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Abstract

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent condition associated with increased risk
of liver failure, diabetes and numerous further conditions. In NAFLD, lipid build-up and the resulting
damage occurs most severely in hepatocytes at the pericentral end of the capillaries (sinusoids) which
supply the cells with blood [1-3]. Due to the complexity of studying individual regions of the sinusoids,
the causes of this zone specificity and its implications on treatment have largely been ignored in
previous research. In this study, a computational model of liver glucose and lipid metabolism was
developed which includes zone-dependent enzyme expression. This model was then used to study the
development of NAFLD across the sinusoid. By simulating insulin resistance and high intake diets
leading to the development of steatosis in the model, we propose a novel mechanism leading to
pericentral steatosis in NAFLD patients. Sensitivity analysis on the rate parameters in the model was
then used to highlight key inter-individual variations in hepatic metabolism with the largest effect on

steatosis development.

Secondly, the model, in combination with cell culture experiments, was used to assess potential drug
targets for clearing steatosis across the sinusoid without disrupting other aspects of metabolism.
Adverse effects were highlighted when targeting (stimulating or inhibiting through altering the rate
constants) for most processes in the model, and these were largely validated in the hepatocyte-like
cell culture line through the addition of small molecule inhibitors. However, inhibition of lipogenesis
combined with stimulation of B-oxidation was predicted to clear steatosis, reduce hepatic FFA levels,
reduce excess ETC flux and increase hepatic ATP concentrations across the sinusoid without causing
adverse effects elsewhere in metabolism. Furthermore, in the cell culture model, inhibition of
lipogenesis combined with stimulation of B-oxidation using acetyl-CoA carboxylase inhibitor TOFA,
resulted in clearance of steatosis, improved cell viability, reduced oxidative stress and increased

mitochondrial function.
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Aims of the Project

Non-alcoholic fatty liver disease (NAFLD), the build-up of fats in the liver in the absence of alcohol
abuse, drug abuse and viral infection, is present in around one third of US and UK adults [1-5]. High
liver fatincreases the probability of developing liver failure, type 2 diabetes, kidney failure, liver cancer
and cardiovascular problems [6-14]. Due to the high prevalence of the disease, it is expected to
become the largest cause of liver transplant in the coming decades [8]. No approved drug for reducing
steatosis in NAFLD is currently available and lifestyle change, which is known to be associated with
low compliance rates, remains the only effective treatment. Therefore, study of both the development

and treatment of NAFLD is urgently required, particularly in the early, reversible stages.

Hepatocytes in vivo are known to show vast heterogeneity in enzyme expression depending upon their
position along the liver sinusoid. This heterogeneity in enzyme expression causes groups of
hepatocytes to specialise in different functions. In adult NAFLD, patients tend to show higher lipid
content in cells near the central vein (pericentral) [15-17]. Additionally, the resulting damage tends to
occur more rapidly in these cells. However, due to the experimental difficulty in studying a large
number of variables (such as concentrations, enzyme activities or conversion rates) in specific regions
of the sinusoid, researchers instead tend to study homogenised tissue and only measure averaged
changes in the liver as a whole. Therefore, the causes of this increased pericentral susceptibility to
steatosis remain unclear. Additionally, the implications of hepatic heterogeneity are rarely considered
when assessing potential drug targets. It is possible that a drug may have beneficial effects on one

region of the sinusoid whilst causing damage in another.

The aim of this project was to study the implications of zonation in NAFLD development and treatment
through a combination of computational modelling and cell culture experimentation. These
simulations and experimental data will provide a basis for targeted and minimised future in vivo

experimentation.
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The first objective was to build a model capable of representing hepatic glucose and lipid metabolisms
across the sinusoid (chapter 2). This model should include blood flow and variation in enzyme activity
across the sinusoid based on experimental data in the literature. It should additionally provide realistic
output data when simulating both metabolically normal and insulin resistant individuals, when

compared with a range of experimental data.

The second objective was to simulate conditions leading to the development of NAFLD (chapter 3).
This included simulating the effects of high fat intake, IR and other metabolic dysregulation in the
model and comparing with the metabolic changes known to occur in NAFLD. After establishing a
representation of NAFLD, the next goal was to assess the major differences between periportal and
pericentral cells that cause higher susceptibility to steatosis in pericentral cells. In a computational
model, the concentrations of a large number of molecules and the rates of processes can be studied
in individual regions of the sinusoid under a range of conditions, which would not be feasible

experimentally. The model predictions can then be used to motivate targeted experimental validation.

The third objective was to assess the effects of inter-individual heterogeneity in hepatic metabolism
on susceptibility to steatosis and on the pattern of steatosis development (chapter 3). Around 25% of
obese individuals fail to develop steatosis whilst 16% of lean individuals show excess liver fat [18].
Furthermore, whilst pericentral cells tend to show the highest lipid content, variation is seen in the
predominant location of steatosis from pericentral to azonal or pan-sinusoidal [15-17]. Computational
modelling allows each parameter to be modified individually, or several parameters to be modified as
required, where experimentally, large scale studies would be required to correlate liver fat percentage
or liver fat distribution with enzyme activities and confounding factors would have to be accounted
for. Furthermore, use of a computational model allows detailed study of the mechanisms leading to

change in liver fat percentage or distribution.

The fourth objective was to assess the impact of pharmacologically targeting various processes in the

model to clear steatosis in NAFLD without further disrupting energy metabolism (chapter 4). Through
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changes to the rate constants of particular processes, pharmacological inhibition or stimulation of key
enzymes can be simulated. By performing this analysis in a computational model, the effects on a wide
range of variables can be studied under a range of conditions. Additionally, the effects of targeting

each process can be studied in each individual region of the sinusoid.

The final objective was to provide validation of key model predictions using an in vitro HepG2 cell
culture model (chapter 5). Firstly, the impact of FFA treatment on the cells was studied to ensure they
replicate the major metabolic changes occurring in hepatocytes in NAFLD in vivo and seen in model
simulations. Once a cell culture model of the metabolic changes had been established, the next goal
was to treat the cells with a range of small molecule inhibitors to mirror the pharmacological targeting

simulated in the model and assess the effects on metabolism, comparing with the simulated data.
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1 Chapter 1: Introduction

In this chapter, a review of the relevant literature is provided. Firstly, in section 1.1, the structure
and physiology of the liver are reviewed. In section 1.2 the causes and consequences of zonation in
liver function across the sinusoid are discussed with a focus on zonation in metabolism. In section
1.3 areview of liver disease and failure is presented focussing on NAFLD, NASH and related
conditions. Finally, in section 1.4 a brief review of previously published computational models

relevant to hepatic metabolism or zonation across the sinusoid is presented.

1.1 The Liver

1.1.1 Structure of the Liver

The liver is the largest internal organ in the body (1.44-1.66kg) [19] and is involved in a vast range of
essential processes including glucose and lipid metabolism, drug and xenobiotic detoxification, plasma
protein synthesis and bile production. Despite its regenerative capacity, disease of the liver is the fifth
largest cause of death in the UK and the only major cause of death to be rising year on year [1]. The

following sections will review the structure and function of the liver.

1.1.1.1 Blood Supply and Microstructure

On the micro scale, the liver is built from ~1-2mm long structural units called lobules. In cross-section,
these consist of rows of liver cells extending outwards from a central vein to form a hexagonal shaped
unit which tessellates with adjacent lobules (see figure 1.1) [20]. Blood is supplied to the liver through
two vessels, the hepatic artery and the portal vein. The hepatic artery supplies oxygenated blood from
the heart. The portal vein provides blood which has passed through the gastrointestinal tract, spleen
and pancreas containing the nutrients and toxins absorbed from food. Upon entering the liver, the
hepatic artery and portal vein divide into branches which pass between the corners of neighbouring
lobules. These branches subdivide into capillaries known as sinusoids which extend into the lobule
between each row of cells, supplying them with oxygenated blood from the hepatic artery and

nutrient filled blood from the digestive system [21] (figure 1.2). After passing through the sinusoid,
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blood exits the lobule through the central vein. The central veins from each of the lobules join to form
the hepatic vein, through which blood leaves the liver. As well as the blood vessels, intrahepatic bile

ducts pass between each lobule which join and provide bile to the digestive system.

Cross Section of Liver Lobules 3D projection

Porto-central axes of the sinusoids

/Central |

Lobule Diameter ~ 0.5-1mm

Figure 1.1: A cross sectional view of a hepatic lobule and its neighbouring lobules showing the portal
triads, central veins and the sinusoids and a 3D projection of the lobule.

1.1.1.2 The Sinusoid - Cell types and zonation

Hepatocytes are the major cell types in the liver making up roughly 80% of its volume [20]. They are
the worker cells of the liver, involved in the vast range of functions described in section 1.1.2. The
other cells, referred to as non-parenchymal cells, make up roughly 40% of the total number of cells in
the liver but only 6.5% of its volume [22]. These include sinusoidal endothelial cells, Kupffer cells
(macrophages), hepatic stellate cells and liver associated natural killer cells. A fenestrated single cell
wall composed largely of endothelial cells along with some Kupffer cells lines the sinusoid vessel [20].
The fenestrae are small enough to block platelets or cells from passing through, but allow plasma to

enter the space between the wall and the hepatocytes known as the space of Disse [20]. The rare Pit
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cells (the natural killer cells of the liver) also inhabit the sinusoid space, attached to the luminal surface
[20]. Ito cells inhabit the space of Disse and are strongly bound to the endothelial cells. The liver also
contains a residual stem cell population known as Oval cells that are thought to be involved in

regeneration. Under normal conditions the liver contains relatively little connective tissue [23].

Cross Section of the Liver Sinusoid
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Figure 1.2: The liver sinusoid showing the portal triad (hepatic artery, portal vein, bile duct) and the
central vein.

The focus of this study is on hepatocytes, the cells responsible for performing the major functions of
the organ. Hepatocytes are large polarised cells, having distinct membranes on their basolateral and
canalicular sides. The basolateral side faces the sinusoid and so is covered in microvilli to maximize
the surface area presented to the blood. The canalicular surfaces of neighbouring groups of

hepatocytes form bile canaliculi, the thin ducts which join to form the bile duct [20].

The relative contributions of each hepatocyte to different functions performed by the liver vary as a
function of their position along the sinusoid. For example, in glucose metabolism, the cells in the
region closest to the hepatic artery and portal vein, the periportal zone, tend to be more active in
glucose production whilst cells in the region closest to the hepatic vein play a more prominent role in
glucose uptake [24]. This heterogeneity, known as zonation, is seen in almost all functions of the liver
[24]. The primary cause of zonation is the change in abundance of substances in the blood as it passes
through the sinusoid. For example, the average blood oxygen concentration falls from 60-65mmHg in

the periportal zone to 30-35 mmHg in the pericentral zone [24]. As well as changes in the enzymatic
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content of hepatocytes across the sinusoid, there are also changes in the numbers and types of non-

parenchymal cells. Zonation is reviewed in detail in section 1.2.

1.1.2 Liver Physiology

The liver performs a vast number of processes in the body such that, at rest, it produces 20% of the

body’s heat. These include roles in detoxification, synthesis and storage section.

Ammonia is the main toxic waste resulting from protein catabolism and its detoxification occurs
mostly in hepatocytes [20]. It is generally converted to urea which is removed by the kidney, although
specific subgroups of hepatocytes (pericentral) are able to convert ammonia to glutamine [25].
Bilirubin, a degradation product of haemoproteins, is conjugated with glucuronic acid to make it
soluble. It is then removed in the bile. Bile acids are also produced in the liver using cholesterol as a

substrate.

The liver is responsible for the breakdown of several hormones such as insulin and glucagon along
with certain proteins [20]. It also removes most xenobiotics from the blood. Hydrophobic xenobiotics
are solubilised so that they can be removed [20]. This is a two-stage process with different enzymes
responsible for each process. The first step involves oxidation of the xenobiotic by attaching a polar
group. In the second step, a second group of enzymes conjugate small hydrosoluble molecules (amino
acids, glutathione, glucuronic acids etc.) to the protein [20]. It also has immunological roles containing

many active cells which destroy pathogens in the portal vein [20].

The liver plays important roles in the synthesis of proteins, hormones (such as insulin-like growth
factor-1) and amino acids [20]. The liver produces albumin, which makes up 50% of the protein content

of blood, along with various coagulation factors and antithrombin [20].

The liver plays a vital role in carbohydrate metabolism, storing glucose and other sugars as glycogen
(section 1.1.2.1). It also plays several roles in fatty acid (FA) metabolism (section 1.1.2.2). It is these

roles in the metabolism of carbohydrate and fat which are studied in the subsequent chapters. As well
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as glycogen, the liver stores a vast range of other substances including vitamins A, D, B and K, iron and

copper [20].

1.1.2.1 Glucose and Carbohydrate Metabolism

Most carbohydrates and sugars are broken down to glucose in the digestive system before entering
the blood stream in the intestine. Glucose is a simple monosaccharide that acts as the major source
of energy for most cell types. After meals, glucose is absorbed into the blood stream whilst between
meals, especially during exercise, sugars are utilised in organs and muscle for energy. Since these rates
of input and consumption are not constant, excess glucose must be stored to stop the blood
concentration rising above or falling below safe bounds. This storage occurs in liver and muscle cells

where glucose molecules are attached to polysaccharide (glycogen) chains.

When blood glucose levels are high, the hormone insulin is released by the pancreas prompting the
liver to remove glucose from the blood stream. Glucose molecules are converted to glucose-6-
phosphate (G6P) by the enzyme glucokinase (GK) before the G6P is polymerised to glycogen by
glycogen synthase (GS). Alternatively, G6P can also be converted to pyruvate through a process known
as glycolysis (predominantly rate-limited by enzymes phosphofructokinase (PFK) and pyruvate kinase
(PK)). Excess pyruvate is then converted to acetyl-CoA for use in oxidative ATP synthesis or lipid

metabolism or released into the blood as lactate.

When blood glucose levels are low, the hormone glucagon is released triggering the breakdown of
glycogen to glucose. Similarly, during exercise catecholamines such as epinephrine promote glucose
release. This breakdown of glycogen to G6P is mediated by glycogen phosphorylase (GP). This G6P is
converted to glucose by glucose-6-phosphatase (G6Pase) before being released into the blood.
Additionally, under the influence of glucagon, the liver converts lactate, pyruvate and certain amino
acids to G6P in a process known as gluconeogenesis (predominantly rate-limited by enzymes

phosphoenolpyruvate kinase (PEPCK) and fructose-bisphosphatase (FBPase)).
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GS and GP, along with the key enzymes in both glycolysis and gluconeogenesis, can exist in active and
inactive states depending on their phosphorylation. When insulin, glucagon and other hormones bind
to surface receptors on a cell, it triggers a series of downstream effects which alter the
phosphorylation state of these enzymes. Through this feedback loop between the liver and pancreas,
blood glucose levels are maintained in a safe range. Furthermore, transcription of glucose metabolism
enzymes is increased or suppressed when exposed to long term increased insulin or glucagon
concentrations [20]. Zonation in glucose metabolism is discussed in detail in section 1.2, whilst each

of the individual processes and their representations in the model are discussed in chapter 2.

1.1.2.2 Fatty Acid Metabolism

Although adipose tissue is the major tissue responsible for mediating blood free fatty acid (FFA) and
triglyceride concentrations, liver plays important role in synthesizing triglyceride (combining three
FFAs with a glycerol molecule) and releasing them into the plasma, predominantly as very low density
lipoproteins (VLDL). Although the majority of fats in liver arise from uptake of circulating FAs, some de
novo lipogenesis also occurs in hepatocytes [26]. When studied in the livers of patients with NAFLD,

around 26% of the FAs contained in hepatic triglycerides and VLDL were produced in liver [26].

FAs are taken up from the plasma by fatty acid transport proteins, FATP2 and FATP5 along with
scavenger receptor CD36 and caveolins [27-33]. For de novo FA synthesis to occur, acetyl-CoA (and
related malonyl-CoA) molecules, derived predominantly from sugars, proteins or previous FA
oxidation, are combined into FA chains (under the influence of enzymes acetyl-CoA carboxylase (ACC)
and fatty acid synthase (FAS)). This process is stimulated by insulin and inhibited by glucagon [34, 35].
However, de novo lipogenesis is counter-intuitively upregulated in insulin resistant livers [36-39].
Numerous FAs can be produced or absorbed from food with different chain lengths and with saturated
and unsaturated tails. The most common of FA is palmitate in humans, plants animals and micro-
organisms comprised of the equivalent of 8 acetyl-CoA molecules [40], whilst the most common FA in

adipose tissue is oleic acid [41, 42].
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Triglyceride synthesis (also promoted by insulin and glucagon) involves combining three FAs with a
glycerol backbone for storage (rate-limited by enzyme glycerophosphate acyltransferase [43]). Post-
prandially, when FFA and glucose concentrations are high, triglyceride synthesis removes the FFAs
from the blood stream preventing damage. The liver also utilises FFAs as its primary source of energy
through B-oxidation [44]. Here the FA chains are broken down to acetyl-CoA, which can in turn enter
the citric acid cycle to produce cellular ATP [20]. The liver also plays a major role in the production of
ketone bodies and in cholesterol synthesis. Zonation in lipid metabolism is reviewed in section 1.2,

whilst each of the individual processes their representation in the model are discussed in chapter 2.

1.2 Zonation

Zonation is the variation of enzyme expression and liver function between hepatocytes across the
sinusoid. Almost all functions performed by the liver show zonation. In some cases a very specific
group of hepatocytes in a particular location perform a function, whilst in other cases a more gradient-
like and variable distribution exists [45]. In section 1.2.1, the zonation of enzymes and functions
involved in energy, glucose and lipid metabolism are reviewed. These follow the latter class of
gradient-like changes in function across the sinusoid [45]. In section 1.2.2, possible mechanisms
involved in the promotion of a zonated phenotype are discussed. Zone specific damage in liver disease

is discussed in section 1.3.6.

1.2.1 Zonation of hepatic enzymes and function

1.2.1.1 ATP production through oxidative phosphorylation

Adenosine tri-phosphate (ATP) is produced from adenosine diphosphate (ADP) and inorganic
phosphate (Pi) through the electron transport chain (ETC) in the mitochondrial membrane of cells. The
ETC relies on nicotinamide adenine dinucleotide (NADH) or flavin adenine dinucleotide (FADH) as well
as oxygen to occur. Since transporting cytoplasmic NADH into the mitochondria consumes energy, the
majority of the NADH and FADH required are generated through the degradation of acetyl-CoA in the

citric acid cycle inside the mitochondria. Periportal hepatocytes contain a greater volume of
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mitochondria [46], a larger mitochondrial membrane area [46] and increased concentrations of key
enzymes involved in both the citric acid cycle [47] and the ETC [48], demonstrating that they have a
higher capacity for generating energy through this mechanism. This is consistent with the observation
that pericentral cells inhabit a low oxygen environment. If the ETC is active in the absence of oxygen,
it can lead to the production of toxic metabolites such as the superoxide anion radical, hydrogen
peroxide or the hydroxyl radical [45, 49]. Therefore, these cells contain less of the machinery for
oxidative energy production to avoid producing reactive intermediates in the absence of oxygen as an

acceptor [45, 50].

Due to the reduced oxidative phosphorylation in pericentral hepatocytes, they tend to produce acetyl-
CoA from glucose through glycolysis whilst periportal cells consume FAs through B-oxidation [45]. The
breakdown of glucose to pyruvate through glycolysis produces a small amount of ATP without the
requirement for oxygen. This pyruvate can then by converted to acetyl-CoA or released into the blood
as lactate. Pericentral hepatocytes specialise in this process as an additional mechanism to produce
ATP [45]. Generating acetyl-CoA from FAs meanwhile consumes a small amount of ATP. Periportal
hepatocytes inhabit a higher oxygen environment and are able to generate sufficient acetyl-CoA from

FA oxidation [45]. This is discussed in more detail in the following sections.

1.2.1.2 Carbohydrate metabolism
There is a bias for the glycogen stores in periportal hepatocytes to fill more quickly after feeding.
However, glycogen is seen across the sinusoid, and the dominant section has been shown to vary from

periportal to intermediate with feeding state [51].

The mechanism by which glycogen stores are filled varies across the sinusoid [45]. These differences
are related to the heterogeneity in oxidative energy metabolism described in the previous section.
Pericentral cells cannot produce sufficient ATP through the citric acid cycle alone and instead
specialise in processes that produce additional ATP. Periportal cells meanwhile inhabit the high oxygen

environment near the periportal artery and can specialise in the more ATP intensive processes.
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In the context of glycogen storage, pericentral cells tend to fill their glycogen stores from glucose and
release them as pyruvate and lactate. This is because the conversion of glucose or glycogen to
pyruvate and lactate through glycolysis results in the production of ATP without the requirement of
oxygen. Periportal cells show higher rates of gluconeogenesis and glycogen synthesis from lactate,
which requires ATP to occur. Periportal glycogen stores are then released as glucose. The high oxygen
environment allows periportal cells to produce sufficient ATP through oxidative phosphorylation to
fuel gluconeogenesis. Evidence for this glucose-lactate cycling across the sinusoid (figure 1.3) firstly
comes from studies looking at the relative concentrations and activities of enzymes involved in
glycolysis and gluconeogenesis across the sinusoid ([52-73] see chapter 2: table 2.2). A number of
studies have also shown higher gluconeogenesis in periportal cells than in pericentral cells [73-78] and
higher glycolysis in pericentral cells [77, 79] either using metabolic flux analysis in perfused whole

livers or using cultured primary periportal and pericentral hepatocytes.
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Figure 1.3: Glucose/lactate cycling in the liver.

Amino acids can also enter carbohydrate metabolism through conversion to intermediates in the citric

acid cycle or to pyruvate or related molecules. Since periportal hepatocytes contain higher
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concentrations of the components of both the citric acid cycle and gluconeogenesis, it is likely that
these cells will specialise in both the catabolism of amino acids and the production of glucose from

them (e.g. reviewed in [80]).

1.2.1.3 Lipid metabolism

The liver plays several roles the metabolism of lipids. FAs are broken down to form acetyl-CoA through
B-oxidation. The majority of FFAs in the blood stream originate from dietary triglycerides or from
adipose tissue [26]. However, the liver also synthesizes FAs from substrates such as glucose, lactate,
amino acids and ethanol. Hepatocytes, along with adipose tissue, combine FAs and glycerol to form
triglycerides and phospholipids. Hepatocytes also package triglycerides into VLDL and release them
into the blood stream. The liver is the only organ responsible for the production of ketone bodies and

the major organ responsible for cholesterol production [45].

Zonation in lipid metabolism is less clearly defined than in oxidative energy and glucose metabolisms
and tends to vary with feeding state. However, as a general trend periportal cells are more involved
in uptake and B-oxidation of FAs [81-87], whilst pericentral cells are more involved in de novo synthesis
of FAs from acetyl-CoA [45, 81, 83, 86-89] (in turn produced from glucose through glycolysis) and the
production and release of triglycerides [83, 86]. There is some evidence that ketogenesis is specialised
to pericentral cells (e.g. increased B-hydroxybutyrate dehydrogenase expression in pericentral region
[81, 90]), whilst cholesterol synthesis is restricted to a small number of cells surrounding the periportal

artery [45, 91].

Guzman et al, used isotope labelling to show that that that B-oxidation of palmitate (the most common
FA) occurred 1.2 and 1.5 times as quickly in isolated periportal hepatocytes from fed and starved
animals respectively compared to the isolated pericentral hepatocytes [87]. However, when refeeding
after starvation and in cold-exposed animals the pericentral section became more prominent in B-
oxidation highlighting the flexibility in the zonation of lipid metabolism. Consistent with this, the rate

of FA synthesis was higher in pericentral than periportal hepatocytes from fed and starved rats, whilst
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the rate was higher in periportal hepatocytes in refed and cold-exposed animals [87]. Additionally
Guzman and Castro showed that the rate of FA synthesis was 1.59 times higher in pericentral
hepatocytes in the absence of hormones [83]. The rates of cellular and VLDL triglyceride, phospholipid
and cholesterol production from FAs were all increased by 1.3-1.6 times in pericentral hepatocytes
[83, 86]. Meanwhile, after liver perfusion with blood containing fluorescently labelled FAs, a higher
signal was seen in periportal cells than in pericentral cells demonstrated increased uptake [92]. The
triglyceride, phospholipid and cholesterol content of pericentral cells were slightly, but not statistically
significantly, higher in this study. Zonation of key enzymes in lipid metabolism is discussed in chapter

2 and table 2.2.

1.2.1.4 Zonation in other liver functions
Zonation is seen in almost all liver functions including ammonia detoxification, protective metabolism,

xenobiotic removal and bile formation. For a detailed review of zonation in liver function see [45].

1.2.2 Signals Promoting Zonation
The following section reviews the possible signals responsible for promoting a zonated phenotype in

vivo. These include blood based metabolites along with nervous input.

1.2.2.1 Oxygen

The most important of signal promoting zonated enzyme expression is oxygen [50]. The average
concentration of oxygen falls from 65mmHg to around 35mmHg between periportal and pericentral
ends of the sinusoid [69]. Oxygen is required for ATP production via oxidative phosphorylation [50].
Studies have shown that the blood oxygen concentration at which cells begin to lose some of their
ability to produce ATP is around 20-30mmHg [69]. One study calculates the half maximum oxygen
uptake to be 14mmHg [93]. Although the average oxygen concentration remains above this across the
sinusoid, there is a radial gradient in concentration from the centre of the sinusoid to the plasma
membrane of cells. The actual oxygen concentration reaching the cells was on average was measured

to be 25mmHg [94]. Therefore, as an approximation, we might expect the average concentration at
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the cell surface to fall from 32.5mmHg at the periportal end to 17.5mmHg at the pericentral end across
the sinusoid. It is, therefore, beneficial for hepatocytes near the hepatic artery to specialise in more
ATP intensive processes, whilst pericentral cells should specialise in those the produce ATP without

the requirement of oxygen.

In vitro experiments have demonstrated the importance of oxygen as a determinant of zonated
enzyme expression. When cells are stored at higher oxygen concentration for 1-2 days in culture, it
has been demonstrated that concentrations of PEPCK, an enzyme involved in gluconeogenesis, rise
whilst concentrations of GK and PK, enzymes involved in glycolysis, fall [77]. It was also demonstrated
that the rate of gluconeogenesis increases and the rate of glycolysis falls after pre-treatment
increasing oxygen concentration (4->13% 02 in atmospheric gas) with the measurements being
performed at equal oxygen concentrations. Furthermore, on a shorter time scale Nauck et al. showed
that cells incubated in arterial oxygen concentrations show higher induction of PEPCK expression by
glucagon than those incubated in venous oxygen concentrations [69]. It was also demonstrated that

these increases results from increased synthesis rather than a change in the rate of degradation [45].

There is evidence to suggest that oxygen acts via reactive oxygen species (ROS), in particular hydrogen
peroxide to provide a zonated phenotype [95]. Hydrogen peroxide is toxic substances created as a
result of electron transfer in the oxidative phosphorylation chain. A smaller increase in expression of
periportal enzyme PEPCK occurred as a result of increased oxygen concentrations when accompanied
by an increase in catalase, the enzyme responsible for the conversion of the ROS hydrogen peroxide
to water and oxygen [95]. Furthermore, it has been demonstrated that knocking out manganese
superoxide dismutase, which catalyses the dismutation of superoxide to oxygen and hydrogen

peroxide, leads to a loss of zonation [96].

1.2.2.2 Substrates and Products
There is evidence to suggest that zonated enzyme expression is linked with feeding state, most

strongly in the enzymes mediating lipid metabolism (e.g. in lipogenesis [81, 88, 89] and B-oxidation
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[81, 82]). Furthermore, it has been shown that in starvation, the prominent function of pericentral
hepatocytes switches from glycolysis to gluconeogenesis [45, 97]. However, a full study of the effect
of carbohydrates, lactate or fatty acids on enzyme expression has yet to be performed. Since oxygen
and hormones are removed from the blood by hepatocytes across the sinusoid independent of feeding
conditions, they are likely to provide stronger signal molecules for sustained zonation than metabolic
substrates such as glucose which may be removed from or released into the blood by hepatocytes

depending upon feeding conditions.

1.2.2.3 Hormones

The concentrations of insulin and glucagon are also thought to contribute to the development of
zonation [45]. The rate at which insulin is removed across the sinusoid depends upon feeding state.
Between meals the concentration falls by around 50% whilst postprandially only 15% of insulin is
removed between periportal and pericentral sections [45]. The glucagon concentration meanwhile
falls by around 50% independent of food intake [45]. As a result, a higher insulin to glucagon ratio is

seen postprandially in pericentral than periportal cells consistent with their role in glucose uptake.

As discussed by Jungermann et al. [45], if enzyme synthesis was induced by absolute hormone
concentration alone we would expect all enzymes to be upregulated in the periportal section due to
the fall in concentration of both insulin and glucagon across the sinusoid. The induction of enzyme
synthesis must instead either be dependent on the relative concentrations of hormones or dependent

on a modulator formed as the blood passes through the sinusoid.

Some in vitro experiments suggest the former of these mechanisms. When hepatocytes are incubated
with insulin alone, expression of GK increases [98]. However, when the cells are also incubated with
glucagon, this induction is inhibited [98]. When hepatocytes are incubated with glucagon alone,
expression of PEPCK is increased. In this case insulin and adenosine act as inhibitors [99-101]. It is
therefore likely that the increasing insulin to glucagon ratio across the sinusoid is at least partially

responsible for inducing the zonation enzyme expression. Furthermore, additional experiments have
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looked at the overall gluconeogenic and glycolytic activity of cells incubated for 48 hours in varying
qguantities of either insulin or glucagon. In these experiments, incubation with insulin led to increased

glycolysis whilst incubation with glucagon led to increased gluconeogenesis [77].

1.3 Liver Disease and Failure

In 2014, 11,597 people in the UK died of liver disease making it the fifth biggest cause of death and it
is the only major cause of death to rise year by year [102]. Liver conditions can broadly be split into
two categories, those which gradually increase in severity over time, known as chronic, and those in
which severe symptoms suddenly arise, known as acute. A third category, where a sudden insult
occurs in an individual with chronic liver disease is known as acute on chronic. This report focusses on

NAFLD, a slowly developing chronic form of liver disease, and its interaction with IR.

1.3.1 Chronic Liver Disease

Chronic liver conditions occur when the liver experiences repeated damage over a long period of time.
This repeated process of injury followed by regeneration leads to fibrosis, cirrhosis and problems
stemming from the inflammatory response. There can be numerous causes of this such as alcohol and
substance abuse, hepatitis B and C or NAFLD. If the condition persists until liver failure occurs, the only
current proven treatment is transplant. Due to the limited availability of organ donors, the waiting list
can be up to a year for low risk chronic patients (average 140-150 days [103, 104]). Between 1% April
2012 and 31°% March 2013, only 52.7% of patients on the transplant list received transplants whilst
5.4% of patients the waiting list died [105]. The development of treatments to provide an alternative

to transplant, and to prevent the progression from early to late stage liver disease is therefore crucial.

Numerous stages mark the progression of chronic liver disease. Steatosis, the build-up of excess fats
occurs in the majority of liver diseases, including most notably NAFLD and excess alcohol consumption
[106, 107]. Simple fatty liver alone is asymptomatic in the vast majority of patients but increases the

probability of development of liver disease and cardiovascular disease [8, 106, 108].
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Fibrosis is the development of excessive fibrous tissue (extracellular matrix proteins such as collagen),
generally as a result of repeated damage and repair [109]. It is associated with a stiffening of the liver
and can prevent blood flow to regions of the liver. Fibrosis is often accompanied by inflammation and

liver cell ballooning, particularly in NAFLD and non-alcoholic steatohepatitis (NASH) [110].

Once sufficient fibrosis and cell death occurs such that the liver no longer functions properly, the
condition is referred to as cirrhosis. The precise definition for the transition from fibrosis and cirrhosis
is ill-defined. Liver failure causes fatigue, weakness, swelling in the lower legs, ascites (fluid build-up
in the abdomen that often becomes infected), spider angiomas (spider-like blood vessels in the skin)
and vyellow skin due to defective bilirubin clearance [20]. Additionally, increased plasma
concentrations of nitrogen and other molecules due to defective liver function cause damage and
reduced function in the brain, known as hepatic encephalopathy [109]. This can results in confusion,

coma and death [109].

1.3.2 Acute Liver Failure (ALF)

Acute liver failure (ALF) results from the rapid loss of a large number of liver cells (80-90% of total cell
mass) and leads to the sudden onset of severe symptoms. The most common cause of ALF in
developed countries is paracetamol poisoning whilst in the developing world it is hepatitis [111]. Other
causes include a wide range of viral infections, extreme alcohol abuse, idiosyncratic reaction to
medication and causes linked to pregnancy. If ALF occurs in a patient with a chronic liver condition
that was previously stable, it is known as acute-on-chronic liver failure (ACLF) [112]. While a small
number of patients (~20%) will recover from ALF spontaneously, this is not true of the majority, and

the only effective existing treatment is transplant [113].

1.3.3 Diabetes, IR and the Metabolic Syndrome

1.3.3.1 Diabetes Mellitus

Diabetes mellitus is the name given to a group of conditions in which either disrupted insulin release

or reduced insulin reception lead to hyperglycaemia. Since insulin promotes glucose uptake, problems
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in its release or detection result in dangerously high blood glucose levels post-prandially. Additionally,
the lack of glycogen storage can then result in hypoglycaemia and diabetic coma between meals.
Standard tests for diagnosis of diabetes include a fasting blood glucose concentration of greater than

7mM or a concentration of greater than 11mM two hours after a 75g oral glucose tolerance test [114].

Diabetes mellitus can be split in to two categories; type 1 diabetes mellitus (or insulin-dependent
diabetes mellitus) resulting from deficient insulin production by the pancreas and type 2 diabetes
mellitus (T2DM or non-insulin-dependent diabetes mellitus) resulting from problems with insulin
reception. Type 1 diabetes results from loss of pancreatic B-cells, often caused by infection in

genetically susceptible individuals [115].

T2DM is largely associated with lifestyle factors such as obesity and lack of exercise as well as genetic
susceptibility[116]. Sustained increased FFA, glucose and insulin concentrations cause damage to
hepatic insulin reception leading to decreased glucose uptake. This triggers a feedback cycle in which
increased plasma FFA and glucose concentrations cause to worsening insulin release causing further

hyperglycaemia, hyperlipidaemia and hyperinsulinaemia.

As of 2014, 3.2 million people in the UK, 32 million people in Europe and 29.1 million people in the
USA were estimated to suffer from T2DM. Additionally, the number of people showing signs of
‘prediabetes’ increased from 10% to 33% in the UK between 1996 and 2011, and from 79 million to

86 million in the USA between 2010 and 2012 [1-5].

1.3.3.2 Metabolic Syndrome

Metabolic syndrome is the name given to a broader range of conditions associated with dysfunction
of energy, lipid and carbohydrate metabolism. It is associated with lifestyle as well as genetic factors
and is strongly linked with the development of heart disease and T2DM. Criteria for diagnosing
metabolic syndrome vary but generally patients are required to show three of the following 5
conditions with varying definitions of the severity required: obesity, diabetes or hyperglycaemia,

hypertriglyceridaemia, reduced HDL-cholesterol and raised blood pressure [114, 117-120].
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Prevalence of the metabolic syndrome is the U.S has been estimated to be as high as 34% [121]. If the
disease is still in its early form, the major treatment is lifestyle change. Later interventions tend to
focus on treatment of the individual conditions and some publications have questioned the usefulness

of grouping the disorders under one name [122, 123].

1.3.4 NAFLD and NASH

NAFLD is the abnormal retention of lipids in liver in the absence of alcohol abuse, drug abuse or viral
infection [8]. As of 2004, prevalence of NAFLD in the United States was around 34% [124-126].
Similarly as of 2014, 25-30% of the UK adult population were thought to suffer from the condition [6]
(30-40% in men and 15-20% in women [8, 124]). These numbers continue to rise year on year, and
there is considerable overlap with patients showing ‘prediabetes’, which increased from 10% to 33%
between 1996 and 2011 in the UK [1-3]. It is also becoming the most common cause of liver disease

amongst children [127].

As discussed below, NAFLD can progress to NASH which can result in fibrosis, cirrhosis and liver failure.
It is estimated that 30-40% of NAFLD progresses to NASH [108], which is associated with development
of fibrosis in 40-50% of patients [108], cirrhosis in 20% of patients and liver-related death in 12% [6,
7]. Even in the absence of cirrhosis, NASH is associated with hepatocellular carcinoma [8-11], cardiac
diseases [12], chronic kidney disease [13] and a range of further conditions [8, 14]. A meta-analysis
study has suggested that, depending on the severity of fibrosis, NASH increases the probability of liver
related death 5-10 fold [12]. It has additionally been suggested that NASH may also be responsible for
many cases in which cirrhosis occurs with unknown causes [128, 129]. In terms of population, it is

thought that 2-5% of adults in the UK suffer from NASH [1, 12].

The risk of mortality to each individual suffering from NAFLD is comparatively low (one study
suggested a 57% increase in mortality in NAFLD individuals relative to individuals without hepatic
steatosis largely due to liver failure or cardiovascular disease [12]), and the majority of patients are

asymptomatic. However, due the vast prevalence of the disease, it has been predicted that NAFLD will
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become the major cause of liver transplant by 2030 [8]. Even as of 2009, NASH was the third biggest

cause of liver transplant in the United States, accounting for 10% of total transplants [130].

1.3.4.1 Risk Factors

1.3.4.1.1 Insulin Resistance and T2DM

NAFLD is strongly linked with IR, the metabolic syndrome and T2DM [18, 131-134]. The presence of
IR, the metabolic syndrome and T2DM all increase the risk of NAFLD [135-137], and the presence of
NAFLD increases the risk of T2DM (section 1.3.4.2.2). Around 70% of T2DM sufferers show excess liver

fat [8, 138].

IR leads to increased plasma FFA and triglyceride concentrations resulting in increased lipid uptake
into hepatocytes [139, 140]. IR in liver and muscle cells causes deficient glycogen synthesis, increasing
the glucose concentration as a substrate for lipogenesis [139, 141]. Even in insulin resistant patients,
insulin stimulation of lipogenesis appears to remain intact, further increasing the production of fats
from sugars (see chapter 3) [36-39]. Additionally, IR in adipose tissue prevents insulin stimulation of
triglyceride synthesis and inhibition of lipolysis in these tissues. This results in fats stored in adipose
tissue being broken down and released into the plasma FFAs, which can then enter liver cells [142,
143]. It has been shown that diabetic individuals are 3 times more likely to die of liver failure than
non-diabetics [144], and it has been suggested this is predominantly due to the increase NAFLD
prevalence [8]. It should be noted, however, that many individuals with NAFLD are neither diabetic
nor obese, and understanding the condition across the range of patients is vital to developing effective

therapies [145, 146].

1.3.4.1.2 Obesity and Exercise

Obesity is strongly linked with the development of NAFLD. Firstly, the amount of fat in the liver
correlates with percentage fat mass and BMI [147-154]. In obese individuals, higher plasma FFA
concentrations result in increased uptake of FFAs in liver and muscle [146, 155]. NAFLD is also linked

with high calorie intake, particularly with a high fat content [6, 18, 133]. In addition to overall adipose
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tissue mass, the type of adipose tissue in an individual affects their probability of developing NAFLD.
Liver fat shows an even stronger correlation with visceral fat mass than overall adiposity [147-152].
Visceral adipose tissue is both more active and less insulin sensitive than subcutaneous adipose tissues
and performs lipolysis and lipogenesis at faster rates [156-160]. This contributes to an increased
plasma FFA concentration, redirecting fats to liver and muscle. Numerous studies have demonstrated
that increased hepatic lipid supply arising from either dietary intake or adipose tissue contribute

significantly to hepatic steatosis [155, 158, 161, 162].

Adipocytes in obese individuals additionally release inflammatory cytokines such as tumour necrosis
factor alpha (TNFa) and interleukin-6 (IL-6) and show reduced adiponectin release [163-167]. Although
the role of cytokines and hormones in NAFLD and NASH development is not yet fully understood, the
suppression of adiponectin release in particular is thought to have an effect on liver and muscle fat,

where TNFa and IL-6 have a largely paracrine effect (within the adipose tissue) [155, 161, 165].

Regular physical exercise shows a negative correlation with liver fat mass, although it is not known
whether this results from reduced visceral adipose mass rather than a direct effect [153, 154, 168,
169]. However, it has been suggested that exercise may metabolise lipids in muscle cells and promote
non-insulin dependent glucose uptake, reducing IR both in muscle and around the body independent
of weight loss [155, 168-172]. Aerobic fitness and mitochondrial function have been shown to

inversely correlate with liver fat percentage and prevalence of NAFLD [172-176].

1.3.4.1.3 Lipoatrophy:

Despite the strong link between visceral fat mass and hepatic steatosis, NAFLD has been shown to
develop in a notable percentage of lean individuals [145]. In a study by Wong et al, fatty liver was
shown to develop in 8% of the individuals whose BMI was below the overweight threshold (23kg/m)
at both baseline and follow up [153]. Similarly, Xu et al. studied the incidence of NAFLD in non-obese
Chinese individuals. At baseline, NAFLD was measured in 7.27% of 6905 individuals [177]. Of 5562 lean

individuals who did not show signs of NAFLD at baseline, 8.8% had developed the condition after 5
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years [177]. In the US, 11613 individuals who did not frequently consume alcohol were assessed for
NAFLD and NASH. 431 of 4457 normal weight individuals were observed to suffer from NAFLD

compared with 2061 of 7156 overweight or obese individuals [178].

NAFLD does show a strong correlation with obesity, but given that a sizeable number of lean
individuals develop NAFLD whilst many obese individuals show healthy liver fat content, additional
factors must be considered. It has been hypothesized that the underlying factor causing the
development of NAFLD is the inability to store excess plasma lipids correctly within adipose tissue,
rather than the presence of excess adiposity itself [146]. As discussed above, it is particularly increased
mass of the less insulin sensitive visceral adipose tissue which correlates with NAFLD. Therefore, it
may be an excess of this less insulin responsive adipose tissue that causes improper storage of plasma
FFAs and a build-up of fats in other organs around the body such as liver and muscle. Consistent with
this, lipoatrophic mice lacking adipose tissue develop hepatic steatosis and IR [179, 180].
Transplantation of white adipose tissue protects against these factors [180]. It has been shown that
FATPs and CD36 (proteins involved in FA uptake) both show increased hepatic expression but reduced
adipose expression in individuals with NAFLD, compared with individuals of the same weight group

without fatty liver [146, 181, 182].

Reduced overall activity of proliferator-activated receptor gamma (PPARYy), a protein which promotes
adipose FA uptake, leads to increased susceptibility to NAFLD [183] whilst liver specific knockout of
the protein protects against excess liver fat [184, 185]. This is consistent with the idea that it is not
just excess fat, but the incorrect storage of excess fat which cases NAFLD. It should be noted that lean
NAFLD patients show higher mortality than obese NAFLD, and treatment options for resolving NAFLD

across the range of patient weights must be developed [186].

1.3.4.1.4 Genetics
Genetic variability is involved in the progression of NAFLD in the susceptibility to the build-up of fats

in liver, the development of fibrosis and the rate of progression to cirrhosis. A brief review of the role
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of genetics in NAFLD susceptibility is provided here. For more information see recent reviews by
Anstee et al. [187, 188] and Marzuillo et al. [189]. No single gene has been identified as mediating
NAFLD risk alone, and instead inter-individual variability results from the combined effect of common
polymorphisms identified by both genome-wide association studies (GWAS) and candidate gene
studies [187, 188]. However, across a range of studies two genes have been repeatedly highlighted as
strongly associated with NAFLD; patatin-like phospholipase domain-containing protein 3 (PNPLA3)

and transmembrane 6 superfamily member 2 (TM6SF2) [187, 188].

The Met148lle allele of (PNPLA3), which is prevalent in Hispanic populations [190], has been linked
with the development of NAFLD and IR [187, 188, 191-193]. A second SNP in the same gene has also
been implicated. The mechanism by which this polymorphism of PNPLA3 alters hepatic liver
triglyceride levels is unknown and the gene is likely to have wide ranging functions [146, 155, 187,
188]. However, it is thought to play a role in fatty-acid selective hepatic triglyceride remodelling [194].
PNPLA3 SNPs are not only associated with altered liver triglyceride content but also severity of

steatohepatitis and fibrosis.

A number of studies have shown an association between a TM6SF2 SNP and both hepatic triglyceride
content and the development of fibrosis [187, 188]. As with PNPLA3, the role of TM6SF2 has yet to be
fully elucidated. However, the current hypothesized role of TM6SF2 is in hepatic VLDL assembly,

suggesting reduced removal of triglycerides from liver [189, 195].

In addition to these two genes, NAFLD is associated with a wide range of common polymorphisms
with roles in insulin sensitivity, carbohydrate metabolism, lipid metabolism, alcohol metabolism,

oxidative stress, inflammation and fibrosis amongst others [187, 188].

1.3.4.1.5 Hormones:
It has been suggested that imbalance of several hormones may play a role in the development of
hepatic steatosis. Hyperinsulinaemia and IR are both involved in the development of fatty liver [196,

197]. Insulin largely stimulates lipogenesis in hepatocytes through the action of sterol-regulatory
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element binding protein 1c (SREBP-1c), which mediates expression of numerous FA and triglyceride
synthesis enzymes [155, 158, 198]. However, as discussed in chapter 3, a counterintuitive increase in
SREBP-1c expression is seen in insulin resistant and steatotic livers suggesting that this pathway
continues to contribute to de novo lipogenesis [36-39]. However, it has been shown that sustained
supplementary provision of insulin in hyperinsulinaemic T2DM individuals lowers rather than raises
liver fat content [199]. An additional protein to SREBP-1c in stimulating this lipogenesis is the
carbohydrate response element-binding protein (ChREBP), which is activated by hyperglycaemia and
has similar stimulatory effects to SREBP-1c. In mouse models of NAFLD, both SREBP-1c and ChREBP

show increased activity [36-39, 200].

Plasma adiponectin concentration negatively correlates with liver fat and hepatic IR [152, 201-203]
while polymorphisms in the adiponectin receptor gene have been linked to variation in both hepatic
fat content and IR [30]. Despite being released by adipocytes, plasma adiponectin concentration
negatively correlates with adipose tissue mass. Adiponectin promotes lipid oxidation in liver and
skeletal muscle via AMP-activated protein kinase (AMPK), whilst decreasing the activity of ACC and
FAS [167, 204-206]. This provides an additional link between hepatic fat content and obesity via
plasma FFA concentrations [207]. The drug pioglitazone (a thiazolidinedione) has been shown to both
increase circulating adiponectin and reduce hepatic fat content in NAFLD individuals, although this

may have additional mechanisms of action beyond stimulating adiponectin release [208].

Leptin, also produced in fat tissue, may also play a role in reducing hepatic steatosis. Beyond its role
in reducing appetite and food intake, the hormone is also thought to have direct effects on lipogenesis
and lipid oxidation [155, 209]. However, the magnitude of these effects relative to those of other

hormones such as insulin and adiponectin are currently not known.
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1.3.4.2 Consequences of NAFLD

1.3.4.2.1 Progression to NASH, Fibrosis and Cirrhosis

Early stage NAFLD is generally diagnosed when the liver fat concentration is greater than 5% after
alcohol abuse, drug abuse and viral infection have been rules out as causes, although a higher
threshold of 5.6% has been suggested based on the 95" percentile [15, 210, 211]. Once steatohepatitis
develops, the condition is referred to as NASH. NASH is diagnosed when the presence of inflammation
and hepatocellular ballooning is detected in addition to steatosis [212]. Around 30-40% of NAFLD
patients progress to NASH [108]. 40-50% of NASH patients develop fibrosis [108], 20% develop

cirrhosis and liver-related death occurs in 12% [6, 7].

Since NAFLD and NASH are generally asymptomatic in their early stages, diagnosis of both conditions
tends to be notably delayed relative to onset. In general, measurements of individual biochemical
markers do not allow for an effective judgement of the severity of lipid build-up in an individual [213].
The most accurate method of assessing NAFLD/NASH severity is biopsy [213]. However, this is
inherently invasive and is not recommended for asymptomatic, incidentally discovered NAFLD [213].

Instead liver fat content is often measured using non-invasive imaging techniques (e.g. [214-224]).

Hepatic steatosis may progress to inflammation and steatohepatitis through a number of mechanisms
[155]. Increased oxidative stress is seen in humans with NASH [225], which has been suggested to
stimulate an inflammatory responses and mitochondrial dysfunction [155, 165, 226]. It has been
shown that increased lipid availability is associated with a reduction in insulin stimulated ATP synthesis
in muscle in obese and non-obese individuals [227]. Similarly it has been shown that hepatic ATP
synthesis is lower in T2DM individuals, who were also demonstrated to have high hepatic fat content,
than controls [228]. It is therefore possible that the progression from NAFLD to NASH results from a
combination of inflammatory responses, reduced mitochondrial function, mitochondrial stress and

the build-up of ROS [229, 230].
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Changes in the microflora of the gut may promote inflammation through an effect on liver
macrophages, the Kupffer cells [155]. NAFLD patients are more likely than controls to show intestinal
bacterial overgrowth [231, 232]. Gut bacterial overgrowth results in both ethanol and bacterial
lipopolysaccharide production [233]. Both of these molecules stimulate the production of pro-
inflammatory cytokine TNF-a in Kupffer cells [155, 234]. Furthermore, alterations to the microbiome

of the gut have been shown to reduce liver inflammation [235-238].

1.3.4.2.2 IRand T2DM

As discussed, diabetic individuals are far more likely to suffer from NAFLD than metabolically normal
individuals. Furthermore, it has been shown in a large number of studies that individuals with excess
liver fat are more likely to develop hepatic IR, peripheral IR and T2DM [150, 214-224, 239-243]. A
number of these studies have shown that increasing severity of pre-existing NAFLD increases this risk
of T2DM development [8, 218, 221, 223, 224]. It has also been shown that risk of incident T2DM
returns to baseline in individuals who had pre-existing fatty liver, but whose liver fat percentage
returned to a healthy level over a 5 year trial [224]. Similarly, individuals whose liver fat percentage
increased over the period showed an increased risk of incident T2DM development [224]. This
demonstrates a clear benefit to NAFLD patients of reducing steatosis level. NASH patients are more
likely to develop T2DM than NAFLD patients. In a study by Ekstedt et al., over a 13.7-year period 71%
of individuals who suffered from NASH at the start of the study went on to develop T2DM period
compared with 46% of individuals who suffered from NAFLD (p=0.01) [108]. In this study, NAFLD and
NASH score were assessed by biopsy rather than non-invasive imaging, allowing greater confidence in
the measurements [108]. As well as hepatic IR, hepatic steatosis is also associated with whole-body IR

independent of visceral fat mass [240, 244-246].

Although hepatic fat build-up, predominantly in the form of triglycerides, is associated with increased
risk of T2DM and other conditions, triglycerides are generally considered to be a less potent form of

fat in promoting progression to NASH and IR. Instead, the adverse effects are thought to arise due to
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the FAs themselves (in particular palmitic acid) [247], ceramides [248] and diacylglycerides (DAGs) [8,
146]. It is thought that the protein kinase C (PKC) family of kinases enzymes play a key role in the
development of IR as reviewed in Birkenfeld et al [146]. In particular, PKCe is highly expressed in liver.
PKCe knockout mice are protected against IR when fed a high fat diet leading to steatosis [249]. There
is some evidence to suggest that this may involve DAGs [8, 146]. In particular, DAGs in contact with
the plasma membrane of hepatocytes, rather than in lipid droplets or endoplasmic reticulum [250].
DAGs are an intermediate in the sequential addition of three FAs to a glycerol backbone in triglyceride
synthesis. In a liposyn (intravenous fat emulsion) plus heparin infusion rodent model, muscle IR
developed and protein kinase C-6 (PKC 8) became active before any changes in triglyceride or
ceramide concentration, but at roughly the same time as the DAG concentration increased [251].
Similar results are seen in liver, where hepatic IR develops after DAG concentrations begin to rise and
is accompanied by activation of PKCe [252]. This was accompanied by reduced glycogen synthesis as
a result of reduced activity of insulin receptor kinase. This hepatic IR was noted before the onset of IR
elsewhere in peripheral tissues [252]. However, DAGs are not thought to be the solely responsible for
the development of inflammation and IR, and a number of molecules both derived from FAs and the

FAs themselves are likely to contribute [247, 248, 253-259].

The link between the development of hepatic IR in NAFLD and the subsequent development of
peripheral IR has yet to be fully understood. However, numerous hepatokines may be involved
including retinol binding factor protein 4, fetuin A, fibroblast growth factor 21 or markers of

inflammation such as IL-6, TNFa or C-reactive protein [260].

1.3.4.2.3 NAFLD and Hepatocellular Carcinoma
Obesity and T2DM are strongly linked with the development of hepatocellular carcinoma [261].
Similarly, NASH, and possibly NAFLD, are linked to increased susceptibility to hepatocellular carcinoma

[9-11, 262]. This may occur as a result of the inflammation and metabolic stress common to both NASH
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and T2DM patients. Furthermore, changes in the microbiota have been suggested as playing a

potential role (discussed in [8]).

1.3.4.2.4 NAFLD and Cardiovascular Disease

It have been demonstrated that individuals with excess liver fat, with or without diabetes, are at
greater risk of cardiovascular disease after other CVD factors have been accounted for [263-274].
Consistent with this, a meta-analysis of several cross-sectional studies showed an increase in several
markers of atherosclerosis in individuals of NAFLD independent of other CVD risk factors [275]. As
reviewed in Byrne et al. ([8]-table 2) around 20 retrospective and prospective studies show an overall
trend of increased CVD risk in individuals suffering from NAFLD and NASH. In particular, the studies in
which NAFLD presence and severity were assessed by biopsy rather than non-invasive imaging
demonstrate an increase in risk of mortality resulting from both CVD and liver failure (along with
overall mortality) in individuals with NAFLD [108, 276-281]. The presence of fibrosis has been

highlighted as a particular determinant of risk of mortality [8].

Non-obese non-diabetic and diabetic adults with NAFLD have been shown to suffer from a higher risk
of disturbed myocardial energy metabolism, cardiac steatosis, myocardial IR and (in most but not all
studies) left ventricular diastolic dysfunction [282-290] than adults without excess liver fat.
Additionally recent studies have suggested an association exists between NAFLD and both cardiac
arrhythmias [291-296] and aortic valve sclerosis [289, 297-299] independent of other known risk

factors (reviewed in [8]).

The mechanism linking NAFLD and CVD has yet to be fully established. Although it has yet to be
conclusively shown that NAFLD is causative in the development of CVD rather than simply a marker,
based on the strength and consistency of the data it is generally considered that this is the case [8]. It
has also yet to be demonstrated that reducing hepatic liver fat content results in a reduced risk of CVD

in individuals with pre-existing NAFLD.



39

1.3.4.2.5 NAFLD and Chronic Kidney Disease

Excess liver fat is additionally associated with increased prevalence of chronic kidney disease (CKD) in
both diabetic and non-diabetic individuals [13, 300-313]. Furthermore, increased severity of NAFLD is
associated with increased severity of CKD [306-309]. As with CVD, a causative link between NAFLD and
CKD has yet to be demonstrated, and it has not yet been investigated whether improvement in hepatic
lipid levels results in an improvement in either incident CKD risk or severity of pre-existing CKD. As a

result, further large-scale studies with long follow-up periods are required to investigate these links.

1.3.5 Current Treatment of NAFLD

Despite the vast prevalence of NAFLD and the large number of deaths and liver transplants associated
with it, as of 2016, there is no approved drug for the treatment of NAFLD or NASH [314]. Historically,
liver fat was considered to be benign and large scale population studies (reviewed above) were
required to demonstrate that excess liver fat (both in diabetic and non-diabetic individuals) is
associated with an increase in risk of both liver failure-related and overall mortality. As discussed by
Ratziu et al. [314], NAFLD has also often been considered a complication of diabetes and therefore
would be treated by anti-diabetic drugs. However, metformin, sulfamides and insulin are ineffective
in treating NASH [314] and, although diabetes greatly increases the risk of NAFLD, many individuals
with excess liver fat are not diabetic. At present the only effective methods of treating NAFLD are
improvement in diet and increased exercise. However, obese patients requiring treatment for NAFLD
and NASH often have a long history of failed attempts at changes in diet and exercise such that the
resources and expertise required to ensure successful sustained weight loss and increased exercise
are often not feasible [314-316]. Additionally, as discussed in section 1.3.4.1.3, a significant proportion
of NAFLD sufferers are neither obese nor diabetic. As reviewed below (and in detail by Ratziu et al.
[314]), some potential drug target pathways have shown the potential to reduce hepatic damage in
mouse models of insulin resistant NAFLD. However, when tested in humans these have been
ineffective. These include anti-TNFa, PDE4 inhibitors, selective caspase inhibitors, resveratrol and

omega 3 FA preparations [304, 317-320].
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1.3.5.1 Dietary and Lifestyle Change

1.3.5.1.1 Physical exercise

Exercise has been shown to reduce hepatic fat content even in the absence of overall weight loss
[321], although the effects on fibrosis and cirrhosis in later stage NASH have yet to be fully explored.
Exercise also has known effects on IR, T2DM and hypertension [322, 323]. People who regularly

exercise are less likely to develop NASH and NASH-derived fibrosis [322, 324].

Type and duration of exercise are also important, with cardiovascular exercise more effective than
walking [322, 324]. Particular benefits have also been noted for resistance training [325, 326] despite
no overall change in weight and adipose distribution [326]. It is thought this may result from the
removal of fats from muscle and liver, where they are known to promote IR. Finally, minimising

sedentary time has been shown to improve insulin sensitivity [327, 328].

However, NAFLD is associated with fatigue such that compliance with increased exercise plans can be
low [314]. Furthermore, many individuals are unable to put additional stress on their cardiorespiratory

system [148, 314, 325].

1.3.5.1.2 Dietary changes and weight loss

Given that NAFLD is strongly linked with obesity, excess calorie intake and over/under consumption
of specific foods, it is unsurprising that dietary change has been demonstrated to provide an
improvement in severity of NASH. In a randomised control trial (RCT), intensive lifestyle intervention
was shown to be a significantly more effective treatment for NASH patients than standard education
on how to lead a healthy lifestyle (67% resolution vs 20%; p=0.02) [329]. Additionally, it was
demonstrated that, in either group, a 7% loss of weight correlates with an improvement in
physiological score. A second RCT, conducted in diabetic individuals, also showed improvements in
hepatic fat content as measured by non-invasive imaging after dietary intervention and exercise [330].
Peterson et al. demonstrated that small amounts of weight loss are associated with an improvement

in insulin sensitivity and reduction in liver fat [239]. Another study by Suzuki et al. showed that weight
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loss is associated with a reduced plasma alanine aminotransferase (ALT) concentration, a marker of

liver injury [154].

Substantial weight loss following bariatric surgery is associated with improvements in liver steatosis,
fibrosis and even cirrhosis in morbidly obese individuals [165, 331-333]. Reductions in pro-
inflammatory molecules released from adipose tissue have also been demonstrated on weight loss

[165, 334].

Some data exists to suggest that the dietary composition, rather than solely caloric intake, is important
in the development of NAFLD. Firstly, it is thought that a diet containing higher amounts of
polyunsaturated and monounsaturated FAs can improve hepatic steatosis in the absence of weight
loss [335]. A number of studies have suggested that increased fructose intake is linked with increased
liver fat and hepatic de novo lipogenesis [336-339]. However, other studies have suggested that
fructose is no more damaging than alternative sugars [340-343]. High intake of saturated fats,
cholesterol and meat are common amongst NAFLD patients along with low intake of vitamins and
omega-3 FAs [314, 344-347]. Some trials have investigated the impact of omega-3 FA supplements
and of L-carnitine supplements on NAFLD with variable results in both cases (reviewed in Ratziu et al.

[348]).

1.3.5.1.3 Problems with lifestyle change as a therapy

It is clear that both weight lost and increased exercise (even in the absence of weight loss) are
beneficial both in preventing the development of NAFLD. However, the major problem with lifestyle
change as a treatment is the known low-compliance of individuals, even when incentivised in clinical
trials [314-316, 349]. Increasing this compliance rate would require considerable resources unfeasible
for most hepatology centres [314, 316]. As a result, given the increasing prevalence of NAFLD and its

cost to health services, alternative therapies must be considered.
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1.3.5.2 Pharmacological Intervention

As discussed, no approved drug exists for NAFLD or NASH. When considering NAFLD, any
pharmacological treatment should focus on removing the lipids from the liver. When considering
NASH, it may also be desirable for a pharmacological intervention to have anti-fibrotic effects.
However, sustained removal of excess fats from liver cells alone is likely to lead to an improvement of
fibrosis. A drug focussed purely on reducing fibrosis without removing steatosis may lead to some
short-term improvements in liver histology, but would not remove the fundamental cause of

fibrogenesis.

The largest scale trial to be performed for a NAFLD/NASH drug so far tested the effects of pioglitazone
and vitamin E over 96 weeks in 247 individuals without diabetes [350]. Pioglitazone (a
thiazolidinedione) is an insulin sensitizers which act primarily on adipose tissue [351].
Thiazolidinediones promote expansion of insulin sensitive adipose mass which, despite causing weight
gain, also directs fats away from tissues such as liver muscle and heart where they are known to cause
most damage [351-354]. Thiazolidinediones also promote adiponectin release which stimulates -
oxidation in liver and muscle [206, 355]. Vitamin E, meanwhile, is an antioxidant, reducing the
production of ROS during B-oxidation and preventing the resulting mitochondrial toxicity as well as

blocking apoptotic pathways [356-358].

Pioglitazone treatment caused a higher rate of improvement of NASH (34% vs 19% resolution; p=0.04),
reduced ALT and (aspartate aminotransferase) AST, improved lobular inflammation and steatosis,
partially improved IR but failed to cause an improvement in fibrosis score compared to placebo [350].
As would be expected from the drug’s action on adipocytes, weight gain was also seen with
pioglitazone compared with placebo [350]. Similar results have been reported in two smaller trials

[359-361].

Unfortunately however, side effects have been noted with pioglitazone use. Firstly, the increased

adipose proliferation and weight gain is undesirable, particularly since this often remains after an
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individual ceases to take the drug [314, 362]. Pioglitazone is not available in parts of Europe due to
concerns that it may raise the risk of bladder cancer, although this was not seen in large scale studies
[361, 363, 364]. An increase in the rate of bone fractures in the hands, feet and upper arms of women
has been noted for the drug. An additional major concern of pioglitazone as a treatment is that the
benefits of Pioglitazone use on steatohepatitis, insulin sensitivity (HOMA) and liver damage (ALT) do

not remain after termination of the treatment [365].

Vitamin E also cause an increase in the rate of resolution of NASH (46% vs 19%), improvements in ALT
and AST, improvements in lobular inflammation and hepatic steatosis relative to placebo but no
significant improvement in fibrosis score. No significant difference in weight gain was seen between
the placebo and vitamin E groups. Additionally, in a paediatric trial vitamin E caused an improvement
in resolution of NASH compared with placebo (58% vs 28%) but did not improve steatosis, fibrosis,
inflammation of ALT [362]. In this case vitamin E, therefore, reduced the hepatic damage caused by

NAFLD but did not remove the underlying cause itself [362].

It should be noted that the positive findings in these two studies are countered by alternative studies
demonstrating no benefit from vitamin E consumption [366]. It has therefore yet to be fully proven
that vitamin E has a positive effect on NAFLD [348]. Furthermore, fairly severe negative side effects of
vitamin E consumption have been suggested in the literature including increased overall risk of
mortality [367], increased risk of stroke [368] and increased risk of prostate cancer in over 50 year

olds [369]. There are also concerns that at high doses vitamin E may act as a pro-oxidant [370].

An additional insulin sensitizer tested for use in NAFLD/NASH treatment is metformin. Metformin is a
biguanide used in the treatment of T2DM due to its action in suppressing hepatic gluconeogenesis
[371]. However, it has been demonstrated to have little effect on hepatic steatosis and NASH [213]
(for review see Ratziu et al. [348]). Similarly there is no data to suggest that statins, commonly
prescribed to reduce low density lipoprotein (LDL)-cholesterol levels, are beneficial to NAFLD/NASH

other than a possible slight reduction in steatosis [213, 348, 372].
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Some data exists to suggest that bile acids, and particularly Ursodeoxycholic acid (UDCA) may be
effective in treating NAFLD. However, in relatively small scale trials, treatment with UDCA has shown
variable results [348]. UDCA, therefore, requires a large-scale, well designed RCT to assess its impact

in NAFLD and NASH.

Obeticholic acid, a farnesoid X receptor agonists, has recently been tested in a clinical trial involving
283 NASH patients [373]. It was associated with improvement in histological features of NASH, but its
long-term efficacy and safety as a treatment require further study [373]. Additionally, synthetic

farnesoid X receptor agonists aiming to mimic the effects of bile acids are in development [213].

Pentoxifylline, a phosphodiesterase inhibitor, has been shown to have a beneficial effect on NASH in
animal models [374]. Additionally, in a small RCT, pentoxifylline was demonstrated to improve
histological features of NASH, steatosis and NAS score. [375]. However, a large-scale human trial is

still lacking [348].

Recent review papers have addressed treatment currently in development for NAFLD [314, 376].

1.3.6 Zonated Damage in NAFLD
Numerous studies have reported that pericentral cells tend to be most susceptible to triglyceride
build-up in both NAFLD and alcoholic fatty liver disease (AFLD) [15-17]. Additionally, the inflammation

and fibrosis tend to be more severe towards the pericentral end of the sinusoid [15-17, 377-379].

Although pericentral centred steatosis is widely reported in NAFLD, the causes of the zonation in fat
build-up are not fully understood, and this forms the focus of the simulations run in chapter 3. Since
pericentral cells show higher rates of in insulin stimulated lipogenesis whilst periportal cells show
higher rates of FFA uptake, periportal-centred steatosis might be expected in NAFLD given the context
of insulin resistance and increased plasma FFA levels. However, it is thought that insulin may continue
to stimulate lipogenesis through transcription factor SREBP-1c despite insulin resistance in the rest of

metabolism (discussed in more detail in chapter 3) [36-39, 380, 381]. Alternatively, it has been
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suggested pericentral cells may retain insulin sensitivity after periportal cells become IR [380].
However, a complete explanation of the heterogeneous development of steatosis across the sinusoid

has yet to be presented in the literature.

After development of steatosis, numerous factors are thought to contribute to the pericentral-centred
hepatic damage. Firstly, enhanced lipid peroxidation, a marker of oxidative stress, is seen in the
pericentral compartment [225, 382]. Secondly disruptions to energy metabolism are more severe in
pericentral cells [229, 230]. Finally, direct lipotoxicity resulting from the increased concentration of

FFAs may contribute to the higher cellular damage in pericentral cells [8, 146, 247, 248].

1.4 Existing Mathematical Models of Liver Processes Including Zonation

Previous computational models of glucose homeostasis and liver energy metabolism have varied from
those studying liver metabolism within the body as a whole to those focussed in detail on the
regulation of specific enzymes depending upon the particular purpose of the study. For example, Kim
et al. [383] and Xu et al. [384] developed whole body models to study the hormonal regulation of
glucose homeostasis during exercise (Kim et al. [383]) and under varying feeding conditions (Xu et al.
[384]), whilst Liu et al. [385] developed a model focussed in detail on the GLUT proteins responsible
for glucose uptake and output. Additionally, representations of glucose regulation vary from black box
models, for example with the purpose of calculating optimal insulin input for insulin responsive
diabetic patients [386], to mechanistic models aiming to understand the metabolic changes occurring
in disease in detail [387-392]. Of these mechanistic models, the vast majority of existing models of the
liver are single hepatic compartment models, and zonation in the context of hepatic energy

metabolism has yet to be addressed.

Numerous models of glucose regulation and other processes in liver have been presented since as
early as 1965 [386]. As a result, the following review will focus on key recent mechanistic models. For

a more detailed discussion of liver metabolism and diabetes modelling, see the reviews of Bogle et al.
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and Balakrishnan et al. [386, 393] and for a detailed discussion of the application of systems biology

techniques to NAFLD see the review of Fisher et al. [394].

Most recently, Somvanshi et al. published a detailed single compartment model of glucose, lipid and
amino acid metabolism, including regulation at both a signalling and transcription level [387]. This
model, which incorporated a number of previously published sub-models, was used to understand the
effects of varying dietary compositions on metabolism. Konig et al. developed a detailed model of
enzymatic conversions in glucose homeostasis including much of the allosteric regulation known to
occur in glucose regulation [388]. This model (a set of ordinary differential equations with 49 localised
metabolites and 36 reactions) included all of the enzymatic conversions involved in gluconeogenesis
and glycolysis, with separate cytoplasmic and mitochondrial compartments within hepatocytes.
Hetherington et al. developed a composite model of hormone signalling in glycogen storage,
comprising of established and ab initio developed sub-models [389]. This was used to understand key
features of insulin signalling including ultradian oscillations [389, 390]. Chalhoub et al. developed a
single hepatic compartment model focussing on gluconeogenesis and lipid metabolism in the
hepatocyte [391]. The model was adapted to give results corresponding to the liver in either in vivo or
in an ex vivo perfusion system to allow comparison with different experimental data. It was then used
to simulate concentrations of various molecules and fluxes of different reactions in response to
changes in the composition of the perfusion medium. Calvetti et al. developed a sophisticated spatially
distributed model of glucose regulation in liver [392]. This used a set of grid points to measure fluxes
of various molecules. However, despite the inclusion of spatial distribution, this model did not include

zonation in enzyme expression.

Whilst single compartment, homogenous hepatocyte models are useful for studying the function of
liver as a whole, they do not allow simulation of changes within specific regions of the sinusoid, and
exclude the implications of zonation in disease progression. Only a few models have included a

representation of hepatic zonation in enzyme expression, and none of these have focused on liver
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energy metabolism. Ohno et al. investigated heterogeneity in ammonia detoxification [395]. They set
up a model in which substances enter the sinusoids from the periportal tract, pass through 8
compartments (hepatocytes) in series, before exiting the sinusoid in the central vein. The model was
tested with homogenous enzyme expression in all compartments and with zonated expression of
carbonyl phosphate synthase, glutamine synthase and ornithine aminotransferase to understand the
roles of zonated enzyme expression. Anissimov et al. created a similar model with 8 compartments to
study hepatic availability and clearance [396]. A model by Sheikh-Bahaei et al. also studied hepatic
zonation xenobiotic toxicity focussing on the development of zonation in key enzymes, rather than
the effects of this zonation on metabolite concentrations [397]. Pang et al. looked at the various
different ways of modelling heterogeneity for studying pharmacokinetics, starting with a simple
compartmental PBPK model, followed by a zonal model and moving on to more complex circulatory
and fractal models [398]. The compartmental and zonal models were compared with clinical data for
digoxin and estradiol 17 D-glucuronide (E;17G). For digoxin, the zonal model provided little
improvement over the compartmental model. However, for E;17G results improved significantly if
Sultlel was expressed heterogeneously, suggesting that zonation is a more important for some drugs

than others.

Other than this, models have been developed including zonation of closely related non-liver
metabolism. Kénig et al. published a model of glucose metabolism in cancer cells including localized
gradients in metabolites and oxygen and regional hypoxia across a tumour [399]. Although this is for
metabolism in cancer cells rather than liver, many similarities are seen including increased glycolysis
and reduced oxidative phosphorylation in the most hypoxic cells. Davidson et al. studied the
development of zonation within a bioartificial device [400]. This study did not model the metabolism
in cells but instead focused on optimisation of oxygen input, blood flow and the dimensions of the
device to try set-up a liver-like gradient in oxygen expression across the cells to promote a zonated

phenotype.
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1.5 Conclusions of Chapter

From the review presented in this chapter, it is clear that an understanding of the role of zonation
within NAFLD is both important and currently missing. A description of the metabolic changes across
the sinusoid leading to steatosis and damage centred focussed on pericentral cells has yet to be
presented in the literature. This is vital for understanding the progression of the disease. Furthermore,
as discussed above, no pharmacological treatment for NAFLD has yet to be approved. One
confounding factor is that studies investigating the effects of pharmacological treatments tend to
study the changes in the liver as a whole by investigating changes within homogenised tissue, rather
than within individual hepatocyte groups. If a treatment disrupts energy production in a subset of

hepatocytes, this may not be seen in preliminary studies but could adversely affect patients over time.

The role of zonation in NAFLD has largely been neglected because studying the effects of disease in
individual regions of the sinusoid experimentally is time consuming and costly, especially given the
vast number of variables when considering metabolism. However, integrating existing knowledge
about hepatocyte heterogeneity into a computational model of metabolism across the sinusoid and
using this to simulate NAFLD development and treatment would allow rapid analysis of changes in
metabolic fluxes and metabolite concentrations under these conditions. These model simulations
would then allow for more targeted experimentation, focusing on key predictions. Despite modelling
of glucose metabolism having been performed for 50 years, a suitable model representing zonation in

glucose, lipid and ATP metabolisms across the sinusoid is not available in the literature.

Itis these gaps in our understanding of NAFLD and in the tools required for studying zonation in NAFLD

that this study aimed to address according to the aims listed at the start of the chapter.
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2 Model Development

2.1 Introduction to Chapter

In this chapter, the development of a computational model of hepatic glucose and lipid metabolisms
capable of representing zonation is discussed in detail. The equations representing each conversion
are presented along with the experimental data used to determine the forms of the equations and to
set parameter values. In supplementary material S1, comparison of model simulations with
experimental data are provided under a range of conditions including simulations for metabolically
normal and insulin resistant individuals. In chapter 3 additional validation of the model simulations
focussed specifically on representing NAFLD is provided. Several sections of this chapter were

published in the supplementary material of Ashworth et al. [401].

2.2 Model Building

2.2.1 Model Structure, Blood Flow

The first aim of this study was to build a computational model of glucose and lipid metabolisms
capable of representing the zone-specific changes occurring under conditions of IR and NAFLD. In
order to include zonation, a computational model of liver function must firstly be able to represent
the changes in concentrations of metabolites and hormones occurring as blood passes through the
sinusoid. Secondly, it must include the variation in enzyme expression between hepatocytes
dependent upon their position along the sinusoid. Conventional two compartment
(blood/hepatocyte) models, which treat the hepatocyte as the repeating unit of the liver, are unable
to include these features. Instead, following the structure suggested by Ohno et al. in a model of
hepatic xenobiotic metabolism, we treat the porto-central axis of the sinusoid as the repeating unit
[395]. The blood and surrounding hepatocytes in the sinusoid are split into compartments according

to their position along this axis (proximal periportal -> distal pericentral) (figure 2.1).
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Since blood is compartmentalized with average concentrations of variables in each compartment,
rather than represented as a continuous change in plasma concentrations, a simplified representation
of blood flow was used. In each time step, a proportion of the blood in each compartment moves to
the subsequent compartment and is replaced by blood from the previous compartment. The plasma
concentration of each metabolite or hormone (M) in each compartment changes according to the

following equations.

dMi=1:n

it =bf *M;_y —bf x My = bf * (M;_; — M;)

dMy  bf * (My—M,)
dt s

Rate of blood flow: bf = 0.15 * ns1->(bf = 1.2s* for the 8 compartments used in this report.)

Rest of body to hepatic compartment ratio: s = 5 * n -> (s = 40 for the 8 compartments used in this report.)

Compartments i = 1 - n correspond to the proximal periportal to distal pericentral sinusoidal
compartments while compartment i = 0 is the body compartment. n is the number of hepatic
compartments set to 8 for the simulations throughout this report (motivated below). The constant s
is included since the body compartment is much larger than each liver compartment. The blood flow
and relative size of the hepatic and body compartments were set such that blood takes around a
minute to make a circuit of the body and so that the liver blood volume is equal to roughly 0.8L with

a total blood volume of 5L [20, 403-405].

When building the model, simulations were run for both metabolically normal and insulin resistant
individuals with varying compartment numbers to assess for an appropriate number to use. The
number of compartments was increased from 3 (the minimum allowing separation of periportal,
intermediate and pericentral zones) to well beyond the number after which no further qualitative
changes in simulated data across the sinusoid (such as the appearance of missing maxima or minima)
were seen when adding further compartments. Up to 48 were simulated, which is additionally several

times larger than the actual number of hepatocytes per sinusoid (~10-13).
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On the basis this preliminary data, 8 compartments were chosen for the simulations in this report
since no under-sampling effects were noted when comparing with higher compartment numbers and
because 8 compartments allows simple comparison with experimental studies which tend to split the
sinusoid into 2-4 zones, up to a maximum of 8 (e.g. [406]). This is also consistent with previous

computational models of zonation in liver [395, 396].

Blood flows from the periportal to the pericentral end of the sinusoid. After leaving the distal
pericentral compartment, it enters a larger body compartment where it interacts with simple
representations of the pancreas (hormone input), adipose tissue (FFA and triglyceride regulation) and
with glucose and FFA inputs/outputs in the rest of the body (figure 2.1). The model simulates an
individual at rest and does not include the blood flow, blood oxygenation and hormonal changes

occurring during exercise.

Although this representation of the sinusoid allows inclusion of zonated enzyme expression, it remains
a simplification. Several sinusoids extend between each portal triad and central vein following indirect
paths through the cells, and the number of cells fed by each sinusoid will vary. Due to the hexagonal
shape of the lobule, each sinusoid is likely to be supplying a larger number of cells nearer the portal
triad than the central vein. Additionally, given that the oxygen concentration is the primary signal
molecule promoting zonated expression [50], cells further from the capillary (but in the outer
periportal region of the lobule) are likely to show more pericentral expression than those neighbouring
the capillary. Therefore, there is scope for development of models to refine predictions in the future

by representing distributed effects across 2D and 3D representations of the lobule.

2.2.2 Modelling and Parameterisation Strategy

2.2.2.1 Representation of Processes in the Model
Conversions are represented by Hill function dependences on the substrates and allosteric activators

and inhibitors with a hormone dependent rate constant.
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KMnHill + [S]nHill

v =

Where K);(mM) determines the substrate concentration at which enzymes are saturated, V4, (s™) is
the maximum rate and ng;; quantifies deviation from Michaelis-Menten behaviour. This form is
based on Michaelis-Menten kinetics, a common method of representing enzymatic conversions.
Michaelis-Menten kinetics are applicable to a reaction in which a substrate, S, reversibly binds to an
enzyme, E, to form a complex, SE, before this complex then undergoes an irreversible reaction to form

the product, P, as long as certain assumptions are met.

kcat

S+E “gr SE 5K P+ E

Defining [x] as the concentration of x.

dfs] _ . .
—p = KTISIE] - kT [SE]
d[;f] = k™ [SE]-k*[S][E]—k *[SE]

Pl ..
W_k t[SE]

One of the assumptions required for the derivation is that the substrate is in instantaneous chemical
equilibrium with the substrate such that:
k*[S][E] = k™ [SE]
The free enzyme concentration relative to the total enzyme concentration, [E],, can be calculated as:
[E] = [E]o — [SE]

Putting the previous three equations and rearranging gives:

cat
v= ? = keat[SE] = %
‘ k—++S
_ Vmax[S]
"= K + 151

Where V0 = k°“[E]o is the maximum rate of the process and Kj, is the Michaelis-Menten

constant which determines the saturation of the reaction with increasing substrate concentration. The
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dependence of the reaction rate of the substrate concentration for an example reaction in which

Vinax=2s" and Km=0.5mM is shown below.
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the reaction rate tends to Viax
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Hill coefficients, nuii, are used to represent conversions which deviate from the Michaelis-Menten
assumptions. Higher Hill coefficients cause a more rapid increase towards the maximum reaction rate
with increasing substrate concentration, but do not alter the maximum rate or the substrate

concentration at which half maximum rate is reached. The change in the reaction rate vs substrate

curve when nyi=2 compared with ngi=1 is shown.
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Many of the equations correspond to processes with a number of intermediate enzymes rather than
a single enzyme. In these cases, Hill functions are still used to represent the substrate dependence of
these processes, with Ky, and where applicable nyi, values based on the literature for the rate limiting

enzyme in the process or estimated through fitting to experimental data.
Multiple substrates are represented in the model by multiplying the Hill function substrate
dependences. E.g. for three substrate S1, S2 and S3.

Vinax [S2]™51 [S2]™s2 [S3]"s3
v= S1Ms1 * S2Ms2 * S53Ms3
Ky + [S1]"s1 Ky + [S2]"s2 Ky + [S2]ns3

Allosteric inhibition and activation are represented using a similar dependence on the inhibiting or
activating molecule with inhibition or activation constants taken from the literature. E.g. for an

inhibitory molecule, i, with concentration [{]:

v =

Vmax [S]nHill < [i]ninh >

KMnHill + [S]nHi” _ocinh Kininh + [i]ninh

Where &;,,< 1 determines the maximum inhibition by i, K;""" determines the concentration of i at

which inhibition is at half maximum, and n;,, acts as the equivalent of the Hill coefficient.

In addition to the enzymatic conversions, the transport of molecules across the cell is represented in
the model. A conversion factor ctob = 4 is used to account for the difference in sinusoidal plasma
and sinusoid volume. For uni-directional active uptake, Hill functions are used, treating the plasma
molecule as the substrate and the cytoplasmic molecule as the product. For bidirectional facilitated
diffusion, a Hill-type equation dependent on the difference in concentration between the cytoplasm
and plasma is used. It is assumed that molecules from both inside and outside the cell contribute to
the saturation of the reaction (cross membrane transport protein is blocked by molecules moving both

into and out of the cell) such that the reaction is represented by an equation of the form:

v _ Vmax([splasma] - [Scyto])
plasma=cyto KM + [Splasma] + [Scyto]
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Although these are heuristic representations of cross-membrane transport based on the stated
assumptions, previous experimental studies have used Hill-function equations with effective
Michaelis-Menten constants to represent uptake [407-409], and these forms have been used in

previous models of liver metabolism [388].

Hormonal regulation is represented in slightly different ways depending on how strongly and rapidly
hormones are known to act on the process. In each case, hormonal regulation is based on the plasma
concentration rather than modelling the receptors and downstream signalling in detail, as has been
performed in previous models (e.g. [389]). The hormonal regulation of each process is discussed in

the following sections.

2.2.2.2 Level of Detail

The model is limited to the major processes determining triglyceride levels, ATP concentrations and
FA oxidation rates in liver, calculating the overall rates of these processes rather than for each
intermediate enzyme. Furthermore, as discussed in section 2.2.4, only simple representations of
essential processes occurring outside of liver are included, rather than including separate detailed
adipose tissue and muscle compartments. A larger model may, for example, include cholesterol
synthesis, include detailed adipose metabolism or individually simulate every enzyme mediating each
process. Whilst these extra components would allow the model to simulate additional features of
metabolism, for example regarding hepatic intermediate concentrations, it is not expected that they
would alter the data presented in this report which were focussed towards a specific aim of
understanding lipid build-up across the sinusoid. Conversely, given that each of the processes included
in the model are fundamental to energy metabolism and regulation across the sinusoid, exclusion of
any of the processes in the model would be expected to significantly alter the observations presented
in this report. A major aspect of lipid metabolism which is relevant to current study of NAFLD but could
not be studied within the model is the effect of changes in fatty acid compositions (chain

length/saturation). In particular, the PNPLA3 gene, which is believed to play a role in determining the
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fatty acid composition of triglycerides, is associated with changes in NAFLD and NASH susceptibility
(see section 1.3.4.1.4). This is therefore a limitation of the model when considering interindividual
variability. However insufficient data was available for the biochemical parameters of the enzymes
interconverting between the different fatty acids and mediating oxidation and triglyceride synthesis
from each individual fatty acid to include these in the model separately. Therefore, only overall
changes in fatty acid concentration and triglyceride concentration can be studied using the model,

and the heterogeneous effects of different fatty acid compositions are left to future work.

2.2.2.3 Parameterization

For each conversion, a search of the literature, along with online databases such as BRENDA [410],
was first performed to establish allosteric and hormone dependences of the key enzymes mediating
the process. The allosteric dependences of each process on other molecules in the model were
included in the form of Hill functions with constants taken directly from the literature. The
dependences on the various energy molecules in the model (ATP, GTP, UTP etc.) were also included
as Hill functions with constants taken from the literature for each process. Where possible, the Hill
function dependences on the various metabolic intermediates acting as substrates for each process
were also taken directly from published experimental data. However, for some processes, e.g.
glycolysis and gluconeogenesis, the rate limiting enzyme is not the first in the chain. As a result, in
these cases, the substrate dependences were based on experimental data for metabolite
concentrations and metabolic flux rates under varying conditions from a number of sources as
described below and in supplementary material S1. For each process, the rate constant and constants

mediating the insulin and glucagon dependences were also fitted to experimental data.

Since the exact rates at which glucose and lipids enter the bloodstream after feeding in experimental
studies are unknown and would vary depending upon the size of the meal, the content of the meal
and individual digestion rates, automated least-squares fitting parameters to any specific data set was

not considered appropriate. Instead, the focus was placed on ensuring the simulated plasma and
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hepatic concentrations both quantitatively remained within the experimentally measured ranges and
matched qualitative features in the data such as periods of increase or decrease, and appropriately
timed peaks and troughs when simulating a wide range of different feeding conditions and insulin
sensitivities using a number of data sets. The fitting was performed by hand, first ensuring the model
produced realistic hepatic and plasma concentrations and rates of oxidation when provided with
constant inputs (comparing with concentration and rate ranges measured in the literature and with
the simulations from an existing model of glycogen storage [389]), before extensively refining the
parameter values by comparison with more complex data sets. Where possible, time-series
measurements for variation in the concentrations of several molecules or rates of several processes
before, during and after feeding were used, including data for both metabolically normal and insulin
resistant patients. These comparisons of the model predictions with experimental data are provided
in supplementary material S1. Due to inter-individual variability in metabolism, there is inevitably non-
uniqueness in parameter values and the model can be considered to represent a single near-average
individual. The sensitivity analysis performed in chapter 3 aims to understand the consequences of

variability in these parameters.

To allow for the inclusion of zonated enzyme expression, the base values of the rate constant (which
are zone-independent) were altered in each compartment according to whether the enzymes in each
process are known to be upregulated or downregulated in that region of the sinusoid (figure 2.2).
Since continuous changes in enzyme expression are seen for all of the processes included in the model,
rather than the step-wise changes in, for example, cholesterol synthesis, the zonation of each process
could be set based on the experimentally measured periportal to pericentral ratio of the rate limiting
enzymes with a continuous change between compartments. The periportal to pericentral ratio used
is stated for each process in table 2.2. The representation of zonation in the model along with the
experimental data used to set the zonation in rate constants across the sinusoid is discussed in detail

in section 2.2.6.
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2.2.2.4 Simulations and Testing

Simulations were run using the XPPAUT ODE solver using a 4" order Runge-Kutta method. The model
file was published in Ashworth et al. [401]. The concentrations of the various plasma and cytoplasmic
molecules are calculated in UM (moles/L) except for the concentrations of hormones which are
calculated in pM (pMoles/L). To allow easier comparison with experimental data, the hepatic
concentration of triglycerides, roughly equal to the total lipid concentration, was converted to a
percentage of total cell mass before being presented. Two assumptions were made for this calculation.
Firstly, that in a cell containing no fat, the combined protein and cytoplasm concentration is 1000g/L.
Secondly, that the protein and cytoplasm content of each cell remain constant independent of the
lipid content, such that the cell volume (and total liver volume) expands as the lipid content increases,
rather than the protein or cytoplasm content falling. In this case, the combined cytoplasm and
triglyceride concentration becomes 1000g/v where v is the increased volume after including the lipid
and the percentage lipid content is calculated as:

Triglyceride mass/volume TG(g/v)
Total mass/volume " TG(g/v) + Cyto(g/v) + Protein(g/v)

_ TG(g/v)
- TG(g/v) + 1000(g/v)

An average molecular mass of 0.807 was used for triglyceride (equal to that of tripalmitin):

TG(g/v) _ (100%) = 0.81 * TG(Mol/v)
TG(g/v) + Cyto(g/v) + Protein(g/v)  0.81 * TG(Mol/v) + 1000

Due to the spatially discretised representation of blood flow and the discrete time steps used in
simulations, several tests were performed to ensure the simulated data are stable and do not show
numerical diffusion. Firstly, simulations were run with varying time steps and compartment numbers
to assess stability in the model outputs. The time step was increased from 0.01 seconds to 1 second,
and the simulated data were stable and consistent for time steps below 0.4 seconds. When running
simulations for the data in the report, a time step of 0.05 seconds was used. Similarly, when the

number of compartments was varied from 3 to 48, no numerical diffusion effects were seen for low
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compartment numbers. For greater than 6 compartments, no qualitative changes in the simulated
data for concentrations and rates across the sinusoid occurred due to under-sampling (such as the
appearance of missing maxima or minima) for either metabolically normal or insulin resistant
individuals. Finally, oxygen, insulin and glucagon are degraded at constant rates across the sinusoid in
the model such that a theoretical concentration curve can be calculated and compared with the values
produced by the model. In each case, when using 8 compartments and a time step of 0.05 seconds,
the average difference between simulated and theoretical value was less than 0.1% of the average

value.

2.2.3 Hepatic Metabolism

2.2.3.1 Summary

Figure 2.2 shows the variables and processes included in each hepatic compartment of the model.
Each hepatic compartment interacts with a corresponding blood compartment as shown in figure 2.1.
The model focusses on the storage of glucose as glycogen, the cycling between glucose and lactate,

adenosine triphosphate (ATP) production, FFA synthesis and the storage of FFAs as triglycerides.
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Figure 2.2 — Hepatic metabolism in the model. The variables and conversions included in each hepatic
compartment across the sinusoid (see figure 2.1). In addition to the hormonal regulation, almost all of
the glucose and lipid metabolism conversions show some form of allosteric regulation. Lipolysis is also
included but it occurs at very slow rate in hepatocytes. Diagram previously published in Ashworth et al.
[401].



61

2.2.3.1.1 Glucose Metabolism

The liver is the major organ responsible for the control of blood glucose concentrations. When blood
glucose levels are high, glucose enters hepatocytes through the transmembrane carrier protein
glucose transporter 2 (GLUT2) before being converted to glycogen via glucose-6-phosphate (G6P)
under the influence of insulin (glycogenesis). When blood glucose levels are low, glucagon stimulates
the release of glucose from glycogen stores (glycogenolysis). Insulin also stimulates the breakdown of
glucose to two pyruvate molecules through glycolysis. This pyruvate can either be released into the
blood as lactate or converted to acetyl-CoA for use in oxidative phosphorylation or in lipid metabolism.
Glucagon, meanwhile, stimulates the reverse reaction converting pyruvate and lactate to glucose
through gluconeogenesis. Glyceraldehyde-3-phosphate (GADP), an intermediate of glycolysis and
gluconeogenesis, can be rapidly converted to glycerol-3-phosphate (G3P) which forms the glycerol
backbone in triglyceride synthesis. Additionally, glycerol released in lipolysis is converted to G3P and
GADP via the enzyme glycerol kinase. Most lipolysis occurs outside of the liver in adipose tissue.
However, very little glycerol kinase activity is seen in adipose tissue and instead glycerol released in

adipose tissue is recycled in the liver [411].

2.2.3.1.2 Lipid and Energy Metabolism

The liver plays an important role in lipid metabolism and there exists a strong link between lipid
metabolism and liver disease. Hepatic steatosis is seen in a range of liver conditions most commonly
linked with alcohol, viruses such as hepatitis c or metabolic dysregulation and is known to play a role

in the development of IR.

Pyruvate is converted to acetyl-CoA by a complex of three enzymes known as the pyruvate
dehydrogenase complex (PDC). These acetyl-CoA molecules can either enter the citrate cycle to
provide fuel for oxidative phosphorylation of ADP to ATP or can be joined to form FA chains through
de novo lipogenesis. Numerous FAs are produced in vivo with varying chain lengths. However, to

reduce the computation required, the model assumes all FAs to be palmitate. Palmitate is the most
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common FA in animals, plants and microorganisms and corresponds to a chain of 8 acetyl-CoA
molecules (16 carbons). Both the production of acetyl-CoA and lipogenesis are stimulated by insulin
whilst the breakdown of palmitate back to 8 acetyl-CoA molecules (B-oxidation) is stimulated by

glucagon.

When blood glucose levels peak, it is beneficial to remove alternative cellular energy sources from the
blood including FAs. Insulin stimulates the synthesis of triglycerides, in which three FAs are attached
to a glycerol backbone for storage. While FFAs can be used as an energy source by the majority cells
in the body, most cell types are unable to break down triglycerides. The liver has only a very small
capacity to breakdown triglycerides through lipolysis [412]. Although the liver plays a role in lipid
metabolism, adipose tissue is the primary regulator of blood lipid levels. As a result, it was also
necessary to include a simple representation of adipose tissue in the model for it to produce valid

blood FFA and triglyceride concentrations.

FFA uptake through the FATP proteins is included through two terms corresponding to passive
concentration dependent uptake and the insulin dependent pumping of FFAs into the cytoplasm.
Triglyceride release as VLDL is included along with a term representing triglyceride uptake from the

blood.

2.2.3.1.3 Hepatic Rate Equations

A reduced description of the representation of metabolism in each hepatic compartment in the model
is provided in tables 2.1 and 2.2 before a full description of each equation is provided in the following
sections. Table 2.1 contains the differential equations for each hepatic variable in terms of the
metabolic processes occurring. Table 2.2 defines the processes included in each hepatic compartment

in the model and references the sections in which the full equations can be found.
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Table 2.1 — The rate equations for the variables included in the hepatic compartments of the model.

Hepatic Variable

Rate Equations

Glucose da
dtc = —Rgk + Rgspase + Reue
G6P dGé6pP
ar Rex — Rgspase + Rep—Rgs + Rppgp — Rppg
Glycogen dGly
— 2 —Rgs—R
dt GS GP
G3P/GADP dG3P
ar Rpepck — 2 Rppp + 2 Rppg — Rpg + Reconv — Rrsyn
Pyruvate/Lactate | dLac
dt = Rpgee— Rpgpex + Rpx — Rppy
Acetyl-CoA dACoA
i@ Rppy — 8 Rpgen + 8 Rgoxi — Rarps
FFA (Palmitate) | dFFA
dt == Rppac + 3 Ripiy = 3 Rrsyn + Rigen — Rpgoxi
Triglycerides TG
at £ = Rpg + Rrsyn — Ripry
Glycerol dGly,
dt c = Rgiyt = Rgconv + Ripry
ATP - Adenosine | dATP
Triphosphate T 12 Ryrps — Rag — 2 Rpgpeg — Rppx + 3.25 Rpg — Rgg
- RNDKG_ RNDKU - RATPu -2 Rﬁoxi -7 RLgen - RGConv
ADP - Adenosine | dADP
Diphosphate dr —12 Ryrps + 2 Ry + 2 Rpgpek + Rppx — 3.25 Rpg + Rk
+ Rypre+Rypku + Rarpu + 7 Rigen + Reconv + Rpoxi
- 25 IRPDH
AMP - dAMP
Adenosine dt Rax + Rpgoxi + 3 Rrsyn
Monophosphate
Pi - Inorganic dPi
Phosphate ar —12 Ryrps— Rgp + Rgepase + 2 Rgs — 2.25 Rpg + 2 Rpgpeg + Repp
- RPReg + RATPu +7 RLgen + Rﬁoxi_ 2.5 IRPDH +7 RTSyn
UTP - Uridine dUTP _R R
Triphosphate dt ~  NDkU GS
UDP - Uridine dUDP
Diphosphate dt Rnpkut Res
GTP - Guanosine | dGTP R R
Triphosphate dt ~  NDKG PEPCK
GDP - Guanosine | dGDP _ R LR
Diphosphate T NDKG PEPCK

The rates/processes (R) are defined in table 2.2 and discussed in detail (along with the non-hepatic
processes) in the following sections. References to the specific sections in which the full equation for
each process can be found are also provided in table 2.2.
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Table 2.2 — The processes included in each hepatic compartment in the model.

Process

Conversion

Rgiut — Glucose Uptake.
Section 2.2.3.2.1

— —
Gy o G (Blood Glucose o Cellular Glucose)

Periportal to pericentral ratio in rate constant — 1:1

Rsx — GK.
Section 2.2.3.2.2

Gc + ATP - G6P + ADP
Periportal to pericentral ratio in rate constant - 1:2.5

Reepase — G6Pase.
Section 2.2.3.2.3

G6P - G¢ + P,

Periportal to pericentral ratio in rate constant —1.9:1

Rgs — Glycogen Synthesis.
Section 2.2.3.3.1

G6P + UTP - Glycogen + UDP + 2 P;
Periportal to pericentral ratio in rate constant —3:1

Rg;p — Glycogen Phosphorylation.
Section 2.2.3.3.2

Glycogen + P; — G6P

Periportal to pericentral ratio in rate constant — 1:1

Rprg — Glycolysis stage 1, primarily rate-
limited by PDK.

Section 2.2.3.4.1

G6P + ATP —» 2 GADP/G3P + ADP

Periportal to pericentral ratio in rate constant — 1:1

Rpx — Glycolysis stage 2, primarily rate-

GADP "
additional

+ 2ATP + P; » Pyr/Lac + 2ATP +

primarily rate-limited by PEPCK.
Section 2.2.3.4.3

L G3P
limited by PK. indirect 1.25 ATP from NADH.

Section 2.2.3.4.2 Periportal to pericentral ratio in rate constant —1:2.1
Rpegpck — Gluconeogenesis stage 1, | Pyr/Lac + 2ATP + GTP

— GADP/G3P + 2ADP + GDP + 2 P;

Periportal to pericentral ratio in rate constant — 2.4:1

Rrgp — Gluconeogenesis 2, primarily rate-
limited by FBPase.

Section 2.2.3.4.4

2 GADP/G3P — G6P + P,

Periportal to pericentral ratio in rate constant — 1.75:1

Rppy — Pyruvate oxidation mediated by
PDH.

Section 2.2.3.5.1

Pyr/Lac — ACoA +indirect 2.5 ATP from NADH

Periportal to pericentral ratio in rate constant —1:1

Rgoxi —B-Oxidation.
Section 2.2.3.5.2

FFA+ 2 ATP - 8 ACoA + ADP + AMP + 3 P;

Periportal to pericentral ratio in rate constant — 1.6:1

Rarps - ATP Synthesis via the citrate cycle
and electron transport chain.

Section 2.2.3.6.1

ACoA + 12ADP + 12 P; » 12 ATP

Periportal to pericentral ratio in rate constant — 1.5:1

Rypre/Rypky — NDKs.
Section 2.2.3.6.2

(NDKG): GDP + ATP — GTP + ADP
(NDKU): UDP + ATP — UTP + ADP

Periportal to pericentral ratio in rate constant — 1:1

R4k —AK.
Section 2.2.3.6.3

ATP + AMP < 2 ADP

Periportal to pericentral ratio in rate constant — 1:1

R4rpy — Cellular ATP consumption.

Rpreg — Pi Regulation.

ATP - ADP + P,

Pl'(—)—
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Section 2.2.3.6.4

Periportal to pericentral ratio in both rate constant — 1:1

Ry gen — Lipogenesis.

Section 2.2.3.7

ACoA+7 ATP - FFA+7 ADP + 7 P,

Periportal to pericentral ratio in rate constant — 1:1.6

Rrgyn — Triglyceride Synthesis.
Section 2.2.3.8.1

3FFA+ G3P/GADP + 3ATP - TG +3 AMP + 7 P;

Periportal to pericentral ratio in rate constant — 1:1

R p1y — Lipolysis.
Section 2.2.3.8.2

TG - Glyc+ 3 FFA

Periportal to pericentral ratio in rate constant — 1:1

Rgconw - Glycerol Kinase.
Section 2.2.3.8.3

Glyc + ATP > G3P/GADP + ADP

Periportal to pericentral ratio in rate constant —1:1

R} 40t — Lactate Output/Uptake.
Section 2.2.3.9.1

Lacg < Lac.

Periportal to pericentral ratio in rate constant — 1:1

Rprar — FFA Output/Uptake.
Section 2.2.3.9.2

>

FFAp _ FFAc

Periportal to pericentral ratio in rate constant — 1.5:1

Section 2.2.3.9.3

Ryt — Triglyceride Output/Uptake.

TGy _ TGe

Periportal to pericentral ratio in rate constant — 1:1

Rg1yt — Glycerol Output/Uptake.
Section 2.2.3.9.4

Glycg < Glycc
Periportal to pericentral ratio in rate constant — 1:1

Hormone Reception

Periportal to pericentral ratio in insulin reception — 1:1.35

Periportal to pericentral ratio in glucagon reception —1.35:1

Full equations along with the values of constants, the experimental data used as references and a
detailed discussion are provided in the following sections, including the equations used to calculate the
rates of processes occurring in the blood/body compartments in addition to the hepatic processes listed

in the table.

2.2.3.2 Glucose Uptake and Output

2.2.3.2.1 Glucose uptake by GLUT2 - terms to represent pumping and passive diffusion

Blood <«
Glucose

P Cytoplasmic

} Glucose

The major glucose transporter in the liver is GLUT2 [413]. Two terms represent pumping and diffusion

of glucose into the cytoplasm. Uni- and bi- direction Michaelis-Menten equations are used to

represent these terms respectively. GLUT2 has a higher Ky value than other common glucose

transporters (GLUT1,3,4) allowing rapid uptake by hepatocytes when blood glucose levels rise for

storage, where glucose uptake in other cells types would be determined by the energetic

requirements of the cell.
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Upump * GB Vairr * (GB - GC)
(Ky ™ +Gp)  (Ka"" +Gp + Gc)

KPY™ = 17mM [407], K37T = 17mM [407].
2.2.3.2.2 Glucokinase

ATP ADP

X G6P
Glucose \ / > Glucose-6-

/ Glucose Phosphate

GK mediates the conversion of glucose to G6P taking a phosphate from ATP in the process. GK is
allosterically dependent on the concentration of various molecules, either directly or indirectly via GK
regulatory protein (GKRP). GKRP competitively binds to GK and moves the enzyme into the nucleus
when glucose concentrations are low or when the concentrations of glycolysis intermediates such as
F-6-P and F-1,6-P are high. G6P has a direct inhibitory effect. These dependences ensure increased
uptake when glucose concentrations are high or when increased glycolysis is required to meet cellular
energetic requirements. In the model, the effects glucose on GKRP (causing the release of GK) are
included with constants taken from experimental data. Furthermore, the allosteric inhibition by G6P
is included. F-6-P and F-1,6-P are not represented as independent variables in the model and their
inhibitory effects (through GKRP) could not be included directly. However, conversion between G6P
and F-6-P is rapid relative to the processes occurring in the model and so the two can be considered
to be in constant equilibrium. In the model, a single G6P dependent inhibition term represents the

allosteric inhibition of both G6P and F-6-P. The allosteric inhibition of F-1,6-P could not be included.

Vgi * G ITee G ATP < G6PMink >

k * * !
(Klgkrpnfree + Gcnfree) (Klgng + Gcng) (K]\‘?[TP +ATP) KiG6PTllnh + G6Pninh)

KS = 7.5mM [414, 415], K3"P = 15mM [414, 416].
Nree = 2 [414, 416], ny = 1.4 [414, 416].

KPP = 240uM - [417, 418].
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K{4TP = 240uM — a fairly wide range of values measured in the literature (e.g. 140uM [419],
410uM [415]). The value chosen for model is roughly in the middle of these. However, since the
values are much lower than the average ATP concentration under all but severe pathological

conditions, small changes in the Ku value do not notably affect results.

Ninn =4 —As discussed, the activity of GK is strongly inhibited both directly by G6P and indirectly
by intermediates of glycolysis such as F6P [420]. F6P is not included in the model as an
independent variable. However, conversion between F6P and G6P occurs rapidly relative to
other processes included in the model. Therefore, the two can be expected to remain in
constant equilibrium and a single allosteric dependence is included to represent both. A high
nink of 4 is used to provide strong allosteric inhibition when G6P (/F6P) concentrations rise and

a rapid reduction in inhibition when the concentration falls [389].

2.2.3.2.3 G6Pase

P;
Glucose-6- /A } Glucose

Phosphate

G6P is converted to glucose by the enzyme G6Pase releasing the phosphate. No strong allosteric or

hormonal regulation has been demonstrated for this enzyme.

VGeprase * G6P
K5% + G6P

KGOP = 2.41mM [421, 422]

2.2.3.3 Glycogen Synthesis and Breakdown

In order to control the rates of glycogenesis and glycogenolysis, insulin and glucagon bind to surface
receptors causing a downstream cascade which determines the phosphorylation state, and hence
activity, of glycogen synthase (GS) and glycogen phosphorylase (GP). In the model, a hormone
dependent maximum activity is calculated for each enzyme before multiplying by Michaelis-Menten-

type substrate dependences. The hormone signalling pathways have been modelled in detail in
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previous two compartment models (for example Hetherington et al. [389]). However, in this study,
since the focus is placed on understanding the effects of zonation rather than hormone signalling,
hormone dependences of processes are calculated directly based on the blood hormone
concentration in the region of the cells, rather than including a detailed representation of the

downstream signalling.

2.2.3.3.1 Glycogen Synthase

UDP
utp +PP—»2 P
Glucose-6- \ /‘ Glycogen
S = > (extention of a
Phosphate / GBP glycogen chain)

G6P is converted to glucose-1-phosphate (G1P) before binding with a uridine triphosphate (UTP)
molecule to give UDP-glucose (and pyrophosphate (PP) which is rapidly broken down to give two
phosphates (P;)). GS, the rate limiting enzyme in glycogen synthesis, uses this UDP-glucose to extend
a glycogen chain. As well as the hormonal regulation, GS is allosterically activated by an increased G6P

concentration.

max _ (Ins + Kjs)
Y (Glgn + Kig)

Vsyn * KG* * GOP™syn UTP
%
(GePmsyn + KGEP™Y™)  Ky'® + UTP

KYTP = 48uM [423, 424]

Kis = 13.33pM, K, 5 = 62.5pM, K\;°F = 50uM, n,y,, = 4 set such that the simulated data match
experimental data from [425-431] for plasma concentrations of key glucose metabolism
molecules throughout a daily feeding cycle [425] (section S1.1.4), for hepatic glycogen and
plasma concentrations after a mixed meal [428] (section $1.1.2), and for average glycogen and
hepatic glucose metabolism intermediate concentrations [426, 427, 429, 430] (section S1.1.1)

along with simulations from the model presented by Hetherington et al. [389, 390], which
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contained a detailed representation of the pathways involved hormone reception and
downstream regulation of GS and GP (see supplementary material S1 for comparison with
experimental data). A low Kw value but high Hill coefficient (ng,,) was used for the G6P
dependence. This rapidly reduces glycogen synthesis when G6P concentrations fall below their
metabolically normal range due to the dependence on G6P both as a substrate (via G1P and
UDP glucose) and as an allosteric activator (GS activity nearly doubles in the presence of high
concentrations of G6P compared with no G6P [432]), whilst ensuring that the rate of synthesis
is primarily determined by the effects of hormones under metabolically normal conditions.
When G6P dependences that were less steep (lower ng,,,,) but reached saturation at higher G6P

concentrations (higher Ku) were tested, glycogen stores failed to empty when simulating IR.

2.2.3.3.2 Glycogen Phosphorylase

P
Glycogen
(Shortening of a \_ ’ Glucose-6-
glycogen chain) Phosphate

GP depolymerises glycogen adding a phosphate to give G1P. This G1P is then rapidly converted to G6P

by phosphoglucomutase.

max _ (Glgn + kLP)
phos (InS + k[p)

Vpri * Kppoe * Gly™rk Phos

*
(Glynbrk + K,flly nbrk) K Iﬁhos + Phos

K2 — 100mM (units of glucose), KE'"*° = 4000uM [433] - for the active form of GP

Kip = 26.66pM, K;p = 45pM, ny,., = 4 — set such that the model simulations match
experimental data from [425-431] for plasma concentrations of key glucose metabolism
molecules throughout a daily feeding cycle [425] (section S1.1.4), for hepatic glycogen and
plasma concentrations after a mixed meal [428] (section $1.1.2), and for average glycogen and

hepatic glucose metabolism intermediate concentrations [426, 427, 429, 430] (section S1.1.1)
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along with the simulations of the model of hormone signalling and its effects on GS and GP

presented by Hetherington et al. [389, 390].

2.2.3.4 Gluconeogenesis and Glycolysis

The rates of gluconeogenesis and glycolysis are strongly affected by the concentrations of insulin and
glucagon (e.g. [431]). As with glycogenesis and glycogenolysis, when calculating the rates of the
glycolytic and gluconeogenic processes a maximum enzyme activity is first calculated based on the
blood hormone concentrations. This is then multiplied by Michaelis-Menten type substrate

dependences.

2.2.3.4.1 Glycolysis 1: G6P to GADP

X Ggn (& Glgn
via F-2,6-BF) ADP

X ATP
Glucose-6- MFHD:' l/‘ J/—PZ Glyceraldehyde

Phosphate # Insulin ) -3-Phosphate

3 F-Y B-H
v i fam ey =

Y

G6P is broken down to two GADP molecules via a sequence of enzymes. The rate limiting enzyme in
this conversion is PFK (producing fructose-1,6-bisphosphate (F-1,6-BP)) which is highly allosterically
regulated. It is also the only unidirectional enzyme in the chain, with the reverse conversion mediated
by FBPase. PFK requires the removal of a phosphate molecule from ATP, releasing ADP. The enzyme
is allosterically activated by ADP and inhibited by ATP such that the rate of glycolysis is increased or
slowed depending on the energy (ATP) requirements of the cell. The effects of ATP and ADP are
included with Ky, activation and inhibition constants taken from the literature. After the production
of F-1,6-BP, the subsequent enzyme in the chain, fructose-bisphosphate aldolase, splits the F-1,6-BP
into one GADP molecule and one dihydroxyacetone phosphate molecule, which is converted into a

second GADP resulting in the production of two molecules from glycolysis for each glucose/G6P.

In addition, PFK is allosterically inhibited by GADP and phosphoenolpyruvate, products further down

the glycolysis chain, as well as by intermediates of the citrate cycle, citrate and malate. As a result,
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glycolysis is not only slowed when ATP levels are high but also when there is a surplus of substrate for
the citrate cycle. Of these effectors, only GADP is included as an independent variable in the model
and, therefore, the inhibition of the molecules further down cannot be directly included. Instead, the
inhibition of GADP included in the model is assumed to represent the inhibition of all glycolytic
intermediates. Finally, PFK is also allosterically activated by fructose-2,6-bisphosphate (F-2,6-BP). The
concentration of F-2,6-BP is predominantly determined by the action of insulin and glucagon, such
that the PFK activity increases when plasma glucose, and hence insulin, concentrations are raised. As
a result, although F-2,6-BP is also not included in the model as an independent variable, this allosteric

dependence is included in the fitted hormone dependences.

gmax — (Ins + Kjppx)
PRE"(Glgn + Ky prx)

Vprk * KpFE * G6P ATP
*
K55% + GeP K™ + ATP

ADP g ATP g GADP
* ———————————————— —_— D T ———————— —_—
KADP 4 ADP ATP KATP  ATP GAAP gGADP 4 GADP

Kippg = 2666.7pM, K, prx = 1250pM — set so that the model simulations match the data in
references [425-431, 434] for plasma concentrations of glucose and lactate throughout a daily
feeding cycle [425] (section S1.1.4), after a glucose load [434] (section S1.2.2) and after a mixed
meal [428] (section S$1.1.2), for average hepatic glucose metabolism intermediate
concentrations including glucose, G6P, pyruvate, lactate, G3P and GADP [426, 427, 429, 430]
(section S1.1.1), and for the rates of glucose use in the various pathways after intake in the
presence or absence of hormones [431] (section $1.1.3). Additionally set so that the model
simulations match the data in references [141, 425, 435] for the FFA and triglyceride
concentrations throughout a mixed meal [425] (section S1.1.4) and for average concentrations
of FFAs and triglycerides in individuals of varying weight and with varying insulin sensitivities

[141, 435] (section S1.2.1) due to the role of GADP/G3P in triglyceride synthesis.
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KG5F = 5 uM - Since PFK doesn’t act directly from G6P, a Kum value couldn’t be taken from the
literature. A very low value was used based on the observation that the rate of glycolysis does
not increase when the glucose concentration is increased in insulin resistant patients [434].
This suggests that in metabolically normal individual’s glycolysis increases due to the effects of

insulin rather than increased substrate when plasma glucose concentrations are raised.

Kig™ = 42.5uM [436], Burp = 1, KAPP = 83.6uM [436, 437], KATP = 2.1mM [436, 437],

Beapp = 0.75, KFAPP = 20.7 uM [438]
2.2.3.4.2 Glycolysis 2: GADP to Lactate/Pyruvate

2 ATP
2.,.}:':?': +MADH (1.25ADP +1.25F —»1.25ATP)
! ¥ Glucagon

Glyceraldehyde \_x#cewl-t:ﬂ,/‘ Pyruvate
-3-Phosphate el > [Lactate

In the second half of glycolysis, each GADP molecule is converted to pyruvate (and lactate). Since
conversion between pyruvate and lactate is reversible and relatively rapid, they are represented by a
single variable in the model. Here we assume a constant pyruvate to lactate ratio. In vivo, the ratio is
altered under conditions which effect the NAD:NADH ratio such as after heavy ethanol intake.
Therefore, if in future work the model is used to study the metabolism of ethanol (or other drugs)
across the sinusoid, modifications would be required to represent pyruvate and lactate as separate
variables and to include NAD/NADH as separate variables rather than just through their effects on ATP

concentrations.

The rate limiting enzyme in the conversion of GADP to pyruvate is PK. Both the phosphate contained
in the GADP and an additional free inorganic phosphate are combined with ADP molecules to produce
two ATP molecules in this part of glycolysis. One ATP molecule is released by phosphoglycerate kinase
and the second by PK. Additionally an NAD+ molecules is converted to NADH. Note that because 2

GADP molecules are produced per glucose in the previous stage of glycolysis, when considering the
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glycolysis of each glucose molecule, 4 ATP, 2 NADH and 2 pyruvate/lactate molecules are produced in

this stage.

NADH can produce a theoretical maximum of 3 ATP when entering the ETC. However, a ratio of closer
to 2.5 ATP per NADH is achieved for mitochondrial NADH. In the case of PK, the NADH is cytosolic and
cannot cross the mitochondrial membrane. Instead a shuttle reactor of NADHyto + NAD* mito-> NADHmito
+ NAD*1, occurs to transport NADH into the mitochondria which requires the consumption of 1 ATP
molecule. Here a relatively low rate of 1.25 ATP per cytosolic NADH is assumed to account for these
difficulties in transport and further inefficiency in the use of NADH. PK is allosterically inhibited by

acetyl-CoA.

Kmax _ (ITLS + KIPK)
P (Glgn + Kppk)

vpk * KF&* « GADP ADP
*
KGAPP + GADP  K{PP + ADP

aCoA )

(1 ~ Pattos atom - aton

Kipx = 1066.6pM, K;p = 500pM, KGAPP = 250uM — set so that the model simulations
match the data in references [425-431, 434] for plasma concentrations of glucose and lactate
throughout a daily feeding cycle [425] (section S1.1.4), after a glucose load [434] (section
$1.2.2) and after a mixed meal [428] (section S1.1.2), for average hepatic glucose metabolism
intermediate concentrations including glucose, G6P, pyruvate, lactate, G3P and GADP [426,
427, 429, 430] (section S1.1.1), and for the rates of glucose use in the various pathways after
intake in the presence or absence of hormones [431] (section $1.1.3). Additionally set so that
the model simulations match the data in references [141, 425, 435] for the FFA and triglyceride
concentrations throughout a mixed meal [425] (section S1.1.4) and for average concentrations
of FFAs and triglycerides in individuals of varying weight and with varying insulin sensitivities

[141, 435] (section $1.2.1) due to the role of GADP/G3P in triglyceride synthesis.

Ki1P? = 240uM [439], K“°4 = 30uM [440], Bayios = 0.8 [440]
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2.2.3.4.3 Gluconeogenesis 1: Lactate/Pyruvate to GADP (Glyceroneogenesis)

2 ADP
2 ATP + GDP
+GTP +2 P
Pyruvate v 'nsu'in/ > Glyceraldehyde
/Lactate / Glucagon -3-Phosphate

The conversion of pyruvate to GADP is highly energy intensive, requiring the removal of phosphates
from 2 ATPs and a GTP. The rate limiting enzyme in this conversion is PEPCK which hydrolyses GTP to
provide a phosphate, allowing the production of phosphoenolpyruvate. PEPCK is not known to be

strongly allosterically regulated.

max _ (Glgn+ kipppek)

K =
PEPCK(Ins + kipepci)
vpepck * Kpppex * Lac ATP GTP
* *
Ki + Lac Kig™? + ATP  KSTP + GTP

Kirpp = 2266.6, K, ppp = 1062.5, KL% = 500mM — set so that the model simulations match
the data in references [425-431, 434] for plasma concentrations of glucose and lactate
throughout a daily feeding cycle [425] (section S1.1.4), after a glucose load [434] (section
5$1.2.2) and after a mixed meal [428] (section S1.1.2), for average hepatic glucose metabolism
intermediate concentrations including glucose, G6P, pyruvate, lactate, G3P and GADP [426,
427, 429, 430] (section S1.1.1), and for the rates of glucose use in the various pathways after
intake in the presence or absence of hormones [431] (section $1.1.3). Additionally set so that
the model simulations match the data in references [141, 425, 435] for the FFA and triglyceride
concentrations throughout a mixed meal [425] (section S1.1.4) and for average concentrations
of FFAs and triglycerides in individuals of varying weight and with varying insulin sensitivities
[141, 435] (section S1.2.1) due to the roles of GADP/G3P in triglyceride synthesis and pyruvate

in lipogenesis.

=10 uM - set very low since, althoug is required for the conversion of lactate to
K4 = 10 um low si Ithough ATP i ired for th jon of I

GADP, the ATP is required by enzymes which, under normal conditions, are not rate-limiting.
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Using a low Km value means that large drops in ATP concentration will inhibit the process but

variation in the physiological range will not affect the rate.
K§'™ = 64uMm - [441]

2.2.3.4.4 Gluconeogenesis 2: GADP to G6P

Pi

X Insulin (& Insulin
2 Glyceraldehyde —_ '@ F'Zss'Bu Glucose-6-
_3-Phosphate  _> P phosphate

7 Glucagon (& Glucagon
via F-2,6-BP)

The rate limiting enzyme in the conversion of two GADP molecules to G6P is FBPase. FBPase is
allosterically inhibited by F-2,6-BP. The F-2,6-BP concentration is primarily determined by the action
of insulin and glucagon, such that hepatic glucose production is reduced when plasma glucose (and
hence insulin) concentrations are high. Therefore, although F-2,6-BP is not included as an independent

variable, its allosteric effects are included in the fitted hormone dependences.

Kmax — (Glgn + ki rpp)
FBP =
(Ins + kirgp)

vpgp * Kigp * GADP
K5APP + GADP

Kippp = 2666.6, K rpp = 1250, KSAPP = 250uM — set so that the model simulations match
the data in references [425-431, 434] for plasma concentrations of glucose and lactate
throughout a daily feeding cycle [425] (section S1.1.4), after a glucose load [434] (section
$1.2.2) and after a mixed meal [428] (section S1.1.2), for average hepatic glucose metabolism
intermediate concentrations including glucose, G6P, pyruvate, lactate, G3P and GADP [426,
427, 429, 430] (section S1.1.1), and for the rates of glucose use in the various pathways after
intake in the presence or absence of hormones [431] (section S1.1.3). Additionally set so that
the model simulations match the data in references [141, 425, 435] for the FFA and triglyceride
concentrations throughout a mixed meal [425] (section S1.1.4) and for average concentrations

of FFAs and triglycerides in individuals of varying weight and with varying insulin sensitivities
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[141, 435] (section $1.2.1) due to the roles of GADP/G3P in triglyceride synthesis and pyruvate

in lipogenesis.
2.2.3.5 Acetyl-CoA Production

2.2.3.5.1 Pyruvate Oxidation.

NADH (25ADP +2.5P,—p 2.5ATP)

X Glucagon
Pyruvate X Acetyl-CoA
/ Liictate —/A P Acetyl-CoA

/ Insulin

The conversion of pyruvate to acetyl-CoA is mediated by PDC. PDC is allosterically inhibited by acetyl-
CoA to ensure that excessive acetyl-CoA does not enter the citrate cycle causing mitochondrial stress.
PDC also converts a mitochondrial NAD+ to NADH allowing for the production of 2.5 ATP molecules

through the ETC.

Ins Glcgn
Kpbi = (1 + asyn asyn)

Insref Glcgnref
Vasyn * Kppi * Lac B ACoA
Ky + Lac ACOA + [foA~mhib

kfoA=mhib = 35 uM [442]

K¢ = 540, Insf;}m =1.33nM, Glcgnf:}m = 375pM - set so that the model simulations match

the data in references [141, 425-431, 434, 435, 443, 444] for plasma concentrations of key
glucose and lipid metabolism molecules throughout a daily feeding cycle [425] (section $1.1.4),
after a glucose load [434] (section S1.2.2) and after a mixed meal [428] (section S$1.1.2), for
average hepatic glucose metabolism intermediate concentrations including acetyl-CoA,
pyruvate, glucose, G6P, lactate, G3P and GADP [426, 427, 429, 430] (section S1.1.1), for
average concentrations of FFAs and triglycerides in individuals of varying weight and with
varying insulin sensitivities [141, 435] (section S1.2.1), and for the rates of glucose use in the
various pathways after intake in the presence or absence of hormones [431, 443, 444] (section

$1.1.3).



77

2.2.3.5.2  Acetyl-CoA production from FAs (3-oxidation)

AMP
ADP
2ATP

X Acetyl-CoA
Fatty Acid X Insulm
(Palmitate) /A P 8 Acetyl-CoA

/ Glucagon

In B-oxidation, acetyl-CoA molecules are produced from the breakdown of FAs. In vivo, numerous FAs
are found with varying chain lengths and with varying properties. As discussed, in the model all FAs
are synthesized from 8 acetyl-CoA molecules corresponding to palmitate, the most common FA in
animals. Initially the FA is combined with a CoA molecule requiring the conversion of an ATP to AMP.
An additional ATP molecule is required to transport the resulting acyl-CoA into the mitochondria,
where it is sequentially broken down. The transfer across the mitochondrial membrane, mediated by
carnitine palmitoyltransferase 1 (CPT1), is considered to be rate-limiting in this process. B-oxidation is
allosterically inhibited by its product acetyl-CoA to ensure a steady acetyl-CoA supply for the citrate

cycle [445, 446].

max _ (1 Ins Glcgn

= -+ -
oxi Insf:;fl Glcgnf:;“
VBoxi * Kﬁoax *FA ATP 1-8, ACo0A
Ky* +FA (Ki"" + ATP) M ACoA + fFoA-inhib

KA=5 uM — it is difficult to define a single Kv value for all FAs. Km values for palmitate and a
few additional FAs are provided below for fatty acid synthetase, the enzyme responsible for the
initial activation of the FFA with CoA, when measured in rats. All Km values are in the range 1-
10uM. 5-8.6uM Palmitate (16:0) [447]; 3.6-8.6uM Palmitate (16:0), 3-8.6uM Oleate (18:1), 6.5-
10uM Arachidonate (20:4) [448]; 2.78uM Palmitate (16:0), 2.04uM Palmitoleate (16:1), 1.39

UM Oleate (18:1), 2.22uM Linoleate (18:2), 1.64uM Linolenate (18:3) [449].

K{TP = 87uM [450]



78

kEoA—mhib = 47 8uM, [451] Biy = 0.4 [451]

Poxi

Ins,.; =666.7pM, Glcgn

Boxi

ref =875pM - set so that the model simulations match the data in

references [141, 425-431, 434, 435, 443, 444, 452, 453] for plasma concentrations of key
glucose and lipid metabolism molecules throughout a daily feeding cycle [425] (section S1.1.4),
after a glucose load [434] (section $1.2.2) and after a mixed meal [428] (section $1.1.2), for
average hepatic glucose metabolism intermediate concentrations including acetyl-CoA,
pyruvate, glucose, G6P, lactate, G3P and GADP [426, 427, 429, 430] (section S1.1.1), for
average concentrations of FFAs and triglycerides in individuals varying weight and with varying
insulin sensitivities [141, 435] (section $1.2.1), and for the rates of lipid and glucose use in the
various pathways after intake in the presence or absence of hormones [431, 443, 444, 452,

453] (sections 51.1.3, S1.3).
2.2.3.6 Oxidative phosphorylation and the energy molecules

2.2.3.6.1 Oxidative phosphorylation/the citrate cycle

Acetyl-CoA

12 ADP \_ [ Oxygen |—’ 12 ATP

+ 12 Pi

Rather than modelling the citrate cycle and ETC in detail, they are represented by a single equation.
For each acetyl-CoA molecule that enters the citrate cycle, 12 ATP molecules are produced from ADP
and P; (based on the system working slightly below its maximum efficiency yield of 14 ATP per acetyl-

CoA). An oxygen dependence is included based on the plasma oxygen concentration reaching the cells.

VUyarps * ACOA Oxyg Phos ADP
* * *
Kif®4 + ACoA  K)™® + Oxyp K{"® + Phos Kji°® + ADP

K{°4 = 0.4 uM — [454] (measured in heart)
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K™ = 28mmHg for the oxygen concentration in the blood near the cell, based on the value

of 14mmHg from Matsumura et al. [93] which was doubled since it is estimated the the blood

concentration of oxygen reaching cells is half of the average concentration in the sinusoid [94].

Ko = 3830mM based on the average phosphate concentration in the model — The constant
hasn’t been measured for humans in the literature and widely ranging values have been
measured for other organisms (8.9mM [455], 0.55mM [456], ~10mM [457]). However, when
simulating normal conditions, less than a 5% change in phosphate concentration is seen
throughout the day, so ATP production is not strongly affected by phosphate concentration in

the model.

KPP =410 uM — not measured in human or other mammals, based on data for thermophilic

Bacillus PS3 [455].

2.2.3.6.2 Nucleoside Diphosphate Kinases
Nucleoside diphosphate kinases (NDKs) mediate the exchange of phosphate groups between various
nucleoside di- (and tri-) phosphates. Ky values were taken from the literature whilst the rate constants

were fitted to average values for the 3 sets of di- and tri- phosphates included in the model.

ATP ADP
UDP (Uridine /‘ ’UTP(Uridine

Diphosphate) Triphosphate

ATP * GDP ADP * GTP
v —
NPKG\ (KATP + ATP)(KGPP + GDP)  (K{PP + ADP)(KS™ + GTP)

ATP ADP
GDP (Guanosine k /A ’GTP (Guanosine

Diphosphate) Triphosphate)

ATP  UDP ADP * UTP
UNDKU\ (kTP ATP)(KIP” + UDP)  (K{PF + ADP)(KJ'? + UTP)
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K{TP = 290uM (200-380uM [458]), KSPP = 33.5uM (31-36 [459]), KiiPP = 24um [458], KSTP =

120uM [458], K4PF = 175uM (160-190 [459]), KITF = 21.5mM (16-27mM [460]).

2.2.3.6.3 Adenosine Kinase

Adenosine kinase (AK) mediates the bi-directional transfer of a phosphate from ATP to AMP, providing
two ADP. Ky values were taken from the literature whilst the rate constant was fitted to experimental

data for average hepatic ATP, AMP and ADP concentrations

ATP4\
P 2 ADP
AMF"—/

ATP « AMP ADP?
(Ki™® + ATP)(KipMP + AMP) ( Kﬁupz 4 AD Pz)

Vak

K{4TP = 90uM [461], KiMP = 80uM [461], KiiPP = 110uM [461].

2.2.3.6.4 Additional ATP Consumption

2.2.3.6.4.1 Cellular ATP usage term

ATP is consumed by hepatic processes other than the glucose and lipid metabolism represented in the
model. A single Michaelis-Menten type equation was introduced to represent this consumption of
ATP. The rates of ATP production and use were fitted so that the average ATP, ADP and P;
concentrations matched that measured in [429] (section S1.1.1). Additionally, Ainscow and Brand
performed a study in which they determined the relative rates of various processes under conditions
of rapid glycogen breakdown in cultured hepatocytes [444] (section S1.1.3). Under these conditions,
10% of G6P derived from glycogen breakdown entered glycolysis but was not released as lactate (46%
overall entered glycolysis). Of this 10%, the vast majority would be expected to have entered the

citrate cycle given that a very low rate of lipogenesis was measured. This allows an estimation of the
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rate of use of glucose for ATP production. Finally, the simulated data were compared with
experimental data published by Edgerton et al. for the rates of various metabolic processes in canine
livers under varying insulin concentrations [443], and by Mandarino et al. for the rates of glucose
disposal and glucose oxidation and B-oxidation in muscle cells experiencing different insulin
concentrations [431] (section S1.1.3). While the liver derives a higher percentage of its energy from

plasma FFAs than muscle, this gives an idea of the effects of hormonal stimulation.

vatpuse * ATP
(K4TP + ATP)

K#4TP = 2500 - roughly equal to the average ATP concentration in pericentral compartment.

2.2.3.6.4.2 Control of cellular phosphate levels

The rate of cytosolic phosphate production or usage in glucose metabolism is strongly dependent on
the feeding state and, in initial simulations, the concentration varied massively over time. As a result,
an additional heuristic term was added representing the control of the cytosolic phosphate

concentration.

vcon(Pi - TefPi)

Veon = 0.1, Tefp, = 4.15mM fitted so that the average phosphate concentration matched that

presented in Veech et al. [429] and didn’t fluctuate significantly from this value under different

feeding conditions (section $1.1.1).
2.2.3.7 Lipogenesis

7 ADP
7 ATP X Glucag 7R

on
Fatty Acid . XFaw s A P 8 Acetyl-CoA

(Palmitate) Sinsuin
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An acetyl-CoA molecule is converted to malonyl-CoA by ACC before combining with a second acetyl-
CoA molecule under the influence of FAS. FAS then mediates the addition of subsequent malonyl-CoA
molecules forming the FA chain. Of the two ACC isoforms, only ACC1 contributes to lipogenesis. The
malonyl-CoA produced by mitochondrial ACC2 is physically separated from FAS under normal
physiological conditions and, instead, is involved in the allosteric inhibition of B-oxidation [462]. In the
model, all FAs are produced from 8 acetyl-CoA molecules corresponding to palmitate (16:0).

Lipogenesis is allosterically inhibited by various FAs.

Ins Glcgn
Klrggr)lc = <1 + lgen - glgen)
Insref Glcgnref
Vigen * Kigen * ACOA ATP " FA
* - T T
Kii€4 + ACoA  Kj™ + ATP\"  FA + k[A-inhib

K4 = 58uM [463] for ACC. FAS also directly requires acetyl-CoA in the initial step of
lipogenesis where an acetyl-CoA molecules is joined with a malonyl-CoA molecule before
additional malonyl-CoA molecules are added to the FA chain. However, the Km value for FAS is
very low such that under normal physiological conditions further increase in acetyl-CoA will not

increase the rate. Instead, FAS is rate limited by the malonyl-CoA produced by ACC [464, 465].

KrA=inhib = 300uM, Ins, 2" = 8000pM, Glegn,%;" = 875pM — set so that the model
simulations match experiment data for plasma concentrations of key glucose and lipid
metabolism molecules throughout a daily feeding cycle [139, 425] (sections S1.1.4, $1.2.1),
after a glucose load [434] (section $1.2.2) and after a mixed meal [428] (section $1.1.2), for
average hepatic glucose metabolism intermediate concentrations including acetyl-CoA,
pyruvate, glucose, G6P, lactate, G3P and GADP [426, 427, 429, 430] (section S1.1.1), for
average plasma concentrations of FFAs and triglycerides in individuals varying weight and with
varying insulin sensitivities [141, 435, 466] (section S1.2.1), for the hepatic triglyceride

concentration [211] (section $1.1.1), and for the effects of insulin and glucagon on the rate of

lipogenesis and activity of ACC (in adipose tissue rather than liver) [467-469].

K{TP = 120uM [463].
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2.2.3.8 Triglyceride Synthesis and Breakdown

2.2.3.8.1 Triglyceride Synthesis

7P

3 ATP 3 AMP
3 Fatty Acid XG'MQL,_,/‘ > Triglyceride
(Palmitate) / Insulin (Tripalmitin)

Glyceraldehyde

-3-Phosphate
Each FFA must be joined with a coenzyme A (CoA) to form acyl-CoA before being used for triglyceride
synthesis, requiring the conversion of 3 ATP molecules to AMP. An acyl-CoA is attached to a glycerol
backbone derived from glycerol-3-phosphate (G3P) by G3P-acyltransferase forming a
monoacylglycerol. Since conversion between G3P and GADP is rapid and reversible they are
represented by a single combined variable in the model. Another two acyl-CoA molecules are
sequentially added by acyltransferases forming DAGs followed by triglycerides. In the model these
conversions are currently represented by one equation rather than as individual reactions. Triglyceride
synthesis is promoted by insulin and inhibited by glucagon. Note that DAGs are also used to produce

various phospholipids not currently included in the model.

Ins Glcgn
ngcllrjlc = <1 + tsyn tsyn)

Insref Glcgnref

UTGsyn * tr;l)c}rplc *FA . GADP
Ky* + FA KEAPP + GADP

KGAPP = 460uM [470].

Glegn, " = 500pM, Ins) o™

ref = 1.066nM — set so that the model simulations match

experiment data for plasma concentrations of key glucose and lipid metabolism molecules
throughout a daily feeding cycle [139, 425] (sections S1.1.4, S1.3.1), after a glucose load [434]

(section S1.2.2) and after a mixed meal [428] (section S1.1.2), for average hepatic glucose
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metabolism intermediate concentrations including acetyl-CoA, pyruvate, glucose, G6P, lactate,
G3Pand GADP [426,427, 429, 430] (section S1.1.1), for average plasma concentrations of FFAs
and triglycerides in individuals varying weight and with varying insulin sensitivities [141, 435,
466] (section S1.2.1), for the hepatic triglyceride concentration [211] (section S1.1.1), and for
the effects of hormones on the rate of triglyceride synthesis and the activities of various

triglyceride synthesis enzymes (in adipose tissue rather than liver) [467, 471].

KA = 645uM — as discussed for 8-oxidation, it is not possible to measure a single Ku value for
all FFAs in general. The value used is high relative to the low cellular FFA concentration such
that the dependence of the rate on the concentration is almost linear. This ensures that
triglyceride synthesis increases and falls when hepatic FFA concentrations fluctuate throughout

the day.

2.2.3.8.2 Lipolysis

Glycerol

Triglyceride /A > 3 Fatty Acids

(Tripalmitin) - (Palmitate)

Each triglyceride is broken down to three FFAs and a glycerol molecule by a sequence of lipases
(predominantly rate limited by the first enzyme in the chain, triacylglycerol lipase [472]. Hepatic
lipolysis is stimulated by glucagon and suppressed by insulin.

Km‘“‘=(1— Ins N Glcgn)

Iply Ipl Ipl
Insrify Glcgnr’;fy

max
Vipty * Kiply *TG

K¢ +TG

K¢ =50.715mM — It is difficult to base a Km value on experimentally measured values since
numerous triglycerides exist and widely ranging Km values are measured for both different
triglycerides and in different studies of the same triglyceride (e.g. tripalmitin (three palmitic
acids attached to a glycerol backbone) [473, 474]). A relatively high value was chosen relative

to the average hepatic concentrations such that increases in hepatic triglyceride levels cause
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increased lipolysis. However, since the rate of lipolysis is very slow in hepatocytes, hepatic
lipolysis is not a major determinant of the hepatic or plasma triglyceride concentrations and
has very little effect on the rest of hepatic metabolism. When triglyceride breakdown is

required this predominantly occurs in adipose tissue.

Insiz}y =1.067nM, Glcgniiicy =625pM - set so that the model simulations match experiment
data for plasma concentrations of key glucose and lipid metabolism molecules throughout a
daily feeding cycle [139, 425] (sections S1.1.4, $1.2.1), after a glucose load [434] (section
$1.2.2) and after a mixed meal [428] (section S1.1.2), for average plasma concentrations of
FFAs and triglycerides in individuals varying weight and with varying insulin sensitivities [141,
435, 466] (section S1.2.1), for the hepatic triglyceride concentration [211] (section $1.1.1), and
for the effects of hormonal regulation on triglyceride synthesis [467] (section S1.1.1 — discussed

but not presented).

2.2.3.8.3 Conversion of glycerol of G3P/GADP

ATP ADP
Gl ldehyd
Glycerol \- .j ’ yceraldenyde

-3-Phosphate

Glycerol is converted G3P by glycerol kinase requiring the conversion of ATP to ADP. G3P is then

rapidly and reversible converted to GADP.

Vgconv * Glycerol ATP
KGlycerol + Gl I *KATP + ATP
M ycero M

K,ﬁly =41uM — 36-46uM measured in rat [475]

K#4TP = 15uM — no data for human, ranging from 6uM to 3mM for different bacteria (BRENDA
enzyme database). Changes in the glycerol concentration are very small compared to the
glucose, lactate and lipid concentrations so changes in the parameters defining this term do

not have a large effect on the system as a whole.
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2.2.3.9 Membrane Transport

2.2.3.9.1 Lactate

Plasma | Hepatic
Lactate < > Lactate

Lactate uptake/output is represented through a diffusion term dependent on the relative blood and

cytoplasmic lactate concentrations.

Viaee * (Lacg — Lace)
(KL% + Lacg + Lac)

KL3¢ = 1.2mM — Roughly equal to the average lactate concentration. K5 and v, were set
so that the model simulations match the experimental data for plasma concentrations of
glucose and lactate throughout a daily feeding cycle [425] (section S1.1.4), after a glucose load
[434] (section S1.2.2) and after a mixed meal [428] (section S1.1.2), for average hepatic glucose
metabolism intermediate concentrations including glucose, G6P, pyruvate, lactate, G3P and
GADP [426, 427, 429, 430] (section S1.1.1), and for the rates of glucose use in the various

pathways after intake in the presence or absence of hormones [431] (section S1.1.3).

2.2.3.9.2 Free Fatty Acids

Free Fatty «§ P Hepatic
Acids P Fatty Acids

FFA uptake is complex and not fully understood [29]. It is known FA transport proteins FATP2 and
FATP5 play an important role since uptake is reduced in mice lacking either protein [27-29].
Additionally, overexpression of scavenger receptor CD36 (known to occur in NAFLD) promotes
increased uptake [30-32]. Knockout of liver-type FA binding protein also reduces FFA uptake [33].
Passive, unfacilitated diffusion also contributes to hepatic uptake although this process is relatively
slow [476, 477]. Once FFAs enter the liver they are rapidly bound to a CoA molecule to form acyl-CoA
preventing efflux. Cellular FFAs are rapidly utilized in B-oxidation or attached to a glycerol backbone

to form di- and triglycerides. As a result, the hepatic concentration is low (<50uM).
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Insulin causes increased FFA uptake by stimulating FATPs [478-480]. In the model, FFA uptake is
represented by two terms. Firstly, an insulin-dependent, unidirectional uptake term corresponding to
the active scavenging by transport proteins. Secondly a non-hormone dependent, bidirectional term
accounting for both unfacilitated diffusion and bidirectional facilitated diffusion. Given that the
cellular concentration is very small compared to the plasma concentration, these both act strongly as

uptake terms, even when simulating IR.

Vactive * FFAp Ins Vaiff * (FFAg — FFA;)
(Kgetve + FFAg) " Ins&tve )~ (KSIT 4 FFAg + FFA,)

Kgctive = 2um, K,f,i,if T = 200um, Insﬁecfi"e = 21.333pM - set so that the model simulations
match experiment data for plasma concentrations of key glucose and lipid metabolism
molecules throughout a daily feeding cycle [139, 425] (sections S1.1.4, $1.2.1), after a glucose
load [434] (section S1.2.2) and after a mixed meal [428] (section S1.1.2), for average hepatic
glucose metabolism intermediate concentrations including acetyl-CoA, pyruvate, glucose, G6P,
lactate, G3P and GADP [426, 427, 429, 430] (section S1.1.1), for average plasma concentrations
of FFAs and triglycerides in individuals varying weight and with varying insulin sensitivities
[141, 435, 466] (section S1.2.1), for the rates of lipid and glucose use in the various pathways
after intake in the presence or absence of hormones [443] [431, 444, 452, 453] (sections $1.1.3,
S$1.3), for the hepatic triglyceride concentration [211] (section $1.1.1), and for the effects of
hormones on the rate of lipogenesis and release, and the activities of various lipogenic enzymes

(in adipose tissue rather than liver) [467, 471].

2.2.3.9.3 Triglycerides

Hepatic < P  Plasma
Triglycerides P Triglycerides

Two terms represent movement of triglycerides between the cytoplasm and the blood stream. The
first term represents the production and release of VLDL. Liver is the major organ responsible for

packaging triglycerides into VLDL such that this is the major cause of triglyceride output from the cell
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[481]. It should be noted that, in the model, once triglycerides are in the blood, free triglycerides along
with triglycerides contained in lipoproteins are represented by a single variable. The second term
represents very slow uptake of triglycerides from transporter molecules in the plasma and the slow
output in forms other than VLDL. It has been shown in numerous species that hepatocytes are able to
uptake triglycerides from plasma lipoproteins, although the proteins involved in the transport have
yet to be fully characterised [482-484]. Therefore, a simple bidirectional Hill function with Ky value
based on the average plasma and hepatic triglyceride concentration was used. Since the hepatic
triglyceride concentration is much higher than the plasma concentration (healthy livers store up to 5%

fat), a conversion constant TG, ¢ was included to ensure this bi-directions transfer term did not result

in constant output.

TG: )
Vairr * | TGg —
Vyrpr * TGe ars ( B TGy

~ wVLDL iffi TG
ref

KYPL = 33.81mM, K,Sifﬂ: ImM, TG,.r=33.81 — Roughly equal to experimental data for
average plasma [141, 435, 466] (section S1.2.1), and hepatic TG concentrations [211] (section
S$1.1.1). Due to the slow rate of lipogenesis, short-term variations in the hepatic concentration

have little effect on the rest of metabolism.

2.2.3.9.4 Glycerol

Plasma | Hepatic
Glycerol < > Glycerol

Glycerol released primarily by WAT during lipolysis is cleared from the blood by hepatocytes. Uptake

is represented by a simple diffusion term.

Viyer * (Glycg — Glyce)
(KSP° + Glycg + Glyc)
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K,f;ly ¢ = 270uM (250-402uM measured in rat [475]) — In simulations, glycerol kinase is rate-

limiting in glycerol clearance rather than uptake such that moderate changes in K Igly “ do not

have a large effect on the overall rate of uptake.

2.2.4 Adipose Tissue, Muscle and Dietary Inputs and Outputs

In addition to the liver, organs including the intestine, adipose tissue and muscle play important roles
in FFA and glucose metabolism and consumption required for the model to produce realistic data.
Given that the focus of this report is on hepatic metabolism rather than the gut or adipose tissue,
rather than treating these organs as separate compartments containing complex sets of pathways, a
minimal representation of these lipid metabolism processes was included which produces plasma lipid
levels consistent with those measured experimentally in metabolically normal and insulin resistant
individuals, but does not include the changes occurring in the concentrations of metabolites within

the adipose tissue.

Lipids enter the body compartment of the model as FFAs. A single equation then calculates the
synthesis of triglycerides in the gut (and other organs in the body excluding liver). Two equations
represent adipose lipogenesis and adipose lipolysis. A final equation represents insulin dependent FFA
uptake by muscle and other body cells. Since a separate adipose tissue compartment was not included
in the model, adipose lipid storage could not be included. Instead, the adipose and muscle equations
act directly on the blood concentrations of glucose, FFAs and triglycerides. The constants in these
equations were fitted by eye so that the FFA and triglyceride concentrations matched those measured
throughout the day for healthy patients by Daly et al. [425] (section S1.1.4), so that the average FFA
and triglyceride concentrations matched those measured for diabetic and non-diabetic patients by
Sindelka et al. [141] and Berndt et al. [435] (section S1.2.1) and so that the contribution of de novo

lipogenesis to hepatic and plasma triglyceride content matched that presented by Donnelly et al. [26].



90

2.2.4.1 Adipose and Gut Equations

2.2.4.1.1 De novo synthesis
De novo FA synthesis is represented by a single equation in which 4 glucose molecules, and hence 8

acetyl-CoA molecules, are converted to a FFA.

Vanwar * Gg L Ins Glcgn
KIgB + Gy InsZ 4T Glegnig/ 4"

KyP=4.5mM, Ins&WVAT=1.87nM, GlegndiVAT=250pM

2.2.4.1.2 Triglyceride Synthesis and Lipolysis

When representing gut triglyceride synthesis and adipose lipolysis, time constants needed to be added
to slow the effect of hormones. This is to compensate for the fact that adipose triglyceride storage
was not included in the model. In initial model building, the rates of triglyceride synthesis and lipolysis
were set to depend only on the current plasma insulin and glucagon concentrations (as with the rest
of the equations in the model). However, this led to the rapid breakdown of triglycerides and a large
spike in FFA concentration as soon as glucose concentrations dropped between meals. Instead, in vivo,
the FFA concentration increases more steadily over time between meals, and FFAs continue to be
released until the next meal (or lipid stores begin to empty). The difference between the simulated
and experimental data is likely to be accounted for by the release of stored adipose triglycerides, not
accounted for in the model. After the addition of time constants to account for this, the simulated FFA
concentration was consistent with the values measured by Daly et al. [425], Sindelka et al. [141] and

Berndt et al. [435] without the need to include adipose lipid storage.

2.2.4.1.2.1 Triglyceride Synthesis
Three FFAs attached to a G3P backbone corresponding to half of a blood glucose molecule to form a

triglyceride.
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Glcgn Glegn
Gl d Glcgntrifsyn_vG d Glcgntr?yn_vc
cgn v re v re
<—g — UG> > 0,' then: —£ = —_—, else: —f= 7

Glcgnf«gfsyn dat TGUP dt rgdown

dt TwP dt TIdOWn

( Ins —UI> ( Ins —VI>
trisyn trisyn

Ins Ins

Ins dv ref dv ref

[f <— 171> > 0,' then:—'=—; else: -2 = /7

trisyn
I ns., 7

VtrisynH = Vtrisyn * 1+ v —vg)

vtrisynH * GB FFA
G FFA
KB 4+ Gy Kiy* + FFA

KyP=10mM, KjiFA=645mM, Insy,.”"=800pM, Glegnyy:”"=37.50M

T,%P =1000s%, 7,9°"" =15000s7%, T;*P=10000s", T5%°W"=700s"

2.2.4.1.2.2 Lipolysis

A triglyceride is removed from the blood and broken down into three FFAs and a glycerol.

Glegn v Glcgn v
lipoly VG lipoly VG
dvg Gngnref dvg _ Gngnref

Glegn
If (Glcgnfepf"ly vG> > 0; then: —* = T ; elser —= = —odown
lipoly lipoly
Ins Ins
Ins . Ldvp _ ref . Ldvp ref
[f (17151[3}013} - 17[) > 0; then: T P ; else: o 7 down

ViipoiyH = Vlipolysis * 1- vy + VG)

VlipolyH * TGp

TG
K, ® +TGpg

Ky 7B=2mMm, Insﬁg}"l”isz 800pM, Glcgnlrif;’lym=37.5plw

7,%P=1000s", 7,%°%W"=15000s?, 15*P=10000s", T;9°""=700s™

2.2.4.2 Input

Carbohydrates are broken down to sugars before entering the blood stream. Dietary lipids are broken

down to FFAs before being absorbed by the enterocytes of the intestinal wall. Short to medium chain
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FFAs can enter directly into the portal vein. Longer chain FFAs are converted back into triglycerides
and released into the bloodstream as chylomicrons via the lymph system, although some long chain
FFAs have been shown to enter directly to the portal vein [485]. In the model, all dietary carbohydrates
enter the bloodstream as glucose, whilst lipids enter the blood as FFAs. A triglyceride synthesis term

represents both the reforming of triglycerides in the gut, and triglyceride synthesis around the body.

Glucose and FFA inputs of any form can be inputted to the model. Throughout this report, spiked
glucose and FFA inputs with a period of 4 hours were used to approximate a daily feeding cycle

excluding sleep.

Vinput * sin® (Z(hzliu's)) -> Spiked inputs with 4-hour period

The additional changes to hormone release and energy metabolism occurring during sleep or
prolonged starvation in addition to exercise were considered beyond the scope of the model at
present. When simulating a moderate diet, the inputs were based on the average meal values in Daly
et al. [425]. In this study, the three meals provided to subjects each day (breakfast, lunch and dinner)
contained an average of 78.1g of carbohydrate and 22.2g of fat. In terms of the energy provided from
these two sources this was a ratio of 1.648 to 1. When running the simulations, the size of the glucose
and FFA inputs were set to match these values. Each intake cycle was set to provide 86.74mmoles of
glucose per litre of blood into the body compartment. Presuming a blood volume of 5L, this
corresponds to 78.1g. Since FFAs have a range of molar masses, the FFA input to the model in moles
could not be calculated from the grams of fat per meal. Instead the relative contribution of glucose
and FFAs to energy were used. In the model, each glucose molecules that undergoes glycolysis
followed by oxidation provides a net total of 34 ATP. Each palmitate molecules that is oxidised
provides a net of 114 ATP. Therefore, to attain the ratio of 1.648:1 provided in the study, the FFA input
was set to provide 15.75mmoles of fat per litre of blood per intake cycle to the body compartment.

Using the molar mass of palmitate and assuming 5L of total blood this would correspond to 20.2g of
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fat. The outputted data are compared with experimental data when simulating this diet in section

51.1.4.

Vinput (Glucose)=19.275uM/s - (78.1g/cycle assuming 5L of blood in the body compartment)

Vinput (FFA) =3.5uM/s - (20.2g/cycle assuming 5L of blood in the body compartment and the

molecular mass of palmitate).

2.2.4.3 Consumption Terms (Muscle and Body cells)

In the model glucose is consumed by cells (outside the liver) according to a simple Hill function with a
low Km constant such that, under normal conditions, glucose is absorbed at a relatively constant rate
by muscle and other body cells. In reality, other organs show hormone dependent uptake. However,
the focus of this study is on liver which is the major determinant of plasma glucose concentration,

hormone dependences of glucose uptake by other tissues around the body were not included.

VGbuse * GB
Gp
K, + Gp

KyP=1mM, Vg use = 4.93uM/s

The rate of FFA consumption elsewhere in the body was represented by a similar term with the

inclusion of an insulin dependence.

UFrFAuptake * FFA (ITlS + klup)
Ky + FFA  \(Glgn + kpyp)

Ky =100 uM, kyy, = 250pM, kyyypy = 125pM, Vipayptake = 0.982uM/s
2.2.5 Oxygen and Hormone Inputs and Consumption

2.2.5.1 Hormone release by the pancreas
The representation of pancreatic hormone release developed by Hetherington et al. was used to
calculate the rate of release of glucagon and insulin into the blood [389]. In this, insulinis only released

when the blood glucose is above a threshold. Above this threshold, insulin is released according to a
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Hill function acting on the logarithm of the glucose concentration relative to a reference
concentration. Similarly, glucagon is only released when the blood glucose concentration is below the
threshold. In this case, glucagon is released according to a Hill function acting on the inverse logarithm

of the blood glucose concentration.

G, glgn
1 In 7=
. B
lf GB < Gref, Glucagonrelease = Ngign
Tgign Kglgnnglgn +1n GT@f
m GB
In Grefnins
. 1 Ggp
lf GB > Gref, insulin release = T: G Nins
ins <K1ir7llsnins +1In Gref )
B

Constants as in [389].

2.2.5.2 Hormone degradation across the sinusoid

In the model the hormones are degraded at a constant rate (per unit of hormone) as blood passes
through the sinusoid. Experimentally, the concentration of glucagon has been measured to fall by
around 50% between the blood entering the sinusoid and the blood exiting it [45]. To match this, the
rate of degradation of glucagon was set to 0.03858 per unit of glucagon per second. /n vivo, the insulin
concentration falls by 50% across the sinusoid between meals but by only 15% post-prandially [45].
Since insulin is only released in the model when blood glucose levels are high, only the post-prandial
rate of degradation was included and a rate of 0.01389 per unit of insulin per second was used.

Therefore, an increase in the insulin to glucagon ratio is seen as blood passes through the sinusoid.

2.2.5.3 Oxygen input and degradation

A constant oxygen input was added to the body compartment along with a constant rate of
consumption across the sinusoid. A constant rate of input of 1.35mmHg s is provided to the body
blood compartment and a constant output of 0.03525s per unit of oxygen in each compartment of
blood occurs across sinusoid. These were set such that the oxygen concentration falls from 65mmHg

in the blood entering the proximal periportal compartment to 35mmHg in the blood leaving the distal
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pericentral compartment [50]. Since no changes in oxygen input or blood flow were simulated in this
study, the oxygen concentrations across the sinusoid remained fixed at the experimentally measured
gradient for a healthy liver. However, the inclusion of a dynamic oxygen calculation may allow the
model to be used to study changes in oxygen supply and blood flow in developing liver disease in the
future. The rate of oxidative phosphorylation is oxygen dependent in the model, with a Ky value based

on the measurements by Matsumura et al. [93].

2.2.6 Rate Constants and Zonation

Each equation in the model consists of a rate constant multiplied by a set of substrate, hormone and
allosteric dependences. The rate constant for each process has a base-value (vy) which is then
modified in each compartment according to the zonation of the process. The base-values for each
process were set by comparing the simulated plasma and average sinusoidal concentration of the
various molecules in the model with experimental data from several sources (table 2.3). As discussed
in the section 2.2.2.3, the exact rates at which glucose and lipids enter the bloodstream after feeding
in experimental studies is unknown. As a result, rather than least-squares fitting the rate constants to
any specific data, they were set such that, for a range of data sets, the simulated plasma and hepatic
concentrations both quantitatively remained within the experimentally measured ranges and
matched qualitative features in the data such as periods of increase or decrease, and appropriately

timed peaks and troughs.

To allow for the inclusion of zonated enzyme expression, these base values of the rate constants were
next altered in each compartment according to whether the enzymes in each process are known to

be up-regulated or down-regulated in that region of the sinusoid.

Zonation is known to be primarily regulated by the blood oxygen concentration [50]. As a result, in the
model the blood oxygen concentration is used to assign each compartment a value, z, dictating how
periportal-like or pericentral-like the enzyme expression in that compartment is. The following

function was used to define z.
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If Oxy > 46.5mmHg then (z = tanh(

This function is plotted in figure 2.3 and was based on the data in Nauck et al. [69] and Wolfle and
Jungermann [77] in which the concentrations of key periportal and pericentral enzymes were
measured at a range of physiological oxygen concentration. A value of roughly z=1 is given at
periportal oxygen concentrations (65-75mmHG) and a value of roughly z=-1 is given at pericentral

oxygen concentrations (30-35mmHg). These were used as reference points for setting periportal-type

and pericentral-type expression.

(Oxy — 46.5)

(oxy — 46.5)
12 )

)else(zzZ*tanh( o4

1
=
=
K=l
Z 0
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=
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Oxygen Dependence of Enzyme Expression

z=1 - Periportal

Enzyme Expression

~Pericentral Oxygen ~Periportal Oxygen
Hypoxia Concentration Concentration
5 10 15 20 25 30 35 40 50 55 60 65 70 75 80

z=-1—Pericentral

Enzyme Expression

Oxygen Concentration (mmHg)

Figure 2.3: The dependence of enzyme expression type (pericentral -> periportal) on oxygen

concentration in the model.

As shown in the experimental studies [69, 77], further induction of periportal-type enzymes does not
occur at oxygen concentrations above that seen by periportal cells. However, in hypoxic conditions,

additional induction of pericentral-type enzymes and suppression of periportal-type enzymes does

occur.
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Since continuous changes in enzyme expression are seen for all of the processes included in the model,
rather than the step-wise changes in, for example, cholesterol synthesis, the zonation of each process
could be set based on the experimentally measured periportal to pericentral ratio of the rate limiting
enzymes with a continuous change between compartments. For a process where the base-value of
the rate constant is v, and the experimentally measured ratio of periportal expression to pericentral

expression is kyp:1, the altered rate constant in compartment x, (vx) is calculated by:
vy = (14 2z, x kv,
Where:

2 % kpp

ky=1——-"P2
" |kpp| + 1

This equation gives the experimentally measured periportal: pericentral ratio between compartments
with z=1 and z=-1 whilst leaving the average rate constant across the sinusoid unchanged at
physiological oxygen concentrations. Table 2.4 shows the experimentally measured periportal to
pericentral ratio in activity for the enzymes mediating each process along with the constant k,, used

in the model.
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Table 2.3: The baseline rate constants used in the model and the experimental data used for fitting.

Rate Constant

Base Value in Model, v,

Data used for rate constant fitting

(See supplementary material S1 for comparisons with

experimental data)

Glucose Uptake

Vpump = 118 uM 57,

v, = 224 uMs?,
GK Vg =112
G6Pase Vgepase = 370 UM st
GS Vgyn =55 UM s
GP Vprk=5 UM s7!

Glycolysis 1 (PFK)

VUprk = 160 HM 5—1

Glycolysis 2 (PK)

Vpg =87 uM s

Gluconeogenesis

1 (PEPCK)

Vpgpck=35 UM 57

Gluconeogenesis

UFBP:68 HM S—l

[425-431, 443, 444, 466] — Concentrations of various
glucose metabolism molecules in blood and in liver
under a range of conditions:[425] — time series data
for plasma concentrations throughout a daily meal

cycle (section S1.1.4).

[428] — time series data for glucose and glycogen

concentrations after a single meal (section S1.1.2).

[426, 427, 429, 430] — hepatic concentrations of
several energy metabolism intermediates (section

S1.1.1).

[431, 443, 444] —the relative rates at which lipids and
glucose are oxidised and the relative rates of glucose
release, glycolysis, lactate release and acetyl-CoA
synthesis under conditions of glycogenolysis (section

$1.3). Further comparison with the postprandial rates

2 (FBPase) of glucose and FA oxidation is presented in [452, 453]
in section S1.3.
Pyruvate Vgsyn=15 UM s — set using [426, 427, 429] as a reference for the

Oxidation (PDC)

B-oxidation

Vgoxi= 3.3 UM 57

average cytosolic acetyl-CoA concentration, along
with [425-431, 434, 443] for the glucose and lactate
concentrations under different conditions, [141, 425,
435] for the FFA and triglyceride concentrations under
different conditions and [431, 443, 444, 452, 453] for
the relative rates of glucose and FA oxidation

(sections S1.1-51.3).
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ATP Production
through the

citrate cycle

vATpS=520 uM st

Nucleoside
Diphosphate

kinases

UNDKG =3000 uM st

Unpku=30 UM s

Adenosine Kinase

vAK= 100 HM S_l

ATP consumption

Vatpuse = 173 UM st

— set such that the concentrations of the mono- di-
and tri- phosphate molecules matched the following

average values/ranges:

P;—3.81 (3.55-4.07)mM [429];

ATP —2.78 (2.71-2.85)mM [429];

ADP —.885 (.794-.976)mM [486];

AMP —.237 (.200-.272)mM [429];

UTP —.285 (.255-.315)mM [486];

UDP —-.108 (.096-.120)mM [486];

GTP —.277 (.266-.288)mM [486];

GDP —.098 (.091-.105)mM [486]

Rates of ATP production and consumption were
estimated based on the data in [431, 443, 444]
(section $1.1.3).

Overall lipogenesis (hepatic +WAT) was set such that
the plasma concentrations and total lipogenesis rates
matched to the data in [139, 425, 428, 466, 467] (see
section S1). [426, 427, 429, 430] used as references
for hepatic concentrations (section S1.1.1). [26]
provides data for the relative contribution of liver to

overall lipid metabolism (section 3.3.2.1).

Lipogenesis Vigen =5.5 UM s*
Triglyceride VTGsyn= 10 UM 57
Synthesis

Lipolysis Vipiy=0.085 pM s™*
FFA Uptake vEFd =0.08uM s

vhifr=1.2uM s

Set such that the plasma triglyceride and FFA
concentrations and overall (hepatic + WAT + gut etc.)
triglyceride production and degradation matched
data in [141, 425, 428, 431, 435, 443, 466, 467, 471]
as closely as possible. However, since adipose
triglyceride storage is not included in the model,
larger variation occurs in the simulated plasma
triglyceride  concentration  throughout  each
intake/output cycle than is seen in vivo. Given that
short term variations in

plasma triglyceride
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Triglyceride VyrpL=0.3uM s
Uptake/Output

Vgirr=0.4uM s
Adipose Lipid Vanwar=-22UM s
Metabolism

Verisyn= 8.5UM st

_ 1
Viipolysis= 2UM s

concentration have little effect on hepatic
metabolism due to the slow rate of triglyceride uptake
and lipolysis, emphasis was placed on ensuring the
FFA concentration matched the experimentally
measured at each time point, whilst only the time-
averaged plasma triglyceride value matched the
experimental data. The contribution of liver to
triglyceride synthesis was based on the data in [26]
(section $1.3.3). The hepatic  triglyceride
concentration was set to match the data in reference

[487] (section S1.1.1).

Glycerol Kinase

Vgconv= > UM st

The average blood glycerol concentration was

matched to the data in [425] (section S1.1.4).

Lactate Uptake

Viger= 200 uM s

Changes in lactate concentration are largely
determined by the effects of hormonal and allosteric
regulation on glycolysis. [425-430, 466] were used as
reference values blood/hepatic concentrations of

lactate and glycolysis intermediates.

Glycerol Uptake

Vlyce= 100pM s

Membrane transport is not considered rate limiting in
the use of glycerol by hepatocytes. However, the
plasma concentration was matched to the
experimental data measured by Daly et al. [425]

(section S1.1.4).
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Table 2.4: The zonation of key enzymes in the model.

Process PP:PC (model) Zonation of key enzymes (experimental) | References Zonation Constant (k)
kn=0 — no zonation
0<kn<1 - periportal

-1<kn<0 — pericentral

Glucose Uptake 1:2.5 Glucokinase (GK) [52-61] —0.429

(Glucose -> G6P) 1:1.5-3.5

Glucose Output 1.9:1 Glucose-6-Phosphatase (G6Pase) [54, 62-64] 0.31

(G6P -> Glucose) 2.3-15:1

Glycogenesis 3:1 Glycogen Synthase (GS) [66] 0.5

(G6P-> Glycogen) Periportal — no quantitative data found

Glycogenolysis 1:1 Conflicting data in literature — perhaps [65, 66] 0 (no zonation)

(Glycogen -> G6P) dependent on feeding conditions.

Glycolysis 1 1:1 6-Phosphofructo-kinase, (PFK,) [488]**  reported as  statistically 0 (no zonation)

(Glucose —> GADP) 1:1-1.3** insignificant difference between sections

Glycolysis 2 1:2.1 Pyruvate Kinase, (PKy) Cited in [45] —0.355

(GADP - 1:1.66-2.5 [67]

Pyruvate/Lactate)

Gluconeogenesis 2 | 1.75:1 Fructose-bisphosphatase (FBPase) [52, 53, 68] 0.273

(GADP -> Glucose) 1.5-2:1

Gluconeogenesis 1 | 2.4:1 Phosphoenolpyruvate carboxykinase Cited in [45] 0.412

(Pyruvate/Lactate (PEPCK) [61, 66, 69-72]

—> GADP) 1.9-29:1

Pyruvate Carboxylase [73]
1.72:1
Pyruvate Oxidation | 1:1 Pyruvate dehydrogenase complex (PDC) | [73] 0 (no zonation)
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1:1.69 (insignificant due to large
variability, especially in the pericentral
compartment)

Oxidative
phosphorylation
and the citrate
cycle

1.5:1

Cristae volume:2.38:1

[46]

Cristae Area: 2.05:1

[46]

Succinate Dehydrogenase:1.9:1
Malate Dehydrogenase 1.7:1

[47]

Cytochrome c oxidase >1:1

[48]

0.2

Lipogenesis

1:1.6

Acetyl-CoA Carboxylase
Fed:1:1.58(f),1:1.64 (m).
Starved: 1:1.13(f), 1:1.32 (m).
Refed: 1:1.61(f), 1:1.60 (m).

[81]

Fatty Acid Synthase
Fed1:1.91(f), 1:1.04* (m).
Starved: 1:1.26* (f), 1:1.27* (m).
Refed: 1:2.39 (f)1:1.34 (m).

(88]

ATP-dependent dependent citrate lyase
Fed:1:2.4(f),1:1.82 (m).

Starved: 1:1.47 (f), 1:1.64 (m).

Refed: 1:2.5 (f), 1:2.78 (m).

[89]

G6P dehydrogenase,
6-phosphogluconate dehydrogenase,
Malic enzyme, Isocitrate dehydrogenase,
Alcohol dehydrogenase,

As a general trend 1: >1 (pericentral)

For review see [45]

-0.23

B-oxidation

l1.6:1

B-Hydroxybutyryl-CoA hydrogenase
Fed:1.52:1(f),1.59:1 (m)
Starved: 1.58 : 1 (f), 1.80: 1 (m)

[81, 82]

0.23
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Carnitine palmitoyltransferase-1
1.26 : 1 (in the absence of hormones)

[83]

Liver fatty acid binding protein (L-FABP)
16:1

[84, 85, 489]

Triglyceride 1:1 No data demonstrating zonation in 0 (no zonation)
Synthesis triglyceride synthesis enzymes found
Triglyceride 1:1 No data demonstrating zonation in 0 (no zonation)
Breakdown lipolysis enzymes found
Insulin Reception 1:1.35 Insulin Receptor proteins [490] —-0.15
Roughly 1:2 estimated from in vitro for
physiological glucose concentrations. P.C.
distribution demonstrated in vivo.
Glucagon 1.35:1 Glucagon Receptor Proteins [491] 0.15
Reception 1-3.5:1 (for mRNA)
FFA membrane | 1.5:1 L-FABP expression - ~1.5-1.6:1 [84, 85, 489] 0.2

transport uptake
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3 Understanding zonated steatosis and damage in NAFLD.

3.1 Introduction to Chapter

In this chapter, the model is used to simulate conditions of high fat intake and IR leading to the
development of steatosis across the sinusoid. The major objectives addressed in this chapter were,
firstly, to assess the contributions of high intake, IR and additional metabolic dysregulation to NAFLD.
Secondly to identify the major differences between periportal and pericentral cells accounting for
higher susceptibility to steatosis in pericentral cells. Finally, to identify key metabolic variations
accounting for inter-individual differences in susceptibility to steatosis and inter-individual differences
in NAFLD development in the model. The graphs in this chapter along with several sections of text

were published in Ashworth et al. [401].

In adult sufferers of NAFLD, steatosis is often most severe in pericentral cells [15-17]. When assessed
by Chalasani et al., 38% of subjects showed steatosis predominantly in pericentral cells, 62% showed
azonal or pan-sinusoid steatosis and less than 1% showed steatosis restricted to periportal cells [15].
Additionally, inflammation and fibrosis tend to be more severe towards the pericentral end of the
sinusoid [15-17, 377]. When considering the effects of IR, this pattern of lipid build-up could be
considered counter intuitive. Pericentral cells specialise in lipogenesis, whilst periportal cells show
increased expression of FA uptake proteins. Given the context of reduced insulin stimulation but
raised plasma lipid levels and increased hepatic FFA uptake, it would be expected that periportal cells

to show the most severe steatosis [380, 492].

A potential solution to this apparent paradox suggested in the literature is that IR could be restricted
to glucose metabolism, with insulin signalling remaining intact in lipid metabolism [380, 381].
Consistent with this, increased rates of lipogenesis and triglyceride synthesis are seen in insulin
resistant NAFLD patients. Additionally, the expression of the lipid metabolism regulatory protein

SREBP-1c, which is stimulated by insulin under metabolically normal conditions, is increased in insulin
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resistant NAFLD livers [36-39]. Furthermore, increased expression of ChREBP, an additional
transcription factor whose expression is primarily regulated by the presence of sugars, is seen in
NAFLD as a result of hyperglycaemia [493, 494]. However, whilst hepatic lipogenesis is increased in
NAFLD, it is known that the majority of the lipids in the livers of NAFLD patients arise from uptake,
such that an explanation of pericentral-centred steatosis should not be based primarily on increased
hepatic lipid production [26, 492, 495, 496]. Additionally, separate pathways for insulin reception
required for a duel resistance/sensitivity effect have not been identified, and it is known that the two
insulin receptors (IRS-1 and IRS-2) both act on glucose and lipid metabolisms [497-500]. The link

between IR and the susceptibility of pericentral cells to steatosis, therefore, remains unexplained.

Fully characterising the development and consequences of metabolic diseases such as NAFLD in cells
across the sinusoid experimentally would be a challenging task due to the small size of the sinusoid
and the large number of potential variables. As a result, it is pertinent to study the system using a
computational model such as the one presented here in order to make predictions and minimise the

future experimentation required.

In section 3.3.1 we first assess whether the model can reproduce the changes to hepatic lipid levels,
glucose storage and energy metabolism seen in steatotic livers in vivo when simulating IR. This
provides validation of the model simulations when considering NAFLD, in addition to the comparison
with experimental data presented in supplementary material S1 for metabolically normal and insulin
resistant individuals. Additionally, the contributions of increased SREBP-1c expression and increased
dietary intake to the changes in metabolism occurring in NAFLD were assessed. Ensuring that the
model simulations under conditions of high caloric intake and IR are consistent with in vivo findings
also provides the basis for the simulations run in chapter 4, in which the model is used to study the

effects of inhibiting or stimulating various hepatic pathways as potential treatments for NAFLD.

Having validated that the model outputs are consistent with in vivo observations for NAFLD, in section

3.3.2 the model is used to investigate the key differences between cells at the periportal and
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pericentral ends of the sinusoid that cause pericentral cells to be more susceptible to steatosis. Using
the computational model, detailed predictions of the changes in the conversion rates and metabolite
concentrations in specific regions of the sinusoid can be made under different feeding conditions for

the healthy and disease states.

Finally, inter-individual variation is seen both in susceptibility to steatosis and in the pattern of
steatotic build-up. Around 25% of obese individuals fail to develop steatosis whilst 16% of lean
individuals show excess liver fat [18], and variation is seen in the predominant location of steatosis
from pericentral to azonal or pan-sinusoidal [15-17]. In section 3.3.3, the model is used to identify
variations in hepatic metabolism likely to account for these differences. Focussing on hepatic
processes, sensitivity analysis was performed on the rate and zonation constants in the model to

identify those with the largest effects on hepatic triglyceride and FFA levels.

3.2 Inputs and Model Set up

3.2.1 Inputs

Through this section, the 4-hour spiked input cycle discussed in section 2.2.4.2 was used to represent
intake roughly equivalent to a daily feeding cycle excluding sleep. This provides both periods of post-
prandial glycogen and triglyceride synthesis and periods of their breakdown to glucose and FFAs
between meals. When using this input cycle, simulations were run until equilibrium was reached
between subsequent cycles. The average concentrations and rates over each 4-hour cycle are then
presented. When simulating a moderate diet the carbohydrate and lipid inputs over each cycle were
set to match the average input per meal in a study performed by Daly et al. as discussed in section

2.2.4.2. [425].

Because a separate adipose compartment was not included, adipose lipid storage and adipocyte
proliferation could not be included in the model. As a result, the short and medium term effects of

high fat diets on plasma FFA and triglyceride concentrations are exaggerated because the fats are not
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removed from circulation. To compensate, inputs representing high fat and very high fat diets were
set by matching the resulting outputted plasma FFA and triglyceride concentrations to those seen in
overweight and obese individuals, rather than matching the increase in dietary intake. A 12.5%
increase in FFA input, used to represent high fat intake, results in simulated plasma triglyceride and
glucose concentrations close to the average of those measured in overweight individuals by Sindelka
et al. (25kg.m2<BMI<30kg.m2) [141]. A 25% increase was used to represent very high fat intake, which
gives changes in triglyceride and FFA concentration towards the high end of the values measured in
obese individuals (BMI>30kg.m2), consistent with a severe increase in dietary fat content [141, 435].
High and very high carbohydrate intake diets were simulated using equivalent percentage increases

in glucose input.

3.2.2 Insulin Resistance and SREBP-1c

IR was simulated by multiplying the detected insulin concentration by an IR constant with a value of
less than one (Kir < 1) such that cells effectively experience an insulin concentration lower than the
real concentration. Throughout this thesis, severe IR corresponds to a value of Kr = 0.015 and
developing IR to Kir = 0.05. On a moderate diet, developing IR leads to hyperinsulinaemia but only a
rise of 1.25mM in average glucose concentration as raised insulin levels compensate for decrease
sensitivity. Severe IR, meanwhile, causes postprandial hyperglycaemia consistent with the

development of T2DM.

As discussed, the pro-lipogenic regulatory protein SREBP-1c has been highlighted as playing a potential
role in the development of NAFLD [36-39]. In metabolically normal individuals, SREBP-1c is stimulated
by insulin and, therefore, a fall in expression would be expected insulin resistant NAFLD patients [155,
158, 198, 501]. However, an increase is seen in insulin resistant NAFLD patients [36-39]. To account
for the counter-intuitive increase seen experimentally, simulations were run for an insulin resistant
individual with continuous stimulation (corresponding to a high 1nM insulin concentration) of

lipogenesis and triglyceride synthesis.
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3.3 Results
3.3.1 Representing NAFLD in the Model

In the following section, IR with and without increased SREBP-1c expression and varying dietary intake
are simulated to assess to what extent these account for the experimentally observed changes in lipid

levels, glucose regulation, ATP levels and metabolic rates in NAFLD [18, 36, 37, 131-133].

3.3.1.1 Insulin Resistance and SREBP-1c

Figure 3.1 summarises the simulated effects of IR with and without increased SREBP-1c expression on
bulk hepatic metabolism (figure 3.1a), on zonation in metabolism (figure 3.1b) and on key plasma
concentrations (figure 3.1c). Figures 3.2 and 3.3 show the simulated effects of IR with and without
increased SREBP-1c expression on concentrations of hepatic metabolites (figure 3.2) and rates of key

hepatic processes (figure 3.3) across the sinusoid.

The majority of key metabolic changes known to occur in steatotic livers are seen when simulating the
direct effects of IR alone (without increased SREBP-1c expression). Firstly, pericentral-centred
steatosis occurs when simulating system-wide IR (figure 3.2a). For a severely insulin resistant
individual on a moderate diet, the simulated average hepatic lipid content was more than doubled
from 2.3% of total cell mass to 5.5%. The increase in concentration was largest in pericentral cells
where the lipid content rose from 2.7% to 7.4%, consistent with the development of pericentral-
centred steatosis. A 5% (50mg/g wet weight) liver triglyceride concentration is generally used as the

criterion for diagnosing early-stage NAFLD [15].

Both experimentally and in the model simulations, insulin resistant livers are unable to store sufficient
glycogen (figure 3.2d), leading to post-prandial hyperglycaemia (figure 3.1c). Consistent with
experimental observations [502], pericentral cells show a more severe loss in their ability to store and
release glucose throughout the meal cycle than periportal cells (A(compartment 1)=27.4mM vs

A(compartment 8)=5.5mM (in units of glucose) (figure 3.2f)).
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Figure 3.1 — The simulated effects of IR on metabolism. (a) The effects of simulating IR on total hepatic metabolism (averaged across the sinusoid). (b) The
heterogeneity in the effects of simulating IR across the sinusoid. (c) The effects of simulating increasing severities of IR on plasma triglyceride, glucose and FFA
concentrations compared with experimental data from Sindelka et al [141] and Burnt et al. [435].
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However, in order for the model to fully recreate the metabolic changes seen in vivo, raised SREBP-1c
expression must additionally be simulated. In particular, when simulating the direct effects of IR alone,
the outputted data differ from in vivo findings for NAFLD in the lipogenesis rates. In vivo, although the
majority of hepatic lipids in NAFLD are known to originate from uptake, increases have also been
measured in the rates of de novo lipogenesis and triglyceride synthesis [26, 37, 503, 504]. When
simulating IR in the model, the average rates of these processes were roughly unchanged (figures 3.33,
5f) and hepatic steatosis arose as a result of increased lipid uptake alone (figures 3.3c, 3.3e). However,
when additionally simulating increased SREBP-1c expression, the rates of lipogenesis and triglyceride
synthesis increased to 2.31 and 2.05 times the metabolically normal rate respectively (figures 3.3a,
3.3f), consistent with in vivo NAFLD [26, 37, 503, 504]. Increased SREBP-1c expression led to more
severe pericentral-centred steatosis, with the simulated compartment 8 (most pericentral) lipid

content higher than 10% of total cell mass even, for the moderate intake cycle used (figure 3.3a).

When measured experimentally, hepatic glucose oxidation is markedly reduced in NAFLD, with almost
all energy produced through B-oxidation [44, 227, 228, 505-508]. When simulating IR with increased
SREBP-1c expression in the model, a 45% increase in B-oxidation (figure 3.3d) and a 13% reduction in
glucose oxidation via glycolysis occurred, consistent with the experimental observations [44, 227, 228,

505-509] (figure 3.3d).

Despite the increase in FA oxidation, reduced ATP concentrations have been measured experimentally
in NAFLD livers [44, 227, 228, 506, 510-513]. Also, increased mitochondrial ROS production has been
measured, suggesting overactive but dysfunctional ATP synthesis pathways [501, 512, 514-516]. These
findings are likely to be, at least partially, due to a reduction in activity in ETC proteins (reviewed in
[501]). When simulating IR with increased SREBP-1c expression in the model, a 19.5% fall in ATP
concentration (figure 3.2b) occurred despite a 9.3% increase in the rate of oxidation of acetyl-CoA in
the citrate cycle (figure 3.3g). This occurred even though the model does not include the reduction in

ETC protein activity, and results from increased ATP consumption in lipogenesis, triglyceride synthesis
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and B-oxidation combined with reduced ATP production from glycolysis. As NAFLD develops in vivo,
additional drops in ATP concentration would be seen due to reduced ETC protein activity [44, 227,

228, 505, 506].

Therefore, whilst pericentral-centred steatosis, reduced glycogenesis and key alterations to energy
metabolism seen in NAFLD patients occur in the model when simulating IR alone, increased SREBP-1c
expression is additionally required to fully replicate the metabolic changes occurring in NAFLD. In the
following sections, both the effects of IR alone and IR combined with increased SREBP-1c expression

are simulated.

3.3.1.2 Dietary intake and the development of steatosis

Figure 3.4 shows the simulated effects of high fat intake and very high fat intake diets on hepatic
triglyceride, FFA and ATP concentrations. When simulating insulin sensitive individuals, high intake
and very high intake of fats caused relatively moderate increases in the average hepatic triglyceride
content from 2.3% on a moderate diet to 3.6% and 7.2% respectively (figure 3.4a). Therefore, hepatic
lipid content is only higher than the 5% criteria at which early-stage NAFLD is diagnosed when
simulating obese individuals with severe plasma hyperlipidaemia in the absence of IR. Hepatic FFA
concentrations were increased from 21.5uM on a moderate diet to 28.6pM and 38.0uM when
simulating high and very high fat diets respectively (figure 3.4e). A 5% reduction in ATP concentration
occurred when simulating a very high fat diet due to increased allosteric inhibition of glucose oxidation
(figure 3.4f). When high and very high carbohydrate diets were simulated, smaller increases in the
simulated hepatic triglyceride content occurred than for increased lipid intake. Even for very high

carbohydrate intake, the hepatic triglyceride concentration remained less than 5% (figure 3.4a).

When combined with IR, high dietary intake caused far more severe steatosis in the model. In the case
of severe IR (Kig=0.015) (figure 3.4b-d), the average concentration increased from 5.5% when
simulating a moderate intake diet to 10.0% and 27.0% when simulating high carbohydrate and high

fat intake diets respectively (figure 3.4c). Severe IR combined with increased SREBP-1c expression
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caused even more extreme increases in hepatic triglyceride concentrations due to additional hepatic

lipogenesis (figure 3.4d).
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Figure 3.4 — The simulated effects of varying dietary intake in the model. (a-d) The average hepatic
lipid content across the sinusoid when simulating varying glucose and FFA intake diets in individuals
with (a) metabolically normal insulin sensitivity (100%, Kir=1), (b) developing IR (5%, Kir=0.05), (c)
severe IR (1.5%, Kir=0.015) and (d) severe IR in combination with increased SREBP-1c expression. (e-f)
The effects of high fat and carbohydrate (glucose) intake on (e) ATP concentrations and (f) FFA
concentrations across the sinusoid when simulating a metabolically normal, insulin sensitive individual.
High and low intakes correspond to a sustained 12.5% difference in intake relative to the moderate
intake det. Very high and raised intakes correspond to 25% and 5% increases respectively. The average
concentrations over a 4 hours intake/output cycle are depicted.

In reality, adipose uptake of plasma lipids and increased adipocyte proliferation are likely to prevent

such rapid rises in hepatic steatosis concentrations. However, these severely raised values are
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consistent with the dangerous effects of high fat intake on metabolism in untreated insulin resistant

individuals.

3.3.2 The causes of pericentral centred steatosis in insulin resistant NAFLD individuals.
In the following sections, the metabolic changes occurring across the sinusoid when simulating NAFLD
resulting from IR and increased SREBP-1c expression are analysed in order to identify the key

differences between periportal and pericentral cells accounting for pericentral-centred steatosis.

3.3.2.1 Triglyceride Synthesis, Output and Lipolysis

The processes directly determining the triglyceride concentration are triglyceride synthesis (figure
3.3a), lipolysis (figure 3.3b) and the net rate of triglyceride output (figure 3.3c) (release as VLDL minus
the slow uptake from plasma). Lipolysis only occurs at a very slow rate in liver (88) and, although an
increase in rate occurred when simulating IR, the process is not a major determinant of the hepatic
triglyceride concentration. Triglyceride output and uptake, meanwhile, depend only on the plasma
and hepatic triglyceride concentrations in the model, and cannot account for the variation in steatosis

across the sinusoid. Instead, the zonal differences arise in the rate of synthesis.

Even when simulating metabolically normal individuals, the rate of triglyceride production was higher
in the pericentral half of the sinusoid than in periportal cells. The simulated periportal to pericentral
triglyceride synthesis ratio (pp:pc) was 1:1.64 (figure 3.3a), consistent with the ratio of 1:1.58+0.34
seen experimentally (89). When simulating metabolically normal individuals, this arises as a result of
the upregulated lipogenic pathways in pericentral cells and upregulated B-oxidation in periportal cells.
When simulating NAFLD (IR with increased SREBP-1c expression), the gradient in the rate of
triglyceride synthesis across the sinusoid became steeper (pp:pc = 1:2.34), leading to greater steatosis

in pericentral cells.

The enzymes mediating triglyceride synthesis are homogenously expressed across the sinusoid in the

model. The large heterogeneity in rate across the sinusoid when simulating NAFLD instead results
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from differences in the concentrations of the two substrates of triglyceride synthesis: glycerol-3-

phosphate (G3P) and FFAs.

3.3.2.2 FFA concentration: Lipogenesis, Uptake and Oxidation

When simulating metabolically normal individuals, the FFA concentration was higher in the pericentral
compartments (pp:pc=1:1.91) (figure 3.2c), which is intuitive given that pericentral cells specialise in
lipogenesis whilst periportal cells predominantly utilise fats in B-oxidation (90). When simulating
NAFLD, this gradient in FFA concentration becomes more pronounced (pp:pc=1:2.54). The processes
directly determining the hepatic FFA concentration in the model are de novo lipogenesis (figure 3.3f),
uptake and release (figure 3.3e), and B-oxidation (figure 3.3d) along with triglyceride synthesis (figure

3.3a) and lipolysis (figure 3.3b).

The majority of additional lipids in NAFLD arose from uptake in the simulations (ARate = 404nM FFA/s;
figure 3.3e), although de novo lipogenesis also increased as a result of SREBP-1c expression (ARate
=276nM FFA/s; figure 3.3f). The largest increase in uptake occurred in pericentral cells where it
increased by 471nM FFA/s compared with 337nM FFA/s in periportal cells. FA uptake proteins have
higher expression in periportal cells and even when simulating IR, the total rate of uptake was still
larger in periportal than pericentral cells. However, under conditions of IR, where passive uptake
dominates rather than insulin-stimulated scavenging, the simulated gradient in the rate of FFA uptake
across the sinusoid was less steep. The increase in de novo lipogenesis was also larger in pericentral
cells, where it increased by 311nM FFA/s compared with 242nM FFA/s in periportal (figure 3.3f). This

is as a direct result of the pericentral zonation of lipogenesis enzymes.

The rate of B-oxidation is increased by 411nM FFA/s when simulating NAFLD providing a
compensatory mechanism by which some of the extra fats are removed (figure 3.3d). In the model
this occurred due to increased substrate and reduced insulin inhibition, although in vivo it is thought
that additional signalling pathways may further increase B-oxidation (reviewed in (13)). The increase

was largest in oxygen rich periportal cells (ARate =490nM FFA/s) where greater quantities of acetyl-
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CoA are required for the citrate cycle compared with pericentral cells (ARate = 332nM FFA/s) (figure
3.3g). Since the largest increase in uptake occurred in pericentral cells whilst the largest increase in
lipid oxidation occurred in periportal cells, FFA availability for triglyceride synthesis increased in

pericentral cells.

3.3.2.3 G3P Concentration: Glycogen Storage and Carbohydrate Metabolic Intermediates

G3P, which is closely related to glyceraldehyde-3-phosphate (GADP), an intermediate of glycolysis,
forms the carbon backbone in triglyceride synthesis. The G3P concentration was raised across the
sinusoid when simulating insulin resistant individuals, and this increase was larger in the pericentral
half of the sinusoid (75uM) than in the proximal periportal cells (48uM) (figure 3.2e). Increased SREBP-
1c expression affects triglyceride concentrations through changes in lipogenesis and triglyceride

synthesis, and has little effect on the G3P concentration.

The increase in G3P concentration when simulating IR individuals occurred because hepatocytes,
particularly towards the pericentral end of the sinusoid, are unable to properly clear glucose
intermediates. When simulating IR, glycogen concentrations were severely reduced across the
sinusoid (figure 3.2d). However, as discussed above, pericentral cells showed a more severe reduction
in glucose storage than periportal cells when simulating IR (Additional glucose stored postprandially:

A(compartment 1)=27.4mM, A(compartment 8)=5.5mM) (figure 3.2f).

In addition, pericentral cells consume less glucose in oxidative metabolism than periportal cells due to
their low oxygen environment (8.1uM acetyl-CoA/s vs 13.0uM/s when simulating NAFLD; figure 3.3g).
These effects caused a build-up of carbohydrate metabolism intermediates, including G3P, particularly

in pericentral cells.

This increase in G3P concentration, which remains lower than the Ky value for the glycerol backbone
binding to glycerophosphate acyltransferase (460uM), means that FFAs are more rapidly converted to

triglycerides, causing steatosis [470].
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3.3.3 The effects of metabolic variation between individuals on steatosis development in
NAFLD.
The results in the previous section investigated the development of NAFLD when running simulations
with a single set of parameters. However, in reality, patients will show inter-individual variability in
the activity of metabolic processes. In the following sections, the effects of this inter-individual
variation in the activity of hepatic processes in the model on susceptibility to steatosis and on its
pattern of development are assessed using two methods. Firstly, 15 example ‘patients’ were simulated
with rate and zonation constants randomly generated from within a specified range of the standard
values (section 3.3.3). These patients were simulated with both normal insulin sensitivity on a
moderate intake diet and with developing IR on a high fat intake diet. Correlations were performed
between each of the varied constants and the resulting triglyceride concentrations across the sinusoid.
Secondly, sensitivity analysis was performed on both the rate and zonation constants to assess the
impact of varying each constant in isolation on triglyceride concentrations across the sinusoid (section

3.4.3).

3.3.3.1 Simulating Individual Patients

To assess the impact of inter-individual variability across a wide range of processes, 15 patients with
rate constants and zonation constants for a number of key processes randomly generated within
bounded ranges were simulated. Metabolic variations in numerous tissues around the body are likely
to affect hepatic steatosis via plasma lipid concentrations. However, because the model presented
here is primarily of liver metabolism, we focus specifically on variations in the expression and activities
of enzymes mediating hepatic energy metabolism. The constants which were altered include those
for glycolysis (glucose->G6P, G6P->GADP and GADP->pyruvate), gluconeogenesis, pyruvate oxidation,

lipogenesis, B-oxidation, oxidative phosphorylation and triglyceride synthesis.

The rate constants determine the overall maximum activity of the enzymes mediating each process.

These were generated randomly using the Microsoft Excel RandBetween() function from within a 10%
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range of the standard value (table 3.1). This function generates numbers within a range with equal
weighting across the range of possible values. The zonation constants were selected using the same
function from a range of 0.2 of the standard value (table3.2). A zonation constant of 1 corresponds
to completely periportal expression, a zonation constant of O corresponds to heterogeneous
expression and a zonation constant of -1 corresponds to completely pericentral expression (see
section 2.4.6). The altered parameter values for the 15 patients are shown in tables 3.1 and 3.2. For
parameters not listed in the table, the standard values listed in chapter 2 were used. These ranges of
parameter variability lie well within the inter-individual variability seen in the data used to set the

parameters (tables 2.1 and 2.2).

3.3.3.1.1 Simulating Inter-Individual Variability

Figure 3.5 shows the hepatic lipid content, hepatic FFA concentration, hepatic ATP concentration, the
plasma glucose concentration and the plasma lactate concentration when simulating the 15 example
patients. The simulated data are shown for both normal insulin sensitivity with moderate lipid intake

and developing insulin resistant with high fat intake.

In all cases, the average simulated concentrations across the patients are well within one standard
deviation from the simulated values when using the standard parameter values, although a higher
average hepatic lipid content was seen for the 15 simulated patients compared with the content when
using standard parameter values (figure 3.5 a,b). In all cases, the simulated concentrations for the 15

example patients remain within the ranges measured experimentally.

Very little variation is seen between the patients for simulated plasma glucose (figure 3.5e) and
hepatic ATP (figure 3.5d) concentrations, consistent with the strong allosteric and hormonal
regulation in both glucose storage and ATP synthesis. A wider variation in plasma glucose
concentration would have occurred if the rate constants for glycogen synthesis and glycogen

phosphorylation were additionally altered between the patients.
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Table 3.1: The rate constants for the 15 simulated patients.

Rate Constants

Simulated ‘Patients’

1 2 3 4 3 6 7 8 9 10 11 12 13 14 15
GK 122.03 | 133.11 | 144.7 143.97 | 136.71 | 140.24 | 125.63 | 141.73 | 134.42 | 144,54 | 139.65 | 120.51 | 141.78 | 124.44 | 129.07
G6Pase 400.87 | 370.26 | 379.47 | 370.43 | 361.99 | 350.18 | 387.13 | 360.86 | 353.5 372.49 | 352.46 | 384.54 | 342.74 | 404.15 | 374.47
Glycolysis 1: 167.05 | 159.44 | 164.41 | 159.98 | 158.76 | 149.22 | 146.18 | 149.16 | 146.02 | 167.31 | 164.3 169.71 | 159.35 | 150.36 | 144.72
G6P->GADP
Glycolysis 2: 90.49 84.29 84.57 84.02 80.35 84.56 79.74 86.11 87.52 89.45 87.52 93.29 78.99 86.35 80.66
GADP->Pyr/Lac
Gluconeogenesis 1: 36.46 31.56 37.26 32.38 37.53 33.04 31.67 34.71 37.61 33.45 32.34 33.32 36 34.28 35.81
Pyr/Lac->GADP
Gluconeogenesis 2: 74.78 74.75 69.6 61.71 61.24 70.52 73.24 71.71 72.97 67.87 68.42 66.38 72.54 65.83 68.48
GADP->G6P
Pyruvate Oxidation 12.86 14.9 13.73 15.02 14.96 13.93 15.28 12.69 13.47 15.33 13.88 13.96 15.32 15.32 12.83
Oxidative 499.74 | 482.91 | 540.51 | 519.06 | 473.52 | 540.98 | 500.08 | 559.93 | 567.6 561.47 | 518.4 496.69 | 529.61 | 489 472.15
Phosphorylation
Lipogenesis 371 3.85 4.37 4.33 3.95 3.76 4.26 4.36 4.24 4.04 4.19 4.09 3.73 4.08 4.03
Beta Oxidation 3.29 3.54 3.27 3.09 3.51 3.05 3.31 3.55 341 3.55 3.53 3.07 3.57 3.21 3.47
Triglyceride Synthesis 8.23 8.57 9.79 9.03 8.15 8.15 9.16 8.88 9.18 9.79 9.02 8.26 9.62 8.41 8.38
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Table 3.2: The zonation constants for the 15 simulated patients

Zonation Constants

Simulated ‘Patients’

1 2 3 4 3 6 7 8 9 10 11 12 13 14 15
G6Pase 0.32 0.36 0.3 0.42 0.28 0.47 0.31 0.36 0.28 0.51 0.17 0.26 0.34 0.15 0.26
GK -0.457 | -0.309 | -0.481 | -0.502 |-0.345 |-0.331 |-0.427 | -0.401 |-0.49 -0.278 | -0.35 -0.44 -0.444 | -0.422 | -0.596
Glycolysis: -0.473 | -0.513 | -0.538 | -0.167 | -0.381 | -0.278 | -0.35 -0.204 | -0.552 | -0.459 | -0.175 | -0.222 | -0.214 | -0.428 | -0.175
GADP->Pyr/Lac
Gluconeogenesis 1: 0.359 0.32 0.276 0.231 0.444 0.315 0.417 0.308 | 0.345 | 0.313 | 0.49 0.44 0.566 | 0.512 | 0.369
Pyr/Lac->GADP
Gluconeogenesis 2: 0.294 0.284 0.215 0.399 0.203 0.327 0.28 0.203 0.254 | 0.214 | 0.439 |0.198 | 0.351 | 0.22 0.37
GADP->G6P
Pyruvate Oxidation -0.14 0.07 -0.02 0.01 0 0.05 0 -0.02 0.18 0.02 -0.19 0.07 0.04 -0.01 0.15
Oxidative 0.26 0.07 0.17 0.39 0.26 0.06 0.23 0.28 0.15 0.33 0.37 0.23 0.16 0.26 0.38
Phosphorylation
Lipogenesis -0.16 -0.1 -0.41 -0.19 -0.42 -0.12 -0.13 -0.04 -0.23 -0.28 -0.09 -0.34 -0.37 -0.33 -0.36
Beta Oxidation 0.06 0.43 0.24 0.25 0.16 0.23 0.34 0.37 0.09 0.26 0.31 0.22 0.22 0.37 0.39
Triglyceride Synthesis 0.16 0.06 -0.11 -0.16 -0.11 -0.19 -0.14 -0.11 -0.09 -0.1 0.2 -0.13 -0.11 0.2 -0.05
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Larger differences occurred in the simulated hepatic lipid content (figures 3.5a,b), hepatic FFA
concentration (figure 3.5c) and plasma lactate concentration (figure 3.5f) between patients. When
simulating metabolically normal individuals, the standard deviation in the hepatic lipid content is
19.5% of the average value. When simulating NAFLD this increased to 47.1%. Therefore, inter-
individual variability in hepatic metabolism is predicted to have a marked effect on severity of steatosis

once IR develops.

Little change in the simulated lactate concentration occurred between metabolically normal and
NAFLD patients. However, a standard deviation of 29-30% of the average values was seen when
simulating under the two sets of conditions, suggesting inter-individual variability predominantly
determined the concentration in the two groups. The simulated patients with high lactate
concentrations when simulating metabolically normal patients also showed a high concentration

when simulating NAFLD (Pearson’s coefficient=0.97).

3.3.3.1.2 Correlations between parameter values and key hepatic and plasma concentrations

Tables 3.3 and 3.4 show the Pearson’s product-moment correlation coefficients between each varied
parameter with the hepatic triglyceride concentration, with the zonation in hepatic triglyceride
content (pericentral to periportal ratio) and with key plasma concentrations when simulating the
patients with developing IR and high fat intake in the 15 patients. This is a measure of the linear
dependence between two variables with 0 corresponding to independence and +1 and -1
corresponding to total positive and negative correlations respectively. Table 3.3 shows the
correlations for the rate constants whilst table 3.4 shows the correlations for the zonation constants.

The correlations are presented when simulating IR and high fat intake.

Only the rate constants for oxidative phosphorylation and for the second half of glycolysis, converting
GADP to G6P, showed statistically significant (negative) correlations with hepatic triglyceride content.
The rate constant for oxidative phosphorylation determines the rate of production of ATP from acetyl-

CoA, and it is intuitive that a high rate constant would reduce the hepatic lipid content by promoting
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increased FA oxidation. It also showed a statistically significant negative correlation with the plasma
triglyceride and FFA concentrations. A relatively high, but non-significant, correlation was also seen
between the rate constant for B-oxidation and the hepatic lipid content, consistent with the
importance of the rate of oxidation of fats through these two pathways in determining susceptibility
to steatosis. The zonation constants for both oxidative phosphorylation and B-oxidation also showed
statistically significant correlations with the pericentral to periportal triglyceride ratio. Therefore,
variability in the zonation of the enzymes mediating that oxidation of FAs via acetyl-CoA is predicted

to at least partially account for the variability in steatosis location seen in vivo.

The rate constant for the second part of gluconeogenesis (GADP to G6P) showed statistically
significant negative correlations with plasma triglyceride and FFA concentrations as well as the hepatic
lipid content. Upregulation of this process not only reduces de novo lipogenesis from glucose, but also
reduces G3P production for use in triglyceride synthesis. Furthermore, it reduces the allosteric
inhibition of B-oxidation as a result of reduced acetyl-CoA synthesis from glucose. Finally, increased
gluconeogenesis increases the rate of ATP consumption in the cell, increasing the required oxidation
of acetyl-CoA to replenish ATP. The first three of these causes would be expected to be accompanied
by an opposite correlation between glycolysis and triglyceride content. However, given the low
correlation coefficients between the two glycolysis rate constants and hepatic triglyceride content,
the increased ATP consumption in gluconeogenesis is likely to have been the major cause of the
correlation between gluconeogenesis and hepatic lipid content. A relatively high, but non-significant,

correlation was also seen between the hepatic lipid content and the first half of gluconeogenesis.
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Table 3.3: The Pearson’s product-moment correlation coefficients between several rate constants and

key hepatic and plasma variables.

Rate Constants Hepatic PC:PP TG Plasma Plasma Plasma Plasma
Triglyceride | ratio TG FFA Glucose Lactate

GK -0.35 0.00 -0.37 -0.32 -0.19 -0.30

G6Pase 0.41 0.18 0.42 0.43 -0.09 0.25

Glycolysis 1: 0.25 0.22 0.23 0.32 -0.59 * 0.60 *

G6P->GADP

Glycolysis 1: 0.07 -0.13 0.08 0.14 -0.47 0.56 *

GADP->Pyr

Gluconeogenesis 1: | -0.49 -0.51 -0.47 -0.54 0.57 * -0.51

Pyr->GADP

Gluconeogenesis 2: | -0.59 * -0.25 -0.59 * -0.60 * 0.47 -0.35

GADP->G6P

Pyruvate Oxidation | 0.31 0.16 0.31 0.38 -0.42 -0.01

Oxidative -0.70 * -0.52 * -0.69 * -0.64 * -0.10 -0.36

Phosphorylation

Lipogenesis 0.09 0.11 0.09 0.11 -0.34 0.07

Beta Oxidation -0.35 0.30 -0.38 -0.38 0.32 -0.30

Triglyceride -0.40 -0.04 -0.41 -0.34 -0.19 -0.31

Synthesis

The correlations when simulating high fat intake and developing IR using parameter values
corresponding to 15 randomly generated patients shown in tables 3.1 and 3.2. * - statistical significance
of correlation <0.05

Table 3.4: The Pearson’s product-moment correlation coefficients between several zonation constants

and key hepatic and plasma variables.

Zonation Hepatic PC:PP TG Plasma Plasma Plasma Plasma
Constants Triglyceride | ratio TG FFA Glucose Lactate
GK -0.25 -0.15 -0.25 -0.22 -0.06 -0.21
G6Pase -0.10 0.12 -0.13 -0.01 -0.34 0.10
Glycolysis: 0.32 0.32 0.32 0.28 -0.16 0.36
GADP->Pyr

Gluconeogenesis 1: | 0.03 0.02 0.03 0.04 0.10 0.04
Pyr->GADP

Gluconeogenesis 2: | 0.22 0.38 0.20 0.17 -0.03 0.18
GADP->G6P

Pyruvate Oxidation | -0.08 -0.34 -0.05 -0.14 0.29 -0.31
Oxidative 0.43 0.57 * 0.42 0.41 -0.24 0.36
Phosphorylation

Lipogenesis -0.10 0.13 -0.10 -0.08 -0.08 0.13
Beta Oxidation 0.32 0.64 * 0.31 0.31 -0.14 0.13
Triglyceride 0.19 0.37 0.18 0.21 -0.05 0.28
Synthesis

The correlations when simulating high fat intake and developing IR using parameter values
corresponding to 15 randomly generated patients shown in tables 3.1 and 3.2. * - statistical significance
of correlation <0.05.
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3.3.3.2 Sensitivity Analysis on Key Variables

As a second method of assessing key inter-individual variations in metabolism that account for
differences in susceptibility to steatosis, sensitivity analysis was performed on the rate constants and
zonation in the model. This involved altering each constant in turn and assessing the impact on
metabolism. In addition to the processes varied in the previous section, the rate constants for
glycogenesis, glycogenolysis, FA cross-membrane transport, triglyceride cross-membrane transport

and active triglyceride release as VLDL were also included in the sensitivity analysis.

3.3.3.2.1 Key determinants of total hepatic triglyceride level

Each rate constant was increased or reduced by 10% when simulating an otherwise metabolically
normal individual. Variations of this size are large enough to have a notable effect on hepatic and
plasma concentrations and allow us to identify the relative importance of processes, but remain in a
range which would realistically be expected between individuals under non-pathological conditions.
The model was provided with constant glucose and FFA inputs such that, when using the unaltered
parameter values, the plasma glucose, triglyceride and FFA concentrations remained at 5.03mM,
1.05mM, and 432uM respectively. Simulations were run for 36 hours from these initial values after

changing each rate constant.

Hepatic and plasma triglyceride concentrations were most sensitive to the rate constants for B-
oxidation and for ATP synthesis through the citrate cycle (table 3.5), particularly when these processes
were inhibited. Reducing the rate constants for B-oxidation and ATP synthesis caused increases in the
simulated hepatic triglyceride concentration of 2.78mM and 1.82mM over the 36 hours respectively.
Increasing the rate constants, meanwhile, caused reductions of 0.81mM and 1.27mM respectively.
These large changes suggest that metabolic variations affecting the rate of oxidation of fats are likely
to be a major determinant of inter-individual susceptibility to the development of steatosis. Consistent
with this, the hepatic triglyceride concentrations were also sensitive to changes in the rate constants

mediating glycolysis, gluconeogenesis and pyruvate oxidation. All these processes alter the production



127

Table 3.5: Sensitivity analysis for the rate constants.

Process Change in Cellular FFA Change in Cellular Change in Plasma FFA (uM) | Change in Plasma
(uM) Triglyceride (uM) Triglyceride (uM)
Increased v, | Reduced v}, | Increased v;,, | Reduced v, Increased v, | Reduced v}, | Increased v, | Reduced vy,
(+10%) (-10%) (+10%) (-10%) (+10%) (+10%) (-10%) (+10%)
B-oxidation -2.7 5.4 -808.2 2782.5 -15.1 32.2 -36.6 125.7
Oxidative Phosphorylation -1.9 2.1 -1271.9 1818.1 -12.2 13 -57.0 82.7
Glycolysis 1: (G6P to G3P) mediated by PFK | -0.6 0.6 562.6 -587.6 7.2 -7.7 17.9 -19.1
Gluconeogenesis 2 (G3P to G6P) mediated | 0.0 -0.2 -517.1 599.3 -7.4 8.4 -18.5 21.1
by FBP
Glycolysis 2: (G3P to Pyr) mediated by PK 2.3 2.4 572.0 -588.9 12.0 -12.2 26.5 27.2
Gluconeogenesis 2 (Pyr to G3P) mediated -1.5 1.8 -464.9 550.4 -8.7 104 -21.0 24.8
by PEPCK
Pyruvate Oxidation 1.6 -1.6 526.4 -549.9 9.4 -9.7 23.2 -24.3
VLDL Synthesis and Release 0.3 -0.3 -362.9 373.6 7.0 -7.0 23.0 -23.4
Triglyceride Synthesis -1.5 1.8 237.5 -255.9 1.0 -1 4.5 -4.6
FFA Uptake 3.1 -3.0 260.7 -143.0 -28.5 36.4 -53.9 64.2
Lipogenesis 0.5 -0.5 183.0 -183.4 3.1 -3.2 7.8 -9.0
Glucokinase 1.6 -1.3 -90.4 262.8 79 -68.2 -56 65.9
Triglyceride Cross-Membrane Transport -0.1 0.1 102.5 -114.8 -1.9 2.2 -6.4 7.2
G6Pase -0.7 1.0 100.6 -45.5 -35 43.0 30 -31.2
Lipolysis 0.3 -0.4 -69.0 70.3 -0.5 0.4 -1.7 1.7
Glycogen Synthase 0.4 -0.4 -394 62.8 13 -14.0 -11 13.0
Glucose Uptake 0.5 -0.4 -24.4 63.8 21 -22.7 -15.5 19.8
Glycogen Phosphorylase -0.2 0.2 16.2 -10.1 -5.6 5.9 4.4 -4.4

The effect of varying the baseline rate constants, v, for the various hepatic metabolism processes included in the model on cellular and plasma FFA and triglyceride

concentrations.
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Table 3.6: Sensitivity analysis for the zonation constants.

Enzyme Altered

Periportal : Pericentral
Triglyceride Ratio

Unchanged Metabolism: 1.80:1

Difference in the change in
triglyceride concentration
between pericentral and
periportal cells.

20% More Periportal | 20% More Pericentral (ATGp,, - ATGpp)
(Ak, =+ 0.2) (Akn, =-0.2) TGay
(A from Ak, = —0.2 to Ak, = +0.2)

FA Uptake 1.27:1 2.62:1 0.91

Triglyceride Release as 2.22:1 1.47:1 -0.43

VLDL

Oxidative 2.09:1 1.53:1 -0.31

Phosphorylation

Pyruvate Oxidation 1.64:1 1.98:1 0.22

B-oxidation 2.01:1 1.64:1 -0.22

Glycolysis 1 (G6P-> GADP) | 1.73:1 1.86:1 0.08

Lipogenesis 1.75:1 1.85:1 0.08

Gluconeogenesis (GADP 1.88:1 1.74:1 -0.07

-> G6P)

Gluconeogenesis 1 (Pyr-> | 1.80:1 1.80:1 0.06

GADP)

Glycolysis 2 (GADP -> Pyr) | 1.79:1 1.80:1 -0.06

Triglyceride Synthesis 1.75:1 1.85:1 0.05

Triglyceride Uptake 1.75:1 1.89:1 0.04

Glucokinase 1.80:1 1.80:1 0.02

G6Pase 1.81:1 1.80:1 -0.00

Lipolysis 1.82:1 1.79:1 -0.00

The effect of altering the zonation constants kn of lipid metabolism processes on steatosis location

(compartmentl: compartment 8 triglyceride ratio) when simulating for IR patients on a moderate diet.

of acetyl-CoA from glucose, and hence, the allosteric inhibition of B-oxidation. A 10% variation in the

any of the five rate constants mediating these processes caused a 0.45-0.6mM variation in simulated

hepatic triglyceride content after 36 hours (table 3.5).

In addition to the oxidation of FAs, hepatic triglyceride levels also showed moderate sensitivity to the

rate constant for triglyceride release as VLDL. A 10% variation in rate constant caused a 0.36-0.37mM

change in simulated hepatic triglyceride levels after 36 hours (table 3.5).

Hepatic lipid concentrations showed only a relatively weak sensitivity to changes in the rate constant

for lipogenesis. Although de novo lipogenesis contributes less to hepatic lipid levels than FFA uptake,
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its contribution is not insignificant and changes in the rate of lipogenesis would be expected to have
a larger impact. However, lipogenesis is strongly allosterically regulated by the concentration of its
product and alterations in maximum enzyme activity (rate constant) are partially compensated by
changes in allosteric inhibition. Similarly, the rate constant for triglyceride synthesis only had a
moderate effect on hepatic and plasma lipid levels. Due to the low concentration of cellular FFAs, the
rate of triglyceride synthesis is predominantly determined by the availability of FFAs, rather than the

enzyme activity.

Finally, hepatic triglyceride levels also showed a comparatively weak sensitivity to variations in the
rate constant for FFA uptake. However, changes in FFA uptake did have a larger effect on plasma lipid

levels.

3.3.3.2.2 Key determinants of sinusoidal steatosis location

10% variations in the rate constants of the processes in the model had little effect on the predominant
location of steatosis across the sinusoid. Instead, to determine the hepatic metabolic variations most
likely to account for differences in the location of steatosis, sensitivity analysis was performed on the
zonation constants in the model (table 3.6). These constants determine the difference between
periportal and pericentral activity of enzymes mediating each process. Positive values correspond to
periportal zonation whilst negative values correspond to pericentral zonation. The constants were
increased or reduced by 0.2 corresponding to a 20% increase in periportal and 20% reduction in
pericentral cells or vice versa, which is well within the range of variation expected non-pathologically
(chapter 2 — table 2.2). The effects of these increases and reductions on the pericentral to periportal
triglyceride ratio are presented when simulating a severely insulin resistant individual (Kir=0.015) with

increased SREBP-1c expression on a moderate intake diet.

While total hepatic triglyceride levels were most sensitive to changes in the rate of lipid oxidation, the
location of steatosis is most strongly sensitive to changes in the zonation constants mediating FFA

uptake and triglyceride output (table 3.6). Variations in the zonation constant of FFA uptake had the
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largest effect, causing the periportal and pericentral triglyceride concentrations to change from 1:1.80
to 1:1.27 when increased (20% more periportal expression) and 1:2.62 when reduced (20% more
pericentral expression). Increasing the zonation constant for triglyceride release as VLDL caused more
strongly pericentral steatosis with a ratio of 1:2.22, whilst reducing the constant gave a ratio of 1:1.47.
This suggests that the inter-individual variation in the location of steatosis seen in vivo is likely to be

at least partially accounted for by differences in the zonation of lipid uptake and output proteins.

The zonation constants for oxidative phosphorylation of acetyl-CoA, B-oxidation and pyruvate
oxidation also had a notable effect on the location of steatosis (table 3.6). Alterations to the zonation
constant for oxidative phosphorylation and B-oxidation directly affect the rate at which fats are
oxidised and removed from the cells in each region of the sinusoid. Similarly, alterations to the
zonation constant for acetyl-CoA synthesis from pyruvate alter the relative amount of acetyl-CoA

produced from glucose in each region and, as a result, the allosteric inhibition of B-oxidation.

Consistent with the results when altering the rate constants, variations in the zonation constants for
de novo lipogenesis and triglyceride synthesis have little effect on steatosis location in the model. This
is despite the continuous stimulation of lipogenesis and triglyceride synthesis through increased
SREBP-1c expression. Therefore, non-pathological inter-individual variations in the expression of
lipogenesis enzymes are not predicted to account for differences in either susceptibility to steatosis

or the distribution of fats across the sinusoid seen in vivo.

3.4 Discussion

3.4.1 Insulinresistance and increased SREBP-1c expression

Firstly, additional validation of the model was provided in this chapter, focussing on its representation
of NAFLD under conditions of IR and high fat intake. It was demonstrating that, when the known
disruptions to metabolism are simulated (IR, increased SREBP-1c expression and high intake),

pericentral-centred steatosis occurs and the model replicates the major changes in hepatic
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metabolism known to occur in vivo. The model allows simulation of the changes in the rates of a wide
range of metabolic processes and concentrations of intermediates in specific regions of the sinusoid
under different feeding conditions and disease states, which would not be feasible experimentally.
Furthermore, having established the ability of the model to provide realistic data for NAFLD, it can be

used to make predictions of the effects of different treatments (see chapter 4).

When simulating increased lipid intake in a metabolically normal, insulin sensitive individual, the
hepatic triglyceride content was raised but this increase was fairly moderate. Unless a very high fat
diet (resulting in plasma lipid concentrations at the high end of those seen in obese individuals) was
simulated, the hepatic lipid concentration remained lower than the 5% cut off at which NAFLD is
diagnosed. Similarly, high glucose intake primarily caused increased glycogenesis rather than steatosis
in insulin sensitive individuals. For more serious steatosis to develop in the model, IR was required.
Early stage steatosis arose even when simulating a healthy (moderate intake) diet in an insulin
resistant individual. Severe build-up of lipids in the liver occurred when high lipid intake, or to a lesser
extent high glucose intake, was simulated in addition to IR. Across the range of insulin sensitivities,

low FFA or glucose intake returned simulated plasma triglyceride levels to a healthy range.

Therefore, loss of insulin sensitivity in addition to excessive calorie intake is predicted to be required
for more than early stage steatosis to arise. Given that fats in liver are known to cause both hepatic
and peripheral desensitivity to insulin, sustained excessive calorie intake will strongly increase the
chance of developing hepatic steatosis over time. However, these predictions highlight the

effectiveness of a low-fat diet as a treatment for NAFLD, even in insulin resistant patients.

In addition to the direct effects of IR, increased expression of SREBP-1c was required for the model to
fully reproduce the metabolic changes seen in the early stages of NAFLD in vivo. In particular,
increased SREBP-1c expression was required to replicate the increases in lipogenic rates seen in vivo.
Additionally, both IR and increase SREBP-1c expression contributed to mitochondrial dysfunction,

increased B-oxidation and reduced ATP levels in the simulations, consistent with in vivo observation.
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SREBP-1c is a transcription factor which upregulates lipogenesis and triglyceride synthesis. Under
normal conditions, its expression is stimulated by insulin. However, increased expression has been
shown to occur in insulin resistant NAFLD patients. It is thought that insulin retains the ability to
directly stimulate SREBP-1c expression despite the loss of insulin sensitivity [501, 517]. Alternatively,
it is possible that SREBP-1c is stimulated by hyperglycaemia or by the fats themselves [501, 517],
similar to the effects of ChREBP [493]. These results highlight the importance of the resulting increase
in lipogenesis and triglyceride synthesis in the pathology of the disease. However, the presence of

steatosis was seen when simulating the direct effects of IR alone.

3.4.2 Pericentral-centred steatosis in insulin resistant livers results from increases in
FFA and G3P concentrations in pericentral cells
In addition to ensuring the model provided a valid representation of NAFLD, a major aim was to
understand the metabolic changes leading to the development of steatosis in NAFLD, with a particular
focus on understanding the increased susceptibility of pericentral cells to lipid build-up and the
resulting damage. Changes in the rate of triglyceride synthesis, rather than output or lipolysis,
accounted for the pericentral zonation in steatosis in simulations. A reduction in net triglyceride
output also contributed to overall increased triglyceride levels but did not show zone specific
differences. The enzymes involved in triglyceride synthesis are not zonated. The pericentral increase

in triglyceride synthesis instead arose due to increases in the concentrations of G3P and FFAs.

Defective postprandial glycogen storage occurred when simulating IR and caused a build-up of glucose
metabolism intermediates including G3P in hepatocytes. Pericentral cells show lower glycogen
synthase activity than periportal cells [45]. When simulating insulin sensitive individuals, this was
compensated by increased insulin receptor [490] and reduced glucagon receptor expression [491] in
pericentral cells. However, when simulating IR, the zonation in hormone receptors no longer affects

glycogen synthesis, and glycogen depletion is most severe in pericentral cells. Additionally, pericentral



133

cells have fewer mitochondria and downregulated oxidative phosphorylation due to their low oxygen

environment [45]. As a result, pericentral cells cannot rapidly metabolise glucose intermediates.

Since glucose oxidation is suppressed in insulin resistant NAFLD patients and B-oxidation is
upregulated, the periportal zonation of oxidative phosphorylation enzymes, along with those
mediating B-oxidation, had an even larger effect on the simulated rate of oxidation of hepatic FFAs.

Excess FFAs were metabolised more rapidly in periportal cells than pericentral.

Increased availability of hepatic FFAs arose from both uptake and de novo lipogenesis. The enzymes
involved in glycolysis and lipogenesis show pericentral zonation and the increase in de novo
lipogenesis was largest in pericentral cells. The enzymes mediating FFA uptake, meanwhile, show
periportal zonation. When simulating metabolically normal individuals, FFA uptake is dominated by
insulin stimulated scavenging leading to strongly periportal uptake. However, when simulating insulin
resistant individuals, FFA uptake occurs due to the high plasma FFA concentration rather than insulin
stimulation, and passive uptake dominates. Under these conditions, the periportal zonation of FA
uptake proteins had a smaller effect on the rate of uptake. Therefore, although total uptake was still

higher in periportal cells, a larger increase in rate occurred in pericentral cells.

Together these data suggest that the major differences between pericentral cells and periportal cells
accounting for increased pericentral susceptibility to steatosis are lower expression of oxidative
phosphorylation enzymes, B-oxidation enzymes and glycogen synthase along with higher expression
of lipogenic enzymes in pericentral cells. These differences across the sinusoid account for a larger
increase in FFA and G3P concentrations in pericentral cells in NAFLD and, therefore, result in higher
triglyceride synthesis in these cells. Future experimental validation of these simulated data could be
performed through the addition of radiolabelled substrates to measure the rates of conversion within
individual regions of the sinusoid. As discussed supplementary material 1 (section S1.1.5), data of this
form has previously been published for metabolically normal individuals, and the model outputs are

consistent with experimental data in this case. Similar studies comparing metabolically normal and
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NAFLD patients are required. Alternatively, experimental studies destroying specific regions of the
sinusoids and measuring the remaining activity for various processes could also be used to provide

additional insight [518].

3.4.3 Inter-individual variation in fatty acid oxidation rates most strongly affect
susceptibility to steatosis.
Two methods were used to determine the processes most likely to account for variation in the
development of steatosis seen between individuals in vivo. By varying rate and zonation constants for
key processes, a set of simulated patients were created and used to investigate the correlations
between expression of the enzymes mediating each process and lipid content across the sinusoid.
Sensitivity analysis on the rate and zonation constants for each process was then used to assess the
effects of alterations in the rates of key processes individually on steatosis development across the

sinusoid.

Both sets of data suggest that any inter-individual variations in the rate of metabolism of hepatic fats
will have a large effect on susceptibility to NAFLD development. In the sensitivity analysis, variations
in the rate constants for B-oxidation and acetyl-CoA use in the citrate cycle had notably larger effects
on hepatic lipid levels than equivalent variations in the rate constants of other processes.
Furthermore, total hepatic lipid levels showed the next highest sensitivity to the rate constants for
glucose uptake, glycolysis and acetyl-CoA synthesis from pyruvate, all of which play a role in the
allosteric inhibition of B-oxidation by acetyl-CoA. When simulating the randomly generated sample
patients, a strong negative correlation was also seen between oxidative phosphorylation and hepatic
lipid content. Therefore, in both data sets, susceptibility to steatosis is predicted to be most strongly

determined by the rate at which hepatocytes can metabolise fats.

As validation of this prediction, there is considerable evidence to suggest mitochondrial function,
aerobic capacity and capacity for B-oxidation inversely correlate with liver fat percentage and

prevalence of NAFLD [155, 172-176, 519-522]. Furthermore, consistent with the high sensitivity of fat
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storage to oxidation rates, global knockout of ACC2 (resulting in reduced allosteric inhibition of -
oxidation) has been shown to reduce T2DM risk, obesity and adipose fat storage [523-525]. Liver
specific knockout of ACC1 and ACC2 has been shown to reduce hepatic steatosis, although this
resulted from both reduced lipogenesis and increased B-oxidation [526]. However, additional more
directed studies are required to determine whether higher B-oxidation and oxidative phosphorylation
capacities protect against hepatic steatosis independent of confounding factors such as exercise or

caloric intake.

Whilst the predominant location of steatosis showed some dependence to the zonation of enzymes
mediating oxidative phosphorylation and B-oxidation, it was far more sensitive to changes in the
zonation constants for FA uptake and triglyceride release as VLDL. Therefore, inter-individual variation
in the distribution of steatosis is predicted to be accounted for by differences in the zonation of
proteins mediating lipid uptake and triglyceride release. At present, little experimental data exists to
validate this prediction due to the difficulty involved in measuring the distributed activities of large
numbers of enzymes. However, the model simulations allow for targeted potential future
experiments. The activities of the proteins mediating lipid uptake and triglyceride release could be
measured in each region of the sinusoid, before comparing this data with distribution of steatosis

across a range of samples.

3.5 Conclusions of Chapter

Due to the large heterogeneity in metabolism across the sinusoid, a clear description of the metabolic
changes occurring in each zone is required to fully understand NAFLD development and to optimise
potential pharmacological interventions. In this chapter, the computational model of sinusoidal
metabolism presented in chapter 2 was used to simulate the development of NAFLD, focussing on the
metabolic changes in individual zones. Consistent with experimental observation, both IR and
increased SREBP-1c expression were required for the model to fully replicate the metabolic changes

seen in NAFLD in vivo.
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Simulations were run to identify the key differences between periportal and pericentral cells which
account for higher pericentral susceptibility to steatosis. The majority of additional FFAs in NAFLD arise
from FA uptake rather than de novo lipogenesis both in the simulated data and experimentally [26,
492, 495, 496]. Although FA uptake enzymes show periportal zonation, the switch from predominantly
insulin stimulated FA scavenging to passive diffusion reduced the effect of this heterogeneity on the
rate of uptake across the sinusoid in the model simulations. Instead, the model simulations highlight
the periportal zonation of oxidative phosphorylation and B-oxidation enzymes, along with the
pericentral expression of lipogenesis enzymes as the key differences leading to a raised FFA
concentration in pericentral cells when simulating insulin resistant NAFLD patients. Additionally,
reduced insulin stimulation of glycogenesis caused the build-up of glucose intermediates, including
G3P across the sinusoid. A more severe increase in pericentral and intermediate cells occurred due to

the periportal zonation of glycogen synthase and of oxidative phosphorylation.

Two methods of analysis were performed investigating the effects of changes in the rate and zonation
constants to determine likely inter-individual differences in enzyme activities accounting for variation
in susceptibility to NAFLD and steatosis distribution seen in vivo. Hepatic triglyceride levels were most
sensitive to inter-individual variations in the rate of FFA oxidation, either through differences in the
overall rate of oxidation of acetyl-CoA or differences in the relative contribution of FFAs and glucose
to oxidation. The predominant location of steatosis across the sinusoid meanwhile was most sensitive

to changes in the zonation of proteins mediating FFA uptake or VLDL synthesis and release.
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4 Analysis of potential drug targets for reducing steatosis in NAFLD

4.1 Introduction to Chapter

In this chapter, inhibition or stimulation of various pathways as potential pharmacological targets for
treating NAFLD are simulated. As of 2016, there is no approved drug for NAFLD or NASH [314], and to
prevent the large number of deaths resulting from excess liver fat and the development of NASH, it is
essential to identify drug targets which clear excess liver fat. However, due to the fundamental
importance of lipid metabolism pathways in various essential cellular processes, the impact of any
intervention on metabolism as a whole must also be assessed. Additionally, the heterogeneity in
enzyme expression and function in hepatocytes across the sinusoid means that any medication must
reduce steatosis without causing adverse effects in all regions [50]. As discussed in the previous
chapters, when assessed in NAFLD patients in vivo, pericentral hepatocytes are known to show higher
susceptibility to developing steatosis and the resulting damage than periportal cells, although pan-
sinusoidal and azonal steatosis patterns are also regularly seen [15-17, 377]. Experimentally studying
the effects of targeting specific enzymes or hepatic processes on metabolism across the sinusoid
would be time consuming, animal intensive and expensive due to the small size of the sinusoid and

the large number of potential variables.

In this chapter, by simulating inhibition and stimulation of various potential targets, we aim to find
targets which reduce steatosis across the sinusoid without adversely affecting ATP production or
causing changes likely to lead to oxidative stress such as excess FFA hepatic concentrations when
simulating different stages of fatty liver arising from both excess fat intake alone and from IR and
metabolic dysregulation in addition to raised intake. Here we focus on targets for removing the excess
lipids from hepatocytes and thereby removing the underlying cause of IR, fibrosis and cirrhosis
development. To treat effectively, it is likely that medication reducing existing inflammation in the
cells would also be required [314]. In the chapter 5, key findings are tested in a hepatocyte-like cell

culture model.
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4.1.1 Inputs, insulin resistance and representing NAFLD development

Throughout the simulations run in this chapter, the model was provided with spiked inputs at 4 hour
intervals as a crude approximation to the intake of meals throughout the day (excluding sleep) as
discussed in section 2.2.4.2. When simulating a moderate intake diet, the peak rates of glucose and
FA intake were set so that each meal on average contained 78.1g of carbohydrate (glucose) and 22.2g

of fat based on the meals provided to patients in a study by Daly et al. [425].

The effects of potential treatments were simulated for three stages of NAFLD development, from an
early stage entirely caused by increased fat intake, to a later stage predominantly caused by IR and
metabolic dysregulation. These stages were based on the simulations in the previous chapter, where
it was shown that very high fat intake is required for hepatic steatosis to develop in insulin sensitive
individuals but, as IR develops, lower intake was required for excess fats to build up in the liver. Early-
to late stage refers to the extent of metabolic dysregulation, and therefore the loss of immediate
reversibility of the condition, rather than a progressive increase in the liver fat content between the
stages. As discussed in the previous chapter, since the model does not contain adipocyte proliferation
or swelling, excess dietary lipids remain in the plasma rather than being stored in adipocytes and
changes ininput have a larger effect on metabolism. As a result, smaller increases in lipid intake (based
on matching the plasma lipid concentrations to values measured experimentally (section 4.2.1)) were
used in simulations. The parameter changes (corresponding to fat intake, IR and SREBP-1c expression)
used to represent these changes are presented in table 4.1 and the resulting changes to metabolism

are discussed in section 4.2.1.

In addition, the effects of targeting each pathway were simulated in metabolically normal individuals
on a sustained low fat intake diet to identify possible dangers if medications are taken by those with
reduced plasma FFA concentrations. For example, an individual may continue to take the medication
after adopting a healthier diet and lifestyle. Finally, the effects of inter-individual variation in hepatic

metabolism on key predictions are assessed in section 4.2.3. The effects of each intervention were
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simulated until equilibrium was reached between successive input cycles. Once equilibrium was

established, the average values over each 4 hour input cycle are presented.

Table 4.1: The parameter value changes used to simulate the various NAFLD stages.

NAFLD Stage FFA Input Insulin SREBP-1c: SREBP-1c: Triglyceride

ngl;'?u Resistance Lipogenesis synthesis
kIR vlipog kTGsyn

Moderate Intake, 1 1 1 1

Metabolically Normal

Early Stage: Very High FFA 1.25 1 1 1

Intake, Metabolically Normal

Mid-Stage: Developing IR, 1.125 0.05 1 1

High FFA Intake;

Later Stage: Severe IR, Raised 1.05 0.025 2.25 2

FFA Intake (1nM Insulin) (1nM Insulin)

Low Fat Diet, Metabolically 0.875 1 1 1

Normal

Values are presented relative to moderate intake in a metabolically normal individual.

4.1.2 Inhibitions simulated

Each process in the model is represented by a rate constant multiplied by a zonation constant and a
series of substrate, hormonal and allosteric dependences (chapter 2). By simulating changes in these
rate constants, which determine the maximum activity of the enzymes, we can assess the impact of
stimulating or inhibiting key enzymes, not only on lipid concentrations but on metabolism as a whole

across the sinusoid.

Only potential drug targets which reduce the hepatic lipid content by removing lipids from the system,
rather than redirecting them into the blood, are considered in this report. When interventions such
as stimulation of triglyceride release as VLDL or blocking FA uptake from plasma were simulated, rapid
increases in plasma triglyceride and FFA concentration occurred. These are likely to cause damage as
a result of lipid build-up in other tissues. Given that fats in liver in particular are known to cause both
organ specific and peripheral IR, this may still be beneficial to an individual. However, NAFLD patients
are known to often have increased visceral adipose mass which is less responsive to insulin and less
effective at clearing plasma lipids [8, 155, 527, 528]. As a result, rather than being stored in adipose

tissue, these additional excess fats are likely to build-up in other tissues where they are known to
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cause harm such as the heart, muscle and pancreas, as has been demonstrated when blocking FA
uptake in vivo [529]. Therefore, the focus was instead on hepatic targets which removed fat from the
system, rather than redirect them elsewhere. This includes the conversion of glucose to G6P, the
conversion of G6P to GADP, the conversion of GADP to pyruvate, pyruvate oxidation, lipogenesis, B-

oxidation and triglyceride synthesis. These interventions are shown in figure 4.1.

; - Plasma Free
Blood [ PlasmaTriglycerides ] Fatty Acids
00 Inhibition of Glycolysis
* ‘\ xggg@ (section 4.3.2.1)

l - \ 2@ Inhibition of Pyruvate
Triglycerides [ Free Fatty Amds] Oxidation (Section 4.3.2.2)

x Inhibition of Lipogenesis
(Section 4.3.2.3)

Stimulation of B-oxidation
Acety|-C0A 830 with/without inhibition of
Lipogenesis (Section 4.3.2.4)

Glycogen

x Inhibition of TG Synthesis
(Section 4.3.2.5)

G6P

il

—
vlucose Cytoplasm j

¥

( Plasma Glucose | [ Plasma Glycerol |

Plasma
M

Figure 4.1: The processes investigated as potential targets for intervention in NAFLD.

Inhibiting the production of pyruvate through glycolysis provides a potential method of reducing the
available substrate for de novo lipogenesis and forcing the cells to oxidise FAs rather than glucose. In
the model, glycolysis is represented by the initial conversion of glucose to G6P, followed by the
conversion of G6P to two GADP molecules (closely related to G3P) and the conversion of GADP to
pyruvate. In preliminary simulations, a range of reductions of the three rate constants, corresponding
to the degree of inhibition of the process, were assessed. Since notable disturbances to ATP synthesis
were seen for high degrees of inhibition, for the data presented in this report the rate constants were
reduced by /5 to provide a balance between reducing de novo lipogenesis and promoting B-oxidation

whilst allowing some glycolysis and glucose oxidation to occur for ATP synthesis when required.
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Inhibition of pyruvate oxidation, mediated by the pyruvate dehydrogenase complex, allows a
reduction in the production of acetyl-CoA from glucose without blocking glucose-lactate cycling. In
initial simulations, a range of degrees of inhibition of the process were simulated. The data from these
tests also showed that a balance was required between maximising the reduction in steatosis and
minimising the disruption to energy metabolism. For the data in this report, the rate constant was
halved to allow continued production of acetyl-CoA from glucose for use in oxidative phosphorylation

when required.

Another potential method to reduce hepatic lipid concentration is to directly target the synthesis and
elongation of FAs from acetyl-CoA, primarily mediated by ACC and FAS. Total inhibition of lipogenesis
was simulated (reducing the rate constant to zero), since no notable adverse effects in energy

metabolism were noted when the process was inhibited in preliminary simulations.

An alternative approach to clearing steatosis is to stimulate the oxidation of FAs. In initial simulations,
various degrees of stimulation of B-oxidation were simulated. When simulating the data in this report,
the rate was doubled to balance the reduction in lipid content resulting from high stimulation with

potential disruptions to energy metabolism based on the preliminary simulations.

Finally, rather than attempting to reduce the hepatic FFA concentration, steatosis may be reduced by
directly inhibiting the synthesis of triglycerides, preventing lipid storage. Since triglyceride synthesis
does not directly affect either oxidative or non-oxidative ATP synthesis, complete inhibition of the

process was simulated.

4.1.3 Criteria for judging effectiveness of a treatment

The following criteria were used to determine the effectiveness of a potential target. A process must
firstly reduce hepatic triglyceride concentrations (roughly equal to the total lipid content) to a healthy
level (below the 5% criteria used to define NAFLD). Lipids must be cleared in all regions of the sinusoid.

As discussed above, potential targets which reduce the hepatic triglyceride concentration by forcing
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lipids into the blood stream are not considered in this report since they would be associated with the

build-up of fats in other tissues around the body.

Secondly, FFAs, along with closely related molecules including ceramides and DAGs, are known to be
particularly potent in promoting mitochondrial stress and IR [8, 146, 247, 248, 253-259]. Although the
mechanisms by which hepatic FFAs cause hepatic damage are not included in the model, potential
drug targets which case reduction of the hepatic FFA concentration specifically, in addition to total

lipid content, are likely to be associated with an improvement in liver injury.

Any pharmacological intervention must not further reduce ATP concentrations to avoid loss of
function resulting from defective energy metabolism. Furthermore, to avoid mitochondrial stress and
ROS production from the ETC, the treatment must not cause excess flux through the ETC. The
combination of excess ETC flux and dysfunctional ETC enzymes seen in NAFLD is known to result in
superoxide radical anion and hydrogen peroxide (ROS) production which should be resolved by a
potential treatment [229, 230, 501, 512, 514-516]. The ETC flux and ATP concentration were assessed
in each region of the sinusoid for all three stages of NAFLD and for individuals on a low fat diet, to

ensure the intervention does not disrupt metabolism in the model.

Finally, any intervention should not cause excessively raised plasma glucose, lactate, FFA and
triglyceride concentrations. In particular, glycogen synthesis should not be blocked. Although glycogen
synthesis is defective in insulin resistant individuals, an improvement in hepatic steatosis would be

expected to be associated with an improvement in insulin sensitivity in vivo (section 1.3.4.2.2).

4.2 Results

4.2.1 Simulated Stages of NAFLD Development
As discussed in chapters 3, when simulating an insulin sensitive, metabolically normal individual on a
moderate diet, the average hepatic lipid content was 2.3% (figure 4.2c, table 4.2). This towards the

low end of values measured in the US general population by Szczepaniak et al. [211], consistent with
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a healthy individual on a healthy diet. The simulated concentration increased from 2.0% to 2.7%
between periportal and pericentral ends of the sinusoid (figure 4.2c) similar to the increase measured
by Guzman et al. in vivo [86]. The hepatic and plasma concentrations of various molecules when
simulating the three stages of NAFLD, along with metabolically normal individuals on moderate and

low fat diets are shown in table 4.2.

To represent steatosis arising from very high fat intake alone (early-stage), the rate of lipid intake was
increased so that the simulated plasma FFA and triglyceride concentrations matched the highest
values measured in obese individuals by Sindelka et al. [141] (FFA: 0.9mM, TG: 4.1mM, table 4.2). This
is equal to the very high fat intake diet (27.75g/meal) simulated in chapter 3. When simulating these
conditions, the average hepatic triglyceride content more than tripled to 7.2%, with a gradient in

concentration from 5.8% to 9.0% across the sinusoid (figure 4.2c).

To represent a mid-stage in NAFLD development, developing IR (5% detection) was simulated in
individuals with a sustained high fat intake diet (24.6g/meal). At this stage the system begins to
become hyperglycaemic with an average plasma glucose concentration of 6.5mM, but
hyperinsulinaemia compensates for the most severe effects of IR. The average hepatic triglyceride
content was 9.1% with the largest rise in pericentral cells (12.3%) (figure 4.2c). The simulated plasma

triglyceride (6.0mM) and FFA (1.1mM) concentrations were severely raised (table 4.2).

Finally, to represent a later stage, severe IR (2.5% detection) was simulated in individuals with a raised
lipid intake diet (23.2g/meal). Additionally, as discussed in chapter 3, when studied in vivo, NAFLD
patients show a counter intuitive increase in SREBP-1c expression, a protein which stimulates
lipogenesis and triglyceride synthesis [36-39]. In chapter 3, it was shown that this increase in SREBP-
1c expression must be simulated in addition to IR to fully replicate the metabolic changes seen in
NAFLD patients in vivo. Therefore, to represent later-stage NAFLD, the effects of increased SREBP-1c
expression were included through continuous stimulation of hepatic lipogenesis and triglyceride

synthesis (equivalent to 1nM). When simulating these conditions, hyperglycaemia occurred post-
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prandially, with a peak concentration of 12.7mM as insulin could no longer stimulate the storage of
glucose as glycogen (table 4.2). The average hepatic triglyceride content was 8.9% (figure 4.2c). Due
to the up-regulation of lipogenesis, which occurs primarily in pericentral cells, an increased periportal-
pericentral gradient in triglyceride concentration was seen relative to the other stages of steatosis
development (PP->PC: 6.0%->12.7%). Severe increases occurred in the simulated plasma triglyceride

and FFA concentrations (table 4.2).

In addition to the total lipid content, the hepatic FFA concentrations were increased when simulating
all three stages of NAFLD (figure 4.2b). The average concentration was markedly increased when
simulating the early stage of NAFLD to 39.0uM from 21.5uM when simulating a metabolically normal
individual on a moderate intake diet. When simulating the mid- and later disease stages, lower FFA
inputs were used resulting in less severely raised FFA concentrations (mid stage 30.0uM, later stage

26.2uM).

The ATP concentration was progressively reduced when simulating early to later stages of NAFLD, as
isseeninvivo[44,227,228, 505, 506] (figure 4.2a). For the later stage of NAFLD, the simulated average
concentration fell by 18% to 2.3mM compared with 2.8mM in a metabolically normal individual. A
switch to deriving ATP almost exclusively from FA oxidation reduced the additional ATP synthesized in
glycolysis. Secondly increased SREBP-1c expression caused increased ATP consumption in lipogenesis
[44, 227, 228, 505-509]. The decrease in ATP concentration was particularly severe in hypoxic
pericentral cells which rely heavily on non-oxidative metabolism. In these cells, the simulated
concentration fell from 2.5mM to 1.9mM in later-stage NAFLD. In vivo, in the later stages of NASH,
further reductions in ATP concentration occur due to a loss of function in the oxidative

phosphorylation enzymes [501].
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Figure 4.2: Simulated stages of NAFLD development. The (a) the hepatic lipid content, (b) the hepatic FFA concentration and (c) the hepatic ATP concentration across the sinusoid when simulating
the early, mid and later stages of NAFLD development. The average concentration is depicted when simulating a 4-hour intake/output cycle of the form discussed in the model building section.
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Table 4.2: The concentrations of key hepatic and plasma molecules when simulating different stages of NAFLD development.

Metabolically Normal

Average Average Average Plasma | Average Average Plasma | Average Plasma | Average Hepatic | Average Ox-Phos
Hepatic FFA Hepatic ATP Triglyceride Plasma FFA Glucose Lactate Triglyceride Rate (% of MN
Concentration | Concentration Concentration Concentration | Concentration Concentration Content rate)

Moderate Intake, 21.5 uM 2.8 mM 1.2 mM 0.2 mM 5.0mM 1.2mM 2.3% 118 uM ATP/s

Metabolically Normal

Early Stage: Very High | 39.0 uM 2.7mM 4.1 mM 0.9 mM 5.0 mM 1.2mM 7.2% 122 uM ATP/s

FFA Intake,

Metabolically Normal

Mid-Stage: Developing | 30.0 uM 2.4 mM 6.0 mM 1.1 mM 6.5 mM 1.2mM 9.1% 127 uM ATP/s

IR, High FFA Intake;

Later Stage: Severe IR, | 26.2 uM 2.3 mM 5.4 mM 3.9 mM 6.7 mM 1.4 mM 8.9% 128 uM ATP/s

Raised FFA Intake

Low Fat Diet, 17.0 uM 2.9 mM 0.9 mM 0.15mM 5.0 mM 1.3 mM 1.7% 115 uM ATP/s

The hepatic triglyceride, FFA and ATP concentrations, hepatic rate of oxidative phosphorylation and plasma triglyceride, FFA, glucose and lactate concentrations when simulating the early to later
NAFLD stages and a metabolically normal individual on a moderate and a low-fat intake diet.
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Despite this drop in ATP concentration, the rate of ATP production through the citrate cycle was
increased when simulating the mid- and later- stages of NAFLD by 8.4% and 9.2% respectively (table
4.2). Mitochondrial stress and ROS production occur in NAFLD in vivo, and this excess ETC flux, in
addition to reduced mitochondrial function, is likely to contribute [501, 512, 514-516]. Excess ETC flux
results in production of the superoxide anion radical, particularly when the ETC enzymes are not fully
functional, which can in turn be converted to hydrogen peroxide. These disruptions to energy
metabolism have been suggested as possible mechanisms for the progression of NAFLD to NASH [229,

230].

4.2.2 Targeting hepatic processes in the model

4.2.2.1 Glycolysis

Partial inhibition of the conversion of glucose to G6P prevented the uptake of glucose for storage or
glycolysis, resulting in increased glucose and insulin concentrations when simulating all stages of
NAFLD (table 4.3). For later stage NAFLD, the post-prandial peak plasma glucose concentration rose
to 15.4mM, well above the acceptable range. Furthermore, the raised plasma glucose and insulin
concentrations resulted in continuous lipogenesis in adipose tissue, in turn causing the hepatic lipid
content to increase through uptake of excess plasma FFAs (figure 4.3a,b; table 4.3). Therefore, rather
than improving steatosis, the treatment caused an increase in hepatic triglyceride concentration (later
stage: 8.9%->12.5% when partially inhibited; figure 4.3a). In a NAFLD patient in vivo, a larger
percentage of these excess lipids are likely to be stored in adipose tissue rather than released into the
plasma. However, the simulated data show that partial inhibition of GK increases plasma glucose levels

even in insulin sensitive individuals.

Targeting either of the two processes further along the glycolysis caused disruptions to pericentral
energy metabolism when simulating all stages of NAFLD (figure 4.3c, table 4.3). This effect was small
for the early stage of NAFLD (when either process was inhibited the ATP concentration fell to 2.6mM

compared with 2.7mM when uninhibited). However, for the later stage of NAFLD, the pericentral ATP
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Table 4.3: The effect of targeting the various hepatic processes on key hepatic and plasma molecules.

Average Average Average Plasma | Average Average Plasma | Average Plasma | Average Hepatic | Average Ox-Phos

Hepatic FFA Hepatic ATP Triglyceride Plasma FFA Glucose Lactate Triglyceride Rate (% of MN

Concentration | Concentration Concentration Concentration | Concentration Concentration Content rate)

Early Stage NAFLD/IR Development: Very high fat diet in insulin sensitive individuals
Standard Parameter 39.0 uM 2.7 mM 4.1 mM 0.9 mM 5.0 mM 1.2mM 7.2% 122 uM ATP/s
Values (Untreated)
Partial Inhibition of 45.7 uM 2.8 mM 6.8 mM 1.0mM 5.2mM 1.3 mM 12.1% 119 uM ATP/s
Glucokinase
Partial Inhibition of 41.9 uM 2.6 mM 3.0 mM 0.5 mM 5.0 mM 0.7 mM 5.1% 120 uM ATP/s
G6P->GADP
Partial Inhibition of 26.3 uM 2.6 mM 2.9 mM 0.5mM 5.0 mM 0.6 mM 5.1% 122 uM ATP/s
GADP->Pyr
Partial Inhibition of 25.0 uM 2.7mM 2.4mM 0.4 mM 5.0 mM 3.2mM 4.1% 121 pM ATP/s
Pyruvate Oxidation
Inhibited Lipogenesis | 29.6 uM 29 mM 29 mM 0.5mM 5.0 mM 0.9 mM 5.1% 117 uM ATP/s
Stimulated B-oxidation | 17.3 uM 2.5mM 2.0mM 0.3mM 5.0 mM 1.3 mM 3.4% 125 pM ATP/s
Stimulation of B- 14.3 uM 2.8 mM 1.8 mM 0.3 mM 5.0 mM 0.9 mM 2.9% 118 M ATP/s
oxidation with
inhibition of DNL
Inhibition of 230.4 uM 2.7mM 2.3mM 0.4mM 5.0mM 1.1mM 2.5% 121 uM(ATP)/s
Triglyceride Synthesis
Mid-Stage NAFLD/IR Development: High fat diet in individuals developing insulin resistance

Standard Parameter 30.0 uM 2.4 mM 6.0 mM 1.1 mM 6.5 mM 1.2mM 9.1% 127 uM(ATP)/s
Values (Untreated)
Partial Inhibition of 35.1 uM 2.5mM 8.5mM 1.6 mM 6.6 mM 1.1 mM 12.5% 126 UM(ATP)/s
Glucokinase
Partial Inhibition of 31.6 uM 2.4 mM 4.5 mM 0.7 mM 6.7 mM 0.7 mM 6.3% 125.7 uM(ATP)/s
G6P->GADP
Partial Inhibition of 19.2 uM 23 mM 4.3 mM 0.7 mM 6.7 mM 0.6 mM 6.2% 127 UM(ATP)/s

GADP->Pyr
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Values (Untreated)

Partial Inhibition of 15.8 uM 2.4mM 3.1mM 0.5mM 6.6 mM 3.3mM 4.0% 126 UM(ATP)/s
Pyruvate Oxidation
Inhibited Lipogenesis | 20.8 uM 2.6 mM 4.0 mM 0.6 mM 6.8 MM 0.9 mM 5.6% 123 uM(ATP)/s
Stimulated B-oxidation | 10.8 uM 2.2mM 2.6 mM 0.4 mM 6.7mM 1.2 mM 3.6% 128 UM(ATP)/s
Stimulation of B- 7.9 uM 2.5mM 2.4mM 0.4 mM 6.9 mM 0.8 mM 3.2% 123 puM(ATP)/s
oxidation with
inhibition of DNL
Inhibition of 122uM 2.4mM 3.1mM 0.6mM 6.7 mM 1.1mM 3.2% 127 UM(ATP)/s
Triglyceride Synthesis

Later Stage NAFLD/IR Development: Severe insulin resistance + Increased SREBP-1c expression
Standard Parameter 26.2 uyM 2.3 mM 5.4 mM 3.9 mM 6.7 mM 1.4 mM 8.9% 128 uM(ATP)/s
Values (Untreated)
Partial Inhibition of 25.6 uM 23 mM 7.4 mM 6.5 mM 9.6 mM 1.3 mM 12.5% 128 UM(ATP)/s
Glucokinase
Partial Inhibition of 25.8 uM 2.2 mM 5.9 mM 3.3 mM 7.3 mM 0.9 mM 9.3% 129 uM(ATP)/s
G6P->GADP
Partial Inhibition of 15.8 uM 2.1 mM 5.8 mM 3.4 mM 7.3 mM 0.7 mM 9.4% 130 uM(ATP)/s
GADP->Pyr
Partial Inhibition of 14.7 uM 2.2 mM 4.4 mM 0.6 mM 8.1 mM 6.0 mM 6.1% 128 uM(ATP)/s
Pyruvate Oxidation
Inhibited Lipogenesis 12.3uM 2.6 mM 5.1mM 0.6 mM 8.5mM 1.0 mM 7.0% 123 uM(ATP)/s
Stimulated B-oxidation | 8.9 uM 1.9mM 3.5mM 0.5 mM 8.2mM 1.5mM 4.8% 131 pM(ATP)/s
Stimulation of B- 5.8 uM 2.5mM 3.0mM 0.4 mM 8.8 mM 0.9 mM 3.8% 124 uM(ATP)/s
oxidation and
inhibition of DNL
Inhibition of 135.1 uM 2.2mMm 3.9mM 0.6 mM 8.3mM 1.3mM 3.9% 130 UM(ATP)/s
Triglyceride Synthesis

Low fat diet in metabolically normal individuals

Standard Parameter 17.0 uyM 2.9mM 0.9 mM 0.15 mM 5.0 mM 1.3mM 1.7% 115 uM(ATP)/s
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Partial Inhibition of 23.2 uM 3.0mMm 1.0mM 0.2 mM 5.2 mM 1.3 mM 2.2% 113 uM(ATP)/s
Glucokinase
Partial Inhibition of 18.3 um 2.9 mMm 0.8 mM 0.1 mMm 4.9 mM 0.7 mM 1.4% 112 uM(ATP)/s
G6P->GADP
Partial Inhibition of 12.5 um 2.8 mM 0.8 mM 0.1 mMm 4.9 mM 0.6 mM 1.4% 114 uM(ATP)/s
GADP->Pyr
Partial Inhibition of 12.1 uM 2.8mM ** 0.7 mM 0.13mM 5.0mM 4.5 mM 1.4% 113 uM(ATP)/s
Pyruvate Oxidation notably reduced

in periportal cells
Inhibited Lipogenesis 12.3-13.6 pyM 3.0mM 0.8mM 0.13 mM 5.0mM 1.0mM 1.4% 110 uM(ATP)/s
Stimulated B-oxidation | 8.9 uM 2.8 mM 0.7 mM 0.12 mM 5.0mM 1.3 mM 1.3% 117 uM(ATP)/s
Stimulation of B- 7.0 uM 3.0mM 0.7 mM 0.11 mM 5.0 mM 0.9 mM 1.1% 111 uM(ATP)/s
oxidation and
inhibition of DNL
Inhibition of 89.3 uM 2.9mM 0.7 mM 0.13mM 5.0mM 1.2mM 1.0% 114 uM(ATP)/s
Triglyceride Synthesis

Reference Values: Metabolically normal individuals on moderate diet

Standard Parameter 21.5uM 2.8 mM 1.2mM 0.2 mM 5.0 mM 1.3 mM 2.4% 118 uM(ATP)/s
Values

The effect of targeting the various hepatic processes on hepatic triglyceride, FFA and ATP concentrations, the hepatic rate of oxidative phosphorylation, and plasma triglyceride, FFA, glucose and
lactate concentrations. The interventions simulated in each case are described in section 4.1.2.
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Figure 4.3

glycolysis by one third on (a) hepatic lipid content, (b) hepatic FFA concentration and (c) hepatic ATP

concentrations when simulating the range of NAFLD stages.



152

concentration fell to 1.7mM when simulating partial inhibition of the conversion of G6P to GADP and
to 1.5mM for partial inhibition of the conversion of GADP to pyruvate glycolysis. These reductions in
pericentral ATP concentration, compared with 2.5mM when simulating a metabolically normal
individual, occurred because pericentral cells, which inhabit a hypoxic environment, rely on glycolysis
to produce additional ATP. Furthermore, although the hepatic triglyceride concentration decreased
slightly when simulating partial inhibition of these two glycolysis processes in early stage, insulin
sensitive NAFLD (7.2% -> 5.1% when either process was inhibited; figure 4.3a), no notable change in
triglyceride content occurred in any region of the sinusoid for the mid- and later NAFLD stages (figure
4.33; table 4.3). A decrease in hepatic FFA concentration was seen when targeting the conversion of
GADP to pyruvate (later stage 25.6-39.0uM -> 15.8-26.3uM), but not when inhibiting the conversion

of G6P to GADP.

Due to the changes in ATP concentration and ineffective clearance of steatosis, none of the processes

along the glycolysis chain are predicted to be suitable as a target for reducing steatosis.

4.2.2.2 Pyruvate Oxidation

Halving the rate constant of pyruvate oxidation reduced the hepatic lipid content to less than 5% when
simulating the early and mid-stages of NAFLD development. However, when simulating the later stage,
the average hepatic lipid content was only reduced to 6.1% and remained notably raised in pericentral
cells. (4.8->8.2% from periportal to pericentral ends of the sinusoid) (figure 4.4a). Hepatic FFA
concentrations were reduced for all three NAFLD stages (26.2-39.0uM ->14.7-25.0uM when inhibited;
figure 4.4b). Plasma FFA and triglyceride concentrations were additionally markedly reduced,

particularly when simulating the early and mid-stages of NAFLD development (table 4.3).

However, some adverse metabolic changes were predicted when simulating the partial inhibition of
pyruvate oxidation. Plasma lactate concentrations increased, particularly when simulating the later

stage of the disease where the average concentration rose to greater than 6mM (figure 4.4c and table
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Figure 4.4: Simulating inhibition of pyruvate oxidation. The simulated effects of reducing the rate constant for
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4.3). Lactic acidosis is diagnosed when plasma concentrations exceed 5mM [530]. Additionally,
inhibiting pyruvate oxidation caused more severe post-prandial hyperglycaemia. When simulating the
later stage of NAFLD development, the post-prandial peak in glucose concentration increased from an
already hyperglycaemic value of 12.7mM to 14.9mM, well outside of a healthy range. Furthermore,
when simulating a low-fat intake diet, ATP concentrations fell in periportal cells (compartment 1:
3.2mM -> 2.7mM when inhibited; figure 4.4d), even though only partial inhibition of pyruvate
oxidation was simulated. In this oxygen rich part of the sinusoid, the cells do not supplement their ATP
production through glucose-lactate cycling. With a normal or raised plasma FFA concentration,
periportal cells are able to compensate for reduced glucose oxidation by increasing B-oxidation.
However, when simulating conditions in which plasma FFAs were no longer available, insufficient

acetyl-CoA was available for the citrate cycle.

4.2.2.3 Lipogenesis

When simulating the inhibition of lipogenesis, ATP concentrations were partially restored (later stage:
2.3mM->2.6mM) (figure 4.5c) and the excess ETC flux was reduced when simulating all three stages
of NAFLD (table 4.3). However, only a small improvement in simulated hepatic lipid content occurred.
The lipid content remained above the 5% criteria at which NAFLD is diagnosed for all stages of NAFLD
(early stage: 7.6%->5.1%, mid stage: 8.7%->5.6%, later stage: 9.6%->7.0%) (figure 4.5a). FFAs were
readily available from uptake to compensate for reduced hepatic synthesis and inhibition of

lipogenesis caused an increase in G3P concentration, allowing more rapid triglyceride synthesis.

Despite not effectively clearing triglycerides, a decrease in hepatic FFA concentration occurred in all
three stages of NAFLD when simulating inhibition of lipogenesis (26.2-39.0uM->12.3-29.6uM; figure
4.5b). Additionally, plasma FFA concentrations were notably reduced at all stages of NAFLD

development (table 4.3), which may reduce lipid build-up in muscle, pancreas, heart and other organs.

The model simulations suggest that pharmacological inhibition of lipogenesis in NAFLD may reduce

the mitochondrial stress, ROS production and IR resulting from excess FFAs and excess ETC fluxes, but
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would fail to reduce overall steatosis, particularly in insulin resistant patients. A treatment targeting
lipogenesis, therefore, would not be expected to remove the underlying cause of damage in NAFLD,

which would return after the cessation of treatment.

4.2.2.4 p-oxidation

Stimulation of B-oxidation provided a notable improvement to steatosis. The average hepatic lipid
content was reduced to below the 5% criteria when simulating all three stages of NAFLD development
(figure 4.6a). However, since B-oxidation enzymes have higher expression in periportal cells, the
pericentral triglyceride concentration remained greater than 5% when simulated later stage NAFLD.
The hepatic FFA concentration was also reduced in all three NAFLD stages (26.9-39.0uM->8.9-17.2uM;

figure 4.6b) and plasma FFA and plasma triglyceride levels were notably reduced (table 4.3).

However, when simulating stimulation of B-oxidation, ATP production was disrupted in intermediate
and pericentral cells. For later stage NAFLD, the simulated pericentral ATP concentration fell to 1.2mM
(figure 4.6¢). Stimulation of B-oxidation resulted in cycling between B-oxidation and lipogenesis, both
of which consume ATP. Additionally, non-oxidative ATP production was reduced due to the allosteric
inhibition of glycolysis by acetyl-CoA derived from increased B-oxidation. Since pericentral cells rely
more heavily on glycolysis from energy production, and contain a greater capacity for lipogenesis, the
largest fall in ATP concentration was seen in these cells. Furthermore, the rate of oxidative
phosphorylation increased further when simulating stimulation of B-oxidation to 10% higher than

when simulating metabolically normal individuals (table 4.3).

Based on these simulations, stimulation of B-oxidation alone is not considered to be a suitable
treatment for NAFLD. However, to avoid the consumption of ATP in cycling between acetyl-CoA and
FAs when stimulating B-oxidation, it may be effective to additionally inhibit lipogenesis. In vivo, this
could be achieved by reducing the cytoplasmic and mitochondrial malonyl-CoA concentration by

targeting the two isoforms of acetyl-CoA carboxylase (ACC1 and ACC2) (chapter 5).
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When simulating pharmacological stimulation of B-oxidation (doubling the rate constant) in
combination with complete inhibition of lipogenesis, ATP concentrations increased for all NAFLD
stages (figure 4.6c¢). For the later stage of NAFLD, the simulated average concentration increased from
2.2mM to 2.5mM. Furthermore, the rate of oxidative phosphorylation was reduced to near
metabolically normal levels, reducing the possibility of ROS production due to excess ETC flux (table

4.3).

Hepatic steatosis was effectively cleared when simulating targeting of both processes (figure 4.6a).
The simulated hepatic lipid content was reduced to less than the 5% cut off at which NAFLD is
diagnosed for all simulated stages of the disease. Since lipogenesis enzymes show pericentral
expression, the additional reduction in lipid content was largest in pericentral cells, whilst stimulation
of B-oxidation had a larger effect on the lipid content of periportal cells. As a result, when simulating
stimulation of B-oxidation combined with inhibition of lipogenesis, the hepatic lipid content was less
than 5% across the sinusoid. The hepatic FFA concentration was also notably reduced (26.2-39.0uM -

>5.8-17.3uM,; figure 4.5b).

The plasma glucose concentration increased when simulating the treatment in the mid- and later
stages of NAFLD. In these later stages, IR prevents the additional glucose from being stored as glycogen
(table 4.3). The average glucose concentration for the later stage NAFLD increased from 6.7mM to
8.8mM. Itis therefore important that any treatment based on inhibition of lipogenesis rapidly restores
insulin sensitivity through clearing hepatic lipids to avoid hyperglycaemia in insulin resistant patients,

or is given in combination with other treatments to reduce the plasma glucose concentration.

4.2.2.5 Triglyceride Synthesis

Blocking triglyceride synthesis had a dramatic effect on simulated hepatic triglyceride levels (figure
4.7a). For all three NAFLD stages, the average concentration was reduced to well below the 5% criteria
at which NAFLD is diagnosed in all regions of the sinusoid. Furthermore, plasma triglyceride and FFA

concentrations were notably reduced.
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However, blocking triglyceride synthesis also caused a vast increase in the simulated hepatic FFA
concentration (figure 4.7b), which is likely to be far more harmful to the cells than the original
triglyceride build-up. When simulating the later stage NAFLD, inhibition of triglyceride synthesis
increased the simulated FFA concentration five-fold from 26.2uM to 135.1uM. As discussed, FFAs,
along with ceramides and DAGs are thought to promote mitochondrial stress and IR more rapidly than
fats stored as triglycerides [8, 146, 247, 248, 253-259]. A large increase in plasma glucose

concentration was also predicted as glucose oxidation was replaced with B-oxidation.

No notable change in ATP concentration occurred when simulating inhibition of triglyceride synthesis

(figure 4.7c), although the rate of oxidative phosphorylation was marginally increased (table 4.3).

4.2.3 Inter-Individual Variability in Model Simulations

The model simulations suggest that inhibition of lipogenesis in combination with stimulation of -
oxidation would provide an effective mechanism for clearing hepatic steatosis and reducing plasma
FFA and triglyceride concentrations without adversely affecting energy metabolism. However, as
discussed in the previous section, notable inter-individual variation in metabolism exists between
patients and it is important that a treatment is effective across a range of patients. To assess the
impact of the treatment across a broader range of patients, inhibition of lipogenesis and stimulation
of B-oxidation (doubling the rate constant) was simulated for the 15 patients discussed in section
3.4.3. These example patients have rate constants randomly generated within 10% of the standard
parameter value and zonation constants randomly generated within 0.2 of the standard value (tables
3.2 and 3.3). The effects of the treatment in mid-stage NAFLD were simulated to provide conditions
of both IR and high dietary lipid intake. For statistical significance testing in this section, a paired, 2
tailed T-test was performed between the simulated treated and untreated patients with the same

parameter values. A p value of 0.05 was considered to represent statistical significance.

Despite a wide variability in the pre-treatment hepatic lipid content across the 15 simulated patients

(3.8%-24%), the lipid content in the treated patients was reduced to less than 5% in every case (2.5%-
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4.5%; p<0.001) (figure 4.8a). This is consistent with the decrease in lipid content from 9.1% to 2.9%
when using the standard parameter values. For most of the simulated patients the hepatic triglyceride
content was reduced to less than 5% in all regions of the sinusoid. Three patients showed a hepatic
triglyceride content of greater than 5% in the two compartments nearest the central vein
(compartments 7 and 8). These were the three simulated patients with the highest zonation constant
for ATP synthesis via the citrate cycle (most periportally zonated). Additionally, the Pearson product-
moment correlation coefficient between the post-treatment pericentral triglyceride content and ATP
synthesis zonation constant was high at 0.823 (p<0.001). Therefore, pericentral oxidative capacity is
the most important determinant of the ability for the treatment to fully clear steatosis in all regions

the sinusoid.

The simulated plasma and hepatic FFA concentrations were also reduced by the treatment in all
patients (figure 4.8b,d), consistent with the predictions when using standard parameter values.
Additionally, an increase in ATP concentration occurred for all of the simulated patients after
treatment. The average concentration increased by 0.16£0.04mM from 2.29+0.26mM to
2.454+0.25mM (p<0.001) (closer to the simulated metabolically normal range of 2.72+0.20mM) (figure

4.8c).

Therefore, across the range of simulated patients, the treatment reduced hepatic steatosis, reduced
FFA levels and increased the hepatic ATP concentration. However, as seen when using standard
parameter values, an increase in glucose concentration of 0.3910.07mM from 6.6£0.1mM to
6.9+0.1mM occurred when simulating the treatment due to defective glycogen storage (p<0.001,
figure 4.8e). Therefore, the treatment would have to either rapidly restore insulin sensitivity of
glycogenesis, or be accompanied by alternative treatments to prevent hyperglycaemia. The largest
increase in glucose concentration was seen for the patients with lower rate constants for oxidative
phosphorylation, such that less of the extra acetyl-CoA generated from increased B-oxidation could

be metabolised (Pearson’s correlation=-0.65; p=0.008).
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4.3 Discussion

4.3.1 Adverse effects are predicted when targeting most hepatic processes

The model simulations suggest that most the hepatic processes tested do not provide suitable drug
targets for effectively reducing hepatic steatosis without causing adverse effects. Targeting B-
oxidation and glycolysis disturbed pericentral energy metabolism in the simulations, whilst targeting
pyruvate oxidation caused a reduction in periportal ATP concentration. In reality, cells are likely to
adapt and upregulate alternative ATP producing pathways, or downregulate ATP consumption to
partially reduce this effect. However, given that ATP concentrations are already significantly depleted
in the livers of insulin resistant NAFLD patients, additional large reductions in ATP concentration are
likely to be associated with some loss of function. It has been hypothesized that disturbed energy
metabolism may be responsible for the progression of NAFLD to NASH [229, 230]. This would be
consistent with the observation that fibrosis tends to develop from the pericentral side of the organ

where ATP is most depleted [15, 16], highlighting the importance of studying the sinusoid as a whole.

Targeting several processes in the model caused more severe hyperglycaemia in insulin resistant
individuals including inhibition of glucose uptake, any stage of glycolysis, pyruvate oxidation and
lipogenesis and stimulation of B-oxidation. However, if sufficient fats are removed, it is possible that
insulin sensitivity would be improved to a degree where glycogen synthesis is restored (e.g. [531]).
Inhibition of pyruvate oxidation also caused severe hyperlactataemia when simulating late stage

NAFLD.

When inhibition of the triglyceride synthesis step was simulated, FA concentrations increased
markedly. Rather than protecting the cells, this would be expected to expedite cellular damage. As
discussed, FFAs, along with closely related molecules including ceramides and DAGs, are known to be

particularly potent in promoting mitochondrial stress and IR [8, 146, 247, 248, 253-259].
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Numerous potential targets were ineffective at clearing steatosis in the model, particularly when
simulating insulin resistant individuals. This includes all of the processes involved in the de novo
synthesis of FAs from glucose. However, despite not reducing the simulated total hepatic fat content,
inhibition of the lipogenesis step (predominantly mediated by ACC and FAS) reduced the hepatic FFA
concentration and increased hepatic ATP concentrations. Therefore, despite not removing the

underlying cause of the disease, inhibition of lipogenesis may reduce cellular damage and improve IR.

Some of these processes have been targeted in in vivo systems previously and the results have largely
been consistent with those the simulated data. The increase hepatic FFA concentration seen when
simulating inhibition of triglyceride synthesis have been noted in mice along with resulting adverse
effects. Yamaguchi et al. investigated the effects of inhibiting diglyceride acyltransferase-2 (DGAT-2),
one of the enzymes responsible for the addition of a third acyl-CoA to a DAG to form triglycerides, in
mice [254]. In this study, hepatic steatosis was reduced. However, the hepatic FFA concentration rose
from around 300nMoles/g in NAFLD mice (fed a diet deficient in methionine and choline) to around
1.5uMoles/g in NAFLD mice with inhibited DGAT-2, consistent with the roughly 5-fold increase seen
in the simulated data [254]. Furthermore, despite the improved triglyceride levels, Yamaguchi et al.
showed more severe development of fibrosis in these mice demonstrating that the damage caused by
the increased levels of FFAs (or closely related molecules) outweighed any benefits from clearing
triglycerides themselves. In model simulations, the most severe adverse effects of the treatment were
seen in pericentral cells. Unfortunately, the effects of the treatment on individual regions of the
sinusoid were not investigated in the experimental study. Whilst there is conflicting evidence to
suggest that IR may or may not be improved if triglyceride synthesis is blocked before the formation
of DAG rather than blocking the addition of the final acyl-CoA ([532] vs [533]), it remains likely that
sustained severely increased FFA concentrations will cause mitochondrial stress independent of the
enzyme targeted. Therefore, triglyceride synthesis is not considered to be a suitable target for drugs

aiming to reduce hepatic steatosis. Interestingly, in both the experimental study and the model
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simulations, despite a severe rise in hepatic FFA concentration, plasma FFA concentrations fell [254].

In the model this occurred because of a reduction in adipose lipolysis.

Inhibition of pyruvate dehydrogenase has not been widely studied as a treatment for NAFLD in vivo.
However, consistent with the simulations, genetically inherited system-wide (not liver specific)
deficiency of PDH is associated with severe lactate build-up along with neurological problems resulting
from reduced cellular energy production [534]. Neurons rely heavily on glucose metabolism substrates
rather than lipids as an energy source. Furthermore, heart and muscle specific PDH-knockout mice
survive less than 7 days unless kept on a high fat diet [535]. However, more promising results have
been published for liver-specific PDH knockout mice. These mice show significant reductions in liver
FA synthesis, in body mass and in fat mass [531]. An increase in hepatic glycogen content, rather than
plasma glucose concentration was measured due to an improvement in insulin sensitivity.
Unfortunately, the plasma lactate concentration was not measured in this study. It therefore remains
unknown whether this treatment would cause the hyperlactataemia predicted for insulin resistant
NAFLD patients, or if insulin sensitivity would be restored rapidly enough for the additional lactate to
be stored as glycogen. Furthermore, no specific test from the minor disruption to periportal ATP

concentrations predicted by the model was performed.

The inhibition of de novo lipogenesis has been studied experimentally through inhibition of FAS with
mixed results. FAS is the main enzyme responsible for adding additional malonyl-CoA molecules to the
chain of FAs. System-wide knockout of FAS is lethal in embryo development [536]. Liver-specific
deletion of the FAS gene was shown to expedite rather than protect against the development fatty
liver in a mouse model of NAFLD. On a normal diet, little difference was seen between the control and
FAS knockout mice. However, on a high fat diet, the FAS knockout mice developed more severe
steatosis due to a reduction in B-oxidation [537]. This may result from increased allosteric inhibition
of B-oxidation by malonyl-CoA, given that the physically separation of lipogenesis and B-oxidation

enzymes has been shown to break down under abnormal conditions [538]. On the other hand,
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platensimycin, an inhibitor of FAS specific to liver, has been demonstrated to reduce lipid build-up in
hepatocytes because of a reduction in lipogenesis [539]. However, these mice were fed a high fructose
diet rather than the high fat. In the model simulations, inhibition of lipogenesis was only effective at
clearing steatosis when FAs were not readily available in the plasma. Mice lacking FAS in adipose tissue
meanwhile, showed a reduction in diet-induced obesity, suggesting that adipose rather than hepatic
lipogenesis may provide a pertinent target for reducing hepatic steatosis [540]. The analysis in this

study focussed on potential hepatic targets.

4.3.2 Acetyl-CoA carboxylase may provide a pertinent target for NAFLD

Targeting B-oxidation alone caused a fall in the simulated hepatic ATP concentration, particularly in
pericentral cells. However, when stimulation of B-oxidation was combined with inhibition of
lipogenesis, ATP concentrations were improved relative to untreated NAFLD and steatosis was
effectively cleared. The simulated triglyceride content was reduced to a metabolically normal range
forall three NAFLD stages. Furthermore, the rate of oxidative phosphorylation was returned to normal
values, reducing the chance of damage due to ROS production resulting from excess ETC flux. The
simulated hepatic and plasma FFA concentrations also improved which is likely to be associated with
an improvement mitochondrial stress and IR [8, 146, 247, 248]. One adverse effect was an increase in
plasma glucose concentration when simulating an insulin resistant individual. Therefore, it is
important that any treatment targeting B-oxidation and lipogenesis restores insulin sensitivity rapidly

such that glycogen synthesis can prevent hyperglycaemia from occurring.

The two forms of acetyl-CoA carboxylase (ACC1 and ACC2) provide a potential target for both
inhibiting lipogenesis and stimulating B-oxidation. ACC1 is in the cytosol and produces malonyl-CoA
which can be accessed by FAS for lipogenesis. ACC2, meanwhile, is in the mitochondria and produces
malonyl-CoA to negatively regulate B-oxidation [462, 541]. Malonyl-CoA synthesized by ACC2 is

physically separated from FAS under normal physiological conditions [462]. Therefore, inhibition of
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ACC1 provides a target for inhibiting lipogenesis, whilst inhibiting ACC2 will lead to stimulation of B-

oxidation.

Some in vivo studies have investigated the inhibition of ACC1 and ACC2 either together or separately.
Globally knocking out ACC1 in mice is lethal in embryonic development [542]. However, liver specific
ACC1 knockout mice have been developed. Mao et al. demonstrated a significant reduction in liver
triglycerides, hepatic FA synthesis and serum FFAs despite compensatory up-regulation of ACC2, but
no improvement in glucose concentration or resensitization to insulin [543]. In another liver-specific
ACC1 knockout, Harada et al. found that up-regulation of ACC2 entirely compensated for the reduction
in ACC1 expression suggesting that, under these non-physiological conditions, FAS is able to access
malonyl-CoA produced by ACC2 [538]. De novo lipogenesis was only reduced with the addition of 5-

(tetradecyloxyl)-2-furancarboxylic acid (TOFA), an inhibitor of both ACC1 and ACC2.

In another study, Savage et al. used antisense oligonucleotide inhibiters to knock down ACC1 and ACC2
both separately and together in a rat model of NAFLD. Suppression of ACC1 alone caused a reduction
in mitochondrial as well as cytoplasmic malonyl-CoA, suggesting some stimulation of B-oxidation in
addition to inhibition of lipogenesis [526]. This suppression of lipogenesis combined with partial
stimulation of B-oxidation caused reductions in the rate of oleic acid and glycerol incorporation into
triglycerides. Knockdown of ACC2 alone caused a larger increase in the rate of B-oxidation than ACC1
knockdown but a smaller reduction in triglyceride synthesis. This suggests that stimulation of B-
oxidation alone, without inhibiting lipogenesis, is only moderately effective at treating steatosis.
Consistent with model simulations, the largest improvements were seen when both ACC1 and ACC2
were knocked down, leading to a 45% reduction in hepatic triglyceride levels. No adverse changes to
energy metabolism were noted after ACC1 and ACC2 inhibition and the plasma ALT concentration, a

marker of hepatic injury, was not increased.

When ACC1 and ACC2 were inhibited in a hamster model through feeding with a chow diet containing

0.15% TOFA, their plasma triglyceride concentration reduced by around 50% after 6 days [544]. In the
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same study, the intracellular triglyceride concentrations of cultured hamster hepatocytes treated with
20uM TOFA were reduced compared to untreated cells by around 80% when grown in FA-free medium

and 40% when cultured in medium containing 1mM oleic acid.

Global suppression of ACC2 has been demonstrated to reduce the risk of development of T2DM,
metabolic syndrome and obesity in mice due to upregulation of B-oxidation [523]. ACC2 knockout
mice also showed 50% less fat storage in adipose tissue [524, 525]. Neither of these studies reported
pericentral centred damage or loss of function. In another study, down-regulation of ChREBP, a key
regulator of lipogenic gene transcription (including FAS and ACC), led to improved FFA and triglyceride
levels in ob/ob KO mice and offered protection against IR as a result of reduced hepatic lipogenesis

[200].

Collectively these data suggest that steatosis is improved when ACC1 and ACC2 are suppressed due to
a reduction of lipogenesis and stimulation of B-oxidation, consistent with the model simulations.
Furthermore, none of the experimental studies have noted adverse effects in energy metabolism

when inhibiting ACC1 and ACC2.

4.4 Conclusions of Chapter

The computational model of hepatic metabolism across the sinusoid was used to assess potential
processes which could be targeted to reduce steatosis in NAFLD patients. The model simulates cell
across the porto-central axis of the sinusoid allowing the effects of targeting specific processes on
both steatosis and energy metabolism in individual regions of the sinusoid to be simulated.
Furthermore, by simulating varying dietary intake and degrees of metabolic dysregulation, the effects

of each treatment could be studied for a range of NAFLD patients.

Substantial adverse effects were predicted, either in the hepatocytes themselves or through changes
in plasma concentrations of lipids, glucose or lactate when targeting most metabolic processes. Many

of these adverse effects occurred in specific regions of the sinusoid highlighting the importance of
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studying the sinusoid as a whole. Where possible the predicted effects of each treatment were
compared with previously published experimental data and were shown to be consistent. However,
since experiments in specific regions of the sinusoid are largely missing from the literature, the
predictions highlight potential adverse effects which may be missed when performing measurements

on bulk liver tissue.

No single hepatic process was predicted to provide a pertinent drug target for clearing steatosis.
However, stimulation of B-oxidation combined with inhibition of lipogenesis showed promising results
in reducing both hepatic and plasma FFA and triglyceride concentrations. Energy metabolism was not
disturbed and ATP levels were slightly improved. This is supported by experimental data from the
literature for mice lacking both ACC1 and ACC2 which show improvements in steatosis due to an

increased rate of B-oxidation and suppressed lipogenesis.
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5 Chapter 5: Experimental Validation of Model Predictions

5.1 Introduction to Chapter

In the previous chapter, the model was used to simulate the effects of pharmacologically targeting
various processes in order to clear hepatic steatosis in NAFLD without disrupting energy metabolism.
In this chapter, five of these pharmacological interventions are tested experimentally on HepG2 cells,
a cell culture line derived from a differentiated hepatocellular carcinoma. These results allow

comparison with the model simulations to test the predictive capacity of the model.

Before testing the effects of the pharmacological interventions, it is first necessary to ensure the key
changes occurring in NAFLD in vivo can be replicated in the cultured cells. This was performed by
adding a cocktail of FFAs to the medium of the cells, corresponding to the raised plasma FFA levels in
NAFLD in vivo. In vivo, hepatocytes show increasing steatosis [15], cell damage [545, 546], oxidative
stress [501, 512, 514-516, 547, 548], IR [146, 549, 550], reduced ATP levels and reduced mitochondrial
function [44, 227, 228, 506, 510-513, 547, 548] as NAFLD develops. It is important that a cell culture
model used to validate model predictions also replicates this disease progression. After establishing
and describing the cell culture model of NAFLD, the cells were treated with a range of small molecule
inhibitors known to target specific metabolic processes (section 5.4). The impact of inhibiting key
processes on cell viability and function was studied for FA treated cells and compared with the model

simulations.

It should be noted that the cell culture model does not allow testing of zonated effects as seen in the
model simulations. However, as discussed below, the HepG2 cells are most similar in metabolism to

pericentral cells and most adverse effects occurred in these cells in simulations.

5.1.1 HepG2 cells
HepG2 cells are a perpetual cell line of well-differentiated hepatocellular carcinoma cells derived from

a 15 year old Caucasian [551]. Although derived from a liver carcinoma, rather than healthy liver cells,
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due to their high level of differentiation, HepG2 cells retain epithelial morphology and continue to
perform a wide range of liver cell functions [551]. They also continue to express insulin receptor and

insulin-like growth factor Il receptor despite showing little glycogen content [552, 553].

Despite retaining many liver cell functions, HepG2 cells show notable differences from healthy primary
liver cells. Firstly they contain a higher numbers of chromosomes with some variation (50-56) around
a modal number of 55 [551]. Additionally, they contain a high quantity of fat, even when cultured in
FA free, normoglycaemic (5mM glucose) medium (see section 5.3.2). The cellular rate of lipogenesis
is similar to primary cultures of rat hepatocytes and freshly prepared rat hepatocytes [554]. Instead,
the build-up of fat in HepG2 cells is due to reduced secretion of FAs in lipoproteins [554]. They also
show increased anaerobic metabolism through glycolysis [555] due to their background as cancer cells
[556]. This production of energy through glycolysis followed by lactic acid fermentation rather than
oxidative metabolism is known as the Warburg effect. Due to both their high fat content, and
dependence on glycolysis for ATP synthesis, HepG2 cells are most similar to pericentral cells which

exist in a hypoxic environment and show a higher lipid content.

When treated with saturated FAs, HepG2 cells have previously been shown to reproduce a number of
the metabolic changes occurring in in vivo hepatocytes in NAFLD [557]. However, due to the
differences between HepG2 cells and healthy in vivo hepatocytes, the first section of this chapter is

dedicated to assessing the suitability of HepG2 cells as a model for steatotic hepatocytes in NAFLD.

5.1.2 Treatments

5.1.2.1 Fatty acids
Five FFAs treatments were tested, either individually or in combination. These were butyric acid (4:0),

lauric acid (12:0), palmitic acid (16:0), oleic acid (16:1) and linoleic acid (16:2).

Butyric acid is a short chain, saturated FA found in milk and dairy products predominantly in its

triglyceride form. It is additionally produced in the gut. It has been demonstrated to improve insulin
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sensitivity and reduce adiposity due to increased energy expenditure in mouse models of diabetes

[558, 559].

Lauric acid is a medium chain FA found in human breast milk and cow’s milk along with coconut milk,
coconut oil (44-52%), laurel oil, and palm kernel oil (40-52%) [560]. It is additionally synthesized in
human tissues, although at a lower rate than palmitic and oleic acids. The effects of lauric acid on the
liver are debatable since, although it's consumption has been shown to improve the high density
lipoprotein (HDL) to low density lipoprotein (LDL) ratio relative to other saturated fats, it is also
thought to increase the probability of cardiovascular disease due to an increase in plasma cholesterol
[561, 562]. Additionally, any potential benefits of lauric acid may result from an antibacterial effect on
the microbiome rather than a direct effect on liver cells. These microbiome effects would not be seen

in the cell culture experiments presented here [563, 564].

Palmitic acid is the most common FA in mammals, plants and microorganism. It is a saturated FA
present in numerous food types in addition to being synthesized in the body. It accounts for 20-30%
of fat stored in adipose tissues [41, 42, 565]. It is linked with an increased probability of developing
cardiovascular disease and IR and is thought to increase the LDL content in the blood [566, 567]. It is

therefore considered to be one of the more detrimental common FAs found in the diet.

Oleic acid is the second most abundant FA in human tissues, and the most abundant in adipose FA
stores (of humans and other mammals) comprising around 45% in these tissues [41, 42, 565]. It is an
omega-9 monounsaturated FA. Due to its presence in animal fat, it is abundant (in triglyceride form)
in lard. Additionally, it is abundant in olive (65-80%) after which it is named, peanut oil (52-60%),
sesame oil (40-50%), sunflower oil (14-35%) and other oils [560, 568]. Oleic acid consumption is linked
with reduced cholesterol levels in comparison with lauric and palmitic acids and increases the ratio of
HDL to LDL [569]. It also may be responsible for the reduction in blood pressure that results from olive

oil consumption [570].
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Linoleic acid is an omega-6 polyunsaturated FA. In humans, it is derived exclusively from diet. It is
abundant in sunflower seed oil (44-75%), maize oil (34-62%), hemp seed oil (54-56%), poppy seed oil
(72%) and other vegetable and nut oils [560]. Compared with saturated acids, linoleic acid
consumption is associated with reduced probability of developing coronary heart disease [571]. The
effects of linoleic acid supplementation on IR remain unclear, with health benefits of linoleic acid

consumption widely reported, but adverse effects also shown in several studies [572-574].

5.1.2.2 Small Molecule Inhibitors
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Figure 5.1: The processes (as represented in the model) targeted by the small molecule inhibitors TOFA,
C75, T863, 2DG and 3BP in HepG2 cells. Additionally, the known increase in glycolysis [555] and decrease
in glycogen synthesis [553] and triglyceride release [554] in HepG2 relative to hepatocytes are labelled.

Five inhibitory molecules were studied. These were lipogenesis inhibitor and B-oxidation stimulator 5-
(tetradecyloxy)-2-furoic Acid (TOFA), lipogenesis inhibitor 4-Methylene-2-octyl-5-oxotetrahydrofuran
-3-carboxylic acid (C75), triglyceride synthesis inhibitor 2-((1,4-trans)-4-(4-(4-Amino-7,7-dimethyl-7H-
pyrimido[4,5-b][1,4]oxazin-6-yl)-phenyl)cyclohexyl)acetic acid (T863) and glycolysis inhibitors 3-
bromopyruvate (3BP) and 2-deoxy-D-glucose (2DG). The processes targeted by each of these
inhibitory molecules are shown in figure 5.1.

Firstly, to test the model predictions for simultaneous inhibition of lipogenesis and stimulation of B-
oxidation, TOFA, a potent inhibitor of both forms of acetyl-CoA carboxylase (ACC1 and ACC2), was

used [575-578] (figure 5.1). ACC1 produces cytosolic malonyl-CoA accessible to FAS for use in
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lipogenesis (figure 5.2) [462, 541]. ACC2 meanwhile is restricted to the mitochondria and produces
malonyl-CoA which negatively regulates B-oxidation [462, 541]. Therefore, treatment with TOFA both
directly reduces lipogenesis by reducing the malonyl-CoA available to FAS, and reduces the inhibition

of B-oxidation by mitochondrial malonyl-CoA.
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Figure 5.2: The effect of ACC1 and ACC2 inhibition with 5-(tetradecyloxy)-2-furoic Acid (TOFA) on
metabolism.

— Allosteric inhibition by mitochondrial Malenyl-CoA

TOFA is converted intracellularly into a CoA analogue which blocks ACC activity [575]. It has been
shown to reduce FA synthesis and TG secretion in cell culture models [544, 575, 579] and animal
models [544, 580, 581] including rhesus monkeys. It has been suggested that TOFA may additionally
have an effect on enzymes involved in the metabolism of long-chain FAs due to its similarity to long
chain FAs [581, 582]. However, its predominant site of action is its potent inhibition of ACC. Since only
the stimulation of B-oxidation and inhibition of lipogenesis are simulated in the model, the specific
enzymes targeted to achieve these effects are of lesser importance. Inhibition of lipogenesis combined

with stimulation of B-oxidation was simulated in section 4.2.2.4.

Secondly C75, a potent synthetic inhibitor of FAS was used to directly inhibit lipogenesis [577, 578,
583, 584] (figure 5.1). Since FAS inhibition does not alter mitochondrial malonyl-CoA production, C75
has little effect on the rate of B-oxidation [577, 578, 583, 584]. It should be noted, however, that whilst
under normal conditions cytoplasmic and mitochondrial malonyl-CoA are physically separated [462],
itis possible that under non-physiological conditions this separation may breakdown [538]. Therefore,
some stimulation of B-oxidation may occur with C75 treatment, but this would be notably lower than

for TOFA treatment. Inhibition of lipogenesis was simulated in section 4.2.2.3.
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T863 was used to inhibit triglyceride synthesis by DGAT1 (figure 5.1). DGAT1 is one of the enzymes
which mediates the final binding of a FA (in the form of acyl-CoA) to diacylglycerol molecule to form a
triglyceride [585]. Therefore, inhibiting this enzyme leads to the build-up of precursors to triglyceride
synthesis including FAs and DAGs. DAGs in particular have been suggested as a major molecule type
responsible for the development of hepatic damage and IR in NAFLD [8, 146]. Inhibition of triglyceride

synthesis was simulated in section 4.2.2.5.

Finally, two glycolysis inhibitors, 3BP and 2DG were used to assess the impact of inhibiting glycolysis
at different stages (figure 5.1). 3BP inhibits the glycolysis enzyme glyceraldehyde-3-phosphate
dehydrogenase which takes glyceraldehyde-3-phosphate (GADP) as a substrate and produces 1,3-
biphosphoglycerate [586, 587]. 2DG competitively inhibits at the stage of GK and, therefore, prevents
the storage of glucose as glycogen in addition to reducing glycolysis [588, 589]. Inhibition of glycolysis

at various stages was simulated in section 4.2.2.1.

5.1.3 Properties measured and relationship to model simulations

The first results section of this chapter describes the effects of FA treatment of HepG2 cells on several
properties to investigate whether the HepG2 model represents the key features of NAFLD seen both
in vivo and in the model simulations. The second section, then describes the effects of treating the
cells with the five small molecules inhibitors, which correspond to some of the pharmacological
interventions simulated in the previous chapter. Treatment with each inhibitor is investigated for
whether the adverse effects resulting from FFA treatment are exacerbated or resolved and to
investigate whether the results are consistent with the model simulations. In this section, the
relationships between the predicted data in the previous chapter and the experimental

measurements presented in this chapter are discussed.

5.1.3.1 Steatosis
Hepatic steatosis is the defining feature of NAFLD in vivo. When simulating NAFLD resulting from high

fat intake, IR and increased SREBP-1c expression in the model (chapter 3), an increase in cellular lipid
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content occurred, particularly in pericentral cells, because of both increased uptake and increased de
novo lipogenesis. In this chapter, to assess the effects of FAs and the various treatments on cellular
steatosis in the HepG2 cell culture model, staining for neutral lipids using oil red O (ORO) was
performed. By comparing the ratio of stained and unstained regions, the effects of each treatment on

lipid content was determined.

5.1.3.2 Glycogen, and Hyperglycaemia and Insulin Resistance

In the previous chapters, defective glycogen storage (particularly in pericentral cells) and
hyperglycaemia were seen when simulating insulin resistant NAFLD patients in the model. In the cell
culture model, staining for glycogen was performed to assess the content within cells when treating
with FAs and the small molecule inhibitors. The glucose concentration in the medium of cells was also
measured to assess changes in glucose uptake and release. In the model, insulin sensitivity is set as a
parameter, and the pathways mediating exacerbation or resolution of IR are not included. Only the
changes in total lipid content and FFA concentration thought affect insulin sensitivity are simulated.
However, in the cell culture model, the effects of FAs and of the small molecule inhibitors on IR was
assessed by comparing glycogen content and glucose consumption in insulin treated and insulin-free

cells.

5.1.3.3 FFAs and B-Oxidation

When simulating NAFLD in the model, the overall increase in lipid content was accompanied by an
increase in cellular FFA concentration in pericentral cells. Furthermore, when simulating high intake
and IR, notable increases in the rates of B-oxidation and mitochondrial oxidative metabolism occurred.
Experimentally, the intracellular FFA concentration is difficult to measure since FFAs are rapidly bound
to a CoA molecule and used in glycerolipid synthesis or B-oxidation after entering a cell. Similarly, any
potential overactivation of oxidative phosphorylation pathways would be challenging to study
directly. However, many of the adverse effects known to occur in NAFLD result from the presence of

excess FFAs and excessive B-oxidation [8, 146, 247, 248, 501, 512, 514-516], and these were
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investigated in the HepG2 model. These include oxidative stress, cell death, lipotoxicity, reduced
mitochondrial function and IR. These measures do not allow direct comparison with the model
simulations, but treatments which reduce the hepatic FFA concentration and return the rates of -
oxidation and oxidative phosphorylation to metabolically normal levels would be expected to also

improve these measures.

5.1.3.4 Mitochondrial Function

In NAFLD in vivo, mitochondrial function is known to be reduced and this is thought to arise due to
mitochondrial stress resulting from increased rates of B-oxidation [547, 548, 590, 591]. Mitochondrial
function was assessed in the HepG2 cell culture model by measuring the activity of key ETC enzymes.
The ETC comprises of a series of enzymes which mediate transfers of electrons between donor and
acceptor molecules coupled to the movement of protons from the mitochondrial matrix into the
intermembrane space. The resulting proton gradient is used to power ATP synthesis by the enzyme
ATP synthase. Complex | (NADH:ubiquinone oxidoreductase) and complex |l (succinate
dehydrogenase) mediate the transfer of electrons from NADH and succinate (via FAD) respectively to
ubiquinone producing ubiquinol. NADH reduction through complex | additionally causes proton
transport into the intermembrane space. Complex Il (CoQH2-cytochrome c reductase) mediates the
transfer of electrons from the resulting ubiquinol to cytochrome c, coupled with the movement of
protons into the intermembrane space. Complex IV (cytochrome c oxidase), the final enzyme in the
chain, mediates the transfer of electrons from the reduced cytochrome c to molecular oxygen
(producing water), and is also coupled with transfer of protons into the intermembrane space. This
pathway is fundamental to cellular energy metabolism. Reduced mitochondrial function after FFA

treatment would be indicative of stress on mitochondria resulting from lipotoxicity.

5.1.3.5 Intracellular ATP Concentration
In the model simulations, a reduction in intracellular ATP concentration occurred due to increased ATP

consumption in lipogenesis, B-oxidation and triglyceride synthesis and reduced non-oxidative ATP
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synthesis. In vivo larger drops in ATP concentration [548, 591, 592] are seen as a result of reduced
mitochondrial function [547, 548, 590, 591]. The ATP concentration was measured directly in the cell

culture model after addition of FFAs and the various small molecule inhibitors.

5.1.3.6 ROS Production

Excess FFA concentrations and excess B-oxidation are thought to contribute to oxidative stress and
ROS production seen in NAFLD in vivo [225, 382, 547, 591, 593]. Increased mitochondrial FA oxidation
is seen in NAFLD as an adaptive mechanism to clear excess fats [548]. However, reduced ETC enzyme
function and excessive flow of electrons through the ETC can result in ROS production predominantly
in the form of superoxide. Most electrons passing through the ETC are eventually combined with
molecular oxygen to form water. Even under normal metabolic conditions, a small fraction leak to
form the superoxide anion radical before being converted to hydrogen peroxide by manganese
superoxide dismutase [548]. The majority of this is then converted to water, removing all but a small
residual amount of ROS used for signalling. However, a combination of reduced ETC enzyme activity
and increased flow of electrons along the chain results in overproduction of superoxide [548, 591,
594]. Excessive production of ROS can cause oxidative stress in mitochondria by causing oxidative

damage to lipids, proteins and nucleic acids as is observed in both NASH and NAFLD [547, 591, 593].

Oxidative stress was assessed experimentally using two techniques. Lipid peroxidation in cell
homogenates was measured as a marker of intracellular ROS production. Lipid peroxidation was
assayed using a TBARS test to determine the presence of the breakdown products of lipid
peroxidation, particularly MDA, in the sample. It should be noted that the assay shows only a
moderate specificity for MDA or the products of lipid peroxidation breakdown. To minimise the
reaction with other unwanted chemicals in the sample, EDTA was added to chelate heavy metals
which catalyse oxidation, and anhydrous sodium sulphate in addition to sodium dodecyl sulphate was
included to prevent oxidization of further lipids during heating. However, only large increases in the

TBARS reading were considered to correspond to increased lipid peroxidation.
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Secondly, the redox potential and antioxidant capacity of the supernatant media were measured as
a marker of extracellular ROS release. The redox potential, usually measured in patient blood samples,
has been shown to correlate with the degree of oxidative injury in a number of conditions [595-598].
The antioxidant capacity is a measure of the amount of oxidative reserves in the sample which relates
to the ability of the patient (or cells) to respond to the injury. An increase in redox potential has been
demonstrated in patients with T2DM and the metabolic syndrome [595], although no changes in redox
potential or antioxidant capacity were seen in obese individuals [597]. An increase in redox potential
is measured in the perfusate after human liver perfusion, an instance in which liver cells are known to

produce ROS [599].

5.1.3.7 Cell Viability and Markers of Hepatic Function
The effects of a treatment on the number of viable cells, number of dead cells and proliferation rate
per cell were measured to assess the overall beneficial or damaging effects of each treatment to the

cells.

5.2 Materials and Methods

5.2.1 Statistics

Throughout this section, where two groups were compared, significance was calculated by an
unpaired, unequal variance, 2 tailed T-test. Where multiple treatments were compared against
control, an ANOVA was performed to assess statistical significant of variation between the groups
before the Holm-Sidak method was used to calculate a t-test adjusted to account the multiple
comparisons performed [600]. The tests performed are stated in the legend of each figure and table.
The calculations were performed using GraphPad Prism. A p value of less than 0.05 was considered to

represent a significant difference.

5.2.2 Maintenance of Cell Cultures
Cells were cultured in Eagles minimum essential medium (EMEM) with Earl’s salts, L-glutamine and

sodium bicarbonate (Sigma M4655) supplemented with 10% FBS and 1X MEM non-essential amino
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acids (Sigma M7145) in T75 culture flasks. For passaging, Dulbecco’s Phosphate Buffered Saline (PBS;
Sigma D8662) and trypsin-EDTA solution (Sigma T4049) were used. Cells were incubated at 37°C in a
sterile environment containing 5% carbon dioxide. The following volumes of medium were used for
each container when culturing cells and running experiments: T75 flask — 15ml, T25 flask — 4ml, 6 well

plate — 3ml, 24 well plate — 1 ml, 48 well plate — 500puL and 96 well plate — 300uL.

5.2.3 Preparation of Treatments

5.2.3.1 Fatty Acids

To solubilize lauric acid and palmitic acid, they were first dissolved in ethanol at 50uM and 100puM
concentrations respectively. These stocks were replaced every 2-4 weeks. The stocks were diluted in
medium and sterilized before use. Once diluted in medium, the fatty acid solutions were discarded
within 3 days. Oleic, linoleic and butyric acids were diluted directly in medium from pure stocks, then
sterilized a using 20um filter. Fatty acid free medium containing ethanol was prepared to validate that
any effects of lauric and palmitic acid additions arose due to the fatty acids themselves and not the
ethanol. Additionally, a fatty acid cocktail containing equal molar mass of palmitic, lauric, oleic, linoleic
and butyric acids was prepared and sterilized using a 20um filter. Oleic, linoleic and butyric acids were
added directly from pure stocks using multiple dilutions in medium, whilst lauric and palmitic acids
were added from the stocks in ethanol. In the final solution, each 100uM of total fatty acid contained

0.06% ethanol. The fatty acid cocktail was replaced every 2-4 days.

5.2.3.2 TOFA
Pure TOFA powders were dissolved in dimethyl sulfoxide (DMSO) to give a 5mg/ml stock solution. This
was then diluted in medium to give the desired concentration of 1-40ug/ml before being sterilized

using a 20um filter.

5.2.3.3 (75
Pure C75 powders were dissolved in DMSO to give a 10mg/ml stock solution. This was diluted in

medium to give treatment solutions of 0.5-40ug/ml before sterilizing using a 20um filter.
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5.2.3.4 T863
Pure T863 powders were dissolved in DMSO to form a 5mg/ml stock solution. This was diluted in

medium to give solutions of 5-400ng/ml before sterilizing using a 20um filter.

5.2.3.5 3-Bromopyruvate
Pure 3BP powders were dissolved in water to give a 10mg/ml stock solution. This was then diluted in

medium to give treatment solutions of 40ng/ml-10ug/ml before sterilizing using a 20um filter.

5.2.3.6 2-deoxyglucose
Pure 2DG powders were dissolved in DMSO to give a 3mg/ml stock solution. This was then diluted in

medium to give treatment solutions of 30ng/ml-3ug/ml before sterilizing using a 20um filter.

5.2.4 Cellular Viability and Proliferation.

5.2.4.1 MTS assay

To assess viability for a large number of treatments when performing initial dose-response
experiments (section S2), an MTS assay was used. The MTS viability assay is based on the reduction of
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) to
generate a formazan product which absorbs light at 490nm. This conversion is largely carried out by
mitochondrial NADPH (reduced nicotinamide adenine dinucleotide phosphate) dependent enzymes,
and the assay therefore assesses total mitochondrial metabolic activity rather than cell numbers
specifically. As well as not specifically measuring cell numbers, the assay tends to be associated with
large dispersion in results. However, the assay is rapid and allows many conditions to be assessed,

before validation through a trypan blue exclusion assay.

Cells were seeded in 96-well plates at a density of 26000 cells/cm® and grown initially in 200uL
unaltered MEM (fatty acid-free) medium. After 24 hours, the medium was removed and replaced with
medium containing the stated treatment. The treated medium was replaced every 24 hours until the

end of the experiment. To take readings, the medium was removed and replaced with 100uL fresh
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medium in each well. 20uL of MTS solution (CellTiter Aqueous One Solution) was additionally added
to each well. After 1 hour, the absorbance at 490nm was measured using the FLUOstar Omega multi-

mode microplate reader.

5.2.4.2 Trypan Blue Exclusion Assay

HepG2 cells were seeded in 6 well plates at a density of 26000 cells/cm?® and initially grown in 3ml of
unaltered MEM (fatty acid free) medium. After 24 hours, the medium was removed and replaced with
3 ml of medium containing the stated treatment. The treated medium was replaced every 24 hours
until the end of the experiment. The cells were dissociated by 5-minute incubation at 37°C with 250uL
trypsin-EDTA solution (trypsinization), before adding 750uL medium and syringing to break up clumps.
A 10pL sample was used to count in a glass cytometer. 0.4% Trypan Blue (Sigma T8154) was added to

distinguish viable and non-viable cells.

5.2.4.3 Culture doubling time

The time constants (doubling times), T, were calculated for each treatment using the difference
between the viable cell counts after O hours and 48 hours and assuming exponential growth of the
form N=No2¥*. When cells grown in untreated medium were counted at several time points, this
pattern of growth was followed until near confluence was reached. For the studies in this report, the
cells seeded at 26000 per cm? were far from confluence at the 48-hour time point such that contact

inhibition would not be expected to notably influence results.

5.2.4.4 BrDU Incorporation

To measure the division/proliferation rate of the cells, an assay based on the incorporation of marker
bromodeoxyuridine (BrDU) into DNA was used. The Roche ‘Cell Proliferation ELISA, BrDU
(colorimetric)’ assay kit was used. BrDU is incorporated into newly synthesized DNA as an analogue of
thymidine during the S-phase. Cells were seeded at a density of 26000 per cm? in 96 well plates and
allowed to attach for 24 hours in 200uL untreated medium. After this time, 200uL of medium

containing both the treatments and the BrDU marker was added to the cells. Measurements of
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incorporated BrDU were taken after 24 hours using an ELISA (enzyme-linked immunosorbent assay)

according to the kit’s protocol.

5.2.5 Intracellular Lipid Staining using ORO

5.2.5.1 Experimental Protocol

HepG2 cells were seeded on to sterilized glass cover slips placed in 24 well plates at a density of 26000
cells/cm?® and initially grown in 1ml unaltered MEM medium. For each set of conditions (and each
repeat) two wells were seeded. In one of these both the lipids and the nuclei were stained. In the
other only the lipids were stained. After 24 hours, once the cells had adhered to the glass cover slip,
the medium was removed from each well and replaced with 1ml of medium containing the stated

treatment. This medium was replaced every 24 hours until measurements were taken.

The medium was aspirated and the cells were washed for 5 minutes twice with PBS. To fix the cells,
10% formalin was added to each well for a minimum of 60 minutes. The formalin was removed and
the cells were washed twice with diH,O before incubating for 5 minutes in 60% isopropanol. The cells
were then incubated for 20 minutes in Oil Red O (ORO) working solution (0.18% ORO in 60%
isopropanol, 40% diH,0) (Sigma 01391). 2-5 diH,0 washes were performed until the stain was no
longer apparent in the water. For each fatty acid preparation, one well was left with the cells in diH,0
and imaged. From the second well the diH,0 was aspirated and one drop of haematoxylin was added
to stain the nuclei. This was rapidly washed away (within 10 seconds) with 2-5 diH,O washes before

imaging.
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5.2.5.2 Image Analysis
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Previous ORO staining protocols suggested measuring the total lipid content in the sample by breaking
up the cells with 100% isopropanol and measuring the change in light absorbance due to the release
of ORO. However, since a large number cells were detached from the well plate and during the imaging
process (particularly when adding isopropanol), it was impossible to know the number of cells in the
plate and, therefore, the quantity of lipid per cell could not be measured in this way. Instead, the

percentage of cellular area stained for lipid and the average lipid droplet size were calculated from
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the images. Image J was used to perform the image analysis. Since the image analysis performed was
only partially automatic, the images were numbered randomly and analysed without knowledge of
the treatment to avoid bias. The images were cropped to exclude the areas without cells or where
cells had grown on top of one another (often near the edges of the well), leaving only the one-cell-
thick regions. To calculate the percentage of area that was stained by ORO, the cropped image regions
were separated by into RBG channels. Although the stain is red, numerous areas other than those
containing lipid stain also showed up bright in the red channel. Instead, the lipid stained regions were
more clearly identified by using the dark regions in the blue channel. Unfortunately, due to post-image
capture changes automatically applied by the microscope software, the images varied significantly in
brightness and saturation such that no fixed threshold could be set between images to define stained
and unstained regions. Instead, the threshold was set manually for each image, with a peak in the low
intensity of blue corresponding to stained regions (see image above). Lipid droplet size was
determined by manually circling single separate lipid droplets using images at fixed magnification and

saving the measured areas. This was again performed using randomly numbered images to avoid bias.

5.2.6 Staining and Quantifying Glycogen Using a Periodic Acid Schiff Stain

Glycogen was stained by treating fixed cells with a periodic acid solution followed by a Schiff solution
(PS stain). Since this stains both glycogen and glycoproteins, a second well was treated with diastase
followed by periodic acid and Schiff solutions (PSD stain). Diastase breaks down glycogen to maltose

such that it is no longer stained. By comparing the two, the amount of glycogen can be calculated.

Cells were seeded at a density of 26’000 per cm? on glass slips in 24 well plates in 1ml untreated
medium. After 24 hours, 1ml medium containing the stated treatment was added. The cells were
grown in the treated medium for 48 hours. Two wells were seeded for each set to allow for both PS
and PSD stains to be performed. The cells were washed twice with PBS, then fixed with 10% formalin
for a minimum of 1 hour. The PS wells were left in formalin whilst the PSD wells were washed twice

with ddH,0 incubated in 0.5% diastase solution for 20 minutes. After this, all wells were washed twice
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with ddH,0 and incubated with 1% periodic acid solution for 5 minutes. After two ddH,0 washes, the
cells were incubated in Schiff’s solution for 15 minutes. 2-5 tap water washes were performed until

the water was clear before imaging.

Finally, to quantify total hepatic glycogen, the cells were broken up by the addition of tween-20 in
100% isopropanol with shaking. The absorbance at 550nm minus 650nm was measured using the
FLUOstar Omega multi-mode microplate reader. The PSD reading was subtracted from the PS reading
to give the absorbance corresponding to glycogen. These readings were compared with visual

observation for validation.

5.2.7 Mitochondrial Enzyme Activity Assays

Cells were seeded at a density of 26000 per cm? in T25 culture flasks and allowed to attach for 24
hours in 4ml of untreated medium. 4ml of medium containing the stated treatments was added and
replaced after 24 hours. After 48 hours, the cells were harvested and stored at -20C in PBS for less
than a week. The cell-PBS suspensions were thawed on ice and re-frozen twice to break up the cell
membranes. Finally, they were thawed a third time before performing the enzyme activity assays. For
all three ETC enzyme measurements, the rates were normalised to citrate synthase activity in the

sample to give the activity per total mitochondria as discussed below.

5.2.7.1 Preparation of Cells for Mitochondrial Assays

Cells were grown and treated as described above. To prepare cell homogenates, firstly the medium
was removed and, if required, a sample was transferred to an Eppendorf. The cells were then
dissociated with 500uL trypsin before resuspending in medium to a total volume of 1.5ml. The
suspension was transferred to an Eppendorf and the number of cells was counted using a 10uL sample.
Each Eppendorf was centrifuged for 2 minutes at 200RCF (relative centrifugal force). The supernatant
was removed before the pellet was resuspended in 1ml of iced PBS. The suspension was centrifuged

for 2 minutes at 200RCF and the PBS removed. Finally, the pellet was resuspended to a volume of
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0.5mM in iced PBS and rapidly moved to -20°C. The cell suspensions were put through at least three

freeze-thaw cycles, defrosting slowly in ice, before use.

A biuret test was used to quantify the presence of peptide bonds and hence the protein content of
each sample. To make the biuret working solution 1.5g copper sulphate pentahydrate, 6g sodium
potassium tartrate and 30g sodium hydroxide were dissolved in 1 litre of water. To provide reference
protein solution, bovine serum albumin was dissolved in PBS at 100mg/ml, 50mg/ml, 25mg/ml,
12.5mg/ml, 6.25mg/ml, 3.125mg/ml, 1.5625mg/ml and 0.78125mg/ml. 150uL of working solution and
20uL of cell solution or reference protein solution were added to each well of a 96 well plate, with at
least 2 repeats in each case. After 30-60 minutes, the 550nm absorbance was measured using the
FLUOstar Omega multi-mode microplate reader. The FLUOstar Omega data analysis software was

used to calculate the concentration of protein in the sample.

5.2.7.2 Citrate Synthase

Firstly, the activity of citrate synthase was measured. As a mitochondrial matrix protein known to be
largely unaffected by loss of mitochondrial function, citrate synthase is commonly used as a marker
for the amount of mitochondria in a sample (e.g. [601]). The enzyme catalyses the reaction between
acetyl-CoA, oxaloacetic acid and water to form citrate along with a CoA molecule with a thiol group
(CoA-SH). In the assay, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) is additionally provided which reacts
with the thiol group to form 5-thio-2-nitrobenzoic acid (TNB) which absorbs at 412nm. It is this
absorbance which is measured. The method used was a slightly modified version of that used

previously in HepG2 cells by Garcia-Ruiz [557].

A stock buffer of 200mM k* HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) in ddH,0 was
prepared and adjusted to PH8 using a potassium hydroxide (KOH) solution. Stock solution of 5mM

oxaloacetate, 2mM DTNB and 10mM acetyl-CoA in ddH,0 were prepared on ice and stored at -20°C.

To perform the assay, the cell suspensions and stock solutions were defrosted slowly on ice. 10l of

cell suspension (containing a total protein concentration of around 4pg/ml) was used in a total volume
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of 200uL of solution in a 96 well plate. A solution containing the cell suspension and final
concentrations of 100mM k* HEPES, 250l oxaloacetate and 100uL DTNB was prepared in each well.
The mixture was briefly incubated at 37°C. Finally, the acetyl-CoA was added to start the reaction at a
final concentration of 500uM and the absorbance was read at 412nm minus 640nm for a period of ~4

minutes. The gradient over time was used to measure of citrate synthase activity.

5.2.7.3 Complex 1

Complex 1 catalyses electron transfer from NADH to decylubiquinone (Q10). The reduction in UV
absorption of NADH (340nm) was measured in this assay. High concentrations of NADH and Q10 were
provided to ensure maximum activity is measured. Complex 4 inhibitor potassium cyanide was added
to minimise activity elsewhere in metabolism. To account for any NADH consumption or production
by enzymes other than complex 1, measurements were taken with and without the addition of
rotenone, a potent complex 1 inhibitor. The protocol used was a slightly modified version of that used

previously in HepG2 cells by Garcia-Ruiz [557].

A stock buffer of 50mM potassium phosphate (KPi) in ddH,0 was prepared and adjusted to PH 7.2
using a KOH solution. Stock solutions of 200mM magnesium chloride, 2mM potassium cyanide (in a
strongly alkaline solution), 50mg/ml bovine serum albumin (BSA), 2mM NADH, 500uM

decylubiquinone and 40mM rotenone were prepared on ice and stored at -20°C.

To perform the assay, the cell suspensions and stock solutions were defrosted slowly on ice. 20uL of
cell suspension was used in a total volume of 200uL of solution in a 96 well plate. Two wells were run
for each sample allowing measurement of the rate with and without the addition of rotenone. A
solution containing the cell suspension and final concentrations of 25mM KPi buffer, 10mM
magnesium chloride, 200uM potassium cyanide, 2.5mg/ml BSA, 100uM NADH and OmM or 2mM
rotenone was prepared in each well. The mixture was heated to 30°C. To initiate the reaction, the Q10

was added at a final concentration of 25uM and the absorbance was read at 340nm minus 380nm for
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a period of ~60 minutes. The maximum rate over a 20minute period was taken subtracting the value

with the addition of rotenone from the value without.

5.2.7.4 Complex 2/3

It is difficult to separate the activities of complexes 2 and 3 experimentally and a combined assay was
performed. The rate of production of reduced cytochrome C by complex 3 from complex 2 substrate
succinate is measured. The reduction of cytochrome C was measured through a change in its
absorbance spectrum. Complex 3 requires ubiquinol (reduced Q10) to reduce cytochrome C, and a
high concentration of succinate was provided to stimulate ubiquinol synthesis by complex 2. Sodium
azide was provided to prevent the re-oxidation of reduced cytochrome c by complex 4. To compensate
for any reduction or oxidation of cytochrome c by other enzymes, the assay was run with and without
the addition of antimycin A, a potent complex 3 inhibitor. The protocol used was a slightly modified

version of that used previously in HepG2 cells by Garcia-Ruiz [557].

A 322mM KPi buffer was prepared and adjusted to PH7.4 using a KOH solution. Stock solutions of
6mM dipotassium ethylenediaminetetraacetic acid (diK-EDTA), 1mM cytochrome C oxidase, 50mg/ml
BSA, 20mM sodium azide, 200mM sodium succinate and 40mM antimycin A were prepared on ice and

stored at -20°C.

To perform the assay, the cell suspensions and stock solutions were defrosted slowly on ice. 20uL of
cell suspension was used in a total volume of 200l of solution in a 96 well plate. Two wells were run
for each cell suspension allowing measurement of the rate with and without the addition of antimycin
A. A solution containing the cell suspension and final concentrations of 166mM KPi buffer, 300uM diK
EDTA, 50uM cytochrome c, 2.5mg/ml BSA, 1mM sodium azide, and OmM or 2mM antimycin A was
prepared in each well. The mixture was heated to 30°C. To initiate the reaction, the sodium succinate
was added at a final concentration of 10mM and the absorbance was read at 550nm minus 630nm for
a period of ~*60 minutes. The maximum rate over a 20minute period was taken subtracting the value

with the addition of rotenone from the value without.
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5.2.7.5 Complex4

Cytochrome c oxidase (complex 4) is the final enzyme in the electron transport chain. Electrons are
taken from reduced cytochrome c oxidase, converting it to its reduced form and moving protons into
the intermembrane space in the process. The change in absorption resulting in the oxidation of
reduced cytochrome c was measured in this assay. To account for cytochrome c oxidation elsewhere
in metabolism, the change in absorbance was measured with and without the addition of potassium
cyanide, a potent complex 4 inhibitor. Lauryl maltoside, a detergent, was added to further break up
the inner membranes of the cells. The protocol used was a slightly modified version of that used

previously in HepG2 cells by Garcia-Ruiz [557].

A 100mM KPi buffer was prepared and adjusted to PH7 using a KOH solution. Stock solutions of 0.3%
lauryl maltoside, 600uM reduced cytochrome ¢ and 2mM potassium cyanide were prepared on ice
and stored at -20°C. Reduced cytochrome ¢ was produced by adding one or two crystals of sodium
dithionite to oxidised cytochrome c¢ and passing through a PD10 column to remove the sodium

dithionite. The solution was washed through by a 322mM ph7.4 KP; buffer (see complex 2/3).

To perform the assay, the cell suspensions and stock solutions were defrosted slowly on ice. 20uL of
cell suspension was used in a total volume of 200uL of solution in a 96 well plate. Two wells were run
for each cell suspension allowing measurement of the rate with and without the addition of potassium
cyanide. A solution containing the cell suspension and final concentrations of 50mM KPi buffer,
0.015% lauryl maltoside, and OuM or 200uM potassium cyanide was prepared in each well. The
mixture was heated to 30°C. To initiate the reaction, the reduced cytochrome c was added at a final
concentration of 30uM and the absorbance was read at 550nm minus 630nm for a period of 60
minutes. The maximum rate over a 20minute period was taken, subtracting the value with the addition

of rotenone from the value without.
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5.2.8 Intracellular ATP Concentrations

A luminescence ATP detection kit (abcam Luminescent ATP Detection Assay Kit (ab113849) was used
to quantify the ATP concentration in cultured cells. Cells were seeded at a density of approximately
26000 cells/cm? in 96 well plates. After 24 hours, the medium was replaced with fresh medium
containing the stated treatment. This was replaced after 24 hours before readings were taken at 48
hours. To take readings, the treated medium was removed and replaced with 100uL of fresh medium.
100puL of medium containing 1uM, 2uM, 5uM, 10uM and 20uM reference concentration of ATP was
added to additional wells in triplicate. Following the suggested protocol, 50uL of detergent solution
was added to each well before shaking at 800rpm for 5 minutes. Avoiding direct light, 50uL of
substrate buffer was added before shaking at 800rpm for 5 minutes in darkness. 100uL of the solution
from each well was transferred to a 96 well assay plate avoiding direct light. Luminescence was
measured using the FLUOstar Omega multi-mode microplate reader with a gain of 3000 over a period
of 10 minutes to ensure no change in emission occurred as a result of any exposure to light. Since no
changes were seen in any of the tests run, the average luminescence over the 10 minutes was taken.
A linear fit was performed to the reference data and used to quantify the ATP concentration in the
50uL of medium. Finally, the measured concentration was divided by the calculated number of cells
to give the yMoles ATP per million cells. The number of cells was calculated based on an initial
concentration of 26000 cells and using the measured time constants for exponential growth for each

treatment.

5.2.9 Ocxidative Stress

Two assays were used to assess oxidative stress in treated cells. The redox potential (measured as the
static oxidation reduction potential (ORP)) and antioxidant capacity (measured as the capacity ORP)
were measured as markers of extracellular ROS and extracellular antioxidant reserves respectively
(using the REDOXSYS system). A Thiobarbituric acid reactive substances (TBARS) assay was performed

on cell homogenates to assess for intracellular lipid peroxidation.
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Cells were seeded in T25 flasks at a density 26000 per cm? in unaltered medium and allowed to attach
for 24 hours. After this time, medium containing the stated treatment was added and replaced after
24 hours. After 48 hours, a 1ml sample of medium was taken from each flask, put into an Eppendorf
and centrifuged for 2 minutes at 200RCF at 4°C to remove any floating cells. After centrifugation, the
supernatant was transferred into a new Eppendorf and stored at -20°C for less than 1 week. The cells

were harvested as described in section 5.2.7.1 and stored in PBS at -20C for less than a week.

To assess extracellular ROS in the supernatant medium, 20uL of each sample was added to the
REDOXSYS and the static ORP and capacity ORP were measured by the REDOXSYS machine. To assess
lipid peroxidation, a standard assay was performed to assess the presence thiobarbituric acid reactive
substances (TBARS), most notably malondialdehyde, which are produced as degradation products of
fats after peroxidation. This assay shows only moderate specificity for lipid peroxidation byproducts,
and should be studied with caution, but large increases in readings are thought to signify increased

lipid peroxidation.

A reaction mixture was produced with a base containing 1 part each of 0.25 N hydrochloric acid, 15%
trichloroacetic acid (TCA) and .375% thiobarbituric acid with 2.5mM butylated hydroxytoluene. To this
was added 0.3 parts of sodium dodecyl sulfate. Finally, to the reaction mixture, 0.03 parts of 2.5mM

EDTA and 0.03 parts of 1.5mM sodium sulfate were added.

150ml of each cell homogenate sample, along with 150ml PBS for blanks, was added to 300ml of
reaction mixture in an Eppendorf and heated for 1 hour at 70 degrees. The Eppendorfs were allowed
to cool before 500ml of 1-butanol was added. After vortexing each tube repeatedly to mix, they were
next centrifuged at 8000rpm for 1 minute. A 100ml sample was taken from the butanol layer and put

in a glass 96 well plate. Absorbance was measured at 532-570nm and black corrected.

5.2.10 Glucose Consumption, Lactate Output and Insulin Sensitivity
The rates of glucose consumption and lactate output were measured through changes in the

concentration in the medium. Insulin sensitivity was measured through the change in glucose



193

consumption resulting from the addition of insulin. Cells were seeded at a density of 26000 per cm?in
48 well plates containing 500uL untreated or T25 flasks containing 4ml untreated as stated and
allowed to attach for 24 hours. Additional wells containing no cells were used to control for the effects
of evaporation on medium concentrations. After this time, medium containing the stated treatments,
insulin concentrations and glucagon concentrations was added and replaced after 24 hours. The
medium was collected after 48 hours, such that consumption is assessed over the second 24-hour
period. 250 pL of medium was harvested from each well and stored at -20C for less than one week.
A COBAS machine was used to measure the change in glucose and lactate concentrations. A 200uL
sample of medium from each well was added into COBAS tubes (including the cell-free wells) before
running automated assays for glucose and lactate using the GLUC3 and LACT2 cartridges. The
concentrations measured for each treatment were subtracted from the concentration measured from

the cell-free wells to get the rate of consumption/output.

5.3 Results 1: Effects of Fatty acids on Metabolism in HepG2 Cells -

Characterisation of the experimental model of NAFLD

5.3.1 Effect of FFAs on cell numbers, cell death and proliferation

Firstly, the effects of FA treatment on cell viability and proliferation rates were assessed to identify
the concentrations at which lipotoxicity lead to reduced viability in the cell culture model. This was
performed both for the FA cocktail (containing equal molar concentrations of butyric, lauric, palmitic,

oleic and linoleic acids) and for each of the FAs individually.

5.3.1.1 Fatty Acid Cocktail

Figure 5.3 shows the effects of increasing concentrations of the FA cocktail up to 800UM on cellular
viability after 24 and 48 hours of treatment and on the proliferation rate per cell. Table 5.1 shows the

effects of the FA cocktail treatments on the culture doubling time based on the 48 hour counts.
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FA treatments were compared with both an unaltered, FA free medium naive control and a vehicle
control containing 0.48% EtOH, equal to the amount used to solubilize the 800uM FA treatment. The
0.48% EtOH vehicle control had no significant effect on the percentage of viable cells or total number
of viable cells after either 24 hours of 48 hours or on the proliferation rate when compared with the

naive control and so only the vehicle control data is presented here.

The percentage of cellular viability was significantly decreased after 48 hours of treatment with
400uM or greater of FA cocktail and after 24 hours with 800uM FA cocktail relative to control. 48
hours of treatment with 800uM caused a notable decreased the percentage of cell viability to
79.31£1.4% relative to the control value of 98.210.7% (n=3; p<0.001). Significant increases in the
culture doubling times were seen for 400uM FA cocktail or greater (table 5.1). For 400uM, the
doubling time of the cultures increased from 2.0%3} to 2.7133 days, whilst almost no increase in
viable cell numbers occurred over the 48 hours of treatment with 800uM FA cocktail (n(t=48
hours)/n(t=0)=1.08+0.07, p<<0.001 for both controls). Conversely, no significant difference in the rate
of proliferation occurred between the FA free and FA cocktail treated cells (rate for 400puM FA cocktail
= 1.01+0.18 times control; p=0.86). Therefore, the measured reduction in viable cell numbers (table
5.1) resulted from reduced viability rather than reduced proliferation.

Table 5.1: the effects of varying FA cocktail concentrations on the doubling time of HepG2 cultures.

Treatment Doubling time, t (days)
Control 2.0%51 (n=6)

0.48% EtOH 19701 (n=3)

200uM FA cocktail 2.0%5:2 (n=6)

400uM FA cocktail 27133 (n=6) *

600uM FA cocktail 4.7t13 (n=3) *

800uM FA cocktail 17.3%820 (n=6) *

Calculated based on cell counts using a trypan blue exclusion assay at t=0 and t=48 hour counts
assuming grown of the form N=No2"". After conversion from measurement of the numbers of viable cells
to the time constants, the data is no longer centrally distributed (due to taking the logarithm). To show
the equivalent of standard deviation, the upper and lower bounds displayed correspond to the 15.9%"
and 83.1° percentile. * p<0.05 vs control as assessed by a one-way ANOVA using the 48-hour viable cell
count data. The FA cocktail comprised of an equal molar mix of butyric, palmitic, lauric, oleic and linoleic
acids.
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Figure 5.3: The effects of FA treatment on the cellular viability the rate of proliferation per cell. The
effect of treatment with 0-800uM FA cocktail (an equal molar mix of butyric, palmitic, lauric, oleic and
linoleic acids) on (a) percentage viability (the number of viable cells divided by the total number of cells)
as assessed by a trypan blue exclusion assay and (b) the proliferation rate per cell as assessed by the
rate of incorporation of BrDU into cellular DNA. (a) Cells were seeded at 26’000 cells per cm? in 6 well
plates and allowed to attach for 24 hours before the treatments were added. After the stated treatment
time, the cells were dissociated and the number of viable cells and non-viable cells were counted using
a trypan blue exclusion assay (section 5.2.4.2). Each data point is the average of 3 independent repeat
measurements. A statistically significant effect of both the FA cocktail concentration and the treatment
time was first determined using a two-way ANOVA (p<0.0001 in both cases) before statistical
significance between treated and vehicle control groups was performed using Holm-Sidak adjusted t-
tests. * - p<0.05 vs both vehicle controls and untreated control. (b) Cells were seeded at 26’000 cells per
cm? in 96 well plates and allowed to attach for 24 hours before the treatments and BrDU marker were
added. Measurements were made after 24 hours of treatment as described in section 5.2.4.4. 3 repeat
readings were performed with 2-4 replicates in each case. The bars show the mean the mean and the
error bars show the standard deviation (mean *SD). The vehicle control is the addition 0.48% ethanol
equal to the concentration required to solubilize 800uM ethanol. A one-way ANOVA showed no
statistical difference between the proliferation rate of FA treated and untreated cells.

5.3.1.2 Effects of Individual Short, Medium and Long Chain Fatty Acids on Viability

To understand which FAs within the cocktail were causing the reduction in cell viability, HepG2
cultures were next treated with butyric, lauric, oleic, linoleic and palmitic acids individually. Figure 5.4
shows the effects of treatment with individual FAs on cell viability as assessed by a trypan blue

exclusion assay.

Treatment with oleic and linoleic acids for 48 hours had no significant effect on cellular viability up to
a concentration of 400uM. This suggests that these mono- and poly- unsaturated FAs are not primarily
responsible for the decrease in cell numbers resulting from treatment with the FA cocktail. Conversely,

the saturated long chain FA palmitic acid caused a notable reduction in cell viability at 200uM or
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greater. The percentage viability fell from 98.2+1.1% in control cells to 90.8+2.3 when treated with
200uM palmitic acid (n=3, p=0.022) and 84.1+3.4% when treated with 400uM (n=3; p=0.015).
Similarly, treatment with 400uM of the saturated medium chain FA lauric acid caused a significant

reduction in cell viability to 86.7+2.1% (n=3; p=0.005) respectively.

Finally, treatment with 400uM of the short chain FA butyric acid caused a significant reduction in cell
numbers. This effect was less severe than in the case of palmitic and lauric acids and the percentage

viability only reduced to the doubling time of the culture only increased 94.8+0.9% (n=3; p=0.003).

Therefore, the reduction in viable cell numbers resulting from the FA cocktail primarily occurs due to
the saturated medium and long chain palmitic and lauric acids, although the saturated short chain

butyric acid may also contribute.
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Figure 5.4: The effects of treatment with individual fatty acids on viability. The effect of 48 hour
treatment with individual fatty acids on the percentage viable cells as assessed by a trypan blue
exclusion assay. Cells were seeded at 26’000 cells per cm? in 6 well plates and allowed to attach for 24
hours before treatments were added. The treated medium was replaced after 24 hours. After 48 hours
of treatment the cells were dissociated and counted using a cytometer using trypan blue to identify dead
cells. In all cases 3 repeats of 4 replicate counts were performed. The graph shows the mean +SD. A two-
way ANOVA was used to determine significant variation between the groups sets before Holm-Sidak
adjusted t-tests were used to calculate significance of each treatment from control at each FA
concentration. * - p<0.05 vs control.
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5.3.2 Steatosis

Having established that reduced viability occurs for FA cocktail concentrations of greater than 400uM,
the effect of the FA treatments on cellular lipid content was next assessed. Steatosis is the defining
feature of NAFLD and severely increased lipid content was seen when simulating high fat intake and

IR in the model. It is therefore important that it is seen in the cell culture model.

The effects of treatment for 48 hours with varying concentrations of the FA cocktail and with each FA
individually on cellular lipid content are shown in figure 5.5. In the control cells, 20+5% of cellular area
was stained by ORO. Although this is a percentage of area in the images rather than a percentage of
mass, it is still high relative to the lipid content seen in healthy liver cells in vivo and HepG2 cells are
known to contain a high lipid content due to reduced secretion of triglycerides [554]. Treatment with
a 0.48% ethanol vehicle control, equal to the highest ethanol content used for 800uM FA cocktail,

increased the percentage of area stained compared with control to 24+5% (p<0.01).

As would be expected, addition of increasing concentrations of FA cocktail to the culture medium
caused a significant increase in hepatic lipid concentrations (figure 5.5a). After treatment with 200uM,
400uM, 600uM and 800uM FA cocktail over 48 hours, the percentage of cell area stained for lipid
increased to 32+4%, 43+5%, 50+3% and 66+9% respectively (p<0.05 compared with both unaltered
medium and vehicle controls). In the case of 800uM, the cells were almost entirely full of lipids with

only the nuclei remaining unstained (figure 5.5c).

Increasing the concentration of FA cocktail in the medium not only increased the total lipid content of
the cells, but also increased the sizes of lipid droplets (figure 5.5b). When treated with 800uM the
median lipid droplet area nearly doubled from 83 pixels to 161 pixels whilst the 95" percentile droplet

area increased from 133 pixels to 321 pixels.



198

Q
—

Effect of FA Cocktail on Cellular Lipid Content

70 4

60 o

*
*

50 A *

40 + *

30 A

20 -

Al

0 - T T T T T

Control 0.48% EtOH  200uM FA 400pM FA 600uM FA 800pM FA

Percentage of Cell Area Stained by ORO
(Neutral Lipid)

Cocktail Cocktail Cocktail Cocktail
b) o)
350 - . [comel]
300 - x
%)
2 250 A .
=
$ 200 - .
< -
@ 150 - e 7 S
S ] 800UM FA Lipid
5 100 - T 1 Cocktail Droplets
0 r . r r r )
5 T < _ < _ <_ <
— O w ‘= w = w = [ TU
ra ] © © © 2
s & St =L 3£ 3%
5 3 0 3 0 30 3 Q
o S S O o O o O o ©
g o v o v o v o v
A o~ < (o] [oe]
o
d L ..
) 00 Effect of Individual FAs on Cellular Lipid Content
o .
o i *
g o3
>
2 07 A
b
K= 0.6
o —
52 o5 4 h
=
& 04 -
=z 5
8 g 0.3 A
B = L
o 0.2 1
oo
£ 01
Q
e 0 T T mLL T T T
(0]
a.

Control ~ 0.2mM Butyric 0.2mM Lauric 0.2mM 0.2mM Oleic 0.2mM
Acid Acid Linoleic Acid Acid Palmitic Acid



199

Figure 5.5: The effect of fatty acid treatment on cellular steatosis. (a) The effect of the fatty acid
cocktail (an equal molar mix of butyric, palmitic, lauric, oleic and linoleic acids) on percentage of cellular
area stained for lipid. (b) The effect of the fatty acid cocktail on the distribution of lipid droplet sizes.
Horizontal lines represent the average median, boxes represent the average 25 and 75t percentiles
and whiskers represent the average 5" and 95t percentiles. (c) Representative images of control and
800uM FA cocktail treated HepG2 cells taken at 40x magnification. (d) The effect of treatment the
individual FAs on the percentage of the cellular area stained for lipid. The mean #SD is presented from
a minimum of 3 independent repeats.

Cells were seeded at 26’000 cells per cm? in 24 well plates containing glass coverslips in untreated
medium and allowed to attach. After 24 hours, the untreated medium was aspirated and replaced with
medium containing the stated treatment. The treated medium was replaced after 24 hours. The cells
were stained with ORO after 48 hours of treatment before imaging. Quantification was performed using
Image J as discussed in section 5.2.5. A minimum 3 independent repeats of at least 7 technical replicates
were analysed for the fatty acid cocktail treatments and a minimum of 3 independent repeats of 3
technical replicates were analysed for the individual fatty acid treatments. A minimum of 250 droplets
were analysed from each independent repeat to calculate the distributions in (b). An ANOVA was used
to determine significance between the treatment groups sets before Holm-Sidak adjusted t-tests were
used to calculate the significance of the difference between each treatment and both untreated and
(EtOH) vehicle controls. *- p<0.05 vs control and vehicle control.

To investigate which FAs within the cocktail resulted in steatosis, HepG2 cells were treated with
200uM of each individual FA and stained with ORO after 48 hours (figure 5.5d). The percentage area
stained for lipid was not significantly increased by treatment with 200uM of butyric acid (18+6%; n=8;
p=0.57), oleic acid (22+4%; n=6; p=0.06) or linoleic acid (22+4%; n=11; p=0.07) compared with control
(20£5%; n=39). However, a significant increase occurred when the cells were treated with 200uM of

either palmitic (43+6%; n=8; p<0.001) or lauric acids (67+12%; n=8; p<0.001).

It should be noted that equal molar concentrations rather than equal masses or volumes of each FA
were used as treatments. The four medium and long-chain FAs have similar molar masses in the range
200-300 grams per mole and densities in the range 0.85-0.9g/cm? (dependent on the temperature as
well as the type of fat). However, the short-chain butyric acid has a much lower molecular mass of
88.1 grams per mole (33.4% of the molar mass of palmitic acid). Therefore, although the same number
of molecules were added, the total mass (and volume) of FA in the case of butyric acid was around a
third of that for the other FAs. However, since 200uM butyric acid failed to cause even a non-
significant increase in hepatic lipid levels, this is unlikely to account for the difference in lipid content

between butyric acid and palmitic acid treated cells.
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5.3.3 Mitochondrial Function and Oxidative Stress

As discussed above, reduced mitochondrial function and oxidative stress are both known to occur in
NAFLD in vivo and are thought to arise because of increased hepatic FFA concentrations and increased
oxidation of fats. In the model simulations, increases in hepatic FFA concentration and overactivation
of oxidative phosphorylation occurred, although the pathways mediating the resulting effects on
mitochondria are not currently included in the model. Conversely, experimentally it is possible to
measure oxidative stress and mitochondrial function but difficult to measure intracellular FFA
concentrations due to their rapid binding to CoA and use in glycerolipid synthesis or B-oxidation. In
the next section, the effects of FFA treatment on markers of oxidative stress and mitochondrial

function (ETC enzyme activity) are assessed in the cell culture model.

5.3.3.1 Electron Transport Chain Activities and ATP levels

Figure 5.6 shows the effects of 48-hour treatment with different concentrations of the FA cocktail on
the activity of citrate synthase per million cells as a marker of the mitochondria per cell, on the

activities of ETC enzymes complex |-V per mitochondria and on intracellular ATP concentrations.

Treatment with 200uM of the FA cocktail had no effect on citrate synthase activity (1.4+0.4x1073
absorbance units per second per million cells (au s mc?) (n=4) compared with control: 1.4+0.2x1073
au st mc? (n=4)) (figure 5.6a). However, 400uM and 800uM FA cocktail significantly increased citrate
synthase activity to 1.9+0.3 au s mc? (n=4; p=0.007) and 3.0+0.6x103 au s mc? (n=4; p<0.001)
respectively. Therefore, the total mitochondrial level was increased in the FA treated cells. The
increase in activity failed to reach significance for cells treated with 600uM FA cocktail (1.6+0.3 au s*

mcl; n=4; p=0.21).

Treatment with 400uM or greater of the FA cocktail significantly decreased both the activity of
complex | (figure 5.6b) and the combined activities of complexes Il and Il (figure 5.6c). Treatment with
600uM or greater also significantly reduced complex IV activity (figure 5.6d). This demonstrates

reduced mitochondrial function after 48-hour FA treatment.
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Figure 5.6: The effect of FA treatment on mitochondrial function. The effect of 48-hour treatment with
varying concentrations of FA cocktail (an equal molar mix of butyric, palmitic, lauric, oleic and linoleic
acids) on (a) the activity of citrate synthase as a marker for total mitochondrial level, (b) the activity of
complex I, (c) the combined activities of complexes Il and Ill, (d) the activity of complex IV and (e) the
intracellular ATP concentration. Cells were seeded at 26’000 cells per cm? in (a-d) T25 culture flasks and
(e) 96 well plates in untreated medium and allowed to attach. After 24 hours, the untreated medium
was aspirated and medium containing the stated treatment was added. The treated medium was
replaced after 24 hours. The cells were harvested and measurements performed after 48 hours of
treatment. Numbers of independent repeats performed are stated in the axes. For (a-d) each
independent repeat is based on two replicate reaction rate measurements. For (e) each independent
repeat is based on 3-7 replicate measurements. (a,e) Normalised to the number of cells. (b-d)
Normalised against citrate synthase to give activity per total mitochondria. The mean #SD is shown. A
one-way ANOVA was used to determine significant variation between the treatment groups before t-
tests were used to calculate the significance of the differences between each FA treatment and the
control. * p<0.05 vs control.
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The measured increase in citrate synthase activity, and hence total mitochondria, may partially
compensate for the reduced mitochondrial function. For example, the complex I, l1/1ll and IV activities
in cells treated with 800uM FA cocktail were reduced to 26+18%, 19+2% and 29+17% of their activities
in control cells respectively when normalised per mitochondria. However, when the increase in the
amount of mitochondria (activity of citrate synthase) per cell is accounted for, the calculated total
complex I, lI/lll and IV activities per cell were 57+40%, 41+8% and 63+40% of their activities in control

cells respectively.

Figure 5.6e shows the intracellular ATP concentration in cells treated with varying FA cocktail
concentrations for 48 hours. Treatment with 800uM of the FA cocktail significantly reduced the ATP
concentration to roughly 60% of that measured in control cells (p=0.046). No significant change in ATP
concentration occurred in cells treated with 200uM, 400M or 600uM FA cocktail. Therefore, reduced
ATP levels result from FA treatment of HepG2 cells, but a higher FA concentration is required than for

the development of mitochondrial dysfunction.

5.3.3.2 Oxidative Stress

Oxidative stress is known to result from excess FA oxidation and increased FFA levels, particularly in
the context of reduced mitochondrial function. Figure 5.7 shows the effects of treatment for 48 hours
with the FA cocktail on the redox potential and antioxidant reserves in the supernatant medium and

on lipid peroxidation as assessed by a TBARS assay in the cell homogenates.

Figures 5.7 a and b shows the effects of varying concentrations of FA cocktail on the redox potential
and antioxidant capacity in the medium of cells which had been treated with varying concentrations
of the FA cocktail. The redox potential (measured as the static ORP (section 5.2.9)) increased
significantly when cells were treated with 400uM (228+3mV; n=3; p=0.001), 600uM (230+8mV; n=3;
p=0.03) and 800uM (224+4mV; n=3; p=0.005) of the FA cocktail compared to control (206t2mV; n=3).
Although the differences in redox potential are small relative to the absolute values, they lie within a

similar range to the values measured in the blood of type 2 diabetic and control patients [595]. The
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antioxidant capacity (measured as the capacity ORP (section 5.2.9)), meanwhile, decreased

significantly for FA cocktail concentrations of 600uM (0.18+0.02uC vs control 0.24+0.01uC; n=3;

p=0.016) and 800uM (0.19+0.01uC; n=3; p=0.003). This data shows that, in the medium of cells treated

with high FA cocktail concentrations, oxidative stress was increased whilst antioxidant reserves were

depleted.
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Figure 5.7: The effect of FA treatment on oxidative stress. The effect of varying concentrations of a FA
cocktail (an equal molar mix of butyric, palmitic, lauric, oleic and linoleic acids) on (a) the redox potential
in the supernatant medium, (b) the antioxidant capacity in the supernatant medium and (c) lipid
peroxidation as assessed by a TBARS assay in the cell homogenates.

Cells seeded at 26’000 cells per cm? in T25 flasks plates in untreated medium and allowed to attach.
After 24 hours, the untreated medium was aspirated and medium containing the stated treatment was
added. The treated medium was replaced after 24 hours. The supernatant medium and cells were
harvested after 48 hours of treatment. The tested supernatant medium had been in contact with the
cells from the 24% to the 48" hour of treatment. The medium was measured for redox capacity and
antioxidant reserves whilst the cells were homogenised and assessed for lipid peroxidation (section
5.2.9). The graphs show the mean +SD based on the numbers of independent repeats shown on the axes
of the graphs. A one-way ANOVA was used to determine significant variation between the treatment
groups before t-tests were used to calculate the significance of the difference between each FA
treatment and the control. * - p<0.05 relative to control.
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Figures 5.7c shows the presence of lipid peroxidation as assessed by a TBARS assay in cell
homogenates after 48 hours of treatment with varying concentrations of the FA cocktail. No significant
change in TBARS occurred when the cells were treated with 400uM FA cocktail (1.2+0.5 cell (n=5) vs
1.0+0.2 cell? (n=6); p=0.51). However, when treated with 800uM, TBARS increased significantly to
almost three times the value in control cells (2.7+1.1 cell* (n=5); p<0.01). An increase in TBARS

measurement this large is strongly indicative of the presence of lipid peroxidation.

5.3.4 Glucose Consumption and Insulin Sensitivity

In vivo, NAFLD is often associated with IR, defective glycogen storage and hyperglycaemia. This is
caused by increased intracellular concentrations of FFAs and closely related ceramides and DAGs [8,
146, 247, 248]. In the following sections, the effects of FFAs on glucose consumption and insulin

sensitivity are assessed.

Figure 5.8 compares the rates of glucose consumption by cells grown in medium containing varying
FA cocktail and insulin concentrations. Cells were treated for a total of 48 hours, with the medium
replaced after 24 hours. The medium provided to the cells contained 5mM glucose equivalent to
normoglycaemia. In each repeat, the rate of glucose consumption was calculated by subtracting the
measured glucose concentration in the supernatant medium of each well after the 48 hours from the
concentration measured in a blank (cell-free). This gives the blank corrected change in medium
glucose concentration over the second 24-hour period. Since some medium evaporates occurs over
24 hours, the measured average glucose concentration in the blank wells was slightly higher at

5.45mM.

In the absence of insulin, the glucose consumption over 24 hours was notably larger for cells treated
with 200uM FA cocktail compared with FA free control cells (3.28+0.18 vs 2.27+0.23mM; p=0.012)
(figure 5.8a). When treated with 400uM fatty acid, glucose consumption returned to a rate close to

that seen in cells grown in control medium (2.36+0.75mM; p=0.85) (figure 5.8a).
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Figure 5.8: The effects of 48-hour treatment with insulin and FA cocktail on the rate of glucose
consumption. (a) The change in supernatant medium glucose concentration (as a measurement of the
rate of glucose consumption) when treated with varying FA cocktail concentrations (an equal molar mix
of butyric, palmitic, lauric, oleic and linoleic acids) along with the addition of either no insulin, a
moderate insulin concentration (250pM) or a high insulin concentration (1nM) in normoglycaemic
medium (5mM). (b) The change in glucose consumption as a result of the addition of 1nM insulin in cells
treated with varying FA cocktail concentrations.

Cells were seeded at 26’000 per cm? in 48 well plates in untreated medium containing 5mM glucose
and allowed to attach. After 24 hours, the untreated medium was aspirated and medium containing the
stated treatment was added. The treated medium was replaced after 24 hours. The supernatant
medium was collected and analysed after 48 hours of treatment as described in section 5.2.10. In each
case, the data is based on 3 repeats of 2-7 replicate measurements. A two-way ANOVA was used to
determine significant variation between the FFA and insulin treatment groups sets before Holm-Sidak
adjusted t-tests were used to calculate significance of the difference between each FA cocktail treatment
and the FFA free value for the same insulin concentration in addition to the significance of the difference
between each insulin treatment and the insulin free measurement for the same FA cocktail
concentration. * p<0.05 when treated with insulin vs corresponding FA cocktail concentration without
insulin. T p<0.05 when treated with FA vs corresponding insulin concentration without FA. Bars show
mean £SD.

Cells grown in FA free medium showed a statistically significant increase in glucose consumption when
treated with 1nM insulin (3.22+0.29mM; p=0.034) and a non-significant increase when treated with
250pM insulin (2.95£0.30mM; p=0.011) and compared with those grown in the absence of insulin
(2.27+0.23mM) (figure 5.8b). However, cells treated with 200uM or 400uM FA cocktail, showed no
increase in glucose consumption with the addition of 1nM insulin (figures 5.8b). This shows that low
concentrations of the FA cocktail cause a complete loss of insulin sensitivity in glucose consumption

in HepG2 cells.

When a Schiff stain was performed to assess the glycogen content in cells treated with a high insulin

concentration, no glycogen was observed irrespective of the FA concentration. This was assessed both
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through simple observation in the images and through the absorbance spectra at 550nm. The
measured absorption after adding diastase (which breaks down glycogen to simple sugars) was
subtracted from the absorption measured in the absence of diastase to give the glycogen-specific
absorption. For control cells the glycogen specific absorption was -2.1+1.8 mOD per million cells (n=3)
whilst for cells treated with 400uM FA cocktail it was 0.3+0.6 mOD per million cells (n=3). Therefore,
although the control cells showed insulin sensitivity in glucose consumption, the glucose is not used

in glycogen synthesis.

5.4 Results 2: Treatment with inhibitory molecules

The data in the previous section show that several metabolic changes result from FA treatment in
HepG2 cells. These include reduced cell viability due to increased cell death, the development of
steatosis, reduced mitochondrial function, reduced ATP concentrations oxidative stress and IR. As
discussed below, these data are corroborated by numerous previous observations of changes in
cellular metabolism in NAFLD and, although in some cases not directly comparable, are consistent
with the model simulations. In the following section, 5 small molecule inhibitors (TOFA, C75, T863,
2DG and 3BP) were used to test the effects of inhibiting specific processes in HepG2 cells when grown

in medium containing varying concentrations of FAs.

A range of concentrations of each inhibitor were first tested for their effect on cell viability to
determine treatment concentrations which were not toxic to the cells when grown in FA free medium.
This data is presented in supplementary material S2. It should be noted that HepG2 cells are derived
from hepatocellular carcinoma, and cancer cells are known to rely on upregulated glycolysis and
lipogenesis to permit rapid proliferation under conditions of reduced blood supply [555, 556]. HepG2
cells are therefore susceptible to damage as a result of inhibitions preventing glycolysis and
lipogenesis than primary cells. Inhibiting lipogenesis by targeting FAS or ACC1 as well as targeting
glycolysis using 2DG or 3BP have been suggested as potential cancer treatments in the literature [602-

605]. Therefore, rather than adding the inhibitors at high concentration to fully inhibit each process,
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we instead investigated whether low concentrations of the inhibitors (at which they do not cause
reduced viable cells numbers when grown in control medium), ameliorate or exacerbate the
mitochondrial damage and cell death resulting from FA treatment. Both in the model simulations
described in the previous chapters, and when studied in vivo [15-17, 377], the majority of adverse
effects in NAFLD occur in pericentral cells. Since pericentral cells also rely heavily on glycolysis for
energy production and are the most lipogenic group of hepatocytes, the HepG2 model can be thought
to most closely resemble these cells. Based on the data, treatment concentrations of 2ug/ml TOFA,

2ug/ml C75, 200ng/ml T863, 500ng/ml 2DG and 2ug/ml 3BP were chosen.

5.4.1 Viability and Steatosis
Figure 5.9 shows the effect of the various inhibitors on cell viability and steatosis for cells grown in
medium containing a range of FA cocktail concentrations. Additionally, figure 5.9c shows the effect of

TOFA on the distribution of droplet sizes in the cells.

Treatment with 2ug/ml TOFA significantly increased cell viability in for cells grown in medium
containing 800uM FA cocktail 79.1+1.3% to 86.1+3.0% (figure 5.9a) (p=0.007). The gradient of
reducing viability with increasing FA cocktail concentration was significantly reduced by TOFA
treatment (TOFA: 15+2%/uM vs control: 25+2%/uM; p<0.01). Viability was unchanged by TOFA

treatment in control cells (98.1+0.4% vs 97.5+0.4%; p=0.56).

TOFA treatment significantly reduced the lipid content of cells grown in medium containing FA
concentrations of 400-800uM by 40-50% (figure 5.9b) (p<<0.05) and significantly reduced the gradient
between cellular lipid content and FA cocktail treatment concentration (TOFA: 31+2%/mg vs control:
55+2%/mg; p<0.01). For control, 0.48% EtOH and 200uM FA cocktail treated cells, the reduction in
steatosis as a result of TOFA treatment was near significance (0.05<p<0.08). For cells grown in medium
containing a FA cocktail concentration of 400uM or greater, the addition of 2ug/ml TOFA also caused
a significant decrease in the median droplet size (p<0.05), giving a lipid droplet distribution more

similar to that of control cells (figure 5.9c).
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Figure 5.9: Effect of 48-hour treatment with the various inhibitors on viability and steatosis. The
effects of 2ug/ml TOFA, 2ug/ml C75, 200ng/ml T863, 0.5ug/ml 2DG and 2ug/ml 2BP on (a) cell viability
(the number of living cells divided by the total number of cells) as assessed by a trypan blue exclusion
assay and (b) the percentage of cell area stained for lipid by ORO in cells grown at a range of FA cocktail
concentration (an equal molar mix of butyric, palmitic, lauric, oleic and linoleic acids). (c) The effect of
2ug/ml TOFA on the distribution of lipid droplet sizes in cells grown at a range of FA cocktail
concentration. (a) Cells were seeded at a density of 26’000 per cm? in 6 well plates and allowed to attach
in untreated medium for 24 hours. The treated medium was added and replaced after 24 hours before
counting after 48 hours, using trypan blue to identify dead cells. The graph shows the means + SD based
on 3 independent repeats of 4 replicate counts except for the untreated curve which is based on 6
independent repeats. (b, c) Cells were seeded at a density 26000 per cm? on glass cover slips in 24 well
plates and allowed to attach for 24 hours in untreated medium. After the cells had attached, medium
containing the stated treatment was added. This was replaced after 24 hours before the cells were
stained and imaged after 48 hours of treatment. Image J was used to quantify the lipid content and
droplet sizes. The graphs are based on analysis of at least 3 replicates form 3-4 independent repeat. The
box and whisker plots show the average means, average 25" and 75t percentiles and average 5% and
95 percentiles from 3 repeat experiments in which a minimum of 250 droplets were analysed.

A statistically significant effect of both the FA cocktail concentration and the treatments was first
determined using a two-way ANOVA before statistical significance of the differences between each
treated group and the control group were calculated using Holm-Sidak adjusted t-tests. * p<0.05 vs
untreated for same FA concentration.

Treatment with FAS inhibitor C75 had no effect on cell viability (figure 5.9a) when tested across the
range of FA cocktail concentrations (0-800uM). Therefore, the C75 treatment neither improved nor
exacerbated FA induced cell death. C75 treatment also had little effect on cellular steatosis (figure
5.9b). Treating with 2ug/ml C75 only caused a significant reduction in cellular lipid levels for cells
grown in FA free medium (2ug/ml C75: 8+4% vs control: 20+5%; p=0.023). In FA free medium all lipids
must arise through de novo lipogenesis so it is expected that inhibition of the process would reduce
the hepatic lipid concentration. However, when cells were grown in medium containing 200-800uM
FA cocktail, inhibition of lipogenesis with C75 had no effect on hepatic lipid levels. Since raised plasma
lipid concentrations are seen in NAFLD patients, these results suggest the treatment would not be

effective at clearing steatosis in NAFLD patients.

Partial inhibition of triglyceride synthesis using T863 in HepG2 cells caused a reduction in cellular lipid
levels for all FA cocktail concentrations (0-400uM) (figure 5.9a). For cells grown in medium containing
400uM cocktail, the area stained for steatosis was reduced by nearly 40% (26+5% vs 42+5%; p=0.015)
and for cells grown in FA free medium, the percentage decrease was even larger (6£2% vs 20+3%;
p=0.003). However, despite the reduction in steatosis, treatment with 200ng/ml T863 of cells grown

in medium containing 200uM or 400uM FA cocktail caused a reduction in cell viability (figure 5.9a)
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(p<0.05). T863 treatment did not alter cell viability when the cells were grown in FA free medium.
Therefore, despite clearing steatosis, T863 treatment exacerbated rather than improved FA-induced

cell death.

Treatment with 500ng/ml 2DG notably decreased the number of viable cells when grown in medium
containing 200uM and 400uM FA cocktail (figure 5.9a). Similarly, treatment with 2ug/ml 3BP caused
a significant reduction in the number of viable cells for 400uM FA cocktail and a non-significant
reduction for 200uM. Glycolysis inhibition by both 2DG and 3BP has previously been shown to cause
apoptosis in cancer cells. However, the low 2DG and 3BP treatment concentrations used in this study
did not cause significant decreases in the number of viable cells when added to the medium of cells
cultured in FA free conditions, as discussed in supplementary material S2. Instead, the results in figure
5.9a show that the low concentrations of 2DG and 3BP acted to exacerbate the cell death resulting

from FA treatment.

Neither of the glycolysis inhibitors tested had any effect on the lipid content (figure 5.9b). This
suggests that inhibition of glycolysis at either stage (GK or glyceraldehyde-3-phosphate
dehydrogenase) has toxic effects on metabolism at concentrations below those at which it reduces

lipid levels.

To assess the extent to which glycolysis was inhibited by 3BP and 2DG, the rates of glucose uptake and
lactate output were measured for cells grown in either FA free medium or medium containing 400uM
FA cocktail with the addition of either no treatment, the 1ug/ml BP, 2ug/ml 3BP, 250ng/ml DG or
500ng/ml 2DG treatments (figure 5.10). For both FA free and FA cocktail treated cells, 1ug/ml and
2ug/ml BP reduced the rates of glucose uptake and lactate output, and hence the rate of glycolysis,
by approximately 5-15% and 10-25% respectively. 250ng/ml and 500ng/ml 2DG meanwhile reduced
the rates by 25-35% and 40-50% respectively. Therefore, in the case of the high 2DG concentration,

even with 40-50% inhibition of glycolysis no change in cellular lipid content occurred. Conversely, in
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the case of the low 3BP concentration, resulting in only 5-15% inhibition of glycolysis, increased FA

induced cell death occurred.
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Figure 5.10: The effect of 2DG and 3BP on glucose uptake and lactate output. The effects of 1ug/ml!
3BP, 2ug/ml 3BP, 250ng/ml 2DG and 500ng/ml 2DG on (a) glucose uptake per cell and (b) lactate output
per cell for HepG2 cells grown in FA free medium or medium containing 400uM FA cocktail (an equal
molar mix of butyric, palmitic, lauric, oleic and linoleic acids). Cells were seeded at 26’000 per cm? in T25
culture flasks in untreated medium and allowed to attach for 24 hours. After the cells had attached, the
untreated medium was aspirated and medium containing the stated treatment was added. The treated
medium was replaced after 24 hours. After 48 hours of treatment, the supernatant medium was
collected and analysed (section 5.2.10). n=4 for all measurements. A statistically significant effect of the
treatments was first determined using an ANOVA before the statistical significance of the differences
between each treated group and the control group were calculated using Holm-Sidak adjusted t-tests.
* p<0.05 vs untreated for same FA concentration.
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5.4.2 Oxidative Stress

Next the effect of the various inhibitors on the redox balance and antioxidant reserves in the medium
were measured as markers of oxidative stress (figure 5.11). The effects of TOFA on lipid peroxidation

were also assessed (figure 5.11c).

2ug/ml TOFA treatment caused a significant decrease in redox potential for cells grown in medium
containing 400uM FA cocktail (TOFA: 216£7mV (n=6) vs control 228+3mV (n=3); p=0.025), returning
the marker of oxidative stress to nearer control levels (206:2mV (n=3)) (figure 5.11a). For all other FA
cocktail concentrations, a non-significant decrease in redox potential was measured. Furthermore,
other than in FA free medium, addition of 2pg/ml TOFA caused a non-significant increase in the
antioxidant capacity compared with control suggesting that TOFA may also improving the cells’
capacity to recover from oxidative injury (figure 5.11b). Treatment with TOFA also caused a significant
decrease in lipid peroxidation for cells grown in FA free medium (0.21+0.07mOD.103cells vs
0.41+0.07m0D.1073 cells; n=6; p<0.01) and medium containing 800uM FA cocktail (0.3+0.2m0D.10
cells (n=3) vs 1.1+0.5m0OD.1073 cells (n=5); p=0.036) (figure 5.11c). Despite the lack of specificity in the
TBARS assay, the large reduction in reading for cells grown in 800uM FA cocktail after treatment with
2ug/ml TOFA is strongly indicative of a reduction in intracellular lipid peroxidation. Together, these

data show that TOFA treatment reduces FA induced oxidative stress in HepG2 cells.

Despite not improving cell viability or steatosis, treatment with 2ug/ml C75 caused a significant
reduction in redox potential for cells grown in medium containing 400uM FA cocktail (215+2mV vs
228+3mV; n=3; p=0.016) (figure 5.11a) and non-significant reductions at all other FA cocktail
concentrations. Therefore, the treatment reduced the mitochondrial stress resulting from FA
treatment. No significant change in antioxidant capacity resulted from C75 treatment for any of the

FA cocktail concentrations (figure 5.11b).

Treatment with 200ng/ml T863 caused a significant increase in redox potential for cells grown in FA

free medium (220+£5mV vs 206+2mV; n=3; p=0.006) (figure 5.11a). A non-significant increase in redox
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Figure 5.11: The effect of the various inhibitors on fatty acid induced oxidative stress. The effect of 48
hour treatment with 2ug/ml TOFA, 2ug/ml C75, 200ng/ml T863, 0.5ug/ml 2DG and 2ug/m! 3BP on (a)
the redox potential and (b) antioxidant reserves in the supernatant medium of cells treated with 0-
800uM FA cocktail (an equal molar mix of butyric, palmitic, lauric, oleic and linoleic acids). (c) The effect
of 48 hour treatment with 2ug/ml TOFA on lipid peroxidation as assessed by a TBARS assay on HepG2
cells grown in medium containing 0-800uM FA cocktail.Cells were seeded at 26’000 cells per cm? in T25
culture flasks in untreated medium and allowed to attach. After 24 hours, the untreated medium was
aspirated and medium containing the stated treatment was added. The treated medium was replaced
after 24 hours. The supernatant medium and cells were harvested after 48 hours of treatment. The
tested supernatant medium had been in contact with the cells from the 24" to the 48" hour of
treatment. The medium was measured for redox capacity and antioxidant reserves whilst the cells were
homogenised and assessed for lipid peroxidation (section 5.2.9). 3 independent repeats were performed
in each case other than the ORP measurements for control + TOFA and 400uM FA + TOFA where 6
repeats were performed. A statistically significant effect of the treatments was first determined using a
two-way ANOVA before the statistical significance of the differences between each treated group and
the control group were calculated using Holm-Sidak adjusted t-tests. * p<0.05 vs untreated for same FA
concentration. Bars show mean £SD.
potential was measured after T863 treatment for 200uM FA cocktail (226£3mV vs 215+6mV; n=3;
p=0.087) and no notable change after treatment with 400uM FA cocktail (230+14mV vs 228+3mV,;
n=3; p=0.65). Similarly, a significant decrease in antioxidant capacity was measured after T863
treatment for cells grown in FA free medium (0.22+0.01uC vs 0.24+0.01uC; n=3; p=0.047), but no
significant change was measured in medium supplemented with 200puM and 400uM FA cocktail (figure
5.11b). Therefore, although no decrease in viability resulted from treatment with 200ng/ml T863 for

cells grown FA free medium, it was associated with an increase in oxidative stress and a decrease in

antioxidant reserves.

No significant change in redox potential or antioxidant capacity was measured for either 2DG or 3BP
across the range of FA cocktail concentrations (figure 5.11). Therefore, although glycolysis inhibition

resulted in reduced viability (figure 5.9), it was not shown to result in the release of additional ROS.

5.4.3 Mitochondrial Function

Figure 5.12 shows the effects of 2ug/ml TOFA on the activity of complexes I-1V, the activity of citrate
synthase and the ATP concentration for cells grown in medium containing a range of FA cocktail
concentrations. Additionally, the effect of 2ug/ml C75, 200ng/ml T863, 0.5ug/ml 2DG and 2ug/ml 3BP

on ATP concentrations are shown (figure 5.12e). 2ug/ml TOFA treatment caused near-significant
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Figure 5.12: The effect of TOFA treatment on mitochondrial function. The effects of treatment for 48
hours with 2ug/ml TOFA on (a) the activity of citrate synthase, (b) the activity of complex I, (c) the
combined activities of complexes Il and Ill and (d) the activity of complex IV and (e) the effects of
treatment for 48 hours with 2ug/ml TOFA, 2ug/ml C75, 200ng/ml T863, 0.5ug/ml 2DG and 2ug/ml 3BP
on the intracellular ATP concentration in HepG2 cultures treated with varying concentrations of FA
cocktail (an equal molar mix of butyric, palmitic, lauric, oleic and linoleic acids). Cells were seeded at
26°000 cells per cm? in (a-d) T25 culture flasks and (e) 96 well plates in untreated medium and allowed
to attach. After 24 hours, the untreated medium was aspirated and medium containing the stated
treatment was added. The treated medium was replaced after 24 hours. The cells were harvested and
measurements performed after 48 hours of treatment. The data in (a) and (e) was normalised to the
number of cells whilst the data in (b-d) was normalised against citrate synthase to give activity per total
mitochondria. For graphs (a-d) the data is based on the numbers of independent repeats stated in the
axes and for (e) it is based on 3 repeats of 2-7 replicates. Cells were seeded at 26’000 cells per cm? in
T25 culture flasks in untreated medium and allowed to attach. After 24 hours, the untreated medium
was aspirated and medium containing the stated treatment was added. The treated medium was
replaced after 24 hours. The supernatant medium and cells were harvested after 48 hours of treatment.
The tested supernatant medium had been in contact with the cells from the 24 to the 48" hour of
treatment. The medium was measured for redox capacity and antioxidant reserves whilst the cells were
homogenised and assessed for lipid peroxidation (section 5.2.9). 3 independent repeats were performed
in each case other than the ORP measurements for control + TOFA and 400uM FA + TOFA where 6
repeats were performed. A statistically significant effect of the treatments was first determined using a
two-way ANOVA before the statistical significance of the differences between each treated group and
the control group were calculated using Holm-Sidak adjusted T-Tests. * p<0.05 vs untreated for same
FA concentration. The mean #SD is presented.

decreases in citrate synthase activity (a marker for total mitochondria) in cells grown in medium
containing 400uM and 800uM FA cocktail (figure 5.12a). Furthermore, a significant reduction in the
gradient between citrate synthase activity and FA cocktail treatment concentration was measured
with TOFA treatment, demonstrating that the treatment lessened the FA induced increase in citrate

synthase activity (p<0.01).

Treatment with 2ug/ml TOFA significantly restored complex II/1l activity for cells grown in medium
containing 400-800uM of FA cocktail (figure 5.12c) and significantly restored complex | activity for
cells grown in medium containing 400uM FA cocktail (figure 5.12b). Non-significant increases in
complex | activity were measured after TOFA treatment at all other FA cocktail concentrations. No
significant changes in complex IV activity were seen with TOFA treatment across the range of FA
cocktail concentrations (figure 5.12d). These data suggest that treatment with 2ug/ml TOFA has the
potential to partially restore mitochondrial dysfunction in steatotic hepatocytes through both
complex | and complexes II/11l. Furthermore, no adverse changes to mitochondrial function occurred

in non-steatotic cells grown in control medium after TOFA treatment.
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Treatment with either 2ug/ml TOFA or 2ug/ml C75 did not significantly change intracellular ATP
concentrations in either FA free or 400uM FA cocktail treated cells (figure 5.12e). Since ATP
concentrations were not significantly reduced after treatment with 400uM FA cocktail (despite the
reduction in ETC enzyme activities), no increase in concentration would be expected. However, these

data show that ATP concentrations were not detrimentally affected by the treatments.

Treatment with T863, however, caused a significant decrease in intracellular ATP concentration for FA
treated cells (400uM FA cocktail: treated - 142+106 (n=10) vs untreated - 242480 (n=14); p=0.004) but
no change for cells grown in FA free medium (figure 5.12e). This shows that, when excess FAs are

present, inhibition of triglyceride synthesis disrupts energy metabolism in the cells.

Treatment with 2ug/ml 3BP also caused a significant reduction in intracellular ATP concentration for
cells grown in medium containing 400uM FA cocktail (treated: 177+100 (n=10) vs untreated: 242+80
(n=14); p=0.024), but no significant change in concentration for cells grown in FA free medium (figure
5.12e). This suggests that the duel effects of the 10-25% decrease in glycolysis resulting from 3BP
treatment (figure 5.10) combined with the decreased mitochondrial function resulting from 400uM

FA cocktail treatment resulted in decreased cellular ATP concentrations.

Treatment with 500ng/ml 2DG resulted in a severely reduced ATP concentration in both control and
400uM FA cocktail treated cells (figure 5.12e). For 400uM FA cocktail, almost no ATP was present,
showing that the majority of cells were no longer viable. Therefore, reducing glycolysis by 40-50%
through treatment with 500ng/ml 2DG caused a decrease in cellular ATP concentration in HepG2 cells
and, when combined with reduced mitochondrial function resulting from FA treatment, complete

disruption of energy metabolism.

5.4.4 Glucose Consumption
Figure 5.13 shows the effect of TOFA and C75 on glucose consumption and insulin stimulation of
glucose consumption for cells grown in a range of FA cocktail concentrations. Based on the simulated

data in chapter 4, a decrease in glucose would be expected to result from both treatments due to
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reduced use of glucose in lipogenesis and increased B-oxidation. However, if the treatments reduce

steatosis or the toxic effects resulting from excess fat build-up, an improvement in insulin stimulation

of fatty acid uptake might be expected in fatty acid treated cells.
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Figure 5.13: The effects of with TOFA and C75 on the rate of glucose consumption. (a) The change in
supernatant medium glucose concentration (as a measurement of the rate of glucose consumption)
when treated with varying FA cocktail concentrations along with the addition of either C75 or TOFA in
hyperglycaemic medium (15mM). (b) The change in glucose consumption as a result of the addition of
InM insulin in cells treated with varying FA cocktail concentrations along with the addition of either C75
or TOFA in hyperglycaemic medium (15mM). Cells were seeded at 26’000 per cm? in 48 well plates in
untreated medium containing 15mM glucose and allowed to attach. After 24 hours, the untreated
medium was aspirated and medium containing the stated treatment was added. The treated medium
was replaced after 24 hours. The supernatant medium was collected and analysed after 48 hours of
treatment as described in section 5.2.10. In each case, the data is based on 3 repeats of 2-7 replicate
measurements. A two-way ANOVA was used to determine significant variation between the FFA and
treatment groups sets before Holm-Sidak adjusted t-tests were used to calculate significance of the
difference between each treated and control group. * p<0.05 vs untreated for same FA concentration.
The mean #SD is presented.
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Consistent with the model predictions both TOFA and C75 caused significant decreases in glucose
consumption in cells cultured in both FA free medium and medium containing 400puM FA cocktail
(figure 5.13a). However, insulin sensitivity in the consumption of glucose was significantly improved
when cells grown in medium containing 400uM FA cocktail were treated with 2ug/ml C75
(27.3+19.3puMoles Vs -2.1+14.9uMoles; n>4; p=0.032) (figure 5.13b). TOFA treatment of cells grown
in medium supplemented with 400uM FA also appeared to cause an increase in the additional glucose
caused by the addition of 1nM insulin but this failed to reach significance (TOFA: 30+34uMoles (n=5)

vs control: -2+15 uMoles (n=5); p=0.090).

5.5 Discussion

5.5.1 Fatty acid treated HepG2 cells show steatosis, reduced mitochondrial function,
oxidative stress and insulin resistance consistent with in vivo NAFLD

In the first section of this chapter HepG2 cells, a cell culture line derived from a well-differentiated

hepatoma, were treated with varying concentrations of a FA cocktail (an equal molar mix of palmitic,

lauric, oleic, linoleic and butyric acids) in order to provide a cell culture model of steatotic hepatocytes

in NAFLD. The effects of the FAs on viability, steatosis, mitochondrial function, oxidative stress and

metabolism in these cells were analysed to assess their utility as a model of in vivo NAFLD.

Firstly, a cell culture model of hepatocytes in NAFLD should develop steatosis and cell damage
dependent on the medium FA concentrations. Even when grown in control medium (FA free, 5mM
glucose), HepG2 cells show a high lipid content. This has previously been shown to result from reduced
output of fats in lipoproteins rather than excess de novo lipogenesis [554]. In addition to a higher
baseline lipid content, the cells showed higher susceptibility to FA treatment than would be expected
for in vivo hepatocytes. When treated with 400uM of the FA cocktail, which represents a normal pre-
prandial plasma FFA concentration, a notable increase in steatosis occurred accompanied by increased
cell death. When treated with 800uM of the FA cocktail, towards the high end of plasma FFA

concentrations seen in NAFLD patients [139, 435, 466], severe steatosis and cell death occurred.
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Therefore, HepG2 cells are damaged by increased medium FA concentrations and have an intracellular
lipid content dependent on the medium concentration, consistent with in vivo cells. However, they
show a lower tolerance to raised FFA concentrations and a higher baseline lipid content compared

with in vivo hepatocytes.

When the cells were treated with each FA individually, the saturated long chain FA palmitic acid and
saturated medium chain FA lauric acid had the largest effect on cell viability and cellular steatosis.
200uM of long chain, monounsaturated FA oleic acid and long chain, polyunsaturated FA linoleic acid
caused no change in viability or lipid content of cells, whilst 200uM saturated, short chain FA butyric
acid only caused a small decrease in viability. These results are consistent with the data published by
Garcia-Ruiz et al. which showed a number of adverse effects including mitochondrial dysfunction and
increased ROS when HepG2 cells were treated with 200uM of saturated palmitic and stearic FAs, but

not when treated with 200uM of unsaturated oleic acid [557].

When assayed using a diastase corrected PAS-Schiff stain, the cells showed almost no glycogen
content, even in FA free medium containing insulin. This observation has been made previously in the
literature [553]. Therefore, it is not possible to study the effects of FAs or other treatments on
glycogen storage using these cells. However, insulin stimulation of both glucose consumption was
seen in cells grown in FA free medium but not in medium treated with 400uM FA cocktail. Palmitate

has previously been shown to cause IR in HepG2 cells [606-608].

Hepatocytes in NAFLD in vivo are known to show reduced mitochondrial function and reduced ATP
production [547, 548, 591, 592] and it has been suggested that this disruption to energy metabolism
may account for the progression from NAFLD to NASH [229, 230]. When treated with the FA cocktail,
the HepG2 cells showed reduced activity of complex |, complexes Il and Il combined and complex IV.
As with the development of steatosis in HepG2 cells, this occurred at lower medium FA concentrations
(400-800uM) than would be expected in vivo. For 400uM and 600uM concentrations of the FA cocktail,

the reductions in ETC enzyme activities were not accompanied by a reduction in ATP concentration,
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suggesting that the cells either contain excess ETC capacity or were able to compensate for reduced
oxidative phosphorylation. Increased total mitochondria was measured in FA treated cells and is seen
under conditions of excess fat availability in vivo [590], which may partially compensate for reduced
mitochondrial function. However, when the cells were treated 800uM FA cocktail, a reduction in ATP
concentration was measured, consistent with the severe increase in cell death measured for this

concentration.

The results are consistent with the data published by Garcia-Ruiz et al. showing reduced activities of
complexes I-IV and of ATP synthase along with reduced ATP concentrations in HepG2 cells treated
with 200puM palmitic acid or stearic acid [557]. In the study by Garcia-Ruiz et al., no change in ETC
activity was seen after treatment with 200uM oleic acid, suggesting that the saturated FAs in the

cocktail, particularly palmitic acid, are likely to drive the decrease in ETC activity.

In addition to a loss of mitochondrial function, NAFLD patients show increased hepatic oxidative stress.
In the cell culture model, oxidative stress was assessed through two indirect methods. Firstly, the
redox potential of the culture medium was measured to detect extracellular ROS. Secondly, a TBARS
test for lipid peroxidation was performed on cell homogenates. In FA treated cells, increases in both
the redox potential and in lipid peroxidation products were measured. Consistent with this, Garcia-
Ruiz et al. showed that treatment with 200uM of the saturated FAs palmitic acid and stearic acid, but
not with 200uM of the unsaturated FA oleic acid, resulted in an increase in lipid peroxidation [557].
This is consistent with the reduced cell viability seen when treating with palmitic acid (and the other
saturated FAs lauric and butyric acids) but not when treating with equivalent concentrations of the
unsaturated oleic and linoleic acids. Additionally, Soardo et al. showed increases in several mediators
of oxidative stress including glutathione, malondialdehyde and nitric oxide when treating HepG2 cells
with a cocktail of FAs [609]. In NAFLD patients, oxidative stress and lipid peroxidation have been also

shown to occur [225, 382, 547, 591, 593], particularly in pericentral cells. Combined, these data show
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that increased oxidative stress accompanies the reduction in mitochondrial function measured in FA

treated HepG2 cells.

The cells can therefore be used to test the ability of potential treatments to resolve FA induced cell
death, steatosis, oxidative stress, loss of mitochondrial function, ATP depletion and loss of insulin

sensitivity in glycolysis. These results can be compared to the model simulations.

However, HepG2 cells show several differences to in vivo hepatocytes, as would be expected for an
immortalized line derived from a liver cancer. Firstly, they are constantly proliferating with a doubling
time of 2 days. Additionally, cancer cells are heavily reliant on glycolysis for ATP synthesis. Given that
two of the treatments studied were direct glycolysis inhibitors and two inhibit lipogenesis causing
allosteric inhibition of glycolysis, the background of HepG2 cells as cancer cells must be remembered
whilst interpreting the results. However, the majority of adverse effects in NAFLD occur in pericentral
cells (both in the model simulations and experimentally [15-17, 377]), which are reliant on glycolysis
due to their low oxygen environment. The HepG2 model can therefore be considered to most closely

resemble these cells.

5.5.2 Validation of the model predictions for targeting specific processes in pericentral
cells.
In the chapter 4, the computational model was used to simulate the effects of targeting several
different processes on cells across the sinusoid for individuals with NAFLD resulting from high intake
and IR. In this chapter, HepG2 cells grown in medium containing FAs were treated with small molecule
inhibitors to provide validation of the model’s predictions. In particular, due to the reliance of HepG2
cells on glycolysis for energy production, the measurements from the cell culture model are most
comparable to the predictions for hypoxic pericentral cells [553]. Five inhibitors were used, which are
known to act on specific enzymes. The corresponding targeted processes within the model for each

treatment are shown in figure 5.1. The simulated treatments are shown in figure 4.2.
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Glycolysis

When partial inhibition of glycolysis was simulated in the model, severely reduced pericentral ATP
concentrations were predicted without any notable decrease in steatosis for insulin resistant
individuals. This was seen when glycolysis was inhibited at either the conversion of glucose to G6P,
the conversion of G6P to GADP or the conversion of GADP to pyruvate. Additionally, when inhibition
of glycolysis was simulated at the stage of GK, glycogen synthesis was reduced in the cells leading to
plasma hyperglycaemia. Based on these simulations, reduced cellular viability resulting from defective
energy metabolism would be expected when inhibiting any of the enzymes in the glycolysis pathway

in cell culture.

When studied in HepG2 cells, partial inhibition of glycolysis through either inhibiting GK using 2DG or
inhibiting the conversion of GADP to pyruvate using 3BP caused reduced ATP concentrations and FA
induced cell death without any notable change in steatosis consistent with the model predictions. Due
to the lack of glycogen synthesis in untreated HepG2 cells, the effects of the treatment on glycogen
synthesis could not be studied. However, both the model predictions and cell culture experiments
show that partial inhibition of glycolysis disrupts energy metabolism without notably improving
steatosis. It remains unknown whether glycolysis inhibition causes increased apoptosis in cancer cells
specifically due to the blocking of ATP production through glycolysis alone, or whether additional
factors contribute [610]. Given that mitochondrial dysfunction was shown to result from FA
treatment, itis possible that a duel hit of reduced mitochondrial function and reduced ATP production

from glycolysis caused the increase in cell death.

Triglyceride Synthesis

When inhibition of triglyceride synthesis was simulated in the model in chapter 4, steatosis was
cleared effectively by the treatment. However, vast increases in hepatic FFA concentration were

predicted to occur. FFAs and closely related molecules including DAGs and ceramides are particularly
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potent in promoting mitochondrial stress and IR [8, 146, 247, 248]. Based on these simulations,
increased mitochondrial stress and FFA induced cell damage would be expected despite the clearance

of steatosis when inhibiting triglyceride synthesis in cell culture.

Experimentally, partial inhibition of triglyceride synthesis with the DGAT1 inhibitor T863 significantly
reduced the cellular lipid content of the HepG2 cells consistent with model predictions. However,
despite reducing steatosis, the treatment exacerbated FA-induced cell death. In control cells viability
was unchanged, but after the addition of FAs, treatment with T863 caused reduced viability.
Additionally, T863 treatment caused a reduction in ATP concentrations in FA treated but not control
cells. This suggests that, when grown in in FA free medium, insufficient FAs are produced for the
inhibition of triglyceride synthesis to damage the cells. However, when excess FFAs are present,
inhibition of triglyceride synthesis forces lipids to remain in forms which are more potent than
triglycerides in causing mitochondrial dysfunction. Previously published in vivo studies have linked
inhibition of DGAT2, which performs the same function as DGAT1, with increased liver damage in mice

despite a reduction in steatosis [254].

The cell culture data are therefore consistent with the model predictions, although only a vastincrease
in triglyceride synthesis precursors is predicted by the model and the mechanisms responsible for the

effects of FA on mitochondrial function are not included.

Lipogenesis

In model simulations, inhibition of lipogenesis reduced the hepatic lipid content in insulin sensitive
individuals, but had little effect when simulating insulin resistant NAFLD where most FFAs are derived
from plasma. However, the simulated hepatic FFA concentration and rate of FA oxidation were
decreased when lipogenesis was inhibited, and simulated ATP concentrations increased to nearer
metabolically normal levels. Therefore, based on the model simulations, improvements in

mitochondrial function, oxidative stress and insulin sensitivity would be expected to occur in the cell



225

culture model despite little improvement in steatosis. Increased plasma glucose concentrations arose
in simulations as a result of the inhibition of lipogenesis when simulating insulin resistant individuals.

However, this excess was stored as glycogen when simulating insulin sensitive individuals.

Total inhibition of lipogenesis could not be tested experimentally due to the known toxic effect of
lipogenesis inhibition of cancer derived cells. Instead, lipogenesis inhibitor C75 was added at a lower
concentration such that lipogenesis was only partially inhibited and cell viability was unaffected in FA-

free medium.

Partial inhibition of lipogenesis had no effect on the cellular lipid content of cells grown in medium
containing FA cocktail. This consistent with the model predictions when simulating insulin resistant
NAFLD in which most FFAs are derived from plasma. Additionally, C75 treatment had no effect on FA-
induced cell death. However, a fall in the redox potential was measured in the supernatant medium
of cells treated with C75 suggesting a reduction in mitochondrial stress. Additionally, a significant
increase in insulin stimulation of glucose consumption was measured when cells grown in medium
containing the FA cocktail were treated with C75, showing re-sensitisation to insulin. These results are
consistent with the predicted reduction in hepatic FFA concentration when inhibition of lipogenesis

was simulated in the model.

Lipogenesis and B-oxidation

When inhibition of lipogenesis in addition to stimulation of B-oxidation was simulated in the model,
steatosis was resolved and ATP concentrations increased to nearer metabolically normal levels.
Furthermore, decreases in intracellular FFA concentrations and the rate of FA oxidation were
predicted, both of which are thought to be causes of disrupted mitochondrial function and
mitochondrial stress. As an adverse effect, when simulating inhibition of lipogenesis in addition to

stimulation of B-oxidation in insulin resistant individuals an increased plasma glucose concentration
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occurred. However, when simulating insulin sensitive individuals, increased glycogen synthesis

occurred instead.

Stimulation of B-oxidation in combination with inhibition of lipogenesis was tested experimentally
through the inhibition of ACC1 and ACC2 using TOFA. As with C75, only partial inhibition by TOFA could
be tested due to the known toxic effect of lipogenesis inhibition on HepG2 cells. Treatment with TOFA
caused a notable decrease in cellular lipid levels across the range of treatments consistent with the
model predictions. Furthermore, this was accompanied by an improvement in viability and

mitochondrial function and a reduction in oxidative stress.

In the model predictions, a reduction in glycolysis was predicted resulting in either increased
glycogenesis in insulin sensitive individuals or hyperglycaemia in insulin resistant individuals. It is
therefore important that any treatment rapidly restores insulin sensitivity whilst clearing steatosis in
insulin resistant NAFLD individuals. Since HepG2 cells do not synthesize glycogen even when grown in
FA free medium containing insulin, the effects of TOFA treatment on glycogen storage could not be
tested experimentally. However, a reduction in glucose consumption was measured consistent with
model predictions. Furthermore, an increase in the insulin stimulation of glycolysis approached but
failed to reach significant in FA-treated cells when treated with TOFA, suggesting that improved insulin

sensitivity may occur.

It should be noted that, in the literature, TOFA has been extensively shown to cause cell death in
cancer cell derived lines such as HepG2 [579, 611-613]. This is consistent with the results in
supplementary material S2 showing that, for higher TOFA concentrations (10-20ug/ml or greater),
reduced cell viability was measured. In human lung and prostate cancer cells, TOFA has been shown
to cause a reduction in the number of viable cells even at 1pg/ml [614]. However, the results
presented in this report show that, at a concentration below its toxicity threshold, TOFA reduces the
cell death and oxidative stress caused by FA treatment. Interestingly, a previous study has shown that

addition of palmitate reduces the cell death caused by higher TOFA concentrations in HepG2 cells
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[614]. In another study, treatment with TOFA, in contrast to C75 and [6]-gingerol (an additional
lipogenesis inhibitor), was shown to inhibit lipogenesis without promoting apoptosis in HepG2 cells
[615]. TOFA treatment was additionally shown to reduce the apoptosis after treatment with [6]-
gingerol [615]. In non-cancer cells, which are less reliant on glycolysis and lipogenesis, ACC inhibition

would be expected to be less damaging to hepatocytes than in cancer cells.

5.6 Conclusions of Chapter

The in vitro data in this chapter demonstrates reduced steatosis, improved mitochondrial function and
reduced oxidative stress when both stimulating B-oxidation and inhibiting lipogenesis with TOFA. The
data also suggest that inhibition of lipogenesis alone may reduce the oxidative stress and IR caused by
steatosis without clearing the underlying steatosis. Finally, the experimental data provides validation
of the adverse effects predicted when inhibiting triglyceride synthesis or glycolysis as potential
treatments for steatosis. These findings are consistent with the model simulations when inhibiting

these processes in chapter 4.

6 Conclusions and Future Work

6.1 A Computational Model of Hepatic Metabolism across the Liver

Sinusoid
The first objective of this study was to build a computational model of hepatic glucose and lipid
metabolisms capable of representing differences in metabolism across the sinusoid. A model
containing the major pathways in glucose regulation, lipid storage and ATP synthesis was developed
with hepatocytes split into compartments across the sinusoid and with zonation of key enzymes

included based on previously published periportal to pericentral ratios.

The model gives realistic values for average plasma and hepatic concentrations and for changes in

concentrations of key molecules under known feeding concentrations when compared with
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experimental data. It also produces realistic average hepatic rates of processes and relative rates in
different regions of the sinusoid. The simulated data was consistent with in vivo measurements for

both healthy and insulin resistant individuals.

A model of glucose and lipid metabolisms which includes zonation across the sinusoid was previously
lacking from the literature and the model presented here may be applicable to study the development
and treatment of a range of metabolic liver diseases in addition to NAFLD. Furthermore, since zonated
damage s seen in almost all liver diseases and mitochondrial metabolism is involved in the progression
of a wide range of these, the model may be useful for studying zonated effects in other conditions.
For example, the mechanisms by which alcohol poisoning damages the liver are closely related to
those occurring in NAFLD and with some modification, the model could be adapted to study zonation
in the damage resulting from metabolism of ethanol. This would require inclusion of the pathways
converting ethanol to acetyl-CoA (three enzymes) along with a full representation of NAD/NADH
(where they are only represented through their effects on ATP levels in the current model) due to the

known importance of the NAD/NADH ratio in causing steatosis after excess ethanol consumption.

6.2 The Development of Zonated Steatosis

The second objective of the project was to study in detail the build-up of fats in different regions of
the sinusoid when simulating conditions leading to NAFLD in the model. The tendency for pericentral
cells to show more severe steatosis and damage is widely referred to in the literature, but not fully
understood due to the experimental difficulty of taking measurements in each region of the sinusoid
and the large number of potential variables. Combining existing knowledge of metabolism and
zonation into a model, and simulating conditions leading steatosis allowed detailed study of the

changes occurring across the sinusoid in the model.

By studying the resulting simulated metabolic flux and metabolite concentration changes, it was
demonstrated that, whilst pericentral steatosis arose because of high fat intake and the direct effects

or IR alone, increased SREBP-1c expression seen in vivo was additionally required to fully replicate the
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metabolic changes seen in NAFLD patients. When high fat intake, IR and increased SREBP-1c
expression were simulated, pericentral centred triglyceride synthesis arose due to an increased
pericentral concentrations of both substrates for triglycerides synthesis, G3P and FFAs. Disrupted
glycogen synthesis caused a build-up of glucose intermediates including G3P. Due to the periportal
zonation of glycogen synthase and phosphorylation, the loss of glycogenesis was most severe in
pericentral cells. Additionally, pericentral cells undergo glucose oxidation at a slower rate, causing

reduced clearance of excess glucose metabolism intermediates in these cells.

Changes in FA uptake, B-oxidation and lipogenesis all contribute to an increase in pericentral FFA
availability for triglyceride synthesis. Most additional FFAs arose from uptake. Although fatty acid
scavenging enzymes are known to show periportal zonation, the switch from insulin stimulated active
fatty acid uptake when simulating insulin sensitive individual with low plasma fatty acid
concentrations (metabolically normal) to passive facilitated diffusion in an insulin resistant individual
with a high plasma fatty acid concentration (NAFLD) partially reduced the effects of the zonated
expression. The switch from glucose oxidation to additional fatty acid oxidation, which occurs both in
the model and experimentally, cleared a large percentage of the additional fatty acids in periportal
cells, which have a high oxidative capacity, but not in pericentral cells which inhabit a hypoxic
environment. Finally, increased SREBP-1c expression caused increased lipogenesis which occurs

predominantly in pericentral cells due to the pericentral zonation of lipogenesis enzymes.

These changes in metabolic rates in the model will allow targeted future in vivo validation, reducing
the number of experimentally challenging measurements in individual regions of the sinusoid required
to understand zonated damage in NAFLD. As discussed in chapter 3, experimental validation of these
simulated data could be performed through the addition of radiolabelled substrates to measure the
rates of conversion within individual regions of the sinusoid or through assessing the change in overall

metabolism after ablation of particular cell types [518].
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6.3 Predicting Inter-Individual Susceptibility to Steatosis

The third objective was to assess the hepatic metabolic variations which had the largest effects on
susceptibility to developing steatosis and on the pattern of steatosis development. Experimentally,
this would require comparison of enzyme activity and distribution with liver fat content and
distribution for many different enzymes involved in various processes for a large number of
individuals, whilst accounting for potential confounding factors. In the model, by simulating small
variations in the rate constants of each process in the model, we can establish the effects of realistic

variations in activity on metabolism.

Two methods of analysis were used. Firstly, sensitivity analysis was used to assess the impact of
altering the rate and zonation constants for each process in isolation. Secondly, patients with rate
constants randomly generated within realistic bounds were simulated to investigate the effects of

variations in each rate constant within the context of overall inter-individual variability.

In both data sets, the hepatic lipid content was most sensitive to inter-individual variations in the
capacity for FFA oxidation, either through differences in the overall capacity oxidation of acetyl-CoA
or through differences in the FFA oxidation to glucose oxidation ratio. Due to the increasing prevalence
of NAFLD and the related conditions, research improving our ability predict an individual’s risk of
developing the disease at an early stage is vital. As discussed in chapter 3, some evidence exists in the
literature to support the prediction that mitochondrial capacity is an important determinant of liver
fat in vivo. The predominant location of steatosis across the sinusoid, meanwhile, was most sensitive
to changes in the zonation of proteins mediating FFA uptake or VLDL synthesis and release in the
model, although it also showed moderate sensitivity to the zonation of enzymes mediating FA
oxidation. This simulated data will allow for targeted future experimental validation, in which a smaller
number of measurements would be required by focussing on the processes predicted to be most

important.
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6.4 ACC Inhibition as a Potential Drug Target and Future Work

The final objectives of the project were to use the model to assess the impact of targeting various
hepatic processes on lipid content and energy metabolism across the sinusoid before, where possible,
validating these predictions in a cell culture model. Simulations were run for steatosis arising from
high fat intake alone, developing IR in addition to high fat intake and severe IR in addition to increased
SREBP-1c expression to assess the impact of potential drug targets across a range of patients.
Experimental validation was performed in HepG2 cells, ensuring to consider their cancer cell

background when interpreting results.

The model simulations suggest that stimulation in B-oxidation in combination with inhibition of
lipogenesis provides an effective method of clearing steatosis without causing disruptions to energy
metabolism. In the model, hepatic steatosis was reduced, hepatic FFA concentrations (which, along
with closely related DAGs and ceramides, are particularly potent in promoting oxidative stress and IR
[8, 146, 247, 248]) were reduced and ATP concentrations were increased. Furthermore, the cells
become less reliant on overactive oxidative phosphorylation. Numerous zone-specific effects were
noted when simulating various treatments highlighting the importance of studying the sinusoid, rather

than treating the liver as a homogenous mass of cells.

The effects of inhibition of lipogenesis in combination with stimulation of B-oxidation were validated
in HepG2 cells experimentally by inhibiting ACC1 and ACC2 using TOFA. A cell culture system does not
allow validation of predicted zone specific effects, which is left for future rodent experiments.
However, HepG2 metabolism most closely resemble that of pericentral hepatocytes, in which most
adverse effects were centred. When treated with TOFA, both steatosis and FFA-induced cell death
were reduced consistent with the model simulations. Mitochondrial function was improved by the
treatment as evidenced by restoration of ETC enzyme activity. Oxidative stress, indirectly measured
by both the medium oxidation-reduction potential and a TBARS assay for lipid peroxidation, was

reduced. An increase in medium (corresponding to plasma) glucose concentration was measured,
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consistent with the model simulations for the treatment in insulin resistant individuals. However, if
insulin signalling were sufficiently restored in in vivo hepatocytes which, unlike HepG2 cells, are
capable of glycogenesis, increased glycogen concentrations would be expected rather than

hyperglycaemia.

Future work should further validate these results in an in vivo model. Firstly, an appropriate in vivo
model (e.g. rodent) which develops steatosis and the resulting IR, mitochondrial stress and fibrosis
across the sinusoid in a reasonable time frame should be identified and characterised. This should
then be used to study the effects of either genetically or pharmacologically inhibiting ACC when
considering all sets of hepatocytes across the sinusoid. It is vital to account for differences between
rapidly developing NAFLD in a rodent model and the development of the disease over decades in

humans when interpreting results from these in vivo experiments.

There is additionally scope for expanding the model in future work to increase its scope. At present,
the model has been shown to provide realistic predictions for the effects of suppressing or stimulating
overall hepatic processes across the sinusoid without considering the drug used to achieve this effect.
Whilst this is an important step in attempting to predict drug behaviour, a more detailed model may
further aid drug development. Firstly, by including each individual enzyme within the pathways
currently represented by the overall processes, the model may be able to highlight the most pertinent
individual enzymes to target. The model could also be expanded to include the action, metabolism
and degradation of drugs known to target each enzyme to provide predictions for optimal dosing.
Furthermore, the representation outside of metabolism could be expanded to investigate the effects
of targeting processes outside of liver and to further study the interactions between targeting of

hepatic processes and peripheral organs.

The model could be additionally expanded to include the pathways leading to oxidative stress as a
result of increased FFA concentrations and B-oxidation. At present increased FFA concentrations,

increased B-oxidation and reduced ATP concentrations are used as markers to predict oxidative stress.
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Including the subsequent pathways would further elucidate the mechanisms leading to oxidative
stress and improve comparison between simulated and experimentally measured data. Furthermore,
there is evidence that different fatty acids are more or less potent in causing oxidative stress than
others and some of the major genetic variations known to be associated with susceptibility to NAFLD
such as PNPLA3 are thought to affect the fatty acid profile within cells [194]. Therefore, the model
could be expanded to allow prediction of the concentrations of individual FAs and triglycerides within
the cells. The limiting factor within this would be the availability of data for the various enzyme kinetics
when using each fatty acid as a substrate and for any possible interactions between the different fatty
acids with the enzymes along with a vast increase in the number of fitted parameters. However, as
the system becomes better characterised experimentally, the expansion of the model to include the
individual FAs would allow for prediction of the heterogeneous effects resulting from fats of different

chain lengths and saturations.
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S1 Supplementary Material 1: Comparisons of Model Simulations

with Experimental Data

In the following sections, data produced by the model are compared with several sources of
experimental data. This validation focusses on model predictions for hepatic and plasma
concentrations and hepatic metabolic rates when simulating metabolically normal and insulin
resistant individuals. Additional comparison the simulated data with experimental data related to the
development of NAFLD is performed in chapter 3 when establishing a representation of the disease in

the model.

In section S1.1, the model simulations are compared with experimental data for metabolically normal
individuals. Firstly, the average concentrations of the various hepatic molecules over a moderate
dietary intake cycle are compared with experimental data from a range of sources (section S1.1.1).
Next, the change in hepatic glycogen concentration, along with plasma glucose and FFA
concentrations after a mixed meal is compared with data published by Taylor et al. [428] (section
$1.1.2). Insection S1.1.3, the rate at which various metabolic processes occur under conditions leading
to hepatic glucose production and to hepatic glucose clearance are compared with experimental data
from Ainscow and Brand [444], Edgerton et al. [443] and Mandarino et al. [431]. In section S1.1.4, the
effects of a daily intake/use cycle on plasma concentrations of glucose, lactate, FFAs, triglycerides and
insulin are compared with experimental data from Daly et al. In section S1.1.5, the heterogeneity in
the rates of various processes across the sinusoid in the model are compared with experimental data
from a range of sources. Very little data regarding the concentrations of molecules in different regions
of the sinusoid have been published. Instead the variation in rates of different glucose and lipid

metabolism processes are compared with experimental data.

In section S1.2, the effects of IR on plasma variables are validated against experimental data from a
range of sources. Firstly, the average concentrations of various plasma molecules are compared with

experimental data for insulin resistant and metabolically normal individuals (section S1.2.1). Secondly,
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the changes in glucose and lactate concentrations after intake of a glucose load in insulin resistant and
metabolically normal individuals are compared with experimental data (section S1.2.2). The relative
contributions of various sources of fatty acids to hepatic steatosis are compared with experimental

data for NAFLD patients in section S1.2.3.

Finally, in section S1.3, the simulated post-prandial changes in the relative rates of glucose oxidation
and B-oxidation are compared with experimental data from Daly et al. [452] and Seal et al. [453] when

simulating metabolically normal and insulin resistant individuals.

$1.1 Validation of Liver Metabolism in Healthy Patients

$1.1.1 Concentrations of intermediates and of the energy molecule

In table S1.1, the average concentrations of the various hepatic metabolism intermediates and the
mono-, di-, and tri-phosphate molecules (when simulating the 4-hour moderate intake cycle
discussed in section 2.2.4.2) are compared with experimentally measured values. It is important
that, when simulating normal physiological conditions, the simulated concentrations remainin a
realistic range. The values are the average over the 4-hour cycle. For hepatic molecules, the average
concentration across the hepatic compartments is shown. For plasma molecules, the concentration

in the body compartment is shown.

The simulated average values for hepatic glucose and triglycerides along with glucose metabolism
intermediates G6P, G3P and acetyl-CoA are within the experimentally measured ranges. Similarly, the
simulated average concentrations for inorganic phosphate, ATP, ADP, AMP, GTP and GDP are all within
the experimentally measured confidence intervals. This shows that, when an input approximating a
daily meal cycle is provided, the model gives realistic values for the average values of key
intermediates of glucose and lipid metabolism in hepatocytes, along with the adenosine and guanine

phosphate molecules.
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Table S1.1: The concentration of various hepatic metabolism intermediates and of the mono-, di-,

and tri-phosphate molecules included in the model when simulating a mixed meal.

Protein Average Value (Low-high over intake cycle) | Average Value (Confidence Interval)
— Model (mM) — Experimental (mM)

Inorganic 3.96 (3.871-4.011) 4.07 (3.55-4.07) [429]

Phosphate

ATP 2.82(2.64-2.96) 2.78 (2.71-2.85) [429]

ADP 0.832 (0.765-0.926) 0.885 (0.794-0.976) [486]

AMP 0.269 (0.223-0.337) 0.237 (0.200-0.272) [429]

uTp 0.324 (0.205-0.365) 0.285 (.255-.315) [486]

uDP 0.069 (0.031-0.188) 0.108 (0.096-0.120) [486]

GTP 0.274 (0.271-0.275) 0.277 (0.266-0.288) [486]

GDP 0.101 (.100-.104) 0.098 (0.091-0.105) [427, 486]

Hepatic Glucose

8.24 (7.28-10.0)

9.86-10.20 [426, 427],[616]

> 2.31%(2.28-2.33%)
Periportal: 33.6mM (33.1-34.0mM)

= 2.05% (2.01-2.07%)
Pericentral: 45.5mM (45.0-45.7mM)

2> 2.75% (2.72-2.76%)

G6P 0.085 (0.031-0.126) 0.071 + 0.004mM - starved rats,
0.133 £ 0.010mM — well fed rats [429]
GADP 0.236 (0.195-0.312) 0.2-1.0 [426]
Acetyl-CoA 0.046 (0.035-0.058) 0.039 [426]
Glycogen ~200mM of glucose Since glycogen is used for glucose storage,
(0 — 500mM of glucose depending on the liver glycogen concentration is
. . . strongly dependent on previous feeding
previous feeding conditions)
conditions. See section S1.1.2 for
comparison with Taylor et al. [428].
Hepatic Average: 38.1mM (37.6-38.4mM) Model values are slightly lower than the
Triglyceride average but within the 90" percentile of

liver triglyceride concentrations measured
in the population by Szczepaniak et al.
consistent with simulating a healthy diet
[211]. The change across the sinusoid is
consistent  with  the
59.2+5.8nmol/mg  of

65.7+4.0nmol/mg in isolated periportal

values of

protein  and

and  pericentral cells respectively

measured by Guzman et al. [487].

Average values when simulating a moderate intake diet of 70% carbohydrate: 30% FFA, averaged over
each 4-hour input cycle.
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Only the simulated UTP and UDP concentrations are outside of the experimentally measured
confidence intervals. The simulated average UTP concentration is 13% higher (+39uM) than the
value measured experimentally, whilst the UDP concentration is 39uM lower, suggesting that the
activity of NDKU in converting UDP to UTP is overestimated in the model. Therefore, a potential
solution to return these concentrations to the experimentally measured range would be to reduce
the rate constant for NDKU in the model. However, due to the strong dependence of the UTP
concentration on feeding state in the model, if the rate constant for NDKU is reduced by more
than around 20% from its value in the model, the simulated UTP concentration in periportal cells
falls to near zero during periods of high glycogenesis. This disrupts the storage of glucose as
glycogen in these cells after feeding. On the other hand, since the Michaelis-Menten constant for
UTP in glycogen synthase is low (48uM) relative to the average UTP concentration (285uM
experimental/324uM simulated), the small increase in simulated average UTP concentration has
little effect on overall metabolism. It is possible that NDK shows zonated expression in vivo with
higher activity in the periportal zone to match the increased glycogenesis in this region of the

sinusoid.

The relative concentrations of hepatic molecules are also consistent with concentrations
measured in other experimental studies Faupel et al. [430] and Saggerson et al. [467]. However,
since the Faupel et al. data was normalised against DNA weight rather than total protein or cell
volume and the Saggerson et al. data was measured in adipose tissue, absolute comparison was

not possible in either case and these relative comparisons are not presented.
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$1.1.2 Glycogen Synthesis after a mixed meal
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Figure S1.1: Comparison of simulated and experimental data for glycogen synthesis after a mixed
meal. (a) The glucose and FFA input used to represent the mixed meal and the simulated
concentrations of (b) glucose, (c) FFA and (d) glycogen concentrations after input of a mixed meal in
which 62% of the energy comes from carbohydrate and 38% from lipid compared with experimental
data from Taylor et al. [428]. Experimental data approximated from the graphs provided using Image J
to determine the position of each point relative to the x and y axes. The error bars on the experimental
data are the SD based on the SEM provided.

In addition to providing realistic values for average concentrations, the model outputs must also
match experimental data for the change in plasma and hepatic concentrations under conditions of
known intake. The liver is the major tissue responsible for the storage of glucose as glycogen.
Therefore, the model must give reasonable values for the change in glycogen storage, along with
plasma glucose and FFA concentrations under conditions in which known quantities of glucose and fat
are consumed. The simulated data were compared with experimental data published by Taylor et al.
[428] for glucose, FFA and glycogen concentrations after intake of a mixed meal in which 62% of the
energy comes from carbohydrate and 38% from lipid (neglecting the protein content of the meal
provided experimentally) [428] (figure S1.1). Since the exact rates at which glucose and FFAs enter the
blood stream are unknown, as an approximation, inputs with an initial spike followed by a slow linear

decrease were used (figure S1.1a).

The average differences between the simulated and measured glucose and FFA curves over the first 5
hours (excluding t=0) are 0.3 standard deviations (420uM) and 0.51 standard deviations (34uM)
respectively. After 6 hours, the simulated glucose concentration falls to a slightly lower baseline value
than the experimental data, whilst the simulated increase in FFA concentration is delayed relative to
the experimental data. However, in both cases the simulated data remain within one standard
deviation of the experimental data, and the shape of the simulated curves remains consistent with

the experimental data.

The simulated average glycogen concentration is on average less than 0.1 standard deviations from
the experimentally measured mean concentrations for the first 6 hours after the mixed meal. This

shows that the model is able to accurately represent the storage of glucose as glycogen after intake
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of a mixed meal. After 6 hours, the fall in glycogen concentration was larger in the experimental data
than in the simulated data, but the difference between the two curves remains well within one
standard deviation. Over a period of longer than 6 hours, numerous factors may explain the more
rapid fall in the experimental curve compared with the simulated data. For example, the model does
not account for any variation in the activity of the patient and energy is consumed at a roughly

constant rate (dependent on plasma concentrations of hormones, FFA and glucose).

The simulated compartment 1 (proximal periportal) and compartment 8 (distal pericentral)
concentrations are also plotted to show the difference in glycogen storage across the sinusoid. Both
in vivo [45] and in the simulated data, a higher rate of glycogen synthesis is seen in periportal cells

post-prandially.

$1.1.3 Metabolic Rates

The data in the previous sections provide validation of the simulated concentrations of molecules in
hepatocytes. However, the model must also produce realistic data for the rates of various processes
occurring within hepatocytes. In the following sections, the relative rates of various hepatic processes
are compared with experimental data during glycogen breakdown and glycogen synthesis. Further
validation of the rates of oxidation in both insulin resistant and metabolically normal individuals is

provided in section S1.3.

$1.1.3.1 During glycogen breakdown

The simulated rates of various metabolic processes were next compared with experimental data
presented by Ainscow and Brand under conditions of hepatic glucose production [444]. Rather than
simulating Glucose and FFA inputs as in the previous sections, to allow comparison with the
experimental data, the plasma fatty acid, glucose, lactate, glycerol, insulin and glucagon
concentrations were set to fixed values of 0.4mM, 5mM, 0.45mM, 0.04mM, 0pM and 31.5pM in the

simulations. Rates were taken after 2000s, once they had reached equilibrium.
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Table S1.2: Simulated Hepatic metabolic rates compared with experimental data under conditions of

glycogen breakdown.

Process

Simulated % of Glycogen
Breakdown (mM/s)

Experimental % of Glycogen
Breakdown (nmol.mgt.min?)

[444]

Glycogen Breakdown

100% (5.63 [Glucose])

100% (8.67 [Glucose])

Glucose Production

54.7% (3.08 [Glucose])

54.4% (4.72 [Glucose])

Glycolysis

45.3% (2.55 [Glucose])

45.7% (3.96 [Glucose])

Lactate Release

31.3% (1.76 [Glucose]*)

35.6% (3.09 [Glucose]*)

Pyruvate Oxidation 24.3% (1.37 [Glucose]*) ~20.1% (8.72 [Ox])

Lipogenesis 3.3% (0.19 [Glucose]*) ~0
Mitochondrial Oxidation 115 [ATP] 18.01 [ATP]
ATP Consumption 199 [ATP] 31.63 [ATP]

Simulated hepatic metabolic rates compared with experimental data from Ainscow and Brand under
conditions of glycogen breakdown [444]. To simulate conditions of constant glycogen breakdown, the
plasma fatty acid, glucose, lactate, insulin and glucagon concentrations were set to fixed values of
0.4mM, 5mM, 0.45mM, OmM and 31.5pM. Rates were taken after 2000s, once they had reached
equilibrium. * equivalents of glucose.

Although comparison of the absolute values is not possible due to the different units in the two data
sets, the relative rates of all of the processes provide a reasonable approximation to the experimental
data (table S1.2). In both the simulated and experimental data, approximately 55% of G6P derived
from glycogen breakdown was converted to glucose, whilst 45% underwent glycolysis. 31.3% of the
G6P was released as lactate in the model compared with 35.6% experimentally. 24.3% underwent
oxidation to acetyl-CoA compared with 20.1% experimentally. Therefore, a slightly higher relative rate
of pyruvate oxidation occurred in the model than is seen experimentally, but the values remain well
within a range which could be accounted for by small differences in plasma and hepatic metabolite
concentrations. Only a very low rate of lipogenesis occurred when simulating the presence of glucagon
but not insulin, consistent with the experimental study. The ratio of ATP consumption to mitochondrial
oxidation (1.73:1) is within 2% of the experimentally measured ratio (1.75:1). However absolute
comparison is not possible since the experimental data is provided in units of moles per milligram of
tissue rather than moles per litre. These results demonstrate that the model provides realistic relative

metabolic rates under conditions of glycogen breakdown.
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$1.1.3.2 During glycogen synthesis.

A similar study under conditions of glycogen synthesis was not available. However, the relative effects
of basal and high insulin concentrations on glucose removal and gluconeogenesis are consistent with
experimentally measured values for canine livers from Edgerton et al. [443]. For comparison,
simulations were run using 3 fixed plasma insulin concentrations, a fixed plasma glucagon
concentrations of 93.75pM and fixed plasma glucose, lactate and FFA concentrations at the values
measured experimentally. Absolute comparison was not possible since the experimental data were
measured in mg/kg/min. However, the relative rates after addition of insulin (leading to a plasma
concentration of 700pM and 173pM) in comparison with no addition (basal) were compared between
the data sets (tables $1.3 and S1.4). 700pM insulin caused the simulated rate of glucose storage as
glycogen to fall to -1.01 times the rate of clearance at basal insulin, showing a switch from glucose
clearance to production (table S1.3). The experimental data is presented for the rate of glucose uptake
and the rate of glycogenesis separately. In this case, 700pM caused the experimentally measured rates
of glucose uptake and for glycogen synthesis to fall to -0.69 and -1.67 of the basal rates, consistent
with the simulated data. In both cases gluconeogenesis was heavily stimulated by 700pM insulin (table
S1.4).

The relative effects of moderate to high insulin perfusion on the system are similar in the simulated
and experimental data. The change in rate due to 173pM insulin was roughly 80% of that due to
700pM Insulin in both the simulated data and the experimental data sets for both glucose removal
and glycogen synthesis. At the moderate insulin concentration, the suppression of gluconeogenesis
was approximately 20% of the change for the high insulin concentration in both the simulated and

experimental data.

Additional validation of the model simulations for the rates of glucose and fatty acid oxidation under

conditions of glucose storage is presented in section S1.3.
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Tables S1.3: Comparison of the simulated effects of insulin stimulation on hepatic glucose clearance
with experimentally measured values.

Hepatic Glucose Clearance Basal Moderate Insulin | High Insulin
(173pM) (700pM)

Simulated  Glucose  Storage as | 11.3 -7.1 -11.4

Glycogen: (1.00 basal) (-0.62 basal) (-1.01 basal)

umol/L/s

(fold change from basal)

Experimental Glucose Uptake: 1.3+0.4 -0.2+0.2 -0.9+.7

mg/kg/min (1.00 basal) (-0.15 basal) (-0.69 basal)

(fold change from basal)

Experimental Glycogen Synthesis: | 0.9+0.4 -110.4 -1.5+0.5

mg/kg/min (1.00 basal) (-1.11 basal) (-1.67 basal)

(fold change from basal)

Table S1.4: Comparison of the simulated effects of insulin _stimulation on gluconeogenesis with

experimentally measured values.

Gluconeogenesis Basal Insulin Moderate Insulin | High Insulin
(173pM) (700pM)

Simulated: Change in

Gluconeogenesis 0 pumol/L/s -1.2 umol/L/s -4.7 umol/L/s

Simulated: Change in

Net Gluconeogenesis 0 pmol/L/s -0.56 pmol/L/s -3.4 umol/L/s

Experimental: Change in

Flux to G6P 0+0.4 mg/kg/min -0.1+0.7 mg/kg/min | -0.5+0.7 mg/kg/min

Tables S1.3 and S1.4: Comparison of the simulated effects of insulin stimulation on hepatic glucose
production and storage with experimentally measured values for canine livers [443]. Simulated using
a fixed plasma glucagon concentrations of 93.75pM and fixed plasma glucose, lactate, insulin and FFA
concentrations at the values measured experimentally.

$1.1.4 Plasma Concentrations throughout the day

The data in the previous sections focussed on hepatic concentrations and rates. However, the model
additionally aims to produce realistic data for plasma concentrations under conditions of known
dietary intake. Figure S1.2 compares the simulated plasma glucose, FFA, insulin and triglyceride
concentrations (red) plotted with experimental data measured by Daly et al. (blue) throughout a daily
meal cycle [17]. The model was provided with an equal spiked input every four hours and twenty
minutes roughly corresponding to the food intake provided experimentally (as discussed in section
2.2.4.2). The glucose and FFA inputs were matched to the average values provided per meal
experimentally. However, in the experimental study, the meals were not equally spaced and differed

in size through the day.
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Since the spiked periodic input provided is only a crude approximation to the rate of intake of glucose
and fatty acids, it was considered inappropriate to base the comparison of the simulated and
experimental curves on a simple calculation of the squared difference between the curves. When this
analysis was performed, the differences in food intake times meant that, whilst the differences
between the simulated (x) and experimental (x) curves remained low for most time points, high errors
were seen around meal times (e.g. 13:00-14:00). This was particularly true for glucose and lactate, for

which the summed error (difference from experimental data) over variance (in the experimental data)

i=nlx()-x ()|

=1 -
for glucose and lactate were 1.30 and 1.08 respectively (calculated as - ndm , Wherei = 1:n are

times at which experimental data points were available). The summed error over variance for

triglyceride was also large at 1.59.

Instead, to give a more representative quantitative comparison of simulated and experimental data,
table S1.5 compares the peak, trough and average concentrations for each variable along with the
offset in the peak time from the glucose peak. Values for lactate and glycerol are additionally included
in this table. These measures are less dependent on the differences in meal time and size between
the two data sets. Since data points were taken at 30 minute intervals in the data, there is a 30-minute

uncertainty in the time at which peaks occurred in the experimental study.

The simulated glucose, insulin and FFAs concentrations replicate the key features of experimental
data. In both the simulated and experimentally measured data, the glucose and insulin concentrations
show sharp post-prandial peaks followed by broad troughs between meals. The FFA concentration

gradually rises between meals before falling rapidly postprandially in both data sets.

The simulated peak concentrations are equal in magnitude because equal meal sizes were simulated,
whilst the experimental peaks increase throughout the day due to increases in the size of the meal.
As a result, the final peak matched the experimental data well, but the simulated first and second

post-prandial glucose peaks were 1.09 and 0.74 standard deviations higher than measured
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respectively. The simulated peak concentrations were 0.79 standard deviations higher than the
average peak in the experimental data. However, since readings were taken at 30 minute intervals in
the experimental study, and the peaks in glucose concentration are very sharp, the true peak

concentration is likely to be higher than the experimentally measured peak.

The simulated average peak insulin concentration closely matches the experimentally measured value
(0.27 standard deviations). However, the simulated plasma concentration falls to effectively zero
between meals whilst the experimentally measured value only falls to at 29+24pM. This is because no
insulin release occurs between meals in the model, where some release would be expected in vivo. A
concentration this small is unlikely to have a large effect on metabolism and will be dwarfed by the

effects of the raised glucagon concentration.

The simulated FFA concentration curve matches the experimental data well. Sharp pre-prandial peaks
in concentration occurred in the simulated data. This would not be seen experimentally because the
experimental data provides an average over several patients with readings taken at half hour intervals.

Therefore, comparison of this aspect of the simulated data with the experimental data is not possible.

In both the simulated and experimental data, the lactate concentration follows a similar pattern to
the glucose concentration but with a slightly delayed peak. The simulated peak concentrations match
the experimental data well in both magnitude and time relative to the peak in glucose concentration.
However, the simulated concentration only fell to 0.82mM between meals in the model, compared

with 0.52+0.15mM experimentally.

The triglyceride and glycerol concentrations show stronger periodic behaviour in the model
simulations than in the experimental data. This difference occurs because adipose tissue storage of
triglycerides is not included in the model. Since the focus of the study is on hepatic metabolism a
separate adipose compartment allowing adipose triglyceride storage was not included. However,

hepatic uptake of triglycerides from plasma is slow, such that the hepatic triglyceride concentration is



246

more strongly dependent on the longer-term average plasma concentration than on short-term
fluctuations. Once equilibrium is reached, less than a 5% variation is seen in hepatic triglyceride
concentration throughout a meal cycle, and most of this results from variation in hepatic synthesis.
Additionally, very little lipolysis occurs in hepatocytes such that variations in hepatic triglyceride
concentration only very weakly feed back into the rest of hepatic metabolism. Therefore, in
developing a model to study hepatic metabolism, it is more important that the longer-term average
triglyceride concentration remains in the experimentally measured range. From figure S1.2 and table
S1.5, it can be seen that the simulated triglyceride concentration remains in the same range as the
experimental data. It is also important that the experimentally measured changes in average
triglyceride concentration under conditions of insulin resistance are reproduced in the simulated data

as discussed in section S1.1.5.3.
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Figure S1.2: Comparison of the model predictions for plasma concentrations over a daily meal cycle
with experimental data. Comparison of the model simulations (red) for plasma glucose, FFA, lactate,
insulin, triglycerides and glycerol throughout a daily feeding cycle with experimental data from Daly et
al. [17] (blue). Experimental data approximated from the graphs provided using Image J.
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Table S1.5: Comparison of the simulated peak, trough and average concentrations and peak times

with experimental data for plasma concentrations throughout a daily feeding cycle.

Peak Concentrations | Trough Average Difference in
Concentrations Concentration peak time from
peak glucose
Glucose
Simulated 7.43mM 4.08mM 4.92mM -
Experimental | Av.) 6.81£0.78mM Av.) 3.8410.56mM | 4.59+0.65mM -
(A=0.79 0) (A=0.43 0) (A=0.510)
1) 7.27+0.67mM 1) 3.75+0.50mM
(0.24 o) (0.66 o)
2) 6.86+£0.77mM 2) 3.93+0.62mM
(0.74 o) (0.24 0)
3) 6.29+£0.90mM
(1.09 o)
FFAs
Simulated 557uM 100puM 229uM -45.6 mins
Experimental | Av.) 445£186uM Av.) 86132uM 2341+93uM -30 mins
(A =0.60 o) (A =0.44 o) (A =0.05 o) (-60<t<0 mins)
1) 460 + 208 1)104+35
(0.47 o) (0.110)
2)429+ 161 2) 67429
(.80 o) (1.14 0)
Triglycerides
Simulated 1.79mM | 0.56mM 1.19mM 47.64 Minutes
Experimental | -No peaks or troughs following intake, | 1.08£0.30mM -
but an increase from 0.77mM increase to | (A =0.37 o)
1.66mM throughout the day.
Lactate
Simulated 2.70 mM 0.82 mM 1.23mM 19.7minutes
Experimental | Av.)2.29+0.92 mM | Av.) 0.52 +0.15mM | 1.21 +0.55mM | 30 mins
(A =0.450) (A =20) (A =0.04 o) (0<t<60 mins)
2.11+0.63mM 0.52+0.17 mM
2.39+1.20mM 0.52+0.13 mM
2.38+0.93mM
Insulin
Simulated 391pM 1pM 89pM 2.3 mins
Experimental | Av.)363 1123 pM Av.) 29+24pM 118 + 90pM 0 mins
(A =0.230) (A=1.170) (A=0.32 0) (-30<t<30 mins)
366 + 146 pM 19+24pM
315+ 91 pM 38+24pM
409 + 133 pM
Glycerol
Simulated 39uMm 21uM 30 uM 2.0 hours
Experimental | 39119uM **Not | 22+10uM ** Not | 32115 uM 3.5+0.5, 4.5+0.5
periodic with meal | periodic with | (A=.13 o) hours
cycle meal cycle

Comparison of the simulated peak, trough and average concentrations and peak times relative to the
glucose peak for plasma glucose, FFA, lactate, insulin, triglycerides and glycerol throughout a daily
feeding cycle with experimental data from Daly et al. [17]. Experimental data approximated from the
graphs provided using Image J.
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$1.1.5 Validation of Zonation

A major aim of this study was to develop a model which is able to represent the zonation of processes
across the sinusoid. To achieve this, the zonation in the rate constants of processes across the sinusoid
was based on experimental data for differences in the activities of key enzymes (section 2.2.6). In the
following section, simulated data within different zones of the sinusoid are compared with

experimental data.

$1.1.5.1 ATP across sinusoid

Data measuring the concentrations of molecules in specific regions of the sinusoid are relatively few.
As a result, hepatic heterogeneity in the model was largely validated against measurements of the
relative rates of various processes occurring in different regions of the sinusoid. However, Nauck et
al. approximated the change in ATP concentration across the sinusoid in an in vitro experiment by
comparing cells grown in culture conditions similar those seen by periportal and pericentral cells in
vivo [69]. Cells cultured in periportal oxygen and hormone concentrations had an ATP concentration

of 2.9+£0.2mM whilst those grown in pericentral conditions had a concentration of 2.5£0.2mM [69].

When simulating a moderate diet in a metabolically normal individual (section 2.2.4.2), the ATP
concentration falls from 3.0mM in the periportal half of the sinusoid to 2.6mM in the pericentral side.
Therefore, as well as the average values matching those measured in vivo [429], the change in ATP
concentration across the sinusoid matches that measured between isolated periportal and pericentral
cells [69]. It is important that the energetics are represented properly since the inability of pericentral
cells to produce sufficient ATP through oxidative phosphorylation is the primary motivation for
zonation. Unfortunately, data was not available for the relative contribution of oxidative
phosphorylation and glycolysis across the sinusoid. However the relative rates of gluconeogenesis and
glycolysis across the sinusoid are compared with experimental data in section S1.1.5.2, whilst the

energetic benefit resulting from zonated enzyme expression is demonstrated in section $1.1.5.3.
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$1.1.5.2 Processes

Although the zonation of enzymes in the model was based upon experimental data, the relative rates
of processes across the sinusoid are also determined by other factors such as substrate concentrations
and allosteric regulation. In this section, the relative rates of some of the key processes in the model
are compared with experimental data to validate the representation of zonation in the model. In each
case, model values are the average when the model was provided with an input cycle representing a

moderate diet as discussed in section 2.2.4.2.

S1.1.5.2.1 B-oxidation

In two studies, Guzman et al. measured the rate of B-oxidation to be 1.2+0.3, and 1.4+0.3 times higher
in periportal than in pericentral cells in fed animals [83, 86, 87]. Consistent with these studies, the
simulated rate of B-oxidation is 1.25 times higher in the periportal half of the sinusoid than the
periportal half. The simulated rate is 1.47 times higher in the proximal periportal compartment

(compartment 1) compared to the distal pericentral compartment (compartment 8).

S1.1.5.2.2 Triglyceride synthesis, storage and release as very low density lipoproteins (VLDL)

In two different in vivo studies by Guzman et al., pericentral cells were measured to synthesize
triglycerides at 1.6+0.4 and 1.3+0.3 times the rate of periportal cells, and release triglycerides as VLDL
at 1.5+0.5 and 1.3+0.3 times the periportal rate [83] [86]. In the model, triglycerides are synthesized

in pericentral cells at 1.64 times the rate in periportal cells.

Guzman et al. also measured an 11% increase in triglyceride concentration between periportal and
pericentral hepatocytes, although this was not statistically significant [86]. In the model, the average
triglyceride concentration in the pericentral half of the sinusoid is 22% larger than in the periportal
half, slightly overestimating this difference. However, this is strongly dependent on the glucose and

FFA inputs. A higher glucose to FFA ratio gives more evenly distributed triglyceride levels.
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S1.1.5.2.3 Fatty acid uptake
Using fluorescently tagged fatty acids, Fitz et al. measured higher fatty acid uptake in periportal cells
[92]. However, no quantitative comparison was made. In the model, the rate of fatty acid uptake in

the periportal half of the sinusoid was 1.21 times higher than in pericentral cells.

S1.1.5.2.4 Lipogenesis

When measured in vivo by Guzman et al. in two studies, the pericentral rate of lipogenesis was
measured to be 1.6+£0.4 and 1.70.5 times that in periportal cells [83, 86]. When simulated in the
model, the pericentral rate of lipogenesis was 1.9 times higher than the periportal rate. This is within
one standard deviation of the experimental data but slightly higher than the average. However, the

relative rates of lipogenesis across the sinusoid are dependent on the ratio of glucose to FFA input.

S1.1.5.2.5 Gluconeogenesis and glycolysis

Wolfe et al. performed an in vitro study in which they measured the relative rates of gluconeogenesis
and glycolysis in cells cultured in periportal or pericentral oxygen and hormone concentrations [77].
Their results show that glycolysis is 1.5-2.5 times more rapid in pericentral-like cells whilst
gluconeogenesis is 1.5-2.5 times more rapid in periportal-like cells [77]. When simulating a moderate
diet in the model, glycolysis occurs 1.7 times more rapidly in pericentral cells whilst gluconeogenesis

occurs 2.3 times as quickly in periportal cells consistent with the in vitro data.

Both the simulated data and the results of this in vitro study are consistent with the idea of glucose-
lactate cycling known to occur in vivo [50]. In glucose-lactate cycling, hypoxic pericentral cells undergo
glycolysis to supplement ATP production from oxidative phosphorylation. This produces lactate which
cycles around the body and is converted back to glucose by the oxygen rich periportal cells. Due to
their higher oxygen environment, periportal hepatocytes can produce sufficient ATP through oxidative

phosphorylation to survive and to fuel the additional gluconeogenesis, largely using fatty acids.
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$1.1.5.3 Validating the role of zonation in hepatic energy metabolism

The low oxygen concentration of pericentral cells is major motivation for the presence of zonation in
energy metabolism (see chapter 1). In the absence of sufficient oxygen, pericentral cells are unable to
produce sufficient ATP through oxidative phosphorylation and are forced to upregulate glycolysis,
whilst suppressing ATP consumption in gluconeogenesis. To ensure that zonation in energy
metabolism is properly represented in the model, simulations were next used run with both zonated
enzyme expression and with homogenous enzyme expression. The simulated data in these two cases
were compared to ensure that zonated enzyme expression leads to increased ATP concentrations

across the sinusoid.

In figure S1.3, the average rates of glycolysis, gluconeogenesis and average ATP concentrations when
simulating a moderate intake diet of the form discussed in section 2.2.4.2 are compared when running

simulations with zonated and homogenous enzyme expression.

Removing the zonation in glucose and lipid metabolism enzymes caused severely reduced pericentral
ATP concentrations (figure S1.3a) because of higher gluconeogenesis (figure S1.3b) and lower
glycolysis (figure S1.3c) in these cells. The ATP concentration in the most pericentral compartment fell
to below 1.2mM when simulating homogenous enzyme expression. ATP is required for most cellular
processes and concentrations this low would cause loss of function or cell death. A slight increase in
ATP concentration was seen in periportal cells when simulating homogenous enzyme expression
relative to zonated expression due to reduced gluconeogenesis in these cells. However, zonated
enzyme expression increased the average ATP concentration across the sinusoid (zonated enzyme
expression: 2.81mM, heterogeneous enzyme expression 2.57mM) and resulted in a much more even
distribution across the sinusoid. Therefore, a clear increase in fitness is results from zonation in the

model.
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Figure $1.3: The effects of simulating zonated and homogenous enzyme expression on energy
metabolism. The effects of zonated enzyme expression on a) the ATP concentration b) the rate of
gluconeogenesis and c) the rate of glycolysis. The average concentration is shown when simulating a
moderate intake 70% carbohydrate 30% lipid diet with (grey) homogenous enzyme expression or (black)
zonated enzyme expression.

$1.2 Validation of Simulated Data for Insulin Resistant Patients

Having shown that the model is able to produce realistic data for the average concentrations of
hepatic molecules, for plasma concentrations of key variables during a daily feeding cycle and after a
mixed meal, for glycogen storage after a mixed meal, for the rates of key metabolic processes during
periods of glycogen synthesis and breakdown and for the zonation of key metabolic processes in
metabolically normal individuals, the model outputs were next compared with experimental data

when simulating insulin resistance. Insulin resistance is simulated in the model by multiplying the
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detected insulin by a constant 0<Kjr<1 where K/g=0 would correspond to total insulin resistance and

KIR=1 would correspond to normal insulin sensitivity.

§$1.2.1 Average plasma values in metabolically normal and insulin resistant individuals

Firstly, the average plasma values of triglycerides, glucose and FFAs are compared with experimental
data when simulating metabolically normal and insulin resistant individuals. The simulated average
plasma concentrations are dependent on the inputs provided and on the severity of IR. To provide the
data for table S1.6, simulations were run with the moderate diet intake cycle discussed in section
2.2.4.2 with two severities of IR. Developing and severe IR were simulated by reducing the detected

insulin concentration to 5% and 1.5% respectively.

Table S1.6: The simulated and experimentally measured average triglyceride, glucose and FFA
concentrations in metabolically normal and insulin resistant patients.

‘ Simulated Experimental
Average Triglyceride (mM)
Metabolically Normal | 1.2+0.4 0.9+0.4°
Insulin Resistant Developing: 2.1+0.8 2.6+0.5?

Severe: 3.7+0.9

Average Glucose (mM)

Metabolically Normal | 4.9+1.1 4.7+0.7%,5.3+1.5 (4.5- 6.8) ¢
Insulin Resistant Developing: 6.3+2.4 9.0£2.2°
Severe: 8.1+3.9 Low TG group (less severe): 6.3+0.5°¢

High TG group (more severe): 6.8+0.5°¢
Mild NIDDM: 8.0+2.7 (6.7 - 10.9) ¢
Severe NIDDM: 19.645.3 (16.9 - 23.7) ¢

Average FFA (mM)

Metabolically Normal | 0.23+0.12 0.3+0.1°,0.3+0.1 (0.16 - 0.52) ¢
Insulin Resistant Developing: 0.48+0.16 | 0.6+0.1°
Severe: 0.84+0.70 Low TG group (less severe): 0.54+0.07

High TG group (more severe): 0.81+0.07
Mild T2DM: 0.4+0.1 (0.19 - 0.59)¢
Severe T2DM: 0.6+0.1 (0.37-0.75)¢
Experimental data from: ° — Sindelka et al. [141], ° — Berndt et al. [435], — Monti et al. [466], * — Reavan
et al. [139] (** standard deviations calculated based on the SEM provided, ¢ — averages, ranges and
error bars taken from the graphs provided using Image J). Simulated data are averages + the average
deviation from the mean value over each feeding cycle.

For metabolically normal individuals, the simulated data are within one standard deviation of the
experimental data for glucose, FFAs and triglycerides further validating the ability of the model to give

realistic data for non-insulin resistant patients (table S1.6).
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The FFA and triglycerides concentrations measured by Sindelka et al. [141] and Berndt et al. [435] in
insulin resistant individuals lie between the simulated values for developing IR and for severe IR (table
$1.6). This is consistent with the experimental groups containing individuals with a range of severities
of IR. Monti et al. measured FFA levels in T2DM individuals grouped according to their plasma
triglyceride levels [466]. The measured concentrations in the low and high triglyceride concentration
groups match the simulated data for developing and severe IR respectively. Reavan et al. meanwhile
measured slightly lower average FFA concentrations in mild and severe T2DM than the simulated data

[139].

Large heterogeneity was seen in the experimental measurements of glucose concentrations in insulin
resistant individuals. The mean concentration measured by Sindelka et al. in insulin resistant
individuals is slightly higher than the simulated value when simulating severe IR (0.4 standard
deviations) [141]. Conversely the concentrations measured in both groups by Monti et al. are several
standard deviations lower than the simulated concentration for severe IR. Meanwhile, the glucose
concentration measured in mild T2DM by Reavan et al. matches that when simulating severe insulin
resistance (0.03 standard deviations), whilst the concentration measured in severe T2DM is more than

double this [139].

This variation is likely to result from differences in the severity of IR within the group and differences
in feeding. When simulating severely insulin resistant patients on a moderate diet, hyperglycaemia is
seen post-prandially due to reduced glycogenesis. However, between meals the blood glucose
concentration becomes hypoglycaemic because there are no glycogen stores to break down. It is
because of this that the average glucose concentration to show only a modest increase. When
simulating a high intake diet, sustained hyperglycaemia occurs in IR patients more consistent with the

measurements of Reavan et al. [139].
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$1.2.2 Change in glucose and lactate concentrations after a glucose load

Having shown that the model provides reasonable values for average plasma concentrations in both
metabolically normal and insulin resistant individuals, it was next compared with data for the change
in plasma glucose and lactate concentrations after an oral glucose load. Table S1.7 shows the
simulated and experimental data for the change in plasma lactate and glucose concentrations after
intake of an 100g glucose load [434]. Since the rate at which the oral glucose load glucose entered the
blood stream in the experimental study is unknown, as an approximation a spiked input of the form
sin(t), starting from zero input at t=0 and reaching peak input at 30 minutes was used. However, to
account for the possibility that the sugars may enter the blood stream more or less rapidly than this,
two additional input functions were used of the same form and with the same total input, but with
peak inputs at 20 minutes (rapid intake) and 45 minutes (slow intake). The simulated data in these
two cases are shown by the upper and lower error bars respectively. In all three cases, the total
glucose input was equal to that in the experimental study (assuming 5L of blood in the body). Severe

IR was simulated using an IR constant, Kig, of 0.015.

For both metabolically normal and insulin resistant individuals, the experimentally measured and
simulated changes in glucose and lactate concentrations are well within one standard deviation of the
experimental data. This shows that the model can accurately represent the changes in hepatic

glycogenesis and glycolysis resulting from IR after a glucose load.

Table S1.7: The simulated change in glucose and lactate concentrations after a 100g glucose load in
metabolically normal and insulin resistant individuals compared with experimental data.

Change in Glucose Metabolically Normal Insulin Resistant
Simulated 2.1%19 8.5%%1
Experimental 28+ 2.0 9.7+ 4.6
Change in Lactate Metabolically Normal Insulin Resistant
Simulated 0.461339 0.403:93
Experimental 0.46 +0.12 0.31 +0.13

The simulated change in glucose and lactate concentrations after a 100g glucose load in metabolically
normal and insulin resistant individuals compared with experimental data from Prando et al. [434].
Experimental data approximated from the graph presented using Image J.
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$1.2.3 Contribution of lipogenesis, FFA uptake and diet to hepatic triglycerides across
the sinusoid

Table S1.8: The simulated contribution of hepatic de novo lipogenesis, FFA uptake and dietary
triglycerides to hepatic steatosis compared with experimental data.

Metabolically Normal, Moderate Intake
Simulated Experimental
Plasma FFA 54.0% -
Hepatic DNL 12.0% -
Dietary Triglycerides 34.0% -
Severe IR + Raised SREBP-1c expression (NAFLD)
Simulated (Liver & VLDL) Experimental - NAFLD
Plasma FFAs 60.0% Liver: 59.0£9.9%
VLDL: 62.4£11.7%
Hepatic DNL 20.2% Liver: 26.116.7%
VLDL: 22.916.2%
Dietary Triglycerides 19.8% Liver: 14.9+7.0%
VLDL: 14.7+8.5%

The simulated contribution of hepatic de novo lipogenesis, FFA uptake and dietary triglycerides to
hepatic steatosis compared with experimental data from Donnelly et al. [26].

Table S1.8 compares the contribution of plasma FFAs, hepatic de novo lipogenesis and uptake of
dietary triglycerides to overall hepatic triglyceride levels (averaged across the sinusoid) when
simulating severe IR combined with increased SREBP-1c expression (as seen in NAFLD; see chapter 3)
with the contributions measured experimentally by Donnelly et al. in NAFLD patients [26]. Donnelly
et al. measured the contribution of these three sources to both liver triglycerides and VLDL. However,
in the model, the composition of VLDL is solely determined by the composition of liver triglycerides
such that the two are equal. Additionally, the contributions when simulating a metabolically normal

individual are shown.

The contributions of each source of FAs to both liver triglycerides and VLDL are all within one standard
deviation of the values measured by Donnelly et al. when simulating NAFLD [26]. The contribution of
dietary triglycerides is towards the high end of the measured values suggesting this may be slightly
overestimated. However, this component is the most susceptible to changes in dietary input, and the

simulated values remain in the correct range.
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Experimental data comparing the contributions of different sources to FA levels in individuals without
excessive liver fat was not available. However, the simulated contribution of plasma FFAs was slightly
higher when simulating NAFLD than for metabolically normal individuals (60.0% vs 54.0%). The
simulated contribution of dietary triglycerides was lower when simulating NAFLD compared with
metabolically normal individuals on the same diet (19.8% vs 34.0%). If higher dietary intake was
additionally simulated, as is often seen in NAFLD patients in vivo, this difference would be expected
to fall. The percentage of hepatic triglycerides arising from de novo lipogenesis was higher when

simulating NAFLD (20.2% vs 12.0%).

$1.3 Validation of the relative contributions of lipids and carbohydrates to

oxidative phosphorylation
Finally, to properly integrate hepatic glucose and lipid metabolisms, it is important that the model can
produce realistic values for the rates at which fatty acids and glucose are oxidised before and after
dietary intake. Relatively little time series data exists investigating the rates of oxidation in liver.
However, in the following sections the model simulations for the rates in liver are compared with
experimental data for the rates in the whole body. Experimental and simulated rates are compared
after a mixed meal in metabolically normal individuals (section S1.3.1) and after the intake of starch

with either slow or fast hydrolysis rates in metabolically normal and T2DM individuals (section $1.3.2).

$1.3.1 Energy production after a mixed meal

Daly et al. measured the rates of carbohydrate and fatty acid oxidation after a high sucrose/low starch
meal with 65% of energy as carbohydrate and 26% as fat (2.5:1) [452]. Using the number of ATP
molecules produced per glucose and per palmitate in the model, this corresponds to 6.9 moles of
glucose per mole of palmitate (or 4.85 grams of glucose per gram of palmitate). The model was
provided with glucose and FFA inputs with the total magnitude to match the inputted carbohydrate
(high sugar/low starch) and fat in the meal. The meal was inputted in the form of a single sin®(t) spike

rising from 0 at t=0 to a peak input at 30 minutes. The simulated FFA and glucose concentrations are
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Figure $1.4: Comparison of the simulated plasma glucose and fatty acid concentration after intake of a mixed
meal with data measured experimentally. Experimental data from Daly et al. [452]. The model was provided
with glucose and FFA inputs with the total magnitude to match the inputted carbohydrate (high sugar/low
starch) and fat in the meal. The meal was inputted in the form of a single sin6(t) spike rising from 0 at t=0 to a
peak input at 30 minutes.

well within one standard deviation of the experimental data at all time points when this input was
simulated in the model (figure S1.4a,b), although the simulated glucose concentration has a less sharp
peak and shows a slower decrease initially after the peak concentration. This suggests that the

simulated input provides a reasonable approximation to the meal provided experimentally.
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In the experimental study, the rates of carbohydrate and lipid oxidation were measured in grams per

minute in the body as a whole (figure S1.5a,c). These results cannot be compared quantitatively with

the simulated data for the rate of pyruvate oxidation and B-oxidation in liver alone calculated in moles

per minute (figure S1.5b,d). However, qualitative comparison of the changes occurring postprandially

can be made.
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Figure $1.5: Comparison of simulated fatty acid and glucose oxidation rates with experimental data.
The rates of oxidation of (a,b) glucose and (c,d) fatty acids and when (a,c) measured experimentally in
the body as a whole by Daly et al. [452] and (b,d) simulated in liver alone after intake of a mixed meal

as discussed in the text.

The simulated curves for the rates of fatty acid and carbohydrate oxidation follow a similar shape over

the 6 hours to those measured experimentally. The rate of carbohydrate oxidation doubles

postprandially before falling back to its initial value in both the simulated and experimental data.

Similarly, in both cases the rate of fatty acid oxidation falls by half before rising to slightly above its
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initial value. The peak in carbohydrate oxidation and the trough in lipid oxidation appear sharper and
occur more rapidly after intake in the simulated data than experimentally. This may be because only
the liveris simulated, rather than the body as a whole. Due to the role of liver in the storage of glucose,
and the large quantities of blood that pass through the organ, hepatocytes would be expected to react
particularly quickly to changes in plasma insulin and glucagon levels. When considering the body as a

whole, less responsive organs would slow this effect.

$1.3.2 Comparison of energy production in metabolically normal and diabetic
individuals

Seal et al. compared the rates of carbohydrate and lipid oxidation in metabolically normal and T2DM
patients fed 50g of rapidly or slowly hydrolysed starch [453]. In this study, the rates at which the two
starches were broken down to sugars were also measured, allowing a more accurate approximation
of the rate at which glucose entered the blood stream. To validate the models simulations for energy
metabolism in insulin resistant individuals, the model was provided with glucose inputs set to match
the rates at which carbohydrates were broken down in vivo. For the fast release starch, an input was
provided with a sharp peak at 30 minutes before falling rapidly to zero (figure $1.6). For slow release
starch an input with a smaller peak centred after an hour was used before falling more slowly, such
that the rate of input remained at 17% of its peak rate after 6 hours (as measured experimentally)
(figure S1.6). Experimentally, only 70% of the slowly hydrolysed starch was broken down over the 6
hours compared to 96% for the rapidly hydrolysed starch. As a result, the total glucose inputted to the
model was larger when simulating the rapidly hydrolysed starch to match these values. In both cases,
the model was run for 1.5 hours with no input before the starch intake to allow variables to

equilibrate.

IR was simulated by multiplying the detected insulin concentration by a constant (Kir) smaller than

one. Three severities of IR were simulated to account for variability in the degree of insulin sensitivity
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between T2DM individuals. Mild, moderate and severe IR correspond to 90%, 95% and 98.5% de-

sensitivity respectively in the graphs.

For the metabolically normal individuals, the simulated glucose concentrations match the
experimental data closely with the average difference between the simulated and experimental
curves well within one standard deviation. This provides further validation of the simulated data for

the plasma glucose concentration under conditions where the rate of input is known (figure S1.7).

The simulated data for the glucose concentration in insulin resistant individuals match the
experimental data through the initial postprandial rise and initial subsequent fall (figure S1.7). The
experimentally measured concentration remains within one standard deviation of the simulated data
for moderate IR and between the simulated data for mild and severe IR over the first 4-5 hours.
However, around 4 hours after the intake of fast release starch and 5 hours after the intake of slow
release starch, a drop of glucose concentration to well below the pre-prandial value was measured
experimentally but not seen in the simulated data. This was, accompanied by a widening of the error
bars in the experimental data. When simulating IR, the only change that was made was to multiply the
detected insulin concentration by an IR constant less than 1 to allow direct comparison. However, in
vivo, diabetics additionally show severely depleted glycogen stores reducing their capacity to provide
glucose to the blood when plasma concentrations fall. Therefore, the difference between the
simulated and experimental data is likely to arise because in the simulations the initial glycogen stores
were set to 200mM for both insulin resistant and metabolically normal individuals. Due to this
difference in plasma concentrations after 4-5 hours, the rates of oxidation are only compared for the

first 300 minutes.

As with section §1.3.1, the model simulates the rates of pyruvate oxidation and fatty acids in liver and
so cannot be compared quantitatively with the experimentally measured rates of carbohydrate and

lipid oxidation in the body as a whole (figures $1.8 and S1.9). However, the change in the rates of these
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processes occurring postprandially in the liver should be qualitatively similar to those for the body as

a whole.

Over the 360 minutes, the changes in the rates of oxidation relative to baseline match the
experimental data closely with an upregulation of carbohydrate oxidation and reduction in lipid
oxidation occurring. In the case of fast release starch, a slightly larger increase in carbohydrate
oxidation and reduction in lipid oxidation is seen in T2DM than metabolically normal individuals after
the intake of fast release starch in both the simulated and experimental data (figures S1.8). In the case
of slow release starch the change in the rate of fatty acid oxidation was roughly the same for T2DM
and insulin sensitive individuals in both the simulated and experimental data (figure S1.9). A slightly
lower increase in carbohydrate oxidation was seen for T2DM individuals experimentally, perhaps due

to depleted glycogen stores.

Rates of Glucose Input
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Figure S1.6: The rates of glucose input used when simualting the intake of 50g of rapidly and slowly
hydrolysing starch. When simulating quick release starch 100% of the 50g was inputted to the blood
stream over the 6 hours whilst for slow release starch, 83% entered the blood stream for consistency
with the experimental data.
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Figure $1.9: Simulated and experimentally measured rates of carbohydrate and fatty acid oxidation after intake of slow release carbohydrate. The rates of
oxidation of fatty acids and glucose in metabolically normal and T2DM individuals when (left) measured experimentally in the body as a whole by Seal et al. [453]
and (right) when simulated in liver alone after intake of 50g of slow release starch as discussed in the text. Error bars in experimental data are SEM rather than SD
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S2 Determining Treatment Concentrations

S$2.1 Assessing treatment concentration ranges using an MTS assay

To determine an approximate range of appropriate treatment concentrations, an MTS assay was used
to assess the effects of a range of concentrations on cell viability after 48 hours. The MTS assay allows
rapid measurement of viability for a range of different treatments, but is associated with fairly large
variation in the readings. Note also that only one independent repeat of this experiment was
performed and the numbers stated in the graphs are for technical replicates (in this section only). As
aresult, the statistical significances presented in this section are only applicable to the particular cells
used under the exact conditions tested. Therefore, once appropriate treatment concentrations were
determined through the MTS assay, the effect of these treatments on viability were validated with a
trypan blue exclusion assay (see section S2.2). The tested ranges were based on ranges of effect and
toxicity published in the literature (TOFA [579, 611-613], C75 [617-619], T863 [585, 620], 2DG [603,

621], 3BP [622, 623]).

20ug/ml and 40ug/ml TOFA significantly reduced cell viability whilst 10pg/ml caused non-significant
decrease (figure S2.1a). No significant changes in cell numbers were seen for concentrations of 5pg/mi
or lower. This suggest that TOFA is less toxic to HepG2 cells than other cancer derived lines such as
lung and colon cancer cells in which 1pg/ml of TOFA caused cell death [614]. Similarly, treatment with
20ug/ml or higher caused a significant decrease in cell viability whilst 10ug/ml C75 caused a non-
significant decrease (figure S2.1b). No significant change in viability was noted for lower

concentrations.
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Figure S2.1: The effct of varying concentrations of TOFA, C75, T863, 2DG and 3BP on cell viability of
48 hours of treatment as assessed by the MTS assay. The effect of varying concentrations of (a) TOFA,
(b) C75, (c) T863, (d) 2-DG and (e) 3-BP on cell numbers of 48 hours of treatment as assessed by the MITS
assay (section 5.2.4.1). Note that the number of repeats shown on the axes of the graphs are technical
replicates and not independent repeats. Only one independent repeat was performed. Furthermore, the
statistics calculations were based on these technical replicates. As a result, the data in these graphs
were only used to determine approximate treatment ranges before validating these in a second trypan
exclusion assay. The statistical significances of the differences calculated can only be considered to show
a statistically significant change for the specific cells used under the exact conditions tested. * - p<0.05
compared with control. +SD

No significant change in MTS reading occurred for the range of T863 concentrations assessed (5ng/ml-
400ng/ml) (figure S2.1c). Therefore, in the range measured, partial inhibition of DGAT1 by T863 did
not cause a reduction in cell viability. On observation of the cells by eye, a clear reduction in lipid

droplets was noted for treatments in the range 100-400ng/ml demonstrating that partial triglyceride
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synthesis inhibition was occurring in this range (the effects of T863, along with the other treatments,

on hepatic lipid levels is assessed in section 5.3.2).

3BP concentrations up to 6mg/ml caused no significant change in MTS reading (figure S2.1e).
However, a significant decrease was measured when treating with 8ug/ml or higher. Treatment with
2ug/ml or higher 2DG significantly reduced the MTS reading, whilst lower concentrations did not
significantly change the readings (figure S2.1d). Therefore, consistent with expectation for a cell
culture line derived from hepatocellular carcinoma, inhibition of glycolysis above a certain threshold
at either stage causes a reduction in the number of viable cells. However, below this, cells remained

viable.

Treatment concentrations were selected below the concentrations at which reduced viability was
measured in the MTS assay. For TOFA treatments concentrations of 2pg/ml and 4pg/ml were used.
For C75, treatment concentrations of 1pg/ml and 2ug/ml were used. In both cases these test
concentrations are well below the 20ug/ml concentration at which significant reductions in viability
were measured by the MTS assay. For T863, treatment concentrations of 100ng/ml and 200ng/ml
were tested. No change in viability occurred with T863 treatment in FA free medium (0-400ng/ml) but
a reduction in the presence of lipid droplets was observed at 100ng/ml and 200ng/ml (quantitative
assessment of the effects of T863 on steatosis is performed in section 5.3.2). For 2DG, treatment
concentrations of 250ng/ml and 500ng/ml were used, corresponding to /s and /; of the 2pg/ml
concentration at which a reduction in viability was measured. Similarly, for 3BP treatment
concentrations of 1pg/ml and 2ug/ml were tested corresponding to /s and /4 of the 8Sug/ml

concentration at which a reduction in viability was measured.

$2.2 Validation of treatment concentrations using a trypan blue exclusion

assay

Due the lack of independent repeats of the MTS data, the impact of each treatment concentration

on cell viability was next validated in a second trypan blue exclusion assay (figure S2.2). Consistent
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with the MTS data, none of the proposed treatment concentrations caused a significant reduction in
cell numbers at 48 hours. However, when the cells were treated with 2DG, nonsignificant decreases
were seen in the number of viable cells for both 250ng/ml (1.81+0.15 (n=3) vs control: 2.02+0.07
(n=9); p=0.13) and 500ng/ml (1.85%0.19 (n=3); p=0.15) suggesting that at these concentrations, 2DG
may cause a reduction in viable cells. However, this is small relative to the FFA induced cell death

discussed in section 5.3.

Trypan Blue Exclusion Assay
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Figure S2.2: The effects of treatment concentrations for each inhibitor on viable HepG2 cell numbers.
The effects of the two treatment concentrations for each inhibitor (TOFA, T863, C75, 2DG and 3BP) on
viable. HepG2 cell numbers after 48 hours of treatment as assessed by a trypan blue exclusion assay
(section 5.2.4.4). The n numbers shown in the axes correspond to numbers of independent replicates.
The mean %SD is shown.
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