have found impaired response inhibition in cannabis users 

relative to controls (Lisdahl & Price, 2012; Moreno et al., 2012), most have found no group 

differences across a range of response inhibition tasks (Gonzalez et al., 2012; J. D. Grant et al., 

2012; Gruber & Yurgelun-Todd, 2005; Hester, Nestor, & Garavan, 2009; Jutras-Aswad et al., 

2012; Price et al., 2015), even in a large sample of heavy cannabis users seeking treatment, after 
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just one day of abstinence (Solowij et al., 2002). Indeed, such studies have either not imposed 

any abstinence period (J. D. Grant et al., 2012; Gruber & Yurgelun-Todd, 2005; Hester et al., 

2009; Jutras-Aswad et al., 2012), or imposed short self-reported periods of abstinence ranging 

from less than 24 h (Gonzalez et al., 2012; Solowij et al., 2002) to seven days (Price et al., 

2015). 

A recent meta-analysis of stop-signal and go/no-go performance in non-intoxicated heavy 

and/or dependent cannabis users, found no evidence of impaired SSRT and no-signal reaction 

times for the stop-signal task, or impaired commission errors, omission errors, and no-signal 

reaction times for the go/no-go task (Smith, Mattick, Jamadar, & Iredale, 2014). Smith et al 

combined data from six stop-signal studies, including 136 cannabis users and 326 non-users, 

resulting in an effect size, g = 0.112 (95% CIs: -0.120, 0.343). Combining data from five go/no-

go studies, including 144 cannabis users and 147 non-users, resulted in g = 0.004 (95% CIs: -

0.230, 0.239).  

Given the consistency of tasks used across studies, and the small sample size of individual 

studies (only three of the studies included more than 20 cannabis users), the meta-analytic 

method is particularly useful in this instance. However, the majority of included studies 

assessed adult-only populations (with one stop-signal study including those aged 16 years or 

older (Huddy et al., 2013), and one go/no-go study (Tapert et al., 2007) including only 16-18 

year olds), so whether these findings generalise to adolescent populations is not yet clear. 

1.4.3.2.1 Age-related findings: non-acute 

A few studies to date have assessed response inhibition in an adolescent population, with mixed 

findings. Behan et al administered the go/no-go task to adolescent (aged 14-19 years) cannabis 

users (n=17) in treatment for cannabis dependence and non-using controls (n=18; (Behan et al., 

2014)). Participants were asked to not use cannabis the night before testing. Cannabis users had 

lower no-go trial accuracy (which indicates a higher commission error rate), with no change to 

omission error rate or go-trial reaction time. Dougherty et al administered a non-tracking stop-
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signal task to adolescent (aged 14-17 years) cannabis users (at least 4 days per week, for a 

minimum of 6 months; n=45) and non-users (n=48), finding a trend-level increase in 

commission errors in the cannabis users (Dougherty et al., 2013). Participants were required to 

be abstinent for at least 18 hours, which was confirmed by decreased urinary levels of THC 

metabolite 11-nor-9-Carboxy-THC (THC-COOH) from the previous day. Tapert et al recruited 

adolescent (aged 16-18 years) cannabis users (mean frequency= 14 days per month; n=16) and 

non-users (n=17; (Tapert et al., 2007)). Abstinence was monitored for a period of 28 days with 

bi- or tri-weekly urine tests; THC-COOH levels were required to have declined at each test. 

Participants completed the go/no-go task after successfully completing the abstinence period. 

No differences in task performance were reported for accuracy or no-signal reaction times.  

While it is hard to make any strong conclusions based on these few studies, a similar pattern to 

verbal memory findings is apparent: the longer the abstinence period, the weaker the evidence 

for impaired response inhibition. Furthermore, the only study reporting strong evidence of 

impaired response inhibition was from a sample of dependent cannabis users receiving 

treatment (Behan et al., 2014); as such, impairment may be related to their substance use 

disorder rather than a specific effect of cannabis use, or indeed may reflect cannabis withdrawal 

symptoms following overnight abstinence. 

1.4.3.2.1.1 Associations with age of cannabis use onset 

While in adult cannabis users there is little evidence of non-acute impaired response inhibition, 

given the small number of studies to date in adolescent samples it is difficult to say whether the 

same is true for adolescent cannabis users. 

Whether impaired response inhibition is associated with an earlier age of cannabis use onset has 

been explored in a number of studies, with some demonstrating that early-onset cannabis users 

had lower response inhibition performance than late-onsetters (Gruber et al., 2012; Sagar et al., 

2015; Tamm et al., 2013), but other finding no difference between early-onset users and both 

late-onset groups or non-using controls (Fontes et al., 2011; Hester et al., 2009; Pope et al., 
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2003). For instance, Gruber et al compared early-onset (regular use <16 years old; n=19), late-

onset (regular use ≥16 years old; n=15) heavy cannabis users and non-users (n=28) on the 

Stroop interference task (Gruber et al., 2012). No differences were found in task performance 

for the late-onsetters relative to the non-user controls, but the early-onsetters made more 

commission errors and had lower overall accuracy than the controls. Such results remained 

apparent when a continuous measure of age of onset was correlated with task performance. 

However, the early-onset users were currently using cannabis twice as many times per week, 

and three times the amount (in grams) of cannabis per week, compared to the late-onsetters; 

these measures also correlated with errors and accuracy. Adjusted regressions were not 

conducted due to limits of samples size (Sagar et al., 2015), so we cannot say whether age of 

onset was a predictor of response inhibition independent of frequency and heaviness of use.  

Meanwhile, in the largest study to date, Pope et al compared current or former daily cannabis 

users who first used <17 years old (n=69) to those who first used ≥17 years old (n=53), and to 

minimal user controls (reporting 1-50 lifetime uses of cannabis; n=87) (Pope et al., 2003). After 

28 days monitored abstinence, and adjusting for gender, age, ethnicity and family of origin, 

there were no group differences on Stroop interference performance. 

Given the inconsistent findings, it is unclear whether reported associations reflect reduced 

response inhibition resulting from young cannabis use; greater usage in general by early-onset 

users; or pre-morbid lower response inhibition which increases the likelihood of cannabis use 

from a young age (De Wit, 2009; Nigg et al., 2006; Norman et al., 2011). Longitudinal studies 

are needed to better delineate these potential explanations.  

1.4.4 Summary of chapter 1 

 Non-acute human findings tend to be similar in adults and adolescents (though in 

general fewer studies have been conducted with adolescents, especially for response 

inhibition) 
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 The animal literature (both acute and non-acute) is limited but may suggest increased 

vulnerability in adolescence 

 A clear knowledge gap is the lack of acute studies with anyone under the age of 18 
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2 Chapter 2. Cannabis, psychosis and mood 

2.1 Cannabis and psychosis 

Alongside transient subjective and cognitive effects, cannabis can also acutely lead to 

psychotic-like experiences (Sherif, Radhakrishnan, D’Souza, & Ranganathan, 2016), and non-

acutely cannabis use is associated with increased risk of psychosis and psychotic disorders such 

as schizophrenia (Gage, Hickman, & Zammit, 2016; T. H. Moore et al., 2007).  

Psychosis refers to a mental disturbance characterized by aberrant perceptions (hallucinations) 

and thoughts (delusions) that causes an individual to lose touch with external reality (Curran et 

al., 2016). Psychotic experiences are fairly common in the general population, for instance up to 

10% of people report experiencing hallucinations, and they are not necessarily negative 

experiences (for instance, religious visions). However, psychosis can be problematic if the 

experiences are distressing for the individual, or if they onset acutely, as can be the case with 

drug-induced psychosis. Psychotic symptoms may be transient, as is typically the case with 

drug-induced psychoses which typically resolve once the drug is eliminated from the system, or 

may be more long-lasting in which case they may form part of a diagnosis for more long-lasting 

difficulties such as schizophrenia, schizoaffective disorder or bipolar disorder. However, 

psychotic symptoms (often clinically termed positive symptoms) are often only one aspect of a 

clinical diagnosis, for instance a diagnosis of schizophrenia may also recognise negative 

symptoms (such as anhedonia and difficulties with initiation), and cognitive impairments (such 

as working memory problems).  

This leads me to a quick note on terminology. In this chapter I will use the terms psychosis and 

psychotic experiences interchangeably to refer to experiences described above including 

hallucinations and delusions, that do not necessarily represent a clinical problem for the 

individual. When specifically referring to acute drug effects I will interchangeably use the terms 

psychotic-like experiences or psychotomimetic effects. When studies refer to patient 

populations who have received a clinical diagnosis relating to these experiences, I will either 
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use the term psychotic disorder or else I will refer to the specific diagnoses the study population 

refers to, for instance schizophrenia or schizoaffective disorder.  

Cannabis and psychosis are implicitly linked, in that many of the effects of cannabis 

intoxication, including those desired by users, are psychotic-like in nature. Describing the 

experience of cannabis intoxication, Tyler (1986) states that users report heightened perceptual 

awareness of music, sounds and colours, alongside insights into new meanings. This has been 

recognised for millennia, with ancient medical texts from China and India describing such 

effects, for instance the oldest known pharmacopoeia, from China 2727 BC, described 

psychiatric effects of cannabis (Murray, Morrison, Henquet, & Di Forti, 2007). However, 

concerns about potentially longer-lasting psychotic effects of cannabis have only become 

prominent in the scientific community since the 1970’s, with case reports emerging of cannabis 

use leading to or exacerbating severe psychotic symptoms (Davison & Wilson, 1972; Spencer, 

1970; Treffert, 1978), followed by the first longitudinal population cohort study to demonstrate 

associations between cannabis use and schizophrenia (Andréasson, Engström, Allebeck, & 

Rydberg, 1987). 

In this chapter I will first describe the evidence of associations between cannabis use and 

psychotic disorder, before focusing on a number of cannabis use behaviours that may increase 

the risk of psychotic disorder. Next I will discuss the problems with determining causality from 

such studies, before discussing why adolescent cannabis users may be at heightened risk. Next I 

will describe past research investigating the acute effects of cannabis on psychotic-like 

symptoms and refer to any evidence relating to potential differences in the acute effects for 

adolescents. Finally, I will briefly discuss the more limited field of research linking cannabis 

use to mood problems including depression. 

2.1.1 Associations between cannabis use and psychotic disorder 

Following these early studies, decades of preclinical, epidemiological and experimental 

evidence now converge to support an association, and possibly a causal link, between cannabis 
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use and psychotic disorders (Gage et al., 2016; Murray & Di Forti, 2016; Ranganathan, Skosnik, 

& D'Souza, 2016). Moore and colleagues’ meta-analysis of longitudinal population cohort 

studies estimated an odds ratio (OR) of 1.4 for any psychotic outcome (including schizophrenia, 

psychotic disorders, and psychotic experiences) in cannabis users compared with never users (T. 

H. Moore et al., 2007). This meta-analysis was recently updated to include cohort studies 

published since 2007, producing a similar OR of 1.5 for any psychotic outcome in cannabis 

users compared with never users (Gage et al., 2016). 

However, given the high prevalence of cannabis use in the general population (the European 

Drug Report 2016 estimated that 24.8% of Europeans aged 15-64 years had used cannabis at 

least once in their lifetime, while around 1.0% were estimated to near-daily or daily users 

(European Drug Report 2016: Trends and Developments., 2016; Thanki et al., 2013)), and the 

very low prevalence of psychotic disorder (a meta-analysis of prevalence estimates from 20 

population based cohorts estimated the global lifetime morbid risk to be 0.7% (Saha, Chant, 

Welham, & McGrath, 2005)), it is clear that not everyone who uses cannabis develops 

psychosis. Indeed, only a small percentage of the cannabis using population will ever be 

diagnosed with a psychotic disorder, and furthermore many people who experience a psychotic 

disorder have never used cannabis. 

Assuming a causal explanation between cannabis and psychosis (which, as I will discuss 

shortly, is not necessarily a sound assumption), this implies a number of things about the 

relationship. Firstly, this implies that there is variation in the susceptibility to cannabis-related 

psychosis, such that there may be specific vulnerability and resilience factors that moderate an 

individual’s risk. For instance, genetic polymorphisms of AKT1 have been identified that are 

only predictive of psychosis risk in cannabis users (Di Forti et al., 2012; Morgan et al., 2016; 

van Winkel, van Beveren, & Simons, 2011), and there is evidence that the influence of early 

cannabis use on psychosis may be dependent upon having experienced childhood trauma 

(Harley et al., 2010; Houston, Murphy, Adamson, Stringer, & Shevlin, 2008). Secondly, this 

implies that there may be risky and less risky cannabis use behaviours, some of which increase 
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likelihood of psychotic disorder more than others. Indeed, a growing literature suggests that 

certain cannabis use behaviours, including the type of cannabis consumed (Di Forti et al., 2009; 

Morgan et al., 2012), how often you use cannabis (Di Forti et al., 2014; T. H. Moore et al., 

2007) and, most importantly for this thesis, the age at which you start using cannabis 

(Arseneault et al., 2002; Di Forti et al., 2014), may affect risk of psychosis. 

2.1.2 Cannabis use behaviours and psychosis 

2.1.2.1 Frequency and duration of use 

As described above, the risk of psychosis is estimated to be 40-50% higher in cannabis users 

relative to never users (Gage et al., 2016; T. H. Moore et al., 2007); however this association 

strengthened to approximately an 110% increased risk for heavier or more regular cannabis user 

groups (T. H. Moore et al., 2007). 

A case-control study of patients with first-episode psychosis from South London found that the 

patient group were approximately six times more likely to be current daily users (OR= 6.4; 

adjusted for age, gender, ethnicity, level of education achieved, and employment status) relative 

to controls, despite finding no case-control difference in likelihood of ever having tried cannabis 

(Di Forti et al., 2009). Further, patients were more likely to been cannabis users for more than 5 

years (versus less than 5 years; OR= 2.1; adjusted as above) than controls. Recently an 

additional study by Di Forti and colleagues, of psychosis patients, estimated that daily cannabis 

users had an earlier age of psychosis onset by 2.7 years relative to less regular users (Di Forti et 

al., 2014). McGrath and colleagues (2010) conducted a sibling pair analysis with data from a 

prospective birth cohort from Brisbane, reporting that longer duration since first cannabis use 

was associated with greater psychotic symptoms at age 21 (McGrath et al., 2010). Even relative 

to matched siblings, those with a longer duration of cannabis use had greater psychotic 

symptoms, increasing confidence that the association was not as a result of unmeasured 

confounding. It is apparent therefore that both frequency and duration of use potentially 

represent risk factors for both the onset of, and earlier onset of, cannabis-related psychosis. 
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2.1.2.2 Cannabis type 

Of interest, Di Forti et al’s 2009 case-control study also found that within the cannabis users, 

those with psychosis were considerably more likely to report being skunk-users than the non-

psychotic controls (OR= 6.8), while in their 2014 study they reported that preferential skunk-

users had an age of psychosis onset 3.4 years earlier than hash-users, even after adjusting for 

frequency of use (Di Forti et al., 2014). Furthermore, in 2015 Di Forti and colleagues reported 

that those who preferentially used skunk had 3 times the risk of psychosis relative to never-

users, increasing to 5 times for daily skunk-use, while those who predominantly used hash-type 

cannabis had no increased risk relative to never-users (Di Forti et al., 2015). Perhaps therefore 

cannabis type affects associated risk of psychosis.  

One proposed explanation for the difference in risk according to cannabis type is variation in 

CBD content. Skunk cannabis has a very low CBD content, while hash cannabis typically 

contains higher levels of CBD. Indeed CBD has been shown to have anti-psychotic properties 

equivalent to the licensed drug for psychosis, amisulpride, in an RCT of schizophrenia patients 

(Leweke et al., 2012), and has been shown to buffer against the acute psychotic-like effects of 

cannabis (Englund et al., 2013). Further, Morgan and colleagues (Morgan & Curran, 2008) 

found evidence that cannabis users with traces of CBD in their hair (indicating use of cannabis 

containing CBD) had lower off drug psychotic symptoms relative to those without CBD traces, 

a finding they later replicated in recreational but not daily cannabis users (Morgan et al., 2012). 

Perhaps therefore CBD’s putative anti-psychotic effects are protective against cannabis-related 

psychosis. However, one major confound of the non-controlled studies is that cannabis lacking 

CBD also typically has a lower THC content. As described previously, THC is responsible for 

the acute psychotomimetic effects of cannabis, and as I will discuss below, these acute effects of 

THC are dose-dependent. Findings linking skunk but not hash cannabis to psychotic outcomes 

may therefore be explained not by the CBD-content but by the higher THC potency of skunk.  

2.1.2.3 Tobacco and routes of administration 
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Recently, focus has fallen on associations between tobacco use and psychosis, and whether this 

may reflect a causal relationship (Gage et al., 2014; Gurillo, Jauhar, Murray, & MacCabe, 

2015). A recent meta-analysis of epidemiological studies demonstrated that daily tobacco 

smoking versus non-smoking was associated with a 2-fold (based only on prospective cohort 

studies) or 3-fold (based only on case-control studies) increase in risk of psychotic disorder 

(Gurillo et al., 2015). Further they found that daily tobacco smokers diagnosed with a psychotic 

disorder experienced their first episode approximately 1 year earlier than non-smokers, and that 

those with psychotic disorder started tobacco smoking at a younger age than controls. 

Tobacco and cannabis use are highly correlated, both in terms of independent use and co-

administration. Indeed, cannabis administration routes including tobacco were reported by the 

majority (65.6%) of users in the 2014 Global Drugs Survey (Hindocha, Freeman, Ferris, 

Lynskey, & Winstock, 2016). It has therefore been suggested that associations between 

cannabis and psychosis may in fact be driven by the co-morbidity of cannabis and tobacco use. 

Regardless of whether the association between tobacco use and psychosis is causal or not (for 

instance, a self-medicating hypothesis has been suggested to explain the associations between 

cigarette smoking and schizophrenia, given the acute cognitive enhancing effects of nicotine 

(Heishman et al., 2010)), this relationship may be confounding the apparent associations 

between cannabis and psychosis. However, tobacco use is less likely to be confounding the 

associations between cannabis type and psychosis, assuming that tobacco is used similarly for 

different types of cannabis. 

While population cohorts from the UK and much of Europe are inherently problematic in that 

cannabis and tobacco are commonly co-administered, cannabis users in the USA are much less 

likely to use routes of cannabis administration including tobacco (Hindocha et al., 2016). This 

results in much lower co-linearity between cannabis and tobacco use in the USA. In the coming 

years data from cohorts from countries such as the USA will hopefully be able to better answer 

the question of whether cannabis-psychosis links are being driven by tobacco use. Relatedly, in 

chapter 3 I will report evidence of a potentially similar confounding effect of tobacco use on the 
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associations between cannabis use and IQ and educational outcomes in the Avon Longitudinal 

Study of Parents and Children (ALSPAC) cohort. 

2.1.2.4 Age 

In the section above we have therefore seen that the risk of psychosis varies according to 

different cannabis use behaviours; but most relevant to this thesis, does the age of cannabis use 

influence risk of psychosis? 

Despite the common concern that starting cannabis use from a younger age may result in an 

increased risk of psychotic disorder, few studies have directly addressed this question (Murray 

et al., 2007). Relatedly however, there is evidence to suggest that, amongst psychosis patients, 

cannabis users typically have an earlier age of psychosis onset than non-users. Indeed, a meta-

analysis of 131 studies, comprising 22,519 psychosis patients, found that substance using 

patients (but not alcohol drinkers) had a younger age of psychosis onset than non-users (2.0 

years earlier), with the largest effect size for cannabis-specific samples (2.7 years earlier) 

(Large, Sharma, Compton, Slade, & Nielssen, 2011).  

Meanwhile, whether younger age of cannabis use increases risk of psychosis is less known, with 

few studies reporting such analyses. A number of studies have demonstrated that cannabis use is 

associated with psychosis outcomes measured in adolescence (for instance, at age 15-16 years 

(Miettunen et al., 2008), and age 18 years (Fergusson, Horwood, & Swain-Campbell, 2003; 

Gage et al., 2014)), however few have directly compared the risk of psychosis associated with 

younger versus older age of cannabis use. Indeed, while there have been 10 longitudinal 

population cohort studies assessing the association between cannabis use and psychosis (Gage 

et al., 2016), only two of these have stratified risk of psychotic disorder by age of first cannabis 

use. In the Swedish conscripts study (Zammit, Allebeck, Andreasson, Lundberg, & Lewis, 

2002), there was no increased schizophrenia risk in those who first used cannabis before age 16 

years, compared to those who started after reaching age 16 ((Zammit, 2004) as described in (T. 

H. Moore et al., 2007)). Meanwhile in the Dunedin cohort, those who reported having used 
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cannabis at least 3 times by age 15, as opposed to by age 18, had a greater likelihood of 

psychotic symptoms and schizophreniform disorder in their mid-20’s (Arseneault et al., 2002). 

However, those who started using at a younger age also had a longer duration of use. As 

described above, longer duration of cannabis use is also associated with an increased risk of 

psychosis, so this finding may be driven by the longer duration of use in those who started using 

from a younger age. 

In the 2009 Di Forti study discussed above, after adjustment for age, gender, ethnicity, other 

stimulant use, level of education achieved and employment status, using cannabis for the first 

time before, as opposed to after, 17 years old did not increase likelihood of developing 

psychosis (Di Forti et al., 2009). However, their 2014 study (again described above) found that 

having tried cannabis before, as opposed to after, age 15 years predicted an earlier onset of 

psychosis (median onset age= 26.9 years vs. 27.8 years), even after adjusting for gender and 

importantly duration of use (hazard ratio (HR)= 1.36; 95% CIs: 1.04, 1.80) (Di Forti et al., 

2014). Although, those who had used cannabis before age 15 also reported more frequent use 

and greater preference for skunk cannabis, and after further adjusting for type of cannabis used 

and frequency of use, the association between age of cannabis onset and age of psychosis onset 

was attenuated and became non-significant (HR= 1.18; 95% CIs: 0.81, 1.73). This potentially 

suggests that the link between age of cannabis onset and psychosis onset may be confounded by 

other factors, including frequency of cannabis use and type of cannabis used.  

Further evidence of the importance of cannabis age of onset comes from a cross-sectional 

survey of a representative population sample, investigating the association between adolescent 

cannabis use and psychotic experiences (Stefanis et al., 2004). The authors reported greater 

psychotic experiences (and negative symptoms) for those who had used cannabis relative to 

never-users, with evidence of a dose-response relationship in that greater previous cannabis use 

predicted greater psychotic experiences. Importantly, analyses were then split by age of 

cannabis use onset. Those who had started using cannabis before, as opposed to after, reaching 

age 16 years, reported greater psychotic experiences at age 19 years, even after adjustment for 
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previous cannabis use. However, the categorisation of past cannabis use is difficult to interpret, 

as lower usage was indexed by cumulative uses (never, once, 2-4 times, 5 times or more) while 

the top-category was indexed by frequency (daily or almost daily use). Given the likely huge 

variation in the number of past cumulative uses of those who answered 5 times or more, 

adjustment for this variable when assessing the impact of age of cannabis onset is not 

convincing evidence against the suggestion that, as discussed above, greater frequency of use or 

longer duration of use may account for such age-related findings. 

There is, therefore, limited evidence to date linking younger age of cannabis use onset with an 

increased risk of psychosis. The evidence is far from comprehensive and not without 

limitations, precluding conclusions in either direction. Importantly, a lack of relevant studies 

does not necessarily mean a lack of effect. 

2.1.3 Problems with determining causality 

The majority of studies I have described so far in this chapter cannot provide evidence of 

causation. Observational studies, including population cohort and case-control designs are 

difficult to interpret causally since groups are self-selecting samples; there are likely to be many 

unmeasured confounds that differ between those who choose to be daily or weekly cannabis 

users, or those who choose to be skunk or hash users. For instance, the finding that preference 

for skunk cannabis and greater frequency of use were both associated with younger age of onset 

(Di Forti et al., 2014) suggests that using from a younger age does not occur independently of 

other putatively riskier cannabis use behaviours. It is therefore important to recognise that often 

different indicators of ‘heavier’ cannabis use behaviours will be correlated, making it difficult to 

separate the individual contribution of one behaviour over another in terms of associated risk, 

even when using stratification or statistical covariate adjustment. Randomised controlled trials 

are the only method of truly identifying a causal relationship, however clear ethical 

considerations preclude the use of human RCTs to assess the effects of repeated cannabinoid 
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exposure. In the next section however I will discuss the use of RCTs using acute cannabinoid 

administration to investigate the links between cannabis and psychosis. 

2.1.4 Cannabis, psychosis, and adolescent brain development 

As described in chapter 1 section 1.3, it is likely that the eCB system plays a role in adolescent 

maturational development, given the system’s role in gestational and early life 

neurodevelopment, alongside evidence of functional development of the system during the 

adolescent period. As described in chapter 1, cannabis use is associated with eCB system 

alterations, including altered eCB levels in cerebrospinal fluid (Morgan et al., 2013) and 

downregulated cortical CB1Rs (D'Souza et al., 2016; Hirvonen et al., 2012) suggesting that 

cannabis consumption during adolescence may impact on eCB functioning and in turn on 

typical maturational processes. Importantly, psychotic disorders such as schizophrenia are 

increasingly thought of as complex neurodevelopmental disorders resulting in disrupted brain 

connectivity and altered circuitry, potentially implicating a role of adolescent cannabis exposure 

in its aetiology.  

As discussed earlier however, very few cannabis users, even those with adolescent onset of 

cannabis use, go on to develop psychotic disorder. As such it is likely that these potential 

mechanisms only lead to considerable maturational disruption in certain vulnerable individuals. 

As discussed previously, genetic x environment interactions are likely to increase vulnerability 

to psychosis (Henquet, Di Forti, Morrison, Kuepper, & Murray, 2008). The two-hit hypothesis 

of schizophrenia argues that an early life “first hit” (for instance, specific genetic 

polymorphisms or an early developmental insult) results in vulnerability to psychosis, however 

does not lead to symptoms unless a later life “second hit” (for instance, a serious adverse event 

or cannabis exposure) occurs, thus leading to psychotic disorder (Bayer, Falkai, & Maier, 1999; 

Maynard, Sikich, Lieberman, & LaMantia, 2001). 

Whether there are genetic vulnerabilities that specifically interact with adolescent onset of 

cannabis use (as opposed to cannabis use at all ages) is not clear. Caspi and colleagues found 
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evidence that a functional polymorphism at Val158Met in the catechol-O-methyltransferase 

(COMT) gene moderated the influence of adolescent- but not adult-onset cannabis use on risk 

of developing psychosis in adulthood (Caspi et al., 2005). Carriers of the Val allele, but not 

carriers of two Met alleles, were more likely to develop psychotic symptoms and 

schizophreniform disorder in adulthood if they were adolescent-onset cannabis users. However, 

a subsequent study failed to replicate this exciting finding in patients with schizophrenia, 

finding no association between the Val158Met COMT polymorphism and cannabis use, even 

when considering only those who started using cannabis before the age of 18 (Zammit et al., 

2007). 

2.1.5 Acute psychotomimetic effects of cannabis 

2.1.5.1 Experimental psychopharmacology 

Given the difficulties of addressing causal hypotheses with the epidemiological (and naturalistic 

(Morgan et al., 2010)) work discussed above, placebo-controlled experimental 

psychopharmacology studies- directly assessing the acute psychotomimetic effects of the drug 

in humans- can make a major contribution to the field (Sherif et al., 2016).  

The transient acute effects of a drug and any longer lasting non-acute effects of repeated use do 

not necessarily equate. Indeed, there are many instances in psychopharmacology of the acute 

effects of a substance directly opposing the non-acute effects seen as a result of repeated use, for 

instance as described above, repeated cannabinoid administration in rats reduces presynaptic 

dopaminergic function (Ginovart et al., 2012), however acute administration increases 

dopamine release (French, Dillon, & Wu, 1997). Nevertheless, there are a number of strengths 

of the experimental method in the case of cannabis and psychosis (Sherif et al., 2016), as I will 

discuss below, followed by some limitations. 

Acute administration studies are able to directly address causality as drug or placebo are 

administered and effects compared. When such studies are repeated measures, such that the 
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same participant receives placebo and drug on separate occasions, we can make strong 

conclusions about the acute effects of the drug. Furthermore, such protocols are assessing drug 

effects in the moment and are therefore are not subject to memory problems and biases that can 

influence retrospective survey responses. Acute administration studies also allow dose-response 

relationships to be quantified and defined with much greater degree of accuracy than 

epidemiological studies, since dosing, cannabinoids and route of administration are controlled. 

Importantly, controlled administration studies can also be designed reactively to promptly 

answer new questions that arise in the field, and thus allow testing of very specific hypotheses. 

This is in contrast to many epidemiological studies, in particular birth cohort studies, which can 

take decades from the point of planning to being able to assess outcomes. 

Nevertheless, acute administration studies to explore links between cannabis and psychosis have 

limitations. While the acute psychotomimetic effects of cannabis indeed appear to reflect some 

aspects of psychosis, psychotic disorders such as schizophrenia are complex; as described above 

they are thought to be influenced by a complicated interplay of genetic vulnerability, atypical 

early and adolescent neurodevelopment, and negative environmental exposures. It is therefore 

simplistic to assume that a single dose of a partial or full cannabinoid agonist can fully replicate 

such a disorder, however drug models can aid in the understanding of the aetiology of psychosis 

and help to guide treatment innovation. Indeed, the National Institute of Mental Health (NIMH, 

USA) has recently implemented the Research Domain Criteria (RDoC) initiative. The RDoC 

aims to shift the focus of mental health research away from diagnostic categories (for which 

aetiological explanations are likely to be complex, varied, and resulting from many inter-related 

mechanisms) and more towards understanding the basic symptoms and mechanisms that 

underlie the full range of human behaviour. Previous research has attempted to identify the 

mechanisms by which cannabis induces specific psychotic-like symptoms, for instance for 

paranoia (D. Freeman et al., 2014) and delusion-formation (Corlett, Honey, & Fletcher, 2007). 

Such findings can clearly contribute to our understanding of how such symptom form in clinical 

populations. In chapters 5 and 6 I will return to this, describing two studies in which I attempt to 
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better describe the specific psychotic-like and mood-related symptoms induced by cannabis, 

assessing whether acute cannabis may provide a pharmacological model of auditory-verbal 

hallucinations (AVH; chapter 5) and anhedonia (chapter 6). 

Further, acute administration studies often intentionally exclude participants with a history or 

risk of psychotic disorder, to reduce risk of participation. This has the effect of biasing samples 

away from those who may be more vulnerable to psychotic effects of cannabis and thus may 

underestimate any negative effects. On the other hand, this is also an interesting population to 

study, given that the majority of people who use cannabis do not experience non-acute 

psychotic experiences. These samples can thus contribute to addressing questions about whether 

cannabis alone can contribute to psychosis in the absence of other known risk factors for 

psychosis. Relatedly, given that the acute psychotomimetic effects of cannabis have been shown 

to be magnified in psychosis patients and those at risk of psychosis (D’Souza et al., 2005), 

suggesting that the degree of acute psychotomimetic effects of cannabis are related to psychosis 

vulnerability, such studies can also aid in the identification of potential risk factors and directly 

address questions about whether certain cannabis use behaviours (for instance, using CBD-rich 

versus CBD-lacking cannabis) are more prone to lead to psychotomimetic effects than others. 

2.1.5.2 Previous findings 

A large number of human experimental psychopharmacological studies have assessed the 

psychotomimetic effects of cannabis, with a number of key findings. Firstly, cannabis, or 

isolated or synthetic cannabinoids with CB1R agonist properties (for instance THC, nabilone), 

administered orally, intravenously, and via inhalation, reliably increase psychotic-like 

symptoms, as indexed by both clinician-rated (for instance, the Brief Psychiatric Rating Scale 

(Tool, 1988) and Clinician Administered Dissociative States Scale (Bremner et al., 1998)) and 

self-rated (for instance, the Psychotomimetic States Inventory (Mason, Morgan, Stefanovic, & 

Curran, 2008) and visual analogue scales) measures (e.g. (D'Souza et al., 2004; Mason et al., 

2008; Wesnes et al., 2009)). Secondly, induced psychotomimetic symptoms are dose-
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dependent; higher doses lead to greater effects (Sherif et al., 2016). Thirdly, induced 

psychotomimetic symptoms are transient, typically fading to baseline levels within hours of 

administration, likely dependent on route (Chait & Zacny, 1992; Ohlsson et al., 1981). Fourthly, 

CB1R agonists transiently exacerbate psychotic symptoms in schizophrenia patients, and such 

patients are more sensitive to many of the cognitive, behavioural and mood effects of cannabis 

(D’Souza et al., 2005; Henquet et al., 2010). 

There is also some evidence to suggest that participants with higher baseline psychosis-related 

traits, as indexed by high scores on measures of schizotypy, have heightened psychotic-like 

reactions to cannabis (Barkus & Lewis, 2008; Barkus, Stirling, Hopkins, & Lewis, 2006; Mason 

et al., 2009). Importantly this suggests a link between psychosis vulnerability and the acute 

effects of cannabis on transient psychotic-like symptoms. 

Recently it was found that an oral dose of CBD prior to IV THC administration blunted the 

psychotomimetic effects of THC (Englund et al., 2013), suggesting that using cannabis 

containing CBD may reduce the psychotomimetic effects of cannabis. Subsequently Morgan et 

al found no effect of CBD-content on psychotomimetic experiences in cannabis users smoking 

their own cannabis (Morgan et al., 2010), however to date no controlled study has compared the 

effects CBD-rich and CBD-lacking cannabis. 

In summary, acutely, cannabis transiently and dose-dependently induces psychotic-like 

symptoms in both healthy controls and psychosis patients, thus providing an experimental 

model of cannabis-induced psychosis that can help to answer specific causal questions 

regarding the link between cannabis and psychotic experiences. 

2.1.5.3 Age-related findings: acute 

Despite the large number of studies assessing the acute psychotomimetic effects of 

cannabinoids in humans, none have reported whether age of the participant affects such 

experiences. As described in chapter 1, there is a mixed and limited preclinical body of work 

demonstrating differences between adolescent and adult rodent behavioural responses to 
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cannabinoids. A number of animal models of putative psychotic mechanisms have been 

developed, though I have not referred to them here as to my knowledge there have been no 

comparisons of the acute effects of cannabinoids between adolescent and adult animals using 

these models. As covered above, there is some human observational evidence to suggest 

adolescent cannabis use increases risk of psychosis and/or reduces the age of psychosis onset, 

however these findings have yet to be explored with an acute administration model. 

2.2 Cannabis, mood and anxiety 

In this chapter I have focused primarily on the links between cannabis and psychosis, reflecting 

the large amount of research in this area. Nevertheless, cannabis use has also been linked to a 

number of other mental health issues, including depression and anxiety.  

2.2.1 Associations between cannabis use and depression and anxiety 

Epidemiological evidence indicates a possible association between regular cannabis use and the 

development of anxiety and depression. However, the evidence is more mixed and less 

consistent than that for an association between cannabis use and psychosis (T. H. Moore et al., 

2007). One recent study compared the mental health of individuals who were addicted to 

cannabis (according to the DSM-IV) with that of non-addicted cannabis users who had similar 

patterns of cannabis use, finding that only the addicted users had depression and anxiety 

problems (Pol et al., 2013). Compared with the general population, non-addicted frequent users 

were more likely to show externalizing disorders (such as attention-deficit hyperactivity 

disorder), which were likely to have predated their cannabis use. Otherwise, these individuals 

were similar in terms of mental health to the general population, suggesting that cannabis 

contributes to mental health problems only in those who are vulnerable for other reasons. 

Depression and anxiety disorders not only are associated with cannabis addiction (Degenhardt, 

Hall, & Lynskey, 2003b) but also are predictive of whether individuals transition from use to 

addiction (Flórez-Salamanca et al., 2013).  
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2.2.1 Does adolescent cannabis use lead to increased risk of depression and anxiety? 

In the ALSPAC birth cohort, Gage et al demonstrated that self-reported cannabis use by age 16 

was associated with an increased risk of depression (but not anxiety disorder), that persisted 

after adjusting pre-birth and childhood confounders (Gage et al., 2015). In a sample of young 

(16–24-year-old) daily cannabis users, Morgan et al found that levels of THC in hair were 

significantly associated with self-reported levels of both depression and anxiety (Morgan et al., 

2012). Others however have found no consistent associations between adolescent cannabis use 

and depression at the age of 29 years (Degenhardt et al., 2003b), suggesting that increases in 

self-reported depression in young cannabis users may not be long-lasting. By contrast, the same 

study showed that daily cannabis use and cannabis addiction in early adulthood were associated 

with more than double the non-user control rate of anxiety disorders at 29 years of age.  

Of particular relevance to this thesis, in an Australian birth cohort, Hayatbakhsh et al assessed 

the associations between early- and late-onset cannabis use and depression and anxiety 

symptoms at age 21 (Hayatbakhsh et al., 2007). Following adjustment for many potential 

confounders (including cigarette use, alcohol use, adolescent depression and anxiety symptoms) 

both early- (<15 years) and late-onset (≥15 years) cannabis use predicted future symptomology 

in frequent cannabis users (but not occasional; at age 21), and the effect size was of greater 

magnitude for the early-onset cannabis users. Such findings suggest that younger age of 

cannabis use may confer heightened risk of depression and anxiety, however since this effect 

was found only in currently frequent users, whether depression and anxiety symptoms would 

persist following abstinence is not known. 

2.2.2 Role of the endocannabinoid system in depression and anxiety 

Strikingly, a high number of cases of depression and anxiety disorders were reported among 

obese individuals who were treated with the anti-obesity drug rimonabant, a CB1R antagonist. 

Many of these individuals had no prior history of these disorders (Christensen, Kristensen, 

Bartels, Bliddal, & Astrup, 2007; Nissen et al., 2008), and so this led to the withdrawal of 
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rimonabant from therapeutic use. These findings suggest that CB1R antagonists increase the risk 

of depression and/or anxiety. Moreover, preclinical studies have shown that mice that 

genetically lack CB1Rs show increased depressive-like symptoms (Valverde & Torrens, 2012) 

and, in wild-type mice, CBD has antidepressant effects (Zanelati, Biojone, Moreira, Guimaraes, 

& Joca, 2010). Rodent studies have implicated the eCB system in the regulation of emotion 

(Moreira & Wotjak, 2010). Similarly, there are also data from rodent studies suggesting that 

impaired CB1R signalling leads to depression-like symptoms, and that enhancement of CB1R 

signalling produces antidepressant-like behavioural effects in rodents (Sidhpura & Parsons, 

2011). Interestingly, such findings potentially lead to the hypothesis that THC, a CB1R agonist, 

would not lead to increased depressive symptoms and may even have anti-depressant effects. 

2.2.3 Acute effects of cannabis on depression and anxiety symptoms 

2.2.3.1 Anxiety 

Controlled administration studies of the acute effects in of THC in humans have shown that 

THC increases anxiety (D'Souza et al., 2004), whereas CBD decreases it (Bergamaschi et al., 

2011). This is interesting, because there is also evidence that cannabis is often ‘used’ to self-

medicate social anxiety in vulnerable individuals (Buckner & Carroll, 2010; Van Dam, Bedi, & 

Earleywine, 2012), and in a longitudinal study Buckner et al found that social anxiety disorder 

at baseline predicted future cannabis dependence (Buckner et al., 2008). While CB1R agonists 

lead to anxiety-related behaviours in adult rats, intriguingly there is some evidence to suggest 

that THC has less anxiogenic (Schramm-Sapyta et al., 2007) or even anxiolytic (Acheson et al., 

2011) effects in adolescent rats. 

2.2.3.2 Depression 

The acute effect of cannabis on general depressive symptoms have been little explored, though a 

number of studies have demonstrated increased self-rated anhedonia following acute cannabis 

administration (Mason et al., 2008; Stokes, Mehta, Curran, Breen, & Grasby, 2009). Anhedonia 
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is a cross-diagnostic symptom, experienced by patients with schizophrenia, depression and 

substance use disorders. Non-acutely a number of studies have also reported associations 

between cannabis use and anhedonia, as indexed by self- and clinician-rated scales (Bovasso, 

2001; Dawes, Sitharthan, Conigrave, Phung, & Weltman, 2011; Dorard, Berthoz, Phan, Corcos, 

& Bungener, 2008) (but also see: (Johnson, Bonn-Miller, Leyro, & Zvolensky, 2009)). 

As discussed above regarding psychosis, given the potential utility of pharmacological models 

in determining the aetiology and development of novel treatments for specific mental health 

symptoms, better identifying the specific mood-related symptoms induced by cannabis is key. 

While some evidence demonstrates increased anhedonia following cannabis acutely, and non-

acute associations between cannabis use and anhedonia and depression, other evidence suggests 

that THC may have anti-depressant effects. In chapter 6 I will therefore address this discrepancy 

by administering a number of measures of anhedonia following cannabis administration in both 

adolescents and adults. 

2.3 Summary of chapter 2 

 There is considerable epidemiological evidence linking repeated cannabis use to 

psychotic disorder, and it is clear that cannabis acutely causes psychotic-like symptoms 

in healthy controls, regular cannabis users and patients with schizophrenia 

 There is limited evidence of an association between younger age of cannabis use and 

increased psychosis risk, though few have actually addressed this question 

 While one promising genetic finding may have isolated an adolescent-onset specific 

relationship between COMT and risk of psychotic disorder, this finding was not 

replicated in a subsequent study 

 Cannabis use is often found to be associated with depression and anxiety, though 

findings are mixed. Some evidence suggests that earlier onset of cannabis use may 

confer greater risk. 

 A clear knowledge gap is the lack of acute studies with anyone under the age of 18 



77 

 

2.4 Summary of chapters 1 and 2 

In the first two chapters of my thesis I have demonstrated the often limited evidence to suggest 

that adolescent relative to adult cannabis use may increase vulnerability to related harms. While 

such assertions are often made throughout the literature, the evidence to support a link between 

younger age of use and worse cognitive and psychosis outcomes is currently lacking. 

There are many methodological issues which are similar in the adult and adolescent research 

literature. As I have reviewed, these include small sample sizes, failure to control for 

confounders, poor control groups (for instance, groups not being matched for alcohol and other 

drug use); lack of consistent reporting of tasks dependent variables; difficulties quantifying 

cannabis use; lack of consistency between studies regarding cannabis use groups (for instance, 

studies often define frequent and infrequent cannabis use differently); and a lack of biological 

verification of cannabis use to identify specific cannabinoids used and to confirm abstinence. 

In summary, to better address the question of whether adolescent cannabis use indeed has 

greater potential for harm than adult use, direct comparisons between adolescent and adult 

cannabis users are clearly needed for studies assessing both the acute and non-acute effects of 

cannabis. Moreover, acute studies with adolescent participants are clearly required. 

2.4.1 Research questions 

Following on from the literature described in chapters 1 and 2, my thesis set out to address the 

following question: 

Does adolescent cannabis use have greater potential for harm than adult use? 

To answer this, I designed a series of five studies to address the following specific research 

questions: 

1. Are IQ and educational outcomes in teenagers related to their cannabis use?  
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2. Are adolescents more vulnerable to the acute subjective, physiological, memory and 

inhibition effects of cannabis than adults?  

3. Does cannabis increase the incidence of auditory-verbal hallucinations (AVH)? Are 

adolescents more vulnerable to the psychotomimetic effects, including AVH, of 

cannabis than adults?  

4. Do higher levels of CBD in cannabis offset the psychotomimetic effects, including 

AVH, of cannabis in adults?  

5. Does cannabis increase anhedonia, and are adolescents more vulnerable than adults to 

these effects? 

In the final chapter I will then overview and integrate the evidence gathered in these empirical 

studies. 
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3 Chapter 3. Are IQ and educational outcomes in teenagers related to their cannabis 

use? A prospective cohort study 

3.1  Introduction 

As described in chapter 1, acutely cannabis induces robust and dose-dependent episodic 

memory impairments (Ranganathan & D’souza, 2006), with more mixed reports of impaired 

working memory, response inhibition, attention, psychomotor control and abstract reasoning 

(Crane et al., 2013; Crean, Crane, & Mason, 2011; Gonzalez, 2007). More debated is whether 

there are non-acute cognitive effects of using cannabis. Although, as described in chapter 1, 

associations between cannabis use and non-acute cognitive impairments have been reported 

across many domains including memory and response inhibition, many studies have been cross-

sectional and therefore cannot exclude the possibility of pre-existing group differences in 

cognitive ability. However, case–control and prospective cohort studies have found associations 

between cannabis use and both lower IQ and lower educational attainment, suggesting more 

global impairments to intellectual and educational functioning.  

3.1.1 Does cannabis use affect IQ?  

To date, there have been three longitudinal investigations that have assessed the relationship 

between cannabis use and IQ. One small-scale study of young adults (N=113, including 59 

never-users) (Fried, Watkinson, & Gray, 2005) found evidence of lower IQ in current but not 

former cannabis users, similar to the findings of Schreiner and Dunn’s meta-analysis described 

in chapter 1 (Schreiner & Dunn, 2012). The meta-analysis found robust evidence of lower 

cognitive performance across many domains when they included all eligible studies, but 

following subsequent exclusion of all samples with fewer than 25 days of abstinence, they 

found no evidence of impairments in any domain.  

In a New Zealand birth cohort study of 1,037 38-year-old individuals born in 1972 or 1973, 

persistent cannabis dependence was associated with a decline of up to 6 IQ points from that 
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measured at the age of 7–13 years (Meier et al., 2012). Of particular interest for this thesis, the 

decline was particularly evident for those who developed cannabis dependence in adolescence, 

and remained apparent even for those who, by the age of 38, used cannabis less than once a 

week. Indeed, amongst those cannabis users who were diagnosed with cannabis dependence on 

at least two of the five waves in adulthood, there was no evidence of IQ decline in the adult-

onset (>17 years of age) users but an apparent drop of up to 8 IQ points in those with 

adolescent-onset (≤17 years of age). To exclude possible confounders, the authors ran a series of 

stratification analyses, in which they serially excluded participants with past-week cannabis use, 

a lifetime diagnosis of schizophrenia, and persistent diagnoses of tobacco, alcohol, or other 

illicit drug dependence throughout adulthood, finding that the associations with cannabis 

dependence remained. However, no adjustment was made for adolescent use of other substances 

or other highly relevant factors such as depression or socioeconomic status (Rogeberg, 2013). 

Furthermore, their findings do not allow separation of a potentially negative effect of cannabis 

dependence, rather than cannabis use per se. 

By contrast, a recent US prospective cohort study of 3,066 17–20-year-old individuals found no 

difference in IQ from that measured at the age of 9–12 years between monozygotic (MZ) and 

dizygotic (DZ) twins discordant for cannabis use (Jackson et al., 2016). Twin studies are 

theoretically able isolate the role of substance use in predicting outcomes, by controlling for 

familial factors (both genetic & environmental) shared by twins discordant for substance use. 

Twins (both MZ and DZ) are assumed to share 100% of their familial environmental and either 

50% (DZ) or 100% (MZ) of their genes. If cannabis use was causally linked to IQ decline, we 

would expect lower IQ in a twin that uses cannabis relative to their twin pair who does not. 

Meanwhile if cannabis use is not causally linked to IQ decline, but is associated with lower IQ 

due to common risk factors that contribute to both cannabis use and poorer intellectual 

functioning, we would expect no difference between twin pairs discordant for cannabis use, as 

indeed Jackson et al found. Such findings therefore suggest that lower IQ in cannabis users may 

result from overlapping familial risk factors rather than as a direct result of cannabis exposure. 
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This study therefore suggests that confounding by overlapping risk factors may explain the 

findings of Meier et al (2012), however the younger age of IQ measurement and moderate 

degree of cannabis exposure in Jackson et al must be noted. Moreover, the study included only 

47 discordant twin pairs in which the cannabis-using twin had used cannabis frequently (more 

than 30 cumulative uses, and/or daily use), warranting caution against making strong 

conclusions. 

3.1.2 Does cannabis use affect educational attainment?  

Relatedly there is a wide evidence base linking adolescent cannabis use to early school leaving 

and poorer educational performance (Fergusson, Horwood, & Beautrais, 2003; Lynskey, 

Coffey, Degenhardt, Carlin, & Patton, 2003; Lynskey & Hall, 2000; McCaffrey, Liccardo 

Pacula, Han, & Ellickson, 2010; Silins et al., 2014; Stiby et al., 2014). Typically, these 

associations are robust to adjustment for potential confounds. However, the mechanisms leading 

to these associations remain hotly debated. 

Causal explanations have posited that heavy cannabis use results in cognitive and/or 

motivational deficits, which in turn result in poorer educational attainment. Indeed, there are 

many anecdotes about an ‘amotivational syndrome’ resulting from heavy cannabis use, and a 

recent positron emission tomography study demonstrated that cannabis users had reductions in 

striatal dopamine synthesis that correlated with a measure of amotivation (M. A. Bloomfield, 

Morgan, Kapur, Curran, & Howes, 2014). A recent study further demonstrated that acutely 

cannabis produced motivational deficits, such that following cannabis exposure participants 

were less willing to exert effort for a monetary reward (Lawn, Freeman, Pope, Joye, Harvey, 

Hindocha, Mokrysz, Moss, Wall, Bloomfield, et al., 2016). However, the same paper also found 

no evidence of reduced reward sensitivity in dependent cannabis users relative to healthy 

controls, in conflict to the notion of an ‘amotivational syndrome’ attributable to cannabis. 

Alternatively, reverse causality has been also suggested; that is, perhaps poorer educational 

attainment in fact leads to cannabis use (Fergusson, Horwood, & Beautrais, 2003; Lynskey & 
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Hall, 2000). While compelling as an argument, the one study to my knowledge that addressed 

this hypothesis showed that the association between early school leaving and later cannabis use 

could be accounted for by use of cannabis before leaving school (Fergusson, Horwood, & 

Beautrais, 2003). Future studies should test this hypothesis further, as reverse causality cannot 

be fully discounted on the evidence of this one study alone. 

The other alternative is that educational attainment and cannabis use may not be causally related 

but instead share common risk factors (Lynskey & Hall, 2000; McCaffrey et al., 2010; Verweij, 

Huizink, Agrawal, Martin, & Lynskey, 2013). Reported associations between cannabis use and 

lower educational attainment have typically been robust to adjustment for some potential 

confounders such as early-life factors, baseline school performance or cognitive ability, social 

disadvantage and parental educational achievement (Silins et al., 2014; Townsend, Flisher, & 

King, 2007). However, the potential role of teenage behaviours that typically occur alongside 

cannabis use – including use of other substances and other ‘risky’ behaviours such as truancy – 

remain relatively unexplored (Mokrysz et al., 2016; Verweij et al., 2013). Indeed, recent 

analyses showed that adjusting for teenage use of other substances attenuated the association 

between cannabis use and school attainment (Hooper, Woolley, & De Bellis, 2014; Stiby et al., 

2014). Furthermore, the common risk factors explanation is strongly supported by recent 

genetic studies that found no difference in early school leaving (Verweij et al., 2013) or years of 

education (J. D. Grant et al., 2012) between both MZ and DZ twin pairs discordant for cannabis 

use (J. D. Grant et al., 2012; Verweij et al., 2013). 

3.1.3 Strengths and limitations of the literature to date 

Many of the studies described above utilised large prospective cohort samples. These have a 

number of strengths, including the ability to ascertain temporal sequence of exposure and 

outcome and to adjust for functioning prior to cannabis exposure. The use of general population 

representative samples also reduces concerns regarding sampling bias, for instance the 

recruitment of undergraduate samples for a control group likely results in particularly high 
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functioning participants to compare cannabis users to. Nevertheless, determining causality is 

still challenging in prospective cohort studies since we cannot assume that cannabis users and 

non-users would have developed along similar trajectories if cannabis use had not occurred 

(Rogeberg, 2013). Adolescents who use cannabis regularly also tend to have higher rates of 

social adversity (von Sydow et al., 2002), early-onset behavioural problems (Heron et al., 2013) 

and other adolescent substance use (Hibell et al., 2012), all of which may confound the 

relationships between cannabis use and poorer intellectual and educational outcomes. 

3.1.4 Study aims and hypotheses 

In this chapter I examined the associations between adolescent cannabis use and both IQ and 

educational attainment within a large adolescent cohort sample. Assessing intellectual and 

educational outcomes in the same longitudinal cohort, with similar confounder adjustment, 

enables better integration of findings across both domains. I considered several factors 

commonly associated with teenage cannabis use that may account for previously reported 

associations with IQ and educational performance. In particular, I addressed the role of other 

drug use, using detailed measures of cigarette, alcohol and other recreational drug use. In 

accordance with previous research, I hypothesised that cannabis use would be associated with 

both IQ and educational performance (Meier et al., 2012; Silins et al., 2014), but that these 

associations would be attenuated after adjusting for potential confounders (Lynskey & Hall, 

2000; Rogeberg, 2013; Verweij et al., 2013). 

3.2 Methods 

3.2.1 Design and Participants 

Participants were members of the Avon Longitudinal Study of Parents and Children (ALSPAC) 

cohort, a prospective study in Bristol (UK) following women and their children since 

pregnancy. ALSPAC recruited pregnant mothers from the former Avon Health Authority with 

an expected delivery date from April 1991 to December 1992. The core cohort comprised 14541 
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pregnancies, with 13988 babies alive at one year (Boyd et al., 2012). Following further 

recruitment of eligible cases, the cohort now comprises 15458 foetuses, with 14701 babies alive 

at one year. IQ scores at both 8 and 15 years of age were available for 4621 participants. Of 

these, and after exclusions (n= 41: mother reported child head injury resulting in 

unconsciousness, n= 38; child indicated use of imaginary drug ‘spanglers’ (a fictional drug 

included in the questionnaire to test veracity of participants’ responses) since 15th birthday, n= 

3), 2235 individuals had complete data for all key variables and confounders, and so were 

included in the main analyses (complete-case sample; Figure 3.1.). The study website contains 

details of all available data through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/devata-access/data-dictionary). Ethical approval was 

obtained from ALSPAC Law and Ethics Committee. 
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Figure 3.1. Study participant flow diagram. 

  

14701 offspring who survived  

to at least age 1 year. 

4621 completed IQ tests at age 8 and age 15 

4486 of these provided cannabis use data at age 15 

  2235 remained after exclusions for: 

  a) mother-reported head injury resulting in  

      unconsciousness in childhood up to 12 years   

      (n=38);  

  b) child indicating use of imaginary drug 

      “spanglers” since 15th birthday (n=3) 

15458 foetuses in total ALSPAC sample 

 2276 have complete data for main analysis variables 
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3.2.2 Measures 

3.2.2.1 Cannabis use 

Participants provided cumulative lifetime cannabis use data at the age of 15, via a self-report 

questionnaire administered during attendance at clinic sessions. Initial responses were 

categorical, with six levels: ‘never’, ‘less than 5 times’, ‘5–19 times’, ‘20–49 times’, ‘50–99 

times’ and ‘100 times or more’. For the present study, sample size considerations resulted in the 

two highest levels being combined into one response level of ‘50 times or more’, creating a 

five-level categorical variable of cumulative cannabis use.  

3.2.2.2 IQ 

Participants were administered the Wechsler Intelligence Scale for Children 3rd Edition (WISC-

III) (Wechsler, 1991) at an individual clinic session at the age of 8 years. Alternate items of the 

WISC-III were administered for all sections, apart from the coding subtest for which all items 

were included. IQ measurements were calculated for each individual, adjusting for age. At the 

age of 15 years participants were administered the Vocabulary and Matrix Reasoning 

subsections of the Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 1999). IQ 

was again calculated for each individual, adjusting for age. To ease interpretation, IQ scores 

were rescaled around the complete-case sample included in the present analysis, to a mean of 

100 and standard deviation of 15. 

3.2.2.3 Education 

In England, children attending state-maintained schools are educated in line with the National 

Curriculum, which defines what subjects must be taught and the standards children should reach 

at each stage. The Curriculum is split into a series of ‘Key Stages’, which are assessed by 

compulsory teacher assessments or national tests at the end of each stage (for further 

information, see www.gov.uk/national-curriculum/overview). Data linkage between ALSPAC 

and the National Pupil Database (a central repository for pupil-level educational data in 
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England) provided educational assessment data for participants who attended state-funded 

schools at Key Stages 2 (age 11) and 4 (age 16). Data linkage was performed by a third-party 

company and checked by the ALSPAC team (for further information, see 

www.adls.ac.uk/department-for-education/dcsf-npd/?detail). Raw scores at the age of 11, when 

children sit Key Stage 2 tests for Maths, English and Science, were converted to percentages 

and averaged across the three subjects. Educational performance at the age of 16, when pupils 

complete Key Stage 4 national testing, was quantified using a standard capped scoring method 

(see http://nationalpupildatabase.wikispaces.com/KS4) in which grades achieved at General 

Certificate of Secondary Education (GCSE) or equivalent for their best eight subjects are 

converted to a numerical score (e.g. A*=58 points … G=16 points) and summed. Capped 

scores, out of a maximum possible score of 464, were then converted to a percentage.  

3.2.2.4 Potential confounds 

Potential confounds were chosen to reflect variables associated with adolescent cannabis use 

and intellectual and educational outcomes in accordance with theoretical considerations and 

previous literature:  

1. maternal and early-life factors (Fergusson & Horwood, 1997; Fergusson, Horwood, & 

Lawton, 1990; Heron et al., 2013; von Sydow et al., 2002): maternal education [None/ 

Certificate of Secondary Education, O-levels, A-levels, Degree]; child sex; maternal depressive 

symptoms during pregnancy and up to 8 months postnatal [mother completed depression items 

of the Crown–Crisp experiential index; (Crown & Crisp, 1979)]; maternal substance use during 

the first three months of pregnancy [alcohol use: None, Less than weekly, At least weekly; 

cigarette use: No, Yes; cannabis use: No, Yes];  

2. childhood behavioural factors (Heron et al., 2013; Lynskey & Fergusson, 1995; Shedler & 

Block, 1990): hyperactivity and conduct problems at age 11 [mother-completed Strengths and 

Difficulties Questionnaire; (Goodman, 2001)]; mother suspected truancy at age 14 [No, Yes];  
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3. childhood mental health (Degenhardt, Hall, & Lynskey, 2003a; Patton et al., 2002): 

depressive symptoms at age 12 [child completed depression items of the Short Mood and 

Feelings Questionnaire; (Angold, Costello, Messer, & Pickles, 1995)]; psychotic-like symptoms 

at age 12 [child-completed semi-structured interview; (Horwood et al., 2008)];  

4. other adolescent drug use (Chamberlain, Odlaug, Schreiber, & Grant, 2012; Fergusson, 

Boden, & Horwood, 2006; Fergusson & Horwood, 2000; Patton, Coffey, Carlin, Sawyer, & 

Lynskey, 2005; Rob, Reynolds, & Finlayson, 1990; Stiby et al., 2014): cumulative cigarette use 

self-reported at age 15 [Never, 1-4, 5-20, 21-60, 61-100, >100 times]; cumulative alcohol use 

self-reported at age 15 [Never, 1-5, 6-19, 20-39, 40-99, ≥100 times]; and other recreational drug 

use since 15th birthday, including ketamine, LSD, cocaine, ecstasy, amphetamine and inhalants, 

self-reported at age 15 [None, Used one other drug, Used more than one other drug]. 

3.2.3 Statistical analyses  

Analyses were conducted using Stata/SE version 13.1 (StataCorp LP, College Station, TX, 

USA).  

A series of nested linear least-squares regression analyses was employed and adjusted by 

potential confounders to test the relationships between cumulative cannabis use and: a) IQ at the 

age of 15 and b) educational performance at the age of 16. 

Unadjusted estimates of the relationship between cumulative cannabis use (dummy-coded from 

1 to 5, representing the categories explained above) and IQ age 15 (Model IQ1) were compared 

to adjusted estimates derived from a series of nested models that additionally included: first, 

pre-exposure IQ at the age of 8 (Model IQ2); then, in addition to IQ2, maternal, early-life and 

childhood behavioural factors (Model IQ3); then, in addition to IQ3, adolescent mental-health 

factors (Model IQ4); then, in addition to IQ4, cigarette use (Model IQ5a), alcohol use (Model 

IQ5b), or other drug use (Model IQ5c); finally, a fully adjusted model (Model IQ6) which 

included all potential confounds. 
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Unadjusted estimates of the relationship between cumulative cannabis use (again dummy-coded 

from 1 to 5, representing the categories explained above) and educational performance at the 

age of 16 (Model Ed1) were compared to adjusted estimates derived from a series of nested 

models that initially included educational performance at age 11 (Model Ed2). Models Ed3–6 

were then adjusted as for Models IQ3–6. 

3.2.3.1 Multiple imputation analyses 

For clarity I have focused primarily on the results of the complete-case analyses. However, to 

supplement these findings, I repeated planned analyses after implementing multiple imputation 

with chained equations to account for missing data (20 imputations, using the ice command in 

Stata). Multiple imputation was carried out for all participants alive at one year, resulting in a 

sample size of 14552 after multiple imputation and exclusions. This method assumes data are 

missing at random (i.e. that the probability of a data point being missing depends only on 

observed data). Previously described guidelines were followed when selecting variables for the 

imputation model from the many variables collected by ALSPAC (Van Buuren, Boshuizen, & 

Knook, 1999). Due to the large number of variables that met these criteria, different sets of 

variables were selected for the imputation of groups of variables. Data were imputed for all 

outcome, key predictor, and confounder variables. 

3.2.3.2 Post-hoc analyses 

Post hoc linear least-squares regression analyses were then employed and adjusted by potential 

confounders to test the relationships between cumulative cigarette use and (a) IQ at the age of 

15 and (b) educational performance at the age of 16, after exclusion of cannabis users. 

Unadjusted estimates of the relationship between cumulative cigarette use (binary outcome due 

to a smaller sample: never used/ever used cigarettes) and (a) IQ age 15 (Model CigIQ1) were 

compared to fully adjusted estimates (Model CigIQ2), and (b) educational performance at the 

age of 16 (Model CigEd1) were compared to fully adjusted estimates (Model CigEd2).  
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3.3 Results 

Of the complete-case data set (N= 2235), 23.5% (n= 526) reported having tried cannabis at least 

once, and 3.3% (n= 74) reported cumulative usage of at least 50 times. Table 3.1. shows the 

demographics of the sample according to reported cumulative cannabis use at an average age of 

15.4 years. Unadjusted analyses demonstrate that cannabis use was associated with maternal 

cigarette and cannabis use during pregnancy, truancy from school, childhood hyperactivity, 

conduct problems and depressive symptoms, and adolescent cigarette, alcohol and other drug 

use. 
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Table 3.1. Demographic and baseline variables for each cannabis use group; p-values reflect 

omnibus test of cannabis use group differences. 

 

 

 Never Less than 5 5-19 20-49 At least 50  

  % (n) % (n) % (n) % (n) % (n) 
p-

value 

Sample (complete-cases) 76.5 (1709) 11.1 (248) 6.0 (133) 3.2 (71) 3.3 (74)  

Female 53.5 (914) 59.7 (148) 52.6 (70) 46.5 (33) 39.2 (29) .060 

Mother had no higher 

education 
80.2 (1371) 85.1 (211) 77.4 (103) 70.4 (50) 77.0 (57) .171 

Cigarette use during 

first 3 months of 

pregnancy 

10.5 (179) 18.6 (46) 22.6 (30) 23.9 (17) 33.8 (25) ≤.001 

Weekly alcohol use 

during first 3 months of 

pregnancy 

13.5 (231) 14.9 (37) 20.3 (27) 16.9 (12) 16.2 (12) .074 

Cannabis use during 

first 3 months of 

pregnancy 

0.9 (16) 2.0 (5) 5.3 (7) 4.2 (3) 8.1 (6) ≤.001 

Truancy from school, 

age 14 
0.7 (12) 2.4 (6) 3.8 (5) 9.9 (7) 6.8 (5) ≤.001 

Lifetime cigarette use 

>20 times, age 15 
4.5 (77) 34.3 (85) 52.6 (70) 71.8 (51) 83.8 (62) ≤.001 

Lifetime alcohol use >20 

times, age 15 
26.4 (452) 63.7 (158) 77.4 (103) 93.0 (66) 97.3 (72) ≤.001 

Other illicit drug use, 

since 15th birthday 
5.7 (97) 28.6 (71) 43.6 (58) 54.9 (39) 67.6 (50) ≤.001 

 Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE) 
p-

value 

IQ score age 8 99.7 (0.4) 100.3 (1.0) 101.6 (1.2) 101.7 (1.9) 102.0 (1.7) .335 

Educational 

performance, age 10/11 
73.2 (0.3) 73.4 (0.8) 73.3 (1.0) 70.0 (1.8) 72.3 (1.5) .202  

Maternal depressive 

symptoms 
3.6 (0.1) 3.5 (0.1) 4.0 (0.2) 4.1 (0.3) 3.9 (0.2) .050 

Hyperactivity, age 11 2.4 (0.1) 2.5 (0.1) 2.5 (0.2) 3.5 (0.3) 3.4 (0.3) ≤.001 

Conduct problems, age 

11 
1.0 (0.0) 1.2 (0.1) 1.2 (0.1) 1.7 (0.2) 1.4 (0.2) ≤.001 

Childhood depressive 

symptoms, age 12 
4.3 (0.0) 4.9 (0.3) 5.0 (0.4) 5.1 (0.5) 6.6 (0.7) ≤.001 

Childhood psychotic-

like symptoms, age 12 
0.3 (0.0) 0.2 (0.1) 0.3 (0.1) 0.4 (0.1) 0.3 (0.1) .549 
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Table 3.2 shows patterns of cannabis use according to cumulative use groups. Within those who 

had tried cannabis at least once, greater exposure was associated with a younger age of first 

cannabis use (p< .001) and a longer time since first usage (p< .001). Those who had ⩾50 

cannabis exposures had first used at a mean age of 13.1 years, and for a mean duration of 2.3 

years. Of those with ⩾50 exposures, 98.7% had used in the past year, 60.8% were currently 

using at least weekly and 47.3% had used in the three days prior to the IQ test. The majority 

(91.0%) usually mixed tobacco with their cannabis. 

 

Table 3.2. Cannabis use patterns between levels of cannabis use groups, % (n) unless otherwise 

noted; p-values reflect omnibus test of cannabis use group differences. 

 <5 5-19 20-49 ≥50  

 Sample (complete-cases; cannabis users) 47.1 (248) 25.3 (133) 13.5 (71) 14.1 (74) 
p-

value 

Age first tried cannabis, years, mean (SE) 14.3 (0.1) 14.0 (0.1) 13.4 (0.1) 
13.1 

(0.1) 
≤.001 

Time since first cannabis use at time of IQ 

test, years, mean (SE) 
1.1 (0.1) 1.4 (0.1) 2.0 (0.1) 2.3 (0.1) ≤.001 

Currently uses cannabis at least weekly 0.0 (0) 3.8 (5) 23.9 (17) 60.8 (45) ≤.001 

Has used cannabis in the past year 62.0 (153) 94.0 (125) 90.1 (64) 98.7 (73) ≤.001 

Had used cannabis in the previous 3 days 

at time of IQ test 
2.4 (6) 6.8 (9) 23.9 (17) 47.3 (35) ≤.001 

Usually smokes cannabis mixed with 

tobacco 
90.7 (127) 87.7 (107) 93.0 (66) 94.5 (69) .272 

 

3.3.1 IQ 

Unadjusted IQ data for the cannabis use groups can be found in Table 3.3. Model estimates are 

displayed in Figure 3.2 and Table 3.4. In the unadjusted analyses, no difference in IQ between 

the cannabis use groups was apparent (p= .237). However, after adjusting for IQ measured at 

the age of 8, cumulative cannabis use was negatively associated with IQ measured at the age of 
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15 (Model IQ2; p< .001). Those who had used cannabis ⩾50 times were estimated to have an 

IQ at the age of 15 that was 2.9 points lower than never-users in this model. Adjustment by 

maternal, early-life and childhood behavioural factors (Model IQ3) and by mental-health factors 

(Model IQ4) had little effect on point estimates. Adjustment for cigarette (Model IQ5a), alcohol 

(Model IQ5b) or other substance use (Model IQ5c) attenuated the association between cannabis 

use and IQ at the age of 15, with cigarette use having the most marked influence. Model IQ6 

fully attenuated the association between cannabis use and IQ at the age of 15 (p=0.959), with 

cumulative use of ⩾50 times now predicting an adjusted IQ score of 0.1 points lower (p= .941) 

relative to never-users. 

 

Table 3.3. Mean and 95% confidence intervals (CIs) of Wechsler Abbreviated Scale of 

Intelligence (WASI) IQ at the age of 15 and educational performance (% GCSE points) at the 

age of 16 for each of the cannabis use groups. 

 

 

  

  WASI IQ (age 15) 
Educational performance % 

(age 16) 

   95% CIs  95% CIs 

Cumulative 

cannabis use 
% (N) Mean Lower Upper Mean Lower Upper 

Never 76.5 (1709) 100.4 99.7 101.1 80.8 80.2 81.4 

<5 11.1 (248) 98.6 96.8 100.5 77.8 76.2 79.4 

5-19 6.0 (133) 98.8 96.2 101.4 76.5 73.9 79.1 

20-49 3.2 (71) 98.3 94.6 101.9 72.8 68.8 76.8 

≥50 3.3 (74) 98.9 95.6 102.2 69.2 65.0 73.3 

Overall 100.0 (2235) 100.0 99.4 100.6 79.6 79.0 80.1 
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Table 3.4. Linear regression nested models for complete-cases dataset displaying difference in 

IQ at the age of 15 (SE), estimated between each cannabis use group compared to never-users. 

Cumulative 

cannabis use 

IQ1 IQ2 IQ3  IQ4 IQ5a IQ5b IQ5c IQ6 

<5 times 
-1.8 

(1.0)* 

-2.1 

(0.8)*** 

-1.7 

(0.8)** 

-1.7 

(0.8)** 

-0.5 

(0.9) 

-1.2 

(0.8) 

-1.6 

(0.8)* 

-0.2 

(0.9) 

5-19 times 
-1.6 

(1.3) 

-2.7 

(1.1)** 

-2.8 

(1.1)*** 

-2.9 

(1.1)*** 

-1.0 

(1.2) 

-2.4 

(1.1)** 

-2.6 

(1.1)** 

-0.9 

(1.2) 

20-49 times 
-2.1 

(1.8) 

-3.3 

(1.5)** 

-3.1 

(1.5)** 

-3.3 

(1.5)** 

-1.0 

(1.6) 

-2.8 

(1.5)* 

-2.8 

(1.5)* 

-0.8 

(1.7) 

≥50 times 
-1.6 

(1.8) 

-2.9 

(1.4)** 

-2.5 

(1.4)* 

-2.7 

(1.4)* 

-

0.2(1.7) 

-1.4 

(1.6) 

-2.1 

(1.6) 

-0.1 

(1.8) 

 

* two-tailed t-tests, compared to never-users (p<.100) 

** two-tailed t-tests, compared to never-users (p<.050) 

*** two-tailed t-tests, compared to never-users (p<.010)  

 

Model IQ1:   Adjusted only by cumulative cannabis use at age 15   

Model IQ2:   As model 1 plus adjustment for full-scale IQ age 8   

Model IQ3:   As model 2 plus adjustment for maternal, early-life, and behavioural factors 

Model IQ4:   As model 3 plus adjustment for depressive symptoms and psychotic-like  

experiences   

Model IQ5a: As model 4 plus adjustment for cumulative cigarette use at age 15     

Model IQ5b: As model 4 plus adjustment for cumulative alcohol use at age 15   

Model IQ5c: As model 4 plus adjustment for other recreational drug use at age 15  

Model IQ6:   As model 4 plus adjustment for cumulative cigarette use, cumulative alcohol use,  

and other recreational drug use at age 15  
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Figure 3.2. Linear regression nested models for complete-cases dataset displaying difference in 

IQ at the age of 15, estimated between each cannabis use group compared to never-users. Error 

bars represent 95% confidence intervals. 
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3.3.2 Educational performance 

Unadjusted educational performance data for the cannabis use groups are shown in Table 3.3. 

Model estimates are displayed in Figure 3.3. and Table 3.5. Increasing cumulative cannabis use 

correlated with poorer educational performance at the age of 16 (p< .001). Cannabis use of ⩾50 

times predicted an average score of 11.6 percentage points lower than never-users (p< .001). 

After adjusting for educational performance at the age of 11, cannabis use remained associated 

with educational performance at the age of 16 (Model Ed2; p< .001), with those who had used 

cannabis ⩾50 times estimated to have scored 11.0 percentage points lower than never-users (p< 

.001). Adjustment by maternal, early-life and childhood behavioural factors (Model Ed3) and 

mental health factors (Model Ed4) had little effect on point estimates. Adjustment by alcohol 

(Model Ed5a), cigarette (Model Ed5b) or other substance use (Model Ed5c) attenuated the 

association between cannabis use and educational performance at the age of 16, with cigarette 

use again having the most marked influence. Model Ed6 attenuated the association between 

cannabis use and educational performance at the age of 16 (p= .184), with cumulative use ⩾50 

times now predicting an adjusted score of 2.2 (p= .083) percentage points lower than never-

users. 
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Table 3.5. Linear regression nested models for complete-cases dataset displaying difference in 

educational performance at the age of 16 (SE), estimated between each cannabis use group 

compared to never-users. 

 

* two-tailed t-tests, compared to never-users (p<.100) 

** two-tailed t-tests, compared to never-users (p<.050) 

*** two-tailed t-tests, compared to never-users (p<.010)  

 

 
Model IQ1:   Adjusted only by cumulative cannabis use at age 15   

Model IQ2:   As model 1 plus adjustment for full-scale IQ age 8   

Model IQ3:   As model 2 plus adjustment for maternal, early-life, and behavioural factors 

Model IQ4:   As model 3 plus adjustment for depressive symptoms and psychotic-like  

experiences   

Model IQ5a: As model 4 plus adjustment for cumulative cigarette use at age 15     

Model IQ5b: As model 4 plus adjustment for cumulative alcohol use at age 15   

Model IQ5c: As model 4 plus adjustment for other recreational drug use at age 15  

Model IQ6:   As model 4 plus adjustment for cumulative cigarette use, cumulative alcohol use,  

and other recreational drug use at age 15  

Cumulative 

cannabis use 

Ed1 Ed2 Ed3 Ed4 Ed5a Ed5b Ed5c Ed6 

<5 times 
-2.9 

(0.9)*** 

-3.1 

(0.6)*** 

-2.7 

(0.6)*** 

-2.7 

(0.6)*** 

-0.7 

(0.6) 

-2.0 

(0.6)*** 

-2.4 

(0.6)*** 

-0.4 

(0.6) 

5-19 times 
-4.3 

(1.2)*** 

-4.4 

(0.8)*** 

-4.0 

(0.8)*** 

-4.0 

(0.8)*** 

-0.7 

(0.9) 

-3.1 

(0.8)*** 

-3.1 

(0.8)*** 

-0.2 

(0.9) 

20-49 times 
-8.0 

(1.6)*** 

-5.6 

(1.1)*** 

-4.3 

(1.0)*** 

-4.3 

(1.0)*** 

0.2 

(1.1) 

-3.2 

(1.1)*** 

-2.6 

(1.1)** 

1.2 

(1.2) 

≥50 times 
-11.6 

(1.5)*** 

-11.0 

(1.1)*** 

-9.4 

(1.0)*** 

-9.3 

(1.0)*** 

-3.4 

(1.2)*

** 

-7.9 

(1.1)*** 

-6.9 

(1.1)*** 

-2.2 

(1.3)* 
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Figure 3.3. Linear regression nested models for complete-cases dataset displaying difference in 

educational performance at the age of 16, estimated between each cannabis use group 

compared to never-users. Error bars represent 95% confidence intervals.  
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3.3.3 Cigarettes  

In the above analyses, cumulative cigarette use was the key attenuator of the association 

between cumulative cannabis use and both IQ (Models IQ5a and IQ6) and educational 

performance (see Models Ed5a and Ed6). Furthermore, cumulative cigarette use remained 

negatively associated with both outcomes in the fully adjusted models. Those who had used 

cigarettes >100 times were estimated to have an age 15 adjusted IQ 3.2 points lower (p= .018) 

and an adjusted educational score 7.4 percentage points lower (p< .001) than never-users of 

cigarettes (see Tables 3.6 and 3.7).  

 

Table 3.6. Fully adjusted model for complete-cases dataset displaying difference in WASI IQ at 

the age of 15, estimated between each cigarette use group compared to never-users. 

     
95% Cis 

Cumulative 

cigarette use 

Adj. 

coef. 
SE t p-value Lower Upper 

1-4 times -0.85 1.06 -0.80 .425 -2.93 1.23 

5-20 times -1.81 1.10 -1.64 .102 -3.97 0.36 

21-60 times -2.55* 1.23 -2.07 .039 -4.97 -0.13 

61-100 times -3.79* 1.75 -2.16 .031 -7.23 -0.35 

>100 times -3.22* 1.36 -2.36 .018 -5.89 -0.55 
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Table 3.7. Fully adjusted model for complete-cases dataset displaying difference in educational 

performance at the age of 16, estimated between each cigarette use group compared to never-

users. 

     
95% Cis 

Cumulative cigarette 

use 
Adj. coef. SE t p-value Lower Upper 

1-4 times -0.69 0.75 -0.93 0.351 -2.16 0.77 

5-20 times -1.39 0.78 -1.80 0.072 -2.92 0.13 

21-60 times -3.29 0.87 -3.79 <.001 -4.99 -1.59 

61-100 times -5.32 1.23 -4.32 <.001 -7.73 -2.90 

>100 times -7.35 0.95 -7.72 <.001 -9.22 -5.49 

 

To explore these relationships further, I investigated associations with cigarette use in those 

who had never used cannabis (Table 3.8a). Of the complete-case sample, 76.4% (n= 1709) had 

never tried cannabis, of which 13.9% (n= 237) reported having tried cigarettes at least once. 

Analyses were repeated on this restricted sample with ever-use of cigarettes as the primary 

predictor (Table 3.8b). With adjustment for only pre-exposure IQ or educational performance, 

respectively, ever-use of cigarettes was associated with an age 15 IQ 6.2 points lower (p< .001; 

Model CigIQ1), and educational performance 7.8 percentage points lower (p< .001; Model 

CigEd1), relative to never-users of cigarettes. After full adjustment, these relationships were 

somewhat attenuated, with ever-use of cigarettes now predicting an age 15 adjusted IQ 1.5 

points lower (p= .083; Model CigIQ2), and educational performance 2.9 percentage points 

lower (p< .001; Model CigEd2), relative to never-users of cigarettes. 
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Table 3.8.  

a) Mean and 95% confidence intervals (CIs) of Wechsler Abbreviated Scale of Intelligence 

(WASI) IQ at the age of 15 and educational performance (% GCSE points) at the age of 16 for 

ever-users of cigarettes (n=237) compared to never-users of cigarettes (n=1472). Cannabis 

users were excluded from this analysis. 

  WASI IQ (age 15) 
Educational performance 

% (age 16) 

   95% CIs  95% CIs 

Ever-use of cigarettes % (N) Mean Lower Upper Mean Lower Upper 

Non-user 86.1 (1472) 101.3 100.5 102.0 81.9 81.2 82.5 

Tried cigarettes ≥once 13.9 (237) 95.1 93.4 96.8 74.1 72.5 75.7 

 

b) Linear regression nested models displaying difference in IQ at the age of 15 and educational 

performance at the age of 16 estimated for ever-users of cigarettes (n=237) compared to never-

users of cigarettes (n=1472). Cannabis users were excluded from this analysis. 

  WASI IQ (age 15) 
Educational performance (age 

16) 

    
Model 

CigIQ1 

Model 

CigIQ2 

Model 

CigEd1 

Model 

CigEd2 

Tried cigarettes ≥once   -6.2 (1.0)** -1.5 (0.9)* -7.8 (0.8)** -2.9 (0.6)** 

 

* two-tailed t-tests, compared to never-users (p=.083) 

** two-tailed t-tests, compared to never-users (p<.010) 
 

 

 

3.3.4 Multiple imputation analyses 

Key variables were compared for participants who were included in the complete-case analysis 

and the available data for the participants who had missing data but were alive at one year 

(Table 3.9.). Drop-out was related to a range of variables, including pre-cannabis exposure IQ 

score at the age of 8. To investigate whether drop-out may have influenced the results, my 
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colleague (Dr Rebecca Landy) conducted multiple imputation to supplement the main analyses, 

resulting in a large imputed data set (n= 14552). 

 

Table 3.9. Analyses comparing participants who were included in the complete-cases analysis 

to those with missing data. Total number of cases with missing data varies by variable due to 

varying degrees of missingness. 

 Complete-cases Cases with missing data  

 N % N % 
p-

value 

Female 1194 53.4 5955 47.8 <.001 

Mother has higher education 1113 49.8 3279 32.2 <.001 

Cannabis use during first 3 months of pregnancy 37 1.7 280 2.7 .003 

Mother in trouble with the law in 8 months following birth 4 0.2 48 0.5 .029 

Moved house after the child was born 215 9.8 1326 15.2 <.001 

Teacher reports child has played truant at age 10-11 years-

old 
0 0.0 124 2.0 <.001 

 Mean SE Mean SE 
p-

value 

IQ score age 8 100.0 0.3 93.3 0.2 <.001 

Maternal depressive symptoms 3.6 0.0 4.1 0.0 <.001 

 

 

Point estimates and the patterns of attenuation observed after adjusting hierarchically for 

potential confounds were similar for the complete and imputed case analyses. However, while 

for the unadjusted complete-case IQ analysis (Model IQ1) there was no difference in IQ 

between cannabis use groups, for the unadjusted imputed analysis lower scores were associated 

with greater cannabis use (Table 3.10., Model IQ1i). Additionally, for the complete-case 

education analyses, adjustment for cigarette use (Models Ed5a) did not fully attenuate the 

association between cannabis use and educational performance. However, in the imputed 

analyses, this association was fully attenuated (Table 3.11., Models Ed5ai). 
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Table 3.10. Linear regression nested models for imputed dataset displaying difference in IQ at 

the age of 15 (SE), estimated between each cannabis use group compared to never-users. 

  IQ1i IQ2i IQ3i IQ4i IQ5ai IQ5bi IQ5ci IQ6i 

<5 times 
-2.1 

(0.7)*** 

-1.6 

(0.5)*** 

-1.3 

(0.5)*** 

-1.4 

(0.5)*** 

-0.4 

(0.5) 

-0.9 

(0.5)* 

-1.3 

(0.5)** 

-0.2 

(0.5) 

5-19 times 
-1.8 

(0.8)** 

-2.0 

(0.7)*** 

-1.5 

(0.6)*** 

-1.6 

(0.6)*** 

-0.0 

(0.6) 

-0.9 

(0.6) 

-1.4 

(0.6)** 

0.2 

(0.6) 

20-49 times 
-2.7 

(1.3)** 

-2.5 

(0.9)*** 

-1.8 

(0.9)** 

-1.9 

(0.9)** 

-0.1 

(0.9) 

-1.1 

(1.0) 

-1.6 

(0.9)* 

0.3 

(0.9) 

≥50 times 
-3.1 

(1.2)** 

-2.8 

(0.9)*** 

-1.9 

(0.9)** 

-2.0 

(0.9)** 

-0.4 

(1.0) 

-1.2 

(0.9) 

-1.5 

(0.9) 

0.6 

(0.9) 

 

* two-tailed t-tests, compared to never-users (p<.100) 

** two-tailed t-tests, compared to never-users (p<.050) 

*** two-tailed t-tests, compared to never-users (p<.010)  

 

Model IQ1i:   Adjusted only by cumulative cannabis use at age 15   

Model IQ2i:   As model 1i plus adjustment for full-scale IQ age 8   

Model IQ3i:   As model 2i plus adjustment for maternal, early-life, and behavioural factors 

Model IQ4i:   As model 3i plus adjustment for depressive symptoms and psychotic-like  

  experiences   

Model IQ5ai: As model 4i plus adjustment for cumulative cigarette use at age 15    

Model IQ5bi: As model 4i plus adjustment for cumulative alcohol use at age 15   

Model IQ5ci: As model 4i plus adjustment for other recreational drug use at age 15  

Model IQ6i:   As model 4i plus adjustment for cumulative cigarette use, cumulative alcohol use,  

and other recreational drug use at age 15  
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Table 3.11. Linear regression nested models for imputed dataset displaying difference in 

educational performance at the age of 16 (SE), estimated between each cannabis use group 

compared to never-users. 

  Ed1i Ed2i Ed3i Ed4i Ed5ai Ed5bi Ed5ci Ed6i 

<5 times 
-3.7 

(0.9)*** 

-2.2 

(0.5)*** 

-1.4 

(0.5)*** 

-1.4 

(0.5)*** 

-0.1 

(0.5) 

-1.3 

(0.5)** 

-1.2 

(0.5)** 

-0.2 

(0.5) 

5-19 times 
-5.4 

(1.2)*** 

-4.3 

(0.9)*** 

-3.0 

(0.9)*** 

-3.0 

(0.9)*** 

-0.5 

(1.0) 

-2.8 

(0.9)*** 

-2.6 

(0.9)*** 

-0.6 

(1.0) 

20-49 times 
-7.3 

(1.5)*** 

-4.7 

(1.0)*** 

-2.8 

(0.9)*** 

-2.8 

(0.9)*** 

0.4 

(1.0) 

-2.5 

(1.0)** 

-2.1 

(0.9)** 

0.2 

(1.0) 

≥50 times 
-10.9 

(1.4)*** 

-8.3 

(0.8)*** 

-5.1 

(0.8)*** 

-5.1 

(0.8)*** 

-1.1 

(1.0) 

-4.7 

(1.0)*** 

-4.2 

(0.9)*** 

-1.3 

(1.1) 

 

* two-tailed t-tests, compared to never-users (p<.100) 

** two-tailed t-tests, compared to never-users (p<.050) 

*** two-tailed t-tests, compared to never-users (p<.010)  

 

Model Ed1i:   Adjusted only by cumulative cannabis use at age 15   

Model Ed2i:   As model 1i plus adjustment for educational performance age 11   

Model Ed3i:   As model 2i plus adjustment for maternal, early-life, and behavioural factors  

Model Ed4i:   As model 3i plus adjustment for depressive symptoms and psychotic-like  

experiences 

Model Ed5ai: As model 4i plus adjustment for cumulative cigarette use at age 15    

Model Ed5bi: As model 4i plus adjustment for cumulative alcohol use at age 15   

Model Ed5ci: As model 4i plus adjustment for other recreational drug use at age 15  

Model Ed6i:   As model 4i plus adjustment for cumulative cigarette use, cumulative alcohol use,  

and other recreational drug use at age 15  
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3.4 Discussion 

In line with previous work I found that cannabis users had lower teenage IQ scores and poorer 

educational performance than teenagers who had never used cannabis. Cannabis users also had 

higher rates of childhood behavioural problems, childhood depressive symptoms, other 

substance use (including use of cigarettes and alcohol) and maternal use of cannabis during 

pregnancy. After adjustment to account for these group differences, cannabis use by the age of 

15 did not predict either lower teenage IQ scores or poorer educational performance. These 

findings therefore suggest that cannabis use at the modest levels used by this sample of 

teenagers is not by itself causally related to cognitive impairment. Instead, my findings imply 

that previously reported associations between adolescent cannabis use and poorer intellectual 

and educational outcomes may be confounded to a significant degree by related factors. 

While I found no evidence of a robust link between adolescent cannabis use and IQ, previous 

work has indeed shown that persistent cannabis dependence starting with regular cannabis use 

in adolescence is associated with IQ decline by middle age (Meier et al., 2012). Together, these 

findings suggest that while persistent cannabis dependence may be linked to declining IQ across 

a person’s lifetime, teenage cannabis use alone does not appear to predict worse IQ outcomes in 

adolescents. The present findings also highlight the importance of considering other adolescent 

substance use alongside cannabis, in particular cigarette use, when assessing links between 

cannabis and intellectual outcomes. This confound may contribute to previously reported 

associations between cannabis dependence and IQ decline, and associations reported in chapter 

1 between adolescent cannabis use and poorer verbal and working memory. However, the 

young age at which my outcomes were measured, and the relatively modest levels of cannabis 

use in the present sample, do not allow me to rule out the possibility of future difficulties, 

perhaps following further cannabis exposure. Assessing outcomes at this young age, before the 

end of compulsory education, does, however, have the benefit of reducing the potentially 

confounding influence of selection into or out of cognitively demanding environments 

throughout a person’s life on IQ performance (Rogeberg, 2013). 
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Attenuation of the association between cannabis use and educational performance contrasts with 

previous work demonstrating a robust relationship even after adjustment for confounders 

(Lynskey et al., 2003; Lynskey & Hall, 2000; Silins et al., 2014; Stiby et al., 2014). Notably, 

however, previous work reporting associations between cannabis use and poorer educational 

outcomes has not consistently addressed the possibility of group differences in pre-exposure 

educational performance or in rates of other substance use including adolescent cigarette use, 

which may explain differences between my findings and previous work. Indeed, my findings are 

in accordance with recent genetic studies that found no difference in early school leaving 

between both MZ and DZ twin pairs discordant for cannabis use (J. D. Grant et al., 2012; 

Verweij et al., 2013).  

Compared with those in my sample who had never tried cannabis, teenagers who had used 

cannabis at least 50 times were 17 times more likely (84% vs. 5%) to have smoked cigarettes 

more than 20 times in their lifetime. Accounting for group differences in cigarette smoking 

dramatically attenuated the associations between cannabis use and both IQ and educational 

performance. Furthermore, even after excluding those who had never tried cannabis, cigarette 

users were found to have lower educational performance (adjusted performance 2.9 percentage 

points lower, approximately equivalent to dropping two grades on one subject taken at GCSE) 

relative to those who had never tried cigarettes. A relationship between cigarette use and poorer 

cognitive (Chamberlain et al., 2012; Hooper et al., 2014; Weiser, Zarka, Werbeloff, Kravitz, & 

Lubin, 2010; Whalley, Fox, Deary, & Starr, 2005) and educational (McCaffrey et al., 2010; 

Silins et al., 2014; Stiby et al., 2014) outcomes has been noted previously, and may have a 

number of explanations. Cigarette use may have a negative impact on cognitive ability. This is 

not supported by the experimental psychopharmacology literature, which robustly shows that 

acute nicotine administration results in transient cognitive enhancement (Heishman et al., 2010), 

although non-acute effects of nicotine are less well-known and studies comparing cognition in 

cigarette users to non-users are typically confounded by the potentially negative effects of 

smoking itself. Alternatively, reverse causality may contribute to this relationship, in that 
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performing poorly at school may lead to increased engagement in risky behaviours such as 

cigarette smoking. Residual confounding factors may also contribute to this link, as cigarette 

smoking may be a marker of unmeasured factors, such as social adversity during adolescence, 

that influence both IQ and educational attainment. 

Overwhelmingly, the most common method of cannabis administration by participants in the 

study was smoking it combined with tobacco (as is typical in the UK (Hindocha et al., 2016)), 

potentially making it difficult to separate the independent contributions of cannabis and tobacco 

use on the outcomes. However, as noted above, lower educational performance remained 

apparent for cigarette smokers who had never used cannabis, even following adjustment for 

potential confounders. This suggests that it may be cigarette use, rather than tobacco 

consumption per se, that predicts poorer educational outcomes, potentially lending support to a 

non-pharmacological mechanism to explain links between cigarette use and poorer outcomes. 

Cigarette use has recently been highlighted as an important factor when exploring links between 

cannabis use and various outcomes, including psychosis (as described in chapter 2 (Gage et al., 

2014)), educational outcomes (Stiby et al., 2014) and cannabis dependence (Hindocha, Shaban, 

et al., 2015). The relationship between cannabis and tobacco and/or cigarette use is complex, 

and there is a need to delineate the contribution of these substances when used alone and in 

combination (Randi M Schuster, Crane, Mermelstein, & Gonzalez, 2015). This would be helped 

by improved measures of tobacco and cannabis consumption, for example asking participants to 

estimate the ratio of tobacco to cannabis they use when rolling a joint, and by comparing 

findings from cohorts with differing degrees of combined cannabis/tobacco administration (for 

instance, rates of tobacco/cannabis co-administration are much lower in the USA than in the UK 

(Hindocha et al., 2016)). 

A number of measurement limitations of the present study should be noted. Firstly, 

classification of cannabis users into groups based on self-reported cumulative use occasions 

does not provide information on actual dose (of THC), which varies according to cannabis 

weight and particular strain, as well as how the user titrates the dose (T. P. Freeman et al., 2014; 
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Pol et al., 2014; Temple, Brown, & Hine, 2011).  This is a limitation of all cohort-based 

research to date, since objective biological markers (e.g. of cannabinoids in hair) are not 

typically collected. It is noteworthy that the ALSPAC cohort, born in the early nineties, may 

have been exposed to higher THC potency varieties than earlier cohorts, which may be expected 

to have made cognitive impairment more rather than less likely. Secondly, an abbreviated 

WASI was used for IQ assessment at the age of 15, which provides a less reliable estimate of IQ 

than full-scale tests (Axelrod, 2002). However, as all the participants completed the same 

assessments, my comparisons remain valid. 

Further, nearly half of those who had used cannabis at least 50 times reported having used it in 

the three days prior to their age 15 IQ assessments. As described in chapter 1, cannabinoids can 

often be detected in blood and urine for one month or more following cannabis consumption, 

particularly in heavier users. Indeed, Schreiner and Dunn’s (2012) meta-analysis demonstrates 

that residual cognitive effects of chronic cannabis exposure may last approximately one month 

following abstinence from the drug. Furthermore, as described in chapter 1, while studies 

assessing adolescent cannabis users after minimal abstinence periods reliably detect verbal 

learning and memory impairments relative to non-users (Dougherty et al., 2013), alcohol users 

(Solowij, Jones, et al., 2011), and less frequent cannabis users (Harvey et al., 2007), no or fewer 

impairments tend to be found amongst users abstinent for two or more weeks (Hanson et al., 

2010; Mahmood et al., 2010). Sample-size considerations meant that I could not assess the 

impact of excluding recent cannabis smokers from analyses, but future work, perhaps with the 

ALSPAC sample at an older age, should address the possibility of residual effects directly. 

Nevertheless, despite high levels of recent cannabis usage, I found no robust association 

between cannabis use and poorer IQ performance.  

In summary, the notion that cannabis use itself is causally related to lower IQ and poorer 

educational performance was not supported in this large teenage sample. However, this study 

indeed has limitations, in particular the young age of outcome assessment and the fairly 

moderate levels of cannabis use. While I have demonstrated that confounding may be an 
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explanation for links between cannabis use and poorer outcomes, large prospective cohorts 

tracking young people prior to, during and after stopping cannabis use, and using more 

objective measures of drug use (e.g. the new NIH-funded “ABCD study” in the USA), are 

required before strong conclusions can be made. To date, all prospective cohort studies, 

including my own reported here, have relied on retrospective self-report of cannabis use, have 

not been able to rule-out possible residual effects of the drug on IQ and educational test 

performance and have not addressed whether the potency or variety of cannabis used influences 

findings. Cigarette smoking in particular has once again (Hooper et al., 2014; McCaffrey et al., 

2010; Silins et al., 2014; Stiby et al., 2014) been highlighted as an important factor in adolescent 

outcomes, as well as a robust independent predictor of educational performance, and the reasons 

for this need to be elucidated.  
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4 Chapter 4. The acute effects of cannabis on subjective ratings, memory and inhibition 

in adolescents and adults  

4.1 Introduction 

In Chapter 3, I demonstrated that associations between adolescent cannabis use and intellectual 

functioning and educational attainment may not be driven causally by cannabis use. Following 

this study, and given that I am based in a psychopharmacology lab, I became interested in the 

acute effects of cannabis in adolescents, and wondered whether they would be similar to the 

effects in adults. Given that approximately 50% of all cannabis users started before the age of 

18-19 years old, it is surprising that, to my knowledge, no controlled study has administered 

cannabis (or indeed, other recreational substances) to anyone under the age of 18 years.  

I was particularly intrigued by preclinical findings from the alcohol literature demonstrating that 

adolescent rodents experience blunted negative effects (for instance, motor and sedative effects) 

and heightened positive effects (for instance, social facilitatory and rewarding effects) acutely 

from alcohol (Spear, 2016). While similar preclinical research with cannabis remains in its 

infancy, as discussed in chapter 1 and below, there is emerging evidence of differential acute 

effects of cannabinoids in adolescent and adult rodents. These findings led to the series of 

experiments as detailed here and in chapters 5 and 6, in which I ask whether such findings 

translate to human adolescents. 

4.1.1 Human findings 

As described in chapter 1, a number of studies have compared cognitive function in adolescent 

cannabis users and non-users, as an indicator of non-acute effects of cannabis in adolescence. 

Compared to non-users, adolescent cannabis users are inconsistently found to have non-

intoxicated poorer verbal and working memory, though there is scarce evidence of impairments 

following 2 weeks of abstinence. Meanwhile few studies, have assessed response inhibition in 

adolescent cannabis users, though the one study with an extended period of abstinence prior to 
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testing (28 days) found no evidence of impairment relative to non-users. Differences between 

adolescent cannabis users and non-users have also been reported for task-related neural 

responses (e.g. greater BOLD response during response  inhibition (Tapert et al., 2007) or 

spatial working memory tasks (Alecia D Schweinsburg et al., 2008)), morphological differences 

in medial temporal and frontal cortices (Batalla et al., 2013) and white matter integrity (Epstein 

& Kumra, 2015; Gruber, Dahlgren, Sagar, Gönenç, & Lukas, 2014). However, findings are 

often mixed, limited by cross-sectional designs and small samples, and necessarily correlational 

in nature (Curran et al., 2016).  

Epidemiological findings further suggest that younger age of cannabis use onset may be 

associated with increased risk of addiction (Chen & Anthony, 2003; Chen et al., 2005; Hines et 

al., 2015; von Sydow et al., 2002), cognitive impairment (Curran et al., 2016; Gruber et al., 

2012; Meier et al., 2012) and psychotic illness (Arseneault et al., 2002; Di Forti et al., 2014; T. 

H. Moore et al., 2007). Again such findings are limited since individuals starting use younger 

will also have more cannabis exposures over a longer period of time, making it hard to 

dissociate the specific effect of age. 

To my knowledge no studies to date with humans have assessed the acute effects of cannabis in 

adolescents, so instead we need to turn to the animal research. 

4.1.2 Animal findings 

4.1.2.1 Non-acute effects  

Repeated administration studies with rats further suggest greater vulnerability to cannabis-

related harm in adolescents. Adolescent exposure leads to adulthood deficits in novel object 

recognition and spatial working memory, but not spatial learning (Rubino & Parolaro, 2015). In 

adolescent rhesus monkeys Verrico and colleagues (Verrico et al., 2014; Verrico et al., 2012) 

found that both acute and repeated doses of THC led to impaired spatial but not object working 

memory; further, repeated THC prevented the maturational improvement in spatial working 
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memory typically seen at that age, but did not affect the earlier developing object working 

memory. However direct comparisons of adolescent versus adult chronic exposure in animals 

are scarce and findings have been inconsistent (Cha et al., 2007; Cha et al., 2006; Fox et al., 

2009; O’Shea, Singh, McGregor, & Mallet, 2004; Quinn et al., 2008; Schneider & Koch, 2003). 

4.1.2.2 Acute effects 

As described in chapter 1, preclinical evidence for increased adolescent vulnerability to acute 

effects of cannabis is also mixed, with some suggesting acute cannabinoid treatment has a 

greater impairing effect on spatial and non-spatial learning (THC) (Cha et al., 2007; Cha et al., 

2006) and object recognition (WIN) (Schneider et al., 2008) in adolescent compared to adult 

rats. Others however report the opposite, with evidence of greater acute impairments in adult 

rodents - including impaired novel object recognition (WIN) (Fox et al., 2009), and spatial 

learning (WIN) (Acheson et al., 2011).  

As well as differential cognitive effects, some have also reported differential general 

intoxication effects in adolescent and adult rats. Adult rats developed conditioned place (WIN) 

(Carvalho, Reyes, Ramalhosa, Sousa, & Van Bockstaele, 2016) and taste (THC) (Quinn et al., 

2008) aversion to cannabinoid treatment while adolescents did not, and adults produced more 

vocalisations when handled while intoxicated, suggesting greater drug-induced aversion (Quinn 

et al., 2008). THC has also been found to have less anxiogenic (Schramm-Sapyta et al., 2007) or 

even anxiolytic (Acheson et al., 2011) effects, alongside reduced locomotor-suppression effects 

(Schramm-Sapyta et al., 2007), in adolescent rats compared to adults.  

4.1.2.3 Translation 

Translation of these findings to humans is limited by a number of factors, including the 

common use of potent synthetic cannabinoids with full CB1R agonism (for instance, WIN) 

rather than THC, and often high doses compared with typical human consumption. Further, as 

described in chapter 1, the most convincing findings for acute effects of cannabis in humans 

relate to verbal learning and memory, however direct translation of such tasks to an animal 
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model is clearly not possible. The use of non-human primates at doses of THC that correspond 

well to human self-administration (Verrico et al., 2012) is preferable to rat models, though the 

expense and ethical considerations of working with non-human primates restricts more frequent 

usage of these animals in cannabis research. 

4.1.3 Summary 

Despite mixed findings, cannabinoid administration studies in adolescent rodents and non-

human primates predominantly suggest that the adolescent brain is differentially sensitive to the 

effects of cannabis. Should these findings translate to humans, these age-related sensitivities 

may contribute to an increased risk of cannabis-related harms in teenagers. Indeed, it has been 

suggested that if adolescents are less sensitive to the acute negative effects (e.g. increased 

anxiety) of cannabis (and other recreational substances, as has been suggested for alcohol 

(Spear, 2016)) then this may lead to greater drug consumption than adults (Schramm-Sapyta et 

al., 2007).  However acute studies in humans have rarely explored the influence of age on drug 

effects. Indeed, we are aware of no controlled studies in which cannabis was administered to 

individuals under 18 years of age.   

4.1.4 Research questions and hypotheses 

The present study therefore aimed to compare the acute effects of cannabis in adolescent and 

adult users, asking whether adolescents are more vulnerable to the acute subjective, 

physiological, memory and inhibition effects of cannabis than adults.  

As described in chapter 1, in adults, acute cannabis administration typically induces verbal 

memory impairments (Broyd et al., 2015; Ranganathan & D’souza, 2006) and may impair 

working memory and response inhibition (Broyd et al., 2015). Acutely cannabis also increases 

subjective drug-related experiences (e.g. feeling ‘stoned’) (Green et al., 2003). Based on the 

preclinical findings described above of differential sensitivities to cannabinoids in adolescent 

and adult animals, I developed the following hypotheses: 
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1. Firstly, I hypothesised that adolescents would be less sensitive to the intoxicating 

(Carvalho et al., 2016; Quinn et al., 2008; Schramm-Sapyta et al., 2007) and anxiogenic 

(Acheson et al., 2011; Schramm-Sapyta et al., 2007) effects of cannabis compared to 

adults.  

2. Secondly, I hypothesised greater cognitive impairment following cannabis in 

adolescents than adults (Cha et al., 2007; Cha et al., 2006; Schneider et al., 2008), as 

indexed by spatial working memory, episodic memory and response inhibition. 

 

4.2 Methods 

4.2.1 Design and Participants 

A mixed within- and between-subjects, double-blind, cross-over design was used to compare 

the acute effects of both active and placebo cannabis on adolescents and adults. Treatment order 

was counterbalanced for task version and randomised via random number generator within each 

age group.  

We recruited 20 adolescent (aged 16-17 years) and 20 adult (24-28 years) male cannabis users, 

via local and online (social media) advertising and word-of-mouth. The following inclusion 

criteria were assessed at telephone screening: male gender (due to evidence of sex differences in 

onset of puberty and ontogeny of adolescent brain development); current cannabis use between 

1-3 days per week; at least 6 months of regular (at least once per week) cannabis use; no 

extended period (>1 month) of daily use; score <3 on the Cannabis Severity of Dependence 

Scale (SDS) reflecting the validated adolescent cut-off for dependence (Martin, Copeland, 

Gates, & Gilmour, 2006); no other illicit drug used >twice/month; no current mental health 

problem or history (personal or immediate family) of psychosis-related disorders; healthy-range 

body-mass index (BMI) and blood pressure (BP). Participants were required to be current 

cannabis users for a number of reasons: firstly, I was interested in the effects of cannabis use on 
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recreational users so selection of a representative sample was important for generalisability; and 

secondly, to prevent the administration of a commonly abused substance to cannabis-naïve 

individuals (as is standard practice in such studies). Participants were asked to remain abstinent 

from all drugs including alcohol but not cigarettes for 24 hours before each testing session.  

The study was approved by UCL Research Ethics Committee. All participants provided written 

informed consent (in the UK 16-17 year olds are able to provide informed consent without 

additional parental consent or assent). Participants were reimbursed for their time (£7.50 per 

hour) and travel expenses. 

4.2.2 Drug administration 

Medicinal-grade active (Bedrobinol®; THC 12.0%) and placebo (THC <0.3%) cannabis were 

imported under UK Home Office licence from Bedrocan® in The Netherlands. Dose was 

weight-adjusted as age differences in body weight were anticipated. Following previous 

protocols (Bossong et al., 2009; Hindocha et al., 2014; Lawn, Freeman, Pope, Joye, Harvey, 

Hindocha, Mokrysz, Moss, Wall, & Bloomfield, 2016) participants received 0.89 mg/kg of 

cannabis, corresponding to approximately 8.0mg THC for an individual weighing 75kg. This 

dose corresponds to that contained in about a third of a typical joint (van der Pol et al., 2014). 

Similar doses have previously been shown to produce robust subjective effects via the 

administration method used in this study (Bossong et al., 2009; Hindocha et al., 2014; Lawn, 

Freeman, Pope, Joye, Harvey, Hindocha, Mokrysz, Moss, Wall, & Bloomfield, 2016). 

Drug was administered via a Volcano Medic vaporiser (Storz and Bickel GmbH & Co., 

Germany), operating at 210°C. This method has been shown to be safe, producing equivalent 

pulmonary and plasma cannabinoid levels to those from smoked cannabis, but with lower 

expired carbon monoxide levels (Abrams et al., 2007; Hazekamp, Ruhaak, Zuurman, van 

Gerven, & Verpoorte, 2006; Lanz, Mattsson, Soydaner, & Brenneisen, 2016). Vapour was 

collected in a ‘balloon’ with a non-return valve, and inhaled according to a previous timed 

breath-holding protocol (Lawn, Freeman, Pope, Joye, Harvey, Hindocha, Mokrysz, Moss, Wall, 
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& Bloomfield, 2016). Participants inhaled, held their breath for 8 seconds and repeated this at 

their own pace until the balloon was empty. Each dose was vaporized in two sequentially 

administered balloons to minimise residual cannabinoids. 

4.2.3 Measures 

4.2.3.1 Baseline Assessments 

4.2.3.1.1 Questionnaires 

Premorbid verbal intelligence was assessed by the Wechsler Test of Adult Reading (WTAR) 

(Holdnack, 2001), and scores were adjusted for age. The test includes 50 words with atypical 

grapheme to phoneme translations and is designed to assess previous learning of the word. 

Participants are required to read each item out loud in turn. The test is validated for use in 

individuals aged 16-89 years. 

Depression was assessed on the 21 item self-report Beck Depression Inventory-II (BDI-II) 

(Beck, Steer, & Brown, 1996), rated for the past week. Response options vary by item, each 

item being rated between 0 (no experience of symptom) and 3 (severe experience of symptom). 

Higher scores indicate greater severity of depression. 

Anxiety was assessed on the 21 item self-report Beck Anxiety Inventory (BAI) (Beck, Epstein, 

Brown, & Steer, 1988), rated for the past week. Items are rated between 0 (not at all) and 3 

(severely). Higher scores indicate greater severity of anxiety. 

A validated short version of the self-report UPPS-P Impulsive Behaviour Scale (SUPPS-P) 

(Cyders, Littlefield, Coffey, & Karyadi, 2014; Lynam, 2013) indexed impulsivity. The short 

version has 20 items that are rated between 1 (strongly agree) and 4 (strongly disagree); 6 items 

are reverse-scored. Higher scores indicate greater impulsivity. 

The 74 item self-report Schizotypal Personality Questionnaire (SPQ) (Raine, 1991) indexed 

schizotypy. Items are rated either 0 (no) or yes (1). Higher scores indicate greater schizotypy. 
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4.2.3.1.2 Drug use 

A structured interview recorded: lifetime use (yes/no); time since last use (days); duration of use 

(years); frequency (days/month); and amount per session (alcohol units (standard UK units of 

alcohol; equivalent to 8g of pure alcohol or approximately 3/5ths of a NIAAA standardized 

drink) per typical drinking session; cigarettes/day; other illicit drugs grams/ pills/ tabs). Instant 

urine drug screens at the start of every session assessed recent use of illicit drugs (amphetamine, 

barbiturates, benzodiazepines, cocaine, MDMA, methamphetamine, methadone, opiates, 

oxycodone, phencyclidine, THC). Problematic drug use was assessed using the Cannabis Abuse 

Screening Test (CAST) (Legleye, Karila, Beck, & Reynaud, 2007), the Fagerström Test for 

Nicotine Dependence (FTND) (Heatherton, Kozlowski, Frecker, & Fagerstrom, 1991), and the 

Alcohol Use Disorders Identification Test (AUDIT) (Babor, Higgins-Biddle, Saunders, & 

Monteiro, 2001). 

4.2.3.2 Experimental assessments 

4.2.3.2.1 Physiological measurements 

Body weight, blood pressure and heart rate were measured at baseline. BP and heart rate were 

monitored throughout drug administration sessions. 

4.2.3.2.2 Subjective Ratings 

Participants provided ratings from 0 (not at all) to 10 (extremely) for “Stoned”, “High”, “Feel 

drug effect”, “Like drug effect” “Alert”, “Anxious”, “Paranoid”, “Dry mouth”, “Enhanced 

colour perception”, “Enhanced sound perception”, “Want to have food”, and “Want to have 

cannabis”, at a mean time of -6 minutes (apart from “Feel drug effect” and “Like drug effect”), 

+7 minutes, +34 minutes and +77 minutes (drug administration started at 0 minutes). 

4.2.3.2.3 Memory 

4.2.3.2.3.1 Prose recall 
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This episodic memory task was adapted from the Rivermead Behavioural Memory Test battery 

(Wilson, Cockburn, Baddeley, & Hiorns, 1989). Participants listened to a 30s story and then for 

1 minute wrote down what they remembered immediately and again after ~1 hour. Each story 

contained 21 ‘idea units’ and scoring was standardised.  

4.2.3.2.3.2 Spatial N-back 

A computerised spatial version of the n-back task (Braver et al., 1997; T. P. Freeman et al., 

2012) was used to assess spatial working memory. Stimuli appeared sequentially in one of six 

possible locations on screen, around a fixation cross. Participants responded ‘yes’ (signal trial) 

or ‘no’ (no-signal trials) as to whether the stimulus was in the same position as the stimulus one 

before (low load; ‘1-back’) or two before (high load; ‘2-back’). Performance was indexed by 

discriminability (d’), and reaction time for correct trials. Each load consisted of 50 trials, with 

seven practice trials preceding each load. For each load, 48% of the trials were signal trials. 

Each trial started with a smiley face being presented on screen for 600ms, followed by 1500ms 

inter-stimulus interval where only the fixation cross was visible on the screen; each trial 

therefore lasted 2100ms. Participant responses were recorded from stimulus-onset until the start 

of the next trial. 

Discriminability (d’), which indexed a person’s ability to differentiate between signal and no-

signal trials, was calculated using the following formula (Stanislaw & Todorov, 1999): 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑍(𝐻) − 𝑍(𝐹) 

On signal trials, a correct response (i.e. ‘yes’) represents a hit, and an incorrect response (i.e. 

‘no’) represents a miss. On no-signal trials a correct response (i.e. ‘no’) represents a correct 

negative, and an incorrect response (i.e. ‘yes’) represents a false alarm. In the above formula ‘H’ 

represents the hit rate (i.e. total number of hits divided by the total number of signal trials), and 

‘F’ represents the false alarm rate (i.e. total number of false alarms divided by the total number 

of no-signal trials). Hit and false alarm rates of 1 and 0 were corrected by substituting hit rates 

of 1 by (n-0.5)/n, where n represents the total number of signal trials, and by substituting false 
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alarm rates of 0 by 0.5/n, where n represents the total number of no-signal trials (Macmillan & 

Kaplan, 1985). 

4.2.3.2.4 Response inhibition  

4.2.3.2.4.1 Stop-signal 

A up/down staircase tracking version of the stop-signal was used to measure response inhibition 

(Verbruggen, Logan, & Stevens, 2008). Stimuli (white arrows) appeared sequentially in the 

centre of the screen; participants responded when the white arrow pointed left or right by 

pressing either the right or left arrow key. On 25% of trials, the arrow became blue following a 

variable delay (signal trials) and participants were instructed to not press either arrow key (i.e. 

inhibit the prepotent response). For signal trials, the initial variable delay between stimulus 

onset and signal was 250ms. The staircase tracking protocol proceeded as follows: if the 

participant successfully inhibited their response on a signal trial then on the next signal trial the 

delay was reduced by 50ms; however, if the participant failed to inhibit their response on a 

signal trial, then on the next signal trial the delay was increased by 50ms. This protocol is 

intended to control the accuracy of stopping, to locate the delay at which participants 

successfully stopped with 50% probability and therefore ensure reliable modelling of the stop-

signal reaction time (SSRT). Each trial lasted 1500ms from stimulus (white arrow) onset, with 

an inter-trial interval of 500ms. There were 2 blocks of 96 trials, separated by a 15 second 

break. The 2 blocks were preceded by 32 practice trials with immediate feedback. Performance 

was assessed with SSRT, and accuracy and reaction times on no-signal trials. 

4.2.4 Procedure 

Following screening participants attended a 1-hour baseline session during which they provided 

informed consent, completed baseline measures, drug histories and problematic use 

questionnaires, task training, and physiological measurements.  
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Participants then completed two test sessions separated by at least seven days at least one week 

(>3 times the elimination half-life of THC) to minimise carryover effects (D'Souza et al., 2004; 

Hindocha, Freeman, et al., 2015). Participants first provided baseline subjective ratings, and BP 

and heart rate were measured (Time 1; T1). Active or placebo cannabis was then administered 

and participants again completed subjective ratings, BP and heart rate measures (Time 2; T2). 

Tasks and state questionnaires were then completed in the following order; prose recall 

(immediate), subjective ratings (Time 3; T3), spatial N-back, stop-signal, prose recall (delayed), 

subjective ratings (Time 4; T4), BP and heart rate (T4). Test sessions finished 80 minutes after 

drug inhalation. 

4.2.5 Power calculation 

To detect a medium effect size (f= 0.25) for the key interaction of interest (group x drug), with 

80% power at an alpha of 5%, we required a sample size of 34. To account for drop-out and task 

adherence issues we tested 40 in total. 

4.2.6 Statistical Analysis 

All analyses were conducted with SPSS 21.0. Syntax and data are available from CM on 

request. Outliers and normality were assessed via diagnostic plots for all analyses. Extreme 

outliers (>3 times interquartile range) were winsorized within-group. Greenhouse-Geisser 

corrections were applied for violations of sphericity. Independent t-test, chi-square, or Mann-

Whitney analyses were conducted as appropriate to compare groups (adult, adolescent) on 

demographic and baseline measures.  

Mixed ANOVA was conducted for all test outcomes, with the between-subjects factor of group 

(adolescent, adult; coded as 1, 2) and within-subjects factor of drug (placebo, cannabis; coded as 

1, 2). Additional within-subjects factors were included for relevant analyses: time (T1, T2, T4; 

coded as 1, 2, 3) for physiological data; time (T1-T4; coded as 1, 2, 3, 4) for subjective ratings 

(only T2-T4 (coded as 1, 2, 3) were analysed for stoned (due to floor effects) and feel drug 



121 

 

effect & like drug effect (as these were not collected at T1)); N-back memory load (low, high; 

coded as 1, 2); prose recall delay (immediate, delayed; coded as 1, 2). Main effects and 

interactions with time were explored via Helmert contrasts (comparing Pre-drug (T1) to Post-

drug (mean of T2-T4)), to reduce the number of comparisons. Other interactions were explored 

via pairwise comparisons with local Bonferroni-correction. Drug order was added as an 

additional between-subjects factor (placebo-first, cannabis-first; coded as 1, 2) and results were 

compared to reported primary analyses; unless otherwise noted results were unaffected by drug 

order. All statistical tests were two-tailed. 



122 

 

4.3 Results 

4.3.1 Demographics (Table 4.1.) 

Adolescents were younger, and had lower body weight. Groups did not differ on verbal IQ, 

BAI, BDI-II, SUPPS-P, or SPQ. Adolescents currently used for more days per month than the 

adults, and the age of first cannabis use was younger for the adolescents compared to the adults, 

but overall the adults had used for longer. Groups did not differ on CAST score, time since last 

use, or likelihood of a positive THC urine screen at baseline. Table 4.2. displays baseline instant 

drug screen results. 
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Table 4.1. Demographic and baseline variables for adolescents and adults; values reflect mean 

(SD) unless otherwise stated; p-values reflect independent t-test comparing mean, Mann-

Whitney U-test comparing median, or chi-square comparing frequency (as appropriate), by age 

group. 

 

 

Adolescents  

(n= 20) 

Adults 

(n= 20)   

Demographics Mean (SD) Mean (SD) Test statistic p-value 

Age (years) 17.08 (0.44) 25.49 (1.07) U= 400.000 <.0012 

Body weight (kg) 66.40 (10.30) 74.96 (10.12) U= 296.000 .0092 

Cannabis weight (mg) 58.90 (7.65) 65.44 (6.56) U= 299.500 .0062 

Verbal IQ  (n=39) 110.20 (11.29) 115.11 (8.70) U= 245.000 .127 

Baseline questionnaires     

Beck Anxiety Inventory 4.55 (4.62) 6.45 (7.09) U= 234.500 .355 

Beck Depression Inventory 6.35 (4.66) 4.55 (4.38) U= 152.000 .201 

SUPPS-P Impulsive Behaviour Scale 45.55 (8.00) 45.40 (5.94) t38= 0.067 .947 

Schizotypal Personality Questionnaire 20.90 (10.90) 15.21 (11.24) U= 145.000 .142 

Cannabis use      

Age first tried cannabis (years) 14.73 (1.25) 17.71 (3.00) U= 338.000 <.0012 

Last used cannabis (days) 3.35 (2.52) 4.75 (3.78) U= 259.500 .108 

Duration of cannabis use (years) 2.35 (1.24) 7.78 (2.85) U= 378.500 <.0012 

Cannabis use frequency (days per month) 10.58 (4.33) 7.94 (5.27) U= 121.000 .0332 

Positive THC urine at baseline (n=37); 

%(n)  83.33 (15) 63.16 (12) χ2
1= 1.908 .167 

Cannabis Abuse Screening Test 6.45 (2.72) 5.60 (3.56) t38= 0.848 .402 

Cigarette use     

Ever used cigarettes; %(n) 95.00 (19) 75.00 (15) χ2
1= 3.137 .077 

Age first tried cigarettes (years)3 15.06 (1.49) 17.21 (2.61) U= 279.000 .0032 

Duration of cigarette use (years) 1.91 (1.41) 7.60 (3.44) U= 356.500 <.0012 

Cigarette use frequency (days per month) 19.28 (12.36) 10.37 (11.62) U= 120.500 .0302 

Cigarettes per day 3.74 (2.83) 1.84 (2.06) U= 107.500 .0112 

Fagerström Test for Nicotine Dependence  1.30 (1.03) 0.20 (0.70) U= 81.000 <.0012 

Carbon Monoxide at baseline (ppm; n=38) 6.00 (4.55) 5.68 (3.96) U= 163.000 .624 

Alcohol use     

Ever used alcohol; %(n) 100.00 (20) 100.00 (20) n/a n/a 

Age first tried alcohol (years) 14.07 (14.07) 14.56 (3.22) t28= -0.6111 .546 

Duration of alcohol use (years) 3.01 (1.63) 10.93 (3.71) U= 399.000 <.0012 

Alcohol use frequency (days per month) 5.80 (4.83) 9.78 (6.00) U= 283.500 .0232 

Alcohol units per typical drinking session4 9.81 (6.92) 8.43 (2.82) U= 190.000 .799 

Alcohol Use Disorders Identification Test 8.95 (5.53) 8.95 (4.82) U= 214.000 .718 
1Levene’s test for homogeneity of variance violated 
2p<.05   
3calculated only on those who had ever used cigarettes (n=34) 
4units= standard UK units of alcohol; equivalent to 8g of pure alcohol or approximately 3/5ths of a 

NIAAA standardized drink 
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Table 4.2. Frequency of positive/negative baseline session urine instant screen results, by age 

group. Due to an administrative error, data is missing for 2 adolescents and 1 adult. 

 Adolescents Adults 

 n= 18 n= 19 

  pos/neg pos/neg 

Amphetamine 0/18 0/19 

Barbiturates 0/18 0/19 

Benzodiazepines 0/18 1/18 

Cocaine 0/18 3/16 

MDMA 0/18 0/19 

Methamphetamine 0/18 0/19 

Methadone 0/18 0/19 

Opiates 0/18 1/18 

Oxycodone 0/18 0/19 

Phencyclidine 0/18 1/18 

THC 15/3 12/7 

 

 

4.3.2 Physiological data (Figure 4.1.) 

4.3.2.1 Heart rate 

An interaction of drug x time (F1,38= 82.879, p< .001, η²p= 0.69) was found, with heart rate 

increasing from Pre-drug to Post-drug after cannabis (p< .001, η²p= 0.65) but not placebo (p= 

.449, η²p= 0.01). Main effects of drug (F1,38= 89.327, p< .001, η²p= 0.70) and time (F1,38= 

44.141, p< .001, η²p= 0.54) also emerged. 

4.3.2.2 Systolic BP 

No main effects or interactions were found. 

4.3.2.3 Diastolic BP 

Interactions of drug x group x time (F1,38= 4.393, p= .043, η²p= 0.10), drug x group (F1,38= 

4.744, p= .036, η²p= 0.11), and drug x time (F1,38= 4.977, p= .032, η²p= 0.12) emerged. For 
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adolescents there was no drug x time interaction (p= .919, η²p< 0.01); while for adults a drug x 

time interaction (p= .010, η²p= 0.30) revealed an increase in diastolic BP from Pre-drug to Post-

drug for cannabis (p= .016, η²p= 0.27), but no change over time for placebo (p= .060, η²p= 

0.17). Main effects of drug (F1,38= 7.390, p= .010, η²p= 0.16) and group (F1,38= 7.998, p= .007, 

η²p= 0.17) also emerged.  
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Figure 4.1. Mean (SE) values for heart rate (bpm), systolic and diastolic blood pressure, for 

adolescents and adults on cannabis and placebo.* = heart rate increased from Pre-drug to 

Post-drug for cannabis (p< .001) but not placebo (p= .449); † = for adults diastolic BP 

increased from Pre-drug to Post-drug on cannabis (p= .016) but not placebo (p= .060).  
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4.3.3 Subjective Ratings (Figure 4.2.) 

4.3.3.1 ‘Stoned’ 

There was an interaction of drug x group (F1,38= 4.893, p= .033, η²p= 0.11). Ratings of both 

adolescents (p< .001, η²p= 0.65) and adults (p< .001, η²p= 0.78) were greater after cannabis 

compared to placebo, however the increase was larger in adults. Main effects of drug (F1,38= 

200.055, p <.001, η²p= 0.84) and time (F2,63= 8.271, p= .001, η²p= 0.18) also emerged.   

4.3.3.2 ‘Feel drug effect’ 

There was an interaction of drug x group (F1,38= 8.877, p= .005, η²p= 0.19), with adolescents 

feeling the drug effect less than adults after cannabis (p= .017, η²p= 0.14), but not after placebo 

(p= .565, η²p= 0.01). Main effects of drug (F1,38= 297.629, p< .001, η²p= 0.89) and time (F2,65= 

9.629, p< .001, η²p= 0.20) also emerged. 

4.3.3.3 ‘Alert’ 

There was an interaction of drug x group (F1,38= 9.123, p= .004, η²p= 0.19), with adolescents 

rating no difference in alertness on cannabis compared to placebo (p= .955, η²p< 0.01), whereas 

adults rated lower alertness on cannabis compared to placebo (p< .001, η²p= 0.33). There was 

also an interaction of drug x time (F1,38= 42.844, p< .001, η²p= 0.53); with alertness decreasing 

from Pre-drug to Post-drug in both sessions, though the decrease was larger for cannabis (p< 

.001, η²p= 0.65) than for placebo (p= .005, η²p= 0.19). Main effects of drug (F1,38= 9.613, p= 

.004, η²p= 0.20) and time (F1,38= 60.071, p< .001, η²p= 0.61) also emerged. 

4.3.3.4 ‘Anxious’ 

There was an interaction of drug x group (F1,38= 4.272, p= .046, η²p= 0.10), with adolescents 

reporting no difference in anxiety on cannabis compared to placebo (p= .516, η²p= 0.01), but 

adults reporting more anxiety on cannabis compared to placebo (p= .001, η²p= 0.25). There was 

also an interaction of drug x time (F1,38= 9.914, p= .003, η²p= 0.21); with no change in anxiety 



128 

 

after taking cannabis (p= .275, η²p= 0.03) and a decrease in anxiety after taking placebo (p< 

.001, η²p= 0.39). A main effect of drug (F1,38= 8.969, p= .005, η²p= 0.19) also emerged. 

4.3.3.5 ‘Dry mouth’ 

There were interactions of drug x group x time (F1,38= 9.417, p= .004, η²p= 0.20), drug x group 

(F1,38= 6.436, p= .015, η²p= 0.15), and drug x time (F1,38= 72.572, p< .001, η²p= 0.66). Both 

adolescents (p< .001, η²p= 0.52) and adults (p< .001, η²p= 0.72) reported an increase in dry 

mouth from Pre-drug to Post-drug on cannabis, though the increase was greater for adults. On 

placebo there was no change in dry mouth over time for adolescents (p= .495, η²p= 0.03) or 

adults (p= .244, η²p= 0.07). Main effects of drug (F1,38= 44.682, p< .001, η²p= 0.54) and time 

(F1,38= 46.168, p< .001, η²p= 0.55) also emerged. 

4.3.3.6 ‘Want to have cannabis’ 

There was an interaction of group x time (F1,38= 9.661, p= .004, η²p= 0.20). From Pre-drug to 

Post-drug, wanting of cannabis increased in the adolescents (p= .048, η²p= 0.19) and decreased 

in the adults (p= .031, η²p= 0.22). There was also an interaction of drug x time (F1,38= 5.933, p= 

.020, η²p= 0.14); wanting of cannabis increased after taking placebo (p= .037, η²p= 0.11), but 

did not change after taking cannabis (p= .177, η²p= 0.05). 

4.3.3.7 Other subjective ratings 

Comparable analyses revealed that compared to placebo, cannabis increased subjective ratings 

for ‘paranoid’, ‘mentally impaired’, ‘high’, ‘like drug effect’, ‘want to have food’, ‘enhanced 

colour perception’, and ‘enhanced sound perception’ (all p’s < .05). However, there were no 

group-related differences or interactions for any of these ratings (all p’s > .05).  
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Figure 4.2. Mean (SE) values for subjective ratings (0-10) for ‘stoned’, ‘feel drug effect’, 

‘alert’, ‘anxious’, ‘dry mouth’, ‘want to have cannabis’, for adolescents and adults on placebo 

and cannabis. * = drug x group interaction (p≤ .046); † = drug x time interaction (p≤ .003); ∞ = 

drug x group x time interaction (p= .004); ◊ = group x time interaction (p= .004).  

                   Adult - Placebo                            Adolescent - Placebo 

                    Adult - Cannabis                          Adolescent - Cannabis 
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4.3.4 Memory 

4.3.4.1 Spatial N-back 

Five participants were excluded (3 adults, 2 adolescents) due to <50% accuracy. Table 4.3. 

contains descriptive data for the task. 

4.3.4.1.1 Discriminability 

Main effects of drug (F1,33= 30.495, p< .001, η²p= 0.48) and load (F1,33= 26.054, p< .001, η²p= 

0.44) were found. Discriminability was poorer on cannabis than placebo, and on high load than 

low load. 

4.3.4.1.2 Reaction time (correct trials) 

Initial analyses demonstrated main effects of drug (F1,33= 12.221, p= .001, η²p= 0.27) and load 

(F1,33= 44.430, p< .001, η²p= 0.57), with no interactions. Reaction times were longer on 

cannabis than placebo, and on high load than low load. However, after adding drug order to the 

model, an interaction of drug x group (F1,31= 4.447, p= .043, η²p= 0.13) also emerged. For 

adolescents there was no difference in reaction times between cannabis and placebo (p= .076, 

η²p= 0.10), while for adults reaction times were longer after cannabis than placebo (p< .001, 

η²p= 0.41). 
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Table 4.3. Means and standard deviations for spatial N-back, prose recall and stop-signal 

tasks, by drug and age group. 

 

 

4.3.4.2 Prose recall (Figure 4.3a) 

Table 4.3. contains descriptive data for the task. 

There was an interaction of drug x delay x group (F1,38= 5.518, p= .024, η²p= 0.13), with 

adolescents recalling fewer items after cannabis than placebo, both immediately (p= .002, η²p= 

0.22) and after the delay (p= .038, η²p= 0.11). Adults also recalled fewer after cannabis than 

placebo, both immediately (p< .001, η²p= 0.28) and after the delay (p< .001, η²p= 0.35); 

however, the reduction in items recalled after cannabis compared to placebo for delayed recall 

was twice as large in adults than adolescents. A main effect of drug (F1,38= 25.869, p< .001, 

η²p= 0.41) also emerged. 

  

 Adolescents Adults 

 Placebo Cannabis Placebo Cannabis 

  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Spatial N-back n=18 n=17 

Low load (1-back)     
Dicriminability 3.28 (0.59) 2.75 (0.72) 3.28 (0.60) 2.94 (0.54) 

Reaction time correct 

trials (ms) 536.74 (88.43) 565.36 (149.39) 532.16 (67.09) 633.55 (126.34) 

High load (2-back)     
Dicriminability 2.75 (0.91) 1.91 (0.93) 3.06 (0.63) 2.25 (1.14) 

Reaction time correct 

trials (ms) 642.76 (135.29) 699.89 (170.10) 694.08 (174.09) 790.35 (222.01) 

Prose recall n=20 n=20 

Immediate 6.80 (2.57) 4.70 (2.94) 6.53 (1.96) 4.03 (1.73) 

Delayed 6.08 (2.68) 4.55 (2.89) 6.68 (1.90) 3.45 (1.81) 

Stop-signal n=19 n=18 

SSRT (ms) 209.43 (64.95) 228.12 (67.35) 214.71 (46.51) 198.90 (43.61) 

Accuracy on no-signal 

trials 0.990 (0.012) 0.965 (0.041) 0.989 (0.010) 0.986 (0.013) 
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4.3.5 Response inhibition 

4.3.5.1 Stop-signal 

Two participants (one adult, one adolescent) had missing data due to technical issues; one adult 

was excluded due to an improbable SSRT (<50ms (Congdon et al., 2012)). Table 4.3. contains 

descriptive data for the task. 

4.3.5.1.1 SSRT 

No main effects of drug (F1,35= 0.015, p= .903, η²p< 0.01) or group (F1,35= 0.674, p= .417, η²p= 

0.19) were found. No interaction of drug x group was found (F1,35= 2.160, p= .151, η²p= 0.06). 

4.3.5.1.2 Accuracy on no-signal trials (Figure 4.3b) 

There was an interaction of drug x group (F1,35= 4.906, p= .033, η²p= 0.12), with adolescents 

being less accurate on cannabis compared to placebo (p= .001, η²p= 0.28), whereas drug did not 

affect adults’ accuracy (p= .644, η²p= 0.01). A main effect of drug (F1,35= 8.306, p= .007, η²p= 

0.19) also emerged. 

4.3.5.1.3 Reaction times on no-signal trials 

No main effects of drug (F1,35= 0.903, p= .349, η²p= 0.03) or group (F1,35= 1.749, p= .195, η²p= 

0.05) were found. No interaction of drug x group was found (F1,35= 0.013, p= .909, η²p< 0.01). 
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Figure 4.3. Mean (SE) values for a) prose recall score (number of items recalled, out of a total 

of 21), and b) stop-signal accuracy (proportion of no-signal trials with a correct (i.e. no button 

press) response), for adolescents and adults on placebo and cannabis. * = adult scores after 

taking cannabis were lower than after taking placebo (p< .001); † = adolescent scores after 

taking cannabis were lower than after taking placebo (p≤ .038); ∞ = adolescents were less 

accurate after taking cannabis than placebo (p= .001). 
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4.3.6 Correlations 

Within-group correlations were conducted between all cannabis session outcomes in which we 

found group main effects or interactions, and variables showing baseline group differences (at 

p< .10; Table 4.1.), including administered cannabis weight. Cannabis weight was not found to 

correlate with any outcome in either group. None were found to correlate (at p< .10) with any 

outcome measure in both the adolescent and adult groups, and so were not entered into models. 

4.4 Discussion  

In the first study to examine the causal effects of acute cannabis administration in human 

adolescence and adulthood, I found two differing profiles of effects. Compared with adults, 

adolescents experienced blunted subjective and physiological effects of cannabis, while 

cannabis impaired inhibitory processes in adolescents but not adults. Specifically, on cannabis 

adolescents reported feeling less stoned, feeling less effect of the drug and less dry mouth. The 

adults were also markedly more anxious and less alert during the cannabis session than the 

placebo session, while no session difference was found for the adolescents (however, since 

these group differences did not differ over time, these may be session effects rather than effects 

of cannabis). Indeed, there was no subjective rating on which adolescents reported greater drug 

effect than adults. Further, adults’ but not adolescents’ diastolic blood pressure rose after 

cannabis.  

Intriguingly, I found opposing effects between age groups on wanting of cannabis following 

drug administration. The adolescents did not show a typical satiety effect, wanting more 

cannabis post-drug regardless of whether they had taken cannabis or placebo. Meanwhile the 

adults wanted less cannabis post-drug, an effect that appears to be driven by a decrease in 

wanting following cannabis but not after placebo (although this putative interpretation remains 

tentative in the absence of a group x drug x time interaction). 
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In terms of cognitive effects, when intoxicated with cannabis adults showed greater impaired 

recall of prose following a delay than adolescents. After adjusting for drug order the adults also 

had longer response times on the spatial working memory task following cannabis, while the 

adolescents were not affected. While neither group were impaired at inhibiting a pre-potent 

response following cannabis, the adolescents but not adults were less accurate on the response 

inhibition task after cannabis. 

These results are in line with my first hypothesis that adolescents would be less sensitive to 

physiological, intoxication and anxiogenic effects compared with adults. These findings accord 

with the preclinical evidence which shows reduced anxiogenic, aversive and locomotor effects 

in adolescent rodents (Acheson et al., 2011; Carvalho et al., 2016; Quinn et al., 2008; Schramm-

Sapyta et al., 2007). The age group difference in the effect of cannabis on anxiety is intriguing, 

and may have implications for understanding the aetiology of clinical anxiety- though whether 

cannabis is a useful pharmacological model of anxiety needs to be determined by future work 

delineating the specific components of anxiety that are induced by cannabis. 

Additionally, partial support for my second hypothesis, that I would see greater cognitive 

impairment following cannabis in adolescents than adults, was seen in greater impairment of 

response inhibition accuracy following cannabis in the adolescents compared to adults.  

However contrary to expectations I did not see greater cannabis-related memory impairment in 

the adolescents, instead finding evidence of greater impairment in adults.  Preclinical evidence 

for greater adolescent sensitivity to acute memory-impairing effects of cannabis is however 

inconsistent (Realini, Rubino, & Parolaro, 2009). As described in chapter 1, in adult humans 

cannabis appears to selectively impair verbal and working memory domains (Broyd et al., 

2015), apparently leaving other memory domains intact (Curran et al., 2002), while rodents 

typically become impaired on a wide range of memory tasks across domains including object 

recognition and spatial learning, implying that preclinical findings for cannabis and memory 

may be somewhat limited in translation. However, as described in chapter 1, while much work 

has addressed verbal and working memory effects of cannabis, there has been considerably less 
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research into the effects in other memory domains, so whether these preclinical effects translate 

to human adults or adolescents is not known. 

The inconsistency of previous findings for working memory impairments following cannabis 

that I described in chapter 1 are surprising, given the large drug main effects I found on 

discriminability (f= 0.96) and reaction time (f= 0.61). It is possible that previous studies were 

underpowered, but such effect sizes would be detectable in a within-subjects sample of 18 (at 

80% power with a 5% alpha), which most studies did achieve. It is possible that the large effect 

on working memory in this study to some extent reflects a general intoxication effect rather than 

a memory-specific effect, however this is unlikely given that the average peak rating for feeling 

stoned was only 7 on a scale of 0-10, which is comparable to previous studies. 

Meanwhile, adults but not adolescents were found to have longer reaction times on cannabis 

than placebo on the working memory task. This secondary outcome group difference may 

suggest a spatial working memory deficit in adults following cannabis, but an alternative 

explanation is that this effect instead suggests a psychomotor slowing effect of cannabis in 

adults but not adolescents. Indeed, this explanation would be broadly in line with preclinical 

findings of reduced locomotor-suppression effects of cannabis in adolescent relative to adult rats 

(Schramm-Sapyta et al., 2007). Importantly however, cannabis had no effect on no-signal (that 

is, trials on which the participant does not need to inhibit their response) reaction times in either 

group on the stop-signal task, potentially arguing against a general psychomotor slowing 

interpretation of the working memory findings in adults. 

Relatedly, the key indicator of response inhibition on the stop-signal task is stop-signal reaction 

time, for which I again found no effect of cannabis in either group. As described in chapter 1, 

previous findings in adults for the effects of cannabis on the stop-signal task are mixed, with 

many finding effects on accuracy or reaction times, but fewer finding effects on stop-signal 

reaction time. As such, this null effect was not overly surprising. Meanwhile, on the secondary 

task outcome, adolescents did have lower accuracy on no-signal trials after cannabis, while the 
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adult’s accuracy was unaffected. Given that accurate responding on non-signal trials simply 

requires execution of a basic learned response (i.e. left-pointing arrow on screen= press left 

arrow key, right-pointing arrow on screen= press right arrow key), poorer accuracy potentially 

suggests a general reduction in task engagement, rather than a domain-specific effect on 

response inhibition. 

4.4.1 Limitations 

The study is not without limitations, and these will be discussed in detail in the final chapter of 

this thesis, since many of the issues are relevant across all of my acute studies comparing 

adolescents and adults. To briefly highlight the key issues, firstly I cannot speak to mechanism 

of the reported age-related sensitivities. While the findings may represent age-related neural 

sensitivities to cannabis, there are a number of alternative explanations, as will be discussed in 

chapter 7. Secondly, while the groups were well-matched for cannabis abuse symptomology and 

days since last cannabis use, the adolescents did report more days of cannabis usage per month 

than the adults (11 days versus 8 days). Additionally, while the adults had been using for more 

years, they had started using from an older age. This raises the possibility that the adolescents 

may have developed increased tolerance to cannabis relative to the adults. Lastly, since 

participants were given a weight-adjusted dose (because adolescents typically weigh less than 

adults (Sutton, 2012)), on average the adolescents received a lower dose. This means that I 

cannot rule out the possibility that the blunted effects seen in the adolescents are due to the 

reduced dose, though other groups have commonly administered a weight-adjusted cannabis 

dose via inhalation without reporting any dose effects (Ramaekers et al., 2008; Ramaekers et al., 

2006; Ramaekers et al., 2016). Moreover, critically the weight of cannabis administered did not 

correlate with any outcome in either group. The potential impact of these limitations and 

discussion of how to address these issues in future can be found in chapter 7. 

4.4.2 Conclusions 

In this chapter I set out to answer the question: 
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“Are adolescents more vulnerable to the acute subjective, physiological, memory and inhibition 

effects of cannabis than adults?” 

Compared to adults, adolescent cannabis users experienced blunted subjective, physiological, 

and memory impairing effects of cannabis. Further, adolescents were not satiated by cannabis 

and the drug impaired their inhibitory processes while leaving those of adults intact. In 

agreement with preclinical cannabinoid administration studies, I found evidence to suggest that 

human adolescents and adults are differentially sensitive to the acute effects of cannabis. 

Longitudinal research is now needed to determine the degree to which age-related sensitivities 

are indeed contributing to escalated use and increased risk of cannabis-related harms in 

adolescent cannabis users. 
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5 Chapter 5: The effects of acute cannabis administration on psychotomimetic 

symptoms and speech illusion in adolescents and adults 

5.1 Introduction 

In the previous two chapters I focused mainly on the cognitive effects of cannabis use in 

adolescence, both non-acute (in Chapter 3) and acute (in Chapter 4). Here I move on to the 

acute psychotomimetic effects of cannabis.  

As described in Chapter 2, a wealth of evidence demonstrates acute psychotomimetic effects of 

cannabis. However, few studies have addressed the psychological mechanisms through which 

cannabis influences specific psychotic symptoms and typically studies only report general 

increases in psychotomimetic symptoms as indexed by self- or clinician-rated scales, without 

looking at the specific symptoms affected by cannabis. No study to date has looked specifically 

at whether cannabis acutely leads to the experience of auditory-verbal hallucinations (AVH), 

and whether such cannabis-induced experiences are similar to those experienced by clinically 

psychotic patients. Further, as discussed in Chapter 2, it is probable that some cannabis use 

behaviours, such as using at a younger age or using CBD-lacking cannabis, are more likely to 

lead to psychotic-like effects than others.  

As such in this chapter, using self-rated measures alongside a task assessing the experience of 

AVH previously shown to be sensitive to psychosis vulnerability, I ask firstly whether 

adolescent cannabis users are more susceptible to the acute psychotomimetic effects, including 

AVH, of cannabis than adults, and secondly whether using cannabis with higher CBD content 

can offset the acute psychotomimetic effects, including AVH, of cannabis. 

5.1.1 Auditory-verbal hallucinations  

Auditory-verbal hallucinations (AVH) are a common positive symptom of psychotic disorders, 

with the majority of patients experiencing them at some point during their illness, with estimates 

for the prevalence of AVH in schizophrenia patients ranging from 40% to 80% (Larøi et al., 



140 

 

2012; Vercammen, De Haan, & Aleman, 2008). AVH are also fairly common in the general 

population, with a recent review estimating a median prevalence of 13%, though estimates vary 

widely across studies (Beavan, Read, & Cartwright, 2011). AVH have therefore often been 

described as existing along a continuum, ranging from infrequent and non-problematic 

hallucinations in healthy individuals, to patients with schizotypal or borderline personality 

disorder, to, at the most extreme end, patients with severe psychotic disorders such as 

schizophrenia who experience regular and often distressing hallucinations (Daalman et al., 

2011; Van Os, Hanssen, Bijl, & Ravelli, 2000). Whether this is an accurate description, such 

that AVH experienced by healthy and clinical populations arise through qualitatively similar but 

quantitatively different mechanisms, remains debated. Indeed, such an explanation does not 

explain the content of AVH, such that patients typically experience AVH with distressing or 

emotional content, while non-clinical AVH are typically more neutral in content (Daalman et 

al., 2011; Daalman, Verkooijen, Derks, Aleman, & Sommer, 2012).  

5.1.1.1 Experimental manipulation of AVH 

To investigate the experience of AVH a number of studies have attempted to experimentally 

manipulate the experience of AVH in both people with psychosis and healthy controls. These 

tasks typically aim to provoke the experience of hearing voices in white noise (i.e. random 

noise) in the absence of actual speech, i.e. elicit AVH, often termed a ‘speech illusion’. 

As discussed above, AVH are not only experienced in the context of clinical psychotic disorder. 

To investigate this Merchelbach & van de Ven (2001) played white noise to healthy 

undergraduate students, instructing them to respond when they heard a well-known song 

(“White Christmas” by Bing Crosby) play. Thirty-two percent indicated they heard song, 

despite the music never being played (Merckelbach & van de Ven, 2001). Those who reported 

hearing the song also reported higher baseline levels of fantasy-proneness and hallucinations, 

indicating that the likelihood of experiencing AVH in a paradigm designed to increase 
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expectancy of speech is associated with variation of psychosis-related experiences in a healthy 

population.  

Using a related methodology with prodromal patients, Hoffman and colleagues (Hoffman et al., 

2007) played multi-speaker babble to prodromal patients with and without recently reported 

AVH. Participants were asked to write down any words or phrases they heard amongst the 

babble. No difference in the rate of speech illusion was found between hallucinating and non-

hallucinating patients, however the length of the speech illusion (i.e. the number of words 

within each phrase reported) was found to predict subsequent conversion to psychotic disorder. 

While interpretation of this post-hoc finding is limited without replication, it suggests that 

certain qualities of AVH, here the complexity of the AVH, may be able to differentiate between 

those at risk of psychotic disorder and those not. 

Tasks designed to elicit speech illusion have also been utilised to explore the cognitive 

mechanisms via which AVH arise. For instance, Vercammen and colleagues (2008) found that 

schizophrenia patients prone to auditory hallucinations, but not non-hallucination prone 

patients, were more likely than healthy controls to erroneously report that a spoken word they 

heard matched a previously presented word masked to varying degrees by white noise. They 

then used signal detection theory to demonstrate that the patients prone to auditory 

hallucinations had a more liberal criterion when deciding whether a word matched a previous 

stimuli or not (i.e. they were more willing to indicate that the words matched at higher levels of 

ambiguity), alongside a greater sensitivity for detecting matched words, relative to non-

hallucinating patients. These findings suggest that AVH may be explained by patients having a 

lower threshold of certainty for determining whether a perception reflects an actual stimulus or 

not, such that noise in the environment may be misclassified as a true signal (Dolgov & 

McBeath, 2005; Rimvall et al., 2016; Vercammen et al., 2008). 

Vercammen and Aleman later explored whether an overreliance on sematic top-down 

processing may explain the experience of speech illusion, in healthy undergraduates who scored 
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either high or low on a scale of hallucination proneness (Vercammen & Aleman, 2010). 

Participants were presented with sentences in which the final word was either masked by white 

noise or replaced by white noise. The last word of the sentence was either semantically expected 

or unexpected in relation to the rest of the sentence. Baseline hallucination proneness positively 

correlated with the number of top-down errors (that is, the number of times they reported 

hearing a word that fit the sentence context when it was not actually presented), suggesting that 

semantic top-down errors may lead to the experience of AVH. Using the same task, Daalman et 

al (2012) assessed whether overreliance on sematic top-down processing may explain the 

experience of AVH in psychotic patients, non-psychotic individuals who experience regular 

AVH, and healthy controls. Contrary to their expectations, the non-psychotic individuals who 

experienced regular AVH made more top-down errors than the psychotic patients. Together 

these two studies therefore suggest that while semantic top-down processing may influence the 

formation of AVH in non-clinical populations, this does not appear to be the case for psychotic 

patients. This potentially suggests a differing mechanism by which clinically relevant and non-

relevant AVH are formed. 

Given the findings described here, demonstrating that the likelihood of experiencing AVH in 

such experimental manipulations is associated with trait schizotypal experiences in healthy 

controls, future diagnosis of psychotic disorder, and hallucinations in psychotic patients, it 

seems that such paradigms are a valid method of investigating AVH, and may be able to 

differentiate between AVH experienced by clinical and non-clinical populations. 

5.1.2 White Noise task 

Recently Galdos and colleagues developed the White Noise (WN) task to further investigate the 

experience of AVH in patients with psychosis (Galdos et al., 2011). Similar to previous 

methodologies described above, the task provokes the experience of hearing voices in white 

noise in the absence of actual speech (i.e. speech illusion). 
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Adding to previous paradigms, the WN task also requires participants to classify speech 

illusions according to valence, i.e. positive, negative or neutral. This follows evidence that, 

psychotic patients experience higher levels of emotional AVH than both healthy controls 

(Daalman et al., 2011) and non-psychotic individuals who regularly experience AVH (Daalman 

et al., 2012). Emotional content of AVH is more common in individuals experiencing regular 

AVH who have sought professional help relative to those who have not (Kråkvik et al., 2015). 

Further, people diagnosed with schizophrenia who experience delusions are more likely than 

healthy controls and non-delusional people diagnosed with schizophrenia to attribute emotional 

valence to presented word stimuli (Holt et al., 2006). Assigning emotional valence to anomalous 

experiences is therefore more likely in psychotic patients than other groups who experience 

AVH. 

5.1.2.1 Previous findings 

Galdos and colleagues administered the WN task to 30 psychotic disorder patients, 28 of their 

siblings, and 307 controls (Galdos et al., 2011). They found that patients were more likely to 

experience any speech illusion (that is, positive, negative and/or neutral illusions), relative to 

controls, even after controlling for age, gender, years of education and cognitive ability (OR= 

3.8, 95% CIs: 1.0, 14.1). Further, the effect was larger for illusions perceived as affective, with 

positive speech illusion 9.4 times more likely in patients than controls, and negative speech 

illusion 8.6 times more likely in patients than controls. They also found increasing likelihood of 

speech illusion with familial vulnerability; 9% of the controls, 14% of the siblings, and 30% of 

the patients experienced any speech illusion. Finally, in controls and siblings, speech illusion 

was predicted by clinically-assessed positive but not negative schizotypy. 

In a replication attempt of the original paper, Catalan and colleagues (Catalan et al., 2014) 

administered the WN task to 54 psychosis patients and 150 controls. They again found that 

patients were more likely to experience any speech illusion (33%), relative to controls (9%), 

even after controlling for age, gender, and IQ (OR= 3.4, 95% CIs: 1.4, 8.3), and again the effect 
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was larger for illusions perceived as affective. However, while they found that speech illusion 

was predicted by clinically-assessed positive symptoms in patients, in this study positive 

schizotypy did not predict illusions in controls. 

The WN task has also since been administered to 1486 children aged 11-12 years from the 

Copenhagen Child Cohort 2000 population study (Rimvall et al., 2016). It was found that 10% 

of the children experienced any speech illusion, similar to the previous estimates for control 

adults. Having experienced hallucinations in the past month and negative affect in both the past 

month and in their lifetime, all predicted experience of speech illusions, particularly for illusions 

perceived as affective, and even after controlling for gender and cognitive ability (Rimvall et al., 

2016). 

These studies therefore demonstrate that the WN task is sensitive to schizophrenia diagnosis, 

psychosis-vulnerability, baseline psychotic symptoms in patients and children, and may be 

related to baseline positive schizotypal experiences in non-clinical populations. Both studies 

with patients demonstrated that affective illusions in particular are more likely in clinical 

populations than healthy controls, such that psychotic patients were more likely to assign 

emotional valence to AVH than non-clinical populations. This finding is in line with past work 

showing that AVH experienced by clinically psychotic patients are more likely to have an 

affective component than those experienced by healthy individuals (Daalman et al., 2011; 

Daalman et al., 2012), suggesting that the AVH elicited by the WN task may bare some 

similarity to of real-life AVH experiences. 

5.1.3 Auditory-verbal hallucinations and cannabis 

While research with schizophrenia patients has utilised tasks such as the WN task and those 

described in section 5.1.1.1 to investigate AVH, acute cannabis administration research has 

primarily focused on clinician- and self-rated measures of psychotomimetic effects in general, 

as discussed in Chapter 2 (Sherif et al., 2016). Indeed, to date, no study has experimentally 

manipulated AVH following cannabis administration, and the degree to which cannabis 
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specifically induces AVH (or whether indeed it does) has not been reported from a controlled 

study. Relatedly, no study has yet explored the affective component of cannabis-induced 

anomalous experiences. Assessing whether cannabis-induced AVH have an affective 

component similar to the WN task findings with psychosis patients described above (Catalan et 

al., 2014; Galdos et al., 2011) can help address the suggestion that psychotic experiences 

resulting from cannabis intoxication may arise through similar mechanisms as those seen in 

psychotic disorder (M. Bloomfield et al., 2016). 

5.1.4 Age 

As described in chapter 2, evidence from longitudinal cohort and case-control research suggests 

that adolescent cannabis use may confer greater risk of psychosis outcomes, relative to adult 

cannabis use. Further, as also described in chapter 1, there is a mixed preclinical body of work 

demonstrating differences between adolescent and adult rodent behavioural responses to acute 

cannabinoid administration. One major gap in our knowledge therefore is whether cannabis 

acutely produces greater psychotomimetic effects in adolescents than adults. As described 

above, the WN task is sensitive to AVH in young adolescents, with prevalence estimates similar 

to the rates seen in adults (Rimvall et al., 2016). 

5.1.5 CBD 

As described in chapter 2, case-control and patient group evidence has suggested variation in 

the risk of psychosis associated with different cannabis types (Di Forti et al., 2015; Di Forti et 

al., 2009; Di Forti et al., 2014). This variation has been suggested to result from differences in 

the CBD-content of cannabis types, following demonstration of CBD’s putative antipsychotic 

effects in schizophrenia patients (Leweke et al., 2012), reduced non-acute psychotic symptoms 

in cannabis users with CBD present in their hair (Morgan & Curran, 2008; Morgan et al., 2012), 

and evidence of a protective effect of oral CBD against the acute psychotomimetic effects of IV 

THC administration (Englund et al., 2013). These findings therefore suggest that using cannabis 

containing CBD may reduce the psychotic-like effects of cannabis, including AVH. However, 
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given that Morgan et al did not find a protective effect CBD-rich cannabis against 

psychotomimetic effects in participants smoking their own cannabis, it is important to 

investigate these findings in a controlled study (Morgan et al., 2010). To date no study has 

directly compared the effects of a controlled dose of CBD-rich and CBD-lacking cannabis on 

psychotic-like symptoms including AVH. 

5.1.6 Present studies 

I therefore conducted two studies to address three research questions;  

a) Does cannabis increase the incidence of speech illusions?  

b) Are adolescents more vulnerable to the psychotomimetic effects, including AVH, of 

cannabis than adults (Study 3)? 

c) Do higher levels of CBD in cannabis offset the psychotomimetic effects, including 

AVH, of cannabis in adults (Study 4)? 

For both studies we administered cannabis in a double-blind, placebo-controlled, crossover 

design. Study 3 compared the psychotomimetic effects of Cann-CBD (cannabis containing 

high-levels of THC and negligible levels of CBD) in adolescents (aged 16-17 years) with adults 

(aged 24-28 years). Study 4 compared the psychotomimetic effects of Cann-CBD with 

Cann+CBD (cannabis containing high-levels of THC and high-levels of CBD) in adults-only. 

For both studies we administered the WN task alongside self-rated measures of 

psychotomimetic experiences. These two studies are the first to assess whether cannabis acutely 

increases experiences of speech illusion. Furthermore, while the primary aim of these studies 

was to explore the effects of cannabis on AVH, and the influence of age and cannabis type on 

such experiences, these studies are also the first to explore the causal relationship between a 

drug that induces psychotic-like experiences and likelihood of experiencing AVH in a speech 

illusion task. Previous work has necessarily been case-control or population-based, such that 

comparisons are always between different groups of people (e.g. patients vs. controls, low vs. 
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high hallucination proneness), and as such differences in rates of speech illusion may be 

confounded by other group differences (as discussed in chapter 2), and not in fact directly 

related to psychosis and real-world experiences of AVH. Here I present two placebo-controlled 

studies in which I assessed experience of AVH in the same individuals on placebo and cannabis. 

As such, a secondary aim of this study was to assess the sensitivity of the WN task to 

experimentally drug-induced psychotic-like symptoms in a within-subject design, and to assess 

whether AVH incidence is related to cannabis-induced increases in self-reported perceptual 

distortion severity. If AVH incidence on the WN task is increased by an acute cannabis dose, 

and this is related to hallucination-like symptom severity, this would support the experimental 

pharmacological cannabis model of AVH and suggest the WN task as a potential simple 

outcome for experimental medicine study designs. 

5.1.6.1 Hypotheses 

5.1.6.1.1 Study 3 

1. Following extensive evidence demonstrating that cannabis acutely increases 

psychotomimetic experiences in adults as indexed by clinician- and self-rated scales 

(Sherif et al., 2016), alongside evidence that the experience of speech illusions on the 

WN task is sensitive to psychotic patient status, psychosis vulnerability and 

symptomology (Catalan et al., 2014; Galdos et al., 2011; Rimvall et al., 2016), I 

hypothesised that cannabis (Cann-CBD) would increase the likelihood of experiencing 

speech illusion relative to placebo. 

2. Following putative evidence that adolescent cannabis use increases the risk of psychosis 

relative to adult use (Arseneault et al., 2002), I hypothesised that adolescents would be 

more vulnerable to the psychotomimetic effects (as indexed by both self-ratings and 

experiences of speech illusion) of cannabis than adults. 

I also explored whether cannabis would increase the likelihood of experiencing affective 

illusions to a greater extent than neutral illusions, similar to that seen with psychosis patients 
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and those with psychosis vulnerability or symptomology. Due to a lack of previous research, 

there were no directional hypotheses for this component. 

5.1.6.1.2 Study 4 

As described above for study 3 (Hypothesis 1), I again hypothesised that cannabis (Cann-CBD) 

would increase the likelihood of experiencing speech illusion relative to placebo. 

3. Following putative evidence of the anti-psychotic properties of CBD (Leweke et al., 

2012), alongside its ability to buffer the acute psychotomimetic effects of THC 

(Englund et al., 2013), I hypothesised that psychotomimetic effects (as indexed by both 

self-ratings and experiences of speech illusion) would be lesser following Cann+CBD 

relative to Cann-CBD. 

I also explored whether Cann+CBD relative to Cann-CBD would have a specific effect on the 

experience of affective illusions or neutral illusions. Due to a lack of previous research, there 

were no directional hypotheses for this component. 

5.1.6.1.2.1 Predictors of speech illusion 

In order to assess whether previously reported associations between likelihood of speech 

illusions and schizotypy were apparent following cannabis administration, I assessed the 

following hypothesis: 

4. Following previous findings (Galdos et al., 2011) suggesting positive trait schizotypy 

predicts likelihood of speech illusion, I hypothesised that positive but not negative 

schizotypy (as indexed by the SPQ) would predict likelihood of speech illusions 

following cannabis. 

In order to assess whether the likelihood of speech illusions following cannabis were related to 

self-rated increases in hallucination-like symptoms, I assessed the following hypothesis: 
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5. Following previous findings (Catalan et al., 2014; Rimvall et al., 2016) suggesting 

positive symptoms predict likelihood of speech illusion, I hypothesised that self-rated 

hallucination-like symptoms (as indexed by the Psychotomimetic States Inventory (PSI) 

subscale of perceptual distortion) would predict likelihood of speech illusions following 

cannabis. 
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5.2 Study 3 

5.2.1 Methods (Study 3)

5.2.1.1 Design and Participants 

As described in chapter 4, section 4.2.1.  

5.2.1.2 Drug administration 

As described in chapter 4, section 4.2.2. For consistency with Study 4 described below, here 

active cannabis will be referred to as Cann-CBD.  

5.2.1.3 Measures 

5.2.1.3.1 Baseline Assessments 

5.2.1.3.1.1 Questionnaires 

As described in chapter 4, section 4.2.3.1.1. Positive and negative schizotypy subscales were 

calculated and reported for the SPQ (Vollema & Hoijtink, 2000).  

5.2.1.3.1.2 Drug use 

As described in chapter 4, section 4.2.3.1.2. 

5.2.1.3.2 Experimental assessments 

5.2.1.3.2.1 Subjective Ratings 

As described in chapter 4, section 4.2.3.2.2, participants provided ratings from 0 (not at all) to 

10 (extremely) for “Stoned” at a mean time of -6 minutes, +7 minutes, +34 minutes and +77 

minutes (drug administration started at 0 minutes). 

5.2.1.3.2.2 Psychotic-like symptoms 
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Participants completed the PSI, a self-report questionnaire previously shown to be sensitive to 

the psychotomimetic effects of cannabis and ketamine (Mason et al., 2008). The PSI comprises 

48 items covering six domains measuring positive-like symptoms (thought distortion, perceptual 

distortion, mania and paranoia) and negative-like symptoms (cognitive disorganisation, 

anhedonia). Items are rated on a 4-point scale, ranging from not at all to strongly. Higher scores 

indicate greater levels of psychotomimetic symptoms. 

5.2.1.3.2.3 White Noise task  

Participants were presented (via headphones) with one of three auditory stimuli types, 

sequentially in a randomised order. Stimuli were fragments of either: 

 white noise only (consisting of only white noise); 

 white noise plus clearly audible speech (consisting of white noise simultaneously 

overlaid with clear speech);  

 white noise plus barely audible speech (consisting of white noise simultaneously 

overlaid with barely audible speech).  

There were 25 trials for each of the stimuli, resulting in a total of 75 trials. Following each 

fragment participants indicated their opinion about what they just heard, selecting one of the 

following responses (numbers refer to required keyboard response); 1= “I heard something 

positive”, 2= “I heard something negative”, 3= “I heard something neutral”, 4= “I heard 

nothing”, 5= “Don’t know”. Prior to starting the task participants were informed that their 

responses should be in reference to any spoken language they heard during each sound fragment 

(rather than in reference to the white noise). Reminders of the response options and associated 

statements appeared on screen following each clip, until the participant responded (no time limit 

to make a selection was imposed). The incidence of reporting speech heard (i.e. keyboard 

response 1, 2 or 3) on the white noise only trials was the key variable of interest. Responses on 

trials containing white noise plus clearly/ barely audible speech were presented only to create an 

expectancy of hearing speech, aiming to increase the likelihood of hearing speech on white 
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noise only trials, and responses were not recorded. The task was delivered via E-prime 1.1. 

(Psychology Software Tools, Pittsburgh, Pennsylvania), and was provided by Galdos and 

colleagues (Galdos et al., 2011). The original fragments were shortened to a duration of 1 

second, with the aim of increasing uncertainty in the task and thus increasing the base-rate of 

experiencing speech illusion. 

5.2.1.4 Procedure 

As described in chapter 4, section 4.2.4. 

5.2.1.5 Power calculation 

As described in chapter 4, section 4.2.5. 

5.2.1.6 Statistical Analysis 

5.2.1.6.1 Data preparation 

All analyses were conducted with SPSS 21.0. Outliers and normality were assessed via 

diagnostic plots for all analyses. Extreme outliers (>3 times interquartile range) were winsorized 

within-group and Greenhouse-Geisser corrections were applied for violations of sphericity. 

5.2.1.6.2 Analysis 

Independent t-test, chi-square, or Mann-Whitney analyses were conducted as appropriate to 

compare groups (adult, adolescent) on demographic and baseline measures. Mixed ANOVA 

was conducted for all test outcomes, with the between-subjects factor of group (adult, 

adolescent) and within-subjects factor of drug (Cann-CBD, placebo). Additional within-subjects 

factors were included for relevant analyses: time (T2-T4) for subjective ratings of stoned (T1 

(i.e. Pre-drug) was not included in analyses due to floor effects); PSI subscale (thought 

distortion, perceptual distortion, cognitive disorganisation, anhedonia, manic experience, 

paranoia). Interactions were explored via pairwise comparisons with local Bonferroni-

correction. Drug order was added as an additional between-subjects factor (placebo-first, Cann-
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CBD-first) and results were compared to reported primary analyses; unless otherwise noted 

results were unaffected by drug order. 

Generalised estimating equation (GEE) models were used to assess the likelihood of 

experiencing speech illusion after placebo and Cann-CBD. GEE analyses were necessary due to 

the repeated measures design and binary outcome. GEE models also allow inclusion of 

participant data with missing occasions. The outcome was the experience of speech illusion, 

which following previous work was defined as having reported speech illusion on at least two 

white noise-only trials (Catalan et al., 2014; Rimvall et al., 2016). This binary outcome has been 

implemented in previous work and here due to the skewed distribution of the AVH incidence 

data. The initial model (Model 1a) included main effects of drug (Cann-CBD, placebo) and 

group (adolescent, adult), with the reference categories of placebo and adult. The second model 

(Model 1b) included both main effects and the interaction of drug x group. Within-group 

correlations were run between all outcomes reported and: cannabis use variables, administered 

cannabis weight, and any other variables showing group differences (at p< .10) at baseline 

(Chapter 4, Table 4.1.). 

5.2.2 Results (Study 3) 

Demographic and baseline data are displayed in Chapter 4 Tables 4.1. and 4.2.  

To briefly summarise, adolescents were younger, and had lower body weight. Groups did not 

differ on verbal IQ, BAI, BDI-II, SUPPS-P, or SPQ. Adolescents currently used cannabis for 

more days per month than the adults, and the age of first cannabis use was younger for the 

adolescents compared to the adults, but overall the adults had used for longer. Groups did not 

differ on CAST score, time since last use, or likelihood of a positive THC urine screen at 

baseline. 

5.2.2.1 Subjective ratings 

5.2.2.1.1  ‘Stoned’ 
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As described in chapter 4, section 4.3.3.1. 

5.2.2.2 Psychotomimetic symptoms 

5.2.2.2.1 PSI (Figure 5.1.) 

There were interactions of drug x subscale x group (F5,190= 6.114, p< .001, η²p= 0.14), subscale 

x group (F5,190= 4.768, p< .001, η²p= 0.11) and drug x subscale (F3,132= 31.762, p <.001, η²p= 

0.46). Neither group had greater thought distortion or paranoia following cannabis compared to 

placebo (all p’s≥ .065, all η²p≤ 0.09). Both groups had greater perceptual distortion, manic 

experience and cognitive disorganisation on cannabis compared to placebo (all p’s≤ .001, all 

η²p≥ 0.27). On cannabis adults reported greater cognitive disorganisation than adolescents (p= 

.009, η²p= 0.17). Lastly, cannabis increased anhedonia in adults (p= .001, η²p= 0.25) but not 

adolescents (p= .925, η²p< 0.01). Main effects of drug (F1,38= 57.871, p< .001, η²p= 0.60) and 

subscale (F3,114= 55.961, < .001, η²p= 0.60) also emerged.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Mean (SE) values for total ratings of each subscale of the Psychotomimetic States 

Inventory (PSI), for adolescents and adults on placebo and cannabis. 
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5.2.2.3 White Noise (Table 5.1.) 

5.2.2.3.1 Any speech illusion (Table 5.2. Model 1) 

Drug predicted the experience of speech illusion in Model 1a (p= .009). Relative to placebo, 

active cannabis led to a greater likelihood of experiencing speech illusion (b=1.128, SE=0.433, 

OR=3.09, 95% CIs: 1.32, 7.22). Drug also predicted experience of speech illusion in Model 1b 

(p= .029). Group did not predict the experience of speech illusion in either model (ps≥ .154). 

There was no interaction of drug x group in Model 1b (p= .428). 

Table 5.1. Study 3 incidence % (n) of speech illusion on placebo and Cann-CBD, for 

adolescents and adults. 

 Adolescent Adult 

 Placebo Cann-CBD Placebo Cann-CBD 

Positive speech illusion 0.0 (0) 10.0 (2) 0.0 (0) 20.0 (4) 

Negative speech illusion 0.0 (0) 15.0 (3) 0.0 (0) 20.0 (4) 

Neutral speech illusion 35.0 (7) 40.0 (8) 15.0 (3) 40.0 (8) 

Any speech illusion 35.0 (7) 55.0 (11) 15.0 (3) 45.0 (9) 
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Table 5.2. Generalised estimating equation models, study 3 

Model 1a. Study 3 generalised estimating equations model predicting any speech illusion from 

drug (Cann-CBD, placebo) and group (adolescent, adult). Reference categories in bold. 

 

Model 1b. Study 3 generalised estimating equations model predicting any speech illusion from 

drug (Cann-CBD, placebo), group (adolescent, adult), and the interaction of drug x group. 

Reference categories in bold. 

   95% CIs 

 Beta SE p-value OR Lower Upper 

Cann-CBD vs. placebo 1.534 0.701 .029 4.636 1.174 18.312 

Adolescent vs. adult -1.116 0.782 .154 3.051 0.659 14.137 

Drug x Group -0.714 0.901 .428 0.490 0.084 2.860 

 

  

    95% CIs 

  Beta SE p-value OR Lower Upper 

Cann-CBD vs. placebo  1.128 0.433 .009 3.088 1.321 7.219 

Adolescent vs. adult  0.680 0.531 .200 1.975 0.698 5.586 
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5.2.2.3.2 Positive & negative speech illusion 

GEE analysis was not possible for positive or negative speech illusion independently, since 0% 

reported affective speech illusion on placebo. 

5.2.2.4 Group differences 

No baseline variables were found to correlate (at p< .10) with any outcome measure in both the 

adolescent and adult groups, and so were not entered into models.  

5.3 Study 4 

5.3.1 Methods (Study 4) 

5.3.1.1 Design and Participants 

A within-subjects, double-blind, cross-over design was used to compare the acute effects of 

cannabis with high-levels of THC and negligible levels of CBD (Cann-CBD), cannabis with 

high-levels of THC and high-levels of CBD (Cann+CBD), and placebo cannabis on adult 

cannabis users. Treatment order was randomised within gender and counterbalanced for task 

version. Randomisation was based on a Latin Square design. The target sample size was 18 (9 

female), however due to drop-outs we reached 17 participants; so the Latin square was not 

completed (one treatment order was repeated twice while all other orders were repeated three 

times). 

We recruited adult cannabis users through word-of-mouth. The following inclusion criteria were 

assessed at telephone screening: aged between 18 and 70 years; current cannabis use 3 days/ 

week or less; have smoked cannabis 4 or more times in the past year; alcohol use on fewer than 

5 days per week; no other illicit drug use more than 2 times per month, no current or history of 

psychosis; no MRI contraindications, right handed (for additional fMRI assessments). 

Participants were asked to remain abstinent from all drugs including alcohol but not cigarettes 

for 24 hours before each testing session.  
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The study was approved by UCL Research Ethics Committee. All participants provided written 

informed consent. Participants were reimbursed for their time (£7.50 per hour). 

5.3.1.2 Drug administration 

Medicinal-grade cannabis (Bedrobinol®, THC 12.0% CBD <0.1% (as described in chapter 4; 

Cann+CBD; Bediol®; THC 6% CBD 7.5%) and placebo (THC <0.3% CBD <1%) cannabis 

were imported under UK Home Office licence from Bedrocan® in The Netherlands. Following 

previous protocols, on each session participants received one of the following: (1) Cann-CBD: 

66.7mg of Bedrobinol® plus 66.7mg of placebo (equivalent to approximately 8.0mg THC and 

0.0mg CBD; placebo was added to ensure the same weight of plant material was loaded into the 

vaporiser for each treatment while matching THC doses between active treatments); (2) 

133.4mg of Cann+CBD (approximately 8.0mg THC and 10mg CBD); (3) 134.4mg placebo, 

followed by a 50% top-up dose approximately 120 minutes later.  

Drug was administered via vaporiser, as described in chapter 4, section 4.2.2. 

5.3.1.3 Measures  

5.3.1.3.1 Baseline assessments 

Depression and anxiety were assessed on the BDI-II (Beck et al., 1996) and BAI (Beck et al., 

1988), as described in chapter 4, section 4.2.3.1.1. The SPQ (Raine, 1991) indexed schizotypy, 

as described chapter 4, section 4.2.3.1.1. Positive and negative schizotypy subscales were 

calculated and reported for the SPQ (Vollema & Hoijtink, 2000). 

5.3.1.3.2 Drug use 

A structured interview recorded: lifetime use (yes/no); time since last use (days); duration of use 

(years); frequency (days/month); and amount per session (alcohol units; cigarettes/day; other 

illicit drugs grams/ pills/ tabs). Instant urine drug screens assessed recent use of illicit drugs. 

Problematic drug use was assessed using the cannabis-adapted SDS. The SDS is a 5 item self-
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report scale to measure psychological aspects of drug dependence. Response options vary by 

item, each item being rated between 0 and 3, with higher scores reflecting more problematic 

use. Adult scores ≥ 3 are indicative of DSM-III-TR diagnosis of cannabis dependence (Swift et 

al, 1998). 

5.3.1.3.3 Subjective Ratings 

Participants provided ratings from 0 (not at all) to 10 (extremely) for “Stoned” at approximately 

-10 minutes, +20 minutes, +100 minutes, +130 minutes and +190 minutes (drug administration 

started at 0 minutes). 

5.3.1.3.4 Psychotic-like symptoms 

Participants completed the PSI as described in chapter 5, section 5.2.1.3.2.2. 

5.3.1.4 Procedure 

Following screening participants attended a baseline session during which they provided 

informed consent, completed baseline measures, drug histories and problematic use 

questionnaires and task training. 

Participants then completed three test sessions separated by at least seven days. Participants first 

provided a urine sample for instant drug screen and pregnancy test and provided baseline 

subjective ratings (Time 1; T1). Cann-CBD, Cann+CBD or placebo cannabis was then 

administered and participants again completed subjective ratings (Time 2; T2). Participants next 

completed an MRI scanning session for 1 hour (as part of a larger study; findings to be reported 

elsewhere), followed by more subjective ratings (Time 3; T3) and then top-up drug 

administration. Participants then completed further subjective ratings (Time 4; T4), and 

completed the task and state questionnaires in the following order; White Noise task, PSI and 

subjective ratings (Time 5; T5). Test sessions finished approximately 190 minutes after initial 

drug inhalation. Blood pressure and heart rate were monitored throughout. 
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5.3.1.5 Power calculation 

The WN task was included in this study protocol as part of a wider study on which I 

collaborated. The sample size was therefore decided according to other outcome measures. I 

therefore calculated the sensitivity of the design with this sample size. The target sample size of 

18 allowed for detection of a medium effect size (f= 0.32) for the main effect of drug, with 80% 

power at an alpha of 5%. 

5.3.1.6 Statistical Analysis 

All analyses were conducted with SPSS 21.0. Outliers and normality were assessed via 

diagnostic plots for all analyses. Extreme outliers (>3 times interquartile range) were winsorized 

within-group. Greenhouse-Geisser corrections were applied for violations of sphericity.  

Repeated measures ANOVA was conducted for all test outcomes, with the within-subjects 

factor of drug (Cann-CBD, Cann+CBD, placebo). Additional within-subjects factors were 

included for relevant analyses: time (T2-T5) for ratings of stoned (T1 (i.e. Predrug) was not 

included in analyses due to floor effects); PSI subscale (thought distortion, perceptual distortion, 

anhedonia, cognitive disorganisation, manic experience, paranoia). Interactions were explored 

via pairwise comparisons with local Bonferroni-correction. 

GEE models were used, as described in study 3, to assess the likelihood of experiencing speech 

illusion after placebo, Cann-CBD and Cann+CBD. The model (Model 2) included the main 

effect of drug (Cann-CBD, Cann+CBD, placebo), with planned comparisons made between 

Cann-CBD and placebo (reference category= placebo), and Cann-CBD and Cann+CBD 

(reference category= Cann+CBD). 

Drug order was added as an additional between-subjects factor (placebo-first, Cann-CBD-first, 

Cann+CBD-first) to all analyses and results were compared to reported primary analyses; unless 

otherwise noted results were unaffected by drug order.  
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5.3.2 Results (Study 4) 

Demographic and baseline data are displayed in Table 5.3. The 17 participants (9 female) had a 

mean age of 26.1 years. The mean age of first cannabis use was 17.3 years, and the mean 

duration of use was 8.9 years. Participants reported cannabis use on 8.1 days per month and a 

mean time since last use of 19.3 days, with 52.9% testing positive for THC at occasion 1. 
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Table 5.3. Demographic and baseline variables for Study 4 participants; values reflect mean 

(SD) unless otherwise stated. 

  Range 

Demographics Mean (SD) Lower Upper 

Female; % (n) 52.94 (9) n/a n/a 

Age (years) 26.18 (7.13) 19.00 50.00 

Baseline questionnaires    

BAI (n= 15) 3.73 (2.76) 0.00 11.00 

BDI (n= 15) 3.62 (3.07) 0.00 9.00 

SPQ (n=16) 15.26 (6.41) 4.00 25.00 

Cannabis use     

Age first tried cannabis (years; n= 16) 17.31 (1.78) 14.00 20.00 

Last used cannabis (days; n= 16) 19.25 (45.28) 1.00 180.00 

Duration of cannabis use (years; n= 16) 8.94 (7.02) 2.00 32.00 

Cannabis use frequency (days per month; n= 16) 8.06 (5.48) 1.00 20.00 

Positive THC urine at occasion 1; % (n)  52.94 (9) n/a n/a 

Cannabis Severity of Dependence Scale (n= 15)  1.00 (1.20) 0.00 3.00 

Cigarette use    

Ever used cigarettes (n= 16); % (n) 0.94 (15) n/a n/a 

Age first tried cigarettes (years)1 17.60 (2.38) 15.00 23.00 

Duration of cigarette use (years) 8.13 (7.15) 3.00 32.00 

Cigarette use frequency (days per month) 11.30 (10.27) 1.00 31.00 

Cigarette use amount (cigs per session; n= 14) 3.89 (3.61) 1.00 10.00 

Alcohol use    

Ever used alcohol (n=16); %(n) 100.00 (16) n/a n/a 

Age first tried alcohol (years; n=16) 15.44 (1.86) 12.00 18.00 

Duration of alcohol use (years; n=16) 10.81 (7.71) 4.00 35.00 

Alcohol use frequency (days per month; n=16) 10.81 (4.86) 4.00 25.00 
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5.3.2.1 Subjective ratings 

5.3.2.1.1 ‘Stoned’ (Figure 5.2.) 

There were main effects of drug (F2,32= 56.346, p< .001, η²p= 0.78) and time (F3,48= 18.490, p< 

.001, η²p= 0.54). Ratings were higher on Cann-CBD (p< .001) and Cann+CBD (p< .001) 

compared to placebo, however ratings did not differ between Cann-CBD and Cann+CBD (p> 

.999). Ratings were greater at T2 than at T3 (p= .004) and T5 (p< .001), however there was no 

difference between ratings at T2 and T4 (p= .382) demonstrating that the top-up drug 

administrations achieved similar levels of intoxication as the initial dose. No interaction of drug 

x time emerged (F6,96= 1.374, p= .233, η²p= 0.08). 

 

 

Figure 5.2. Study 4 mean (SE) values for subjective ratings (0-10) for ‘stoned’, on placebo, 

Cann-CBD, and Cann+CBD. 
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5.3.2.2 Psychotomimetic symptoms  

5.3.2.2.1 PSI (Figure 5.3.) 

There was an interaction of drug x subscale (F4,69= 6.195, p< .001, η²p= 0.28). Compared to 

placebo ratings were higher on both Cann-CBD and Cann+CBD for the subscales of thought 

distortion (p< .001 and p= .002), perceptual distortion (p= .001 and p= .003), cognitive 

disorganisation (p= .001 and p< .001), and manic experiences (p= .002 and p= .032). There 

were no differences between placebo and Cann-CBD or Cann+CBD for anhedonia or paranoia 

(all ps≥ .107). There were no differences between Cann-CBD and Cann+CBD on any of the 

subscales (all ps≥ .824). There were also main effects of drug (F2,32= 15.804, p< .001, η²p= 

0.50) and subscale (F3,47= 38.757, p< .001, η²p= 0.71).  

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Study 4 mean (SE) values for total ratings of each subscale of the Psychotomimetic 

States Inventory (PSI), on placebo, Cann-CBD, and Cann+CBD. 
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5.3.2.3 White Noise (Table 5.4.) 

5.3.2.3.1 Any speech illusion (Table 5.5. Model 2) 

Relative to placebo, Cann-CBD did not increase the likelihood of experience of speech illusion 

(b= 0.945, SE= 0.680, OR= 2.57, 95% CIs: 0.68, 9.76, p= .164). Relative to Cann-CBD, 

Cann+CBD did not lead to a lower likelihood of experiencing speech illusion (b= 0.474, SE= 

0.667, OR= 0.62, 95% CIs: 0.17, 2.30, p= .477). 

5.3.2.3.2 Positive & negative speech illusion 

GEE analysis was not possible for positive or negative speech illusion independently, since 0% 

reported affective speech illusion on placebo. 

 

Table 5.4. Study 4 incidence % (n) of speech illusion on placebo, Cann-CBD and Cann+CBD. 

Due to technical error, one participant’s data was missing for placebo. 

 Placebo   

(n=16) 

Cann-CBD 

(n=17) 

Cann+CBD 

(n=17) 

Positive speech illusion 0.0 (0) 5.9 (1) 5.9 (1) 

Negative speech illusion 0.0 (0) 11.8 (2) 17.6 (3) 

Neutral speech illusion 37.5 (6) 52.9 (9) 41.2 (7) 

Any speech illusion 37.5 (6) 58.8 (10) 47.1 (8) 
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Table 5.5. Generalised estimating equation models, study 4 

Model 2. Study 4 generalised estimating equations model predicting any speech illusion from 

drug (Cann-CBD, Cann+CBD, placebo). Reference categories (in bold) were pre-defined to 

address specific hypotheses: Cann-CBD vs. placebo and Cann-CBD vs. Cann+CBD.  

   95% CIs 

 Beta SE p-value OR Lower Upper 

Cann-CBD vs. Placebo 0.945 0.680 .164 2.574 0.679 9.757 

Cann-CBD vs. Cann+CBD 0.474 0.667 .477 1.607 0.435 5.943 

 

 

 

5.4 Combined Results 

5.4.1 Mega-analysis 

Given the similarity of the experimental protocols I then combined the two datasets, aiming to 

increase power and assess whether the effect of cannabis differed between the two studies. For 

consistency I only included data from Cann-CBD and placebo, excluding study 4 data for 

Cann+CBD.  The initial model (Model 3a) included main effects of drug (Cann-CBD, placebo) 

and study (study 3, study 4). The second model (Model 3b) included both main effects and the 

interaction of drug x study. 

5.4.1.1 Drug effect comparison check 
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5.4.1.1.1 ‘Stoned’ 

There was a main effect of drug (F1,55= 199.415, p< .001, η²p= 0.78), with ratings higher on 

cannabis (M= 6.44, SE= 0.38) than placebo (M= 0.98, SE= 0.24). There was no main effect of 

study (F1,55= 0.135, p= .715, η²p< 0.01) and no interaction of drug x study (F1,55= 0.360, p= 

.551, η²p= 0.01). 

5.4.1.1.2 PSI (Figure 5.4.) 

There was an interaction of drug x subscale (F3,177= 29.248, p< .001, η²p= 0.35). Compared to 

placebo ratings were higher on Cann-CBD for the subscales of thought distortion (p< .001), 

perceptual distortion (p< .001), cognitive disorganisation (p< .001), manic experiences (p< 

.002) and paranoia (p= .005). There was no difference between placebo and Cann-CBD for 

anhedonia (p= .194). There were also main effects of drug (F1,55= 60.714, p< .001, η²p= 0.53) 

and subscale (F3,170= 69.849, p< .001, η²p= 0.56). There was no main effect or interactions with 

study (all ps≥ .251).  

 

 

 

 

 

 

 

 

Figure 5.4. Mean (SE) values for total ratings of each subscale of the Psychotomimetic States 

Inventory (PSI), on placebo and Cann-CBD, by study. 
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5.4.1.2 White Noise (Table 5.6.) 

5.4.1.2.1 Any speech illusion (Table 5.7. Model 3) 

Drug predicted the experience of speech illusion in both Model 3a (p= .004) and 3b (p= .010). 

Relative to placebo, active cannabis led to a greater likelihood of experiencing speech illusion 

(b= 1.036, SE= 0.362, OR= 2.82, 95% CIs: 1.39, 5.73). Study did not predict the experience of 

speech illusion in either model (both ps> .330) and there was no interaction of drug x study in 

Model 3b (p= .804). 

 

Table 5.6. Incidence % (n) of speech illusion on placebo and Cann-CBD, for Study’s 3 and 4 

combined. Due to technical error in Study 4, one participant’s data was missing for placebo. 

 Placebo   

(n=56) 

Cann-CBD 

(n=57) 

Positive speech illusion 0.0 (0) 12.3 (7) 

Negative speech illusion 0.0 (0) 15.8 (9) 

Neutral speech illusion 28.6 (16) 43.9 (25) 

Any speech illusion 28.6 (16) 52.6 (30) 
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Table 5.7. Generalised estimating equation models, combined study 3 and 4 

Model 3a. Combined generalised estimating equations model predicting any speech illusion 

from drug (Cann-CBD, placebo) and study (Study 3, Study 4). Reference categories in bold. 

   95% CIs 

 Beta SE p-value OR Lower Upper 

Cann-CBD vs. placebo 1.036 0.362 .004 2.818 1.385 5.733 

Study 4 vs. Study 3 0.448 0.460 .330 1.565 0.636 3.854 

 

 

Model 3b. Combined generalised estimating equations model predicting any speech illusion 

from drug (Cann-CBD, placebo), study (Study 3, Study 4) and the interaction of drug x study. 

Reference categories in bold. 

   95% CIs 

 Beta SE p-value OR Lower Upper 

Cann-CBD vs. placebo 1.099 0.424 .010 3.000 1.306 6.891 

Study 4 vs. Study 3 0.558 0.636 .380 1.748 0.502 6.079 

Drug x Study -0.202 0.811 .804 0.817 0.167 4.009 
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5.4.1.3 Predictors of speech illusion 

To investigate whether self-rated measures of schizotypy (as indexed by the SPQ subscales) and 

hallucination-like psychotic symptoms (as indexed by the PSI subscale of perceptual distortion) 

were associated with the experience of speech illusion following cannabis, I then conducted a 

series of logistic regressions. 

5.4.1.3.1 Schizotypy 

Baseline scores on the positive subscale of the SPQ did not predict likelihood of experiencing 

AVH following cannabis (b= 0.007, Wald χ2
1= 0.023, OR= 1.01 (95% CIs: 0.92, 1.10), p= 

.880). Baseline scores on the negative subscale of the SPQ did not predict likelihood of 

experiencing AVH following cannabis (b= 0.015, Wald χ2
1= 0.147, OR= 1.02 (95% CIs: 0.94, 

1.09), p= .702).  

5.4.1.3.2 Hallucination-like symptoms 

The cannabis session perceptual distortion subscale of the PSI predicted increased likelihood of 

experiencing AVH following cannabis (b= 0.123, Wald χ2
1= 3.872, OR= 1.13 (95% CIs: 1.00, 

1.28), p= .049).  
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5.5 Discussion 

5.5.1 Summary of findings 

Together the two studies described in this chapter demonstrate that cannabis acutely (Cann-

CBD) increases the likelihood of experiencing speech illusion during the white noise task, and 

that likelihood of experiencing speech illusion following cannabis is predicted by self-rated 

increases in hallucination-like symptoms, but not by self-rated positive or negative schizotypy 

scores at baseline. Moreover, Study 3 demonstrated that adolescents did not differ from adults 

in the likelihood of experiencing speech illusion, though the increase in self-rated 

psychotomimetic symptoms following cannabis was greater in adults. Specifically, cognitive 

disorganisation was especially elevated in adults relative to adolescents after cannabis, and 

cannabis increased anhedonia symptoms in adults but not adolescents. Furthermore, Study 4 

demonstrated no difference in the likelihood of speech illusion or in the extent of self-rated 

psychotomimetic symptoms following CBD-lacking relative to CBD-rich cannabis. 

5.5.2 Study 3 

In study 3, as predicted with my first hypothesis, I found that Cann-CBD increased the 

likelihood of experiencing speech illusion, relative to placebo. Also in line with my first 

hypothesis, Cann-CBD led to an increase in self-rated psychotomimetic symptoms of perceptual 

distortion, manic experience, and cognitive disorganisation in both groups, though cannabis did 

not increase self-rated thought distortion or paranoia in either group. 

Contrary to my second hypothesis, I found no difference in rate of speech illusion between the 

adolescents and adults. Furthermore, while my second hypothesis predicted a greater degree of 

psychotomimetic effects following cannabis in the adolescents compared to the adults, I instead 

found the opposite: cognitive disorganisation was especially elevated in adults compared to 

adolescents after cannabis. This unexpected finding is however in agreement with the findings I 

described in chapter 4, of lesser intoxication effects in general in adolescents relative to adults, 
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perhaps suggesting a common mechanism by which adolescents are resilient to the acute 

negative effects of cannabis. It may also reflect an awareness in adults of the greater cognitive 

impairments they were experiencing (as described in chapter 4), rather than amplified 

psychotic-like effects of cannabis per se. I also found that cannabis increased anhedonia 

symptoms in adults but not adolescents, suggesting heightened dysphoric effects in adults, 

which may reflect the heightened negative drug effects experienced by the adults in general. Of 

note however, on placebo the adolescents had (non-significantly) higher levels of anhedonia 

than the adults, potentially highlighting a baseline dependency effect.  

Of interest, unlike other subscales of the PSI, cognitive disorganisation and anhedonia are not 

‘psychotic-like’ as I defined in chapter 2. These findings therefore demonstrate that there were 

no differences between age groups for positive-like symptoms (that is, AVH on the WN task, 

alongside self-rated thought distortion, perceptual distortion, manic experiences and paranoia), 

but adults experienced greater cannabis-induced negative-like symptoms (that is, anhedonia and 

cognitive disorganisation) than adolescents. Importantly therefore, while the cannabis 

pharmacological model of psychosis (that is, specifically positive-like symptoms) appears to be 

a potentially useful model in 16-17-year-old boys as well as adults, cannabis may not induce the 

similar negative-like symptoms in adolescent and adult males. I will re-visit this in the next 

chapter, where I specifically assess the acute effects of cannabis on anhedonia, a common 

negative symptom of schizophrenia and of depression, in adolescents and adults, and evaluate 

cannabis intoxication as a pharmacological model of anhedonia. 

Furthermore, these findings suggest that adolescents are less vulnerable to some of the 

unwanted side-effects of cannabis, which in the short-term is a promising finding, however as 

discussed in the previous chapter, such negative drug effects may be use-limiting. A reduction 

in acute negative effects may facilitate heavier cannabis use, including consumption of higher 

THC doses per session, which as described in chapter 2 has been linked to increased risk of 

psychosis. Interestingly, Di Forti et al found that younger age of cannabis use onset predicted 

psychosis before but not after adjusting for type of cannabis used and frequency of use, with 
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those with younger age of onset also reporting more frequent use and greater preference for 

higher potency cannabis (Di Forti et al., 2014). This potentially alludes to a role of younger age 

in consuming higher doses more regularly, and subsequently increasing the risk of psychosis. 

However, without longitudinal studies aiming to assess the role of reduced negative effects of 

cannabis in adolescence on cannabis use patterns and long-term outcomes, such potential 

consequences of these findings are purely speculative. 

5.5.3 Study 4 

In study 4, contrary to my first hypothesis, Cann-CBD did not increase the likelihood of speech 

illusion, relative to placebo. However, in line with my first hypothesis and in line with the 

findings of study 3, Cann-CBD led to an increase in self-rated psychotomimetic symptoms of 

thought distortion, perceptual distortion, manic experience, and cognitive disorganisation, but 

not anhedonia or paranoia. 

Meanwhile, contrary to my third hypothesis, I did not find a difference in the rate of speech 

illusion after Cann+CBD relative to Cann-CBD. Furthermore, there was no difference in self-

rated psychotomimetic symptoms between Cann-CBD and Cann+CBD, suggesting that CBD 

did not blunt the psychotomimetic effects of cannabis. The findings of no difference between 

Cann-CBD and Cann+CBD were consistent across all psychosis related measures (AVH and all 

subscales of the PSI), this strengthens my confidence in the null findings, however lacking 

statistical power may be an issue. 

These findings are in line with those of Morgan et al (2010), who found no reduction in the self-

rated psychotomimetic effects of cannabis in those smoking their own CBD-rich or CBD-

lacking cannabis (Morgan et al., 2010). Englund et al however found that an oral dose of CBD 

prior to IV THC reduced the likelihood of a clinically relevant increase in positive psychotic 

symptoms following THC (Englund et al., 2013). Together these findings tentatively suggest 

that while a pre-dose of CBD may be protective against psychotomimetic effects of subsequent 

THC, consuming CBD-rich cannabis may not be sufficient to offset such effects. However, 
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Englund et al did not find consistent effects across all measures- they did not find a significant 

reduction in self-rated Positive and Negative Syndrome Scale (PANSS) positive scores in those 

who received the pre-dose of CBD. It is also difficult to compare THC:CBD ratios between 

Morgan et al and Englund et al to identify whether this may explain their potentially 

contradictory results, since the routes of administration differ. A dose-response study with 

differing doses and ratios of THC is needed. Alternatively, the putative anti-psychotic effects of 

CBD may result from extended exposure to CBD, which would reconcile my findings with 

findings discussed in chapter 2 of lower rates of psychotic disorder amongst cannabis users who 

preferentially use lower potency cannabis types that likely contain more CBD than higher 

potency types (Di Forti et al., 2014). 

5.5.4 Combined data 

After combining the data from both studies, and in line with my first hypothesis, I found 

evidence of an overall effect of Cann-CBD on speech illusions, with participants 2.8 times more 

likely to experience speech illusion on Cann-CBD than placebo. Given the small sample size of 

study 4, it is possible that a lack of statistical power explains the potentially contradictory 

findings from the two studies. This is supported by the similarity of the effect size and 

overlapping confidence intervals when comparing the rate of experiencing any speech illusion 

on Cann-CBD to placebo for study 3 (OR= 3.09, 95% CIs: 1.32, 7.22) and 4 (OR= 2.57, 95% 

CIs: 0.68, 9.76). Incidence of AVH and ratings of stoned and psychotomimetic symptoms did 

not differ between studies (as indicated by the lack of any ‘study’ main effects or interactions in 

any analyses), reflecting the similarity of the study designs and dosing. Of note, after combining 

data from both studies Cann-CBD was shown to increase psychotomimetic effects on all 

subscales of the PSI apart from anhedonia, whereas from the individual studies it was unclear 

whether cannabis increased thought distortion and paranoia (study 3) and paranoia (study 4) 

since differences were at trend-level (i.e. p< .10). 
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Of interest, the combined summary effect size of 2.8 when comparing Cann-CBD to placebo is 

not dissimilar to that reported in previous papers when comparing rate of any speech illusion in 

patients with psychosis to controls (OR= 3.8 (Galdos et al., 2011) and OR= 3.4 (Catalan et al., 

2014)), with confidence intervals clearly overlapping. These findings therefore demonstrate that 

acutely cannabis can increase AVH in otherwise healthy cannabis users who were screened to 

exclude those at high risk of psychosis (according to personal and family history). Of further 

interest, higher self-rated perceptual distortion following cannabis predicted increased 

likelihood of AVH, demonstrating that the WN task is sensitive to experimentally drug-induced 

psychotic-like symptoms- supporting previous assertions that the task is related to psychosis-

related symptom severity (Catalan et al., 2014; Galdos et al., 2011). Neither positive nor 

negative schizotypy at baseline predicted AVH following cannabis, contradicting previous 

findings that positive schizotypy predicts AVH incidence (Galdos et al., 2011). One possible 

explanation for this null association is that the cannabis-induced psychotic symptoms 

‘uncoupled’ baseline schizotypal symptoms from on-drug symptoms, though previous research 

has found that baseline schizotypy predicts psychotomimetic effects of cannabis (Barkus & 

Lewis, 2008; Barkus et al., 2006; Mason et al., 2009). Of note however, others have also found 

no association between schizotypy and AVH on the WN task (Catalan et al., 2014).  

That cannabis acutely increases the likelihood of experiencing AVH in otherwise healthy 

volunteers, suggests that cannabis may be useful pharmacological model of AVH. The lengthy 

and expensive process of testing novel medications in clinical populations has increased calls 

for experimental medicine models to allow testing of such treatments in healthy populations. 

Experimental medicine can use pharmacological models of symptoms, such as AVH, to identify 

promising (and discount less promising) drugs that are worth taking forward to clinical trial. 

Given that the WN task is sensitive to psychotic symptom severity in patients with psychotic 

disorder, and as the results of this chapter have now shown, cannabis-induced psychotic 

symptoms, this task may be a useful outcome in such studies. A first step would therefore be to 
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assess whether existing medications for the treatment of psychosis reduce the incidence of 

speech illusions on the WN task. 

5.5.4.1 Affective speech illusions 

While we were unable to statistically analyse the data separately for affective speech illusions, 

we found no one in either study who reported an affective speech illusion on placebo, while 7 

(12%) participants reported positive illusions and 9 (16%) reported negative illusions while on 

Cann-CBD. While this is a dramatic finding, the increase was of similar magnitude, in terms of 

actual numbers of participants, to the increase in participants who reported neutral speech 

illusions following cannabis compared to placebo (rising from 16 (29%) to 25 (44%) 

participants). This finding therefore likely reflects a baseline difference in the experience of 

affective and non-affective speech illusions, and demonstrates a non-specific effect of cannabis 

on all speech illusions, rather than a cannabis-related increase in affective speech illusions. 

Nevertheless, it is of interest to note that on placebo none of the cannabis users reported 

affective speech illusions, a finding which concords with previous uses of the WN task which 

have found healthy controls had an affective speech illusion rate of 1-2% (Catalan et al., 2014; 

Galdos et al., 2011), despite our attempts to increase the illusion rate by increasing ambiguity in 

the task.  

That cannabis did not appear to preferentially increase affective speech illusions is interesting 

because it suggests that AVH in psychosis and AVH from cannabis may be qualitatively 

different, potentially suggesting a differing mechanism by which they occur. Of note however, 

it has been suggested that the affective component of AVH experienced clinically may reflect a 

general state of emotional turmoil in patients, rather than providing evidence for a different 

mechanism by which clinical and non-clinical AVH arise (Catalan et al., 2014). Clearly a major 

gap in the literature is identifying the mechanisms by which cannabis induces its 

psychotomimetic effects. 

5.5.5 Strengths of the studies 
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Previously the WN task has been used only in cross-sectional between-subjects designs, and as 

such the increased rate of speech illusions demonstrated in patients with psychosis relative to 

controls may be confounded by other differences between the groups. Importantly our design 

was repeated measures, whereby we directly manipulated a participant’s level of psychotic-like 

symptoms with cannabis administration. Comparing rates of illusion on cannabis to placebo 

therefore provides non-confounded evidence to validate the WN task is sensitive to psychotic 

symptomology. Our finding that self-rated hallucination-like symptoms following cannabis 

administration predicted the likelihood of speech illusions further supports the task as an index 

of psychotic symptoms.  

Secondly, the similarity of the effect size derived from both experiments (Studies 3 and 4), 

despite wide confidence intervals, again increases confidence in a true effect of cannabis on the 

experience of speech illusions. The combination of the data from the two studies is a further 

strength, given the increase in sample size and thus increase in power, and the ability to 

compare the studies in a more meaningful way than the qualitative significant/ non-significant 

nomenclature. Of course, the smaller sample size of study 2 (n= 17) is a limitation, and a larger 

sample size would have been preferable to improve confidence in the independent findings of 

this study. 

Thirdly, administering the cannabis via a more ecologically valid method (inhalation of 

vaporised plant material) is a strength of both studies, likely providing a more realistic 

estimation of the magnitude and type of psychotomimetic symptoms recreational users typically 

experience. Many studies assessing the psychotomimetic effects of cannabinoids have used 

either intravenous administration (29% of studies assessing clinician- or self-rated 

psychotomimetic symptoms cited in a recent review (Sherif et al., 2016)), an invasive procedure 

which has been suggested to artificially increase the psychotic-like effects of cannabis, or oral 

administration (33% from the same review (Sherif et al., 2016)), which may result in under-

estimation of the psychotomimetic effects of cannabis given that peak subjective intoxication 
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appears to be lower following oral than inhaled administration (Chait & Zacny, 1992; Hart et 

al., 2002; Ohlsson et al., 1981). 

Finally, a real strength of these studies is the attempt to better describe the specific psychotic-

like symptoms induced by cannabis, rather than only describing a general increase in self- or 

clinician-rated measures of psychotic-like symptoms. Pharmacological models are unlikely to 

be able to model all aspects of a disorder such as schizophrenia, but, as I discussed in chapter 2, 

taking a symptom-based approach to identify the basic aspects of disorders that can be modelled 

pharmacologically can lead to improved understanding of the aetiology of individual symptoms 

and lead to more refined methods of testing potential new treatments. 

5.5.6 Limitations of the studies 

As described in chapter 2, the psychotomimetic effects of cannabis are thought to be heightened 

in patients with psychotic disorder and those with higher baseline schizotypy. However, I 

specifically excluded those with a current or past diagnosis, or family history of psychosis, to 

reduce the risk of participation. As such, the studies described in this chapter may have 

underestimated the full magnitude of acute psychotomimetic effects of cannabis in vulnerable 

individuals. Relatedly, given that the interquartile range of age of first psychotic disorder 

treatment is estimated to fall between ages 19 and 27 years (Kessler et al., 2007), it is possible 

that some included adolescents in study 3 will go onto develop psychosis, while it is more likely 

that the adults would have already experienced their first episode and therefore would have been 

excluded. However, this is unlikely, given both the rarity of psychosis in the general population 

(as described in chapter 2) and the exclusion of those at risk of psychosis as indicated by family 

history of psychosis. Importantly, however, if it is the case that I inadvertently included 

adolescents in study 3 who go on to develop psychosis in future, I would expect this to inflate 

the psychotomimetic effects of cannabis in the adolescent group; yet I found that adults had 

increased cannabis-induced psychotomimetic symptoms relative to adolescents.  
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Importantly, findings in this chapter cannot be used to infer causal relationships between 

cannabis use and psychotic disorder; as discussed in chapter 2, the acute effects of a drug are 

often different to the long-term effects of repeated consumption. Indeed, as described in chapter 

2, while experiencing acute psychotomimetic effects from cannabis is very common, the 

number of cannabis users who will develop psychotic disorder is very low. Despite the 

similarity between the acute psychotomimetic effects of cannabis and clinical psychotic 

symptoms, we cannot yet know whether there is a common mechanism by which cannabis 

acutely and chronically leads to psychotic symptoms.  

A further limitation is that I cannot address the mechanism by which cannabis induced AVH, 

though this was not my aim. It is however possible that cannabis altered participant’s sound 

perception, potentially leading to increased reporting of AVH due to increased task difficulty. 

Future studies could test hearing sensitivity and potentially adjust the volume of stimuli on 

cannabis and placebo if necessary. While the association with self-rated perceptual distortion 

importantly demonstrates a relationship between self-reported hallucination-related symptom 

severity and incidence of AVH, the subscale of perceptual distortion includes items referring to 

both changes in perception (for instance, “your hearing has become very sensitive”) and actual 

experiences of hallucinations (for instance, “you have seen a person's face in front of you when 

no one was in fact there”), and so this association does not aid the separation of potential lower-

level perceptual changes from higher-level mechanisms. Importantly, if the mechanisms by 

which clinical and cannabis-induced AVH arise are dissimilar then this would question the 

clinical utility of an acute cannabis pharmacological model of AVH. Of note, while clinical 

AVH often have an affective component, cannabis did not appear to preferentially induce 

affective AVH in my studies; this potentially suggests a different mechanism via which clinical 

and cannabis-induced AVH occur.  

Following previous work, I analysed the data in terms of incidence of AVH, rather than mean 

number of AVH experienced on each drug. This is necessary with this task since the data are 

highly skewed; some participants experience many AVH while others experience very few or 
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none. Cannabis clearly does not increase the likelihood of AVH in all participants (for instance, 

on Cann-CBD, 53% of participants across both studies experienced AVH). However, the 

dichotomisation of the outcome also loses the richness of the data within those who did 

experience speech illusion, since some participants experienced one or two illusions, while 

others experienced many. Development of an improved task which creates a more spread 

distribution of AVH would be preferable for future studies. Future research with larger samples 

should also aim to identify the predictors of cannabis-induced AVH and psychotomimetic 

symptoms in general, as I did here with age, as this can identify important at risk groups. While 

small sample sizes in study 4 precluded it here, future work should assess the effect of CBD 

content of cannabis specifically in those who did experience an increase in AVH incidence 

following cannabis. This would more directly address the question of whether CBD can prevent 

the cannabis-inducing increase in AVH. 

Additionally, as described in chapter 4, it is important to note the baseline differences between 

the adolescent and adult groups, for example the higher cannabis use frequency in the 

adolescent groups, which may have influenced the blunted effects of cannabis on cognitive 

disorganisation and anhedonia in the adolescents. This issue will be discussed in more detail in 

the final chapter. 

Finally, as with most acute cannabis studies, here I have focused on positive-like symptoms 

induced by cannabis; whether cannabis also induces negative-like symptoms and other mood-

related symptoms, such as anhedonia, remains much less explored. While after combining both 

study’s data there was no evidence of an overall increase in anhedonia following cannabis, for 

study 3 I found an effect of age group. Cannabis increased self-rated anhedonia in the adults but 

not adolescents, though adolescents had (non-significantly) higher anhedonia on placebo. As 

such, my next chapter will investigate whether acutely cannabis induces anhedonia on a number 

of different measures, and explore further whether such effects differ in adolescents and adults. 

5.5.7 Conclusions 
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In this chapter I have replicated previous findings that cannabis acutely induces 

psychotomimetic effects, and demonstrated for the first time evidence that cannabis acutely 

induces AVH. Moreover, incidence of AVH following cannabis was predicted by hallucination-

related symptom severity, but not with baseline positive or negative schizotypy. Additionally, I 

found no evidence that cannabis with high CBD content results in blunted psychotomimetic 

effects relative to CBD-lacking cannabis. 

In relation to the over-arching question of whether adolescents are more sensitive to the acute 

psychotomimetic effects of cannabis, I found no evidence of this. No age group differences 

were apparent for incidence of AVH or any positive-like effects of cannabis, but contrary to my 

expectations adults reported heightened negative-like effects: cognitive disorganisation was 

especially elevated in adults relative to adolescents after cannabis, and cannabis increased 

anhedonia symptoms in adults but not adolescents. 

Together these findings suggest that cannabis may be a useful pharmacological model of AVH, 

though further work is required to assess the mechanisms by which cannabis induces AVH. The 

lack of differences in positive-like effects of cannabis suggest that adolescents are not at 

heightened vulnerability to the acute psychotic-like effects of cannabis, though whether such 

findings would translate to longer-term effects of repeated cannabis use on psychosis cannot be 

determined. 

In the next chapter I will return to the acute effects of cannabis on anhedonia in more detail, 

implementing a reward sensitivity task conceptualised to index anhedonia alongside self-rated 

measures. 
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6 Chapter 6: The acute effects of cannabis on anhedonia in adolescent and adult 

cannabis users. 

6.1 Introduction 

In the previous chapter I focused on the acute effects of cannabis on psychotic-like experiences, 

and on AVH in particular. In this chapter I now investigate the acute effects of cannabis on 

anhedonia. As described in chapter 2, while considerable research to date has focused on the 

links between cannabis use and psychosis, the question of whether acutely cannabis also 

induces negative-like and mood related symptoms, such as anhedonia, has received much less 

attention (Morrison & Stone, 2011). 

Anhedonia is a common symptom experienced by patients with schizophrenia, depression and 

substance use disorders, and has been linked with repeated cannabis use. Whether cannabis 

acutely leads to anhedonia is not known. In a similar vein to the previous chapter, here I take a 

symptom-based approach to better define the specific acute effects of cannabis. If indeed 

cannabis acutely leads to anhedonia, then it could be a useful pharmacological model for the 

investigation of clinical anhedonia. Here I will use a number of measures to index anhedonia 

following cannabis, including a probabilistic reinforcement learning task. Importantly, the 

RDoC has identified probabilistic reinforcement learning as a key construct in understanding 

human behaviour. As such if cannabis does impact upon probabilistic reinforcement learning, 

then it could also be a useful pharmacological model for the investigation of this construct. 

6.1.1 Anhedonia 

Definitions of anhedonia vary, though DSM-IV describes anhedonia as “deficits in the capacity 

to feel pleasure and take interest in things” (APA, 2013). Others more specifically highlight the 

role of motivation and sensitivity to reward, for instance “decreased motivation for and 

sensitivity to rewarding experiences” (Treadway, Buckholtz, Schwartzman, Lambert, & Zald, 

2009), and “loss of pleasure or lack of reactivity to pleasurable stimuli” (Pizzagalli, Jahn, & 
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O’Shea, 2005). As such, in my opinion, anhedonia is a multi-faceted construct, relating to 

hedonic capacity (that is, the ability to experience pleasure from rewarding stimuli), but also to 

motivation for reward, and to reward learning (i.e. the ability to modulate behaviour in response 

to reward, also termed reward sensitivity) (Gold, Waltz, Prentice, Morris, & Heerey, 2008). 

6.1.2 Measuring anhedonia 

Both clinically and in much psychological research, anhedonia is often indexed via self- or 

clinician-rated measures. For instance, the clinician-rated Scale for the Assessment of Negative 

Symptoms (Andreasen, 1989) and the widely used PANSS (Kay, Flszbein, & Opfer, 1987); and 

the self-rated Revised Physical and Social Anhedonia Scales (Chapman, Chapman, & Raulin, 

1976) and the anhedonia items of the BDI-II (Beck et al., 1996). However, such scales are 

typically broad in their content, for instance with items covering ability to enjoy social events 

alongside items assessing whether patients are actually attending such events. Furthermore, 

different scales do not necessarily measure similar concepts (Foussias & Remington, 2010). 

Such measures are not necessarily able to distinguish between the different aspects of anhedonia 

as described above. While a clinician or patient might easily recognise a lack of reward-seeking 

behaviour (for example, not meeting up with friends), they cannot identify the multiple 

underlying cognitive mechanisms that may be contributing to such behaviour. 

6.1.2.1 Reward learning 

Pizzagalli et al developed the Probabilistic Reward Task (PRT; Figure 6.1.), to more objectively 

index anhedonia, characterising anhedonia as reduced sensitivity to reinforced stimuli 

(Pizzagalli et al., 2005). The PRT is a signal-detection task which uses an asymmetrical 

reinforcement schedule to intermittently reward correct responses (Pizzagalli et al., 2005). 

Participants are simply required to indicate which one of two possible stimuli has been visually 

presented to them. Critically, correct identification of one stimulus is monetarily rewarded more 

than correct identification of the other stimulus, thus typically producing a systematic 

preference for the response paired with the more frequent reward (in other words, the 
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reinforcement schedule creates a response bias whereby participants become more likely to 

identify either stimulus as the stimulus associated with more frequent reward). This response 

bias therefore reflects an individual’s propensity to modulate behaviour as a function of reward, 

with a lower bias reflecting lower reward learning. Reduced response bias has been found to 

correlate with higher self-reported anhedonic symptoms in undergraduates, patients with 

depression, and patients with bipolar disorder (Bogdan & Pizzagalli, 2006; Pizzagalli, Goetz, 

Ostacher, Iosifescu, & Perlis, 2008; Pizzagalli, Iosifescu, Hallett, Ratner, & Fava, 2008; 

Pizzagalli et al., 2005), and predicts occurrence of these symptoms one month later (Pizzagalli 

et al., 2005). 

 

 

 

 

 

 

 

 

Figure 6.1. A diagrammatic representation of the Probabilistic Reward Task (taken from 

Pizzagalli et al., 2005). At the start of each trial, a fixation cross is displayed on screen for 

500ms. A mouthless face is the displayed for 500ms, then a long (13.0mm) or short (11.5mm) 

mouth is displayed for 100ms. The participant responds as to whether they saw the long or the 

short mouth, then feedback is displayed for 1750ms. One of the mouths is reinforced three times 

more frequently than the other mouth, and so a response bias tends to develops towards 

responding that they saw the more reinforced mouth.  
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6.1.3 Cannabis and anhedonia 

6.1.3.1 Associations between cannabis use and anhedonia 

Few studies have directly addressed links between cannabis and anhedonia. Non-acutely some 

studies (Bovasso, 2001; Dawes et al., 2011; Dorard et al., 2008) but not all (Johnson et al., 

2009) have reported associations between cannabis use and anhedonia as indexed by self- and 

clinician-rated scales.  

While anhedonia can form a key component of a diagnosis of schizophrenia and related 

disorders, whether cannabis is also associated with negative symptoms such as anhedonia has 

received less attention than the links between cannabis and psychosis. As described in chapter 2, 

psychosis refers only to the positive symptoms that may lead to a diagnosis of schizophrenia or 

related disorders. Importantly, the two key meta-analyses described in chapter 2 demonstrating 

robust associations between cannabis and psychosis did not assessing associations with negative 

symptomology such as anhedonia (Gage et al., 2016; T. H. Moore et al., 2007). Indeed, of the 

studies included in the meta-analyses, some had an outcome of psychotic disorder (including 

schizophrenia), but most had an outcome of psychotic experiences. Though, as described in 

chapter 2, Moore et al (2007) also reported an association between cannabis use and depression, 

of which anhedonia is a key symptom, and many studies have reported links between cannabis 

use or dependence and depression. 

While again not specific to anhedonia, some reports have linked repeated cannabis use to 

reductions in negative symptoms in patients with schizophrenia (Compton, Furman, & Kaslow, 

2004; Maremmani et al., 2004; Peralta & Cuesta, 1992). However a recent meta-analysis 

demonstrated no robust difference in negative symptoms between patients with psychotic 

disorder who continued to use cannabis relative to both ex-users and non-users (Schoeler, 

Monk, et al., 2016). However, the meta-analysis did detect a small reduction in negative 

symptoms in ex-users relative to non-users, though this finding was based on only 3 studies 

with a total of 220 patients.  
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6.1.3.2 Acute effects of cannabis on anhedonia 

A few studies have reported acute effects of cannabis of schizophrenia-like negative symptoms. 

D’Souza and colleagues (D'Souza et al., 2004; D’Souza et al., 2005) reported that IV THC 

increased negative symptoms as indexed by the clinician-rated PANSS in both healthy controls 

and patients with schizophrenia. More recently Morrison and Stone reported that IV THC in 

healthy controls increased negative symptoms, as indexed on the self-rated Community 

Assessment of Psychic Experiences (CAPE) scale, independently of increases feelings of 

sedation (Morrison & Stone, 2011). The authors reported the most commonly endorsed items on 

the CAPE following THC, with two of the four items clearly relating to anhedonia (“Do you 

feel that you are lacking in energy/ motivation/ spontaneity?” and “Do you feel that you 

experience few or no emotions at this time?”). However, the authors also reported no increase in 

negative symptoms as indexed by the clinician-rated PANSS, contrary to the previous findings 

from D’Souza and colleagues (2004, 2005). Morrison et al (2011) suggests that the clinician-

rated measures may not be sensitive enough to reliably pick up drug-induced state changes in 

negative symptomology, given that such changes can present more subtly than positive 

symptoms.  

In study 3 I reported that adults but not adolescents showed increases on the anhedonia subscale 

of the Psychotomimetic States Inventory (PSI) following acute cannabis administration. 

However, in study 4 I found no increase on the same anhedonia subscale following both Cann-

CBD and Cann+CBD. Two further studies have reported increases on the PSI anhedonia 

subscale in cannabis users smoking their own cannabis (Mason et al., 2008) and following oral 

THC (Stokes et al., 2009). 

As described above however, anhedonia is a broad concept, and the findings described so far 

linking cannabis and anhedonia are all based on broad clinician- or self-rated scales. To my 

knowledge, only one study to date has specifically assessed hedonic capacity in cannabis users. 

Lawn et al administered both a trait and state measure of hedonic capacity in a sample of 
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infrequent cannabis users at baseline (non-acute) and following acute administration of cannabis 

and placebo in a within-subjects placebo-controlled study (Lawn, Freeman, Pope, Joye, Harvey, 

Hindocha, Mokrysz, Moss, Wall, & Bloomfield, 2016). At baseline cannabis users scored at 

typical levels on the trait scale, with similar mean scores for both anticipatory and 

consummatory pleasure to previous healthy control samples (Gard, Gard, Kring, & John, 2006), 

though there was no direct comparison to a non-user group. Acutely, cannabis did not alter 

hedonic capacity. In the same study, acutely cannabis was found to have no effect on liking of 

clips of classical music (T. Freeman, Pope, & Curran, in prep.). 

6.1.3.2.1 Cannabis and reward 

As described above, anhedonia relates not only to the ability to experience pleasure, but also to 

motivation to gain rewards, and sensitivity to rewards. 

Surprisingly, given the critical role of the eCB system in reward processing (beyond the scope 

of this thesis, but for review see (Curran et al., 2016)), few studies have addressed whether 

cannabis influences reward learning. While some have shown no difference between heavy and 

light cannabis users on motivation for monetary and cannabis reward (Mello & Mendelson, 

1985; Mendelson, Kuehnle, Greenberg, & Mello, 1976), daily adolescent cannabis users were 

found to have lower motivation for monetary reward than non-users (Lane, Cherek, Pietras, & 

Steinberg, 2005). In the same study assessing trait and state hedonic capacity described above, 

Lawn et al (2016) also assessed the acute effects of cannabis on the willingness to work for 

rewards, finding that cannabis reduced likelihood of an individual choosing a hard task with a 

greater reward value other an easier task with a lower reward value. 

More directly assessing reward sensitivity (rather than motivation for rewards), two studies 

compared neural responses to anticipation of monetary reward in cannabis users relative to 

healthy controls but found opposing results (Nestor, Hester, & Garavan, 2010; van Hell et al., 

2010). In a small study (n= 8) Lane et al assessed the acute effects of cannabis on sensitivity to 

reward frequency using a task in which monetary reinforcement to one of two responses was 
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declining (Lane & Cherek, 2002). After smoking cannabis cigarettes (THC 1.77% and 3.58%), 

participants allocated a higher proportion of their responses to the stimuli with a decreasing 

reward frequency, relative to placebo and a lower THC dose (THC 0.89%). This pattern 

suggests that following cannabis the participants were less able to modulate their behaviour in 

response to reward. Though, after cannabis participants also responded fewer times overall, 

potentially suggesting decreased motivation for reinforcement alongside decreased reward 

sensitivity. 

Notably, Lawn et al recently administered the PRT to dependent cannabis users and healthy 

controls, finding no difference in the magnitude of response bias between cannabis users and 

controls, indicating similar sensitivity to reward (Lawn, Freeman, Pope, Joye, Harvey, 

Hindocha, Mokrysz, Moss, Wall, & Bloomfield, 2016). However, to my knowledge, no study to 

date has directly investigated the acute effects of cannabis on anhedonia as indexed by reward 

sensitivity. 

6.1.4 Research questions and hypotheses 

Given the identified gaps in the literature on how acute cannabis influences anhedonia, I 

designed a study to address two key research questions: 

1. Does cannabis acutely induce anhedonia? 

Given previous evidence that cannabis acutely increases self-ratings of anhedonia, I 

hypothesised that participants would be less sensitive to reward following cannabis than 

following placebo, as indexed by a lower response bias on the PRT. I further hypothesised that 

self-rated hedonic capacity would be lower after cannabis than after placebo, and that cannabis 

would increase self-rating of anhedonia as indexed by the PSI subscale.  

Note that the findings reported in this chapter are based on the same study protocol and sample 

as described for study 3; the final aspect of this hypothesis has therefore already been addressed 
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in the previous chapter: cannabis increased self-rated anhedonia on the PSI in adults but not 

adolescents.  

2. Does cannabis differentially induce anhedonia in adolescents than adults? 

Increasing evidence suggests adolescence may be characterised by reward hyper-sensitivity, 

relative to childhood and adulthood, for instance a recent study administered a probabilistic 

reinforcement learning task similar to the PRT to adolescents aged 13-17 years and adults aged 

20-30 years, finding that adolescents were more sensitive to reinforcement (Davidow, Foerde, 

Galván, & Shohamy, 2016). As such, I hypothesised that after both cannabis and placebo 

adolescents would be more sensitive to reward than adults, as indexed by a higher response bias 

on the PRT. 

Adolescent-onset of cannabis use has also been found to be associated with increased risk of 

cannabis and other drug use disorders (this will be discussed in further detail in chapter 7), 

though to date no study has investigated whether the pharmacological effects of cannabis on 

reward related processes in adolescence differs to that in adulthood. As such, I also explored 

whether cannabis would have a differential effect on anhedonia in adolescents and adults. 

6.2 Methods        

6.2.1 Design and Participants 

Study design and participant recruitment and inclusion criteria were as described in chapter 4 

section 4.2.1. However, due to a technical error, data were lost for 14 participants on the 

Probabilistic Reward Task (PRT), leaving a sample size of 26 (13 adolescents) for the present 

study. 

6.2.2 Drug administration 

As described in chapter 4 section 4.2.2. 
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6.2.3 Measures 

6.2.3.1 Baseline assessments 

6.2.3.1.1 Questionnaires 

As described in chapter 4, section 4.2.3.1.1. Additionally, participants completed the Temporal 

Experience of Pleasure Scale (TEPS) and Apathy Evaluation Scale (AES). The TEPS indexes 

ability to experience pleasure (Gard et al., 2006). The scale consists of items with two subscales 

to measure anticipatory and consummatory pleasure. Items are rated between 1 (very false for 

me) and 6 (very true for me), with higher scores reflecting greater ability to experience pleasure. 

The AES indexes apathy, as defined as a lack of motivation (Marin, Biedrzycki, & 

Firinciogullari, 1991). The scale consists of 18 items rated between 1 (not at all characteristic) 

to 4 (very characteristic), with higher scores reflecting greater apathy. 

6.2.3.1.2 Drug use 

As described in chapter 4, section 4.2.3.1.2. 

6.2.3.2 Experimental assessments 

6.2.3.2.1 Subjective Ratings 

As described in chapter 4, section 4.2.3.2.2. 

6.2.3.2.2 Psychotomimetic States Inventory (PSI) 

As described in chapter 5, section 5.2.1.3.2.2. The anhedonia subscale only, consisting of 7 

items, is reported here. Items included were: “You are enjoying mixing with people” (reverse-

coded), “You feel close to people” (reverse-coded), “You feel rather uninvolved with other 

people”, “You would feel uncomfortable if your friends were to touch you”, “It is fun to do 

things with other people at the moment” (reverse-coded), “You find usual activities less 

enjoyable than usual”, “You feel rather indifferent about things”. 
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6.2.3.2.3 Snaith-Hamilton Pleasure Scale (SHAPS) 

Participants completed the SHAPS, which indexes the ability to experience pleasure (Snaith et 

al., 1995). The scale consists of 14 items rated between 0 (definitely agree) and 3 (definitely 

disagree), with lower scores reflecting greater ability to experience pleasure. The SHAPS 

typically refers to “in the last few days”, but following previous work (Lawn, Freeman, Pope, 

Joye, Harvey, Hindocha, Mokrysz, Moss, Wall, & Bloomfield, 2016) the scale was adapted to 

refer to the participant’s experiences “right now” in order to capture acute effects of the drug.  

6.2.3.2.4 Probabilistic Reward Task 

For each trial participants were presented with one of two stimuli, and were required to identify, 

as quickly as possible by button press, which of the two stimuli had been presented. Stimuli 

were two different lengths of mouth (‘short’ and ‘long’), as seen in Figure 6.2. The ‘short 

mouth’ measured 8mm and the ‘long mouth’ 9mm (note that in the original task as detailed in 

Figure 6.1. the short mouth measured 11.5mm and the long mouth 13.0mm)  

 

 

 

 

 

Figure 6.2. Diagram shows ‘short mouth’ and ‘long mouth’ stimuli as used in Probabilistic 

Reward Task. When displayed on screen the ‘short mouth’ measured 8mm and the ‘long mouth’ 

9mm. 

Correct responses were sometimes rewarded with money, using an asymmetrical reinforcement 

schedule, with one stimulus rewarded more frequently (the ‘rich’ stimulus) than the other (the 

Short mouth   Long mouth 
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‘lean’ stimulus), thus producing a response bias towards the more reinforced stimulus. The task 

comprised of one block of 100 trials, including 50 rich trials (of which 30 had the opportunity 

for reinforcement) and 50 lean trials (of which 10 had the opportunity for reinforcement). 

Participants were only rewarded for correct responses (that is, correct identification of the short 

or long mouth). To try to ensure that all participants had similar numbers of rich and lean 

reinforced stimuli, if a stimulus scheduled for reinforcement was not correctly identified, the 

next stimulus of that type (rich or lean) that was not scheduled to be reinforced was then 

scheduled for reinforcement. Two task versions were created, with order of completion 

counterbalanced by drug order; in one version the short mouth was the rich stimulus, in the 

other version the long mouth was the rich stimulus. 

An adapted version (adjusted timings; reward in GBP rather than USD; stimuli mouth length 

changes as described above) of the task pictured in Figure 6.1. was administered. At the start of 

each trial, a fixation-cross was presented for a jittered time (750ms, 800ms, 850ms, or 900ms). 

A mouthless face was then presented for 500ms followed by the appearance of the mouth in the 

face for 97ms. The mouthless face then remained on the screen for up to 1500ms, or until the 

participant responded with either the ‘c’ or ‘m’ key. For all sessions participants pressed the ‘c’ 

key if they thought the mouth was short and the ‘m’ key if they thought the mouth was long. 

Feedback was then provided for 1500ms, e.g. “Correct!!! You won 5p” or “You did not win 

anything”. There was then an inter-trial interval of 2000ms, in which a blank screen appeared. 

Trials were pseudo-randomised, with a maximum of 3 rich or lean stimuli appearing 

consecutively. 

Before the task began it was described to participants by the experimenters, with the aid of on-

screen instructions to demonstrate the stimuli and button responses. Participants were told that 

they would only win money on some of their correct responses, but they were not told that one 

stimuli would be rewarded more than the other. Participants first completed 5 practice trials, 

before receiving reminder instructions and being given the opportunity to ask questions.  
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The main task outcome is response bias, which indexed a person’s bias towards the more 

frequently reinforced stimulus. This was calculated using the following formula (Pizzagalli et 

al., 2005): 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐵𝑖𝑎𝑠 =
1

2
∗ 𝑙𝑜𝑔

𝑅𝑖𝑐ℎ_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝑒𝑎𝑛_𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 

𝐿𝑒𝑎𝑛_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝑅𝑖𝑐ℎ_𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 

Secondary task outcomes include discriminability, accuracy and reaction time. Discriminability, 

which indexed a person’s ability to differentiate the stimuli, was calculated using the following 

formula (Pizzagalli et al., 2005): 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

2
∗ 𝑙𝑜𝑔

𝑅𝑖𝑐ℎ_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝑒𝑎𝑛_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 

𝑅𝑖𝑐ℎ_𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝐿𝑒𝑎𝑛_𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 

Rich_correct and Rich_incorrect refer to the number of rich stimuli that were correctly and 

incorrectly identified. Lean_correct and Lean_incorrect refer to the number of lean stimuli that 

were correctly and incorrectly identified. 

6.2.4 Procedure 

As described in chapter 4, section 4.2.4. Additionally, following drug administration 

participants completed the SHAPS and PRT. 

6.2.5 Power calculation 

As described in chapter 4, section 4.2.5. However, following data loss for 14 participants I ran a 

sensitivity power calculation at the smaller sample size. With a sample size of 26, at 80% power 

at an alpha of 5%, I was able to the detect a medium to large effect size (f= 0.29) for the key 

interaction of interest (group x drug). 

6.2.6 Statistical Analysis 

6.2.6.1 Data preparation 



194 

 

All analyses were conducted with SPSS 21.0. Outliers and normality were assessed via 

diagnostic plots for all analyses. Extreme outliers (>3 times interquartile range) were winsorized 

within-group. 

6.2.6.2 Analysis 

Mann-Whitney or chi-square analyses were conducted as appropriate to compare groups (adult, 

adolescent) on demographic and baseline measures. Mixed ANOVA was conducted for all test 

outcomes, with the between-subjects factor of group (adult, adolescent) and within-subjects 

factor of drug (cannabis, placebo). Additional within-subjects factors were included for relevant 

analyses: time (T2-T4) for stoned (as in chapter 4, T1 was not analysed due to floor effects); 

stimuli type (rich, lean) for the PRT. Interactions with time were explored via simple contrasts 

(comparing T2 to T3, and T3 to T4). Other interactions were explored via pairwise comparisons 

with local Bonferroni-correction. For PRT, after exclusion of all trials with a reaction time 

quicker than 100ms, outcomes were calculated according to formulae described in above. Drug 

order was added as an additional between-subjects factor (placebo-first, cannabis-first) and 

results were compared to reported primary analyses; unless otherwise noted results were 

unaffected by drug order.  

6.3 Results 

Demographic and baseline data are displayed in Table 6.1. (note that these differ to those 

displayed in Chapter 4 Table 4.1, as a result of the reduced sample size).  

Adolescents were younger, but groups did not differ on body weight, cannabis weight 

administered, verbal IQ, BAI, BDI-II, SUPPS-P or AES. Adolescents reported lower pleasure 

from anticipation but not consumption of reward, compared to adults. Age of first cannabis use 

was younger for the adolescents compared to the adults, but overall the adults had used for 

longer. Groups did not differ on current days of use per month, CAST score, days since last use, 

or likelihood of a positive THC urine result at baseline. 
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Table 6.1. Demographic and baseline variables for adolescents and adults; values reflect mean 

(SD) unless otherwise stated; p-values reflect Mann-Whitney U test comparing median or 

Fischer’s exact test comparing frequency (as appropriate), by age group. 

     

 

Adolescents 

(n=13) 

Adults 

(n=13)   

Demographics Mean (SD) Mean (SD) 

Test statistic 

(df) p-value 

Age (years) 17.05 (0.45) 25.46 (0.99) U= 169.000 <.0011 

Body weight (kg) 67.95 (11.36) 76.75 (11.35) U= 117.500 .091 

Cannabis weight (mg) 59.87 (8.28) 66.23 (6.95) U= 120.500 .064 

Verbal IQ  113.54 (8.01) 115.69 (9.42) U= 105.999 .311 

Baseline questionnaires     

Beck Anxiety Inventory 5.31 (4.44) 5.85 (5.94) U= 84.000 >.999 

Beck Depression Inventory 5.46 (3.48) 4.77 (4.97) U= 67.000 .390 

SUPPS-P Impulsive Behaviour Scale 46.46 (7.81) 45.23 (6.35) U= 76.500 .687 

Apathy Evaluation Scale 57.85 (8.49) 60.23 (6.07) U= 95.500 .579 

Temporal Experience of Pleasure: anticipatory 38.69 (6.65) 45.15 (7.76) U= 131.000 .0161 

Temporal Experience of Pleasure: 

consummatory 35.15 (5.64) 39.23 (5.40) U= 114.500 .125 

Cannabis use      
Age first tried cannabis (years) 14.78 (0.93) 17.42 (2.16) U= 144.000 .0021 

Last used cannabis (days) 3.69 (3.07) 4.38 (3.18) U= 106.500 .264 

Duration of cannabis use (years) 2.27 (1.17) 8.04 (2.71) U= 167.500 <.0011 

Cannabis use frequency (days per month) 11.50 (4.45) 8.81 (5.62) U= 47.500 .057 

Positive THC baseline urine (n=24); %(n)  81.82 (9) 61.54 (8) χ2
1= 2.355 .220 

Cannabis Abuse Screening Test 6.54 (2.73) 6.69 (3.84) U= 85.000 >.999 

Cigarette use     
Ever used cigarettes; %(n) 92.31 (12) 100.00 (13) χ2

1= 1.040 >.999 

Age first tried cigarettes (years)2 15.51 (1.04) 18.61 (2.99) U= 144.500 .0011 

Duration of cigarette use (years) 1.54 (1.03) 6.85 (3.51) U= 158.500 <.0011 

Cigarette use frequency (days per month) 19.18 (12.92) 11.72 (12.09) U= 59.000 .204 

Cigarettes per day 4.48 (3.20) 2.12 (2.21) U= 43.500 .0341 

Fagerström Test for Nicotine Dependence 1.23 (1.01) 0.23 (0.83) U= 36.500 .0121 

Carbon Monoxide at baseline (ppm; n=25) 6.62 (5.27) 5.83 (4.15) U= 67.000 .574 

Alcohol use     

Ever used alcohol; %(n) 100.00 (12) 100.00 (13) n/a n/a 

Age first tried alcohol (years) 14.20 (1.60) 15.57 (1.92) U= 119.000 .081 

Duration of alcohol use (years) 2.85 (1.68) 9.88 (2.62) U= 168.500 <.0011 

Alcohol use frequency (days per month) 6.07 (5.55) 10.62 (6.50) U= 123.500 .0441 

Alcohol units per typical drinking session4 9.45 (8.08) 8.13 (2.37) U= 88.000 .880 

Alcohol Use Disorders Identification Test 8.31 (5.45) 8.77 (5.15) U= 95.000 .614 
1p<.05   
2calculated only on those who had ever used cigarettes (n=21) 
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6.3.1 Subjective ratings 

6.3.1.1 ‘Stoned’ (Figure 6.3.) 

Interactions emerged for drug x group (F1,24= 4.242, p= .050, η²p= 0.15), and drug x time (F2,48= 

5.160, p= .009, η²p= 0.18). Ratings of both adolescents (p< .001, η²p= 0.71) and adults (p< 

.001, η²p= 0.82) were higher after cannabis compared to placebo, however the increase was 

larger in adults. Main effects of drug (F1,24= 166.466, p <.001, η²p= 0.87) and time (F2,48= 9.053, 

p< .001, η²p= 0.27) also emerged.  

 

 

 

 

 

 

 

Figure 6.3. Mean (SE) values for subjective ratings (0-10) for ‘stoned’, for adolescents and 

adults on placebo and cannabis. 
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6.3.2 Anhedonia 

6.3.2.1 PSI_A 

An interaction of drug x group (F1,24= 5.890, p= .023, η²p= 0.20) emerged. Anhedonia increased 

on cannabis relative to placebo for adults (p< .001, η²p= 0.42), but not for adolescents (p= .477, 

η²p= 0.02). A main effect of drug also emerged (F1,24= 11.894, p= .002, η²p= 0.33). 

6.3.2.2 SHAPS 

No main effects or interactions emerged. 

 

Table 6.2. Means and standard deviations for the anhedonia subscale of the PSI and the 

SHAPS, by drug and age group. 

 

  

 
Adolescents Adults 

 
Placebo Cannabis Placebo Cannabis 

  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

 
n=13 n=13 

PSI_A 4.61 (2.96) 5.23 (2.49) 2.92 (1.93) 6.46 (3.53) 

SHAPS 24.46 (4.35) 25.00 (5.40) 22.85 (6.00) 23.46 (4.75) 
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6.3.3 Probabilistic Reward Task 

6.3.3.1 Response bias (Figure 6.4.) 

No main effects or interactions emerged. 

 

 

 

 

Figure 6.4. Response bias on the probabilistic reward task (PRT), for adolescents and adults on 

placebo and cannabis.  
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6.3.3.2 Discriminability (Figure 6.5.) 

No main effects or interactions emerged. 

 

 

 

Figure 6.5. Discriminability on the probabilistic reward task (PRT), for adolescents and adults 

on placebo and cannabis.  
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6.3.3.3 Accuracy (Figure 6.6.) 

There were main effects of drug (F1,24= 4.265, p= .050, η²p= 0.15) and stimuli (F1,24= 10.911, p= 

.003, η²p= 0.31). Accuracy was lower after cannabis relative to placebo, and for lean relative to 

rich stimuli. 

 

 

 

Figure 6.6. Accuracy on the probabilistic reward task (PRT), for adolescents and adults on 

placebo and cannabis.  
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6.3.3.4 Reaction times (Figure 6.7.) 

There was a main effect of stimuli (F1,24= 6.404, p= .018, η²p= 0.21), with longer reaction times 

for lean relative to rich stimuli. 

 

 

 

Figure 6.7. Reaction times (seconds) on the probabilistic reward task (PRT), for adolescents 

and adults on placebo and cannabis. 
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6.3.3.5 Sensitivity analyses 

PRT analyses were the rerun following conservative exclusion criteria (Lawn, Freeman, Pope, 

Joye, Harvey, Hindocha, Mokrysz, Moss, Wall, & Bloomfield, 2016). Participants were 

excluded if, on either block, they fulfilled any of the following criteria: more than 20% excluded 

trials; received reinforcement on fewer than 25 rich stimuli; received reinforcement on fewer 

than 6 lean stimuli; less than 55% accuracy for the rich stimulus; less than 55% accuracy 

overall. These sensitivity analyses have been recommended so as to exclude those participants 

who received little or no reward throughout the task. Such participants would likely demonstrate 

little or no learning due to a lack of reinforcement, which may obscure any occasion differences 

due the experimental manipulation (i.e. placebo cannabis versus active cannabis; adolescent 

versus adult).  

Following exclusions, the sample size was reduced to n=14 (5 adolescents). The pattern of 

results did not change for any of the dependent variables, though these analyses should be 

treated with caution given the small sample size, particularly of the adolescent group. 

6.3.4 Within-group correlations 

Within-group correlations were conducted between cannabis session PRT response bias and 

variables showing baseline group differences (at p< .10; Table 6.1.), including administered 

cannabis weight. 

TEPS-anticipatory was found to correlate with response bias in both adolescents and adults, 

though interestingly the relationship was positive (r= .682, p= .010) for adolescents and 

negative (r= -.624, p= .023) for adults (Figure 6.8.). Fisher's r-to-z transformation demonstrated 

a significant difference between the correlation coefficients (z= 3.50, p< .001). To explore this 

further, similar correlations were calculated for placebo response bias scores. No correlations 

were found in either group between TEPS-anticipatory and response bias on placebo, and the 

placebo correlation coefficients did not differ by age group (adolescents: r= -.443, p= .130, 
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adults= r= -.201, p= .510; z= -0.61, p= .543). TEPS-anticipatory was subsequently entered as a 

covariate into the response bias model; however, this had no effect on the results and was no 

longer a significant predictor of response bias in the full model (F1,23= 2.830, p= .106, η²p= 

0.11).  

No other variables were found to correlate (at p< .10) with any outcome measure in either the 

adolescent or adult groups, and so were not entered into models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Adults 

 Adolescents 

 

Figure 6.8. Correlations between TEPS-anticipatory at baseline and PRT response bias on 

cannabis, for adolescents and adults. 
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6.4 Discussion 

6.4.1 Summary of findings 

In this study I found that acute administration of cannabis did not result in a lower response bias 

on the Probabilistic Reward Task (PRT), although cannabis did lead to lower PRT accuracy. 

Moreover, cannabis did not affect self-ratings of hedonic capacity in either adolescents or 

adults. Though, as reported in the previous chapter, cannabis increased self-rated anhedonia on 

the PSI in adults but not adolescents. Additionally, at baseline, adolescents rated themselves as 

experiencing reduced anticipatory pleasure relative to the adults, but there was no age difference 

in experience of consummatory pleasure. Moreover, intriguingly, response bias following 

cannabis was positively correlated with baseline anticipatory pleasure in the adolescents but 

negatively correlated in the adults. No correlations were found between baseline anticipatory 

pleasure and response bias following placebo in either group.  

6.4.2 Does cannabis acutely induce anhedonia?  

Contrary to my first hypothesis, participants were not less sensitive to reward following 

cannabis, as indexed by a lack of difference between response bias on the PRT on cannabis 

relative to placebo. Furthermore, participants were no less able to experience pleasure after 

cannabis, as indexed by a lack of difference in self-rated hedonic capacity on cannabis relative 

to placebo- replicating a previous finding from my research group (Lawn et al., 2016). Though, 

as described in study 3, cannabis increased self-rated anhedonia on the PSI in adults but not 

adolescents; however, this was not replicated in the adults in study 4. Together these findings 

suggest that cannabis has minimal, if any, effects on anhedonia. As such, cannabis does not 

appear to be a good pharmacological model of anhedonia. Importantly however, given that my 

target sample size was not reached, these findings should be considered as preliminary, since 

my design may have lacked statistical power to detect a difference. 
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Both following acute administration of cannabis in this study, and previously non-acutely in 

dependent cannabis users compared to healthy controls (Lawn et al, 2006), cannabis was not 

associated with reduced response bias on PRT. However, I did find lower overall accuracy on 

the PRT following cannabis. In the absence of an effect of cannabis on discriminability (that is, 

cannabis did not significantly affect the ability to differentiate between the two stimuli), this 

reduced accuracy may suggest a general lack of engagement with the task. However, while no 

significant difference between discriminability on cannabis and placebo was found, 

descriptively the mean values were somewhat lower on cannabis for both groups. Given the 

reduced sample size for this study, this lack of significant difference may therefore reflect 

reduced statistical power rather than a “true null”. Given this lower accuracy (and potentially 

lower discriminability) following cannabis, it is perhaps surprising that the same response bias 

was achieved. 

That cannabis increased anhedonia on the PSI in adults, but on neither of the other indexes of 

anhedonia, is worthy of further investigation. This finding suggests that the PSI subscale is 

measuring something different to reward sensitivity or hedonic capacity. Of note, the PSI was 

specifically designed to be sensitive to drug-related state changes in symptoms, and the 

questionnaire was indeed first tested in two acute drug studies, one with cannabis and the other 

with ketamine (Mason et al., 2008). As such, the items in this subscale may have been 

specifically chosen to tap into expected cannabis effects. Of interest, Freeman and colleagues 

are in the process of conducting a meta-analysis of the PSI following cannabis, ketamine and 

sensory deprivation (T. Freeman & Curran, in prep.). Preliminary analyses suggest that across 

studies cannabis has a small but robust effect on the PSI subscale of anhedonia (d= 0.24, 95% 

CIs: 0.07-0.41, p=0.006). Further analyses in this large sample of studies may be able to identify 

whether there are specific PSI items that contribute to this effect, and in turn this may aid 

interpretation of the discrepant findings between different anhedonia measures in the present 

study. Importantly, while I measured reward sensitivity and hedonic capacity in this study, 

anhedonia can also relate to a person’s motivation to gain rewards- as described above. Indeed, 
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Lawn et al (2016) recently showed that cannabis acutely decreases the willingness to work for 

monetary reward. If the anhedonia subscale of the PSI is capturing reduced motivation, this may 

explain the discrepant findings between measures in the present study. 

Of note, as described in chapter 2, there is previous evidence to suggest that cannabis might be 

expected to increase reward sensitivity, in opposition to my first hypothesis. Indeed, rimonabant 

(a CB1R antagonist) has been found to have depressant effects in rats and prevented conditioned 

place preference (CPP) to nicotine in rats- suggesting reduced reward sensitivity. Moreover, in 

humans rimonabant was removed from clinical use as an anti-obesity drug after it was found to 

be associated with increased risk of depression and suicide (Christensen et al., 2007). Since 

THC is a partial CB1R agonist, we would perhaps expect it to have opposite effects to a drug 

such as rimonabant. In the present study however, I found no evidence of any effect – neither 

positive or negative – of THC on reward sensitivity or hedonic capacity.  

6.4.3 Does cannabis differentially induce anhedonia in adolescents than adults? 

6.4.3.1 Main effect of age group 

Contrary to my second hypothesis, the adolescents were not more sensitive to reward across 

sessions than the adults, as indexed by a lack of difference between response bias on the PRT 

between the age groups, and by a lack of differences in state hedonic capacity, on either placebo 

or active cannabis. I instead found that adolescents had lower anticipatory hedonic capacity at 

baseline (TEPS-anticipatory), and they reported somewhat higher (though, non-significantly) 

anhedonia than the adults on the PSI on placebo. 

This is in contrast to past research suggesting that adolescents have a hypersensitivity to reward 

relative to adults and children, including as was recently found on a task similar to the PRT 

(Davidow et al., 2016). Importantly however, to my knowledge, no study has yet assessed 

probabilistic reward learning in a sample of cannabis using adolescents. As such, it is possible 
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that the past use of cannabis in my adolescent sample may have altered their reward processing, 

resulting in the lack of an age group difference for reward sensitivity in the present study.  

The evidence of higher anhedonia in the adolescents as measured by the TEPS-anticipatory at 

baseline and (non-significantly) by the PSI anhedonia subscale on placebo, are intriguing, and 

seem to be specific to anhedonia, since no baseline group differences were apparent on the 

broader depression (BDI-II) or apathy (AES) scales. Moreover, on the state measure of hedonic 

capacity (SHAPS) completed during the drug sessions, the adolescents did not score differently 

to the adults on placebo or cannabis. This contrasts with the trait measure of hedonic capacity 

(TEPS-anticipatory). However, the SHAPS scale does not separate hedonic capacity into 

anticipatory and consummatory pleasure, when indeed there is good evidence that these refer to 

independent constructs (Gard et al., 2006). These discrepant findings therefore suggest that the 

adolescents specifically experienced lower anticipatory pleasure at baseline, while 

consummatory pleasure was unaffected. Future longitudinal work is needed to track reward 

sensitivity and other aspects of anhedonia throughout adolescence, to assess whether cannabis 

or other substance use does indeed alter typical trajectories. 

6.4.3.2 Interaction between drug and age group 

The exploration of whether cannabis would have a differential acute effect on anhedonia in 

adolescents and adults also led to unclear results, though overall cannabis did not decrease 

reward sensitivity or hedonic capacity in either group. 

In terms of reward sensitivity and hedonic capacity, no effect of cannabis administration was 

seen in either group, though on the general self-rated anhedonia measure (PSI), cannabis acutely 

increased anhedonia in adults but adolescents. Furthermore, correlations between response bias 

and hedonic capacity following cannabis revealed opposite relationships for adolescents and 

adults; while response bias was positively correlated with baseline anticipatory pleasure in the 

adolescents, in the adults it was negatively correlated. However, no correlations were found 

between baseline anticipatory pleasure and response bias following placebo in either group. 
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These correlations are difficult to interpret, and were not predicted relationships, suggesting 

they may be anomalous. Though, this finding is in line with the findings reported in chapters 4 

and 5 that overall adolescents experienced fewer negative effects of cannabis than adults. 

Indeed, cannabis may have ‘uncoupled’ anticipatory pleasure sensitivity from reward learning in 

the adults, while enhancing this relationship in adolescents. 

Finally, I also found a non-significant reaction time impairment in adults but not adolescents. 

Though this observation should of course be treated with caution, I did find a similar effect in 

study 2, with longer reaction times on the N-back in adults but not adolescents. As will be 

discussed in more detail in the next chapter, such effects may represent a psychomotor slowing 

in the adults following cannabis. 

6.4.4 Limitations 

One limitation of my study was the use of a shorter PRT, with only 1 block of 100 trials as 

opposed to 2-3 blocks of 100 trials as in previous research. This may have resulted in increased 

measurement error, and had more trials been included differences in response bias across drug 

or groups may have emerged. Despite the shorter task however, the magnitude of the response 

bias in both groups was similar to that reported in previous studies using a task version with 2 

blocks (Lawn et al., 2016), suggesting that the task was successful at inducing a response bias 

despite the smaller number of trials over which to adapt to the reinforcement schedule. 

Secondly, as mentioned above, reduced statistical power resulting from a technical error is a 

clear limitation of this study. Descriptively it is apparent that discriminability was lower 

following cannabis relative to placebo, and reaction times following cannabis were longer 

relative to placebo in adults but adolescents. However, these differences were non-significant. 

Given the small sample sizes (n=13 per group), it is not possible to determine whether these 

non-significant effects reflect “true nulls”, or whether lack of statistical power may be masking 

true effects. Importantly however, on the key index of reward sensitivity (that is, response bias), 

performance appears to similar across drugs and groups. 
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Thirdly, the various findings on different measures of anhedonia are difficult to interpret. Future 

work should assess the specific factors that different anhedonia scales measure. As discussed 

above, many anhedonia scales, such as the PSI anhedonia subscale, are broad in their content, so 

differences between what domain each scale or task specifically indexes may explain the 

discrepant findings between measures in this study. 

Finally, as has been described in chapters 4 and 5, age group differences, such as the lower 

ratings of anticipatory pleasure in the adolescents at baseline, may have influenced the results in 

this study. Indeed, the opposite relationship between anticipatory pleasure and reward 

responsivity in the adults and adolescents is confusing, and may have influenced performance 

on the PRT. The potential impact of baseline group differences will be discussed in further 

detail in the final chapter. 

6.4.5 Conclusions and implications 

Anhedonia is a common symptom of schizophrenia and depression, but the broad definition of 

anhedonia prevents both good description and investigation of the underlying mechanisms of 

this. Emerging evidence now suggests that patients diagnosed with schizophrenia do not appear 

to have impaired hedonic capacity or reward sensitivity (Foussias & Remington, 2010; Heerey 

& Gold, 2007), but that they do have impaired motivation for rewards and reduced valuation of 

rewards (Gold et al., 2008). This is of interest in the context of cannabis, as the limited studies 

to date would suggest a similar pattern resulting from acute cannabis administration- impaired 

motivation for rewards (Lawn et al., 2016), intact hedonic capacity (present study; Lawn et al., 

2016) and intact reward sensitivity (present study). In contrast, patients with depression appear 

to have decreased hedonic capacity (Nakonezny, Carmody, Morris, Kurian, & Trivedi, 2010) 

and reduced reward sensitivity (Pizzagalli et al., 2005). Referring to anhedonia in both patient 

groups under broad definitions, is therefore unhelpful. Indeed, even within diagnostic categories 

there is considerable heterogeneity in patient phenotypes. As described previously, the RDoC 

initiative aims to reduce this ambiguity by identifying basic symptoms that give rise to certain 
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symptoms. Indeed, probabilistic reward learning is a key construct within the RDoC, so in the 

coming years we are likely to see studies with large sample sizes, assessing this construct in 

many different healthy and clinical populations. I and others (Treadway & Zald, 2011) would 

also argue that the wider concept of anhedonia needs to be redefined, according to its different 

components. Of particular importance in relation to cannabis research and following my 

findings here, is to validate to PSI anhedonia subscale against other tasks and measures so as to 

better identify what this measure is capturing. 

6.4.5.1 Conclusion 

In summary, this study suggests that the effects of cannabis on anhedonia are weak at best, and 

do not appear to be related to hedonic capacity or to reward sensitivity. As such, cannabis is 

probably not a good pharmacological model of anhedonia- though as discussed above, better 

definition of the different aspects of anhedonia is needed to better understand why cannabis 

does appear to increase self-rated anhedonia on the PSI. Importantly, however, the results 

described in this chapter should be considered preliminary, given the reduced statistical power. 

Replication studies with larger samples, and which ideally motivational aspects of anhedonia 

alongside reward sensitivity and hedonic capacity are required before strong conclusions can be 

drawn. 
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7 Chapter 7. General Discussion 

This thesis set out to address the following question: 

Does adolescent cannabis use have greater potential for harm than adult use? 

Using a mixed methods approach, including epidemiology and psychopharmacology, I designed 

a series of studies to address this question. My empirical chapters specifically investigated the 

following questions: 

1. Are IQ and educational outcomes in teenagers related to their cannabis use?  

2. Are adolescents more vulnerable to the acute subjective, physiological, memory and 

inhibition effects of cannabis than adults?  

3. Does cannabis increase the incidence of auditory-verbal hallucinations (AVH)?  

a. Are adolescents more vulnerable to the psychotomimetic effects, including 

AVH, of cannabis than adults?  

b. Do higher levels of CBD in cannabis offset the psychotomimetic effects, 

including AVH, of cannabis in adults?  

4. Does cannabis increase anhedonia, and are adolescents more vulnerable than adults to 

these effects? 

In this final chapter I will bring together the results across each study, and discuss how my 

findings help to answer these questions and the over-arching question of whether adolescent 

cannabis use has greater potential for harm than adult use. I will discuss the implications and 

broader context of my findings, as well as discussing methodological limitations of the studies 

described in this thesis and suggesting future directions for research. 
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7.1 Summary of findings 

In chapter 3 I examined the associations between adolescent cannabis use and IQ and 

educational attainment in a UK birth cohort. I considered several potential confounders that are 

commonly associated with teenage cannabis use and that may account for previously reported 

associations with IQ and educational performance. I hypothesised that cannabis use would be 

associated with both lower IQ and educational performance (Meier et al., 2012; Silins et al., 

2014), but also that these associations may be attenuated by adjusting for potential confounders 

(Lynskey & Hall, 2000; Rogeberg, 2013; Verweij et al., 2013). As predicted, higher cumulative 

cannabis use was associated with lower IQ at age 15 and educational attainment at age 16. 

However, after adjustment for potential confounding variables these associations were 

attenuated, suggesting that associations between cannabis use and IQ and educational attainment 

are not causal, but the result of overlapping risk factors increasing the likelihood of both 

cannabis use and these outcomes. The most dramatic reduction in effect sizes for both IQ and 

educational attainment occurred following adjustment for cumulative cigarette smoking. 

Furthermore, after exclusion of all cannabis users, ever having smoked a cigarette remained a 

predictor of lower IQ and educational attainment. These findings therefore do not suggest that 

moderate adolescent cannabis use is causally related to IQ or educational attainment, but that 

co-morbidity between cannabis and cigarette use may be confounding these relationships. 

In chapter 4 I described a placebo-controlled study, which for the first time compared the acute 

effects of active and placebo cannabis on both adolescents and adults. Firstly, I hypothesised 

that adolescents would be less sensitive to the intoxicating (Carvalho, Reyes, Ramalhosa, Sousa, 

& Van Bockstaele, 2016; Quinn et al., 2008; Schramm-Sapyta et al., 2007) and anxiogenic 

(Acheson et al., 2011; Schramm-Sapyta et al., 2007) effects of cannabis compared to adults. 

Secondly, I hypothesised greater cognitive impairment following acute cannabis in adolescents 

than adults (Cha et al., 2007; Cha et al., 2006; Schneider et al., 2008), as indexed by spatial 

working memory, episodic memory and response inhibition. As expected, compared to adults, 

adolescent cannabis users experienced blunted subjective and physiological effects of cannabis, 
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but contrary to my second hypothesis they also experienced blunted memory impairing effects. 

Further, adolescents were not satiated by cannabis and, as predicted, the drug impaired their 

accuracy on the response inhibition task while leaving those of adults intact. This first 

demonstration of age-related differences in humans in the acute response to cannabis may have 

implications for cannabis use patterns by adolescents, as will be discussed in more detail below. 

In chapter 5 I first described a placebo-controlled study comparing the acute psychotomimetic 

effects of active and placebo cannabis on adolescents and adults (study 3). I hypothesised that 

cannabis would increase the likelihood of experiencing AVH relative to placebo, and that 

adolescents would be more vulnerable to the psychotomimetic effects, including AVH, of 

cannabis than adults. Next I described a placebo-controlled study comparing the acute 

psychotomimetic effects of CBD-lacking, CBD-rich, and placebo cannabis on adult cannabis 

users (study 4). I hypothesised that both Cann-CBD and Cann+CBD would lead to 

psychotomimetic effects, including AVH, relative to placebo, but to a greater extent in Cann-

CBD. Together the two studies demonstrated that acutely cannabis increases the likelihood of 

experiencing speech illusion. Contrary to my hypotheses, adolescents did not differ from adults 

in the likelihood of experiencing speech illusion, and in fact the increase in self-rated 

psychotomimetic symptoms following cannabis was greater in adults. Moreover, no difference 

in the likelihood of experiencing speech illusion was found between Cann-CBD and 

Cann+CBD 

In chapter 6 I described a placebo-controlled study comparing the acute effects of active and 

placebo cannabis on anhedonia in adolescents and adults. I hypothesised that cannabis would 

increase anhedonia relative to placebo as indexed by reduced reward sensitivity, reduced self-

rated hedonic capacity, and increased self-rated anhedonia. Secondly I hypothesised that after 

both cannabis and placebo, adolescents would be more sensitive to reward than adults, and I 

explored whether the effect of cannabis on anhedonia would differ between age groups. I found 

that the acute administration of cannabis did not affect anhedonia as operationalised as reward 

sensitivity or hedonic capacity. However, as described in chapter 5, cannabis increased self-
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rated anhedonia in adults but not adolescents. An intriguing relationship between baseline 

experience of anticipatory pleasure and reward sensitivity following cannabis was found, with a 

positive correlation in the adolescents and negative correlation in the adults. 

The findings presented in my final two chapters suggest that acute cannabis administration to 

otherwise healthy adolescent and adult cannabis users induces psychotic-like symptoms, 

including AVH, but does not induce anhedonia in adolescents. In study 3 (chapter 5; 

adolescents and adults) cannabis increased anhedonia on only one general self-rated measure in 

adults, but this was not replicated in study 4 (chapter 5; adults-only and CBD) and in chapter 6 I 

found no effect of cannabis on two others measures of anhedonia (reward sensitivity or hedonic 

capacity) in either group. Arguably the effects of cannabis on anhedonia are weak at most. 

Together these findings further encourage the potential for cannabis to be used as a 

pharmacological model to investigate novel treatments for psychotic-like symptoms including 

AVH. They also suggest that cannabis is unlikely to be a useful model of anhedonia. 

7.2 Does adolescent cannabis use have greater potential for harm than adult use? 

The aim of this thesis was to determine whether adolescent cannabis use has greater potential 

for harm than adult use. Firstly, in chapter 3 I found no robust evidence of differences in IQ and 

educational attainment between adolescent cannabis users and non-users. Then, as described in 

chapters 4-6 I found a number of key differences, but also apparent similarities, between 

adolescent and adult acute responses to cannabis. 

7.2.1 Are IQ and educational outcomes in teenagers related to their cannabis use?   

In study 1, even prior to any adjustment for potential confounders, the most experienced 

cannabis users had an IQ score only 3 points below those who had never used, and gained the 

equivalent of six grades lower on one subject of a total of eight at Key Stage 4 relative to never-

users. Moreover, after adjustment these effects were attenuated, with confidence intervals 

crossing the null.  
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At the start of my PhD I would have found this surprising; however, as is apparent from the 

literature described in chapters 1 and 2, the evidence that adolescent cannabis use is associated 

with increased negative outcomes is inconsistent and lacking. Indeed, few studies have found 

impaired performance on memory or response inhibition tasks in adolescent cannabis users 

following two weeks or more of abstinence, and evidence linking earlier age of cannabis use 

onset to poorer cognitive and psychosis outcomes is limited. As I concluded in chapter 1, 

studies assessing cognitive performance in non-intoxicated cannabis users relative to non-users 

tend to result in similar findings in adults and adolescents; though to my knowledge none to 

date have directly compared adolescent and adult cannabis users. 

Nevertheless, a number of cross-sectional studies have found evidence of impaired memory and 

other cognitive performance in adolescent cannabis users relative to non-users, and in a 

prospective cohort study Meier et al (2012) demonstrated associations between cannabis use 

and considerable IQ decline in adolescent-onset (≤17 years old) but not adult-onset (≥17 years 

old) users. However, there are many possible explanations for such findings. While Meier et al 

(2012) ran a series of sensitivity analyses in an attempt to weed out certain alternative 

explanations, including excluding those with a diagnosis of schizophrenia or persistent other 

substance use disorders, the analysis comparing adolescent-onset and adult-onset users was not 

adjusted for any potentially confounding variables.  

Degenhardt and colleagues (2016) discuss the many vulnerability and protective factors that 

have been identified as likely contributors to an adolescent initiating substance use, including 

contextual factors (such as drug availability), fixed markers of risk (including individual risk 

factors such as being male, familial factors such as low parental education, and structural factors 

such as being an member of a racial minority), and individual and interpersonal risk factors 

(such as personality factors and stressful life events). Many studies have demonstrated that 

adolescent cannabis users differ from their peers, from an early age (that is, prior to cannabis 

exposure), on many factors including antisocial behaviour, rebelliousness and poor educational 

attainment (Hall & Degenhardt, 2007). Further, adolescent cannabis users are typically also 
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heavier users of alcohol, tobacco and other drugs, and are more likely to have drug-using peers 

(Agrawal et al., 2007; Fergusson & Horwood, 2000; Lynskey, Vink, & Boomsma, 2006). 

Moreover, risk factors often co-occur, and adolescents with more risk factors are more likely to 

initiate cannabis use at a young age and to become regular users (van den Bree & Pickworth, 

2005). These findings clearly demonstrate that there is selective recruitment to adolescent-onset 

of cannabis use (that is, adolescent-onset of cannabis use does not occur at random across the 

population). Crucially, many of the risk factors for cannabis use initiation are thought to overlap 

with risk factors for a range of negative outcomes, for instance, parental drug use is linked to 

both earlier initiation of drug use and poorer educational attainment in offspring (Barnard & 

McKeganey, 2004; Hawkins, Catalano, & Miller, 1992). Without careful consideration of such 

issues in statistical analyses, associations between cannabis use and poorer cognitive, IQ or 

educational performance are likely to be influenced by confounding variables, as I demonstrated 

in chapter 3. 

However, statistical adjustment of relationships between the exposure of interest and outcome is 

limited by imperfect measurement of confounders and the unending possibility that unmeasured 

confounders (that is, confounders that are unknown or cannot be measured) may be influencing 

your findings. To my mind, one of the strongest methods for assessing the evidence of links 

between cannabis use and outcomes, is by use of twin cohorts. As described in chapter 3, twin 

studies avoid the problems detailed above, since they theoretically isolate the role of substance 

use in predicting outcomes, by controlling for familial factors (both genetic & environmental) 

shared by twins discordant for substance use. 

Soon after I published the findings of chapter 3, a twin study assessing associations between 

cannabis use and IQ was also published based on a number of cohorts from the USA. As 

described in chapter 3, Jackson et al (2016) found no difference in IQ in the late teens (aged 17-

20 years) between twins discordant for cannabis use. Furthermore, two studies have found no 

difference in rates of leaving education early or years of education between twins discordant for 
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cannabis use (J. D. Grant et al., 2012; Verweij et al., 2013). Such findings therefore support my 

conclusions in chapter 3, that associations between adolescent cannabis use and poorer IQ and 

educational outcomes may result from overlapping risk factors (probably environmental more 

than genetic for both IQ and education, as evidenced by a lack of increased effect size in the 

cannabis discordant DZ relative to MZ twin pairs (Jackson et al., 2016; Verweij et al., 2013)) 

rather than from a causal relationship. Though, twin studies are not without their own 

limitations, including the questions of whether twins can indeed be considered representative of 

the general population. As such it is important to consider the weight of evidence across 

different studies, cohorts and methodologies. Together, these three twin studies, alongside my 

ALSPAC findings reported in chapter 3, and the many previous studies described in chapters 1 

and 3 assessing links between cannabis use and cognitive and educational outcomes, suggest 

that non-causal explanations are not only plausible but indeed likely. 

Nevertheless, causality is inherently difficult to address in non-intervention studies. My next 

chapters described controlled studies, in which causal relationships between acute cannabis 

exposure and outcome can be directly assessed. 

7.2.2 Are adolescents more vulnerable to the acute effects of cannabis than adults? 

Moving to my acute findings described in chapters 4-6, clear age group differences emerged for 

a number of outcomes, most notably for the subjective effects of cannabis. Group differences in 

cognitive effects were also found for verbal memory (delayed verbal recall was affected by 

cannabis more in adults than adolescents), and on a number of secondary task outcomes 

(reaction times were longer on the N-back in adults and accuracy was lower on the stop-signal 

in adolescents). Meanwhile, I found no differences between adolescent and adult cannabis users 

in the effects of cannabis on any positive psychotic-like symptom (including incidence of 

speech illusion on the white noise task and self-rated scales), a number of subjective effects 

(including liking of drug effect, ratings of mental impairment and wanting of food), and many 

primary outcomes of task performance (including immediate prose recall, discriminability on 
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the spatial N-back, SSRT on the stop-signal, and response bias on the Probabilistic Reward 

Task). Intriguingly, when group differences were apparent, across all studies the majority of 

these were in the direction of heightened effects in adults. 

Whether these findings are commensurate with the animal literature, upon which many of my 

hypotheses were necessarily based, is complicated by the mixed and limited preclinical findings 

to date. In terms of the generally blunted subjective effects of cannabis in adolescents, this was 

predicted, and is broadly in agreement with previous animal findings. Indeed, adolescent rats 

have been found to be less sensitive to the anxiogenic, locomotor-suppressing, and aversion-

inducing effects of cannabinoids (Acheson et al., 2011; Carvalho et al., 2016; Quinn et al., 

2008; Schramm-Sapyta et al., 2007).  

Furthermore, the adolescents became less accurate on the response inhibition task following 

cannabis, while adults were unaffected, in line with my hypothesis of heightened cognitive 

effects in adolescents. However, in general my predictions of heightened cognitive and 

psychotomimetic effects in adolescents were not supported, with instead some evidence of 

heightened effects on memory and self-rated psychotomimetic effects in adults. While some 

studies with animals have demonstrated heightened acute effects of cannabinoids on learning 

and memory in adolescent relative to adult rats (Cha et al., 2007; Cha et al., 2006; Schneider et 

al., 2008), others have found the opposite (Acheson et al., 2011; Fox et al., 2009), in agreement 

with my findings. Nevertheless, previous comparisons between adolescent and adult rats for 

both subjective and cognitive effects should be treated with caution. Many of the studies 

referenced in this thesis had small samples, and have not been replicated despite key findings 

having been published approximately 10 years ago and widely reported (e.g. (Cha et al., 2007; 

Cha et al., 2006; Schramm-Sapyta et al., 2007)). Moreover, as I will discuss in more detail 

below, there remains controversy about what constitutes the adolescent period in rodents. 

  



220 

 

 

7.2.2.1 Potential implications on adolescent cannabis use patterns 

The pattern of effects seen throughout the acute studies – blunted subjective, memory and 

psychotomimetic effects and a lack of satiety following cannabis in adolescents, alongside 

potentially impaired response inhibition processes in adolescents – may conceivably influence 

real-world cannabis use patterns in the different age groups. Importantly, following drug 

administration the adolescents did not show satiety; instead they wanted more cannabis 

regardless of whether they had taken active cannabis or placebo, while the opposite was seen for 

adults. If adolescents do not feel satiated after an acute dose of cannabis whilst also 

experiencing fewer negative effects, it follows that they may well use more cannabis in a 

smoking session than adults, potentially contributing to the increased risk of long-term harms 

that some have found to be associated with younger age of use (Curran et al., 2016). Indeed, 

though I concluded that the evidence for cannabis use leading to long-term impairments of 

cognition, IQ and educational performance is weak, there are many other potential 

consequences of early-onset substance use, including increased risk of addiction (Chen & 

Anthony, 2003; Chen et al., 2005; Hines et al., 2015; von Sydow et al., 2002). In turn, adults’ 

experience of more negative effects of cannabis may limit their use and reduce their risk of 

harms, which would concur with the declining prevalence of cannabis use seen from early 

adulthood (Degenhardt et al., 2008). At the moment however, such suggestions are largely 

speculative. As will be discussed in further detail below, longitudinal studies are required to 

follow-up on whether age-related cannabis sensitivities do indeed predict future cannabis use 

patterns and other outcomes. 

Of note, similar hypotheses have been suggested from the preclinical alcohol literature, where 

the literature base is much more substantial. There is similar evidence of contrasting profiles of 

heightened positive and blunted negative sensitivities in adolescent and adult rats exposed to 

alcohol acutely, alongside human epidemiological evidence to support the assertion that binge 
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drinking is considerably more prevalent among adolescent and young adult drinkers (Kuntsche, 

Rehm, & Gmel, 2004; Naimi et al., 2003; Research & Evaluation, 2005), and that those started 

drinking from an earlier age have an increased risk of alcohol addiction (DeWit, Adlaf, Offord, 

& Ogborne, 2000; B. F. Grant & Dawson, 1997). Again speculatively, it seems plausible that 

the effects could be promoting heavier and potentially problematic drinking in younger people. 

In fact, I am currently running a similar study design to that described chapter 4, with alcohol, 

in human adolescents and adults. 

In summary, I found some potentially important differences between the age groups in their 

reactions to cannabis, which when considered as a whole may have implications for cannabis 

use patterns and vulnerability to long-term harms in adolescents.  

7.2.2.2 General intoxication or domain-specific effects?  

One alternative interpretation of the overall pattern of my results, is that the often heightened 

effects of cannabis in adults reflect amplified general intoxication (as demonstrated by 

heightened subjective effects), rather than domain-specific cognitive impairments or 

psychotomimetic effects. The primary outcome for the spatial working memory task (that is, 

discriminability) was lowered by cannabis, but did not differ between groups, while the 

secondary outcome of reaction time was longer in adults but not adolescents following 

cannabis. Reaction times also appeared to be marginally slowed in the probabilistic reward task 

in adults but not adolescents (though this was a non-significant effect). Together these findings 

may suggest a psychomotor slowing effect in the adults, which would be in agreement with 

previous findings that adolescent rats experienced lesser locomotor-suppression effects of acute 

THC than adults. Additionally, the blunted effect of cannabis on psychotomimetic effects in 

adolescents was apparent specifically for the PSI subscales of cognitive disorganisation and 

anhedonia, with no age group differences on positive psychotic-like symptoms on any measure. 

Increased self-ratings of cognitive disorganisation may again reflect generally heightened 

intoxication effects of cannabis in adults, rather than a domain-specific effect. The age group 
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difference in PSI anhedonia is intriguing, though as I found no evidence of anhedonia increases 

following cannabis on the same measure in adults in study 4 (chapter 5), and on other anhedonia 

measures in study 5 (chapter 6), this may be an anomalous finding. 

In summary, the overall pattern of results suggests a contrasting profile of resilience and 

vulnerability to the acute effects of cannabis in adolescents and adults, though whether the 

differences reflect domain-specific effects is difficult to determine. Given that adolescents 

experienced reduced accuracy on the stop-signal, the pattern of results cannot be fully explained 

by heightened intoxication in the adults. Furthermore, as will be discussed in the next section, 

that the adolescents and adults had opposing patterns of response regarding desire for more 

cannabis throughout the sessions is intriguing and again suggests a more complex explanation 

for my findings. 

7.2.2.3 Strengths and limitations 

Study-specific strengths and limitations have been described previously in the relevant chapters, 

however given the similarity of the design of the acute studies, there are a number that apply 

across studies 2, 3 and 5. 

7.2.2.3.1 Strengths 

The acute studies described in this thesis have several critical strengths. My groups were well-

matched on baseline measures including premorbid IQ and levels of anxiety, depression, 

impulsivity and schizotypy. This increases confidence that participants in the two age groups 

were drawn from similar populations, and maximises comparability between groups.  

The use of cannabis plant material, rather than extracted or synthetic cannabinoids, via an 

ecologically valid administration procedure (that is, inhalation) enhances the relevance of my 

findings to the real world use of cannabis. Meaningful comparisons between studies that have 

utilised a variety of administration routes (including oral, IV, smoked, vaporised), types of drug 

(including cannabis plant material, isolated THC or CBD), and doses is problematic. In my 
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opinion, inhalation of cannabis plant material via a vaporiser is the ideal method of 

administration in many situations, since it best replicates recreational use but without the health 

risk associated with smoking or the practicality issues given that UK smoking laws prevent 

indoor smoking. Relatedly, administration of a known THC dosage in my studies, which closely 

corresponds to that contained in about a third of a typical joint (van der Pol et al., 2014), 

increases generalisability of my findings to real-world cannabis use.  

Weight-adjustment of the cannabis dose in my adolescent/adult studies is a key strength. While 

IV THC doses are, to my knowledge, always weight-adjusted, this is not often implemented for 

inhaled cannabis doses - indeed, weight-adjustment was not implemented in study 4 (chapter 5; 

adults-only and CBD). Given evidence, as described in chapters 1 and 2, of dose-response 

relationships between THC and drug effects, failure to weight-adjust doses likely introduces 

unwanted variability in the data.  

Lastly, to my knowledge, this is the first time that cannabis has been administered in a 

controlled setting to humans under 18 years of age. Indeed, I am aware of no controlled studies 

in which under 18’s have been administered an illicit drug, thus leaving a large gap in our 

knowledge of the effects of substance use at the very stage that recreational use typically begins. 

The acute studies described in this thesis therefore represent a significant step forward in the 

translation of preclinical developmental psychopharmacology. Moreover, in relation to this 

thesis as a whole, my use of mixed methods – epidemiology and psychopharmacology – with 

hypotheses often driven by animal work, is a key strength of the research I have described here. 

Mixed methods, drawing on the strengths of different research methods and translating findings 

and questions across methodologies, is key to us developing a more comprehensive 

understanding of the full implications of adolescent cannabis use. 

7.2.2.3.2 Limitations 

Firstly, I cannot speak to mechanisms of the reported age-related sensitivities. My findings 

suggest there may be age-related neural sensitivities to cannabis, potentially resulting from the 
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ongoing maturation of the eCB system throughout adolescence and its putative role in 

developmental processes in the brain. Given the limited and inconsistent knowledge we have 

about the development of the eCB system throughout adolescence however, it would be 

inappropriate to speculate how this may relate to my specific findings. There are also a number 

of alternative explanations for the findings, other than age-related neural sensitivities. 

Adolescents have a higher basal metabolism than adults (Black, Coward, Cole, & Prentice, 

1996; Manini, 2010), alongside lower percentage body fat (Forbes & Reina, 1970; Guo, 

Chumlea, Roche, & Siervogel, 1998), potentially affecting the speed of THC metabolism 

differentially in the two groups. Should THC and its by-products be metabolised more quickly 

in adolescents than adults, this could potentially result in the reduced subjective and memory 

effects seen in adolescents; however, if drug metabolism in the adolescents was faster, a quicker 

decline of drug effects would be expected, which does not appear to be the case. Further this 

would not explain the adolescent’s impaired response inhibition accuracy when the adults were 

unaffected. As will be discussed below, future work should focus on identifying the 

mechanisms by which the differential effects I found occurred. 

As discussed above, a key strength was that participants were given a weight-adjusted dose. 

However, since adolescents typically weigh less than adults (Sutton, 2012), on average this 

resulted in them receiving a lower dose than the adults. This was expected, and was in fact the 

key initial motivation for implementing weight-adjusted doses. Unfortunately, this also means 

that I cannot rule out the possibility that the blunted effects seen in the adolescents are due to 

the reduced dose- however again this would not explain the overall pattern of results including 

the adolescents’ (but not adults’) impaired response inhibition accuracy, or the lack of 

differences between the groups on a number of other measures. Moreover, critically the weight 

of cannabis administered did not correlate with any outcomes reported across chapters 4-6, in 

either of the age groups. To address this, groups could potentially be matched for body weight 

in future research. However, this would result in a biased adult sample that does not reflect the 

population as a whole, reducing generalisability of results. Nevertheless, comparison of results 
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from such a study to my findings could be informative. For instance, recruiting lighter adults to 

match to a normative weight sample of adolescents would help to ensure that adolescent 

development was at a similar stage to that in the studies described here, but would remove the 

potential confounds of differential body weight and dose.  

The within-subjects placebo-controlled design is a clear strength of the acute studies described 

in this thesis, allowing causal statements to be made about drug effects within each age group. 

Nevertheless, the issues of confounding, described above in relation to my ALSPAC study, are 

relevant for the between-subjects comparisons (adolescent versus adult) in my acute studies. It 

is important to bear in mind that my adolescent and adult groups differed not only in age, but 

also on a number of other measured variables, and likely will have differed on a number of 

unmeasured variables too, and such differences may have influenced the acute effects of 

cannabis. While many have suggested that there is individual variation in responses to cannabis, 

few studies have explored the baseline characteristics that may influence the acute effects of 

cannabis. Importantly however, the groups were matched for baseline schizotypy, which has 

been linked to both the psychotic-like and pleasurable effects of cannabis (Barkus & Lewis, 

2008; Barkus et al., 2006; Mason et al., 2009).  

Relatedly, all participants were necessarily regular cannabis users, raising the possibility that 

my findings may be affected by group differences in past cannabis use. While the groups were 

statistically matched for cannabis abuse symptomology and days since last cannabis use 

(adolescents= 3 days, adults= 5 days), the adolescents did report slightly more days of cannabis 

use per month than the adults (11 days versus 8 days); further, while the adults had been using 

for more years, they had started using from an older age. Acute subjective and cognitive effects 

of cannabis may be blunted in more frequent cannabis users, and tolerance to some cannabis 

effects following frequent use has been reported (including for spatial working memory and 

episodic memory (Broyd et al., 2015)), however findings are limited and inconsistent 

(Ramaekers et al., 2016). As such, it is possible that differing cannabis use histories and patterns 

between the groups may have contributed to differences in outcomes. Importantly however, 
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cannabis use frequency did not correlate with any outcome in either the adolescent or adult 

groups, somewhat reducing these concerns. 

The adolescents were also more frequent and heavier cigarette smokers, with higher nicotine 

dependence scores, and they had started tobacco smoking from a younger age than the adults. 

The groups were well-matched for age of first alcohol use, but the adolescents were less 

frequent alcohol drinkers. It is possible that cross-tolerance to cannabis from previous alcohol or 

tobacco use may occur, though I am not aware of evidence demonstrating such an effect. A 

recent ecological momentary assessment study suggested that acutely tobacco use may offset 

acute impairment of working memory from cannabis (Randi Melissa Schuster, Mermelstein, & 

Hedeker, 2016), though this has yet to be replicated in a controlled study. If more adolescents 

smoked a cigarette immediately prior to the testing sessions, it is possible that the recently 

consumed nicotine may have helped to protect against the memory impairing effects of cannabis 

in this group. Given that cigarette use was found to be a key confounder of associations between 

cannabis use and IQ and educational performance in chapter 3- and that cigarette use was 

associated with lower IQ and educational performance- it is clearly important to consider 

cigarette use when working with cannabis using populations. 

While pharmacological studies of cannabis typically have a double-blind design, cannabis 

intoxication effects are likely to result in un-blinding of both participant and experimenter, 

potentially influencing responses. This is unfortunately an issue with all pharmacological 

studies in which the drug under investigation has clear subjective effects. Using an active 

placebo with broadly similar intoxication effects is possible and may reduce demand 

characteristics, though it is unclear what drug could be used to mimic cannabis, and experienced 

cannabis users are likely to recognise the differences in subjective effects. 

Of note, I have primarily focused on behavioural data throughout this thesis, since my empirical 

chapters all describe behavioural studies. A number of studies have administered memory and 

response inhibition tasks to cannabis users, or following acute administration of cannabis, while 
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utilising neuroimaging techniques such as fMRI. Such studies have sometimes found no 

difference in behavioural task performance differences while also finding evidence of increased 

or altered BOLD response to task demands in cannabis users or following acute cannabis. 

However, to date no clear pattern of altered activity has been identified for similar tasks, with 

regions of increased response often varying across different studies. Nevertheless, such findings 

have implications for the interpretation of the data described in this thesis, and it may be that 

neural responses differed between adolescents and adults following cannabis. 

Finally, since I have described a number of novel studies, with multiple statistical comparisons 

and limited or mixed evidence on which to base my prior hypotheses, it is important to treat 

these findings with caution. Indeed, a number of my statistical comparisons resulted in results 

‘on the cusp’ of significance, reducing confidence in the reliability of these findings. The results 

from chapter 6 regarding anhedonia in particular should be treated as preliminary, given that the 

sample size was considerably smaller than I initially aimed for. Replications with larger sample 

sizes (which can now be determined according to effect sizes reported in this thesis) are 

required for all novel findings reported in this thesis, before strong conclusions can be drawn. 

7.2.3 Lost in translation? 

Given the lack of human literature on which to base the hypotheses for my acute studies with 

adolescents, many decisions about which domains to assess and the direction of hypotheses 

were based on animal literature. As described above, the preclinical findings have been 

inconsistent, likely resulting from typically small sample sizes, and hard to compare, given 

often poor reporting of methods and statistics. Moreover, there are a number of reasons to be 

cautious of extrapolating the cannabinoid administration findings in rodents to humans. 

As described in chapter 1, the most robust finding in humans from acute and non-acute cannabis 

research is impairment to verbal learning and memory. Such a domain clearly cannot have a 

rodent analogue, preventing assessment of such effects in translational models. Moreover, adult 

rats typically find THC to be aversive, and will not self-administer it, while humans clearly have 
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the opposite reaction- recreational users find cannabis rewarding and of course choose to 

administer it. Intriguingly, there is some evidence to suggest that while adult rats develop 

conditioned place aversion (CPA) to THC, adolescent rats do not. However, interpretation of 

this age difference is difficult given that the adult rodent findings do not match that seen in adult 

humans.  

In many of the animal studies I have referred to in this thesis, rats were administered highly 

potent full CB1R agonists, typically WIN, rather than THC or cannabis. The effects of such 

drugs are therefore likely to differ to that of THC, which is typically a partial agonist at CB1R 

but can also have antagonist properties under certain conditions. Significantly, human usage of 

synthetic cannabinoids, that are typically high-affinity and high-efficacy CB1R agonists, has 

been linked to medical emergencies including seizures, agitation and vomiting, while natural 

cannabis consumption rarely results in adverse physical health effects (Hermanns‐Clausen, 

Kneisel, Szabo, & Auwärter, 2013; Seely, Lapoint, Moran, & Fattore, 2012). Relatedly, when 

THC is used in rat studies, the doses are often high compared to typical human consumption, 

and for repeated administration studies dosing regimens are often intensive and do not reflect 

human self-administration patterns. Of interest, a recent study demonstrated impaired spatial 

recognition memory following an experimenter administered dose of WIN to adolescent rats, 

but no impairment when the drug was self-administered (Kirschmann et al., 2016). Moreover, 

they found no effect of repeated adolescent self-administration on subsequent spatial 

recognition and working memory performance in adulthood. Given that most animal studies use 

experimenter administration, these recent findings to some extent question the validity of the 

translation of cognitive impairment findings following cannabinoid administration in animals to 

naturalistic human use. Such findings clearly also have implications for controlled 

administration studies in humans, and highlight the benefit of using naturalistic experiments 

alongside controlled paradigms such as those described in this thesis. 

Finally, adolescence as a concept is difficult to define. Unlike puberty, which is characterised by 

a series of biological events, adolescence is marked instead more by the steady transition 
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between childhood dependency and adulthood independence. Indeed, in humans, adolescence 

has been defined in developmental research as the period of time that begins with puberty and 

ends when an individual takes on a stable, independent role in society (Steinberg, 2010). Others 

define adolescence by age, with UNICEF and the WHO defining adolescents as those aged 10-

19 years. In this thesis I defined adolescence as those under the age of 18 years, given the 

significance of the age 18 in the UK, both legally and socially. Translation of the adolescent 

period to animals is therefore complex, and the concept of an adolescent period in rodents 

remains controversial. In an influential review, Spear (2000) defined the adolescent period in 

rats as PND 28 to 42, while also acknowledging the difficulties and limitations of defining such 

a period. In a personal communication, Professor Clare Stanford (Pharmacology, UCL) also 

highlighted the inherent difficulty in defining adolescence in rodents and other mammals due to 

the differing rates and times at which different physiological systems, including different brain 

regions, mature. Moreover, given that we do not fully understand such processes in humans, it is 

hard to validate such changes against human adolescent maturational processes. 

Nevertheless, animal research with cannabis clearly has its strengths, not least that it can address 

causal hypotheses in ways which are ethically impossible with humans. A recently developed 

method of administrating cannabinoids via inhalation to rodents, using e-cigarette technology 

(Nguyen et al., 2016), could increase the ecological validity of rodent cannabinoid research, as 

would increased use of THC rather than more potent synthetic cannabinoids. To my mind, the 

best way to increase the translation and utility of rodent work in this field is to increase 

collaboration between human and animal research groups. Adopting a mixed methods approach 

from the outset of a project and developing closely matched study designs and drug protocols 

would increase comparability between species. Of note, an example of such an approach comes 

from a study utilising the Probabilistic Reward Task (PRT) as described in chapter 6, in which 

the PRT was administered to both humans and rats to assess the cross-species translation of the 

effects of nicotine withdrawal on reward responsivity (Pergadia et al., 2014).  
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7.2.4 Are there ‘developmental windows’ for cannabis-related harms? 

An important consideration for the interpretation of the results in this thesis and previous animal 

findings, is developmental stage. Adolescent brain development is thought to start 

approximately at the onset of puberty, lasting until at least the mid-20’s (Giedd et al., 1999), 

with white matter development thought to continue into the early-30s (Tamnes et al., 2010). 

Maturational processes in adolescence are complex and not fully understood, as is demonstrated 

by a recent paper tracking structural brain development throughout the lifespan (Mills et al., 

2016). Combining data from four longitudinal adolescent cohorts, their findings questioned the 

common understanding that grey matter volumes peak around the onset of puberty before 

declining throughout adolescence, instead finding that the peak and onset of declining volume 

occurs in childhood. Moreover, maturation does not occur at similar rates throughout all regions 

of the brain. For instance, Shaw et al demonstrated that more complex growth trajectories are 

apparent in higher-order association cortices relative to regions with more simple laminar 

architecture including limbic regions (Shaw et al., 2008; Tamnes et al., 2013). In an influential 

early study Giedd et al (1999) demonstrated that different cortices showed variation in the age 

of peak grey matter volume and shape of trajectory. It has therefore been suggested that some 

brain areas and functions will be particularly sensitive to certain environmental inputs at 

different stages throughout adolescence (Fuhrmann, Knoll, & Blakemore, 2015).  

As such, the adolescent brain may only be susceptible to harm from cannabis use during certain 

periods of development, or specific structures and functions may only be susceptible if exposure 

coincides within a certain developmental stage. In support of this, in adolescent rhesus 

monkeys, as described previously, Verrico and colleagues found that both acute (Verrico et al., 

2012) and repeated (Verrico et al., 2014) doses of THC led to impaired spatial working memory 

but neither regime had any effect on the earlier developing object working memory. Moreover, 

repeated THC doses prevented the maturational improvement in spatial working memory that 

was seen over the course of the six-month administration period in the monkeys given placebo. 

The effects of cannabis both acutely and following repeated administration may therefore be 
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dependent upon the developmental stage of the cognitive function being measured. Though, to 

better test this explanation of Verrico and colleagues’ findings, a similar study in which 

cannabis exposure is specifically timed to coincide with the period at which object working 

memory is maturing is now needed.  

In humans, memory ability improves throughout childhood and adolescence. For instance, there 

is evidence that basic abilities such as spatial location recall maturing in late childhood (by age 

11-12 years) while more complex abilities such as strategic organization of spatial information 

continue to improve until mid to late adolescence (age 16-17 years) (Luciana, Conklin, Hooper, 

& Yarger, 2005). Similarly, response inhibition improves throughout childhood and 

adolescence, with Rubia et al finding that adolescents aged 10-17 years made more inhibition 

errors on the go/no-go task than the adults aged 20-43 years, and performance positively 

correlated with age (Rubia et al., 2006). Although, another study found that performance on an 

antisaccade task of interference (an alternative index of inhibition) matched that of adults by age 

14 years (Luna, Garver, Urban, Lazar, & Sweeney, 2004). Of interest, others have found 

evidence of increasing inhibition-specific neural responses continuing into adulthood (for 

review, see (Blakemore & Robbins, 2012)), suggesting that while in chapter 4 no age group 

differences in placebo performance were detected on the stop-signal task, related neural 

processes may have differed. Together these previous findings suggest that maturation of the 

abilities required for the completion of the N-back and stop-signal tasks as used in chapter 4 

may already have been fully matured in the 16-17 year-olds. The tasks may therefore not be 

sensitive to age differences in the effects of cannabis on performance. Indeed, we saw no 

placebo session group differences in performance on any of the cognitive tasks. Had my 

adolescent participants been younger it is possible that heightened working memory deficits or 

lengthened stop-signal reaction times would have become apparent, and indeed the pattern of 

results across all studies may have differed.  

Verrico and colleagues’ (2014) findings are relevant also to my ALSPAC findings in chapter 3. 

I summarised cannabis exposure in one variable reflecting cumulative number of cannabis uses 
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in the participant’s lifetime, as reported at one time-point at age 15. Cohort studies such as this, 

and studies relying on retrospective reporting of drug use in general, may not be sensitive 

enough to detect associations between outcome and cannabis use or age of cannabis use onset, if 

developmentally sensitive periods are short, or, more problematically, if there is considerable 

inter-individual variation in the age at which relevant maturational processes occur, as indeed 

the evidence described above suggests. Using chronological age of cannabis use onset as a 

predictor may therefore mask true relationships between exposure and outcome. 

In an attempt to reduce the variance in brain maturational state between participants – given 

evidence of differing age of puberty onset and inconclusive evidence of differing brain 

development trajectories between sexes (Giedd et al., 1999) – I recruited only males for studies 

2, 3 and 5. This therefore precludes generalisation of findings to teenage girls. Unfortunately, 

participants in cannabis research are predominantly male and gender effects have rarely been 

assessed, with inconsistent findings (Broyd et al., 2015). Some have shown heightened 

subjective (Cooper & Haney, 2014) and working memory (Makela et al., 2006) effects in 

women compared to men, though others have found no differences (Anderson, Rizzo, Block, 

Pearlson, & O'Leary, 2010). Recently it was demonstrated that younger age of cannabis use 

onset predicted poorer verbal memory in women but not men (Crane et al., 2015), suggesting 

that there may be age-dependent gender differences in the cognitive effects of cannabis. 

Moreover, there is mixed evidence to suggest sex differences in vulnerabilities to addiction, for 

instance some have found that women progress from drug initiation to addiction quicker than 

men (Tuchman, 2010). Given such findings, there is a clear evidence gap regarding the effects 

of cannabis in young women and girls. 

7.3 Future directions 

As described above, replication of my novel findings should be the next step, and given the 

potential age-dependent gender differences in the effects of cannabis, this should involve 

females as well as males. Determining the mechanisms by which the pattern of age-related 
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differences and similarities emerged is also key. A simple next step would be to address the rate 

of THC metabolism by taking repeated blood samples following cannabis administration and 

comparing the rate of breakdown of THC between different age groups. 

Ideally, future acute and non-acute studies would also index developmental stage of the 

adolescent brain, though how this could be achieved is unclear. While pubertal stage may be a 

better index of maturational brain state than age, measurement of pubertal stage may be 

unreliable (Blakemore, Burnett, & Dahl, 2010; Desmangles, Lappe, Lipaczewski, & Haynatzki, 

2006), and by age 16 years many boys and girls have reached pubertal maturation. Indeed, when 

planning my acute studies I considered including measures to index pubertal stage, such as self-

reported Tanner staging (Marshall & Tanner, 1970) and salivary testosterone measurements, 

however the reliability of both has been questioned, and little variation on either measure would 

be apparent by age 16 (Desmangles et al., 2006; Granger, Shirtcliff, Booth, Kivlighan, & 

Schwartz, 2004; Marshall & Tanner, 1970). Moreover, the relationship between pubertal stage 

and brain and cognitive development is not well understood, so interpretation of this data would 

have been limited. Indeed, while it is thought that the hormonal changes that occur at the onset 

of puberty – including rising levels of oestrogen and testosterone – are likely to influence the 

onset of adolescent brain development processes, including synaptic pruning (Goddings et al., 

2014), brain maturational processes continue for many years after the end of pubertal 

maturation, demonstrating some degree of independence between adolescent brain and pubertal 

development (Blakemore et al., 2010). Our knowledge of the ontogeny of adolescent brain 

development remains in its infancy, but as knowledge improves we will be better able to index 

region-specific developmental stage of the brain. If we were able to reliably index stages of 

adolescent hippocampal maturation, for instance, we could potentially identify specific sensitive 

periods at which the hippocampus may be more vulnerable to THC exposure. Ideally, future 

acute administration studies would also include younger participants. This would allow us to 

address the hypotheses regarding sensitive periods described in the previous section. However, 

in the UK under-16’s are not able to provide informed consent, and it is questionable whether 
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parents or guardians would be willing to allow their children to participate in such research. 

Moreover, the ethical considerations of such a study would be complex and it is dubious 

whether it would be appropriate to administer cannabinoids to healthy children even if they 

were recreational users.  

Naturalistic and self-administration studies with adolescent and adult cannabis users are also 

needed, to assess whether the pattern of age-related cannabis effects I found translates to more 

ecologically valid cannabis use contexts. Importantly, such studies could also identify whether 

adolescents do indeed tend to use greater quantities of cannabis per session, as I have predicted 

from my results. I am aware of no such data to either support or refute this hypothesis in relation 

to cannabis, but, as described earlier, there is some epidemiological evidence to suggest this 

pattern may be seen in adolescent alcohol use (Kuntsche et al., 2004; Naimi et al., 2003; 

Research & Evaluation, 2005). Tracking participants longitudinally following participation in 

these studies would allow us to investigate whether age-related sensitivities do indeed impact in 

the long-term on cannabis use patterns, cognition and mental health outcomes. 

Finally, something that became very apparent in the course of reviewing the acute cannabis 

literature in chapter 1 and 2, is a considerable lack of methodological consistency across studies, 

in terms of doses, cannabinoids, route of administration, participant characteristics, and the 

specific tasks administered to index similar domains. Such discrepancies restrict meaningful 

comparisons of study findings. Similarly to the above point, one goal could be standardisation 

of cannabis user classification, for instance a strict definition of what constitutes a frequent 

versus infrequent user. Additionally, given the robustness of the verbal immediate recall deficit 

caused by cannabis, consistent assessment of this domain using a standard methodology across 

different studies and research groups would be quick to administer, and could provide an 

indicator of the comparability of studies with wisely varied methodologies. 

7.4 Concluding remarks 
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In summary then, does adolescent cannabis use have greater potential for harm than adult use? 

In terms of non-acute effects, I found no difference in IQ and educational attainment for 

adolescent cannabis users and non-users after adjusting for potential confounding variables. 

Considering these findings alongside previous research, I would therefore argue that there is 

lacking evidence to date that adolescent cannabis use causally impairs intellectual and 

educational performance. In terms of the acute effects of cannabis, my findings suggest that 

adolescents do not experience greater memory impairment or psychotic-like symptoms acutely, 

though as discussed above the pattern of age group differences may have the effect of 

encouraging increased cannabis use in adolescent populations. Nevertheless, before strong 

conclusions can be drawn these novel findings must be replicated, and longitudinal studies must 

assess whether differential acute responses to cannabis do indeed affect future cannabis use 

patterns and other outcomes. 

7.4.1 Making a hash of it 

I often find myself wondering what I would do differently if I was to rerun my acute studies 

now. While as described above there are many directions in which future work could go, I have 

settled on three key improvements that I wish I had done differently in the first place. Firstly, 

given that for a number of my outcomes I found ‘trend-level’ effects, I would increase my 

sample size. It was perhaps unrealistic to expect a medium sized effect across the board for age 

group differences. Secondly, I would ensure that my groups were better matched on recent 

cannabis use, particularly on frequency of use, to address the frustrating possibility that the 

adolescents may have had greater tolerance to some of the effects of cannabis than the adults. 

Finally, I would have checked that my data files were saving correctly for the probabilistic 

reward task earlier, so that I didn’t lose 35% of participants’ data. 

7.4.2 Gone to pot? 

In the short four years that I have been working in the field of cannabis research, so much has 

changed in the world of cannabis. In December 2013, Uruguay became the first country to fully 
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legalise the production, sale and recreational use of cannabis. As of November 2016, there are 

now eight states in the USA that have voted to legalise possession and consumption of cannabis 

for recreational purposes. In the UK, public health bodies (Royal Society for Public Health and 

Faculty of Public Health, June 2016), national newspapers (The Times, June 2016) and major 

political parties (Liberal Democrats, March 2016 and Green Party, from at least 2006) have now 

supported decriminalisation of cannabis. On the day I write this, an editorial in the British 

Medical Journal has supported drugs policy reform focused on a move away from the 

criminalisation of drug users. Around the world there are increasing calls to legalise the 

production, sale and use of cannabis for medicinal purposes, and in September 2016, a cross-

party group of MPs and peers recommended that medicinal cannabis use should be legalised in 

the UK. Of particular relevance to this thesis, there is ongoing debate about the likely impact of 

relaxed cannabis laws across the globe on adolescent cannabis consumption. While age 

restrictions have been imposed in the USA, as with alcohol and cigarettes, there is evidence that 

adolescent use is rising. For better or worse, this changing “cannabis climate” has made it an 

exciting time to work in this field. 

As I finalise my thesis, Donald Trump has been elected president of the USA, while on the same 

day four more states voted for legalisation of recreational cannabis. The following day, myself 

and colleagues were awarded an MRC grant to take the research described in this thesis forward 

over the next four years. How the cannabis climate will change over the next four years – four 

years of Trump and four years of our grant – has yet to be seen.  
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Appendix 1: ALSPAC data application, study 1. 
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Appendix 2: ALSPAC study approval, study 1. 
 

From: R Doerner [mailto:R.Doerner@bristol.ac.uk]  

Sent: 23 July 2013 15:41 

To: Roiser, Jonathan 

Subject: ALSPAC Project B2031 

 

Dear Jonathan, 

The Executive Committee met yesterday and are pleased to approve your proposal.  However, 

they have asked me to double-check with you that you correctly ticked the 'new data collection' 

box on the proposal form. 

The reference number is B2031 (please quote this on all correspondence).  Please note that due 

to the Wellcome Trust's open access policy, you will be responsible for making any publications 

open access.  For further clarification, please visit the below link:- 

<http://www.wellcome.ac.uk/About-us/Policy/Spotlight-issues/Open-access/index.htm> 

I have copied in Kate Northstone who will be in touch to assign a data buddy to help with the 
data.  This proposal will incur a Data Buddy Fee, which is a set amount of £896.00.  Please 
could you provide me with a name and address to send the invoice to? 

Please also note that I will be monitoring the proposals process and I would therefore appreciate 
any updates regarding the project. 

The approved project will be listed on ALSPAC's website. 

Best wishes 

Barb. 
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Appendix 3: Ethical approval, studies 2, 3 and 5. 
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Appendix 4: Ethical amendment approval, studies 2, 3 and 5. 
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Appendix 5: Information sheet, studies 2, 3 and 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 

VOLUNTEER INFORMATION SHEET 
Version 5 05/01/15 

 
How does Δ9-tetrahydrocannabinol (THC) affect adolescent and adult cannabis 

users? 
 

What is this study? 

You are being invited to participate in a research study. This study aims to increase our 

understanding of how cannabis affects the brain, psychological wellbeing and memory.  

This study is being conducted by researchers from the Clinical Psychopharmacology Unit at 

University College London. Before we describe the study and its purpose we would like to 

make it clear that this is a completely voluntary study and that you will be free to pull out at any 

time. 

Why are we doing this study? 

Cannabis contains about 80 chemicals which are unique to the plant and are called 

‘cannabinoids’. One of these cannabinoids is 9-tetrahydrocannabinol (THC), the part of 

cannabis that is associated with the feeling of being ‘high’. Some research suggests that 

adolescent users may be more at risk of aversive effects of THC than adult users, so we want to 

see how cannabis affects cannabis users of different ages. 

The present study is a controlled laboratory study of cannabis. It aims to investigate the acute 

effects of cannabis on participants’ memory, psychological well-being and subjective 

experiences. 

Who can participate in this study? 

We are inviting people aged 16-26 who have regularly used cannabis voluntarily without 

adverse consequences. You must be able to inhale a substance as the treatment is administered 

via inhalation from a balloon-like device. All volunteers should be healthy and not receiving 

treatment for any mental health problem. Volunteers must also have good spoken English and 

basic literacy skills, as well as good vision, no colour blindness and no history of psychosis 

either personally or in their immediate family (i.e. mother, father, siblings). If you are pregnant 

or are at risk of becoming pregnant you will not be able to take part. 

What is involved? 
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The study will involve two separate testing days, which will each be at least 7 days apart. All 

testing sessions will be arranged outside of school/ college/ work commitments. All volunteers 

must agree to not use any recreational drug (including cannabis) or alcohol for 24 hours prior to 

each test day, and this will be confirmed with a urine drug screen at the start of each session. 

You will be sent a text message to remind you of this. 

On each test day you will be asked to fill out questionnaires about your mood and mental state. 

You will then be asked to inhale one of 2 treatments via a balloon-like device. The 2 treatments 

are cannabis and placebo. The placebo is an inactive substance, with no drug effects. You will 

only receive one treatment on each of the 2 days. You will then be asked to fill out some further 

questionnaires about your mood and mental state and do some computer tasks.  

Blood pressure will be monitored during each session, as THC can increase heart rate and blood 

pressure. Saliva samples will be taken twice during each session, to assess levels of the stress 

hormone cortisol and cannabinoids in your saliva. The samples will be sent to testing 

laboratories for processing promptly after collection. Urine samples are taken only for drug 

screening purposes, and will be disposed of immediately. 

Each session will last for about two hours. Most people find the tests quite straightforward and 

fun to do. Neither you nor the researcher will know on which day you will receive each 

treatment. 

If you agree to take part you will also be asked whether you are happy to be contacted about 

participation in future related studies. Your participation in the present study will not be affected 

should you choose to be re-contacted or not. 

What are the risks of taking part in this study? 

As participants are all experienced cannabis users, no risks are envisaged from the 

administration of THC, as they will be in similar or lower quantities than those commonly 

found in street cannabis. You will be familiar with its effects, which usually include ‘stoned’ 

feelings, anxiety, psychosis like effects, increased appetite, drowsiness, euphoria, and increased 

heart rate. 

A doctor will be available for medical cover on the test days. 

What are the benefits to me? 

You will leave with the knowledge that you have contributed to our understanding of the effects 

of cannabis and further progress in medical and psychological research. In addition, you will be 

given a one page summary of results when the study has finished and an information leaflet 

containing advice for stopping cannabis use. 

Will I receive compensation for giving my time? 

You will be given a small payment of £7.50 per hour to compensate you for your time. You will 

also be reimbursed for travel on both test days (a standard day travel card; please provide your 

receipts to the researcher).    

How will my data be kept? 
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Your data from this study will be stored electronically using a numbered code so that you 

cannot be personally identified. Only researchers directly involved in the study have access to 

the data. All data will be collected and stored in accordance with the Data Protection Act 

(1998). 

Who can I contact for further information? 

If you have any further questions please contact: 

Ms Claire Mokrysz         020 7679 1231               c.mokrysz.12@ucl.ac.uk 

Prof Val Curran  020 7679 1898  v.curran@ucl.ac.uk 

It is up to you to decide whether to take part or not; choosing not to take part will not 

disadvantage you in any way. If you do decide to take part you are still free to withdraw at any 

time and without giving a reason.   

All research projects are reviewed by an ethics committee. This proposal was reviewed and 

approved by the UCL Research Ethics Committee. All data will be collected and stored in 

accordance with the Data Protection Act 1998. 

Please discuss the information above with others if you wish or ask us if there is anything that is 

not clear or if you would like more information.  
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Appendix 6: Ethical approval, study 4. 

 

  



273 

 

Appendix 7: Information sheet, study 4. 
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