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Rich, dynamic, and dense sensory stimuli are encoded within the nervous system

by the time-varying activity of many individual neurons. A fundamental approach to

understanding the nature of the encoded representation is to characterize the function

that relates the moment-by-moment firing of a neuron to the recent history of a complex

sensory input. This review provides a unifying and critical survey of the techniques

that have been brought to bear on this effort thus far—ranging from the classical

linear receptive field model to modern approaches incorporating normalization and

other nonlinearities. We address separately the structure of the models; the criteria and

algorithms used to identify the model parameters; and the role of regularizing terms or

“priors.” In each case we consider benefits or drawbacks of various proposals, providing

examples for when these methods work and when they may fail. Emphasis is placed on

key concepts rather than mathematical details, so as to make the discussion accessible

to readers from outside the field. Finally, we review ways in which the agreement between

an assumed model and the neuron’s response may be quantified. Re-implemented and

unified code for many of the methods are made freely available.

Keywords: receptive field, sensory system, neural coding

INTRODUCTION

Sensory perception involves not only extraction of information about the physical world from the
responses of various sensory receptors (e.g., photoreceptors in the retina and mechanoreceptors in
the cochlea), but also the transformation of this information into neural representations that are
useful for cognition and behavior. A fundamental goal of systems neuroscience is to understand
the nature of stimulus-response transformations at various stages of sensory processing, and the
ways in which the resulting neural representations shape perception.

In principle, the stimulus-response transformation for a neuron or set of neurons could be
fully characterized if all possible stimulus input patterns could be presented and neural responses
measured for each of these inputs. In practice, however, the space of possible inputs is simply too
large to be experimentally accessible. Instead, a common approach is to present a rich and dynamic
stimulus that spans a sizeable subset of the possible stimulus space, and then use mathematical tools
to estimate a model relating the sensory stimulus to the neural response that it elicits.
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Such functional models, describing the relationship between
sensory stimulus and neural response, are the focus of this review.
Unlike biophysical models that seek to describe the physical
mechanisms of sensory processing such as synaptic transmission
and channel dynamics, functional models typically do not
incorporate details of how the response is generated biologically.
Thus, in functional models, the model parameters do not reflect
physical properties of the biological system, but are instead
abstract descriptors of the stimulus-response transformation.
An advantage of this abstraction is that functional models can
be versatile and powerful tools for addressing many different
questions about neural representation.

Another advantage of the abstract nature of functional models
is that the power of recent statistical advances in machine
learning can be leveraged to estimate model parameters. In this
context it is important to clearly distinguish between models and
methods. A model describes the functional form of the stimulus-
response function (SRF), i.e., how the stimulus is encoded into
a neural response. A method (or algorithm) is then used to find
parameters that best describe the given model. Usually, there are
a number of different methods that can be used to fit a specific
model.

Different methods used for model fitting will involve different
specific assumptions. For example, constraints may be placed
on the statistical structure that the stimulus must take, or the
exact shape of the SRF. Changes in the assumptions can produce
different estimates of model parameters, even when the method
for fitting remains the same. Therefore, it is crucial to employ
techniques that can explicitly quantify how well a given model
captures neural response properties. Such a quantification serves
as a means of determining whether the fitted model is capable of
providing an appropriate description of the underlying stimulus-
response transformation.

A major goal of this review is to disentangle the existing
arsenal of SRF models and estimation methods, and to provide
examples that highlight when they work and when they fail. The
first part of the review focuses on describing the different SRF
models along with various methods that can be used to fit them.
The second part of the review then describes techniques that can
be used to evaluate the fitted models.

Statistical Preliminaries
Although the subtleties of hypothesis testing (such as the statistics
of multiple comparisons) are widely appreciated in the biological
sciences, subtleties of model estimation are rarely discussed, even
though the corresponding statistical theory is well-developed.
Therefore, it will be useful to define some statistical concepts
and terms at the outset of this review. Most models explicitly
or implicitly define a probability distribution of responses, given
a stimulus and some parameters such as a tuning curve, or the
weights of a receptive field. By evaluating the probability of the
observed data under this distribution, for a known stimulus but
varying parameters, we obtain the likelihood function over the
model parameters. The parameter values which maximize this
function, and thus the probability of the observed data, form the
maximum likelihood estimator (MLE).

The MLE is not the only possible estimator, and we will
sometimes discuss more than one way to estimate the parameters
of the same model. An estimator is often evaluated in terms of
its bias (the expected difference between a parameter estimate
based on a data set and the parameter value that actually
generated those data), its expected squared error (bias squared
plus variance), and its consistency (whether the bias and variance
approach 0 when based on increasing amounts of data). However,
it is important to realize that bias, variance and consistency
are statistical confections. They only have meaning when data
actually arise from a model of the form under consideration. Real
neural data will never be completely and accurately described by
abstract models of the type we discuss here; at best we expect the
models to provide a decent approximation to the truth. Thus,
while consistency and lack of bias are certainly characteristics
of a good estimator, these favorable statistical features do not
demonstrate “optimality” even within the assumed model form;
the estimator may not select the parameters that provide the best
model approximation to data generated by a different process.

Practical proof lies elsewhere, in predictive accuracy: how well
can the parameters estimated predict a new response that was not
used in the estimation process? This is often assessed by cross-
validation. A data set is divided into segments; model parameters
are estimated leaving out one of the segments; and the predictive
quality of the model fit is evaluated on the segment left out. This
procedure can be repeated leaving out each segment in turn and
the prediction accuracy averaged to yield a more reliable number.

Ultimately, predictive measures such as these (sometimes in
more elaborate guises discussed below) are needed to evaluate
the quality of both model and estimator. Indeed, many pitfalls
of interpretation can be avoided by remembering that all models
are wrong, and so the only approachable question is: which one
is most useful?

PART 1: ELABORATION AND ESTIMATION

Receptive-Field-Based
Stimulus–Response Function Models
A stimulus–response function (SRF) model parametrizes the
response of a neural system to a rich input stimulus: usually a
random, pseudo-random or natural sensory stimulus sequence
presented under controlled conditions. Althoughmany aspects of
system response may bemodeled—including behavior, metabolic
activity, and local field or surface potentials—we focus here
on models that target the activity of individual neurons at
the level of action potentials (“spikes”), membrane potential or
cytoplasmic calcium concentration. Furthermore, we focus on
SRF models that include one or more “spatiotemporal” linear
filters (Table 1). These filters encode the way in which the neural
response integrates elementary inputs, say light at a point in the
visual space or power at an acoustic frequency, over time and
sensory space. In a sense, then, these filters represent estimates
of the receptive field (RF) properties of a neuron, with each filter
indicating a “dimension” or “feature” of the stimulus to which it
is sensitive.

The choice of stimulus depends on the sensory modality being
investigated and the specific question at hand. However, many
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TABLE 1 | A summary of the models and estimation methods described in the review.

Model Estimator Multiple filters References

Linear-Gaussian ML (Linear regression) No Theunissen et al., 2000

r̂ = kTs, r ∼ Normal Ridge regression No Machens et al., 2004

ARD/ASD No Sahani and Linden, 2003a

ALD No Park and Pillow, 2011b

Linear-Nonlinear Poisson

r = f (kTs), r ∼ Poisson

STA No Bussgang, 1952; Chichilnisky, 2001

MID Yes Sharpee et al., 2004

STC Yes Brenner et al., 2000

r = f (kTs), r ∼ Poisson ML (Poisson GLM) No Truccolo et al., 2005

Linear-Nonlinear Bernoulli

r = f (kTs), r ∼ Bernoulli

ML (Bernoulli GLM) No –

r = f (kTs), r ∼ Bernoulli CbRF No Meyer et al., 2014a

General count model

r̂ =
∑

j fj (k
Ts),

r ∈ {0, 1, 2, ...}

ML Yes Williamson et al., 2015

Gain control model

r̂ = f

(
kT0s−u

(
s
)

v
(
s
)

) STC

Logistic regression

No

No

Schwartz et al., 2002; Rabinowitz et al., 2011

Input nonlinearity model

r̂ = f
(
kT
∑B

i=1 bigi (s)
) ML No Ahrens et al., 2008b

Context model

r̂ =
∑

i kig(si )Contexti

ML Yes Ahrens et al., 2008a; Williamson et al., 2016

LNLN cascade

r̂ = f
(∑N

n=1 wngn(k
Ts)
) ML Yes Butts et al., 2007, 2011; Schinkel-Bielefeld

et al., 2012; McFarland et al., 2013

r̂ = f
(∑

c,n,i wc,nbc,igi (k
T
c,ns)

)
ML Yes Lehky et al., 1992; Vintch et al., 2015; Harper

et al., 2016

Generalized quadratic model

r̂ = f

(
k(1)

T
s+ sTK(2)s

) Orthogonalized Wiener kernels Yes Rieke et al., 1997; Pienkowski and

Eggermont, 2010

Information-theoretic Yes Fitzgerald et al., 2011a; Rajan et al., 2013

r̂ = f

(
k(1)

T
s+ sTK(2)s

)
ML Yes Rajan et al., 2013

Maximum expected likelihood Yes Park et al., 2013

Time-varying model

r̂ = f
(
kTt s

) Recursive least-squares filtering

ML

No

No

Stanley, 2002

Brown et al., 2001; Eden et al., 2004

Adaptive prior No Meyer et al., 2014b

Red colored quantities indicate model parameters that are fixed prior to parameter estimation.

stimuli can be represented in a common vector-based format,
and then very similar, sometimes even identical, models and
estimation methods can be applied across modalities to address a
variety of questions. Stimulus sequences are usually represented
in discretized time, at a rate dictated by the sampling frequency of
the stimulus or else re-sampled to match the timescale on which
the neural response varies. For simplicity, we assume that the
response is measured with the same temporal precision as the
stimulus.

The RF components of an SRF model are most often taken
to have limited extent in time (technically, the impulse-response

of the filters is finite). Thus, the input used by the model
at time t, to describe the response r(t), is limited to a
“window” of stimulus values stretching from t to some maximal
delay τmax time-steps in the past. (The choice of τmax may
be guided by biological expectations, or may ultimately be
evaluated by measuring the predictive performance of SRF
models with differing temporal extents using the methods
discussed in the latter part of this review.) The stimulus at
each time in this window may be multidimensional, with one
value for each pixel in an image, or each frequency band
in a spectrogram. It is convenient to collect all such values
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falling with the window anchored at time t into a single

(column) vector s(t) =
(
s1(t), s2(t), ..., sD(t)

)T
, with dimension

D = (length of window)× (dimension of single stimulus frame).
Thus, s1(t) might represent the power in the lowest audio
frequency channel at time t, s64(t) the power in the highest
frequency channel also at t, s65(t) low-frequency power at t − 1
and (say) s640(t) high-frequency power at t − 9. The process is
illustrated in Figure 1 for different types of stimuli.

The discrete-time vector representation of the stimulus allows
us to write the action of a single multi-channel linear filter as a
inner or “dot” product between the stimulus vector and a vector
of filter weights k arranged in the same way:

kTs(t) =

D∑

i=1

kisi(t) = k1s1(t)+ k2s2(t)+ ...+ kDsD(t) , (1)

thus providing a short-hand notation for integration over space
(or channel) as well as over time. The filter k is often called a
spatio-temporal or spectro-temporal receptive field (STRF) and
the weights within it indicate the sensitivity of the neuron to
inputs at different points of stimulus space and stimulus history
(Figure 2A).

Such discrete-time finite-window vector filtering lies at the
heart of the majority of SRF models that have been explored
in the literature, although these models may vary in the range
of nonlinear transformations that they chain after or before the
filtering process to form a “cascade” (Table 1). The cascades
range from a simple point-by-point nonlinear transformation

that acts on the output of a single linear filter—the linear-
nonlinear or LN cascade often employed at earlier sensory
stages—to more complicated series or parallel arrangements
of filters with multiple intervening nonlinear functions. Some
cascades are inspired by a feed-forward description of the
sensory pathway, with architectures that recapitulate pathway
anatomy. Nonetheless, the assumptions that integration within
each stage is linear, often that the nonlinear functions fall within
a constrained class, and particularly that responses do not depend
on internal state or recurrence, mean that even anatomically
inspired SRF models should be regarded as abstract functional
models of computation rather than as biologically plausible
models of mechanism.

The Linear-Gaussian Model
In the simplest case the response is assumed to be modeled
directly by the output of a single filter, possibly with a constant
offset response:

r(t) ≈ k(0) + kTs(t) . (2)

The constant offset k(0) can be conveniently absorbed into the RF
vector k by setting an additional dimension in the stimulus vector
s(t) to 1 at all times, so that the offset becomes the coefficient
associated with this added dimension. Thus, we will typically
omit explicit reference to (and notation of) the offset term.

In practice, most neurons do not respond the same way each
time the same stimulus sequence is repeated, and so even if
Equation (2) were a correct model of the mean response, the

FIGURE 1 | Sensory stimulus representation for stimulus–response functions. (A) Stimulus examples are sampled from the sensory stimulus representation,

e.g., a time signal (top), a spectrogram (middle), or a sequence of image patches (bottom), by rearranging the stimulus history (blue rectangle) as vector s. The spike

response is usually binned at the temporal resolution of the stimulus, with the target spike bin indicated by the red rectangle. (B) The stimulus–response function

describes the functional relationship between presented stimulus and measured response. In the models considered here, stimulus and response are related by a

linear projection of the stimulus onto one or more linear filters k1, k2, .... These filters represent the receptive field of the neuron. (C) Once the best parameters for the

model have been identified, the representation of the linear filters in the original stimulus space can be interpreted as an an estimate of the stimulus sensitivities of the

neuron. Examples of single filters are shown for each type of stimulus representation in (A).

Frontiers in Systems Neuroscience | www.frontiersin.org 4 January 2017 | Volume 10 | Article 109

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Meyer et al. Models of Neuronal SRFs

FIGURE 2 | Common stimulus–response functions. (A) Filtering of stimulus examples through the linear filter k. (B) (Threshold-)Linear model with Gaussian noise.

(C) Poisson model with exponential nonlinearity. (D) Bernoulli model. All models can be extended using a post-spike filter that indicates dependence of the model’s

output on the recent response history (light gray).

actual response measured on one or a finite number of trials will
almost surely be different. We reserve the notation r(t) for the
measured response and write r̂(t) for the SRF model prediction,
so that for the linear model r̂(t) ≡ kTs(t).

Given a stimulus and a measured response, estimated filter
weights k̂ can be obtained by minimizing the squared difference
between the model output and the measured data:

k̂ = argmin
k

∑

t

‖r(t)− kTs(t)‖2 =
(
STS

)−1
STr , (3)

where S is the stimulus design matrix formed by collecting

the stimulus vectors as rows, S =
(
s(1), s(2), . . . , s(T)

)T
, and

r is a column vector of corresponding measured responses.
The right-hand expression in Equation (3) has a long history
in neuroscience (Marmarelis and Marmarelis, 1978), and may
be interpreted in many ways. It is the solution to a least-
squares regression problem, solved by taking the Moore-
Penrose pseudoinverse of S; it is a discrete time version
of the Wiener filter; and, for spike responses, it may be
seen as a scaled “correlation-corrected” spike-triggered average
(deBoer and Kuyper, 1968; Chichilnisky, 2001). This latter
interpretation follows as the matrix product STr gives the
sum of all stimuli that evoked spikes (with stimuli evoking
multiple spikes repeated for each spike in the bin); if divided

by the total number of spikes this would be the spike-triggered
average (STA) stimulus. The term STS is the stimulus auto-

correlation matrix; pre-multiplying by its inverse removes any

structure in the STA that might arise from correlations between
different stimulus inputs, leaving an estimate of the RF filter.
In this way, the estimated model filter corresponds to a

descriptive model of the receptive field obtained by “reverse

correlation” (deBoer and Kuyper, 1968) or “white noise analysis”
(Marmarelis and Marmarelis, 1978).

Thus, the linear SRF model is attractive for its
analytic tractability, its computational simplicity (although
see the discussion of regularization below) and its
interpretability.

If the mean response of the neuron were indeed a linear
function of the stimulus, then linear regression would provide
an unbiased estimate of the true RF parameters, regardless
of the statistical structure of the stimulus ensemble (Paninski,
2003a) and the nature of the neural response variability. More
generally, Equation (3) corresponds to the MLE (see Statistical
Preliminaries) for a model in which response variability is
Gaussian-distributed with constant variance around the filter
output (Figure 2B):

r(t) = kTs(t)+ ε(t), ε(t) ∼ N(0, σ 2) . (4)

By itself, this MLE property is of limited value in this case.
The assumption of Gaussian response noise is inappropriate
for single-trial spike counts, although it may be better
motivated when the responses being modeled are trial-averaged
mean rates (Theunissen et al., 2000; Linden et al., 2003),
subthreshold membrane potentials (Machens et al., 2004),
local field potentials (Mineault et al., 2013), or intracranial
electrocorticographical recordings (Mesgarani and Chang, 2012);
but even then the assumption of constant variance may be
violated. Instead, the value of the probabilistic interpretation lies
in access to a principled theory of stabilized (or “regularized”)
estimation, and to the potential generalization to nonlinear and
non-Gaussian modeling assumptions, both of which we discuss
below.
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Linear-Nonlinear (LN) Cascades
Although valuable as a first description, a linear function rarely
provides a quantitatively accuratemodel of neural responses (e.g.,
Sahani and Linden, 2003b; Machens et al., 2004). Particularly
for spiking responses, an attractive extension is to assume that
a linear process of stimulus integration within the RF is followed
by a separate nonlinear process of response generation. This leads
to the linear-nonlinear (or LN) cascade model:

r̂(t) = f
(
kTs(t)

)
, (5)

where f is a static, memoryless nonlinear function. Unlike some
more general nonlinear models described later, the input to the
nonlinear stage of this LN cascade is of much lower dimension
than the stimulus within the RF. Indeed, in Equation (5) it
is a single scalar product—although multi-filter versions are
discussed below. This reduction in dimensionality allows both
the parameters describing the RF filter k and any that describe
the nonlinearity f to be estimated robustly from fewer data than
would be required in the more general case.

Indeed, perhaps surprisingly, the linear estimator of
Equation (3) may sometimes also provide a useful estimate
of the linear-stage RF within an LN model (Bussgang, 1952).
To understand when and why, it is useful to visualize the
analysis geometrically (Figure 3). Each stimulus vector is
represented by a point in a D-dimensional space, centered
such that origin lies at the mean of the stimulus distribution.
Stimuli are colored according to the response they evoke; for
spike responses, this distinguishes stimuli associated with action
potentials—the “spike-triggered” ensemble—from the “raw”

distribution of all stimuli. An RF filter is also a D-dimensional
vector, and so defines a direction within the space of stimuli.
If the neural response can in fact be described by an LN
process (with any variability only depending on the stimulus
through the value of r̂(t)), then by Equation (5) the stimulus-
evoked response will be fully determined by the orthogonal
projection of the D-dimensional stimulus point onto this RF
direction through the dot-product kTs(t). Thus, averaging
over response variability, the contours defining “iso-response”
stimuli will be (hyper)planes perpendicular to the true RF
direction.

Now, if the raw stimulus distribution is free of any intrinsic
directional bias (that is, it is invariant to rotations about any
axis in the D-dimensional space, or “spherically symmetric”),
the distribution in any such iso-response plane will also be
symmetric, so that its mean falls along the RF vector k. It
follows that the response-weighted mean of all stimuli lies
along this same direction, and thus (as long as f is not a
symmetric function) the empirical response-weighted average
stimulus provides an unbiased estimate of the RF. For spike
responses, this response-weighted stimulus mean is the STA
(Figure 3A). The result can be generalized from spherically
symmetric stimulus distributions (Chichilnisky, 2001) to those
that can be linearly transformed to spherical symmetry (that
is, are elliptically symmetric) (Paninski, 2003a), for which
the “correlation-corrected” STA estimator of Equation (3) is
consistent.

The symmetry conditions are important to these results.
Even small asymmetries may bias estimates away from the
true RF as the more heavily sampled regions of the stimulus

FIGURE 3 | Geometric illustration of linear filter estimation in the LN model. (A) A two-dimensional stimulus sampled from a Gaussian distribution. Points

indicate spike-eliciting (dark gray) and non-spike-eliciting (light gray) stimulus examples with true linear filter shown by the black arrow. For a Gaussian (or more

generally, a spherically symmetric) stimulus, the spike-triggered average (STA; blue arrow), given by the mean of all spike-triggered stimuli, recovers the true linear filter.

Histograms (insets) show the marginal distributions of stimulus values along each stimulus dimension. Dashed lines indicate “iso-response” hyperplanes (see main

text). (B) The same as in (A) except that stimulus dimension s1 follows a uniform distribution, resulting in a non-spherically symmetric stimulus distribution. The STA no

longer points in the same direction as the true linear filter but the maximally informative dimensions (MID; red arrow) estimator is robust to the change in the stimulus

distribution. (C) Spike-conditional distribution (p(x|spike)), raw distribution (p(x)) of filtered stimuli, and histogram-based estimates of the spiking nonlinearity (solid

green line) for the STA (top) and MID (bottom) for the example in (B). MID seeks the filter that minimizes the overlap between these distributions. The spiking

nonlinearity has been rescaled for visualization.
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ensemble are over-weighted in the STA (Figure 3B). With more
structured stimulus distributions, including “natural” movies
or sounds, the effects of the bias in the STA-based estimators
may be profound and misleading. For such stimuli, estimation
of an LN model depends critically on assumptions about the
functional form of the nonlinearity f and the nature of the
variability in the response r(t) (Paninski, 2004; Sharpee et al.,
2004).

One intuitive approach is provided by information theory.
Consider a candidate RF direction defined by vector k̃, and let

s̃ = k̃
T
s be the projection of a stimulus point s onto this

direction. Again making the assumption that the true neural
response (and its variability) depends only on the output of
an LN process, the predictability of the neural response from
s̃ will be maximal and equal to the predictability from the full
stimulus vector s if and only if k̃ is parallel to the true RF.
This predictability can be captured by the mutual information
between s̃ and the response, leading to the maximally informative
dimensions (MID) estimation approach (Sharpee et al., 2004):
identify the direction k̃ for which the empirical estimate of the
mutual information between s̃(t) and themeasured responses r(t)
is maximal.

While this basic statement is independent of assumptions
about the nonlinearity or variability, the challenges of
estimating mutual information from empirical distributions
(Paninski, 2003b) mean that MID-based approaches
invariably embody such assumptions in their practical
implementations.

Linear-Nonlinear-Poisson (LNP) Models
For spike-train responses, a natural first assumption is that spike
times are influenced only by the stimulus, and are otherwise
entirely independent of one another. This assumption requires
that the distribution of spike times be governed by a Poisson
(point) process conditioned on the stimulus, defined by an
instantaneous rate function λ(t). In turn, this means that the
distributions of counts within response time bins of size 1 must
follow a Poisson distribution (Figure 2C):

P(r(t)|s(t)) =
1

r(t)!
e−λ(t)1(λ(t)1)r(t); λ(t) = f (kTs(t)) .

(6)
The most widely used definition of the MID is based on
this assumption of spike-time independence. Again, letting
k̃ be a candidate RF direction, and s̃ the value of the
projected stimulus, Sharpee et al. (2004) showed that the mutual
information between the projected stimuli and independent (and
so Poisson-distributed) spikes can be written as a Kullback-
Leibler divergence DKL between the spike-triggered distribution
of projected stimuli, p(s̃|spike) and the raw distribution p(s̃):

I(k̃) = DKL

[
p(s̃|spike)||p(s̃)

]
=

∫
p(s̃|spike) log

p(s̃|spike)

p(s̃)
ds̃ .

(7)
The spike-triggered and raw distributions must themselves be
estimated to evaluate I(k̃) and so to identify the MID. The
common choice is to estimate each distribution by constructing

a binned histogram; and so, in effect, the MID is defined to be
the direction along which the histogram of the projected spike-
triggered ensemble differs most from the raw stimulus histogram
(Figures 3B,C).

Despite the information-theoretic derivation, the Poisson-
based information definition combined with histogram-based
probability estimates makes the conventional MID approach
mathematically identical to a likelihood-based method.
Specifically, the histogram-based MID estimate equals the
MLE of an LNP model in which the nonlinearity f is assumed
to be piece-wise constant within intervals that correspond to
the bins of the MID histograms (Figure 3C) (Williamson et al.,
2015). A corollary is that if these assumptions do not hold, then
this form of MID may also be biased. In practice, the approach
is also complicated by the fragility of histogram-based estimates
of information-theoretic quantities, and by the fact that the
objective function associated with such a flexible nonlinearity
may have many non-global local maxima, making the true
optimum difficult to discover.

Alternative approaches, based either on information theory or
on likelihood, assume more restrictive forms of the nonlinearity.

For instance, assuming a Gaussian form for the distributions
p(s̃|spike) and p(s̃) in Equation (7) leads to an estimation
procedure that combines both the STA and the spike-triggered-
stimulus covariance (STC; see Multi-Filter Models) to identify
the RF direction. This has been called “information-theoretic
spike-triggered average and covariance” (iSTAC) analysis (Pillow
and Simoncelli, 2006). Again, there is a link to a maximum
likelihood estimate (this time assuming an exponentiated
quadratic nonlinearity) although in this case equivalence only
holds if the raw spike distribution is indeed Gaussian, and
then too only in the limit as the number of stimuli grows to
infinity.

If f is assumed to be monotonic and fixed (rather than
being defined by parameters that must be fit along with the
RF) then Equation (6) describes an instance of a generalized
linear model (GLM) (Nelder and Wedderburn, 1972), a widely-
studied class of regression models. Many common choices
of f result in a likelihood which is a concave function
(Paninski, 2004), guaranteeing the existence of a single optimum
that is easily found by standard optimization techniques
such as gradient ascent or Newton’s method (see Parameter
Optimization). The GLM formulation is also easy to extend to
non-Poisson processes, by including probabilistic interactions
between spikes in different bins that may be often reminiscent
of cellular biophysical processes (see Interactions between
bins).

Non-poisson Count Models
The LNPmodel assumes that the exact times of individual spikes,
whether in the same or different bins, are entirely statistically
independent once their stimulus dependence has been taken
into account. While simple, this assumption is rarely biologically
justified. Many biophysical and physiological processes lead to
statistical dependence between spike times on both short and
long timescales. These include membrane refractoriness, spike-
rate adaptation, biophysical properties that promote bursting
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or oscillatory firing, and auto-correlated network input that
fluctuates independently of the stimulus. Similar observations
apply to other response measures—even to behavioral responses
which exhibit clear decision-history dependence (Green, 1964;
Busse et al., 2011).

Bernoulli Models
The refractoriness of spiking has a strong influence on counts
within short time bins. Indeed, when the bin size corresponds
to the absolute refractory period (around 1ms), the observed
spike-counts will all be either 0 or 1. If the spike probability is
low, the difference between Poisson and binary predictions will
be small, and so LNP estimators may still succeed. However, as
the probability of spiking in individual bins grows large, an LNP-
based estimator (such as MID or the Poisson GLM) may give
biased results (Figure 4).

For such short time bins, or for situations in which trial-to-
trial variability in spike count is much lower than for a Poisson
process (Deweese et al., 2003), a more appropriate LN model will
employ a Bernoulli distribution over the two possible responses
r(t) ∈ {0, 1} (Figure 2D):

λ(t) =
1

1
f (kTs(t))

p(r(t)|λ(t)) = (λ(t)1)r(t)
(
1− λ(t)1

)1−r(t)
, (8)

where λ(t)1 is now a probability between 0 and 1, and so
the maximum possible rate is given by 1/1. As for the LNP
model, the parameters of this linear-nonlinear-Bernoulli (LNB)
model can be estimated using maximum-likelihood methods.
The function f may be chosen to be piece-wise constant, giving
an Bernoulli-based equivalent to the MID approach (Williamson
et al., 2015). Alternatively, it may be a fixed, often sigmoid
function with values between 0 and 1. In particular, if f is the

logistic function, the LNB model corresponds to the GLM for
logistic regression.

An alternative approach to estimation of the parameters of
a binary encoding model is to reinterpret the problem as a
classification task in which spike-eliciting and non-spike-eliciting
stimuli are to be optimally discriminated (Meyer et al., 2014a).
This approach is discriminative rather than probabilistic, and the
model can be written as

r(t) = H
(
kTs(t)− η + ε(t)

)
(9)

where η is a spiking threshold and ε(t) a random variable
reflecting noise around the threshold. H is the step function
which evaluates to 1 for positive arguments, and 0 otherwise. In
this formulation, the RF vector k appears as the weight vector
of a standard linear classifier; the condition kTs(t) = η defines
a hyperplane in stimulus space perpendicular to k (Figure 3)
and stimuli that fall beyond this plane are those that evoke
spikes in the model. The noise term creates a probabilistic, rather
than hard, transition from 0 to 1 expected spike around the
classification boundary. Thus, the optimal weights of this model
are determined by minimizing a cost function that depends on
the locations of spike-labeled stimuli relative to the associated
classification boundary. Robust classifier estimates are often
based on objective functions that favor a large margin; that is,
they set the classification boundary so that the stimuli in the
training data that fall nearby and are correctly classified as spike-
eliciting or not are assigned as little ambiguity as possible. Such
an objective function is the defining characteristic of the support-
vector machine (Cortes and Vapnik, 1995). This large-margin
approach can be seen as a form of regularization (see the section
on Regularization below). Meyer et al. (2014a) report that a
large-margin classifier with a fixed objective function gives robust
RF estimates for simulated data generated using a wide range

FIGURE 4 | Simulated example illustrating failure of the Poisson model for Bernoulli distributed responses. (A) N = 5000 stimuli were drawn from a

uniform distribution on a circular ring. A Bernoulli spike train with p(spike) = 0.2 was generated after filtering the 2D stimulus with a RF pointing along the y-axis and a

subsequent sigmoid static nonlinear function. Both Poisson GLM (red arrow) and Bernoulli GLM (blue arrow) reliably recover the true filter (black arrow). (B) Same as in

(A) but for p(spike) = 0.8. The Poisson GLM estimator fails to recover the true linear filter because its neglects information from silences which are more informative

when p(no spike) = 1− p(spike) is low (see text). The Bernoulli GLM accounts for silences and thus reliably reconstructs the true linear filter.
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of different neural nonlinearities, while a point-process GLM is
more sensitive to mismatch between the nonlinearity assumed by
the model and that of the data—particularly when working with
natural stimuli. On the other hand, logistic regression (i.e., the
binary-ouput GLM) also favors large margins when regularized
(Rosset et al., 2003) and the results using the classification
approach of Meyer et al. (2014a) were very similar to those of
the Bernoulli model simulation (Figure 4).

Over-Dispersed and General Count Models
Longer bins, for example those chosen to match the refresh rate
of a stimulus, may contain more than one spike; but even so the
expected distribution of binned counts in response to repeated
presentations of the same stimulus will not usually be Poisson.

One form of non-Poisson effect may result from the influence
of variability in the internal network state (for instance the
“synchronized” and “desynchronized” states of cortical activity;
Harris and Thiele, 2011), which may appear to multiplicatively
scale the mean of an otherwise Poisson-like response. This
additional variance leads to over-dispersion relative to the
Poisson; that is the Fano factor (variance divided by the mean)
exceeds 1. Such over-dispersion within individual bins may be
modeled using a “negative binomial” or Polya distribution (Scott
and Pillow, 2012). However, the influence of such network effects
often extends overmany bins ormany cells (if recorded together),
in which case it may be better modeled as an explicit unobserved
variable contributing correlated influence.

More generally, for moderate-length bins where the maximal
possible spike count is bounded by refractoriness, the neural
response may be described by an arbitrary distribution over the
possible count values j ∈ {0, ..., rmax}. A linear-nonlinear-count
(LNC) model can then be defined as:

λ(j)(t) = f (j)
(
kTs(t)

)

p
(
r(t)= j | λ(j)(t)

)
= λ(j)(t) (10)

with the added constraint on the functions f (j) that∑rmax
j= 0 f

(j)(x) = 1 for all x, to ensure that the probabilities

over the different counts sum to 1 for each stimulus. This model
includes the LNB model as a special case and, as before, the
model parameters can be estimated using maximum-likelihood
methods. Furthermore, if the functions f are assumed to be
piece-wise constant, the LNC model estimate of k corresponds
to a non-Poisson information maximum analogous to the
MID. Thus, there is a general and exact equivalence between
likelihood-based and information-based estimators for each LN
structure (Williamson et al., 2015).

Interactions between Bins
If responses are measured in short time-bins then longer-term
firing interactions such as adaptation, bursting or intrinsic
membrane oscillations will induce dependence between counts in
different bins. In general, any stimulus-dependent point process
can be expressed in a form where the instantaneous probability
of spiking depends jointly on the stimulus history and the history
of previous spikes, although the spike-history dependence might
not always be straightforward. However, a useful approach is

to assume a particular parametric form of dependence on past
spikes, essentially incorporating these as additional inputs during
estimation.

This formulation is perhaps most straightforward within the
GLM framework (Chornoboy et al., 1988; Truccolo et al., 2005).
For a fixed nonlinearity f () we have

λ(t) = f (kTs(t)+ gTh(t)) (11)

where g is a vector of weights and h(t) is a vector representing
the history of spiking at time prior to time t (Figure 2); this may
be a time-window of response bins stretching some fixed time
into the past (as for the stimulus) or may be the outputs of a
fixed bank of filters which integrate spike history on progressively
longer timescales.

In effect, the combination of g and any filters that define h

serves to implement a “post-spike” filtered input to the intensity
function. It is tempting to interpret such filters biophysically as
action-potential related influences on the membrane potential of
the cell; indeed this model may be seen as a probabilistic version
of the spike-response model of Gerstner and Kistler (2002).
Suitable forms of post-spike filters may implement phenomena
such as refractoriness, bursting or adaptation.

Multi-Filter Models
Many LN models can be generalized to incorporate multiple
filters acting within the same RF, replacing the single filter k by
a the matrix K = [k1, k2, ...] where each column represents a
different filter (Figure 5). Conceptually, each of these filters may
be understood to describe a specific feature to which the neuron is
sensitive, although in many cases it is only the subspace of stimuli
spanned by the matrix K which can be determined by the data,
rather than the specific filter shapes themselves. In general, the
assumptions embodied in themodel or estimators, e.g., regarding
the statistical structure of the stimulus, are similar to those made
for the single-filter estimation. In particular, the directions in
stimulus space (in the sense of Figure 3) along which the spike-
triggered covariance (STC) of the stimulus vectors differs from
the overall covariance of all stimuli used in the experiment
provides one estimate of the columns of K in an LNP model
(Brenner et al., 2000). This approach to estimation is often
called STC analysis. The STC estimate is unbiased provided
the overall stimulus distribution is spherically or elliptically
symmetric (as was the case for the STA estimator of a single-
filter model) and the stimulus dimensions are independent or
can be linearly transformed to be independent of each other
(Paninski, 2003a; Schwartz et al., 2006). These conditions are met
only by a Gaussian stimulus distribution, and in other cases the
bias can be very significant (Paninski, 2003a; Fitzgerald et al.,
2011a).

The MID approach can also be extended to the multi-filter
LNP case, defining a subspace projection for a candidate matrix

K̃ to be s̃(t) = K̃
T
s(t) and adjusting K̃ to maximize the Kullback-

Leibler divergence between the distributions p(s̃|spike) and p(s̃).
Unfortunately, estimation difficulties make it challenging to use
MID to robustly estimate the numbers of filters that might be
needed to capture realistic responses (Rust et al., 2005). The
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FIGURE 5 | Illustration of a multi-filter linear-nonlinear Poisson encoding model. Each input stimulus (here represented by sinusoidal gratings) is filtered by a

number of linear filters k1,k2, ... representing the receptive fields of the neuron. The output of the filters, x1, x2, ... is transformed by a nonlinearity into an

instantaneous spike rate that drives an inhomogeneous Poisson process.

problem is not the number of filter parameters per se (these scale
linearly with stimulus dimensionality), but rather the number of
parameters that are necessary to specify the densities p(s̃) and
p(s̃|spike). For common histogram-based density estimators, the
number of parameters grows exponentially with dimension (m
bins for p filters requires mp parameters), e.g., a model with
four filters and 25 histogram bins would require fitting 390625
parameters, a clear instance of the “curse of dimensionality.”

In this context, the likelihood-based LN approaches may
provide more robust estimates. Rather than depending on
estimates of the separate densities, the LN model framework
directly estimates a single nonlinear function f (s̃). This
immediately halves the number of parameters needed to
characterize the relationship between s̃ and the response.
Furthermore, for larger numbers of filters, f may be parametrized
using sets of basis functions whose numbers grow less rapidly
than the number of histogram bins, and which can be tailored
to a given data set. This allows estimates of multi-filter LNP
models for non-Gaussian stimulus distributions to be extended
to a greater number of filters than would be possible with
histogram-based MID (Williamson et al., 2015).

In general, multi-filter LN models in which the form of
the nonlinearity f is fixed have been considered much less
widely than in the single-filter case. In part this is because
such fixed-f models are not GLMs (except in the trivial case
where the multiple filter outputs are first summed and then
transformed, which is no different to a model with a single
filter k =

∑
n kn). Thus, likelihood-based estimation does

not benefit from the structural guarantees conferred by the
GLM framework. However, there are a few specific forms of
nonlinearity which have been considered. One appears in certain
models of stimulus-strength gain control, which are considered
next. Furthermore, some Input Nonlinearity Models, discussed
later, combinemultiple filters inmore complicated arrangements.
Finally, low-rank versions of quadratic, generalized-quadratic
and higher-order models (see Quadratic and Higher-Order
Models) can also be seen as forms of multi-filter LNP model with
fixed nonlinearity.

Gain Control Models
Neurons throughout the nervous system exhibit nonlinear
behaviors that are not captured by the cascaded models with
linear filtering stage or have a more specialized structure than
the general multi-filter models described above. For example,
the magnitude of the linear filter in a LN model may change
with the amplitude (or contrast) of the stimulus (Rabinowitz
et al., 2011), or the response may be modulated by stimulus
components outside the neuron’s excitatory RF (e.g., Chen
et al., 2005). These nonlinear behaviors can be attributed to a
mechanism known as gain control, in which the neural response
is (usually suppressively) modulated by the magnitude of a
feature of the stimulus overall. Gain control is a specific form
of normalization, a generic principle that is assumed to underlie
many computations in the sensory system (for a review see
Carandini and Heeger, 2011).

While there are a number of models specific to particular
sensory areas and modalities, most gain control models assume
the basic form

r̂(t) = f

(
kT0 s(t)− u

(
s(t)

)

v
(
s(t)

)
)

(12)

where k0 is the excitatory RF filter of the neuron, and u(s)
and v(s) shift and scale the filter output, respectively, depending
on the stimulus s. As for the LN model, the adjusted filtered
stimulus can be related to the response through a static nonlinear
function f (·).

Schwartz et al. (2002) estimated an excitatory RF filter by
the STA k0 and a set of suppressive filters {kn} by looking for
directions in which the STC (built from stimuli orthogonalized
with respect to k0) was smaller than the overall stimulus
covariance. They then fit a nonlinearity of the form

r(t) =

[
kT0 s(t)

]p
+(∑

n wn|k
T
ns(t)|

2
)p/2

+ σ 2

(13)
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finding MLEs for the exponent p, which determines the shape of
the contrast-response function; the constant σ ; and the weights
wn, the coefficients with which each of the suppressive filters kn
affect the gain.

While in the above example the excitatory and the suppressive
filters acted simultaneously on the stimulus, the gain can
also depend on the recent stimulation history. Recent studies
demonstrated that a gain control model as in Equation (12) can
also account for a rescaling of response gain of auditory cortical
neurons depending on the recent stimulus contrast (Rabinowitz
et al., 2011, 2012). Specifically, contrast-dependent changes in
neural gain could be described by the model

r(t) = r0 +
c

1+ exp

(
−

(
kT0 s(t)−u(s(t))

v(s(t))

)) (14)

where r0 is the spontaneous rate, c a constant, k0 is the STRF,
and u and v are linear functions of a single “contrast kernel” that
characterizes sensitivity to the recent stimulus contrast. In this
specific case, the nonlinear function f is taken to be the logistic
function.

Input Nonlinearity Models
LN models assume that any nonlinearity in the neural response
can be captured after the output of an initial linear filtering
stage. In fact, nonlinear processes are found throughout the
sensory pathway, from logarithmic signal compression at the
point of sensory transduction, through spiking and circuit-level
nonlinearities at intermediate stages, to synaptic and dendritic
nonlinearities at the immediate inputs to the cells being studied.
Input nonlinearities such as these are not captured by a LNmodel
and even the incorporation of a simple static nonlinearity prior to
integration (an NL cascade model) can increase the performance
of a linear or LN model considerably (Gill et al., 2006; Ahrens
et al., 2008a; Willmore et al., 2016).

In the simplest case, the same nonlinear function g() may
be assumed to apply pointwise to each dimension of s. For an
input nonlinearity model with a single integration filter, we write:
r̂(t) = kTg

(
s(t)

)
. For g() to be estimated, rather than assumed,

it must be parametrized—but many parametric choices lead to
difficult nonlinear optimizations. Ahrens et al. (2008b) suggest a
tractable form, by parametrizing g() as a linear combination of B
fixed basis functions gi, so that g() =

∑B
i= 1 bigi(). This choice

leads to themultilinear model

r̂(t) = kT
B∑

i= 1

bigi
(
s(t)

)
, (15)

which is linear in each of the parameter vectors k and
b = [b1, b2, . . . , bB] separately. Least-squares estimates of
the parameters can be obtained by alternation: b is fixed at
an arbitrary initial choice, and a corresponding value for k

found by ordinary least squares; k is then fixed at this value
and b updated to the corresponding least-squares value; and
these alternating updates are continued to convergence. The
resulting least-squares estimates at convergence correspond to

FIGURE 6 | Illustration of input nonlinearity models. (A) Example image

patch stimulus. Numbers indicate dimension indices. (B) Input nonlinearity

model in which the same nonlinearity (left) acts on all stimulus dimensions,

resulting in a transformed stimulus (right). (C) Example where the nonlinearity

depends on the y dimensions of the stimulus. Colorbar indicates stimulus

values in (A).

the MLE for a model assuming constant variance Gaussian
noise; however a similar alternating strategy can also be
used to find the MLE for a generalized multilinear model
with a fixed nonlinearity and Poisson or other point-process
stochasticity (Ahrens et al., 2008b). Bayesian regularization
(see Regularization) can be incorporated into the estimation
process by an approximate method known as variational Bayes
(Sahani et al., 2013).

Themultilinear or generalizedmultilinear formulationmay be
extended to a broader range of input nonlinearitymodels. Ahrens
et al. (2008a) discuss variants in which different nonlinearities
apply at different time-lags or to different input frequency
bands in an auditory setting. Indeed, in principle a different
combination of basis functions could apply to each dimension
of the input (Figure 6), although the number of parameters
required in such a model makes it practical only for relatively
small stimulus dimensionalities.

Ahrens et al. (2008a) and Williamson et al. (2016) also
introduce multilinear models to capture input nonlinearities in
which the sensitivity to each input within the RF is modulated by
the local context, for example through multiplicative suppression
of repeated inputs (Brosch and Schreiner, 1997; Sutter et al.,
1999). The general form of these models is

r̂(t) =
∑

i

kig(si(t)) · Contexti(t) (16)

where the term Contexti(t) itself depends on a second local
integration field surrounding the ith stimulus element (called the
contextual gain field or CGF by Williamson et al. 2016). The
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FIGURE 7 | Modeling of local contextual modulation of the stimulus.

Each element of the input stimulus (here: target tone of an acoustic stimulus) is

modulated according to its context using a contextual gain field (CGF). The

modulated stimulus is then transformed into a neural response using a

principal receptive field (PRF). While each of these stages is linear, the resulting

model is nonlinear in the stimulus.

model as described by Williamson et al. (2016) is illustrated
in Figure 7 for an acoustic stimulus. A local window around
each input element of the stimulus is weighted by the CGF and
integrated to yield a potentially different value of Contexti(t)
at each element. This value multiplicatively modulates the
gain of the response to the element, and the gain-modulated
input values are then integrated using weights given by the
principal receptive field or PRF. As long as the parameters
within Contexti(t) appear linearly, the overall model remains
multilinear, and can also be estimated by alternating least
squares.

Nonlinearities prior to RF integration could also result from
more elaborate physiological mechanisms. A simple case might
be where an early stage of processing is well described by an LN
cascade, and the output from this stage is then integrated at the
later stage being modeled. A natural model might then be an
LNLN cascade:

r̂(t) = f

(
N∑

n= 1

wngn
(
kTns(t)

)
)

(17)

where kn describes the linear filter and gn the output nonlinearity
of one of the N input neurons, and their outputs are combined
using weights wn before a final nonlinear transformation f . Such
a model has also been called a generalized nonlinear model
(GNM) (Butts et al., 2007, 2011; Schinkel-Bielefeld et al., 2012),
or nonlinear input model (NIM) (McFarland et al., 2013) and
model parameters may be estimated by maximizing the spike-
train likelihood of an inhomogeneous Poisson model with rate
given by Equation (17)—often using a process of alternation
similar to that described above. Vintch et al. (2015) combined an

LNLN model with basis-function expansion of the nonlinearity
(Equation 15) to yield a model for visual responses of
the form

r̂(t) = f

(
C∑

c= 1

N∑

n= 1

wc,n

B∑

i= 1

bc,igi
(
kTc,ns(t)

)
)

(18)

in which the parameters wc,n and bc,i were fit using alternating
least squares, following Ahrens et al. (2008b), with intervening
gradient updates of the so-called “subunit” filters kc,n. The
subunits were arranged into C channels (indexed by c). The
same nonlinearity applied to all N subunits (index n) within a
channel, and the filters were constrained to be convolutionally
arranged; that is, all the kc,n for each c contained the same
pattern of spatio-temporal weights shifted to be centered at
a different location in space and time. These assumptions
helped to contain the potential explosion of parameters, while
conforming to biological intuition about the structure of visual
processing.

This two-stage convolutional architecture highlights the
correspondence between the LNLN structure and a “multilayer
perceptron” (MLP) or “artificial neural network” architecture.
Indeed, some authors have sought to fit such models with
few or no constraints on the filter forms (Lehky et al.,
1992; Harper et al., 2016), although such approaches may
require substantial volumes of data to provide accurate model
estimates.

The methods reviewed thus far in this section have considered
models in which the input nonlinearity or a pre-nonlinearity
filter are estimated from the neural data. In many cases, however,
a fixed input nonlinearity is either assumed from biological
intuition, or chosen from amongst a small set of plausible options
by explicit comparison of the predictive success of models that
assume each in turn (e.g., Gill et al., 2006). For example, models
of response functions for central auditory neurons typically
assume a stimulus representation based on the modulus (or
the square, or logarithm of the modulus) of the short-term
Fourier transform of the acoustic stimulus (e.g., the spectrogram
illustrated in Figure 1). An alternative approach (reviewed, for
the visual system, by Yamins and DiCarlo, 2016) is to base the
initial nonlinear transformation on a representation learned from
natural stimulus data or a natural task. In particular, DiCarlo and
colleagues have exploited the nonlinear internal representations
learned within a convolutional neural network trained to classify
objects, finding considerable success in predicting responses of
the ventral visual pathway based on generalized-linear functions
of these representations.

Quadratic and Higher-Order Models
The cascade nonlinearity models described to this point have
been designed to balance biological fidelity and computational
tractability in different ways. In principle, it is also possible to
characterize nonlinear neural response functions using generic
function expansions that are not tailored to any particular
expected nonlinear structure.
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One approach is to use a polynomial extension of the basic
linear model:

r̂(t) = k
(0)

+

D∑

i= 1

k
(1)
i si(t)+

D∑

i,j= 1

k
(2)
ij si(t)sj(t)

+

D∑

i,j,l= 1

k
(3)
ijl

si(t)sj(t)sl(t)+ . . . , (19)

where we have re-introduced the explicit constant offset term.
Recall that the stimulus vector s(t) typically includes values
drawn from a window in time preceding t. This means
that the sums range in part over a time index, and so
implement (possibly multidimensional) convolutions. Such a
convolutional series expansion of a mapping from one time
series (the stimulus) to another (the response) is known as a
Volterra expansion (Marmarelis and Marmarelis, 1978) and the
parameters k(n) as the Volterra kernels.

While the mapping is clearly nonlinear in the stimulus,
Equation (19) is nonetheless linear in the kernel parameters
k(n). Thus, in principle, the MLE of the Volterra expansion
truncated at a fixed order p could be found by Equation (3),
with the parameters concatenated into a single vector:

ǩ = [k(0), k
(1)
1 , k

(1)
2 , . . . , k

(1)
D , k

(2)
11 , k

(2)
12 , . . . , k

(2)
DD, . . . , k

(p)
DD...D];

and the stimulus vector augmented to incorporate higher-order
combinations: š = [1, s1, s2, . . . , sD, s

2
1, s1s2, . . . , s

2
D, . . . , s

p
D]. In

practice, this approach raises a number of challenges.
Even if the stimuli used in the experiment are distributed

spherically or independently, the ensemble of augmented
stimulus vectors š(t) will have substantial and structured
correlation as the higher-order elements depend on the low-
order ones. One consequence of this correlation is that the
optimal value of any given Volterra kernel depends on the
order at which the expansion is truncated; for instance, the
linear kernel within the best second-order model will generally
differ from the optimal linear fit. If the stimulus distribution is
known, then it may be possible to redefine the stimulus terms
in Equation (19) (and the entries of š) so that each successive
order of stimulus entries is made orthogonal to all lower-
order values. This re-written expansion is known as a Wiener
series, and the corresponding coefficients are the Wiener kernels.
The Wiener expansion is best known in the case of Gaussian-
distributed stimuli (Rieke et al., 1997), but can also be defined for
alternative stimulus classes (Pienkowski and Eggermont, 2010).
The orthogonalized kernels can then be estimated in sequence:
first the linear, then the quadratic and so on, with the process
terminated at the desired maximal order.

However, even if orthogonalized with respect to lower-
order stimulus representations, the individual elements of the
augmented stimulus at any non-linear order will still be
correlated amongst themselves, and so STA (or STC) based
analyses will be biased. Thus, estimation depends on explicit
least-squares or other maximum-likelihood approaches. This
raises a further difficulty, in that computation of the inverse auto-

correlation
(
STS

)−1
in Equation (3) may be computationally

burdensome and numerically unstable. Park et al. (2013) suggest

replacing this term, which depends on the particular stimuli used
in the experiment, by its expectation under the distribution used
to generate stimuli; for some common distributions, this may be
found analytically. This is a maximum expected likelihood (MEL)
approach (Ramirez and Paninski, 2014). In a sense,MEL provides
an extension of the expected orthogonalization of the Wiener
series to structure within a single order of expansion.

The underlying parametric linearity of the Volterra expansion
also makes it easy to “generalize” by introducing a fixed,
cascaded, output nonlinearity. Although theoretically redundant
with the fully general nonlinear expansion already embodied
in the Volterra series, this approach provides a simple way
to introduce more general nonlinearities when truncating the
Volterra expansion at low order. In particular, collecting the

second-order Volterra kernel in a matrix K(2) = [k
(2)
ij ] we can

write a generalized quadratic model (GQM):

r̂(t) = f
(
k(1)

T
s(t)+ s(t)TK(2)s(t)

)
. (20)

Again, as the parameters appear linearly in the exponent,
this is a GLM in the (second-order) augmented stimulus š,
guaranteeing concavity for appropriate choices of f () and noise
distribution, and rendering the MLE relatively straightforward—
although concerns regarding numerical stability remain (Park
and Pillow, 2011a). Park et al. (2013) show that MEL can
be extended to the GQM for particular combinations of
stimulus distribution and nonlinear function f . Rajan and Bialek
(2013) propose an approach they call “maximally informative
stimulus energy” which reduces to MID in š. The analysis of
Williamson et al. (2015) suggests that this approach would
again be equivalent to maximum-likelihood fitting assuming a
piece-wise constant nonlinearity and Poisson noise. Finally, the
GQM, with logistic nonlinearity and Bernoulli noise, is also
equivalent to an information-theoretic approach that seeks to
maximize the “noise entropy” of a second-order model of binary
spiking (Fitzgerald et al., 2011b).

An obvious further challenge to estimation of truncated
Volterra models is the volume of data needed to estimate a
number of parameters that grows exponentially in the order
p. Indeed, this has limited most practical exploration of such
expansions to second (i.e., quadratic) order, and often required
treatment of stimuli of restricted dimensions (e.g., spectral or
temporal, rather than spectro-temporal acoustic patterns, Yu and
Young 2000; Pienkowski and Eggermont 2010). One strategy
to alleviate this challenge is to redefine the optimization in
terms of polynomial “kernel” inner products (a different use of
“kernel” from the Volterra parameters) evaluated with respect
to each input data point (Sahani, 2000; Franz and Schölkopf,
2006). This approach, often called the “kernel trick,” makes it
possible to estimate that part of the higher-order expansion
which is determined by the data (a result called the “representer
theorem”), and gives access to a powerful theory of optimization
and regularization.

A second strategy is to parametrize the higher-order kernels so
that they depend on a smaller number of parameters. Many such
parametrizations lead to versions of cascade model. Indeed the
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context-modulated input gain model of Williamson et al. (2016)
can be seen as a specific parametrization of the second-order
kernelK(2). Alternatively, “low-rank” parametrizations of kernels
as sums of outer- or tensor-products of vectors lead to versions
of LN cascade with polynomial or generalized polynomial
nonlinearities. Park et al. (2013) suggest that low-rank quadratic
models may be estimated by first estimating the full matrix K(2)

using MEL, and then selecting the eigenvectors of this matrix
corresponding to the largest magnitude eigenvalues. Although
consistent, in the sense that the procedure will converge to the
generating parameters in artificial data drawn from a low-rank
quadratic model, these significant eigenvectors do not generally
give the optimal low-rank approximation to real data generated
according to some other unknown response function. Instead
estimates must be found by direct numerical optimization of the
likelihood or expected likelihood. For models of even rank, this
optimization may exploit an alternating process similar to that
used for multilinear NL formulations (seeWilliamson et al., 2016,
supplementary methods).

A different approach (Theis et al., 2013) extends the
parametric spike-triggered framework of Pillow and Simoncelli
(2006), using a mixture of Gaussians to model the spike-triggered
stimulus distribution and also the distribution of stimuli which
did not elicit a spike (p(s̃|no spike); a departure from most spike-
triggered estimators). This choice of the spike-absence-triggered
distribution rather than p(s̃), coupled with a logistic sigmoid
nonlinearity and Bernoulli noise, makes this approach similar to
a nonlinear version of the classification method described above.
The equivalent parametric form is more complex, depending
on the log ratio of the two mixture densities; although if the
spike-absence-triggered distribution is well modeled as a single
Gaussian then this becomes a log-sum of exponentiated quadratic
forms.

Time-Varying Models
The models described so far seek to characterize neural
mechanisms through a combination of linear and nonlinear
transformations. These stimulus-response relationships are
assumed to be an invariant or stationary property of the neuron,
i.e., the linear filters and nonlinearities do not change with
time. Whereas this assumption might be reasonable for early
sensory areas, neurons at higher stages of sensory processing
may have more labile, adaptive and plastic response properties,
which fluctuate with changes in stimulus statistics, attentional
state, and task demands (e.g., Fritz et al., 2003; Atiani et al., 2009;
Rabinowitz et al., 2011; David et al., 2012).

The simplest approach to investigating changes in SRF
parameters over time is to split the data into different segments,
either sequentially using a moving window (Sharpee et al., 2006)
or by (possibly interleaved) experimental condition (Fritz et al.,
2003). A separate SRF is then estimated within each segment
of the data, with the assumption that the true function remains
approximately stationary within it. As the various SRFs are all
fit independently, each segment must be sufficiently long to
constrain the model parameters, typically requiring recording
time on the order of minutes, and thus obscuring more rapid
changes. The temporal resolution may be improved to the order

of 5–20 s by making the assumption that the fluctuations in
SRF parameters are small, and characterizing deviations of the
SRF within each segment from a single long-term SRF estimate
based on all the data rather than constructing a fully independent
estimate for each section. Meyer et al. (2014b) demonstrate this
approach, showing that response properties in auditory cortical
responses fluctuate at this timescale, and that the resulting non-
stationary models therefore describe responses more accurately
than stationary models.

To track changes in SRFs at a finer, sub-second, timescales
requires that models fit an explicit process describing the
evolution of the SRF. Common attempts along these lines,
including recursive least-squares filtering (Stanley, 2002) and
adaptive point-process estimation (Brown et al., 2001; Eden
et al., 2004), can all be described within the framework of
state-space models. A state-space model (Chen, 2015) assumes
that the temporal variation in model parameters arises through
a Markov process; at each time-step, the parameters of the
model are determined only by their previous values according
to a probabilistic transition process. Such models might include
hidden Markov models for discretely labeled states (say,
switching between discrete SRF patterns), or linear-Gaussian
state space models (related to the Kalman filter) in which
parameters evolve continuously. The details of such models are
beyond the scope of this review.

Population Interactions
Some changes in the SRFs of individual neurons may be related
to population-level changes in the state of the circuit within
which they are embedded. For example, transitions between
synchronized and desynchronized firing states in cortex are
correlated with changes in linear RFs (Wörgötter et al., 1998) and
in higher-order stimulus-response properties (Pachitariu et al.,
2015). Overall levels of population activity, perhaps associated
with similar state transitions, also correlate with multiplicative
or additive modulation of tuning curves (Arandia-Romero et al.,
2016). Many such population-state changes may be reflected in
aggegrate signals such as the local field potential (LFP) (Saleem
et al., 2010), and indeed a GLM with a fixed stimulus filter
that also incorporated LFP phase information could provide an
improved description of neural responses in the anaesthetized
auditory cortex (Kayser et al., 2015). Although the parameters of
the model are time-invariant, the output of such amodel depends
on the network dynamics captured by the LFP signal, and thus
potentially disentangles intrinsic properties of the neuron from
shared network effects.

An alternative approach, in cases where the spiking activity
of many neurons has been recorded simultaneously, would be to
include in a predictive model for the activity of one neuron, the
precise activity of nearby neurons—either directly in a GLM-like
structure (Truccolo et al., 2005) or through an inferred latent-
space representation of the population such as that found by
Gaussian-process Factor Analysis (Yu et al., 2009) and related
methods. However, as nearby neurons recorded together may
have similar stimulus-response properties, this approach can
misattribute stimulus-driven responses to network effects. This is
particularly true when the model used is far from correct. Given
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the option of explaining a stimulus-driven response using an
incorrect SRF model, or using a simple (perhaps linear) input
from a neighboring neuron with a similar SRF, a population
model might find a better fit in the population interaction.Where
a sensory stimulus has been presented repeatedly, such model-
mismatch effects can be isolated from true trial-by-trial network
effects by shuffling neural responses between trials.

Regularization
Even a linear RF filter may be high-dimensional, possibly
containing hundreds or even thousands of elements, particularly
when it extends in time as well as over sensory space. An accurate
estimate of so many parameters requires a considerable amount
of data. In a space of stimuli such as that drawn in Figure 3

the number of dimensions corresponds to the number of RF
parameters, and to properly estimate the direction in this space
corresponding to the RF, whether by STA, MID, or MLE, each
orthogonal axis of this very high-dimensional space must be
sampled sufficiently often for the effects of response variability
on the estimate of the component of the RF along that axis to
average away. However, the difficulty of maintaining stable neural
recordings over long times, and other constraints of experimental
design, often limit the data available in real experiments. With
limited data in very many dimensions, it becomes likely that
random variability along some dimensions will happen to fall in a
way that appears to be dependent on stimulus value. Simple STA,
MID, or MLE estimates cannot distinguish between such random
alignment and genuine stimulus-dependence, and so overfit
to the noise, leading to poor estimates of RF parameters. By
construction the overfit model appears to fit data in the training
sample as well as possible, but its predictions of responses
will fail to generalize to new out-of-sample measurements. The
noisy RF estimates might also be biologically implausible, with
a “speckled” structure of apparently random sensitivities in time
and space (Figure 8).

Regularized estimators incorporate strategies to combat
overfitting. Two approaches to regularization have seen
widespread use in SRF estimation: early stopping and the
incorporation of penalty terms in cost functions. In early
stopping, the parameters are found by an iterative process,
most often gradient ascent in an objective function such as the
likelihood or single-spike information. Following each iteration,
the predictions of the current parameters are tested on a separate
held-out data set (see the Section on Discounting Noise in
Evaluation for more on the effect of noise in training and
testing data on model fitting). Once these validation predictions
no longer improve the iterations are stopped and the current
parameters are taken to be the regularized estimate (Sharpee
et al., 2004; David et al., 2007; Fitzgerald et al., 2011b).

The second approach to regularization augments the objective
function with additional terms or regularizers that penalize
implausible values of the parameters. In the context of estimation
theory, the addition of a regularizer introduces bias into estimates
but reduces variance, and so frequently reduces the expected
squared error of the estimate. Furthermore, if the magnitude of
the regularizer is independent of the number of data, while the
scale of the original objective function (such as log-likelihood)

FIGURE 8 | Simulated example illustrating the effect of priors on linear

filter estimation. Responses were simulated using a linear-Gaussian model

with different spectro-temporal receptive fields (STRFs) and a noise-like input

stimulus. (A) STRF estimates for different data sizes obtained using a linear

model with different priors. Maximum-likelihood (ML) estimation and Ridge

regression appear noisy for small sample sizes. Estimators using more

structured priors like automatic smoothness determination (ASD) and

automatic locality determination (ALD) yield better estimates in the

low-sampling regime. (B) Mean correlation of estimated STRFs with the true

STRF across different neurons. Error bars indicate one standard deviation.

grows with the data volume, the regularizer has little impact
on the optimum for large data sets, and estimators remain
consistent. In practical settings, where the responses do not in
fact arise from an instance of the model, regularized estimates are
almost always found to generalize more accurately to novel data
than unregularized ones.

In the likelihood setting, the regularizer may be interpreted
as a prior belief about the plausibility of parameter values. Then,
by Bayes’ rule, the regularized objective corresponds (up to a
constant) to the posterior belief about the parameters given data,
and the maximum of this objective is called the maximum a
posteriori or MAP estimate:

k̂MAP = argmax
[
p(r|S, k)p(k|2)

]
(21)

= argmax
[
log p(r|S, k)+ log p(k|2)

]
(22)

where p(r|S, k) is the probability of the observed response
given the stimulus S under the model parameters k (and so
the likelihood function for k), and p(k|2) is regularizing prior
which may depend on hyperparameters 2 (note that taking the
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logarithm in the second line does not change the location of the
maximum). The hyperparameters may be adjusted to refine the
penalty term based on the data themselves, either by selecting
the values that lead to estimators that generalize best when
measured by cross-validation on the training data (Theunissen
et al., 2000; Machens et al., 2004; Meyer et al., 2014a), or by
a process known variously as evidence optimization, maximum
marginal likelihood, or sometimes empirical Bayes (Sahani and
Linden, 2003a). Formore complexmodels such as themultilinear
approaches used for NL cascades, the corresponding approach
relies on an approximation known as variational Bayes (Sahani
et al., 2013).

The functional form of the regularizer determines the
structure expected in an RF, and conversely the structure that
is penalized as implausible. At the most basic level, most
regularizers penalize large RF weights. One common choice
is a penalty proportional to the sum of squares of weights
(‖k‖2 =

∑
i k

2
i ; the “L2 norm”); this is equivalent to assuming

a Gaussian prior distribution in the MAP formulation, and is
related to a statistical technique called “ridge regression” (Hoerl
and Kennard, 1970). This approach strongly penalizes the largest
weights, and so tends to favor RF estimates with few extremes.
An alternative is to penalize the sum of absolute values (‖k‖1 =∑

i |ki|; the “L1 norm”), equivalent to assuming a Laplacian prior
and related to “lasso regression” (Tibshirani, 1996). This penalty
tends instead to favor sparse RF patterns with a small number
of large weights. In both cases, the penalty can be applied after a
linear transformation: either ‖RTk‖2 or ‖RTk‖1. If R is diagonal,
then this approach will simply penalize the weights unequally,
favoring larger values in the region with small penalties chosen
a priori, for instance at small temporal delays. Alternatively, if
the columns of R evaluate local first or second derivatives in
time or space, then such regularizers would favor smooth RF
estimates. Smoothness is also promoted by choosing a quadratic
form kTRRTk in which the dominant eigenvectors of matrix
(RRT)−1 are themselves smooth patterns.

Evidence optimization methods allow the specific parameters
of a regularizer to be adjusted to individual RF estimates rather
than set a priori. Thus, in automatic smoothness determination
(ASD; Sahani and Linden, 2003a), the time and length scale
of smoothness is optimized for each RF. Automatic relevance
determination (ARD; also discussed by Sahani and Linden,
2003a) selects the scale of weight penalties enforced by a diagonal
R automatically, typically resulting in sparse weight distributions
with less bias than an L1 approach; and automatic locality
determination (ALD; Park and Pillow, 2011b) ensures that the
large weights are concentrated in a local region of time and space,
in concordance with the biological notion of a receptive field. The
adaptive methods frequently result in improved model estimates,
particularly for small sample sizes. Results are illustrated in
Figure 8 for a linear-Gaussian model, comparing maximum-
likelihood, “ridge regression,” ASD, and ALD estimates.

Parameter Optimization
Many of the parameter estimators discussed in this review are
defined by the optima of likelihood or other objective functions.
How easy are these optima to find?

For linear models estimated by least-squares, corresponding
to the MLE under the assumption of fixed-variance Gaussian
noise, the optimum is available in closed form by Equation (3).
This analytic result can be extended to the MAP estimate under
the assumption of a fixed zero-mean Gaussian prior with inverse
covariance matrix A on the RF weights, for which we obtain:

k̂MAP = (STS+ λA)−1STr . (23)

The regularization parameter λ is equal to the assumed variance
of the Gaussian output noise. In ridge regression, A is taken to
be the identity matrix, and λ either set arbitrarily or chosen by
cross-validation. For adaptive regularizer approaches, including
ASD, ARD, and ALD, λ and the matrix A must first be found
by maximizing the model “evidence” by iterative numerical
methods.

With the exception of the STA- and STC-based approaches
suited to Gaussian stimulus distributions, estimators for
non-linear cascade models require iterative optimization.
For a Poisson GLM, possibly with spike-history terms, the
log-likelihood function is concave provided that the static
nonlinearity assumed is convex and log-concave (Paninski,
2004). This concavity property extends naturally to the log-
posterior under a log-concave prior. Such functions have a
single unconstrained maximum, which is easily found by
gradient-based methods (e.g., Boyd and Vandenberghe, 2004).
In particular, a standard algorithm from the GLM literature
known as iteratively reweighted least squares (IRLS; Green,
1984) exploits information about the expected local curvature
of the likelihood to converge rapidly on the optimum. For
specific static nonlinearities known as “canonical” (these
include the exponential function for Poisson models, and
logistic function for Bernoulli models), IRLS corresponds
exactly to the Newton method of optimization. In these
cases, and if stimuli are drawn randomly from a known and
simple distribution, estimation can be further accelerated by
maximizing the expected likelihood with only a small cost
in accuracy (Ramirez and Paninski, 2014). Alternatively,
stochastic gradient techniques estimate gradients using random
subsets of the data, converging stably for convex optimization
problems (for reviews see Bottou, 1998; Bottou and Bousquet,
2011). These techniques are simple and scalable, making
them particularly well-suited to large data sets, and they
also facilitate online monitoring of SRF parameters during
experiments through their batch-based structure (Meyer et al.,
2015).

For estimators based on non-convex objective functions, such
as MID, general LN likelihood models, or multilinear NLmodels,
as well as the evidence-optimization stage of some adaptive
regularizers, the results of iterative optimization may depend
on the parameter value from which the iterations begin. Thus,
additional steps are needed to ensure that the local optimum
found is likely to represent a good parameter or hyperparameter
choice. One approach is to repeat the iterative optimization
starting from a number of different initial parameter values,
accepting the results of the run that leads to the best value of
the objective function (or, as a form of regularization, the best
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validation performance; compare the discussion of early stopping
above). Alternatively, stochastic gradient methods, particularly
incorporating momentum terms, may escape poor local extrema
and approach the true optimal parameter values (Ruder, 2016). A
similar idea, albeit without explicit use of gradient information,
underlies stochastic search methods such as simulated annealing
(Kirkpatrick et al., 1983). In the general case, however, no
approach beyond exhaustive search can guarantee that the value
obtained will be the true global optimum of the objective
function.

PART 2: EVALUATION

Once we have a found the parameters of a model for a set of
neural data, there remains the important task of validating the
quality of the model fit. In this section, we discuss different
methods for quantifying how well a fitted model captures the
neural response.

There are different settings in which model performance
needs to be evaluated. The relatively straightforward scenario
is when we wish to compare the performance of two or more
estimators for a specific model, e.g., different regression-based
estimators of the linear-Gaussian model (see Equation 2). In
this case, the log-likelihood provides a convenient measure for
comparing the relative performance of the estimators on the
same set of validation data. However, often we are interested
in finding which model amongst a number of different models
provides the best description of the neural response. Again, this
is a relative comparison, but in this case of the models rather
than the estimators; therefore a model-independent measure is
required, such as the single-spike information (Brenner et al.,
2000; Sharpee et al., 2004).

Ultimately, however, the goal is not only to identify the
best of a limited set of models for a recorded set of data,
but also to quantify the fraction of the response captured by
any of the models. This scenario—evaluation of absolute model
performance—is more complicated, because response prediction
errors arise not only from inaccurate model assumptions but also
from variability in neural responses.While these variations might
represent an important aspect of the neural response, from a
modeling perspective they are usually treated as “noise” (unless
the variations are under control of the experimenter or are related
to observable variables), and the impact of this “noise” has to be
taken into account when evaluating absolute model performance.

In the following, we will provide an overview of common
measures used to evaluate performance of the different stimulus-
response function models reviewed above. We will also provide
an intuitive outline of a method that allows the separation
of response prediction errors arising from inaccurate model
assumptions from errors arising from noise inherent in neuronal
spike trains (Sahani and Linden, 2003b; see alsoWilliamson et al.,
2016, supplementary methods).

Rate-Based Measures
Mean Squared Error (MSE)
For continuous responses such as spike rates or local field
potentials, a natural measure for the quality of an estimated

model is the mean squared error (MSE; σ 2
e ) between the

estimated response r̂ and the measured response r,

σ 2
e =

1

T

T∑

t=1

(
r̂(t)− r(t)

)2
(24)

=
〈(
r̂(t)− r(t)

)2〉
, (25)

with 〈·〉 used to denote average over time. The MSE is a common
measure of error used in many estimation problems, and is
also closely related to the negative log-likelihood of the linear-
Gaussian model.

The MSE measures the mean error per sample (Figure 9A)
but it is not bounded above; higher variability in the recordings
will produce higher MSE estimates for equivalent data sizes.
This limitation makes it difficult to compare MSE values across
different brain areas or even across different recordings from
the same area. The coefficient of determination, or R2 statistic,
normalizes the MSE by the variance in the neural response,

R2 =
σ 2
r − σ 2

e

σ 2
r

(26)

where σ 2
r =

〈
(r(t)− 〈r〉)2

〉
is the variance in the neural

response about the mean value 〈r〉 = 1/T
∑T

t= 0 r(t) and
σ 2
e is the MSE. Unfortunately, R2 cannot be used directly to

quantify how well a model reproduces the recorded response
as it does not distinguish stimulus-dependent variance in the
response from stimulus-independent variability (“noise”). A
modification of Equation (26) described below (see Discounting
Noise in Evaluation) makes it possible to measure the fraction of
explainable variance in the data captured by a specific model in
the presence of such stimulus-independent variability.

Correlation and Coherence
Correlation measures the degree of linear dependence between
two variables. For a predicted and observed time-varying firing
rates, the sample correlation coefficient, also known as the
Pearson correlation, is defined as

ρr,r̂ =
cov(r, r̂)

σrσr̂
(27)

where cov(r, r̂) =
〈(
r(t)− 〈r〉

)(
r̂(t)−

〈
r̂
〉 )〉

is the sample cross-

covariance, σr̂ =

√〈(
r̂(t)−

〈
r̂
〉)2〉

is the standard deviation

of the model prediction, and σr is that of the measured data.

The correlation coefficient is bounded between -1 and 1, with

a correlation of 1 indicating a perfect linear relation between

predicted and actual response and values close to zero indicating

that the responses are linearly unrelated. An example for a

cortical neuron is shown in Figure 9B.

The correlation coefficient is centered and normalized and

therefore does not depend on mean or scaling of the signals. In
settings where the focus is on capturing the temporal modulation

Frontiers in Systems Neuroscience | www.frontiersin.org 17 January 2017 | Volume 10 | Article 109

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Meyer et al. Models of Neuronal SRFs

FIGURE 9 | Common techniques for evaluating SRFs. (A) The mean squared error (MSE) measures the squared error (black line) per time step between the

measured rate (red line) and predicted rate (blue line). The error between the rates (gray shaded area) depends on mean and scaling of the rates. (B) The correlation

coefficient reflects the linearity between measured and predicted response, indicated by the least squares line fit. The correlation is invariant to linear transformations,

i.e., its value does not depend on the mean and the scaling of the responses. (C) The coherence assesses the linear relationship between two variables in frequency

space; i.e., it is a frequency-dependent correlation measure. (D) Conditional distribution of filtered stimuli that elicited a spike (black line) or no spike (gray line). The

hatched area indicates the overlap between the two distributions, which is related to prediction performance in a binary coding model (see text for details). (E) A

receiver-operating characteristic curve (ROC) can be constructed from the distributions in (D) by computing false positive and true positive rates for all possible

thresholds along the x-axis. The area under the ROC curve (AUC; shaded gray area) provides a scalar measure of the prediction performance of the fitted model.

of the firing rate rather than its overall magnitude, this may

provide an advantage over the MSE. Introducing a time lag
between the two signals, and computing a correlation at each lag
yields a function known as the crosscorrelogram. This may reveal

temporal relationships between the prediction andmeasurement,
such as temporal offsets or correlation lengths, that are not
evident from the correlation at zero time lag.

An alternative formulation of the linear dependency between
two signals is the magnitude-squared coherence,

γ 2(ω) =
|Srr̂(ω)|

2

Sr(ω)Sr̂(ω)
, (28)

where Srr̂(ω) is the cross-spectrum of r and r̂, and Sr(ω) and
Sr̂(ω) are the power spectra of r and r̂, respectively (Gardner,
1992). The coherence measures the strength of the linear
relationship between two processes as a function of frequency.
While it can be more expensive to compute, it has several
important advantages over the time-domain correlation. First,
for spike data, the correlation coefficient and correlogram require

binned spike counts and their values depend on the bin size.
As Fourier transforms of spike-train signals can be found
without explicit discretization or smoothing, computation of the
coherence does not require binning and is less sensitive to the
bin size if the data have been pre-binned. The temporal scale
of the correlation is instead implicit in the frequency range
over which the coherence is considered. Thus, the coherence
may be diagnostically valuable, revealing for instance that a
model accurately predicts slow fluctuations in the response
while missing many short time-scale events (Figure 9C). For
nonstationary signals, such as stimulus-driven firing rates, the
coherence must be estimated from continuous time-varying
quantities. Common approaches for obtaining continuous firing
rate estimates include moving-window averaging, wavelet-based
filtering, and multitaper techniques (Brown et al., 2004).

Spike-Based Measures
Single-Spike Information
The single-spike information (Equation 7) maximized by the
MID estimator of the LNP model provides a measure of the
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mutual information between stimulus and response, regardless
of the shape of the neural nonlinearity. Furthermore, it does
not depend on the scaling of the linear filter(s) which might
be inherently different for different estimators. Therefore, it is a
useful measure to use for comparing different LNP models.

However, empirical estimation of information-theoretic
quantities from finite data is non-trivial. Histogram-based
estimation of single-spike information values can result in
substantial upward bias in information estimates (Brenner et al.,
2000; Paninski, 2003b). While it is possible to correct for this
bias to some degree, the optimal number of histogram bins
also depends on the amount of data (Paninski, 2003b). Thus,
the parametrization of the histogram-based estimator must be
chosen carefully, or investigated as a variable.

Once an appropriate parametrization has been identified,
the single-spike information can be normalized by the total
information in the response (Brenner et al., 2000). The total
information can be estimated from a large number (e.g., 50–150)
of repetitions of a short stimulus segment (Sharpee et al., 2008),
using

Iresp =
1

T

∫
dt
r(t)

〈r〉
log2

r(t)

〈r〉
, (29)

where r(t) is the time-varying firing rate for the stimulus segment
averaged over all stimulus repetitions, and 〈r〉 is the overall mean
firing rate across time and repetitions. Finite data effects both
in the single-spike information and the total information in the
response can be reduced by (linear) extrapolation to infinite
data (Sharpee et al., 2008).

ROC Analysis
The problem of correctly predicting a spike can also be phrased
in terms of a detection task with the goal of successfully
detecting spike-eliciting stimuli from a distribution of stimuli
that mostly fail to evoke spikes. In signal detection theory, success
in detecting a desired event may be quantified by the receiver
operating characteristic (ROC) curve, which is generated by
plotting the fraction of correctly detected spike stimuli (“true
positive rate”) vs. the fraction of falsely detected non-spike stimuli
(“false positive rate”) for different spiking thresholds (Green and
Swets, 1966; Meyer et al., 2014a). Because the output of most
binary SRF models depends only on the filtered stimulus, this is
equivalent to “shifting” the threshold along the axis defined by the
filter and estimating the rates from the conditional distributions.

This is illustrated in Figure 9 for an example auditory cortical
neuron. The overlap between the distributions can be quantified
by integrating over all thresholds (e.g., using the trapezium rule)
yielding the area under the ROC curve (AUC). A value close to
1 corresponds to a small overlap, whereas a value close to 0.5
indicates that the spike- and non-spike-stimulus distributions
overlap substantially along the RF direction identified by the
model.

From amodel perspective, the overlap determines the amount
of noise in the system. The discriminative approach described
above (see Bernoulli Models) seeks to find the filter in stimulus
space that minimizes the overlap between the distributions,
which is equivalent to finding the model with minimum coding

noise (Meyer et al., 2014a). Note that the single-spike information
seeks to minimise the overlap between similar conditional
distributions in terms of the Kullback-Leibler divergence (see
Figure 3D). In case the number of spikes is small relative to the
number of bins, which is typically the case for small enough bin
sizes, AUC and single-spike information are highly correlated,
with AUC exhibiting considerably smaller bias and variance for
small sample sizes (Meyer et al., 2013).

Discounting Noise in Evaluation
The response of a neuron to repeated presentations of the same
physical stimulus can vary considerably, even in anaesthetized
preparations (Tolhurst et al., 1983; Goris et al., 2014). This
variability makes it difficult both to estimate the parameters of the
model in the first place, and then to quantify the extent to which a
given model or class of models has captured the true response of
the neuron. Here, we describe a three-step procedure for finding
the fraction of the explainable component in the response that
can be captured by a model, for a population of similar neurons
(e.g., from a specific brain area). We also illustrate the principles
on simulated data.

Signal and Noise Power
Suppose that we have available the responses of a population
of neurons to N repetitions of the same stimulus. (It is not
essential that all neurons were recorded at once as the analysis
is performed treating each neuron as a separate sample.) Our
objective is to measure the performance of a predictive model in
terms of the fraction of the neuron’s response that it successfully
predicts. Following Sahani and Linden (2003b) we focus on the
response power or response variance σ 2

r (see Equation 26).
From amodeling perspective, the response to the nth stimulus

repetition, r(n)(t), may be divided into a reliable (stimulus-driven
signal) part µ(t) and a variable (noise) component η(n)(t),

r(n)(t) = µ(t)+ η(n)(t) . (30)

We define µ(t) to be the expected response to the stimulus—
the average that would be obtained from an infinite collection of
responses to the same stimulus—and so η(n)(t) has an expected
value of zero for all t and n. The signal µ(t) reflects the time-
locked, stimulus-driven part of the response of the neuron under
consideration, and it is thus the component of the response that
is (in theory) predictable by a model of the cell’s SRF. However,
the average of a finite number of trial responses collected within
experimental constraints will retain a contribution from the
noise, and thus the true signal response cannot be determined.
Nevertheless, it is possible to form an unbiased estimator of the
power or variance in that response σ 2

µ =
〈
(µ(t)− 〈µ〉)2

〉
as

follows.
First, the simple property of additivity of variances implies

that on each trial σ 2
r

E
= σ 2

µ + σ 2
η where σ 2

η is the average

squared deviation from µ(t). Here σ 2
r (as in Equation 26) is

a noisy observed sum-of-squares depending on the particular
response on a single trial, while σ 2

µ and σ 2
η are expected measures

of variance in the idealized response. Thus,
E
= means “equal in
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expectation”; the equality may not hold on any trial, but the
expected values of the left- and right-hand sides are equal. This
relationship depends only on the noise component having been
defined to have zero expectation, and holds even if the variance
or other property of the noise depends on the signal strength as
would be expected for a Poisson noise process (see the simulated
example in Figures 10A–C). We now construct two observed
trial-averaged quantities, similar to the sum-of-squares terms
used in the analysis of variance (ANOVA) (e.g., Lindgren, 1993):
the power of the average response σ 2

r , and the average power per

response σ 2
r , with · indicating trial averages:

σ 2
r

E
= σ 2

µ + σ 2
η and σ 2

r
E
= σ 2

µ + σ 2
η .

Assuming that the noise in each trial is independent, although the
noise in different time bins within a trial need not be, we have:

σ 2
η

E
= σ 2

η /N. Then solving these two equations for σ 2
µ suggests

the following estimator for the signal power:

σ̂ 2
µ =

1

N − 1

(
Nσ 2

r − σ 2
r

)
. (31)

A similar estimator for the noise power is obtained by subtracting

this expression from σ 2
r . Thus, the resulting estimator of the

fraction of explainable response power captured by a model, the
predictive power, is given by

β =
σ 2
r − σ 2

e

σ̂ 2
µ

. (32)

This corresponds to the R2 estimator (Equation 26) except that
the explained variance is measured against an estimate of the
stimulus-driven power (or variance) instead of the total response
variance, which overestimates the signal power by the noise
power (Figure 10C).

Hsu et al. (2004) applied a similar idea to the coherence
measure (see Equation 28) to obtain an estimate of the coherence

FIGURE 10 | Signal power, noise power, and population extrapolation. Simulated data illustrate principle of quantification of predictable signal power. (A) Raster

plot showing Poisson spike trains for 10 presentations of the same stimulus. (B) True signal (solid blue line) that was used to generate the spike trains, together with

true noise (blue shaded area). The spike rate (black line) and the standard deviation across trials (gray bars) were estimated by counting spikes in discrete bins. (C)

Power of estimated response, true signal, and true noise. The estimated response power overestimates the true signal power by the noise power (additivity of

variances, see text). The estimated signal power is found by subtracting the noise power from the estimated response power. (D) Normalized predictive power for a

population of 200 simulated linear-Gaussian cells. Predictions on training data (light gray circles) and testing data (dark gray circle) were done using a linear estimator.

As expected, extrapolation to zero noise power reveals that the model accounts for the maximum linearly predictable power. (E) The same as in (D) but responses

were simulated using 200 linear-nonlinear Bernoulli cells and a non-Gaussian stimulus (similar to the stimulus in Figure 3B). Extrapolation to the zero noise condition

indicates that imperfect model performance is due to an incorrect model assumption (linear-Gaussian model) rather than to noise.

Frontiers in Systems Neuroscience | www.frontiersin.org 20 January 2017 | Volume 10 | Article 109

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Meyer et al. Models of Neuronal SRFs

between model prediction and signal-driven response. However,
it is important to note that whereas the estimator for the signal
power itself (Equation 31) depends linearly on the measured
power in single responses and their trial average and so is
unbiased, estimators for the predictive power (Equation 32)
and coherence (Hsu et al., 2004) which involve nonlinear
transformation are at best consistent. However simulations
(Figure 10D and Hsu et al., 2004) suggest that any finite-data
biases might be small for typical data volumes.

David and Gallant (2005) study the bias in the correlation
coefficient between (unregularized) prediction and validation
measurements, using an analysis similar to the predictive power.
They focus separately on the prediction errors introduced
directly by noise in the measured validation data and by mis-
estimation of model parameters from noisy training data, and
propose two different schemes for extrapolation in number of
trials or training time (though not in the population noise level
as described below). While they arrive at the correct estimate
of the correlation coefficient of the ideal model, this approach
makes assumptions that might not hold for many experimental
data sets. First, the unregularized model is assumed to be
predictive which is often not the case for realistic data sizes (see
Regularization). Second, the (linear) model fit is assumed to be
the same in the noise-free training and validation sets. This is
approximately true for large training and validation data sets,
but unlikely for rather limited amounts of data as stimuli in the
two sets might differ substantially and neural models are stimulus
dependent (Christianson et al., 2008).

Upper and Lower Predictive Power Estimates
Model parameters (such as the weights or coefficients of the
SRF) are commonly estimated by minimizing the mean squared
error of the model prediction on the training data. By definition,
these least-mean-squares (LMS) parameters produce model
predictions for the training data that have minimum possible
error, and therefore maximal predictive power. Of course, the
resulting maximal value, the training predictive power, will
inevitably include an element of overfitting to the training data,
and so will overestimate the true predictive power of the model
with ideal parameters (i.e., the model that would perform best
on average for all possible stimulus-response combinations, not
just the training data). More precisely, the expected value of
the training predictive power of the LMS parameters is an
upper bound on the predictive power of the model with ideal
parameters. Thus, the measured training predictive power can be
considered an upper estimate of the true predictive power of the
model class (light gray dots in Figures 10D,E).

We can also obtain a lower estimate, defined similarly, by
empirically measuring the generalization performance of the
model by cross-validation. Cross-validation provides an unbiased
estimate of the average generalization performance of the fitted
models (as obtained from the training fraction of the available
data). Since these models are inevitably overfit to their training
data, not the test data, the expected value of this cross-validation
predictive power bounds the predictive power of the model with
ideal parameters from below, and thereby provides the desired

lower estimate of the true predictive power of the model class
(dark gray dots in Figures 10D,E).

Population Extrapolation
For any one recording of finite length, the true predictive power
of the model class (i.e., the predictive power of the version of
the model with ideal parameters) can only be bracketed between
the upper and lower estimates defined above. The looseness of
these estimates will depend on the variability or noise in the
recording. For a recording with high trial-to-trial variability, the
model parameters will be more strongly overfit to the noise in
the training data. Thus, we expect the training predictive power
on such a recording to appear high relative to the signal power,
and the cross-validation predictive power to appear low. Indeed,
in very high-noise conditions, the model may primarily describe
the stimulus-independent noisy part of the training data, and
so the training predictive power might exceed the estimated
signal power, while the cross-validation predictive power may fall
below zero (that is, the predictions made by the model may be
worse than a simple unchanging mean rate prediction). Thus,
the estimates may not usefully constrain the predictive power
measure for a particular recording.

However, the systematic dependence of the bounds on the
variability of the neural response makes it possible to tighten
the estimates of model predictive power for the population as a
whole. Rather than simply averaging the bounds — and thus the
effects of noise—across neurons, the upper and lower estimates of
model predictive power are regressed as a function of noise level
and extrapolated to the zero-noise intercept. This extrapolation
yields a relatively tight estimated range within which the optimal
population mean predictive performance of the model must lie,
while discounting the influence of variability on the assessed
performance. This extrapolation is illustrated for linear models
fit to two simulated populations in Figures 10D,E. The second
of these populations was designed to be nonlinear, and this is
reflected in the low values of extrapolated linear predictive power.
In practice, the extrapolated upper and lower bounds may not
always converge to the same value: if the true response function
is very far from the hypothesized model class, then a model fit
to finite data, even if noiseless, would generalize to novel stimuli
more poorly than it fits the training data.

Model Mismatch and RF Estimates
We have emphasized previously that a tractable model class
can be expected at best only to approximate the true SRF of a
neuron. To what extent, then, do RF estimates in such models
still yield useful qualitative indications of the true neural response
properties?

In general, the RF estimate for a mismatched model
depends both on the true neuronal SRF and on the stimulus
ensemble (Christianson et al., 2008). This is most evident for a
linear model, as the slope of the best linear approximation to a
nonlinear curve must clearly depend on the domain over which
the approximation is made. In the high-dimensional setting,
estimated weights depend not only on the range and distribution
of stimulus values along each dimension (e.g., Figure 3) but
potentially also on statistical interactions between dimensions.
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Thus, estimates of weights along stimulus dimensions which fall
outside the true RF (and so do not actually affect firing at all) may
be non-zero if the stimulus along those dimensions correlates
with a relevant nonlinear function of the stimulus within the true
RF. This phenomenon can lead to striking artifacts even in the
“autocorrelation corrected” linear estimate (Figure 11).

The same effect applies to nonlinear models, even when
the estimator is consistent or unbiased (as these concepts are
meaningful only for properly matched models). For example,
the MID (or the equivalent LNP MLE) will generally depend on
stimulus statistics if the true neuronal SRF is not LNP. It follows
that differences in estimated RFs measured under different
stimulus conditions, even using a method such as MID, may not
necessarily reflect adaptive changes in the true SRF (Borst et al.,
2005; Christianson et al., 2008). To identify genuine SRF changes,
models must be fit using the same distribution of stimuli placed
within different adaptive contexts.

We observed above that the MLE for a linear model also
provides an unbiased estimate of the RF filter of an LNP model
when the stimulus ensemble is elliptically symmetric. Might a
similar principle apply more generally? Indeed, stimuli that are
chosen independently along each input dimension do provide
a (somewhat weaker) guarantee. Provided that the SRF model
estimator allows for separate adjustment of its RF components
along each stimulus dimension (and is not, for example, subject
to a regularization constraint in which RF weights are assumed to
vary smoothly), the RF estimated using such a stimulus will not
systematically overestimate dependence on stimulus dimensions
outside the true RF (Christianson et al., 2008). However, RF
weights estimated within the true responsive region will not
necessarily reflect the true quantitative influence of the stimulus
dimensions. As Christianson et al. (2008) point out, except in
the special case of Gaussian stimuli, dimensional independence

depends not only on the stimulus ensemble but also on the choice
of dimensions. Thus, the ripple stimuli employed in Figure 11B

are not independent in the spectrotemporal domain, but are close
to being so (and indeed, a random sparse combination of ripples
would be exactly so) in the spectrotemporal modulation domain:
the Fourier transform space of the spectrogram. It follows that
the use of ripple stimuli will not lead to an overestimate of the
extent of the modulation RF.

DISCUSSION

Abstract stimulus–response function models can be versatile
and powerful tools for addressing many different questions
about sensory processing and neural representation. The great
advantage of these models is that their parameters can be
estimated from experimentally feasible amounts of data, but
nevertheless can describe neuronal responses across a large subset
of a high-dimensional stimulus space. The disadvantage is the
obverse of this advantage; the same abstract formulation that
permits robust and efficient parameter estimation from limited
data also requires assumptions that can produce potentially
misleading results arising from mismatch with biological reality.

Unlike biophysical models that describe actual low-level
mechanisms of sensory processing such as synaptic transmission
and channel dynamics, functional models are abstract descriptors
of the stimulus–response function transformation. In general,
then, the estimated parameters of functional models should
not be interpreted as estimates of specific physical properties
of the biological system. The true test of a stimulus–
response function model is not whether the fitted parameters
can be mapped onto low-level biological mechanisms, but
whether the model can successfully predict neuronal responses
to novel instances of the sensory input. This review has

FIGURE 11 | Simulations illustrating the effect of model mismatch on RF estimates. (A) True spectro-temporal receptive field used in the simulations. (B)

Estimates obtained using a linear estimator for a threshold linear, a threshold-quadratic, and a threshold cubic-Poission model with rate estimated from 20 trials

(p(spike) = 0.1). Stimuli were dynamic ripples, a sound class modulated sinusoidally in both the temporal and spectral domains. [·]+ denotes half-wave rectification.

(C) The same as in (B) but for human speech stimuli. For both stimulus classes a model mismatch can result in stimulus-dependent overestimation of the extent of the

true RF. The cc values stated are the Pearson correlation coefficients between true and estimated receptive fields.
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included a summary of means by which the quality of model
predictions can be rigorously and systematically quantified,
in a manner robust to the level of stimulus-independent
“noise” in the neuronal responses. Such methods for evaluating
model predictive power—combined with a healthy appreciation
for the potential issues arising from model mismatch—
help to make abstract stimulus–response function models an
essential tool in the arsenal of methods for analysis of neural
systems.

Data Sharing
Software implementing many of the estimators described above
is available online at http://www.gatsby.ucl.ac.uk/resources/srf/.
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