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Abstract 

 Ağrı Dağı (Ararat), whilst being the tallest volcano in Turkey, is largely understudied. 1 

Two predominant peaks, Greater and Lesser Ağrı, make up the main edifice which has been 2 

built during four main phases. The most recent phase consisted of two volcanic eruptions. The 3 

respective surface area and volume of the first volcanic eruption were estimated at 96 km2 and 4 

3.2 km3, whereas those of second eruption were much smaller with the surface area and volume 5 

estimated at 25 km2 and 0.6 km3. It is unusual for stratovolcanoes to produce basaltic eruptions 6 

of over 3 km3, although these and larger volumes are not uncommon in flood basalt-type 7 

eruptions. Large basaltic eruptions from stratovolcanoes normally require volcano-tectonic 8 

forcing (e.g. subsidence of collapse caldera and graben). However, there is no evidence for 9 

such volcano-tectonic forcing, during the most recent eruptions at Ağrı Dağı (Ararat), and 10 

therefore their comparatively large volume basaltic lavas need to be explained in a different 11 

way. Here we present an analytical method for calculating the source volume needed to supply 12 

magma to the eruptions at Ağrı Dağı. We find that the lava flow of 3.2 km3 was likely fed by 13 

a very large magma reservoir (~13,000 km3) while the second flow of 0.6 km3 was fed by a 14 
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reservoir of a much smaller effective size, or  ~2000 km3). ‘Effective size’ depends on what 15 

fraction of the reservoir participates in the eruption. We propose that entire reservoir supplied 16 

magma to the larger eruption, but only one of its compartments (about 1/5 of the total volume 17 

of the reservoir) supplied magma to the smaller eruption. Although seismic tomography 18 

indicates a magma reservoir at great depths (>20-30 km) below the Ağrı Dağı volcano, 19 

geochemical constraints on some of the later-formed rocks suggest an interaction between a 20 

shallow chamber (at 8-10 km depth) and the deep reservoir approximately 0.5 Ma. We provide 21 

numerical models whose results indicate that dykes injected from the lateral margins of the 22 

deep-seated reservoir are more likely to reach the surface directly rather than replenish the 23 

shallow magma chamber, suggesting also that the compartment for the second eruption was at 24 

the margin of the reservoir.  25 

Keywords: large eruptions, magma chambers, magma reservoirs, volcano-tectonic forcing, 

crustal stresses, numerical models 

1. Introduction 26 

Magma or melt transport in the mantle is somewhat different from magma transport in the 27 

upper crust. Magma in the mantle, and partly in the lower crust, ascends by porous flow (Scott 28 

and Stevenson 1986). At shallower crustal levels, magma ascent is primarily through magma-29 

driven fractures, that is, dykes. Dyke initiation and propagation is known to be partly controlled 30 

by regional stress fields, particularly those induced by crustal extension (e.g. Gudmundsson 31 

1990, 2006; Daniels et al. 2012; Le Corvec et al. 2013; Maccaferri et al. 2014; Tibaldi 2015). 32 

Reservoirs which are underlying the shallow magma chamber may directly supply magma to 33 

areas outside of the stratovolcano (Gudmundsson 2006). Thus, less evolved magmas can erupt 34 

at the margins of stratovolcanoes while more evolved magmas erupt  within the central parts 35 

of the stratovolcano. 36 

Long-lived (>1 Ma) major volcanic edifices, such as a stratovolcano, a caldera volcano, or 37 

a large shield volcano (basaltic edifice), are commonly supplied with magma from a 38 

comparatively shallow crustal magma chamber (Browning et al. 2015; Gudmundsson 2016; 39 

Karaoğlu et al. 2016). While active, a shallow magma chamber acts as a sink for magma from 40 

a deeper magma source (or reservoir) (Gudmundsson 2012; Le Corvec et al. 2013). If new 41 

magma is injected from a deeper source during an eruption, that magma is likely to be of high 42 

density and may accumulate at the floor of the magma chamber (Coppola et al. 2009; 43 
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Gudmundsson 2012). For an eruption to occur, the necessary conditions are that the magma 44 

chamber or reservoir (deep-seated magma chamber) ruptures and a fluid-driven fracture is able 45 

to propagate from the chamber to the surface (Gudmundsson 2012). There is a close 46 

relationship between the excess chamber pressure (pe) and magma recharge volume. At the 47 

most active volcanoes, rupture probability based on increasing excess pressure within the 48 

shallow chamber allow forecasts of dyke formation to be made in real time during magma 49 

recharge events (Browning et al. 2015). Stratovolcanoes in Turkey or elsewhere are commonly 50 

fed by shallow crustal magma chambers with estimated volumes that commonly range from 51 

about 5 km3 to 500 km3 (e.g. Chester 1993). Lavas issued from stratovolcanoes commonly 52 

range in volume between 0.01 km3 or less to 0.1 km3. Whilst these small eruption volumes can 53 

be considered ‘normal’, more voluminous eruptions are known to erupt at stratovolcanoes such 54 

as the 1981 lateral blast event at Mt Saint Helens, USA (2.5 km3), the Plinian eruption of 55 

Krakatoa, Indonesia in 1881 (18-21 km3), the 1991 dome collapse of Mt Unzen, Japan (1 km3), 56 

and the the Plinian eruption of Mt Nemrut, Eastern Turkey (2.5 km3) (Karaoğlu et al. 2005). 57 

Such events cannot be considered ‘normal’ as they are often associated with some degree of 58 

volcano-tectonic forcing, particularly graben or caldera formation or slip. By volcano-tectonic 59 

forcing we mean processes where the strain energy needed for displacement on a ring-fault of 60 

a caldera or the boundary faults of a graben is primarily of tectonic origin and the displacement 61 

cause reduction in volume, shrinkage, of the chamber/reservoir source. The volume reduction 62 

maintains the magmatic excess pressure in the source until the very end of the eruption, thereby 63 

squeezing out an exceptionally large fraction of the magma in the source and producing a large 64 

eruption (Gudmundsson, 2015, 2016). As said, we do not find evidence of volcano-tectonic 65 

forcing of this kind for these two eruptions and therefore seek alternative explanations for their 66 

sizes. 67 

 The type and composition of magma feeding an eruption can also influence the eruptive 68 

volume. For example, eruptions of felsic magmas commonly produce somewhat larger 69 

volumes than mafic ones, as exemplified by the eruption of Puyehue Cordon-Caulle which 70 

produced a rhyolitic lava flow of volume 0.5 km3 (Tuffen et al. 2013). Nevertheless, large-71 

volume basaltic lava flows are commonly associated with flood basalt events such as the 72 

Deccan Plateau and the Columbia Basalt Plateau (Reidel et al. 2013).   73 

It is seemingly rare for stratovolcanoes to produce both normal-size eruptions and large 74 

volume effusive eruptions without an element of local volcano-tectonic forcing 75 

(Gudmundsson, 2015, 2016). The Ağrı Dağı volcano, however, seems to exhibit such rare 76 
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behaviour. Where most of the lavas that make up Ağrı Dağı were produced in relatively small 77 

eruptions (<0.1 km3), two massive basaltic lava flows with total volume exceeding 3.8 km3,  78 

that formed roughly during the period between the peak activity of the greater and lesser Ağrı 79 

volcano. There is currently no explanation as to why such voluminous eruptions occurred 80 

during this time.  81 

At the height of 5165 m, Ağrı Dağı (Ararat) is the tallest volcano in Turkey and is 82 

comprised of two main peaks: Greater and Lesser Ağrı (Fig. 1). The most recent eruption (< 83 

0.5 Ma) of Ağrı Dağı occurred at 39°30′20″ N / 44°22′23″ E and produced two generations of 84 

basaltic lava flows. The former volcanic eruption occupies an area of about 96 km2 and a 85 

volume of around 3.2 km3 while the later volcanic eruption was much smaller with an area of 86 

25 km2 and a volume of 0.6 km3 (Fig. 1). The exact age difference between these lava flows, 87 

however, is unknown. The nearest major population centres (about 145,000 inhabitants) are 88 

only 6 km away from the volcano. Many of the stratovolcanoes in Eastern Turkey are poorly 89 

studied and understood, particularly in terms of their relationship to the current tectonics. This 90 

is an important issue because Ağrı Dağı and other neighbouring volcanoes are situated close to 91 

major strike-slip faults and areas of triple junction tectonics (Fig. 1).  92 

The Ağrı Dağı volcano covers the largest area (~1100 km2) of any volcano in Turkey. The 93 

volcano has erupted some 1150 km3 of volcanic materials over its ~1.5 Ma of activity (Yılmaz 94 

et al. 1998) (Fig. 2). There are no calderas or  grabens dissecting the volcano, which is in 95 

contrast with the common calderas on most stratovolcanoes in Eastern Turkey, such as the 96 

Nemrut caldera (Karaoğlu et al. 2005). The orientations of the parasitic cones and main 97 

volcanic fissures indicate that the dominant direction of tension in the area is NW-SE (e.g. 98 

Karakhanian et al. 2002). Dextral faults are common and form several pull-apart structures, 99 

some of which may be linked to volcanic activity (Karakhanian et al. 2002).  100 

Ağrı Dağı is a typical stratovolcano mostly built up by calc-alkaline volcanic rocks (Yılmaz 101 

et al. 1998, Fig. 2). Initial products (pre-cone phase) observed in the eastern part of the volcano 102 

are mainly intermediate (dacitic and andesitic in composition) pyroclastic rocks and lavas (e.g. 103 

Yılmaz et al. 1998). K-Ar radiometric age data show that the oldest lavas are basaltic and were 104 

erupted between 1.51 Ma and 1.09 Ma ago (Sanver 1968; Pearce 1990). Basaltic lava flows 105 

overlay the oldest volcanic rocks. Following the first eruptive stages, the main cone of the 106 

volcano was built up mostly by andesite and dacite lavas. The last stage (flank eruption phase) 107 

is represented by alternating andesitic and basaltic lava flows from the main cone and parasitic 108 
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scoria spatter cones on the flanks. During the last and most recent phase; basaltic lava flows 109 

were particularly dominant at the margin of the Ağrı Dağı volcano (Fig. 2). 110 

 One objective of this paper is to provide models that give insights into the magma 111 

storage systems feeding the Ağrı Dağı volcano and how their characteristics can account for 112 

the contrasting eruption volumes issued at the volcano. More specifically, we aim to find the 113 

feeding mechanism of the large-volume basaltic lava flows. Furthermore, in the absence of 114 

evidence of volcano-tectonic forcing contributing to the generation of the lava flows, we seek 115 

an alternative mechanism for their comparatively large sizes. In particular, we propose that the 116 

entire reservoir supplied magma during the eruption of the larger and more primitive lava flow. 117 

By contrast, we suggest that only a small compartment within the reservoir supplied magma 118 

during the eruption of the smaller and more evolved lava flow.  119 

 Geochemical constraints indicate that the Agri Dagi volcano was predominantly 120 

constructed from acidic to intermediate lavas and the later-formed rocks indicate an interaction 121 

between a shallow chamber (at 8-10 km depth) and the deep reservoir. As such, we have 122 

developed numerical models to study how of the magma systems of Ağrı Dağı volcano interact 123 

over time. These models are combined with approximate estimations as to the volume of the 124 

magma system underlying the Ağrı Dağı volcano in order to understand how and why such 125 

comparatively voluminous lavas can be erupted from stratovolcanoes such as Ağrı Dağı. The 126 

results provide information which is vital for understanding such large eruptions, particularly 127 

because they pose a significant threat to nearby population centres (e.g. Small and Naumann 128 

2001).  129 

2. Tectonics, geology and geochemistry of the Ağrı Dağı volcano   130 

 The East Anatolian High Plateau (EAHP) displays a very complex volcano-tectonic 131 

history of continental collision. After the closure of the Neotethyan Ocean as a result of Africa-132 

Eurasian convergence (Barka 1992; Okay and Tüysüz 1999; Bozkurt 2001), syn- and post- 133 

collisional magmatism dominate in the EAHP since the Middle Miocene (15 My, Lebedev et 134 

al. 2010). Four stages of Neogene-Quaternary volcanism have been identified: Middle Miocene 135 

(15.0–13.5 Ma), Late Miocene (10–9 Ma), Pliocene (5.8–3.7 Ma), and Quaternary (1.0–0.4 136 

Ma) (Lebedev et al. 2010). Quaternary stratovolcanoes (e.g. Nemrut, Suphan, Ağrı Dağı 137 

volcanoes, Fig. 1) and shield volcanoes (e.g. Tendürek) on the Eurasian Plate produce 138 

predominantly calk-alkaline type eruptive materials (e.g. Pearce et al. 1990; Keskin et al. 1998; 139 

Yılmaz et al. 1998; Keskin 2007, Lustrino et al. 2010), with minor alkaline igneous rocks (e.g. 140 
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Innocenti et al. 1976, 1980; Pearce et al. 1990; Keskin et al. 1998; Yılmaz et al. 1998; Alici et 141 

al. 2001; Keskin 2007). Lustrino et al. (2010) proposed that extensive volcanic activity on the 142 

Arabian plate, such as Karacadağ shield volcano, surfaced on a 35–40 km thick crust mostly 143 

during the Late Miocene to Quaternary, with the production of large amounts of alkaline basic 144 

rocks (Pearce et al. 1990; Ercan et al. 1991; Notsu et al. 1995). The formation of Ağrı Dağı 145 

volcano has been tectonically linked to slab break-off and delamination in intraplate settings 146 

overlying hot asthenosphere through transtension (Yılmaz et al. 1998; Shabanian et al. 2012; 147 

Sağlam-Selçuk et al. 2016). 148 

Recent seismic tomography studies have documented that the crust in Eastern Turkey has 149 

an average of thickness 65 km; it is thinner than average in the south, about 38 km (Arabian 150 

foreland (Angus et al. 2006; Ozacar et al. 2008; Cakir et al. 2000; Zor et al. 2003) (Fig. 1). 151 

Many studies suggest that the lithospheric mantle may be either completely absent (e.g. Al-152 

Lazki et al. 2003) or very thin (e.g. Angus et al. 2006; Ozacar et al. 2008) beneath Eastern 153 

Turkey. Two controversial views have been expressed as to the origin of volcanism in Eastern 154 

Turkey; namely (i) that the region is reformed by melting and cooling of the asthenosphere and 155 

is as such an older lithospheric mantle (Keskin 2007), and (ii) that, on average, a 20 km thick 156 

lithosphere may have resulted from cooling of the asthenosphere from 15 Ma to 7 Ma (Angus 157 

et al. 2006). The crustal stress field has likely changed dramatically in the past 10 to 5 Ma 158 

(Örgülü et al. 2003). These seismic- and petrology-based studies indicate that the uppermost 159 

mantle is partially molten and that the asthenosphere is close to the base of the crust, consistent 160 

with the existence of volcanism in the region (Örgülü et al. 2003). 161 

The volcano-stratigraphy of the Ağrı Dağı volcano was mapped by Yılmaz et al. (1998). 162 

Geological observations and published data (Türkünal 1980; Bingöl et al. 1989) show that 14 163 

different types of geological units represent the stratigraphy of the region around the Ağrı Dağı 164 

volcano (Appendix 1). A cone-building phase produced mostly basaltic and rarely andesite 165 

rocks between 0.68 Ma and 0.5 Ma (Sanver 1968; Pearce 1990). The final stages of activity 166 

resulted in flank eruptions between 0.3 Ma and 0.04 Ma (Sanver 1968; Pearce 1990; Ercan et 167 

al. 1990; Notsu et al. 1995) and the most recent activity which occurred 20,000 years ago 168 

produced mostly andesitic lavas (Nagao et al. 1989). Since this period the volcano has been 169 

dormant, although there were unrest periods characterised by increased seismicity in 2500-170 

2400 BC and 1840 AD (Karakhanian et al. 2002).  171 

Here we consider the most recent basaltic lava flows erupted during the cone-building and 172 

flank eruption phases (< 0.5 Ma), which are located on the southern flank of the Greater Ağrı 173 
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Dağı volcano (lava flows I and II, Fig. 3). The flows are easily  distinguishable from the older 174 

basaltic lava flows (lava flow III, Fig. 3) by colour and lack of both erosion and alteration. 175 

These most recent basaltic lava flows were erupted from a NW-SE aligned series of scoria 176 

cones dated at 0.5 Ma (Sanver 1968). The origin of those basaltic lava flows are is poorly 177 

constrained in terms of petrology because previous sampling localities were not spatially 178 

defined (e.g. Pearce et al. 1990; Yılmaz et al. 1998). Generally, though, the volcanic rocks of 179 

the Ağrı Dağı volcano are classified through a wide compositional range from trachy-basalt, 180 

tephrite/basanite, basaltic andesite, andesite, dacite and rhyolite (Fig. 4a) (e.g. Pearce et al. 181 

1990; Nagao et al. 1989; Kheirkhah et al. 2009). A significant feature of the genesis and 182 

evolution of Quaternary magmas in Ağrı Dağı is the absence of basalt on the plot although the 183 

petrography shows them as basalt (Fig. 4). MORB-normalised trace element content of selected 184 

basaltic rocks are shown in Fig 4b. The basaltic lava flows at the main cone of the Ağrı Dağı 185 

are more enriched in LREE than the marginal lavas (Fig. 4b). 186 

3. Injected material and reservoir volume  187 

In order to estimate the relative contribution of a shallow magma chamber and the 188 

contribution of a deeper magma reservoir to the eruptions of Ağrı Dağı we calculated first the 189 

total volume of injected materials, that is, magma volume leaving the chamber/reservoir during 190 

the eruption, from the lava flows I and II. In this study we used ArcGIS 10.1 to calculate the 191 

geometry and area of the Quaternary basaltic lava flows I and II (Fig. 3). 192 

The maximum thickness for each flow was estimated based on the elevation difference with 193 

the surrounding area using a SRTM (Shuttle Radar Topography Mission) compiled digital 194 

elevation model (DEM). The thickness of each individual lava flow increases from the margins 195 

to the centre, and so the greatest thickness was recorded at the centre of each flow that appears 196 

to be similar to lava shield (Fig. 2).  197 

We can make an approximation to the shape and emplacement style of a lava shield. The 198 

volume of a lava shield is generally computed by approximating its shape as a truncated cone 199 

for flat topped volcanoes or a pyramid for a volcano with a distinct peak (Hasenaka 200 

1994). Therefore, during this study the volume of each lava flow is calculated by 201 

approximating its shape to a cone, namely as:  202 

)3/(haVe                                                                                                                    (1) 203 
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where eV  is volume of the volcanic unit; a  is area and h is the maximum thickness of the unit. 204 

The area of the base of each individual volcanic unit was calculated using ArcGIS. The volume 205 

of eruptive surface materials is somewhat uncertain because part of the flow may be partially 206 

submerged by younger thick lava sequences (Andrew and Gudmundsson 2007). The total 207 

volume of injected material is a combination of the volume of an individual lava flow on the 208 

surface and the volume of the feeder dyke that fed the eruption. There are no available data in 209 

the study area on dyke geometries, such as length (strike dimension), thickness and depth (dip 210 

dimension), to calculate the volume of feeder dykes. As such, we use rough estimations of the 211 

average volume of dykes in Eastern Turkey, where the volumes do not exceed 0,004 212 

km3 (Karaoğlu et al. 2016). Therefore, the error produced in the total injected material due to 213 

neglected volume of feeder dyke is very small.  214 

The total injected material or magma Ve  from Eq. (1) for lava flow I  is around 3.2 km3 215 

(±0,1 km3) while the total injected material for lava flow II is around 0.6 km3 (±0.02 km3). Both 216 

volumes are quite similar to the sizes of monogenetic Holocene lava shields on the Reykjanes 217 

Peninsula, West Iceland, where the volume lava flow II is approximately the same size of the 218 

picrite lava-shields while the volume lava flow I is approximately the size of the olivine-219 

tholeiite shields (Andrew and Gudmundsson 2007). The primary picrite or olivine basaltic 220 

magmas in Iceland are believed to come from deep magma reservoirs rather than crustal 221 

shallow magma chambers (Meyer et al. 1985).   222 

It is known that magma can accumulate at the crust-mantle boundary, which is commonly 223 

the situation for deep-seated reservoirs. A deep reservoir may directly feed surface eruptions 224 

or form a shallow magma chamber in the upper or middle crust. Such shallow chambers can 225 

form due to abrupt changes in the mechanical properties of the crustal rocks, particularly  226 

changes in stiffness (Young’s modulus) of those rocks (Barnett and Gudmundsson 2014). In 227 

areas of intense magmatism such as Iceland, the crust-mantle boundary is commonly referred 228 

to as the magma layer (Hermance 1981; Bjornsson 1983;  Gudmundsson 1987). The porosity 229 

or melt fraction differs through a magma reservoir due to buoyancy and reduced potential 230 

energy such that magma tends to move towards the top (shallowest depth) of the reservoir. 231 

Therefore, the greatest melt fraction is normally in the uppermost compartments of the 232 

reservoir and gradually decreases with depth (Richter and McKenzie 1984). The average melt 233 

fraction throughout a reservoir is commonly assumed at 0.25 (e.g. Richter and McKenzie 234 

1984). The melt fraction of the lowest parts of a chamber may be higher if the reservoir is 235 
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continuously supplied with new primitive melt or magma from deeper sources in the mantle; 236 

for example, from the upper parts of a mantle plume (Gudmundsson 1987). The mechanical 237 

behaviour of a magma reservoir can be modelled to a first approximation as 238 

a poroelastic material (Gudmundsson 1986, 2016; Tibaldi 2015). Hence, the volume of a 239 

magma source during individual eruptions may be roughly estimated from Eq. 2, and is given 240 

by (Gudmundsson 1987, 2016; Browning and Gudmundsson 2015):   241 

)(



 b

me

e
b

p

V
V



                                                                                                                (2) 242 

where eV  is the volume of injected material in a single eruption,   is fractional porosity of the 243 

reservoir, ep  is the excess magmatic pressure in the reservoir, m  and b  are magma 244 

compressibility and bulk compressibility of the reservoir, respectively.   245 

Magmatic excess pressure in the reservoir can be considered nearly equal to the in-situ 246 

tensile strength of the host rock at the time of rupture (Elshaafi and Gudmundsson 2016). The 247 

average in-situ tensile strength of the upper crust in Eastern Turkey is around 3.5 MPa (Gurocak 248 

et al. 2012). Compressibility is a measure of the relative volume change of a fluid or solid as a 249 

response to change in stress. The static compressibility of basaltic magma  m
 at 1100-1300 oC 250 

is around 1.25x 10-10 Pa-1 (Murase and McBirney 1973). The Young’s modulus for the 251 

lowermost crust in Eastern Turkey is around 35 GPa at a depth of 20 km (e.g. Gurocak et al. 252 

2012: Karaoğlu et al. 2016). The bulk modulus (K) for this part of the crust can be calculated 253 

from the relation: 254 

)21(3 


E
K                                                                                                                        (3)                                                                                                         255 

where K  is the bulk modulus, E is the Young’s modulus and   is the Poisson’s ratio, whose 256 

average value for most solid rocks is around 0.25 (Gudmundsson 2011). Hence the 257 

compressibility of the crust in Eastern Turkey 








K

1
 is around 4.28 x 10-11 Pa-1.  258 

From Eq. (2), if we assume the magma reservoir as partially melted with an average 259 

porosity of 0.25 throughout the reservoir as previously mentioned, the volume of the reservoir 260 

would be: 261 
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eb VV  3858                                                                                                                       (4)                                                                                                  262 

This equation can be applied to estimate the volume of magma within a reservoir supplying 263 

magma to individual eruptions. From Eq. (4), the volume of the magma reservoir during the 264 

first eruption (lava flow I) is around 12,345 km3. By contrast, the volume of the magma 265 

reservoir during the second eruption (lava flow II) is, at 2,403 km3, that is less by a factor of 266 

about 5. A much larger reservoir is thus needed to give rise to the first lava flow than the second 267 

lava flow, as expected, assuming the reservoir’s elastic properties remained the same for both 268 

eruptions. To explain this difference in reservoir size and related aspects during these eruptions, 269 

we created a suite of numerical models which investigate the distribution of stresses around a 270 

deep magma reservoir, with some constraints from seismic tomography.  271 

4. Seismic tomography models 272 

Low-velocity anomalies obtained from seismic tomography models can be used to detect 273 

magma chambers and reservoirs at depth. The seismic velocity model derived by Salah et al. 274 

(2011) is used to construct five vertical cross-sections of P-wave velocity across the area of 275 

Ağrı Dağı volcano. This model is constructed through the application of the seismic 276 

tomography method of Zhao et al. (1992, 1994) on P-wave (primary wave) arrival times in 277 

Eastern Anatolia. This method has been applied successfully on arrival times collected from 278 

seismic events occurring in different tectonic circumstances. The method is adaptable to a 279 

general velocity structure which includes several seismic velocity discontinuities of complex 280 

topography. Initially, a 3-D grid net is set in the model space to express the 3-D velocity 281 

variations, the seismic velocities are taken as unknown parameters. Velocity at any point in the 282 

model is calculated by linear interpolation of the velocity values at eight grid nodes surrounding 283 

that point. The method uses an efficient 3-D ray-tracing scheme which accurately calculates 284 

travel times and ray-paths. More details about the method can be found in Zhao et al. (1992, 285 

1994, 2012).  286 

The Eastern Turkey data set comprises 31,730 P-wave arrival times generated by 7380 287 

seismic events which were recorded by 39 seismic stations distributed relatively uniformly in 288 

the study area. Analysis of ray-path coverage (both in plan and vertical views) and the results 289 

of a checkerboard resolution test, and the hit count rates all imply that the obtained velocity 290 

anomalies are reliable features down to a depth of 45 km (Salah et al. 2011). P-wave velocity 291 

along the selected five cross-sections are shown in Figure 5. The model shows that prominent 292 
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low P-wave velocity zones are visible at a depth range of 20-30 km beneath cross-sections 1-3 293 

which strike in a NW-SE direction. Cross-sections 4 and 5 run in an NE-SW direction and 294 

exhibit low P-wave velocities that extend to the base of the upper crust (Fig. 5). These low P-295 

wave velocity zones most likely indicate the occurrence of partial melt which can be interpreted 296 

as magma reservoirs beneath Eastern Anatolia (Hearn 1999; Calvert et al. 2000; Zor et al. 297 

2003). These low-velocity zones seem to be consistent with previous seismological 298 

observations such as inefficient Sn propagation and low Pn velocity (Rodgers et al. 1997; Al-299 

Lazki et al. 2004).  300 

5. Numerical models 301 

 Whilst the seismic tomography data clearly indicates the presence of a deep reservoir 302 

there is little evidence in the tomography for a shallow magma chamber. However, 303 

geochemical constraints indicate that a shallow chamber was active approximately 5 Ma. As 304 

such, we built a suite of numerical models to test the stress conditions generated by different 305 

arrangements of magma chambers. The objective was to understand which conditions favour 306 

eruptions, and how could the relative size and location of those eruptions change due to the 307 

magma chamber arrangement.  308 

 The numerical models were built and solved using the finite element program 309 

COMSOL (www.comsol.com; cf. Zienkiewicz 1979; Deb 2006). The models are based on the 310 

real geological setting of the Ağrı Dağı volcano as interpreted from field measurements, 311 

seismic wave profiles, and InSAR data (Cavalié and Jónsson 2014) (Fig. 6). All models are 312 

two dimensional where the magma chambers and reservoirs are modelled as cavities or holes 313 

with prescribed loads given at their boundaries to simulate overpressure (Gudmundsson 2011; 314 

Gerbault 2012) (Fig. 6).  315 

 5.1. Model set-up  316 

 The geometry of our 2-D models is based upon a simplified E-W striking profile 317 

through the Ağrı Dağı volcano (Fig. 6). The magma sources in our models are elliptical, which 318 

is likely a simplification of real magma chamber geometries (e.g. Gudmundsson 2012; Le 319 

Corvec et al. 2015; Karaoglu et al. 2016). Although it has been shown previously that 320 

topography can play a role in distributing near surface stresses, the primary focus of our 321 

investigation is on the stress differences resulting from different boundary conditions applied 322 

to the magma chamber itself, where the host-rock properties as well as the depth, shape and 323 

http://www.comsol.com/
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size of the chamber are of main concern. Thus, we assume flat topography in all the models. 324 

The 14 different geological units as mechanical layers used in our models are based on direct 325 

geological observations and published literature (Yılmaz et al. 1998) (Fig. 6). The values used 326 

to calculate depth of the magma chamber encompass all of these mechanical layers. 327 

The depths of shallow magma chambers are commonly located within a few kilometres 328 

of the ground surface (cf. Gudmundsson 1998). In this study we assume the magma chamber 329 

depth to be 8 km, although results are not sensitive to the shallow chamber depth. The depth of 330 

the deep seated magma reservoir is inferred from tomographic data at around 20 km. In Fig. 6 331 

we show only the model along an E-W strike. We performed two models, in order to investigate 332 

different eruption volumes i.e. (i) very large magma storage configuration for lava flow I (i.e. 333 

~13, 000 km3), and (ii) a smaller lava flow II (i.e. ~2,000 km3). We assumed two magma storage 334 

regions: 1) a deeper and larger reservoir at a depth of 20 km (with a diameter of 40 km and a 335 

thickness of 7 km) a shallow magma chamber at 8 km depth (with a diameter of 16 km and a 336 

thickness of 5 km (Figs. 7a-b). The second model shows the same shallow magma chamber at 337 

8 km depth (with a diameter of 16 km and a thickness of 2 km) but with a much smaller volume 338 

deeper reservoir at 20 km depth (with a diameter of 30 km and thickness of 3 km (Figs. 7c-d).  339 

In this model both magma chambers are residing within a heterogeneous, anisotropic 340 

elastic half space with Young’s modulus (E) varying between individual layers from 50 GPa 341 

to 20 GPa, as shown in Appendix 1. The shallower magma chamber is modelled considering 342 

two criteria. First, that most stratovolcanoes are fed by shallow chambers and, second, that 343 

geological data (some magma mingling textures in the rocks) and geochemical records indicate 344 

the existence of a shallow magma chamber beneath the volcano. The deeper magma reservoir 345 

is modelled based on our seismic tomography data. The shallower magma chamber assumed 346 

that has a maximum diameter of 16 km to a first approximation (Figs. 7a-b), whereas the deeper 347 

chamber or reservoir has a maximum diameter of 40 km for the first volcanic eruption to 348 

correspond the shrinkage of the volume of reservoir with the time. Poisson’s ratio (ν) does not 349 

vary significantly between individual layers; thus, in the models we use a constant typical value 350 

of 0.25 (Gudmundsson 2011). The E-W striking profile hosts predominantly horizontal layers 351 

where the layer thicknesses are taken from geological measurements (Fig. 2) and given in 352 

Appendix 1. All models are fixed at the corners, with boundary loads applied at the west and 353 

east edges and a free surface (a region free from shear stress) prescribed on the upper edge 354 

(Earth’s surface).  355 
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In addition to boundary loads prescribed at the edge of the models, to simulate tectonic 356 

stressing, we also load the internal cavities to simulate excess magma pressure, which is 5 MPa 357 

in Figure 6. Magma-chamber rupture and dyke injection occur when the tensile stresses at any 358 

point at the boundary of the chamber/reservoir reach the tensile strength of the rock (0.5 to 9 359 

MPa) (Amadei and Stephenson 1997). Laboratory tensile strengths of rocks reach up to about 360 

30 MPa, but the in-situ tensile strengths are between 0.5 and 9 MPa, the most common values 361 

being 2-4 MPa (Gudmundsson 2011). By using excess pressure in the chamber/reservoir rather 362 

than total pressure, the effects of gravity are automatically considered (cf. Gudmundsson 2012). 363 

We use a triangular mesh with a maximum element size of 16 m and a minimum element size 364 

of 2 m. Our simplified models show that the most likely area of chamber rupture and surface 365 

eruption is fed by interconnected magma reservoirs, shallow and deeper magma chambers (Fig. 366 

7). 367 

5.2. Results 368 

To explore the potential magma propagation paths in the shallow crust beneath the Ağrı 369 

Dağı volcano, we constructed a numerical model (Fig. 7). It is first necessary to consider the 370 

stress required for magma chamber rupture. In the simplest terms, a magma chamber roof will 371 

rupture and inject a dyke (or an inclined sheet) when (Gudmundsson 1990, 2011):  372 

oel Tpp  3                                                                                                                     (5)                                                                                                             373 

where pl  is the lithostatic pressure and pe  is the excess pressure in the magma chamber, σ3 374 

is minimum principal compressive stress in the host rock, and T 0  is the tensile strength of the 375 

host rock, which ranges from 0.5 to 9 MPa (Amadei and Stephenson 1997) and the average in 376 

situ tensile strength of the upper crust in East Turkey is around 3.5 MPa (in agreement with the 377 

common in-situ tensile strength range given above). When a chamber roof has failed in tension 378 

and a dyke is initiated then the magma follows the path or trajectories of maximum principal 379 

compressive stress, σ1 (Gudmundsson 2011). Here we present first the results on crustal stresses 380 

induced solely by magmatic excess pressure within each chamber, ignoring initially the effects 381 

of any regional tectonic loading. In Fig. 7 we show the magnitudes of the minimum principal 382 

compressive (maximum tensile) stress, σ3, and von Mises shear stress, τ. 383 

 In an E-W profile, the maximum tensile and shear stresses concentrate at the lateral 384 

margins of each magma chamber and at the Earth’s surface above the magma chamber. 385 
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Complex stress patterns and interactions occur at depth due to the attitude and mechanical 386 

properties of the layers (Fig. 7a). There is a stress concentration zone or link between the deeper 387 

magma reservoir and the shallow chamber (Fig. 7b). Our model indicates that if magma 388 

propagates from the edge of the deeper reservoir it can reach the surface without interaction 389 

with the shallow chamber (Fig. 7a-b). However, this is partially dependant on the size and 390 

position of the deeper reservoir with respect to the shallow chamber. When the reservoir is 391 

smaller (Fig 7c) we find there is more likelihood of interaction with the shallow chamber. Here, 392 

the result show that the deeper magma reservoir has two options, so as to either 1) feed the 393 

volcanic edifice from the lateral margins or 2) replenish the shallow magma chamber. Dykes 394 

that propagate from the central part will not feed an eruption but instead charge the shallow 395 

magma chamber. These models indicate that most lava flows at the central part of the volcano 396 

will produce more evolved lavas compared to those lavas fed from the reservoir margins.   397 

6. Discussion 398 

  6.1. Magma discharge mechanism 399 

Field studies and stratigraphy of the volcano indicate three major andesitic and two basaltic 400 

lava flow eruption cycles, with tens of intermediate-composition lava stacks, from cone 401 

building to late stage of the Ağrı Dağı volcano (Fig. 2; Yılmaz et al. 1998). We focus on the 402 

latest basaltic lava flows (~0.5 Ma; Sanver 1968) which record a single magmatic pulse and 403 

path from chamber to the surface. The combined volume of lava flows I and II represents only 404 

0.06 % of the volume of the estimated magma reservoir.  405 

The variety of volcanic products along Ağrı Dağı volcano range from contemporaneous 406 

intermediate (dacitic and andesitic) to basic (basaltic) eruptions, indicating that the magma in 407 

this volcanic edifice may be derived from double magma chambers rather than a single magma 408 

source. The more evolved intermediate volcanic rocks (e.g. dacite and andesite) are generally 409 

concentrated at the central part of the edifice while the less evolved basaltic rocks are 410 

distributed at the margin. The injection of dykes from the central part of the deeper magma 411 

chamber (magma reservoir) could feed the shallow magma chamber while dyke injection from 412 

the margin of the deeper magma reservoir can propagate directly to the surface to feed 413 

eruptions. Field observations and the numerical model models are consistent with this 414 

distribution, where less evolved magma can be observed around the periphery of the volcanic 415 

edifice whereas more evolved lava flows are present around the central part.  416 
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The results of the numerical model, supported by geochemical data, indicate that dyke 417 

injection from the central part of a deep magma reservoir could feed a shallow magma chamber. 418 

The magma arriving at the shallower depths could then begin a fractionation or differentiation 419 

process prior to the chamber rupture condition ( MPaTpe 50  ) being reached. Thus, we 420 

suggest that the shallow magma chamber produces more evolved magma (e.g. the young 421 

andesitic rocks of age 0.1-0.02 Ma; Nagao et al. 1989); whereas the deep-seated magma 422 

reservoir produces the older and less evolved lavas (e.g. 0.3-0.049 Ma basaltic rock).   423 

The magma reservoir volume underneath Ağrı Dağı appears to have reduced considerably 424 

over a period of 0.5 Ma. Our models indicate a volume reduction from 12,345 km3 for lava 425 

flow I to 2403 km3 for lava flow II. Magma storage shrinkage has been interpreted at other 426 

volcanic provinces such as in Iceland (Andrew and Gudmundsson 2007) and at the Al Haruj 427 

Volcanic Province, central Libya (Elshaafi and Gudmundsson 2016) (Fig. 8).  428 

The first volcanic eruptions may be envisaged as injection from the margins of the deeper 429 

part of reservoir, whereas the second volcanic units may be injected from the uppermost part 430 

of the reservoir where more fractionated (lighter) basaltic rocks form. These basaltic magmas 431 

tend to occupy the uppermost part of a reservoir due to buoyancy. This process might explain 432 

why the volume of the reservoir changed substantially through time.  433 

The sizes and areas of individual volcanic eruptions are mainly dependent on the sizes of 434 

the source magma chambers. There are many examples around the world showing that 435 

individual volcanic eruptions can occur on the order of several hundred square kilometres and 436 

have volumes exceeding several cubic kilometres. In fact, the largest basaltic lava flows reach 437 

estimated volumes of thousands of cubic kilometres (Fig. 8). Much more commonly, however, 438 

lava flows cover only small areas and have volumes less than 0.5 km3. As an example of a large 439 

historical lava flow, the 1783 Laki lava in Iceland covers 565 km2 and has a volume of about 440 

15 km3 (Fig. 8). Also, some prehistorical (mainly 16-17 Ma old) individual lava flows of the 441 

Columbia River Plateau exceed volumes of 1000 km3. By contrast the lava flow erupted during 442 

the Krafla Fires in North Iceland, 1975-1984, covers an area of 0.3 km2 and its volume is about 443 

0.17 km3 (Tryggvason 1984), while Etna lava flow for the 1991-1993 eruption has an area of 444 

7.2 km2 and an estimated volume between 0.022 and 0.072 km3 (Harris et al. 2000) (Fig. 8). 445 

Many eruptions of 1-10 km3 and even larger can be explained by local volcano-tectonic forcing 446 

(e.g. Gudmundsson 2015, 2016) or continuous supply from a large deeper reservoir to the 447 
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shallow chamber during the eruption (Gudmundsson 1987). By contrast ‘normal’ or small 448 

eruptions are usually less than 0.1 km3 and commonly fed by crustal shallow magma chambers 449 

with little or no continuous magma replenishment from a large deeper reservoir during the 450 

eruption (Gudmundsson 1987, 2016). Thus, in the absence of evidence for local volcano-451 

tectonic forcing, we assume that both lava flows I and II were emplaced from a deep reservoir 452 

in a normal eruption. This notion is supported by the chemistry of the lavas which indicates 453 

primitive magma, particularly of the larger lava flow.  454 

To explain the difference in the volumes and chemistry of the lava flows, there are several 455 

possibilities. One possibility is that the size or volume of the entire reservoir decreased greatly 456 

between the two eruptions, in which case reduction in ‘effective size’ corresponds to reduction 457 

in true size. This possibility cannot be ruled out, but the reduction in size would then have to 458 

have happened within the time period of, at maximum, a few hundred thousand years (the lava 459 

flows are younger than 500,000 years). This is possible, but not very likely given that reservoir 460 

feeding volcanic systems, such as in Iceland, are commonly active for 0.5-1 Ma 461 

(Gudmundsson, 2006, 2012), and in many other areas similar reservoir are active for as long 462 

as millions of years. We therefore propose that the second and smaller eruption was supplied 463 

with magma from only a part of the reservoir, that is, for a compartment within the reservoir 464 

(see Gulen 1984 for discussion of the origin of the lavas). This suggestion is supported by the 465 

second and smaller lava flow being more evolved than the first and larger flow. It is clear 466 

particularly at the margin area of the Ağrı Dağı volcano (e.g. Kheirkhah et al. 2009). Thus, we 467 

suggest that only a fraction of the entire reservoir, a compartment (cf. Gudmundsson, 2012), 468 

contributed to the second eruption, thereby, partly at least, explaining their volume and 469 

chemical differences. Based on our calculations, the volume of that compartment is 2403 km3, 470 

or roughly 1/5 that of the entire reservoir. Formation and maintenance of compartments in 471 

magma sources is discussed by Gudmundsson (2012). Furthermore, based on our numerical 472 

studies, this compartment was most likely at one of the margins of the reservoir.  473 

 6.2. Tomography 474 

 The tomographic data indicatesindicate the presence of an active deep magma reservoir 475 

having low P-wave velocities that extend to the base of the upper crust (Fig. 5). The magma 476 

reservoir may extend between 20-30 km in depth and 35-45 km in width, showing a NW−SE- 477 

elongated tabular form (sill-like shape) in the crust (Figs. 5a-c). A diapiric-shaped dyke 478 

injection extending to the upper level of the crust in a NE−SW oriented profile (Fig. 5d) is 479 
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clearly observed. In all profiles, we note that diapiric-shaped dyke injection feeding the main 480 

vent of the Ağrı Dağı volcano are not aligned below the main volcanic centers (Figs. 5a-d). It 481 

seems there is no magma source below the Lesser Ağrı Dağı volcano. Greater Ağrı Dağı 482 

volcano is not situated directly over the centre of the large deeper reservoir. This suggests that 483 

the reservoir may have migrated laterally following constructing of the Ağrı Dağı volcano 484 

during the past 1.5 Ma. The shallow magma chamber may be fossilised as a plutonic body 485 

directly below the Ağrı Dağı volcano, which would not be possible to detect it with 486 

tomographic imaging.      487 

 At least 4 historical volcanic eruptions are known to have occurred from Ağrı Dağı 488 

volcano (Karakhanian et al. 2002): (i) pyroclastic flow in 1840 AD from Greater Ağrı Dağı 489 

volcano, (ii) unclear eruption type in 1450 AD from the SE slope of the Lesser Ağrı Dağı 490 

volcano, (iii) unclear eruption type in late 3rd-early 4th century AD from Greater Ağrı Dağı 491 

volcano, and (iv) explosive eruption-pyroclastic flow in 2500-2400 BC from the N-NE slope 492 

of Greater Ağrı Dağı volcano. Taking into account the huge magma reservoir below the 493 

volcano even a small future eruptive event coupled with volcano-flank instabilities could 494 

therefore pose a threat to the large populations living around Ağrı Dağı volcano, in Eastern 495 

Turkey and in the Armenian province.   496 

    6.3. Numerical models in the geological context 497 

 Our general numerical results provide insights into the mechanism of magma 498 

movement from a deep magma reservoir to the surface. Such a process can occur in two 499 

predominant ways: (i) the magma is fed directly to the surface from the lateral margins of the 500 

deep reservoir, or (ii) when the magma of deep origin is injected from the central part of the 501 

reservoir, the magma path (the dyke) connects with a shallow chamber which, in turn, ruptures 502 

and propagates a dyke to the surface. In the second case any erupting magma is then technically 503 

fed from the shallow chamber. Despite the tomography data which support an active deep 504 

magma reservoir (20-30 km in depth), the huge volume of intermediate and acidic lavas 505 

constructed at Ağrı Dağı stratovolcano (see Fig. 2) and other large stratovolcanoes most likely 506 

require the formation of a shallow magma chamber.  507 

 When taken together all of our results indicate that the bulk volume of the reservoir 508 

appears to be considerably reduced between the time of erupting Lava flow I and Lava flow II. 509 

The smaller size of the later magma reservoir increases the likelihood of interaction with the 510 
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shallow chamber, assuming it has not already solidified which seems to be the case in Ararat 511 

volcano. Regardless of the size of each individual chamber, the conditions for rupture reamin 512 

the same, namely that the excess pressure must exceed the tensile strength of the wall rocks 513 

(Eq. 5). In both cases tested numerically (Fig. 7) we find that this failure is most likely at the 514 

margins of the chamber. Therefore more evolved basaltic magma remains inside reservoir 515 

during the quiescent time among two eruptions may be moved upward compartment due to 516 

buoyancy effects of the reservoir to form compartment at the uppermost of the resevoir  517 

(Gudmundsson 2012), and then reservoir it would be ruptures after while when Eq. 5 becomes 518 

satisfied again (Fig. 7c).        519 

 Basaltic rocks generated in lava flow II are generally more fractionated than lava flow 520 

I which is exactly as expected. The lack of data concerning the petrogenesis and geochemistry 521 

for both volcanic flows makes further analysis challenging. We therefore encourage a 522 

systematic field survey which would greatly improve the understanding of Ağrı Dağı volcano. 523 

We hope that this paper encourages further research into this volcano.   524 

7. Conclusions 525 

1) We calculated the total injected materials Ve for two of the most recent basaltic eruptions at 526 

the Ağrı Dağı volcano. Lava flow I is around 3.2 km3 while the lava flow II is around 0.6 km3. 527 

In addition, we present an approach for estimating the volume of the reservoir supplying each 528 

individual volcanic eruption. The effective reservoir volumes obtained were 12,345 km3 and 529 

2403 km3 for lava flows I and II, respectively. 530 

32) Results of seismic tomography reveal a low-velocity zone at a depth of 20 to 30 km below 531 

the northwest part of the Ağrı Dağı volcano which interpret to be a deep magma reservoir. We 532 

do not find strong evidence of a shallow magma source from the present velocity models. This 533 

may indicate that the shallow magma chamber has already solidified. 534 

 535 

23) We explore two scenarios to explain the difference in volume of these two flows. One is 536 

that the absolute reservoir volume decreased between the two eruptions. This is possible, but 537 

not very likely since the likely time between the eruptions is not very large in comparison with 538 

the lifetimes of large reservoirs. The other scenario involves reservoir compartments. In this 539 

scenario, while the less evolved lavas around the volcano was feeding only by deep reservoir, 540 

a comparatively small compartment within the reservoir contributed magma to the eruption, 541 
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which generated lava flows I and II at Ağrı Dağı volcano. In this view, calculated reservoir 542 

volume of 2403 km3 for issuing lava flow II thus corresponds to that compartment and is about 543 

1/5 of the total volume of the reservoir.   544 

3) Results of seismic tomography reveal a low-velocity zone at a depth of 20 to 30 km below 545 

the northwest part of the Ağrı Dağı volcano which interpret to be a deep magma reservoir. We 546 

do not find strong evidence of a shallow magma source from the present velocity models. This 547 

may indicate that the shallow magma chamber has already solidified. 548 

4) The combined results from our tomography models and analytical calculations were used to 549 

prepare a suite of numerical models. By simulating various crustal loading situations we show 550 

the most likely stress state that promoted feeder-dyke propagation to erupt lava flows I and II. 551 

Our data is useful in estimating the potential source of future eruptions at Ağrı Dağı volcano. 552 

The interpretation of our numerical models suggests that Ağrı Dağı basaltic volcanism has been 553 

fed by either a shallow magma chamber located at about 8 km depth or lateral ends of a deep-554 

seated magma reservoir at 20-30 km depth which is supported by the geographical distribution 555 

of these basaltic lava flows.. 556 

5) The basaltic magma feeding Ağrı Dağı stratovolcano is enriched in LILE elements which 557 

indicates an interaction between the shallow magma chamber and the deeper magma reservoir 558 

just below the volcano. However, lesser evolved basaltic volcanic rocks at the margin of the 559 

Ağrı Dağı volcano were presumably fed by a deeper magma reservoir with no interaction with 560 

the shallow chamber. 561 
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Figure captions 801 

Figure 1. a) Map of the tectonic framework of Turkey; b) middle Miocene to recent volcanic 802 

centers in Eastern Turkey and location of population centres on a DEM-derived map. NAF: 803 

North Anatolian Fault, EAF: Eastern Anatolian Fault, KTJ: Karlıova Triple Junction, VFZ: 804 

Varto Fault Zone.  805 

 806 

Figure 2. a) Ağrı Dağı volcano and surronding region; b) volcano-stratigraphy of the Ağrı Dağı 807 

volcano; c) geological map of the Ağrı Dağı volcano; d) geological map of the last two basaltic 808 

lava eruptions, flows I and II. 809 

 810 

Figure 3. The last basaltic/most basaltic lava flows around Ağrı Dağı volcano. a-b) Google 811 

Earth Images of basaltic lava flows at around the Great and Lesser Ağrı Dağı volcanoes; c-d) 812 

Images of the most recent lava flows (I-II). 813 

 814 

Figure 4. a) K2O+Na2O–SiO2 (TAS) (Le Maitre 2002) diagram for the rock samples around 815 

Ağrı Dağı volcano (data taken from Gulen 1984; Pearce et al. 1990); alkaline-subalkaline line 816 

is according to Irvine and Baragar (1971); b) MORB-normalized multi-element diagrams for 817 

the volcanic rocks of the basaltic/most basaltic rock samples around Ağrı Dağı volcano (data 818 

taken from Gulen 1984; Pearce et al. 1990; Kheirkhah et al. 2009). Normalizing values are 819 

from Sun and McDonough (1989). 820 

 821 

Figure 5. (a-e) Five vertical cross-sections of P-wave velocity beneath the area of the Ağrı Dağı 822 

volcano (see Fig. 1 for the location of the cross-sections). Low velocities are shown in red, 823 

whereas high velocities are shown in blue. Large stars and small circles show, respectively, the 824 

location of moderate/large earthquakes (M ≥ 5.0) and the microseismic activity in a 30 km 825 

wide-zone around the profile. The perturbation scale (±5%) is shown to the right. (f) The 826 

locations for these seismic profiles on the map.     827 

Figure 6. 2-D numerical model setups. The 2-D example shown represents the geology of an 828 

E-W striking profile through Ağrı Dağı volcano. All 2-D models are layered E(1-14) with each 829 

unit assigned a different value of Young’s modulus. Magma chambers, represented as cavities, 830 

are given an excess pressure of 5 to 15 MPa.  831 

Figure 7. Modelled stresses induced by excess magmatic pressure )( pe
inside a shallow 832 

chamber of diameter 16 km and a deep reservoir of diameter 40 km. a) Magnitudes of the 833 

minimum principal compressive (maximum tensile) stress (σ3). b) Magnitude of von Mises 834 

shear stresses (τ) The excess magmatic pressure in each chamber is 5 MPa and is the only 835 

loading. Parts c) and d) show the same arrangement of shallow chamber and deep reservoir but 836 

in this case the reservoir is reduced in size with a diameter of 16 km, and 30 km in respectively. 837 

   838 

Figure 8. a) Area vs. volume constraints of some single lava discharge ratios for composite 839 

volcanoes and volcanic regions; b) Volume compilation for some historical eruptions. (1) This 840 

study; (2) Kervyn et al. (2008); (3) Haris et al. (2000); (4) Tryggvason (1984); (5) Thordarson 841 



 

29 
 

and Self (1993); (6) Reidel et al. (2013); (7) White and Houghton (2000). Arrows highlighting 842 

the last two basaltic eruptions of Ağrı Dağı volcano. 843 


