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Abstract
Micro-architectured lattices offer unique combinations of stiffness, strength and tough-

ness at low density that makes them ideal for lightweighting applications. This the-

sis quantifies, compare and contrast various aspects of the mechanical performance of

micro-architectured lattices with special emphasis on the role of microstructure upon

their effective macroscopic properties. The differences in mechanical performance

between lattices with a stochastic and various regular-periodic micro-architectures

(Square, Hexagonal, Triangular and Kagome micro-structure), with each exhibiting

either a stretch or bending-dominated deformation at the cell-scale, are systematically

quantified.

First, the elastic and yield properties of infinite-sized lattices are obtained by finite-

element modelling of representative unit-cells, applying the appropriate boundary con-

ditions, where there is an excellent agreement with analytical predictions from existing

literature. By relaxing the ‘infinite-size’ assumption, the effects of finite specimen size

on the effective macroscopic stiffness and strength are quantified for uniaxial and shear

loadings. The predicted size effects were found to be a direct consequence of the strong

and weak boundary layers that emanate from the specimen boundaries. The influence

of these edge effects on the macroscopic stiffness and strength are quantified for the

Square, Triangular and Kagome lattices, and the results compared to existing ones for

the Diamond, Hexagonal and stochastic Voronoi lattices in the literature.

Second, in addition to the monotonic loading studied above, the cyclic stress-life re-

sponse is also investigated for the regular lattices. A non-linear continuous fatigue

damage model for high cycle fatigue is implemented which allows the simulation of

strain accumulation in lattices until failure. The proposed model is able to predict with

reasonable accuracy the S-N curves for Diamond lattices to shear fatigue where experi-

mental data is available in the literature. The numerical model is then used to elucidate

the shear and uniaxial fatigue response of other periodic lattice micro-architectures.

Fatigue damage is found to originate in locations that are also affected by the boundary
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layers. A major difference in the response between bending- and stretching-dominated

lattices is revealed; the bending-dominated micro-architectures accumulate damage

within a larger lattice area (volume) and in a more progressive manner compared to

their stretch-dominated counterparts.

Last, the fracture toughness of stochastic Voronoi lattices is studied using an idealised

LEFM (Linear Elastic Fracture Mechanics) approach and the results compared to those

of periodic lattices. The role of relative density, micro-structure regularity and loading

mode are also explored. It will be shown that the toughness predicted by numerical

simulations of the CT (compact tension) and SENB-3PB (single-edge notched in three-

point bending) test specimens reveal a specimen-size dependency and a disparity with

the corresponding predictions by the idealised LEFM approach: the origins of these are

also clarified.
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Chapter 1

Background
The development of cost-effective, high-strength lightweight components that reduces

the weight of a product without compromising cost, performance and/or safety is essen-

tial to compete in today’s global market. Important considerations for light-weighting

are, typically, the strength-to-weight ratio (σ/ρ) and/or the stiffness-to-weight ratio

(E/ρ) of the material from which a component is made. Invariably, it is almost always

a combination of properties that matter when comparing materials performance. To get

an overview of the different strategies, it is instructive to examine material property

charts. Figure 1.1 gives an example of how the elastic modulus and strength of dif-

ferent material classes vary with their density; it also delineates accessible parts of the

material property space from the ones that are not. There are a number of strategies

that might be employed to achieve light-weighting. One method is to manipulate the

chemistry of materials to create new alloys although the potential for any substantive

gain is small. Another is to employ heat treatment or mechanical working but this,

too, is limited. Man-made hybrids – natural materials (cork, bamboo or wood) also

belong to the same family – are a recent development with the biggest potential. They

can be broadly categorised into two sub-classes: the first is the ubiquitous composites

that utilise combinations of materials to exploit favourable properties of each, often by

imbedding strengthening particles (fibres, fabrics, etc.) within a softer or brittle ma-

trix; and, the second involves manipulating material distribution in space, to control its

microstructure, to create lattices. It is the latter which the present thesis is concerned

with.

Man-made foams – a class of cellular solids – is a typical example of a hybrid that of-

fers significant weight-saving potential. It has a microstructure comprising of an inter-

connected network of beams and plates with a large void volume ratio. Consequently,

foams have density that are significantly lower than other classes of material and they
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tend to occupy the lower left region of material property charts when plotted against

density, see Fig. 1.1 (Ashby et al., 2000; Gibson and Ashby, 1997). Nearly all materials

can be foamed: metals, polymers, even ceramics. However, the nature of the foaming

process invariably gives rise to a microstructure that is, intrinsically, stochastic. In

principle, it is possible to improve on the mechanical performance of these stochastic

foams, at the same density, by simply controlling its microstructure – see recent review

by Fleck et al. (2010). Therefore, it is convenient to divide man-made foams into two

further sub-classes: (1) foams with a stochastic microstructure (stochastic foams); and,

(2) lattices, or micro-architectured materials, with a periodic microstructure obtained

by tessellating two-dimensional (2D) or three-dimensional (3D) space using one, or

more, geometric shapes (or cells) without overlap and/or gaps.

To increase the rate of uptake by the industry – its use in lightweighting applications

saves energy and fuel, while contributing positively to the low carbon emissions agenda

– their mechanical response to external loadings will need to be better understood. The

present thesis aims to fill in a few key gaps in our current state of knowledge concern-

ing their mechanical performances and how they compare to the more widely-adopted

stochastic foams. Topics to be addressed will include: (1) the modelling of how their

intensive (bulk) mechanical properties are affected by edge-effects under remote shear

and uniaxial loadings; (2) modelling of their shear and compression fatigue response;

and, (3) modelling of their fracture response and the consequences of adopting standard

test specimen geometries for toughness measurements.

1.1 Topology

A lattice material is characterised by three distinct length scales at the

• microscale,

• mesoscale, also known as the cell-scale, and

• macroscale.

Their bulk response to remote macroscopic loading is dictated not only by the solid ma-

terial from which the cell walls are made but, crucially, on how its individual cells are

arranged on the cell-scale. The properties that characterise the different features of the
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(a)

(b)

Figure 1.1: Material property charts: (a) Elastic modulus and (b) Strength versus den-

sity. (Source: Ashby, 2005)
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cell-scale are known, collectively, as topology. One of the most important topological

feature of a lattice is, arguably, its nodal connectivity (Z): defined as the number of cell

walls that meet at a common node. This is because the dominant mode of deformation

– this can either be stretch or bending, or their combination thereof – experienced by in-

dividual cell walls is dictated, to a large extent, by its nodal connectivity Z (Deshpande

et al., 2001b).

Lattices exist either in two- (2D) or three- (3D) dimensional form. 2D lattices com-

prised of a framework of struts, or cell walls, arranged to form cells in a plane – see

Fig. 1.2a. In a similar vein, 3D lattices fill space: this is achieved either with prismatic

cells as in Fig. 1.2b (Cote et al., 2006; Fleck and Deshpande, 2004; Wadley et al.,

2003); or, through a 3D arrangement of struts (Wadley et al., 2003; Wallach and Gib-

son, 2001). If the faces of the cells are covered by a membrane, the resulting lattice has

closed-cells as shown in Fig. 1.2c. On the other hand, if no such membrane exists, the

lattice has a ‘wireframe-like’ network referred to as open-cell as shown in Fig. 1.2d.

This distinction – closed or open – applies only to 3D lattices and foams. Analysing 3D

foams/lattices is much more challenging compared to their 2D counterparts which are

easier. Therefore, stochastic 2D foams and lattices are often studied to inform the me-

chanical behaviour of their more complex 3D counterparts (Gibson and Ashby, 1997).

In a similar vein, this thesis will focus on planar/prismatic lattices and reference to 3D

lattices will be made only where appropriate.

At the mesoscale, the cell micro-architecture of a lattice (2D or 3D) is either periodic or

non-periodic. The former is characterised by geometrical symmetries so that its macro-

scopic response is readily analysed through judicious use of a representative unit-cell.

It is worth noting here that the analysis of a unit-cell does not account for any edge (or

boundary) effects. By contrast, the cell micro-architecture in non-periodic lattices are

characterised by varying degree of randomness so that their cells may have different

shapes and sizes. It is instructive to examine each category in greater detail; partic-

ularly, on how they are to be categorised and their effects upon the bulk mechanical

response of a lattice.
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(a) 2D Hexagonal lattice (b) 3D Prismatic lattice

(c) Closed-cell foam (d) Open-cell foam

Figure 1.2: Cellular solids with different topological features at the mesoscale (Source:

Cote et al., 2006; Gibson and Ashby, 1997)

1.1.1 Periodic lattices

If a single regular polygon – equiangular and equilateral – is used to tessellate a plane,

the resulting 2D lattice is regular. Only three polygons – square, regular hexagon and

equilateral triangle – can be used to generate a regular lattice (Fleck et al., 2010). These

are shown in Figs. 1.3a-c and their resulting lattice in Figs. 1.4a-c, respectively. The

square polygon is also commonly used in its 45◦ rotated version to give the Diamond

lattice, as shown in Fig. 1.4d. On the other hand, if two or more regular polygons

are used for tessellation, subject to the constraint that its nodal connectivity is identical

for every node (or joint), the resulting lattice is semi-regular. Only eight independent

semi-regular lattices can be constructed. An example is the Triangular-Hexagonal lat-

tice shown in Fig. 1.4e; it is commonly known as a Kagome lattice (Hyun and Torquato,

2002) which is constructed using polygons shown in Fig. 1.3d. By relaxing the afore-

said constraint imposed on nodal connectivity, other periodic lattices may be generated
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(a) Hexagonal (b) Triangular (c) Square (d) Kagome

Figure 1.3: Regular 2D polygons used to construct regular (a,b,c), and semi-regular (d)

lattices.

although they are of no interest to the present study.

Periodic 3D lattices may be generated in a similar fashion. Unlike its 2D counterpart,

the polygons now form the faces of 3D cells. Regular 3D lattices can only be generated

by tessellating either cubic or dodecahedral cells (Gibson and Ashby, 1997). Semi-

regular 3D lattices are much more common. An octet-truss lattice is one example that

combines tetrahedra and octahedra cells (Deshpande et al., 2001a).

Regular and semi-regular lattices are either bending- or stretch-dominated depending

on the dominant mode of deformation experienced by its cell walls on the mesoscale.

To distinguish them, consider an equivalent pin-jointed framework by replacing all

rigid joints of the original lattice with pin-joints. If this pin-jointed equivalent has a

macroscopic strain-producing collapse mechanism under remote external loading, then

the original rigid-jointed lattice must resist collapse, primarily, through bending of its

struts, i.e. it is a bending-dominated micro-architecture. If, on the other hand, the

pin-jointed equivalent has no, or only periodic, collapse mechanisms, then the original

lattice is stretch-dominated (Deshpande et al., 2001b; Fleck et al., 2010).

The dominant mode of deformation experienced by the cell walls is dictated by its nodal

connectivity. Following Maxwell (1864) and Calladine (1978), the necessary but not

sufficient conditions for a pin-jointed framework with b struts and j frictionless joints

to be just rigid is



1.1. Topology 7

b− 2j + 3 = s−m (2D) (1.1)

b− 3j + 6 = s−m (3D) (1.2)

where s and m corresponds to the number of states of self-stress (a self-equilibrated

state in the absence of external load) and mechanisms, respectively. For a large pin-

jointed framework with j joints and an average nodal connectivity of Z, the total num-

ber of struts is given by b ≈ jZ/2 (Deshpande et al., 2001b). Thus, according to

Maxwell’s rule, the necessary but not sufficient condition for the pin-jointed framework

to remain rigid is Z = 4 in the 2D case and Z = 6 in the 3D case. The sufficient con-

dition for a macroscopically rigid lattice was found to be Z = 6 for 2D and Z = 12 for

3D (Deshpande et al., 2001b). Only the Triangular lattice (Fig. 1.4b) and the 3D octet-

truss lattice meet this condition (Deshpande et al., 2001a). Thus the rigidly-jointed

Triangular lattice deforms primarily by stretch. If the minimum condition for rigidity

is not met – the Hexagonal lattice with Z = 3 in Fig. 1.4a for example – the pin-jointed

framework has a macroscopic strain producing mechanism, and is collapsible. Hence,

its rigidly-jointed counterpart deforms primarily by bending.

Now consider the Square, Diamond and Kagome lattices in Fig. 1.4c,d,e. All satisfy

the necessary criterion for rigidity given by Eq.(1.1) since their nodal connectivity is

Z = 4. The pin-jointed Square and Diamond lattices possess a macroscopic strain-

producing mechanism and thus its rigidly-jointed counterpart is a bending-dominated

lattice. By contrast, a pin-jointed Kagome lattice has no strain producing collapse

mechanisms and it can only collapse by a periodic mechanism that does not produce

macroscopic strain; i.e. it is a rigid pin-jointed framework. Henceforth the rigidly-

jointed Kagome lattice is a stretch-dominated lattice (Hutchinson and Fleck, 2005).

To summarise, both Triangular and Kagome lattices have stretch-dominated micro-

architecture whilst that of the Hexagonal lattice is bending-dominated. The Square,

and the closely related Diamond, lattice can be either depending on whether a macro-

scopic strain producing mechanism is triggered in its pin-jointed equivalent. As shall be

revealed in the following sections, the dominant mode of deformation at the mesoscale

plays a key role in determining the macroscopic mechanical properties of a lattice.
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2x

1x

(a) Hexagonal (b) Triangular

(c) Square (d) Diamond

(e) Kagome

Figure 1.4: Periodic lattices: regular (a-d) and semi-regular (e).

Since the five lattices – Triangular, Kagome, Square, Diamond and Hexagonal –

cover the entire range of possible deformation mechanisms, they are interesting sub-

jects of investigation from which comparisons can be made. These five lattice micro-

architectures, together with their non-periodic counterparts, where appropriate, will be

the focus of this thesis.

1.1.2 Imperfections in periodic lattices

In reality, no man-made lattices – thus far – are ever strictly periodic. Even small

errors in the manufacturing process can introduce imperfections resulting in slightly

distorted cells, uneven cell wall length, etc. The vertex perturbation technique is often

employed to introduce imperfections into, an otherwise, periodic lattice for the purpose

of numerical modelling.
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θ
γl

p

p

(a) (b)

Figure 1.5: (a) Schematic of the vertex perturbation technique; and (b) regular Hexag-

onal lattice with perturbed vertices of κv = 0.2.

Starting with a periodic lattice of uniform cell wall length l, each vertex is translated

by a random distance κvl along a random direction θ measured with reference to the

horizontal; Fig. 1.5a shows a schematic of this process. An original vertex p at (x1, x2)

is moved to a new location p′ given by

xp
′

1 = xp1 + κvlcosθ and xp
′

2 = xp2 + κvlsinθ . (1.3)

The scalar parameter κv (0 < κv < 0.5) controls the extent of the ‘node perturba-

tion’. Figure 1.5b gives an example of a ‘perturbed‘ regular Hexagonal lattice using

κv = 0.2. Note that the shape of the cells remain relatively uniform – this is the case

even for κv → 0.5+ – and is of the same type of polygon, but not regular, as the original

lattice although the ‘perturbed’ lattice is now non-periodic. Importantly, the nodal con-

nectivity remains identical for all nodes – this is identical to the pre-perturbed periodic

lattice. The perturbed lattice shown in Fig. 1.5b has a nodal connectivity of Z = 3.

1.1.3 Non-periodic lattices

Man-made foams and natural cellular solids fall within the ‘non-periodic’ category.

Their topological characteristics, such as cell-size and cell wall length, follow some

forms of statistical distribution and are often known as stochastic. The exact nature of

its distribution depends on the manufacturing process or the intended use by the natural

cellular solid.
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Most natural cellular solids evolve in a manner that optimise their load bearing capacity.

Consequently, their cell microstructure differs vastly from one another since it depends

on their structural function (Gibson, 2005). For instance, wood has a honeycomb-like

microstructure in its radial-tangential plane and is also, to a first approximation, an ir-

regular prismatic lattice along its longitudinal direction: this leads to strong anisotropic

macroscale properties. Trabecular bone, on the other hand, has a much more complex

micro-architecure that evolves in response to external loadings and their topological

characteristics can vary substantially from one part of the body to another.

Man-made foaming techniques, by contrast, impose no artificial restrictions on its fi-

nal cell shape. Some foaming techniques naturally give rise to closed-cell foams. For

instance, Alulight foams are manufactured by introducing a foaming agent (e.g. tita-

nium hydride TiH2) into an aluminium melt. Duocel foams, on the other hand, with

its open-cell microstructure is produced by using a polymer foam template for invest-

ment casting. The gas bubble nucleation process that governs the final cell shape of

man-made foams is, itself, a stochastic process.

To model the gas bubble nucleation process, consider the random positioning of the gas

particles that grow to form the final cell shapes. If one assumes that all particles grow at

the same linear rate, then the resulting microstructure is similar to a Voronoi diagram or

lattice. The simplicity of generating Voronoi lattices and their similarities to real foam

microstructure makes them an attractive tool for scientists to model the microstructure

of foams and natural cellular solids: the same approach is also employed in this thesis.

Since only planar lattices are studied here, we shall restrict our attention to 2D Voronoi

construction, although the same method can be applied in 3D.

A Voronoi diagram is defined by the random positioning of a set of m points, or nuclei,

P := {p1, p2, . . . , pm} in a plane of area A. The positioning of each nucleus in P

relative to the other m − 1 nuclei defines the final shape of the Voronoi diagram. The

Voronoi cell k which has point pk as nucleus, is defined as the set of points in space

that are closer to pk than any other nuclei within A (de Berg et al., 2000; Gibson and

Ashby, 1997). The procedure of generating the Voronoi cell of nucleus pk can be more

readily understood if one considers all the perpendicular bisectors of pk with all its

neighbouring nuclei. The closed polygon formed by these lines is the Voronoi cell k
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with point pk as its nucleus.

The standard Voronoi construction places no restriction(s) on the final cell shape and

size, or its distribution. It assumes that all cells nucleate at the same time and grow

with the same linear rate. A 3D Voronoi lattice has an average nodal connectivity of

Z = 4, the same for 3D foams. Likewise, the average nodal connectivity of 2D Voronoi

lattices is Z = 3 which is, also, the case for a regular Hexagonal lattice. The Hexagonal

lattice itself is a special case of Voronoi diagram as will be shown later on. All Voronoi

lattices, and indeed all stochastic foams, have a bending-dominated micro-architecture

since the conditions given in Eqs.(1.1) and (1.2) are not met.

The dispersion of cell-shapes and sizes obtained from a Voronoi construction is sig-

nificantly wider compared to real foams (Gibson and Ashby, 1997). The regularity of

a 2D Voronoi lattice can be controlled by introducing an exclusion distance between

any pair of cell nuclei in A. To introduce such an exclusion distance in a meaning-

ful manner, first consider a periodic Hexagonal lattice which is a special case of a 2D

Voronoi lattice. All of its nuclei are surrounded by 6 immediate neighbours arranged,

in a Hexagonal-close pack, at equi-distance to one another given by

d0 =

√
2A

m
√

3
. (1.4)

If this equi-distance condition is relaxed, and no two nuclei are coincident, then the re-

sulting Voronoi diagram would contain irregular polygons. Following Zhu et al. (2001),

one may introduce a non-dimensional constant

Λ ,
dmin

d0

(1.5)

in the interval (0, 1], where dmin is the minimum permissible distance between any two

adjacent nuclei. The parameter Λ is referred to as the cell-regularity parameter.
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2x

1x

(a) Λ→ 0+

2x

1x

(b) Λ = 0.5

2x

1x

(c) Λ = 0.7

2x

1x

(d) Λ = 1

Figure 1.6: Voronoi lattices with different cell-regularity Λ. Each lattice comprises of

approximately 150 cells. The nucleus of each cell is indicated by a dot.

The two limiting cases of Λ → 0+ and Λ = 1 correspond to a completely stochas-

tic Voronoi and a regular Hexagonal lattice, respectively. By relaxing the equi-distant

condition, the uniform nodal connectivity of a regular Hexagonal lattice (Z = 3) is

now lost. However, as previously mentioned above, the nodal connectivity of Voronoi

lattices remains, on average, Z = 3. Figure 1.6 gives a few examples of lattices with

different Λ that are generated by the Voronoi assignment model. It is evident that as

Λ increases, the distribution of cell shapes and size becomes increasingly narrower.

The introduction of Λ provides a useful means, via a scalar parameter, to describe, an

otherwise, randomly generated 2D Voronoi lattice. This allows a systematic investiga-

tion into the effects of cell-regularity on the macroscopic mechanical properties of such

lattices.
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1.2 Mechanical properties of infinite-sized lattices

1.2.1 Relative density

The single most important parameter that characterises the bulk mechanical properties

of a lattice is its relative density given by

ρ ,
ρ∗

ρs
(1.6)

where ∗ and s denotes property on the macroscale and mesoscale (cell wall), respec-

tively. ρ typically ranges from 0.001 to 0.3 depending on the type of lattice material

and its function (Gibson and Ashby, 1997). For regular and semi-regular 2D lattices

of uniform cell wall length l and wall thickness t, ρ is a linear function of the cell wall

slenderness ratio t/l given by

ρ u a
t

l
(1.7)

where a is a constant that depends on the lattice micro-architecture. Table 1.1 lists

the value of a for the five lattice micro-architectures shown in Fig. 1.4. For closed

and open-cell 3D lattices, ρ is a linear and quadratic dependence on t/l, respectively.

Note that Eq.(1.7) holds only if the cell walls are sufficiently slender, i.e. t � l. For

stocky cell walls, multiple counting at the node (or joint) leads to increased error and a

correction term must be applied. For 2D lattices, Eq.(1.7) is corrected to give

ρ = a
t

l

(
1− a1

t

l

)
(1.8)

where a1 is micro-architecture dependent. For 3D lattices, the correction factor is a

much more elaborate function of t/l - see Gibson and Ashby (1997, p.42) for details.

The additional term in Eq.(1.8) presents an unnecessary complication and can often

be neglected without introducing significant errors if ρ is low. This error is < 5% for

Hexagonal lattices if ρ < 0.2. There is no analogous expression to Eq.(1.8) for irregular

lattices. Hence, in numerical analyses, ρ is computed explicitly by calculating the total

length of all the struts in a lattice assuming, again, that t� l for each strut.
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1.2.2 Scaling laws

The bulk mechanical properties of infinite-sized, regular and semi-regular, 2D lattices

are relatively straightforward to derive through the judicious use of a representative

unit-cell and utilising geometric symmetries - see, for example, Gibson and Ashby

(1997). In general, they are power-law functions of ρ and the cell wall material property

from which a lattice is made as follows:

E∗

Es
= Bρ̄b ,

G∗

Es
= Cρ̄c ,

σ∗y
(σy)s

= Byρ̄
by ,

τ ∗y
(σy)s

= Cyρ̄
cy (1.9)

where E and G are the elastic and shear moduli, respectively; and, σy and τy are the

uniaxial and shear yield strength, respectively. The superscript ∗ denotes macroscopic

property whilst subscript s denotes cell wall property. It is worth noting that G∗ and

τ ∗y are functions of the uniaxial, rather than shear, properties of the cell wall material.

Parameters B, b, By, by are related to uniaxial loading whilst C, c, Cy, cy to shear (Cote

et al., 2006; Fleck et al., 2010; Gibson and Ashby, 1997; Wang and McDowell, 2004):

Table 1.1 lists the value of each parameter corresponding to the five micro-architectures

shown in Fig. 1.4. Their corresponding macroscopic Poisson’s ratio, ν∗, is also listed

for completeness.

Z a B b C c By by Cy cy ν∗

Hexagonal 3 2/
√

3 3/2 3 1/3 3 1/2 2 0.217 2 1

Square 4 2 1/2 1 1/16 3 1/2 1 0.125 2 0.5νsρ

Diamond 4 2 1/4 1 1/4 1 1/2 1 1/2 1 1

Triangular 6 2
√

3 1/3 1 1/8 1
1/3 (x1)

1 0.289 1 1/3
1/2 (x2)

Kagome 4
√

3 1/3 1 1/8 1
1/3 (x1)

1 0.289 1 1/3
1/2 (x2)

Table 1.1: Coefficients of the scaling laws in Eq.(1.9)
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The exponent of ρ in Eq.(1.9) is an indicator of whether a lattice is stretch- or bending-

dominated. A stretch-dominated micro-architecture, such as that found in Triangular,

Diamond and Kagome lattices, is typified by a linear dependence of both its bulk elas-

tic moduli and yield strength on ρ (b = c = by = cy = 1). By contrast, a bending-

dominated micro-architecture, such as the Hexagonal lattice, have bulk elastic moduli

and yield strength which has a cubic (b = c = 3) and quadratic (by = cy = 2) depen-

dence on ρ, respectively. The Square lattice, on the other hand, is an anomaly since

the dominant mode of deformation at its mesoscale switches from stretch to bending

depending on loading type. Under remote uniaxial tension/compression, it deforms by

stretch so b = by = 1. Under remote shear, however, the dominant deformation mode

switches from stretch to bending; hence, c = 3 and cy = 2.

It is worth noting that some of the aforementioned lattices are anisotropic. The Square

and Diamond lattices have orthotropic in-plane bulk properties since remote in-plane

loadings along any directions, apart from x1 or x2, causes bending of its struts instead

of stretch. The other three lattices are in-plane isotropic in their linear elastic response.

However, the non-linear response, including yield strength, of Triangular and Kagome

lattices are, in general, anisotropic: hence, Table 1.1 lists two different values of By

corresponding to uniaxial loading in x1 and x2 directions. For the Hexagonal lattices,

the difference is marginal and can be neglected.

The Poisson’s ratio of a lattice depends on its micro-architecture and the dominant

deformation at the mesoscale. For regular Hexagonal and Diamond lattices, ν∗ = 1:

this is an oddity compared to solid materials. By contrast, the Poisson’s ratio of a

Square lattice is ν∗ = 0.5νsρ - this is nearly zero for typical values of νs and ρ. For

Triangular and Kagome lattices, their macroscopic Poisson’s ratio is 1/3. It is clear

Hexagonal, Triangular and Kagome lattices obey the standard relationship that exists

between elastic constants given by

G∗ =
E∗

2 (1 + ν∗)
(1.10)

whereas a Square and Diamond lattices do not since they are orthotropic.

The scaling laws of Eq.(1.9) were derived assuming an Euler-Bernoulli beam ideali-
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sation of constituent struts. Consequently, their predictions are accurate only if ρ̄ is

sufficiently low, say ρ < 0.01, and the lattice is comprised of slender cell walls where

l >> t. As ρ increases, the contributions from axial and shear stresses in the cell

walls become increasingly significant, leading to increased error in the predictions by

Eq.(1.9). To account for the axial and shear stresses, Silva et al. (1995) and Gibson

and Ashby (1997, p.160) derived expressions for the moduli and Poisson’s ratio of

Hexagonal lattices within a small-strain context following Timoshenko beam theory

(Timoshenko and Goodier, 1970). They are broadly similar to Eq.(1.9) but contain an

additional ‘correction’ term – a function of ρ and the Poisson’s ratio of the wall material

νs – as follows:

E∗

Es
=

3

2
ρ3

[
1

1 + 0.75ρ2(5.4 + 1.5νs)

]
, (1.11a)

G∗

Es
=

3

8
ρ3

[
1

1 + 0.75ρ2(3.3 + 1.75νs)

]
and (1.11b)

ν∗ =
1 + 0.75ρ2(1.4 + 1.5νs)

1 + 0.75ρ2(5.4 + 1.5νs)
. (1.11c)

As an example, if ρ < 0.15, the difference in predictions by Eq.(1.9) and Eq.(1.11)

is no greater than 10%. Hence, the correction factor is often neglected. The same as

above applies to open and closed cell 3D foams (Gibson and Ashby, 1997; Grenestedt,

1999); however, they are not within the scope of this thesis and will not be reviewed.

1.2.3 Non-periodic lattices

Scaling laws, such as Eq.(1.9), derived for periodic Hexagonal lattice are routinely used

to understand the response of stochastic foams on the basis that they deform primarily

by bending. However, they cannot be borrowed for all types of loading. As an example,

a Hexagonal lattice is stretch-dominated under hydrostatic loading since no bending

stresses are induced because of its perfectly symmetric micro-architecture. In reality,

however, the hydrostatic strength of stochastic foams is nearly an order of magnitude

lower than that predicted for a Hexagonal lattice (Gibson and Ashby, 1997). Chen

et al. (1999) showed that the vertex perturbation technique, or Voronoi tessellations,



1.3. Finite-sized (or finite) lattices 17

can successfully model a reduction in the hydrostatic strength of Hexagonal lattices.

The bulk mechanical properties of non-periodic lattices, such as Voronoi or the ‘per-

turbed’ periodic lattices, cannot be modelled using a unit-cell approach since their

micro-architecture violates strict periodicity conditions. The usual approach is to model

them numerically using finite elements but applying the appropriate boundary condi-

tions to the FE mesh of the lattice. Romijn and Fleck (2007) and Symons and Fleck

(2008) investigated the elastic properties of periodic 2D lattices with varying degree

of vertex perturbation. Hexagonal and Triangular lattices were found to deform by

bending and stretch, respectively, even with highly perturbed vertices. Consequently,

their macroscopic uniaxial and shear moduli are insensitive to imperfections. However,

vertex perturbation introduces bending into the struts of a Kagome lattice that would

otherwise deform in stretch and this is reflected by a significant drop in both mod-

uli. The Square lattice, on the other hand, weakens under remote uniaxial loading but

strengthens under remote shear; this is due to contributions from both bending and axial

stresses when subjected to remote uniaxial and shear loadings. The reverse is observed

for Diamond lattice. It is worth noting that all isotropic lattices remain isotropic after

the introduction of irregularities: this is to be expected. Introducing perturbations in

the orthotropic Square and Diamond lattices lead to a more isotropic response, however

Eq.(1.10) is still not satisfied.

The response of Voronoi lattices is found to be slightly different compared to the per-

turbed Hexagonal lattice. As Λ decreases, leading to a more random lattice micro-

architecture, the elastic moduli of Voronoi lattices are found to increase (Chen et al.,

1999; Li et al., 2005; Silva et al., 1995; Zhu et al., 2001). In a similar vein with the

Hexagonal lattice, the response of Voronoi lattices is isotropic and obeys Eq.(1.10).

1.3 Finite-sized (or finite) lattices

The scaling laws of Eq.(1.9) were derived by exploiting geometric symmetries in a

lattice micro-architecture: a direct consequence is that they predict the bulk properties

of infinite-sized lattices. For finite-sized specimens, Eq.(1.9) is applicable only if a

lattice has macroscale dimensions that are significantly greater than its characteristic

length at the mesoscale (exemplified by their average cell size d0).
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Lakes (1983, 1986) was the first to report a dependence of torsional and bending stiff-

nesses on the specimen size for polymeric foams. Brezny and Green (1990) also re-

ported a significant reduction in the bending stiffness and strength of reticulated vitre-

ous carbon foams in smaller-sized specimens. In a nutshell, edge effects cause a sig-

nificant deviation of macroscopic properties from their bulk value when one, or more,

critical macroscale dimension(s) of a lattice approaches its average cell size d0. Under

uniaxial loading, the weak boundary layers that develop along the stress-free edges,

parallel to the direction of loading, is responsible for the observed edge effects. Figure
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Figure 1.7: Weak and strong boundary layers induced by remote (a) uniaxial and

(b) shear loadings; (c) Schematic of effective stiffness & strength versus the critical

macroscale dimension of a lattice specimen.
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1.7a shows a schematic of a lattice subjected to remote uniaxial loading in the x1 di-

rection; for this case, the critical macroscale dimension is the specimen height H . In a

similar vein, the critical dimension is W (width) if loading is in the x2 direction. The

boundary layers that develop at the stress-free edges reduce the load bearing ability of

a specimen, leading to a knock-down in its bulk stiffness and strength. The extent of

this knock-down depends on the area (for 2D) or volume (for 3D) fraction of weak-

ened cells – these are, generally, incomplete cells with reduced nodal connectivity –

abutting the lattice boundary. If the macroscale dimension of a specimen is sufficiently

large compared to its average cell size d0, then the relative impact of the boundary

layers would be insignificant so that its effective properties approach that of the bulk

properties of an infinite-sized lattice. Figure 1.7c shows a schematic of how edge ef-

fects influence effective properties of lattices; the same were also reported for Alporas

(closed-cell) and Duocel (open-cell) foams by Bastawros et al. (2000) and Andrews

et al. (2001). They found that a minimum of 8 cells (H > 8d0) are needed to measure

its bulk value if subjected to remote uniaxial loading. For bending, twice as many cells,

H > 15d0 are typically needed because of compressive and tensile regions that develop

at the top/bottom surfaces of the specimen.

Unlike during uniaxial stretch and bending, the effective properties of a stochastic foam

are enhanced (or strengthened) under remote simple shear if the critical macroscale di-

mension – perpendicular distance, or specimen height H , separating the two loaded

surfaces – approaches its average cell size d0 (Andrews et al., 2001; Chen and Fleck,

2002). Rakow and Waas (2004, 2005) employed an optical strain measurement tech-

nique to reveal stiffer response by those cells abutting the loading surface compared to

its bulk when subjected to pure shear. The rigid bonding of the foam specimen to the

two horizontal loading plates was found to provide a greater constraint effect than the

cells in the bulk of the foam. This generates strong boundary layers that leads to the

apparent enhancement of the effective shear stiffness and strength as shown schemati-

cally in Fig. 1.7b. As H increases, the relative impact of these boundary layers on G∗

and τ ∗y diminishes, see schematic in Fig. 1.7c.

Edge effects in stochastic foams were modelled analytically by Onck et al. (2001) -

using an idealised 2D regular Hexagonal micro-architecture – where expressions for
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their effective uniaxial and shear moduli were derived for specimens containing finite

number of cells along its width and height, respectively. Diebels and Steeb (2002) and

Tekoglu et al. (2011) further investigated this by adopting a stochastic Voronoi lattice

and using the finite element method. Both analytical and numerical predictions were

consistent with experimental data suggesting that the development of weak boundary

layers in tension/compression and strong boundary layers in shear are, indeed, respon-

sible for the observed edge effects in finite-sized specimens.

Notwithstanding, similar studies on edge effects in periodic micro-architectured lattices

are rather limited and results exist only for Hexagonal (Onck et al., 2001) – highlighted

previously – and Diamond lattices (Cote et al., 2006; Queheillalt et al., 2007; Zupan

et al., 2004). The mechanism responsible for the observed edge effects in the Diamond

lattice are significantly different to the Hexagonal or Voronoi lattices. The struts near

the four corners of the specimen are not ‘directly’ connected to both horizontal load-

ing surfaces, thus they are not axially loaded. Consequently, four bending ‘bending-

dominated regions’ emanate from each corner that contribute to a significantly reduced

load bearing ability of the specimen. This is schematically shown in Fig. 1.8a under

remote σ22. The extend of these regions along x1 depend onH , thus the effective lattice
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Figure 1.8: (a) Bending-dominated region emanating from the four corners of a finite-

sized Diamond lattice; and (b) Influence of critical dimension W/H upon the effective

uniaxial, and shear, stiffness & strength of a Diamond lattice.
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properties are a function of both W and H as follows:

E∗, G∗, σ∗y, τ
∗
y ∝

(
1− 1

(W/H)

)
ρ (1.12)

and this is shown schematically in Fig. 1.8b.

It is as yet unknown whether, and to what extent, other periodic micro-architectures –

viz. Square, Triangular and Kagome – are affected by the presence of boundaries. A

Square lattice is expected to be influenced by edge effects only under remote shear, but

it is unknown whether the dependence of effective properties on lattice dimensions is

similar to Hexagonal and Voronoi lattices. For Triangular lattices, with its high nodal

connectivity and highly redundant micro-architecture, it is of interests to investigate

whether edge effects, and the mechanism responsible for its development, are present at

all. Furthermore, a Kagome micro-architecture is known to switch from a stretch-only

lattice to ‘local’ bending in the presence of discontinuities and constraints (Fleck and

Qiu, 2007; Wicks and Guest, 2004) but the precise physical mechanism and how much

it influence the effective properties of a specimen remains unknown. The presence

of edge effects in the Square, Kagome and Triangular lattices – and their influence

on its effective properties – will be investigated in Chapter 3 and their results will be

compared to existing results from the literature for other lattice micro-architectures.

1.4 Fatigue

The performance of lattice materials under cyclic loading are of interests to many ap-

plications. In general, factors that influence the fatigue performance of conventional

solid materials also affect lattices at their micro-scale – they include the mean stress

(σ̄∗), max stress (σ∗max), load ratio (R , σ∗min/σ
∗
max) and environmental conditions (tem-

perature, corrosion etc.). Unlike solid materials, however, the additional length-scale at

the meso-level, viz. cell-scale, is likely to affect the fatigue performance of lattices and

requires further investigation.

Existing literature on fatigue performance of lattices are mostly concerned with

stochastic metal foams – they are mainly experimental investigations – whilst studies

on periodic lattices are fairly limited. The use of the fatigue crack propagation method
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is deemed unhelpful for lattices because of the high sensitivity of crack propagation rate

on applied stress – the Paris law exponent for foams was found to be in the range 8–20

(Motz et al., 2005; Olurin et al., 2001), compared to ≈ 3–5 for solid metals. Hence,

most studies chose to investigate the strain accumulation process in uncracked speci-

mens up to failure (εmax–N ) in order to produce the associated stress-life curves (S-N ).

A summary of the available papers with experimental S-N data for various foams and

lattices is presented in Table 1.2, along with the estimated endurance strength values,

σ∗e , for each data set. Typically, σ∗e is normalised either by yield stress σ∗y , plateau stress

σ∗pl or peak stress σ∗p; here we will use a common indicator of σ∗0 .

Typically, the fatigue life of stochastic metal foams can be divided into three stages

as follows (Sugimura et al., 1999): (I) inelastic strain accumulation; (II) gradual-slow

strain accumulation; and, (III) rapid strain accumulation that leads rapidly to complete

specimen failure, i.e. the lattice is unable to withstand any further load. The transi-

tion from stage II to III is associated with the number of cycles to failure (N∗f ) and is

found to begin at approximately εIII
max ≈ 2–3% (Banhart and Brinkers, 1999; Sugimura

et al., 1999). Due to the stochastic nature of the cell microstructure in foams, it is not

uncommon to encounter variations in N∗f by almost a decade. A strong dependence on

σ∗max/σ
∗
0 has been noted – higher values lead to shorter cycles-to-failure. On the other

hand, σ̄∗ is found to have insignificant effect on the S-N curve (Harte et al., 1999).

Furthermore, the type of fatigue loading, such as uniaxial compression-compression

(C-C) or tension-tension (T-T), was found to have a significant effect upon N∗f . Mc-

Cullough et al. (2000) showed that the endurance strength (σ∗e/σ
∗
0) of Alulight foams

under C-C loading is significantly higher (= 0.85) compared to T-T loading (= 0.5).

Similar observations were also reported by Harte et al. (1999), although the differences

are smaller: 0.85 (C-C) and 0.7(T-T) for Duocel foams; 0.7 (C-C) and 0.6 (T-T) for

Alulight foams. McCullough et al. (2000) and Harte et al. (1999) also reported that

failure under T-T loading initiates at a much lower strain of εIII
max ≈ 1%.

Harte et al. (2001) found that Alporas foams have a much lower fatigue endurance

strength in shear compared to uniaxial loadings (C-C or T-T): τ ∗max/τ
∗
0 u 0.35 as op-

posed to σ∗max/σ
∗
0 = 0.52 and 0.6 for T-T and C-C loadings, respectively. However,

for both shear and uniaxial loadings, the rapid strain accumulation stage begins at ap-
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proximately εIII
max ≈ 2%. The rapid strain accumulation stage is associated with the

coalescence of tensile microcracks in the cell walls, resulting in fractured struts that

eventually form a single macroscopic failure surface.

The effects of ρ were investigated experimentally, in a cursory manner, by McCul-

lough et al. (2000) for Alulight foams of relative density ρ ≈ 0.15 and 0.3 subjected to

C-C loading (R = 0.1). Foams at the higher ρ (≈ 0.3) were found to have a signifi-

cantly higher Nf and, also, higher εIII
max of 2% compared to 1% at the lower ρ (≈ 0.15).

Consequently, the higher density Alulight foams have endurance strength that are ap-

proximately 20% greater than its lower density counterpart. Note, however, that the

gradient of the S-N curves is nearly identical for both densities.

Unlike for stochastic foams, the fatigue performance of periodic lattices is not cur-

rently well understood and very limited experimental data are available. Cote et al.

(2007a) studied the shear fatigue performance of prismatic Diamond lattices at two rel-

ative densities of ρ = 0.08 and 0.15 where they were found to fail through different

mechanisms. The lower density (0.08) exhibit slow, but, progressive strain accumula-

tion followed by a near instantaneous failure at εIII
max ≈ 1%. Cell walls near specimen

boundaries – note that they suffer from edge effects – are always the first to fail by

fatigue, followed by those within the core. For specimens at ρ = 0.15, strain accu-

mulation prior to Nf is negligible and failure is typically through interfacial debonding

between the joints of the Diamond core and the face-sheets to which they were bonded.

Even though the two aforesaid mechanisms are different, their resulting S-N curves

are largely similar and, more surprisingly, their endurance strength is also similar to

Alporas foams (τ ∗e /τ
∗
0 u 0.35). The interfacial debonding failure mechanism was also

noted for ρ = 0.07 pyramidal lattice cores; these are shown schematically in Fig. 1.9

(Cote et al., 2007b). Additionally, the resulting S-N curve of pyramidal and Diamond

lattices are largely similar, leading to a general conclusion that the fatigue response of

lattices must be insensitive to their relative density ρ and micro-architecture.

As with above, there is also fairly limited numerical studies. Guo et al. (1994) pro-

posed a finite elements model to simulate sequential cell wall fatigue fractures in 2D

Hexagonal lattices subjected to cyclic loading. Microcrack propagation in cell walls

is modelled using Paris-law. Fully damaged cell walls were deleted from the lattice
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Figure 1.9: Pyramidal truss core (Source: Cote et al., 2007b)

until significant macroscopic strain accumulation is achieved. Schaffner et al. (2000)

extended this approach to simulate fatigue damage in stochastic Voronoi lattices where

they were found to have significantly reduced fatigue life compared to Hexagonal lat-

tices. This is attributed to the bigger range of stress distribution in the cell walls of

these non-periodic lattices.Two key limitations exist in both of these studies. First, the

pre-existing microcracks were located at a distance l/4 from the mid-span of all cell

wall, while their length followed a beta statistical distribution. Second, a cell wall with

a developing micro-cracks were assumed to have intact elastic modulus up until the

micro-crack reached a critical length, that lead to complete cell wall fracture.

More recently, Abad et al. (2013) modelled the fatigue response of Square and Hexag-

onal lattice unit-cells using finite elements and numerical homogenisation. Their FE

model used 2D eight-node elements, instead of beam elements, to capture the stress

distribution in a representative unit-cell with smooth curvature transition from one cell

wall to the next. The predicted endurance strength is broadly similar to those of Pyra-

midal and Diamond core Cote et al. (2007a,b), lending further support to previous

conclusions that the S-N curves of lattices are not significantly affected by micro-

architecture. However, their method fails to address the presence of edge effects that

trigger fatigue failure in low-density Diamond cores Cote et al. (2007a).

In the present thesis, one of the objectives is to develop a numerical method – by im-

proving on the approach of Guo et al. (1994) and Schaffner et al. (2000) – to simulate

the fatigue performance of periodic lattices. Specimens of finite size will be modelled

so that edge effects are taken into account since they are anticipated to play a key role

in fatigue damage initiation. The five different lattice micro-architectures shown in Fig.

1.4 will be modelled in order to establish, and to compare, any differences between the

fatigue failure response of stretch- and bending-dominated lattices.



26 1.5. Fracture

1.5 Fracture

If the ligaments of a lattice are elastic-brittle so that fracture occurs when the stress

state at any point along a cell wall reaches its critical fracture strength σf , then – just

like its elastic moduli – the bulk strength of the lattice can be expressed as a power-law

function of its relative density given by

σ∗f
σf

= Bfρ
bf (1.13)

where the parameters Bf , bf are listed in Table 1.3 (Fleck and Qiu, 2007; Gibson and

Ashby, 1997). Notice that σ∗f/(σf )s scales linearly and quadratically with ρ for stretch

and bending-dominated lattices, respectively: this is similar to Eq.(1.9).

Hexagonal Square Triangular Kagome

Bf 1/3 1/2 1/3 1/2

bf 2 1 1 1

Table 1.3: Coefficient values for brittle fracture strength, Eq.(1.13) (Fleck and Qiu,

2007; Gibson and Ashby, 1997)

Equation (1.13) is valid for lattices in the absence of any macroscopic crack. Following

the brittle fracture of a cell wall, the redistribution of stresses in neighbouring cell walls

leads to further failures. Under compression, this leads to the progressive crushing.

Whilst in tension, several fractured cell walls may coalesce to form a continuous macro-

crack that can propagate in catastrophic manner which is best analysed using a fracture

mechanics method.

The stress field around a crack tip of a solid material is given by the following asymp-

totic expansion (Williams, 1957):

σij = C1g
(1)
ij (θ)

1√
r︸ ︷︷ ︸

K-field

+C2g
(2)
ij (θ)︸ ︷︷ ︸

T stress

+C3g
(3)
ij (θ)r1/2 +

∞∑
n=4

Cng
(n)
ij (θ)r(n−2)/2

︸ ︷︷ ︸
Higher order terms

(1.14)

where σij is the stress tensor, (r, θ) are polar coordinates centred at the crack tip, g(n)
ij (θ)

are dimensionless functions of θ; and, Cn is the stress amplitude corresponding to the
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nth term. In the immediate crack-tip region, the singular stress field given by the leading

term of Eq.(1.14) can be decomposed additively into contributions from remote tensile

(Mode I) and in-plane shear (Mode II) loadings as (Kanninen and Popelar, 1985)

σij =
KI√
2πr

σ̂I
ij +

KII√
2πr

σ̂II
ij (1.15)

whereKI andKII are the mode I and mode II stress intensity factors (SIF), respectively.

For mixed-mode loading, the relative composition ofKI andKII is controlled by means

of an elastic mode-mixity parameter M defined by Shih (1974):

M =
2

π
tan−1

(
KII

KI

)
; 0 ≤M < 1 (1.16)

where the limiting values of M = 0 and M → 1− corresponds to the mode I and mode

II fracture toughness, respectively.

1.5.1 Periodic lattices

Maiti et al. (1984) applied standard fracture mechanics principles to estimate the mode

I toughness (KIC) of lattices. Using an example of a regular Hexagonal lattice, they

showed that the KIC of lattices depends not only on its relative density and cell wall

material properties (σf ) but, crucially, on its characteristic cell size, l. This dependence

on l arises as a direct consequence of the leading 1/
√
r term in Eq.(1.14) and the

resulting scaling law takes the following form:

KIC = DIρ
dIσf
√
l (1.17)

where the exponent dI = 2 for the bending-dominated Hexagonal lattice (Gibson and

Ashby, 1997). Since the Triangular and Square lattices have a stretch-dominated micro-

architecture, it follows that their corresponding exponent dI = 1 (Fleck and Qiu, 2007;

Romijn and Fleck, 2007). Unlike the other stretch-dominated micro-architectures, a

Kagome lattice has an exponent dI = 1/2 which suggests that it has superior fracture

tolerance. Note that Eq.(1.17) is equally valid for mode II loading (Fleck and Qiu, 2007;

Romijn and Fleck, 2007). All lattices, apart from Square, have the same ρ exponents,
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i.e. dI = dII, for both mode I and II loadings. The Square lattice, on the other hand,

has an exponent of dI = 1; this is because of a switch from axial to bending-dominated

deformation when subjected to remote shear, as discussed in Section 1.2.

Using the finite element method, Fleck and Qiu (2007) and Romijn and Fleck (2007)

performed boundary layer analysis, or BLA for brevity, to validate the predictions by

Eq.(1.17) and to evaluate the pre-exponents (DI andDII) which were listed in Table 1.4.

For all lattice micro-architectures, the pre-exponent (DII) for mode II was found to be

substantially lower than their mode I (DI) counterpart. The differences in the predicted

DI value between Fleck and Qiu (2007) (1) and Romijn and Fleck (2007) (2) in Table

1.4 are due to the different beam element types used in the FE simulations; the first (1)

neglects shear stresses in cell walls whilst the second (2) does not. The same reason

applies to the DII predictions.

Topology DI dI DII dII

(1) (2) (1) (2)

Hexagonal 0.800 0.902 2 0.370 0.408 2

Triangular 0.500 0.607 1 0.380 0.404 1

Kagome 0.212 0.205 0.5 0.133 0.115 0.5

Square 0.278 1 0.121 1.5

Diamond 0.216 1 0.225 1

Table 1.4: Tabulation of results from (1) Fleck and Qiu (2007) and (2) Romijn and

Fleck (2007).

Fleck and Qiu (2007) investigated the location of incipient cell wall fracture for the

different lattice micro-architectures: their findings are summarised in Fig. 1.10. The

location of incipient fracture under pure mode I loading is indicated with I. For all

lattices, other than Triangular, the crack path does not propagate along the x1 direction:

this is contrary to assumption made in the derivation of Eq.(1.17). Moreover, the crack

path, and its propagation, is not contiguous: a jump of 3 cells is predicted for a Kagome

lattice. For mixed mode loading, as M increases from 0 to 1, the location of incipient

fracture is observed to switch to a different cell wall. A switch of fracture location is

witnessed once for the Hexagonal and Square lattices but twice for the Triangular and

Kagome. Thus, the former have two possible incipient fracture locations whereas the
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Figure 1.10: Location of incipient wall fracture in periodic lattices. I and II denoted the

location for pure mode I and mode II, whilst M for mixed-mode loading

latter three; the active location depends on mode mixity M . These are shown in Fig.

1.10.

1.5.2 Non-periodic lattices

Romijn and Fleck (2007) investigated the sensitivity of the predicted lattice toughness

to cell-scale imperfections in the form of perturbed vertices by using the technique de-

scribed in Section 1.3. Hexagonal lattices were found to be the least sensitivity to im-

perfections with approximately 40% reduction in KIC and, rather surprisingly, a small

increase forKIIC for κv = 0.5, see Eq.(1.3). Even though a Kagome lattice is the tough-

est in its pristine form, it is also the most sensitive to imperfections. Results show a

≈ 90% decrease in its mode I and II toughness for κv = 0.5, substantially more than the

Triangular lattice. The work of Romijn and Fleck (2007), however, did not investigate

the impact of micro-architecture imperfections on the exponent d for the entire range

of κv but only for κv = 0 and 0.5. Their results for the most perturbed case, κv = 0.5 –

although this hardly represents a physically realistic lattice – shows that both Kagome

and Square lattices are no longer stretch-dominated, as opposed to the Triangular that
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remains stretch-dominated. This explains why the decrease in toughness observed for

Triangular lattice is significantly less than for the Kagome and Square lattices.

Results on the fracture toughness of stochastic Voronoi lattices are not available in lit-

erature. Some parallels between the response of Voronoi lattices can be drawn from

experimental results obtained real stochastic foams. Crack-bridging and discontinu-

ous crack propagation are widely observed and a fully-developed fracture process zone

(FPZ), extending approximately 6-8 cells, is usually encountered in both polymeric

(Saenz et al., 2011) and metal foams (Motz and Pippan, 2002; Olurin et al., 2000). The

fracture toughness of stochastic Voronoi lattice of different cell regularity will be ad-

dressed in the present thesis with special emphasis paid to the effects of cell regularity,

relative density and mode mixity on the estimated fracture toughness and the location

of incipient cell wall fracture.

1.5.3 Higher order terms - Eq.(1.14)

The results presented in previous Sections (1.5.1 and 1.5.2) only apply if the K-field is

dominant, i.e. contributions by all higher order terms in Eq.(1.14) are negligible. The

second term in Eq.(1.14) corresponds to a uniform stress parallel to the crack plane;

known commonly as the T -stress. In continuum solid materials, T -stress is a measure

of the constraint effects surrounding a crack tip (Larsson and Carlsson, 1973; Rice,

1974). All standard test specimen geometries – for example the compact tension (CT)

and the single-edge notched in bending (SEN(B)) – used in fracture toughness testing

induce a non-negligible T -stress (Leevers and Radon, 1982). Its magnitude depends on

the applied stress intensity factor (SIF) and crack length α which can be expressed in

non-dimensional form as (Leevers and Radon, 1982; Smith et al., 2006)

B =
T
√
πα

KI
, (1.18)

also known as the stress biaxiality ratio. Note that B depends only on test specimen

geometry.

Fleck and Qiu (2007) have investigated the effects of T -stress on the predicted tough-

ness of Hexagonal, Triangular and Kagome lattices, by modelling a centre-cracked
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panel (CCP) in finite elements subjected to remote uniaxial tension, equi-biaxial ten-

sion and remote shear. A CCP specimen is known to induce a stress biaxiality ratio of

B ≈ −1 under remote axial tension and by applying an equi-biaxial load, the T -stress

is nearly eliminated. They found that under mode I loading, the Hexagonal lattice to

be sensitive to T -stress but not the Triangular and Kagome lattices. Although, all three

lattices were found to be insensitive to T -stress under mode II loading.

In this thesis, the effect of higher order terms in Eq.(1.14) will be investigated using two

approaches. First, the influence of T -stress on the predicted toughness and the location

of incipient cell wall fracture is studied by incorporating the 2nd term of Eq.(1.14) into

the BLA method. Second, two standard specimen geometries – the CT and SEN(B) –

will be modelled using FE to compare their predicted toughness against the aformen-

tioned idealised BLA method. Additionally, the CT and SEN(B) test specimens will

also be used to investigate the presence of edge effects in finite-sized specimens, and

how they influence the predicted fracture toughness.

1.6 Aims and Objectives

It is evident from the review of pertinent literature that the mechanical response of

lattices to remote macroscopic loadings are dictated, to a large extent, by their topol-

ogy at the mesoscale. The dominant deformation mechanism for each lattice micro-

architecture are as follows:

1. Hexagonal and Voronoi: bending-dominated under remote uniaxial or shear load-

ings

2. Triangular: stretch-dominated under remote uniaxial or shear loadings

3. Square: stretch-dominated under remote uniaxial loading but switches to

bending-dominated under remote shear

4. Kagome and Diamond: stretch-dominated in its pristine and infinite-sized form,

but affected by significant bending if boundaries and/or imperfections are in-

cluded.
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Five periodic lattice micro-architectures and the stochastic Voronoi lattice – introduced

in Sections 1.1.1 and 1.1.3 – will be the subject of detailed investigation in this thesis

in order to highlight/compare and quantify the differences in their mechanical response

to macroscopic loadings. There exists a number of significant gaps in our current state

of knowledge concerning the mechanical performances of micro-architectured lattices

as opposed to the more widely-adopted stochastic foams. The main objectives of this

thesis is to address some of these issues as follows:

1. Formulate fully-validated FE models to be used as a platform for predicting the

mechanical response - properties and mechanism(s) of deformation - of periodic

and Voronoi lattices;

2. Elucidate the mechanisms responsible for edge-effects in finite-sized Square,

Kagome and Triangular lattices subjected to remote uniaxial and shear loadings,

and to quantify their effects upon their bulk mechanical properties;

3. Investigate/Quantify the shear and compression fatigue response of the five peri-

odic lattices, and to elucidate the mechanism(s) responsible for the differences in

their predicted endurance strength and fatigue life;

4. Quantify the effects of cell-regularity and relative density upon the fracture be-

haviour of stochastic Voronoi lattices using an idealised BLA approach; and,

5. Quantify the effects of finite specimen size and the use of standard test specimen

configurations on the predicted fracture toughness of Voronoi lattices, and to

elucidate the mechanism(s) responsible for their differences.

1.7 Outline of this thesis

The outline of this thesis is as follows. In Chapter 2, the mechanical properties of

infinite-sized lattices, subjected to remote uniaxial compression and simple shear, are

modelled using FE through a judicious choice of representative unit-cells. Five periodic

lattices – viz. Square, Diamond, Hexagonal, Triangular and Kagome – in addition to

the stochastic Voronoi lattice will be modelled. FE predictions for their elastic moduli

and yield strength are subsequently validated against those of well-known scaling laws,

which will be shown to be in excellent agreement. This lays the foundation for Chapter
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3 which reports a detailed investigation into edge-effects in finite-sized Square, Kagome

and Triangular lattices. An analytical model is first developed that captures the effects

of specimen size on the effective properties of Square lattices subjected to simple shear:

its predictions will be shown to be in excellent agreement with those by FE. The effects

of finite specimen size for the Kagome and Triangular lattices are investigated using FE,

and semi-empirical laws will be developed that captures its influence on the bulk lattice

properties. The results of the three periodic lattices in Chapter 3 are then compared

to existing ones for the Hexagonal, Voronoi and Diamond lattices in the literature. In

Chapter 4, a non-linear continuous damage model that incorporates a nonlocal damage

scheme will be coupled to the FE models to investigate the cyclic shear and compres-

sion fatigue of the periodic lattices. Predictions by the model are first validated against

existing experimental S-N data for Diamond lattices. The predicted S-N data for the

five lattices, and their sensitivity on imperfections – in the form of vertex perturbation

and buckling modes – will be investigated. Fatigue performance of the five lattices

will be assessed by comparing their S-N data, the macroscopic modulus damage accu-

mulation and the location of fatigue damage within the lattice. Chapter 5 investigates

the fracture response of elastic-brittle, two-dimensional isotropic lattices. The effects

of relative density, cell-regularity, mode mixity and T -stress on the predicted fracture

toughness will be quantified for Voronoi lattices using a boundary-layer analysis (BLA)

and the location of their incipient wall fracture studied. Two commonly-used test spec-

imen geometries - CT and SEN(B) - will also be modelled using FE and the fracture

toughness predicted by these will be compared to predictions by the BLA. The discrep-

ancies in predictions will be explained through a numerical-based ‘displacement field

analysis’ approach. Finally, Chapter 6 provides a general summary of the findings and

recommendations for further studies will be proposed.

1.8 Contributions to the archival literature

The work presented in this thesis have been published, submitted and/or currently be-

ing prepared for publication as follows:

1. Christodoulou I, Tan PJ. Crack initiation and fracture toughness of random
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voronoi honeycombs. Engineering Fracture Mechanics 2013a;104:140–61.

2. Christodoulou I, Tan PJ. Role of specimen size upon the measured toughness of

cellular solids. Journal of Physics: Conference Series 2013b;451:012004.

3. Christodoulou I, Tan PJ. Edge effects in periodic lattices. Journal of Mechanics

of Physics and Solids 2016 (Under review)

4. Christodoulou I, Tan PJ. Influence of edge effects on the toughness of elastic-

brittle two-dimensional isotropic lattices. International Journal of Solids and

Structures 2016 (Under review)

5. Christodoulou I, Tan PJ. Shear and compression fatigue of periodic lattices. (In

preparation, 2016)



Chapter 2

Mechanical properties of infinite-sized

lattices

2.1 Introduction

Scaling laws for the bulk mechanical properties of periodic lattices were derived by

others and reviewed in Chapter 1. Here, finite element (FE) models of periodic lattices

– Triangular (T), Kagome (K), Square (S), Diamond (D) and Hexagonal (H) – will be

developed and their predictions validated against those of the scaling laws presented in

Chapter 1: this lends confidence to the accuracy of the FE models which would allow

them, and their predictions, to be used in subsequent Chapters.

Since the micro-architecture of each lattice is strictly periodic, geometric symmetries

are easily exploited to derive their intensive (bulk) properties, one that are unaffected by

edge effects; in other words, for infinite-sized lattices. The analysis of a representative

unit-cell (UC) – this is analogous to a representative volume element (RVE) for solid

materials – would suffice to estimate their bulk mechanical properties. However, a

judicious choice of unit-cell, and the application of correct boundary conditions, is

critical and this will be addressed in this chapter.

For purpose of comparisons, lattices with a stochastic cell micro-architecture are also

modelled. FE calculations will be performed to establish how their bulk elastic prop-

erties vary with relative density ρ (Eq.(1.6)) and cell-regularity Λ (Eq.(1.5)). Since the

bulk properties of stochastic lattice are of interests, applying the appropriate boundary

conditions are again critical – this will also be addressed here – in order to avoid any

influence by edge effects.
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2x

1x

(a) Square (b) Diamond

(c) Kagome (d) Triangular

(e) Hexagonal

Figure 2.1: The five periodic lattices to be investigated. Dotted lines indicate the ap-

propriate unit-cell (square or hexagonal) representation of each lattice.

2.2 Periodic lattices

Li (1999, 2000) have previously shown that a square unit-cell packing induces signifi-

cant in-plane anisotropy. As reviewed in Chapter 1, in-plane anisotropy arises naturally

for the Square and Diamond lattices because of their micro-architecture. By contrast,

the Hexagonal, Triangular and Kagome lattices are well-known to possess isotropic in-

plane properties; therefore, the use of a square unit-cell to model these lattices would
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lead to an artefact, in the form of an ‘artifical’ anisotropic response. Consequently, a

regular hexagonal unit-cell packing will need to be employed for the Hexagonal, Tri-

angular and Kagome lattices in order to give the correct isotropic response (Li, 1999,

2000). For this study, both unit-cell packing arrangements will be utilised to model the

five lattices as follows:

1. Square unit-cell to model the Square and Diamond lattices

2. Regular hexagonal unit-cell to model the Triangular, Kagome and Hexagonal

lattices

Unit-cells with translational symmetries are used here, since reflectional symmetries

are best avoided due to complications that might arise from antisymmetric loading

conditions associated with shear (Li, 2008). Consequently, unit-cells with reflectional

boundary conditions cannot be used for generic loading types and require separate for-

mulations for remote uniaxial and shear loadings. Figure 2.1 shows the five lattice

micro-architectures and their corresponding unit-cell (either square or regular hexago-

nal) to be used for analysing their bulk response. Note that each lattice is assumed to

have a uniform cell wall length l and thickness t.

2x

1x

h

2
x

1
x

H

H
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ζ
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2x

1x

2
x
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x

h
H

H

h3
√

(b)

Figure 2.2: Schematic showing a packing of (a) square and (b) regular hexagonal unit-

cell. Note that the schematic shows a packing of unit-cells rather than the square and

hexagonal lattices.
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Figure 2.2 shows a packing of square and regular hexagonal unit-cells. A square unit-

cell has two translational symmetries, along the x1 and x2 directions; whilst, a regular

hexagonal unit-cell has three, along the x2, ζ and ξ directions. The axes ζ and ξ are

obtained by rotating x1 through +/ − 30◦, respectively. A square unit-cell is bounded

by two side-pairs given by

x1 = ±h , x2 = ±h (2.1)

as shown in Fig. 2.2, whilst a hexagonal unit-cell, on the other hand, is bounded by

three side-pairs of

x2 = ±h , ζ = ±h and ξ = ±h . (2.2)

The characteristic size of the unit-cell h depends on the micro-architecture of each

lattice and is a function of its cell wall length l as shown in Figs. 2.3 and 2.4: they

are summarised in Table 2.1. Under remote loadings, the relative displacement of each

side-pair is governed by a set of equations to be developed in the next two sub-sections

(2.2.1 and 2.2.2).

Square Diamond Kagome Triangular Hexagonal

h/l 1/2
√

2/2
√

3 1/2 3/2

Table 2.1: Characteristic size of unit-cell (either square or regular hexagon) for each

lattice.

2.2.1 Square unit-cell

The mapping of any point on a square unit-cell H , including along its peripheral, de-

fined in a local x1 − x2 frame to an equivalent point on another unit-cell H ′ in the

x′1 − x′2 frame – see Fig. 2.2a – is given by

x1 = x′1 + 2hk , x2 = x′2 + 2hj (2.3)

where the parameters k, j = 0,±1,±2,±3, . . . define the translation of the original

unit-cell H to the new unit-cell H ′. For example, the unit-cell H ′ in Fig. 2.2a is

obtained by setting k = j = 1.
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For a set of prescribed remote loadings given by ε∞11, ε∞22 and γ∞12 , the relative displace-

ments between a node in unit-cell H and its corresponding node in H ′ are as follows:

u′1 − u1 =ε∞11(x′1 − x1) + γ∞12(x′2 − x2)/2

u′2 − u2 =ε∞22(x′2 − x2) + γ∞12(x′1 − x1)/2
(2.4)

where ε∞11 and ε∞22 denotes remote uniaxial straining in the x1 and x2 directions, re-

spectively; γ∞12 is the remote shear strain; and, u′1 and u′2 are the nodal displacements

measured in the local x′1 − x′2 frame. The relationships given by Eq.(2.4) are, however,

non-unique. Depending on the manner by which rigid body rotations are constrained,

they may also be expressed as follows:

u′1 − u1 =ε∞11(x′1 − x1)

u′2 − u2 =ε∞22(x′2 − x2) + γ∞12(x′1 − x1)
(2.5)

or

u′1 − u1 =ε∞11(x′1 − x1) + γ∞12(x′2 − x2)

u′2 − u2 =ε∞22(x′2 − x2) .
(2.6)

Equation (2.4) gives rise to a unit-cell that deforms in pure shear whilst Eqs.(2.5) and

(2.6) to simple shear. Even though the deformation of the unit-cell is different for each

of the aforementioned formulations, the bulk stiffness and strength predicted by them

were found to be identical; likewise, Li (2008) also reported the same for unidirectional

composites.

Combining the translational transformation of Eq.(2.3) with the relative displacement

equations of Eq.(2.4), the necessary boundary conditions for each side-pair are ob-

tained by evaluating along the boundaries of the unit-cell. For the side-pair x1 = ±h,

the parameters (k, j) are set to (1, 0). Similarly, for side-pair x2 = ±h, one sets

(k, j) = (0, 1). Subsequently, two equations must exist that relate the relative transla-

tional degrees of freedom – given by u1 and u2 – of each side-pair to any combination

of remote strains ε∞11, ε∞22 or γ∞12 as follows:
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u1|x1=−h − u1|x1=h = −2hε∞11 , u2|x1=−h − u2|x1=h = −hγ∞12/2

u1|x2=−h − u1|x2=h = −hγ∞12/2 , u2|x2=−h − u2|x2=h = −2hε∞22 .
(2.7)

Since the two boundary nodes of each side-pair are coupled, an additional set of equa-

tions must be imposed on their rotational degree of freedom as follows:

ω12|x1=−h − ω12|x1=h = 0 and ω12|x2=−h − ω12|x2=h = 0. (2.8)

Figure 2.3a shows the square unit-cell of a Square lattice. Each side-pair consists of

a boundary node on each side upon which the boundary conditions given by Eqs.(2.7)

and (2.8) are imposed.
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Figure 2.3: Square unit-cell for the (a) Square and (b) Diamond lattices.

In the case of Diamond lattices, a boundary node is located at each corner of its square

unit-cell as shown in Fig. 2.3b. Since each node is a member of two different sides-

pairs, the boundary conditions must be reformulated as the displacement field at all four

corners is inter-related (Li, 2000). Boundary node 1 is related to nodes 2, 3 and 4 via

the translational transformation of Eq.(2.3) by setting the parameters (k, j) to (0, 1),

(1, 1) and (1, 0), respectively. The necessary displacement boundary equations thus

become:

u1|2 − u1|1 = −2hγ∞12 , u2|2 − u2|1 = −2hε∞22

u1|3 − u1|1 = −2hε∞11 − 2hγ∞12 , u2|3 − u2|1 = −2hε∞22

u1|4 − u1|1 = −2hε∞11 , u2|4 − u2|1 = 0

(2.9)
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where ui|j corresponds to the displacement of node j along direction i.

As above, the rotational degree of freedom at opposite corners of the square unit-cell

are coupled via

ω12|1 − ω12|3 = 0 , ω12|2 − ω12|4 = 0

ω12|4 + ω12|1 = 0
(2.10)

where ω12|j corresponds to the rotation of node j.

2.2.2 Hexagonal unit-cell

Boundary conditions for a hexagonal unit-cell can be derived in a similar manner to its

square counterpart. However, because of the three side-pairs and the non-orthogonal

translational transformations, the displacement boundary equations are more compli-

cated than previously. Similar to the square unit-cell, the three translational transfor-

mations can also be described by just two parameters k and j. A point on the hexagonal

unit-cell H defined in a local x1 − x2 frame can be mapped to an equivalent point on

another unit-cell H ′ in the x′1 − x′2 frame by

x1 = x′1 +
√

3hk , x2 = x′2 + 2hj + hk (2.11)

where the parameters k, j = 0,±1,±2,±3, . . . are as before. The new reference frame

x′1 − x′2 of unit-cell H ′ can be obtained by setting j = 0 and k = 1 in Eq.(2.11), see

Fig. 2.2b. The equations for relative displacements are the same as before in Eq.(2.4).

Combining Eq.(2.4) with (2.11), the requisite boundary conditions are obtained. For

the side-pair x2 = ±h, the parameters (j, k) are set to (1, 0); for both ζ = ±h and ξ =

±h, they are set to (−1, 1). In total, six displacements and three rotational boundary

equations must be imposed to enforce strict periodicity of deformation given by
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u1|x2=−h − u1|x2=h = −hγ∞12 , u2|x2=−h − u2|x2=−h = −2hε∞22

u1|ζ=−h − u1|ζ=h = −
√

3hε∞11 −
h

2
γ∞12 , u2|ζ=−h − u2|ζ=h = −hε∞22 −

√
3

2
hγ∞12

u1|ξ=−h − u1|ξ=h = −
√

3hε∞11 +
h

2
γ∞12 , u2|ξ=−h − u2|ξ=h = hε∞22 −

√
3

2
hγ∞12

ω12|x2=−h − ω12|x2=h = 0 , ω12|ζ=−h − ω12|ζ=h = 0

ω12|ξ=−h − ω12|ξ=h = 0 .

(2.12)

Figure 2.4 shows the Kagome, Triangular and Hexagonal lattices where the hexagonal

unit-cell is appropriate. Each side-pair consists of one node on each side. Since none

of our lattices require a hexagonal unit-cell with nodes that are coincident with the six

corners, no special formulation is required here. For the Triangular lattice, a rotated

version of the unit-cell is used; note the differences in orientation of the unit-cell in

Figs. 2.1c and 2.4b. The necessary modifications for the rotated version are straight

forward and are not shown.
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Figure 2.4: Hexagonal unit-cell of the (a) Kagome, (b) Triangular, and (c) Hexagonal

lattices. Note the rotated version of the unit-cell for the Triangular lattice.

2.3 Voronoi lattices

2.3.1 Periodic ‘unit-cell’ for Voronoi lattices

To obtain the bulk properties of stochastic Voronoi (V) lattices, correct boundary con-

ditions must again be prescribed in the FE analysis. Zhu et al. (2001) and Chen et al.
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(1999) have previously shown that the use of mixed boundary conditions – represen-

tative of frictionless grips – are known to underestimate the bulk elastic modulus of

Voronoi lattices because they do not constrain the rotational degree of freedom at the

boundaries of the lattice (Chen et al., 1999; Zhu et al., 2001). To avoid this, periodic

boundary conditions must be imposed to a packing of representative square unit-cell.

However, unlike previously, the representative unit-cell now contains many cells where

the stochastic distribution of cell characteristics averages-out over the entire unit-cell; a

square unit-cell comprising of 50× 50 cells was found to be sufficient for this purpose.

The square unit-cell of Section 2.2.1 has four boundary nodes in total. Here, a repre-

sentative square unit-cell, comprising of 50 × 50 Voronoi cells, has approximately 50

nodes per side. In order to impose periodic boundary conditions, nodes on opposite

sides of the representative unit-cell must appear in pairs: in other words, each node on

x1 = −h should have a corresponding node on x1 = h with the same x2 coordinate.

Likewise, corresponding nodes on the side-pair x2 = ±h must also have the same x1

coordinates.

In periodic lattices, there is always a corresponding pair(s) of nodes for every side-pair

since a square unit-cell always intersects the lattice at the correct position. However,

this is not the case for Voronoi lattices unless a constraint is introduced to ‘force’ the

Voronoi tessellation process to produce corresponding node-pairs. A commonly-used

method is to position the set of nuclei for cells closest to the boundaries, e.g. within two

cells from the lattice boundary, in the same manner as a regular periodic lattice, whilst

those in the inner core are randomly positioned. This ensures that cells on opposite

boundaries are identical so that node-pairs can exist. The perfect nature of the cells is

not a realistic one and may lead to inaccurate estimates of the bulk moduli. To circum-

vent this drawback, another method is developed in the present thesis. The procedure

takes the following steps:

1. Within the given area A, randomly position the set of m nuclei P in accordance

to the requirements of Eq.(1.5);

2. The set of P nuclei is mapped 9 times for each possible combinations of j, k =

0, 1 and −1 of Eq.(2.3). This gives a lattice with a total area of 9A and 9 × m
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nuclei;

3. The minimum distance requirement of Eq.(1.5) is checked and, if violated, Steps

1 and 2 are repeated until an admissible case is obtained;

4. Generate the Voronoi lattice; and,

5. Trim lattice to the required area A which would now have identical node-pairs

for side-pairs x1 = ±h and x2 = ±h.

Even though this procedure is lengthy - Step 1 and 2 may have to be repeated up to

≈ 20 times, depending on the Λ value - it gives corresponding node-pairs on opposing

sides of the unit-cell whilst ensuring, at the same time, that all nuclei are randomly

positioned. The presence of corresponding node pairs is clearly evident from the ex-

amples shown in Fig. 1.6 which were generated using this procedure; for the purpose

of illustration, lattices with less than 50× 50 cells are shown.

2.3.2 Relative density

As Λ → 0+, the spread of the distribution for cell size and cell shape increases in a

Voronoi lattice; note that the special case of Λ = 1 corresponds to a regular Hexagonal

lattice. Unlike for periodic lattices, it is not possible to express ρ̄, for Voronoi lattices

where Λ 6= 1, in closed-form such as by Eq.(1.7). Instead, ρ̄ would need to be inde-

pendently calculated for each of the Voronoi lattice generated by summing up the total

length of all its cell walls, and assuming uniform cell wall thickness t, as follows:

ρ =

t

N∑
i=1

li

A
(2.13)

where li is the length of the ith cell wall in a lattice and N is the total number of cell

walls that make up the lattice. It was found that the average cell wall length l̂ increases

with decreasing Λ as shown in Table 2.2. Even though this variation is small – typically

less than 8% – it will be corrected for by adjusting the wall thickness t accordingly in

order to eliminate any ρ effects when comparing lattices of different Λ.
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Λ → 0+ 0.25 0.5 0.6 0.7 0.8 1

l̂/l 1.0775 1.0754 1.0636 1.0575 1.0484 1.0374 1

Table 2.2: Typical average cell wall length l̂ for Voronoi lattices of different cell-

regularity Λ.

2.4 Finite element models

Finite element (FE) models of the various unit-cells were generated using the commer-

cial package Abaqus/Standard®; an overview of the numerical method(s) employed

by the package can be found in Appendix D. The lattice micro-architecture is mod-

elled using Timoshenko beam elements, or B21 in Abaqus notation. The beam ele-

ments, also, take into account shear deformation which is important for lattices with

high ρ, as previously discussed in Section 1.2. Mesh sensitivity studies revealed that

four elements per cell wall are sufficient to achieve a converged response for all lattice

micro-architectures, with the exception of the Square lattice subjected to remote shear.

However, a much more refined mesh of fifteen B21 elements per cell wall are needed

to achieve converged post-yield response for the Square lattice under shear.

It is important to emphasize that all finite element models presented in this thesis as-

sume an idealised node/vertex design. Tacitly, this implies that the predicted stress

distribution in every cell-wall - converging at a common vertex/node - is independent

of each other. A more realistic nodal design is expected to give rise to a different stress

distribution for each cell wall near the vertex. Whether the overall stress is higher or

lower compared to the ideal node depends on the specifics of the nodal design which is

outside the scope of this work. Notwithstanding, this simplification is not expected to

limit the validity of the results presented in this thesis since the cell wall deflection, and

not the stress distribution within them, is utilised to estimate the macroscopic strain of

a lattice. Thus small changes in the estimated stress within the cell wall is not expected

to alter significantly the results presented in subsequent Chapters.

The choice of material for the lattice ligament (or struts) is unimportant, since the

predicted bulk lattice properties will be normalised by the material properties of the

ligament. In the FE simulations, the struts are assumed to be made of an aluminium
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alloy with a bi-linear stress-strain relationship, with an elastic modulus ofEs = 70GPa,

yield strength (σy)s = 130MPa, Poisson’s ratio νs = 1/3 and a linear hardening slope

dσ/dε = 735MPa – they are the same as that used by Tekoglu et al. (2011). Since only

planar lattices are of interests, its out-of-plane thickness d is set to unity without any

loss of generality.

2.4.1 Consistent estimate of yield strength

Figure 2.5a shows the predicted bulk stress-strain response for each lattice – they all

have identical relative density of ρ = 0.01 – subjected to uniaxial straining ε∞11. A

sharp transition to the non-linear regime is evident in these curves except for that corre-

sponding to a Hexagonal lattice. Hence, an offset method in accordance to the ASTM

E8/E8M-13a (2013) – a 0.1% offset is adopted in the present thesis – will be employed

to extract the bulk uniaxial and shear modulus/strength of each lattice. It is worth not-

ing that the choice of offset (others might choose 0.2%) has virtually no effect upon the

general trend of the results reported here or in subsequent chapters.

The strain energy U absorbed by a lattice when compressed up to a nominal uniaxial

strain of εi is given by

Uεi =

∫ εi

0

σ(ε) dε . (2.14)

Following Tan et al. (2005), the energy absorption efficiency of a lattice η(εi) - defined

as the ratio of energy absorbed up to a nominal strain εi to its corresponding nominal

stress - is given by

η(εi) =
Uεi
σ|ε=εi

. (2.15)

If a body is deforming in the linear stress-strain regime, then its energy absorbing effi-

ciency is always exactly 0.5εi but when its response deviates from linearity, then η(εi)

starts increasing. Hence, the energy absorption efficiency can be modified to give

ψ(εi) = η(εi)− 0.5εi . (2.16)
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Figure 2.5: (a) Uniaxial stress vs strain responses; and (b) Energy absorption efficiency

curves of the five periodic lattices. The start of non-linear regime is indicated by + and

the corresponding estimate of its yield strength by ◦. 0.1% offset lines are shown as

dashed lines.

The modified form of Eq.(2.16) ensures that ψ(ε) = 0 in the linear stress-strain regime

and ψ(ε) > 0 corresponds to the onset of non-linear bulk response. However, the

numerical nature of the FE method meant that ψ is never strictly zero in the linear

regime. Figure 2.5b plots the ψ-ε∞ curves corresponding to the five periodic lattices;

note the ‘zoomed-in’ version, with its different vertical scale for ψ, highlights the shift

from linear to non-linear regime. Notice that for all lattices, ψ is negative initially

but there is always a steep increase in ψ when the bulk response of the lattice is non-

linearly: hence, the corresponding transition strain is easily determined. This point is

indicated with a + in Fig. 2.5a, which is used to estimate the bulk modulus E∗ of the

lattice. Finally, the 0.1% offset is used to estimate its yield strength σ∗y , commonly

known as the proof stress, which is indicated by ◦ in Fig. 2.5a.

2.5 Results

2.5.1 Periodic lattices

For each lattice, the cell wall thickness t is adjusted accordingly to achieve the desired

relative density between the range of 10−3 ≤ ρ ≤ 0.3. The length l of each strut, or cell

wall, in a lattice is uniform, and set to unity, throughout unless otherwise specified; this



48 2.5. Results

does not affect the generality of the results. Three separate analyses were performed for

each lattice: uniaxial compressions (ε∞11 and ε∞22) and shear (γ∞12). All simulations were

performed within a small-strain context and neglects non-linear geometry. Examples of

deformed unit-cell are shown in Fig. 2.6 for each lattice micro-architecture; note that

the deformation of each lattice is exaggerated for the purpose of visualisation. Results

from the analyses are used to determine the uniaxial moduli (E∗1 and E∗2 ) and strength

((σ∗y)1 and (σ∗y)2) along the two principal directions, shear modulus (G∗), shear strength

(τ ∗y ) and Poisson’s ratio (ν∗). Finally, the modulus and strength predicted by FE is fitted

to the scaling laws of Eq.(1.9) for each lattice. Their coefficients are tabulated, and

compared to those obtained from existing literature, in Table 2.3.

Since the analyses were carried out within a small-strain context, elastic buckling is

excluded and a note of caution on interpreting the predicted yield strength of lattices

with a low relative density is necessary. It is well known that elastic buckling precedes

plastic buckling if the constituent cell walls are sufficiently slender. This transition

from elastic to plastic buckling depends on the ratio of the yield strength of the cell

wall material to its elastic modulus (σy)s/Es (Gibson and Ashby, 1997). The transition

relative density (ρtrans) for each micro-architecture was previously derived by Wang and

McDowell (2004) - they are also listed in Table 2.3. Therefore, if a lattice has relative

density of ρ < ρtrans, then its yield strength predicted by Eq.(1.9), and the correspond-

ing coefficients in Table 2.3, is likely to be an over-prediction. Notwithstanding, the

macroscopic moduli of a lattice remains valid for the entire range of ρ.

For each row in Table 2.3, the first line corresponds to analytical predictions by Eq.(1.9)

and the second by the FE models, up to three decimal places. In general, there is an

excellent agreement. The biggest differences are noted for the yield properties of the

Hexagonal lattice. This is unsurprising since the scaling laws of Eq.(1.9) were derived

based on fully plastic moment of rigid-perfectly plastic struts and assuming slender cell

walls; whereas, the current FE models take into account the effects of axial and shear

stresses, including strain hardening (linear) of the ligaments.

An anomaly is encountered for the Triangular lattice subjected to remote ε∞22 loading.

To obtain the correct deformed shape, shown in Fig. 2.6h and the coefficients listed

of Table 2.3, two additional boundary conditions must be imposed to relate the x1
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Square

(a) ε∞11 (b) ε∞22 (c) γ∞12
Diamond

(d) ε∞11 (e) ε∞22 (f) γ∞12
Triangular

(g) ε∞11 (h) ε∞22 (i) γ∞12
Kagome

(j) ε∞11 (k) ε∞22 (l) γ∞12
Hexagonal

(m) ε∞11 (n) ε∞22 (o) γ∞12

Figure 2.6: Deformed unit-cell of each lattice micro-architecture. Red (deformed) and

black (undeformed). Note that the deformation shown has been exaggerated for visu-

alisation purposes.
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B b C c By by Cy cy ν∗ ρtrans

Square
Lit 1/2 1 1/16 3 1/2 1 1/8 2 ≈ 0 0.070

FE 0.500 1 0.062 3 0.503 1 0.125 2 0

Diamond
Lit 1/4 1 1/4 1 1/2 1 1/2 2 ≈ 0 0.070

FE 0.253 1 0.250 3 0.501 1 0.501 1 0

Kagome

Lit 1/3 1 1/8 1
1/3 (x1)

1 0.289 1 1/3 0.030
1/2 (x2)

FE 0.335 1 0.126 1
0.336 (x1)

1 0.289 1 0.333
0.502 (x2)

Triangular

Lit 1/3 1 1/8 1
1/3 (x1)

1 0.289 1 1/3 0.060
1/2 (x2)

FE 0.333 1 0.125 1
0.333 (x1)

1 0.290 1 0.333
0.502 (x2)

Hexagonal

Lit 3/2 3 1/3 3 1/2 2 0.217 2 1 0.003

FE 1.444 2.992 0.366 2.995
0.549(x1) 2.050 (x1)

0.246 2.061 0.989
0.604 (x2) 2.064 (x2)

Table 2.3: Coefficients corresponding to Eq.(1.9). For each lattice micro-architecture,

existing analytical results (Cote et al., 2006; Fleck et al., 2010; Gibson and Ashby,

1997; Wang and McDowell, 2004) from the literature (Lit) are compared to predictions

by the FE models, denoted by (FE).

displacement of side pairs ζ = ±h and ξ = ±h to that of side pair x2 = ±h as follows:

u1|ζ=−h − u1|ζ=h = −u1|x2=h , u1|ξ=h − u1|ξ=−h = u1|x2=−h . (2.17)

Without imposing the additional constraints in Eq.(2.17), the boundary conditions for

side pair x2 = ±h is found to be u1|x2=−h − u1|x2=h = 0 and u2|x2=−h − u2|x2=h = 0

which causes the loss of continuity of the displacement field in the deformed hexagonal

unit-cell packing. As a result, a bending, instead of stretch, dominated deformation

ensues if Eq.(2.17) is not imposed.
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2.5.2 Voronoi (Stochastic) lattices

Due to the stochastic nature of a Voronoi lattice micro-architecture, a sufficiently large

sample of Voronoi tessellations must be analysed to obtain an average response. Nu-

merical checks have been performed that show a sample size of twenty tessellations

is needed at each cell-regularity Λ to obtain representative results. Table 2.4 shows

the average elastic properties and the percentage variation, from their respective mean

values, for a Voronoi lattice of cell-regularity Λ = 0.5 and relative density ρ = 0.1.

The elastic moduli are normalised by ρ3Es to give E
∗

and G
∗
; hence, E

∗
= 3/2 for

a Λ = 1 lattice. The differences between the average bulk properties in the x1 and

the x2 directions are insignificant; <2% for all combinations of ρ − Λ considered in

this thesis. These results are not surprising since the cells in a Voronoi lattice have no

preferred orientation. Therefore, the E
∗
1 and E

∗
2 values for each Λ are combined into a

single sample set of 40 lattices – the same also applies to their corresponding Poisson’s

ratio – as follows:

E
∗
1 = E

∗
2 = E

∗
, ν∗12 = ν∗21 = ν∗ (2.18)

Figures 2.7 and b show the variation of the elastic moduli with ρ and Λ. The theoretical

estimates by Silva et al. (1995) are nearly identical to the present FE results for regular

Hexagonal lattices of Λ = 1. At the lower values of ρ, cell-irregularities lead to an

increase in E
∗

and G
∗
, by up to 20%, as Λ → 0+. This trend is reversed for relative

densities ρ > 0.2. The variations of each data point plotted in Fig. 2.7 and b are less

than one standard deviation and this also agrees well with the results of Silva et al.

(1995) and Zhu et al. (2001).

E
∗
1 E

∗
2 G

∗
ν∗12 ν∗21

Mean 1.5866 1.5910 0.4152 0.9689 0.9668

% deviation 1.5674 1.5658 1.3934 0.2081 0.4376

Table 2.4: Average elastic bulk moduli and Poisson’s ratio estimated from a sample of

twenty Voronoi tessellations of identical cell-regularity Λ = 0.5 and relative density

ρ = 0.1.
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Figure 2.7: In-plane elastic properties as a function of relative density ρ for different

cell-regularity Λ. Theoretical estimates by Silva et al. (1995) for a regular Hexagonal

lattice are included for comparison.
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Figure 2.8: Poisson’s ratio and isotropy parameter as a function of relative density ρ for

different cell-regularity Λ. Theoretical estimate of ν∗ for a Hexagonal lattice by Silva

et al. (1995) are included for comparison.

The Poisson’s ratio ν∗ of a Voronoi lattice decreases with increasing ρ as shown in

Fig. 2.8a; this trend is similar to the theoretical estimate in Silva et al. (1995) for
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regular Hexagonal lattices. Cell-regularity does not appear to have a significant effect

on ν∗, leading only to a slightly reduced ν∗ as Λ → 0+; this reduction becomes more

pronounced at higher values of ρ. Note that a similar trend is also reported by Zhu et al.

(2001). Figure 2.8b shows the variation of

I = 2G∗(1 + ν∗)/E∗, (2.19)

an isotropy parameter, against ρ. As expected, I is always unity for a Hexagonal lattice

regardless of its relative density. For non-periodic lattices, I is only slightly raised (<

5%). Therefore, the assumption of an isotropic 2D lattice for all cell-regularity Λ is, to

a first approximation, valid.

2.6 Summary

In this chapter, the finite element method was employed to determine the bulk elastic

and yield properties of regular and semi-regular infinite-sized periodic lattices using

representative unit-cells. Five lattice micro-architectures were studied, viz. Hexagonal,

Triangular, Square, Diamond and Kagome lattices. The correct choice of unit-cell

packing was discussed in detail and equations for the appropriate boundary conditions

developed. There is excellent agreement between the FE results and predictions by

scaling laws developed elsewhere by others. The results presented suggest that the unit-

cell method, with its minimal model size, is capable of capturing the bulk response of

infinite-sized periodic lattices.

In addition, Voronoi lattices with a stochastic micro-architecture were also modelled.

The application of periodic boundary conditions were discussed in detail and the FE

models used to determine the bulk properties of Voronoi lattices for a range of cell-

regularity Λ; excellent agreement with results from the literature is, again, demon-

strated.

Last, the results presented in this chapter confirms that the finite element models of the

various lattices were correctly developed which would allow them, and their predic-

tions, to be used in subsequent Chapters.



Chapter 3

Edge effects in periodic lattices

3.1 Introduction

The mechanical properties predicted by the scaling laws of Eq. (1.9) apply only to

lattices of infinite-size, i.e. they give bulk (or intensive) properties. Edge effects in

finite-sized lattices are a well-known phenomenon - this was reviewed in Section 1.3

- which leads to either an enhancement or a reduction in their bulk properties. In this

chapter, the effects of boundaries upon the effective modulus and strength of finite-

sized lattices subjected to remote uniaxial compression and shear will be studied for

three periodic lattice micro-architectures, viz. Square (S), Kagome (K) and Triangu-

lar (T). A Square lattice has a simple micro-architecture that allows the problem to be

treated analytically whilst the other two are much more complicated and will be solved

numerically using finite elements. Their results are compared to those of other lattices,

viz. Voronoi (V), Hexagonal (H) and Diamond (D), from existing literature. This chap-

ter aims to elucidate the underlying intrinsic mechanisms responsible for the observed

edge effects in bending and stretch-dominated lattice micro-architectures, and to quan-

tify how the effective properties of finite-sized lattices compare to their corresponding

bulk counterparts.

3.2 Methodology

Finite-sized lattices were generated, in a manner similar to that described in Chapter

2.4 and is not repeated here, on which numerical experiments will be performed. Ap-

propriate displacement boundary conditions, to be discussed later in Section 3.2.2, are

imposed to simulate remote uniaxial compression and simple shear loadings where the

moduli and strength of these finite-sized lattices will be extracted. The predicted results

will be normalised by their corresponding infinite-sized counterparts – they will be de-
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noted by ( )UC – that were previously determined in Chapter 2 by a unit-cell approach.

3.2.1 Lattice size in terms of complete cells

Examples of finite-sized lattices are shown in Fig. 3.1 for each micro-architecture.

Note that all cell walls (struts) are of identical length l with the exception of the over-

hanging ones along the peripheral of the Square lattice where they each have the same

overhanging length λl where 0 ≤ λ ≤ 1. In order to relate the overall dimensions of

a finite-sized lattice – W (width) × H (height) – to the number of cells it contain, the

counting of complete cells would need to be made clear. LetW andH be the total num-

ber of complete cells along each row (horizontal x1 - direction) and column (vertical x2

- direction) of a lattice, respectively. For the examples shown in Fig. 3.1, the Square

and Triangular lattices would comprise of 7× 3 and 9× 4 complete cells, respectively

- their counting is straightforward. The Kagome lattice, on the other hand, is trickier

l

λl

λl

2x

1x
W

H

(a) Square (7× 3)

l l

W

H

(b) Kagome (5× 3)

l

W

H

l

(c) Triangular, (9× 4)

Figure 3.1: Examples of finite-sized lattices where the number of complete cells (W ×

H) are shown within brackets. For the Kagome lattice, each intact regular hexagon,

excluding its contiguous equilateral triangles, is counted as a complete cell.
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W/l H/l W H

Square W + 2λ H + 2λ 1, 3, 5, . . . 1, 3, 5, . . . 0 ≤ λ ≤ 1

Kagome 2
(
W + 1

) √
3
(
H + 1

)
” 1, 3, 5, . . . -

Triangular
(
W + 1

)
/2

√
3
(
H/2

)
” 2, 4, 6 . . . -

Table 3.1: Relationships between the overall dimensions of finite-sized lattices and

their number of complete cells

to count due to its micro-architecture: consequently, each complete regular hexagon,

excluding its contiguous equilateral triangles, shall be counted here as a complete cell.

Therefore, the Kagome lattice in Fig 3.1b would comprise of 5× 3 complete cells. For

convenience, all the lattices generated for subsequent parametric studies shall always

contain odd number of complete cells W and H; the only exception is an even number

of cellsH for the Triangular lattice. In this manner, the overall dimensions (W/l×H/l)

of a lattice are readily expressed as functions of the number of complete cells in each

row or column: they are tabulated in Table 3.1 for each lattice micro-architecture.

The Square lattices, unlike the other two, were deliberately generated to contain incom-

plete, open, cells along its boundary expect when λ = 0. This is because finite-sized

Hexagonal lattices containing open cells along their boundaries are known to have a

profound effect upon their shear modulus and strength (Onck et al., 2001); the same

will need to be investigated here for the Square lattice. The length of each overhanging

cell wall is given by λl where 0 ≤ λ ≤ 1, as shown in Fig 3.1a. If λ = 0, all cells

along the boundary are closed; otherwise, they are always open. In the limiting case of

λ = 1, the lattice has open boundary cells with overhanging cell walls of length l.

3.2.2 Displacement boundary conditions

The boundary ∂V of each finite-sized lattice can be divided into ∂V T (Top), ∂V B

(Bottom), ∂V L (Left) and ∂V R (Right) as shown in Fig. 3.2: for brevity, they are

denoted by T , B, L and R, respectively.

To simulate macroscopic uniaxial compression, the vertical translation of all nodes in

B is constrained, i.e. uB2 = 0, and the set of nodes in T is displaced by uT2 = ε∗22Hd in

the negative x2 direction, where d is the unit out-of-plane thickness. With the exception
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W

H

2x

1x

T∂V

B∂V

L∂V R∂V

(a)

W

H

T∂V

B∂V

L∂V R∂V

(b)

Figure 3.2: Finite-sized specimens subjected to remote (a) uniaxial compression and

(b) simple shear loadings.

of a middle node in B, that has been constrained to prevent rigid-body translation, all

nodes in T and B are free to translate along x1. Additionally, just like in Tekoglu

et al. (2011), the nodes (or cell walls) in T and B are assumed to be perfectly bonded

to the loading ‘platens’ so their rotational degree of freedom is also restrained, i.e.

ωT12 = ωB12 = 0. All nodes along L and R are unconstrained, i.e. they are stress-free.

The compressive stress is defined as the reaction force, per unit specimen width, in the

x2 direction given by ΣRF2/Wd where d is the unit out-of-plane thickness. It follows

that the macroscopic elastic modulus is E∗ = ΣRF2/Wdε∗22. The compressive yield

strength is estimated using the procedure described in Section 2.4.1, beyond which the

lattice is no longer deforming in the linear-elastic regime.

To simulate simple shear, both translational degree of freedoms in B are constrained,

i.e. uB1 = uB2 = 0, and nodes in T are displaced horizontally along x1 through uT1 =

γ∗12Hd. All nodes in T are allowed to translate freely along x2 so that T always remains

horizontal, and parallel, to B. Just as for uniaxial loading, both B and T are tied

rigidly to the loading ‘platens’ so that ωT12 = ωB12 = 0. All nodes in L and R remain

stress free. The shear stress is calculated by dividing the total reaction forces in the

x1 direction (ΣRF1) along T with the specimen width to give ΣRF1/Wd. The shear
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modulus follows from G∗ = ΣRF1/Wdγ∗12 and the shear strength is estimated using

the procedure described in Section 2.4.1.

It is worth highlighting that, previously in Chapter 2, the ‘bulk’ shear properties pre-

dicted are identical irrespective of whether simple or pure shear is applied to the unit-

cell. Here, however, care must taken not to assume that the results - for remote simple

shear - also apply to pure shear loading, since the mechanism(s) responsible for edge-

effects may not be identical.

3.3 Square (S) lattice

3.3.1 Uniaxial loading

Under uniaxial compression, a finite-sized Square lattice responds in exactly the same

manner as its infinite-sized counterpart where all the vertical cell walls aligned with

the loading direction are compressed axially whilst the rest remain stress-free. Strictly

speaking, this is only possible if the perfect Square micro-architecture is maintained

throughout deformation.

Consider two finite-sized lattices with identical column and row (W = n) of complete

cells but with either λ = 0 or λ = 1. According to Table 3.1, the lattice width would

be W = nl if λ = 0, and W = (n + 2)l if λ = 1. Since they both contain exactly

n+1 vertical cell walls, see Fig 3.1a, their load carrying capacity is identical. However,

the effective stressed area of the λ = 1 lattice is greater by 2l, which leads to a more

compliant response because of the lower nominal stress. Unsurprisingly, the decrease

in nominal stress due to λ becomes more pronounced as W reduces.

The bulk modulus of an infinite-sized lattice is reached when λ = 1/2 - this is irrespec-

tive of W - since these lattices would have exactly one load-carrying cell wall per l and

is equivalent to the representative unit cell of Fig. 2.3. Therefore, the size dependency

of the effective elastic modulus and yield strength for a Square lattice is simply

E∗

(E∗)UC
=

σ∗y(
σ∗y
)

UC

=

(
W + 1

)(
W + 2λ

) (3.1)

which is, in reality, just an ‘area correction’ of the stressed surfaces to a corresponding
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λ = 1/2 lattice. As to be expected, lattice height H does not affect the results and a

representative case of H = 51 is plotted in Fig. 3.3a.
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Figure 3.3: Effects ofW and λ on the normalised effective elastic modulusE∗/ (E∗)UC

and yield strength σ∗y/
(
σ∗y
)

UC
of Square lattices. All results plotted are for H = 51 and

ρ = 0.1.

Predictions by Eq. (3.1) are plotted, alongside the FE results, in Fig. 3.3a for λ = 0, 1/2

and 1: they are in exact agreement. If λ > 0.5, the effective modulus and strength

values are below their ‘bulk’ values; the reverse occurs if λ < 0.5. The closer λ is to

0.5, the less sensitive are the properties to W as shown in Fig 3.3b. At λ = 0.5, the

‘bulk’ properties are reached irrespective ofW . The effective properties are within 10%

of its predicted bulk values if W ≥ 9, beyond which they are relatively insensitive to λ,

see Fig 3.3b. If, on the other hand, W < 9, then the properties are highly sensitive to λ.

Additionally, the relative density ρ of a lattice does not influence the results here since

the deformation in a perfect lattice is entirely by stretch; hence, only a representative

case of ρ = 0.1 need to be shown. A note of caution: this ‘apparent’ size effect is

merely a consequence of ‘area correction’ and is distinct from all subsequent cases

later on that arise from a switch in the deformation mechanism at the cell-scale.
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3.3.2 Simple shear

Unlike in uniaxial compression, a Square lattice subjected to macroscopic shear de-

forms predominately by bending of its constituent struts. A three-step procedure is em-

ployed here to model analytically the edge effects experienced by a finite-sized Square

lattice subjected to simple shear. First, a lattice of finite H , but of infinite W , is mod-

elled to capture the effects from the two horizontal stressed surfaces T andB in Section

3.3.2.a. Second, a lattice of finite H and single cell width (W = 1) is modelled: this

captures the influence from the lateral stress-free boundaries L andR in Section 3.3.2.c.

Last, results from both models will be combined in Section 3.3.2.d, using a rule-of-

mixtures, to derive an overall expression that quantifies how the effective properties of

finite-sized Square lattices are affected by edge effects. Slender cell walls are assumed

in the model formulations where axial stresses are neglected. Predictions by the ana-

lytical model will be compared to FE models for lattices of relative density ρ = 0.1;

comparison is not made for higher relative densities since this would invariably increase

any discrepancies between the analytical and FE results.

3.3.2.a Infinitely-wide lattices (W →∞) - Modelling

Case A: H = 1

Figure 3.4a shows the representative model of an infinitely-wide lattice, but with

H = 1, that is loaded in simple shear. It suffices to analyse only a representative

unit cell with appropriate periodic boundary conditions applied to its lateral bound-

aries (L and R). The representative unit cell comprises only a single column of ver-

tical struts and the corresponding horizontal struts of length l/2; there is no necessity

to model complete cells because of symmetry. Figure 3.4b shows the corresponding

forces and moments associated with each strut. Since all struts are assumed to be slen-

der, then bending is the dominant deformation and axial forces can be neglected. On

the contrary, the shear forces F in all vertical struts are important and must be taken

into account. By considering force equilibrium at the joints, F can easily be related

to the applied macroscopic shear stress through F = τ ∗12ld. The shear forces S in the

horizontal members of Fig 3.4b are not important so they are neglected.

The nodes at the stressed surfaces are denoted by T and B, whilst the nodes corre-
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Figure 3.4: Model of an infinitely-wide Square lattice with H = 1.

sponding to the two joints are numbered, top-down, as 1 and 2, respectively. The

moments experienced by the strut T1 at nodes T and 1 are denoted by MT1 and M1T ,

respectively; the same notation is also adopted for their corresponding angles shown in

Fig 3.4c. To model an infinitely-wide lattice (W → ∞), the moments and angles of

rotation at the corresponding end of each horizontal strut - of which there are a total

of two in the representative model shown in Fig 3.4a - must be identical. Hence, the

number of unknowns reduces from four to two in each horizontal strut; for definiteness,

the total number of unknowns corresponding to the two horizontal struts are, therefore,

M11, θ11, M22 and θ22. Assuming joints 1 and 2 are rigid, i.e. the perpendicular con-
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nectivity of all members must be preserved even after deformation, this leads to a total

of 8 independent degrees of freedom with 8 unknown moments. Moment equilibrium

for the three vertical struts gives

MT1 +M1T = λlF , (3.2)

MB2 +M2B = λlF and (3.3)

M12 +M21 = lF ; (3.4)

and, the same for the two joints gives

M1T +M12 − 2M11 = 0 and (3.5)

M2B +M21 − 2M22 = 0 . (3.6)

Three additional equations are needed which are obtained by considering the rotational

compatibility of struts T-1, B-2 and 12 – refer to Fig 3.4c – as follows:

θT1 = θ1T + θ11 , (3.7)

θB2 = θ2B + θ22 and (3.8)

θ12 + θ11 = θ21 + θ22 . (3.9)

The unknown rotations in Eqs (3.7)–(3.9) can be expressed as functions of the unknown

moments, via their slope-deflection relationships, as follows:

θT1 =
MT1λl

3EsI
− M1Tλl

6EsI
θ1T =

M1Tλl

3EsI
− MT1λl

6EsI

θB2 =
MB2λl

3EsI
− M2Bλl

6EsI
θ2B =

M2Bλl

3EsI
− MB2λl

6EsI

θ11 =
M11l

6EsI
θ22 =

M22l

6EsI

θ12 =
M12l

3EsI
− M21l

6EsI
θ21 =

M21l

3EsI
− M12l

6EsI
.

(3.10)

where EsI is the flexural rigidity of the struts and I(= dt3/12) is the second moment

of area. Substituting Eqs (3.10) into Eqs (3.7)–(3.9), and re-arranging, gives
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3λMT1 − 3λM1T −M11 = 0 , (3.11)

3λMB2 − 3λM2B −M22 = 0 and (3.12)

3λM12 − 3λM21 +M11 −M22 = 0 . (3.13)

The eight independent moment equations, viz. Eqs. (3.2)–(3.6) and (3.11)–(3.13), can

be re-cast into a matrix format of Mm = F where

m = [MT1 M1T MB2 M2B M12 M21 M11 M22]T (3.14)

F = [0 0 λlF λlF lF 0 0 0]T (3.15)

and

M =



−3λ 3λ 0 0 0 0 1 0

0 0 −3λ 3λ 0 0 0 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 1 0 0 1 0 −2 0

0 0 0 1 0 1 0 −2

0 0 0 0 3 −3 1 −1


(3.16)

Inverting to get m = M−1F, one arrives at four unique moments that are re-labelled

M1,M2,M3 and M4 as follows:

M1 = MT1 = MB2 =
6λ2 + λ+ 0.5

c
F l ,

M2 = M1T = M2B =
6λ2 − 0.5

c
F l ,

M3 = M11 = M22 =
3λ2 + 3λ

c
F l and

M4 = M12 = M21 =
Fl

2
.

(3.17)

where c = 12λ + 1. It is no surprise that the eight unknown moments reduces to just

four unique pairs; this is due to symmetry about the horizontal mid plane.

According to Fig. 3.4c, the macroscopic shear strain γ∗12 is given by
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γ∗12 =
u1T + u2B + u12

l + 2λl
(3.18)

where uij denotes the relative displacement, along the x1 direction, between nodes i

and j. Assuming small rotations, these relative displacements can be related to the

unknown angles through uT1 = λlθT1, uB2 = λlθB2 and u12 = l(θ11 + θ12) so that Eq.

(3.18) becomes

γ∗12 =
λ (θT1 + θB2) + θ12 + θ11

1 + 2λ
. (3.19)

Equation (3.19) can be expressed as a function of F, l and λ by substituting the various

angles for the corresponding expressions in Eq. (3.10) and the eight moments of Eq.

(3.17).

Given that τ ∗12 = F/ld, and using Eq. (3.19) with ρ = 2t/l and I = dt3/12, the

effective shear modulus can be obtained as follows:

G∗
∣∣
H=1

=
τ ∗12

γ∗12

=
2(2λ+ 1)(12λ+ 1)

(24λ4 + 8λ3 + 12λ2 + 18λ+ 1)

ρ3Es
16

(3.20)

where ρ3Es/16 corresponds to the bulk shear modulus of an infinite-sized Square lat-

tice given by Eq.(1.9), whilst the polynomial fraction adjusts for the effects of λ.

Case B: H = 3 and 5

The above model can be readily extended to H > 1; here, corresponding expressions

for lattices with H = 3 and 5 are derived. The representative models for the H = 3

and 5 infinite-wide lattices are shown in Fig. 3.5. However, the derivations become

onerously lengthy when H > 5 and such cases will only be modelled using finite

elements. The node numbering notation for the taller lattices follows exactly as before.

Nodes T, 1, 2, . . . , n(= H + 1), B are numbered top-down where T,B corresponds to

the nodes at the loading platens, and 1, 2, . . . , n corresponds to the joints where vertical

and horizontal struts meet; the numbering for H = 3 and 5 is shown in Fig. 3.5.

For each additional cell in height, three additional unknown moments - one for the
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Figure 3.5: Infinitely-wide Square lattice with (a) H = 3 and (b) H = 5.

horizontal member and two for the vertical member - are introduced. Consequently,

there are 14 and 20 unknown moments for infinitely-wide lattices of H = 3 and 5,

respectively. Their corresponding matrices m,M,F are given in Appendix A, together

with the slope-deflection relationships in a matrix format of θ = lΘm/(EsI). Also

listed are the solutions for the unknown moments and the corresponding expression for

shear strain - the equivalent of Eq. (3.19) - for both the H = 3 and 5 lattices.

In both cases (H = 3 and 5), the solutions to four of their unknown moments – they

listed as M1,M2,M3 and M4 in Table 3.2 – were found to have a similar functional
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form to that of Eq. (3.17), apart from different scalar factors c1 and c2, given by

M1 =
6λ2 + c1λ+ 0.5c2

12λ+ c1

Fl ,

M2 =
6λ2 − 0.5c2

12λ+ c1

Fl ,

M3 =
3c1λ

2 + 3c2λ

12λ+ c1

Fl and

M4 =
Fl

2
.

(3.21)

where c1 and c2 depends on H as listed in Table 3.2. As shown in Eq. (3.17), c1 =

c2 = 1 for an infinitely-wide lattice of H = 1. The same expressions are also believe

to apply to lattices where H > 5 but with a different set of scalar factors. The three

additional moments introduced for a H = 3 lattice are listed as M5,M6,M7 in Table

3.2. and they have the same functional form as M5,M6,M7 for the H = 5 lattice; see

Appendix A. Likewise, three more, viz. M8,M9 andM10, are introduced for theH = 5

lattice.

H = 1 H = 3 H = 5

c1 1 13/14 209/195

c2 1 15/14 181/195

M1 , MT1 = MB2 MT1 = MB4 MT1 = MB6

M2 , M1T = M2B M1T = M4B M1T = M6B

M3 , M11 = M22 M11 = M44 M11 = M66

M4 , M12 = M21 M23 = M32 M34 = M43

M5 ,

N/A

M12 = M43 M12 = M65

M6 , M21 = M34 M21 = M56

M7 , M22 = M33 M22 = M55

M8 ,

N/A

M23 = M54

M9 , M32 = M54

M10 , M33 = M44

Table 3.2: Moment equivalence between three infinitely-wide lattices of different H .

Note that ‘N/A’ denotes not-applicable.

Just like the H = 1 case, the effective shear modulus for each lattice is found by com-
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bining their respective shear strain expressions with the appropriate slope-deflection

equations and moments - see Appendix A - to give

G∗
∣∣
H=3

=
2(2λ+ 3)(168λ+ 13)

(336λ4 + 104λ3 + 180λ2 + 918λ+ 63)

ρ3Es
16

(3.22)

G∗
∣∣
H=5

=
2(2λ+ 5)(2340λ+ 181)

(4680λ4 + 1448λ3 + 2508λ2 + 22146λ+ 1601)

ρ3Es
16

(3.23)

where, as before, the bulk shear modulus are adjusted for the effects of λ through the

corresponding polynomial fraction.

3.3.2.b Infinitely-wide lattices (W →∞) – Discussion

Figure 3.6 plots the normalised moments M/Fl in each strut as a function of λ for

infinitely-wide lattices with H = 1, 3 and 5. The bending moment in the strut at the

mid-height of the lattice (M4 in Table 3.2 for all three lattices) is independent of λ and

is typically higher than M1,M2,M3; only as λ → 1 does M1 > M4. This is true for

all lattices containing H = 1, 3 and 5 cells since the scalar parameters c1, c2 are close

to unity and their influence on moments are relatively minor. For lattices with H > 1
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Figure 3.6: Variations of normalised moment M/Fl in each strut as a function of λ

for infinitely-wide lattices with H = (a) 1 (b) 3 and (c) 5. Moments are labelled as per

Table 3.2
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cells, the additional moments introduced have magnitude very close toM4 for the entire

range of λ.

M1,M2,M3 are associated with the incomplete cells at the rigid surfaces for all three

lattices. The lower magnitude of M1,M2,M3, compared to the other moments, indi-

cates that the incomplete cells at the boundaries are stiffer compared to the complete

cells in the bulk of the lattice; i.e. the incomplete cells at the boundary form a stiff

horizontal boundary layer. As λ increases, the differences between M1,M2,M3 and

the other moments reduces, hence the stiffening effect of the boundary layer vanishes.

The similar values obtained for all other moments -M4,M5, . . . ,M10 - indicate that the

complete cells away from the boundaries have similar ‘local’ stiffness regardless of H .

Figure 3.7a compares the predictions by Eqs. (3.20), (3.22) and (3.23) to their FE coun-

terparts where they show a perfect match. For the same reason given in Section 3.3.1,

the effective modulus predicted by FE had been corrected for area using Eq. (3.1).

Note that lattices of W = 101 were modelled since convergence studies have estab-

lished this to be sufficient to simulate the response of infinitely-wide lattices. Figure

3.7a shows varying extent of enhancement for the effective shear modulus; this is most

pronounced in lattices where the number of row(s) of complete bulk cells H are small
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Figure 3.7: Variation of the normalised effective shear modulus G∗/(G∗)UC with λ and

H for infinitely-wide Square lattices.
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and/or if the boundary cells, attached to T and B, have a low λ value. As H increases,

the enhancement diminishes dramatically. The trend of the data plotted in Fig. 3.7a are

broadly similar for all H: a ‘down-up-down’ response as λ increases. For larger H ,

viz. 15, 25 and 51, their effective moduli are close to its corresponding bulk values and

they are relatively insensitive to λ.

Figure 3.7b plots the variation of G∗/(G∗)UC against H for λ = 0, 0.1, 0.5 and 1. In

all cases, G∗/(G∗)UC diminishes rapidly with H . The enhancement of the effective

modulus is caused by the stiff horizontal boundary layers next to T and B surfaces.

The additional rows of complete cells diminish the stiffening effect of the boundary

layer since, as it was indicated above, they have lower local stiffness compared to the

incomplete boundary cells. A value within 5% of (G∗)UC is reached for lattices that

have H > 15. This asymptotic reduction in the effective shear modulus with H may

be described using a scaling law of the following form:

G∗

(G∗)UC

∣∣∣∣
W→∞

= 1 +
d1

H + d2

(3.24)

where constants d1 and d2 – these are listed in Table 3.3 – are calibrated to the FE

predictions.

Figure 3.8 plots the shear strength estimated by FE as a function of lattice height for

a W = 101 wide lattice. Similar to the shear modulus, the shear strength exhibits

a strengthening effect for lattices with small H , a result due to the presence of stiff

horizontal boundary layer. Unlike Fig. 3.7b, however, the ‘bulk’ shear yield strength

value from unit-cell method is not approached asymptotically. For a sufficiently large

lattice, it was found that τ ∗y /(τ
∗
y )UC ≈ 0.8. An equivalent scaling law, similar to Eq.

(3.24), is obtained for the shear yield strength as follows

λ = 0 λ = 0.1 λ = 0.5 λ = 1

d1 0.59 0.54 0.84 0.5

d2 -0.41 -0.33 0.05 1

dy1
0.024 0.07 0.15 0.03

dy2
-0.65 -0.33 0.05 2

Table 3.3: Values of fitted parameters d1, d2 in Eq. (3.24) and dy1 , dy2 for Eq. (3.25).
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τ ∗y
(τ ∗y )UC

∣∣∣∣
W→∞

= 0.785 +
dy1

H + dy2
(3.25)

where the calibrated constants dy1 and dy2 are listed in Table 3.3. Equations (3.24)

and (3.25) are to be used later on in Section 3.3.2.d to develop an expression for the

effective properties of a Square lattice of any size.

3.3.2.c Single-cell wide model (W = 1)

Given a lattice of finite W , its stress-free lateral boundaries (L and R) gives rise to a

more compliant effective response compared to its infinitely-wide counterpart of the

same H and ρ. This is due to the absence of moment in the horizontal struts next to the

lateral boundaries. The model for the infinitely-wide lattice is now modified to include

a single column of complete cells, i.e. W = 1. First, the smallest Square lattice possible

is studied, W = H = 1 (shown in Figure 3.9a), followed by the W = 1, H = 3 lattice.

This is to compare the stiffness of cells along the lateral L, R boundaries with the

corresponding stiffness of the cells at the bulk of lattice, modelled by the infinite-wide

model presented in Section 3.3.2.a. The notation used to label the nodes are the same

as in Section 3.3.2.a, apart from an additional subscript introduced to distinguish the

different columns; note that the model has two columns of vertical struts, as opposed

to one previously.
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Figure 3.9: Model of a Square lattice with W = H = 1

There are twice as many unknown moments in the model as its infinitely-wide coun-

terpart. Additionally, the shear forces S in the horizontal struts are, too, an unknown;

see Fig 3.4b. However, symmetry along the horizontal mid-plane dictates that S is

identical in both the horizontal members. Hence, a Square lattice with W = H = 1,

as shown in Fig 3.9b, has a total of 17 unknowns. The equations needed to solve for

them are derived from the moment balance of each strut (8 in total) and the moment

balance at each joint (4 in total). Five additional equations are needed and they come
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from rotational compatibility of the struts T111, B121,1121 and 1112 given by

θT111 = θ11T1 + θ1121 , (3.26)

θB121 = θ21B1 + θ2122 , (3.27)

θ1112 + θ1121 = θ2122 + θ2111 and (3.28)

θ1112 = θ1211 (3.29)

and by enforcing

uTB1 = uTB2 (3.30)

where uTB1 and uTB2 are the relative displacements of nodes T and B along the x1

direction of the first and second column of struts, respectively, as shown in Fig 3.9c.

Equation (3.30) ensures that the shear strain is uniform across the surfaces T and B.

Assuming small rotations, uTB1 and uTB2 are related to the rotations as follows:

uTB1 = (λθT111 + λθB121 + θ1121 + θ1112) l and (3.31)

uTB2 = (λθT212 + λθB222 + θ1222 + θ1211) l . (3.32)

Similar to Section 3.3.2.a, Eqs. (3.26)–(3.30) can be expressed as functions of the

unknown moments, using the appropriate slope-deflection relationship of each strut, to

give the following:

3λMT111 − 3λM11T1 − 2M1121 +M2111 = 0 ,

3λMB121 − 3λM21B1 − 2M2122 +M2221 = 0 ,

3M1121 − 3M2111 + 2M1112 − 2M2122 +M2221 −M1211 = 0 ,

3M1112 − 3M1211 = 0 and

2λMT111 − 2λMT212 + 2λMB121 − 2λMB222−

λM11T1 + λM12T2 − λM21B1 + λM22B2+

3M1112 + 2M1121 +M2212 − 3M1211 − 2M1222 −M2111 = 0 .

(3.33)
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Solving for the unknown moments and shear stress S gives

MT111 = MT212 = MB121 = MB222 =
6λ2 + 2λ+ 1

12λ+ 2
Fl ,

M11T1 = M12T2 = M21B1 = M22B2 =
6λ2 − 1

12λ+ 2
Fl ,

M1112 = M1211 = M2122 = M2221 =
3λ2 + 3λ

6λ+ 1
Fl ,

M1121 = M1222 = M2111 = M2212 =
Fl

2
and

S = −6λ(λ+ 1)

6λ+ 1
F .

(3.34)

Notice that the moments in Eq. (3.34) have a similar functional form as Eq. (3.21), but

with c1 = c2 = 2 instead of c1 = c2 = 1. The moments here appear in sets of four since

there are two mid planes of symmetry – horizontal and vertical. Following the same

procedure as an infinitely-wide model, the shear modulus for a lattice of H = W = 1

is found as follows:

G∗
∣∣
H=1

=
2 (2λ+ 3) (48λ+ 7)

(96λ4 + 56λ3 + 108λ2 + 378λ+ 45)

ρ3Es
16

(3.35)

If the above model, for a W = H = 1 lattice, is extended to one with W = 1 and

H = 3, then two additional unknown shear forces are introduced. This leads to a total

of 30 unknowns and the shear modulus of a lattice with H = 3 and W = 1 is found to

be

G∗
∣∣
H=3

=
2 (2λ+ 1) (6λ+ 1)

(12λ4 + 8λ3 + 12λ2 + 12λ+ 1)

ρ3Es
16

(3.36)

The analytical derivation for the effective shear modulus for H = 5 lattice involves

43 unknown and is rather cumbersome and it is not repeated here; its shear modulus

is expected to have the same form as Eqs.(3.35) and (3.36) but with a different poly-

nomial fraction. Compared to an infinitely-wide lattice of the same H , its single-cell

wide counterpart (W = 1) is found to have significantly lower shear modulus. This is

a direct consequence of the lower moments experienced by their constituent struts be-

cause of the reduced constraint from the lateral boundaries L and R. The results from

the analytical Eqs.(3.35) and (3.36) will be discussed in detail in Section 3.3.2.e.
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3.3.2.d Finite-sized lattices – Modelling

The analytical models developed in Sections 3.3.2.a and 3.3.2.c show that the vertical

struts in the bulk of a finite-sized lattice are considerably stiffer compared to the first

vertical struts near its L and R boundaries. Thus, the cells at the L and R boundaries

form a boundary layer to account for the uniform stiffness since the applied shear strain

is uniform along the T and B surfaces. By studying the cell deformation and the stress

distribution within the struts as predicted by FE, it is observed that a transition zone (or

shear-lag zone) does not and thus the boundary layer shows a sharp demarcation and

extends for only one cell; this is shown schematically in Fig. 3.10; note that for the

reasons given in Sections 3.3.1 and 3.3.2.a, the stressed surfaces are area corrected for

λ = 0.5.
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Figure 3.10: Schematic of a Square lattice under shear and the boundary layers that

span one cell in width.

Hence, the shear modulus of these finite-sized Sqaure lattices may be derived using a

‘Mechanics of materials’ approach, in a manner analogous to estimating the stiffness of

a composite material, comprising of two phases. Let the composite be composed of two

distinct phases each with a different elastic modulus Ei and area fraction Ai/A, where

i = 1, 2 and A = A1 + A2 is total area of both phases. If the same strain is applied to

both phases of the composite, then the sections normal to the loading direction, which

were plane before, remains plane after loading. This condition allows the effective

modulus of the composite to be estimated by a ‘rule-of-mixtures’ as follows (Jones,

1999):

E = E1
A1

A
+ E2

A2

A
. (3.37)
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Equation (3.37) is equivalent to a ‘springs-in-parallel’ model, where the load is dis-

tributed according to each spring stiffness. In the case of a Square lattice under shear,

the rule-of-mixtures is applicable since the aforesaid condition is valid, i.e. the shear

strain is applied uniformly across the width of the lattice and any section normal to x2

remains plane for small displacements.

The two constituent phases of a finite-sized Square lattice, see schematic in Fig 3.10,

are as follows:

1. bulk cells with a ‘local’ modulus of G∗blk, given by the modulus for infinite-wide

lattices from Sections 3.3.2.a. For lattices with H > 5 - for which analytical

solutions were not derived - FE models with W = 101 are used to determine

G∗blk ; and,

2. vertical boundary layers – of ‘local’ modulus G∗bdy – emanating from the two

stress-free lateral boundaries (L and R), with each extending one cell in width

into the bulk. G∗bdy is given by the shear modulus for W = 1 lattices from

Sections 3.3.2.c.

Since all the lattices modelled are of unit depth, the area fractions are also length frac-

tions. For finite-sized Square lattices, the area fraction of the bulk cells is A1/A =

(W − 1)l/W and A2/A = 2l/W for the boundary layers; again note that the loading

surface area is corrected for λ = 0.5 using Eq. (3.1), hence λ does not appear in these

expressions. Hence, Eq. (3.37) can be written as

G∗
(
W,H, λ

)
=

(
W − 1

)
G∗blk + 2rGG

∗
blk

W + 1
(3.38)

where rG(λ) , G∗bdy(λ)/G∗blk(λ) is a measure of the loss of stiffness at the boundary

layers; this parameter is reminiscent of the ratio of the fibre to matrix stiffness in a

composite material. The stiffness of the bulk (G∗blk) and boundary layer (G∗bdy) cells

were derived in Sections 3.3.2.a and 3.3.2.c, respectively, for lattices with H = 1 and

3 cells. These allow rG(λ) to be obtained analytically, as follows:
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rG(λ)
∣∣
H=1

=
(48λ+ 7) (2688λ4 + 832λ3 + 1440λ2 + 7344λ+ 504)

8 (168λ+ 13) (96λ4 + 56λ3 + 108λ2 + 378λ+ 45)
and

(3.39)

rG(λ)
∣∣
H=3

=
(6λ+ 1) (24λ4 + 8λ3 + 12λ2 + 18λ+ 1)

(12λ+ 1) (12λ4 + 24λ3 + 12λ2 + 12λ+ 1)
.

(3.40)

Recall that closed-form expressions for shear modulus were not derived for H ≥ 5; for

such cases, rG(λ) is estimated using FE at selected λ values and these are plotted in Fig

3.13a.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

λ

G
r

= 51H

= 3H

= 1H

= 7H
FE

Eq.(3.39)

Eq.(3.40)

= 3H

= 1H
Eq.

Gr̂= 3H

= 1H

(a)

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H

ĝ
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Figure 3.11: (a) Variation of rG with λ for different H; (b) Variation of r̂G with H .

Equations (3.39) and (3.40) are plotted in Fig 3.11a where they show a near perfect

agreement with predictions by FE. Their close agreement provides further confirma-

tion that no transition zone develops between the boundary layers and the bulk cells.

The results in Fig 3.11a shows that rG(λ) is nearly insensitive to λ at higher H . This

suggests that beyond, say, H ≥ 7, it is reasonable to approximate rG(λ) as a constant

value, viz. rG(λ) = r̂G, without loss of accuracy. In the cases of H = 1 and 3, where

there are significant variations of rG with λ, a constant r̂G could still be defined by

using a technique known as the ‘equal-area rule’ - see Appendix B. The estimated r̂G

values for H = 1 and 3 are plotted in Fig 3.11a as dashed horizontal lines. Error is
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introduced as a consequence of this approximation; the root-mean-square (rms) error is

0.022 and 0.090 for H = 3 and H = 1, respectively. Beyond H ≥ 7, the rms error is

negligibly small.

Figure 3.11b shows that r̂G decreases monotonically with H for the range of H inves-

tigated. By neglecting the special case of H = 1, r̂G can be fitted to a scaling law of

the form

r̂G = e−(0.0143H+0.2644) , W > 1; (3.41)

this has been plotted, for comparison, in Fig 3.11b.

Equation (3.38) can be extended to account for any H , by approximating rG(λ) with

Eq. (3.41) and G∗blk with Eq. (3.24) to obtain

G∗

(G∗)UC
(W,H) =

W − 1 + 2e−(0.0143H+0.2644)

W + 1

(
1 +

d1

H + d2

)
(3.42)

where the parameters d1, d2 are listed in Table 3.3 for different λ values. However, asH

increases the impact of d1, d2 on Eq. (3.42) becomes less important as lines for various

λ merge together as shown in Fig. 3.7b.

Equation (3.38) is rewritten to account for shear yield strength rather than modulus as

follows:

τ ∗y
(
W,H, λ

)
=

(
W − 1

)
(τ ∗y )blk + 2rτ (τ

∗
y )blk

W + 1
(3.43)

where (τ ∗y )blk is the yield strength of an infinitely-wide lattice and rτ is an equivalent

parameter to rG; rτ is calculated as the ratio of shear strength of a W = 1 lattice to that

of a W = 101 lattice. Figure 3.12a plots rτ for selected values of λ and H from FE

results. Just like rG, rτ is almost insensitive to λ for high H and can be approximated

with a constant value, viz r̂τ . Figure 3.12b shows that r̂τ monotonically decreases with

H which can be described using

r̂τ = 0.54 +
1

5H − 2.5
. (3.44)
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Figure 3.12: (a) Variation of rτ with λ for different H; (b) Variation of r̂τ with H .

To obtain a similar expression to Eq. (3.42) for shear strength, rτ and (τ ∗y )blk are re-

placed in Eq.(3.43) with Eqs.(3.44) and (3.25), respectively, to obtain:

τ ∗y
(τ ∗y )UC

(W,H) =
W − 1 + 2r̂τ

W + 1

(
0.785 +

dy1
H + dy2

)
(3.45)

where the parameters dy1 and dy2 are listed Table 3.3.

3.3.2.e Finite-sized lattices – Discussion

Figure 3.13 plots the effective shear modulus against λ forH = 1 and 3 and variousW ;

the FE and analytical predictions are in excellent agreement. The analytical predictions

for W = 1 are from the single-cell wide model - Eqs.(3.35) and (3.36) - whilst the

rest are Eq.(3.38). Additionally, predictions by Eqs.(3.20) and (3.22) for the infinite-

wide lattices are also shown. The effects of the weak lateral boundary layer is clearly

evident here. In both Figs. 3.13a and b, the effective modulus for W = 1 lattices is

significantly lower compared to the infinite-wide lattices for all λ; the only exception is

for H = 1 and λ = 0. With increasing W , the influence of the weak lateral boundary

layers is observed to diminish and for very wide specimens, sayW = 101, the effective

modulus of an infinite-wide lattice is approached; this validates the use ofW = 101 FE

models as an approximation for infinite-wide lattices in Section 3.3.2.d. By comparing

the curves for a H = 1 lattice to the corresponding for H = 3 lattices of same W , it is
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Figure 3.13: Variations of the normalised effective shear modulus G∗/(G∗)UC with λ

for Square lattices with (a) H = 1 and (b) H = 3. Results from the analytical and FE

models are plotted for comparison.

clear that the stiffening effect due to the stiff horizontal boundary layer diminishes as

H increases; note the difference in vertical axis scale; this is the regardless of W .

Figure 3.14a and b shows the variation of G∗/(G∗)UC against W , for lattices with

H = 1 and with H = 3 and 25, respectively; Eqs.(3.38) is shown for H = 1 and

3 and Eq.(3.42) for H = 25: both are in good agreement with the FE predictions. The

effective modulus is found to reduce significantly when W is low because of weak lat-

eral boundary layers. AsW increases, a convergedG∗/(G∗)UC, depending onH and λ,

is reached. For higher H , the closer the converged G∗/(G∗)UC value is to unity because

of the diminishing effect of the horizontal boundary layer. The reduced importance of

the horizontal boundary layers also means that the choice of λ becomes negligible for

high H , see for example H = 25.

Figure 3.15 plots effective shear yield strength τ ∗y /(τ
∗
y )UC against W . Predictions by

FE are compared to Eq. (3.45) for H = 3 and 25 and three λ values; for H = 25 only

λ = 0.5 is presented since the three curves are indistinguishable. The good agreement

justifies the use of the rule-of-mixtures to model the yield strength. Similarly with the

shear modulus, the effect of the lateral weak boundary layers is greatest for low W ,
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Figure 3.14: Variation of G∗/(G∗)UC of a Square lattice with W for (a) H = 1 and (b)

H = 3 and 25. Three values of λ are presented.

and the knock-down on the yield strength is significant. As W increases, the effective

strength increases and reaches a converged value that depends on H and λ. The lower

the H , the lower the converged value of shear strength, because of the diminishing

effect from the strong horizontal boundary layer; this is also evident from Fig. 3.12.
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3.4 Kagome lattice

3.4.1 Uniaxial loading

Unlike the Square lattice, the micro-architecture of a Kagome lattice does not lend

itself amenable to analytical treatment; thus, edge effects in Kagome lattices will be

investigated numerically using finite elements. FE models of Kagome lattices with

different sizes (W and H) and relative densities (ρ) were generated and the loading

applied as outlined in Section 3.2.2. The FE predictions are presented first.

3.4.1.a Effective Modulus and Yield Strength

Figure 3.16 plots the normalised effective modulus E∗/(E∗)UC against W for three

ρ values. When W is small, there is a significant reduction in its effective modulus

E∗/(E∗)UC. FE predictions for the uniaxial strength (σ∗y/(σ
∗
y)UC) are also plotted in the

same figure: they follow a similar trend with W as E∗/(E∗)UC. The rate of increase of

E∗/(E∗)UC with W depends on ρ. For the higher densities, e.g. ρ = 0.1, 0.2, a lattice

with W ≈ 20 is adequate to obtain effective properties within 10% of the infinite-sized

counterparts. However, lattices with low relative density, e.g. ρ = 0.01 and W = 20

show a significant decrease of effective properties; approximately 70%. Lattice height,

H , has not been found to influence the effective properties in any way; all subsequent
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results are for lattices with H = 3.

Figure 3.17a plots the predicted effective modulus E∗, normalised by the elastic

modulus of its cell wall Es, against relative density ρ for lattices of different width

W = 25, 51 and 101. At sufficiently high ρ, the FE results follow closely the theoret-

ical scaling law for an infinite-sized lattice, given by E∗ = Esρ/3. As ρ reduces, the

effective modulus progressively deviates from its infinite-sized counterpart. For suffi-

ciently low ρ, E∗/Es is found to scale with ρ3, suggesting that the lattices are entirely

bending-dominated; this is reflected by a huge reduction of effective modulus com-

pared to its infinite-sized counterpart. Lattices of different W fall on different lines;

unsurprisingly, results for lattice with a higher W give higher E∗ which reflects the

results from Fig. 3.16. The same trend is also observed for the strength of Kagome

lattices, shown in Fig. 3.17b. The only difference is that σ∗/(σy)s now scales with ρ2

for sufficiently low relative densities ρ. At the higher end of ρ range, the theoretical

scaling law σ∗ = (σy)sρ/2 is followed. Since the FE models neglect elastic buckling,

the predicted σ∗/(σy)s are likely to be lower for ρ < 0.03 than those shown in Fig.

3.17b as they may no longer scale with ρ2. Notwithstanding, this should not affect the

generality of the results - a significant reduction in effective strength - alluded above.

Equally, it is important to note that the transition density ρ from elastic buckling to

10−3 10−2 10−1

10−6

10−4

10−2

100

ρ̄3
1=

sE

∗E

s
/E∗

E

ρ̄

3

= 101W

= 51W

= 25W

Infinite-sized

FE

(a)

10−2 10−1
10−4

10−3

10−2

10−1

100

ρ̄

2

s)
y

σ(/
y∗

σ

ρ2
1=

s)yσ(
y
∗σ

= 101W

= 51W

= 25W

Infinite-sized

FE

(b)

Figure 3.17: (a) Variation of E∗/Es with ρ and (b) Variation of σ∗/(σy)s with ρ of

Kagome lattices.



3.4. Kagome lattice 83

plastic collapse predicted by Wang and McDowell (2004) was derived using a unit-cell

approach. This might not be strictly valid for finite-sized lattices that are affected by

edge effects and is the subject matter of a separate on-going study.

3.4.1.b Bending boundary layer

Figure 3.18 shows three deformed Kagome lattices – all have identical height H = 3

and relative density ρ = 0.1 – of different width W = 5, 15 and 101. The deformation

of constituent struts of the lattice and their internal stresses, as obtained from the FE

simulations, reveal that two regions of deformation develop in finite-sized Kagome

lattice under remote uniaxial loading as follows:

1. Bending boundary layer (BBL) emanate from each of the stress-free lateral

boundaries (L and R) with a range of influence lBBL – they are highlighted in

red in Fig 3.18; and,

2. Bulk-region where their constituent cells deform predominantly by stretch –

much like their infinite-sized counterparts.

BBLl

(a)

(b)

(c)

Figure 3.18: Bending boundary layer (BBL) emanating from each end of the stress-

free lateral boundaries for Kagome lattices of different width: (a) W = 5 (b) W = 15

and (c) W = 101. All lattices have identical height H = 3 and ρ = 0.1. Red and

blue denote BBL and stretch-dominated bulk-region, respectively. Bulk-region in (c) is

truncated for purpose of presentation.



84 3.4. Kagome lattice

The deformed lattices of Fig 3.18 suggests that lBBL is identical for the two longer

lattices, viz. W = 15 and 101; thus it can be concluded that lBBL is independent of W .

By contrast, a bulk-region did not develop in the shorter (W = 5) lattice; hence, their

two BBLs intersect and its constituent cell-walls are not stretch-dominated. It has to be

noted that the vertical BBL is constant in width along the x2 direction.

Unlike the Square lattice in shear, a sharp demarcation of the BBL from the bulk is

not observed here. However, a transition zone develops and a diffused demarcation of

BBL to the bulk cells is obtained. Thus lBBL has to be properly defined to obtain a

consistent measure for the range of influence of BBL. In order to do this, the distribu-

tion of the nodal reaction force RF2 (in the x2-direction) along the loading surface T

are investigated - these information have to be extracted from their corresponding FE

models. For convenience, RF2 is normalised by its stretch-dominated, infinite-sized,

counterpart (RF2)UC given by

(RF2)UC = 2lε∗22 (E∗)UC (3.46)

where ε∗22 is the remote uniaxial compressive strain and is chosen such that the macro-

scopic stress-strain response of the lattice remains in the linear-elastic regime. Follow-

ing Eq. (3.46), if the reaction force of a node isRF2 = (RF2)UC, its corresponding strut

deforms entirely by stretch and equal to that expected from an infinite-sized lattice; if

RF2 < (RF2)UC, then stretch is not the dominant deformation mechanism. Remem-

ber that the effective modulus of a lattice is estimated as E∗ = ΣRF2/Wdε∗22; thus if

RF2 < (RF2)UC at any of the boundary nodes, then the effective modulus of the lattice

is lower than (E∗)UC.

Figure 3.19a plots RF2/(RF2)UC as a function of x1/W , where W is listed in Table

3.1 as a function of W . The data plotted are for lattices with different width W but

of identical relative density ρ = 0.1 and height H = 3; the plot is insensitive to the

choice of H . For all W lattice, near the lateral L and R boundaries, RF2 is found to

reduce considerably compared to the mid-span of the lattice; this is due to the presence

of BBL. It is clear that in the longer lattices, say W ≥ 25, a bulk-region develops

within which their constituents cells deform primarily by stretch; as exemplified by
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widthW . Each dot denotes a boundary node in the FE model. All lattices have identical
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RF2 = (RF2)UC for their corresponding nodal reaction forces. By contrast, a bulk-

region did not develop in the shorter lattices (1 < W < 13) implying that they are

entirely covered by the two BBLs. Figures 3.19b and c show that the rate at which RF2

falls away as it approaches the lateral boundaries are nearly identical for all the lattices

that develop a bulk-region, viz. W ≥ 13. This is not the case in the shorter lattices.

The rate of decrease for all lattices - short or long - were found to be insensitive to H;

hence only results for H = 3 need to be shown here. These results show that lBBL is

independent of W if a bulk-region develops.

Figure 3.20 plots the distribution ofRF2 for lattices with different relative density ρ but

of identical size (W = 101 and H = 3). To obtain a consistent measure of the range

of influence of BBL, lBBL is defined as the distance from a stress-free lateral boundary

where RF2/ (RF2)UC < 0.99 - this is indicated by the vertical dashed lines in Fig 3.20

for the two relative densities (ρ = 0.03 and 0.1) where a bulk-region develops. Since

the local modulus of the BBL scales with ρb - where b > 1, as expected for any non

stretch-dominated lattice - whilst that of the bulk-region with ρ, it is not surprising that

the lower density lattices develop a longer range of influence (lBBL) in order to bridge

the bigger differences in local modulus between the BBL and bulk-region.
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Figure 3.21: Variation of lBBL on ρ on a log-log scale.
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Figure 3.21 plots lBBL/l versus ρ on a log-log scale. The data suggest a scaling law of

the following form:
lBBL

l
=

10

8ρ
. (3.47)

Notice that lBBL is independent of H and this is evident in Fig 3.21 where the results

for H = 3 and 15 overlay one another. The scaling law in Eq. (3.47) is similar to the

one reported by Fleck and Qiu (2007) for an elastic shear lag region emanating from

the crack tip of a Kagome lattice, viz. lshear lag/l = 4.5/ρ.

3.4.1.c Deformation mechanism map

As it was already shown in Fig. 3.17, a Kagome lattice is not always a stretch-

dominated micro-architecture; depending on its relative density ρ and width W , a shift

to a bending-dominated deformation is possible. Figure 3.22a, shows schematically the

three region of a E∗/Es − ρ curve, each with a different dominant mode(s) of defor-

mation, as follows

1. Bending, b ≈ 3

2. Mixed

3. Stretch, b = 1

Recall that the parameter b is the exponent of the scaling law in Eq. (1.9). To es-

timate the transition relative density from stretch-to-mixed region, ρS−M , first a the

pre-exponent of a scaling law with b = 1 is fitted to the numerical results at the higher

end of the ρ range. The higher ρ that gives more than 10% deviation from this scaling

law is termed ρS−M . Conversely, to estimate ρB−M , a scaling law with b = 3 is fitted

to the numerical results at the lower end of the ρ range, and ρB−M is the lowest ρ for

which the numerical results deviate more than 10% from this scaling law.

The transition relative densities ρS−M and ρB−M are determined from FE results for

lattices with various W ; these are plotted in the W – ρ space in Fig. 3.22b with bold

black lines, along with the contour map of E∗/(E∗)UC. The border between axial-

mixed and bending-mixed dominated deformation mode coincide with a 10% and 90%

drop in modulus respectively; this is a reflection of the definition of the transition ρ

given above. As already addresses, with increasing W and ρ, E∗/(E∗)UC approaches
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Figure 3.22: (a) Schematic showing the three regions in a E∗/Es versus ρ diagram for

a Kagome lattice. (b) Contour plot of E∗/(E∗)UC in W–ρ space. The bold black lines

indicate the borders for the three deformation mechanism regimes.

1. For high relative densities, say ρ = 0.2, the Kagome lattice can be considered

stretch-dominated for W > 10. However, for low relative densities, say ρ = 0.02, the

deformation is never stretch-dominated regardless of W . Reducing ρ even further, say

ρ = 2× 10−3, the Kagome lattice is always bending-dominated for any W ; however it

has to be noted that such low relative densities are unrealistic.

3.4.2 Shear

Under the action of remote shear, bending boundary layers (BBLs) also develop in

finite-sized Kagome lattices. The extent to which a BBL permeates a lattice, and their

consequential impact on the effective response, depends on the lattice width (W ) and

height (H) – it will be clear later why this is the case. Therefore, it is convenient to first

introduce a parameter R, defined as the ratio of the number of complete cells along the

width to height of a Kagome lattice, as follows:

R =
W

H
=

3W − 6l

2
√

3H − 6l
. (3.48)

The case of R ≥ 1, where a stretch-dominated bulk-region is able to develop in a
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lattice, is to be addressed first.

3.4.2.a Aspect ratio R ≥ 1

Figure 3.23 shows the estimated effective shear modulus G∗/(G∗)UC and shear yield

strength τ ∗y /(τ
∗
y )UC from FE models for lattices of different W and H; constant rela-

tive density of ρ = 0.1 is used for all lattices. As to be expected, the effective shear

modulus and yield strength follow the similar general trend. In a similar manner with

the Kagome lattice in uniaxial loading, larger lattices in W are required to obtain con-

verged values of G∗/(G∗)UC. However, here, the lattice height H affects the results

significantly; ρ has little effect on the results as it will shown further on. If lattice

height is small, say H = 1, the effective shear modulus G∗/(G∗)UC > 0.9 is reached

for relatively small W > 10 lattices. On the contrary, for lattices with high H , a con-

siderably larger W is required to obtain G∗/(G∗)UC > 0.9; for H = 15, a significantly

larger W = 101 lattice is required.

A typical example of a deformed Kagome lattice (W = 25 ; H = 15 ; R = 1.7 ;

ρ = 0.001) under shear is shown in Fig 3.24; this example is for applied shear strain
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.
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Figure 3.24: A deformed Kagome lattice (W = 25 ; H = 15 ; R = 1.7) of relative

density ρ = 0.001 under simple shear. Red and blue area denotes bending boundary

layers and bulk-region, respectively.

that falls within the linear regime of the macroscopic response. Two bending-boundary

layers (BBLs) are developed- one emanating from each free end - highlighted in red,

and a bulk-region in blue. Unlike their uniaxial counterpart, the boundary that separates

a BBL from its bulk-region is not vertical. Each ‘angular-shaped’ BBL, with its sharp

boundary, can be thought of as a superposition of two triangular regions of cells that

deform with considerable bending; the cells within the bulk-region deform entirely by

stretch as to be expected for a Kagome lattice. In Fig. 3.24, the two triangular regions

that make up one of the ‘angular-shaped’ BBL are enclosed by their respective red-

dashed lines. The shape of BBL is similar to the one reported by Zupan et al. (2004)

for Diamond lattices under uniaxial and shear loading; see review in Section 1.3. It is

important to emphasise that a sharp boundary separating the BBLs from the bulk, such

as the ones shown here in Fig 3.24, only develops for lattices with low relative density

– this shall be the primary focus here. If relative density is sufficiently high, a transition

zone (or shear-lag zone) develops which will be discussed later using Fig 3.26.

To delineate the sharp boundary of an ‘angular-shaped’ BBL from its bulk, one must

establish whether there is a continuous series of struts that connects the top (T ) to the
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bottom (B) surface. Take, for instance, B9 − T1 and T9 − B1 in Fig 3.24. All the

other series of struts to the immediate left of B9 − T1 – they are the ones orientated

at 120◦ counter-clockwise to the horizontal – do not connect surfaces T to B: these

make up a group of cells for one of the triangular region alluded to above; these cells

are found to deform by significantly high bending stresses. Likewise, for those to the

immediate left of T9 − B1, orientated at -120◦ clockwise to the horizontal, that make

up the other triangular region. Collectively, B9 − T1 and T9 −B1 defines the boundary

of the ‘angular-shaped’ BBL in Fig 3.24. By the same construction, B18 − T26 and

T18 −B26 defines the boundary of the other BBL.

This knowledge can now be used to establish the range of influence of the BBL. Thus,

a non-dimensional parameter lBBL/l is introduced to locate the boundary of the BBL,

measured from either end of the stressed surfaces (T and B), as follows:

lBBL

l
=
H

l
tan 30◦ = H + 1 . (3.49)

where l is the uniform cell wall length that make up a Kagome lattice. R = 1 corre-

sponds to the limiting case where a lattice is just long enough, viz. W = 2lBBL, for

the two BBLs (with sharp boundary) to fully develop. If R < 1, the lattice does not

develop a bulk-region; this will be investigated in Section 3.4.2.b.

To understand the effect of the BBLs on the effective modulus of the lattice, the reaction

forces for nodes in and out of BBL are investigated here. By virtue of how the shear

(a) (b)

cRFtRF

1T

9B

17T

◦60

cRF

1L

8B

16T

◦60

Figure 3.25: Schematic of the reaction forces acting on nodes B8 and B9 shown in Fig

3.24.
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strain is imposed in the FE model of Fig 3.24, the series of struts orientated at 60◦

and 120◦ (both measured clockwise to the horizontal) are loaded in compression and

tension, respectively. The reaction forces at selected nodes on the top T and B surfaces

are depicted schematically in Fig 3.25, where |RFc| = |RFt| are the axial load in the

series of struts that connect T and B surfaces.

For every surface node that lie within the bulk region, sayB9 in Fig 3.25c, their resultant

reaction force along the horizontal x1 direction is given byRF1 = |RFc|/2+|RFt|/2 =

(RF1)UC where

(RF1)UC = 2lγ∗12 (G∗)UC (3.50)

and γ∗12 is the applied shear strain. Using a lower bound approach, it is assumed that the

series of struts that fall within a BBL are not loaded; i.e. either |RFc| = 0 or |RFt| = 0.

If a surface node lies within the BBL, such as nodes B8 their corresponding reaction

force along the x1 direction is RF1 = (RF1)UC/2. Consequently, the ‘local’ stiffness

of cells within a BBL is (G∗)UC/2, whilst for the bulk region is (G∗)UC.

Figure 3.26 plots the RF1/(RF1)UC - as obtained from FE simulations - against x/W ,

for lattices with different combinations of W (= 51 and 101) and H (= 5, 15 and 51)

at different ρ (= 0.001, 0.01 and 0.1). First consider the results for the lower relative

density; ρ = 0.001. As it was already addressed from Eq.(3.49), lBBL/l increases with

H; this is best observed for lattices of fixed W , compare either Figs 3.26a & c or b,d

& f. Also, as expected, within a BBL, the reaction force are exactly RF1/(RF1)UC =

0.5 and for the rest of the lattice RF1/(RF1)UC = 1. For small H , say 5, the BBLs

cover a very small portion of the length of the lattice, thus the knock-down on the

effective modulus is not significantly; this is especially true for high W , say 101. For

constant W , as H increases, the proportion of lattice covered by BBL increases and the

knockdown on effective modulus increases; this is also reflected by Fig. 3.23. For the

limiting case where W = H , i.e. R = 1, a bulk-region does not develop in the lattices,

see Fig 3.26e; consequently, the effective shear modulus is G∗ = (G∗)UC/2.

Recall that the mechanistic explanation presented above for the the presence of BBL -

and its effect on the effective modulus - uses a lower bound estimate and is strictly
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Figure 3.26: Normalised nodal reaction forces, RF1/(RF1)UC along the top sur-

face T of lattices with different W and H . Three relative densities are shown ρ =

0.001, 0.01, 0.1.
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correct for lattice with slender cell walls; i.e. for sufficiently low relative density

ρ. From the FE results of Fig 3.26, it becomes clear that for higher ρ, a transition

(or shear-lag) zone develops, and as a result a smooth transition is observed between

RF1/(RF1)UC = 1/2 and = 1 for nodes in and out of a BBL, respectively. The reason

behind the presence of a transition zone for high ρ is the increased contribution from

axial stretch in stockier cell walls; thus the assumption that struts within the BBL are

not loaded is not strictly true for high ρ. As ρ increases, the angular boundary becomes

increasingly diffused, resulting to higher RF1/ (RF1)UC > 1/2 within the a BBL and

RF1/ (RF1)UC < 1 in the bulk region; this is clear in Fig 3.26f. Consequently, an in-

crease in ρ, does not fundamentally affect the edge effects mechanism and the presence

of a diffused BBL boundary does not affect G∗/(G∗)UC significantly.

To quantify the overall effect of the BBLs on the effective shear modulus of a finite-

sized Kagome lattice withR ≥ 1, one may again use the rule-of-mixtures in Eq. (3.37).

By concentrating only for lower ρ - and thus neglecting the presence of a diffused BBL

boundary for high ρ - the two constituent phases are as follows:

1. BBLs of total length 2lBBL and ‘local’ modulus G∗ = (G∗)UC/2

2. the ‘bulk’ region with length (W − 2lBBL) and ‘local’ modulus G∗ = (G∗)UC

Substituting Eq. (3.49) into (3.37), and using the above, gives

G∗

(G∗)UC
=

2W + 1−H
2
(
W + 1

) . (3.51)

The predictions by Eq. (3.51) are plotted in Fig. 3.23 against the results for FE lattices

of relative density of ρ = 0.1; a reasonable agreement is obtained. The discrepancies

are down to the two basic assumption made upon deriving Eq. (3.51). Firstly, it was

assumed that the BBL boundary is sharp. Even though that this is violated for ρ = 0.1

- as shown from Fig. 3.26 - Eq. (3.51) gives a very good approximation for higher ρ.

This is especially true for lattice of high R, because the length of the transition zone

relative to the lattice length is negligible; compare Fig. 3.26a and 3.26f for R = 10.2

and 2.0 respectively. Secondly, Eq. (3.51) was developed for aspect ratios R ≥ 1,

however Fig. 3.23 plots data for the whole range of R. The largest discrepancies are
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obtained for cases where R < 1; e.g. for H = 51 and W < 50. Lattices with aspect

ratios R < 1 will be investigated further in Section 3.4.2.b.

3.4.2.b Aspect ratio R < 1

As already addressed above, Kagome lattices with aspect ratio R ≤ 1 do not develop a

bulk region, and the lattice deformation involves considerable bending in all of its cell

walls. Because of this, ρ becomes the dominant parameter for R < 1 lattices, whilst, as

it will become apparent further down, W andR play a minor role. Figure 3.27 plots the

FE predictions for the shear modulus G∗/Es and shear strength τ ∗/(σy)s against ρ for

various aspect ratios R; for each R, data for two lattices with different W are shown.

In a similar vein as the Kagome lattice in uniaxial loading, a shift of the dominant

deformation mechanism is observed for lattices with R < 1; this is exemplified by

the non-linear dependence on ρ. For R < 1 and sufficiently low ρ, G∗/Es is found

to scale with ρ3, whilst τ ∗/(σy)s with ρ2; this observation signifies bending-dominated

deformation. Since elastic collapse - this is expected to precede plastic collapse if

ρ < 0.03 - is ignored in the FE models, the knock down in shear strength might be even

greater than what is shown in Fig. 3.27b. On the other hand, for lattices with R ≥ 1,
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Figure 3.27: (a) Shear modulus and (b) yield strength as a function of relative density

for Kagome lattices of various R and W .
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the linear dependence on ρ is maintained throughout the range of ρ; this strengthens the

conclusion made in Section 3.4.2.a that ρ does not plays a significant role in the edge

effects for Kagome lattices with R ≥ 1.
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Figure 3.28: Transition relative density for bending-mixed and axial-mixed as the dom-

inant deformation mechanism. Note the log-log scales.

Transition R c1 c2

Bending-Mixed
1/2 0.1350 0.9857

1/4 0.1868 0.9791

Stretch-Mixed
1/2 0.4429 0.4045

1/4 0.4054 0.3075

Table 3.4: Table of coefficients for Eq.(3.52).

By following the same approach as with the Kagome lattice in uniaxial loading, the

transition relative densities from stretch-dominated to mixed and bending-dominated

to mixed response are estimated. Figure 3.28 plots ρS−M and ρB−M , for two aspect

ratios, in the (ρ–W ) space, in log-log scales. Since the estimated transitions ρ for each

(W , R) combination fall into straight lines, they can be describe by a scaling law of the

form

ρ =
c1

W c2
(3.52)

where the parameters c1 and c2 are calibrated to the FE results and given in Table 3.4.
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The transition from stretch-to-mixed deformation is found to have a weak dependency

on W whilst R is insignificant. However, the transition ρ from bending-to-mixed has a

much stronger dependence on W and a weak dependence on R.

3.5 Triangular lattice

3.5.1 Uniaxial loading

In a similar manner to the Kagome lattice, the edge effects will be investigated by

employing numerical finite element models. The competing influences of lattice width

W , height H and relative density ρ are presented first and then a model is developed to

explain these observations.

3.5.1.a Effective Modulus and Yield Strength

Figure 3.29a plots the normalised E∗/(E∗)UC, estimated from finite elements, against

lattice height H for various W . All results are for ρ = 0.1. For constant W , as

H increases, E∗/(E∗)UC decreases from > 1 to a converged value < 1; the higher

the W , the closer the converged value is to E∗/(E∗)UC = 1. For constant H and

varying H , the reverse trend is observed; see Fig. 3.29b. As W increases, E∗/(E∗)UC

converge to a value > 1; only for lattices with sufficiently high H – e.g. H = 32 – the
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E∗/Es and σ∗y/(σy)s with ρ for lattices with W = 15.

converged value is E∗/(E∗)UC ≈ 1. Similar trend is also observed for yield strength as

shown in Fig. 3.30a. Figure 3.30b shows the variation of E∗/Es and σ∗y/(σy)s with ρ;

lattices with W = 15 and H = (2, 32) are shown. Both lattices are found to maintain

the stretch-dominated deformation for the entire range of ρ, exemplified by the linear

dependence on ρ. This allows us to safely conclude that ρ does not affect the edge

effect mechanism in any way. However, elastic buckling might lead to a significant

reduction in the predicted σ∗y/(σy)s if ρ < 0.06 (Wang and McDowell, 2004); note that

only plastic collapse is considered in this thesis.

3.5.1.b Edge effects model

The dependence of the effective properties on lattice dimensions, as shown in Fig.

3.29, signify the presence of weak vertical and strong horizontal boundary layers. To

investigate this, consider a typicaly deformed Triangular lattice - ofW = 15 andH = 8

- as shown in Fig. 3.31. Upon closely investigating the stress distribution in struts,

from the finite element results, the cells at the L and R surfaces are found to deform by

higher contribution from bending stresses compared to the ‘bulk’ cells; this is attributed

to the reduced connectivity of the cells at the boundaries. The finite element results

also indicate that a transition zone does not develop to diffuse the difference in ‘local’

stiffness in and out of the boundary layer, and each vertical boundary layer extends for
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Figure 3.31: Schematic of the boundary layers that develop in a Triangular lattice under

uniaxial loading. The lattice shown has 15(W )× 8(H) complete cells.

half cell, l/2, along the x1 direction. Additionally, the cells at the immediate vicinity of

the T and B surfaces show slightly stiffer response compared to the ‘bulk’ cells; from

FE models, the bending stresses of the struts within the stiff boundary layer are found

to be lower compared to the bulk region. The presence of the horizontal boundary layer

is believed to be due to the additional constraint induced from to the loading platens

T and B. Each horizontal boundary layer was found to extend for exactly one cell

along the x2 direction; i.e. its range of influence is
√

3l/2. At the four corners of

the lattice, the horizontal and vertical boundary layers ‘merge’ and the ‘local’ stiffness

is a combination of the effects from both, as it will become clear further on. Note

that the term bending boundary layer (BBL) is not employed here, since under no

circumstances the presence of boundary layers can lead to a macroscopic bending-

dominated response.

To capture the overall effect of the boundary layers on the lattice effective properties,

a model is proposed based on the rule-of-mixture. The effect of the vertical bound-

ary layers is modelled by Eq. (3.37), in the same spirit as the one developed for the

Square and the Kagome lattices in shear. However, since the horizontal boundary lay-

ers develop perpendicular to the loading direction, their effect has to be modelled using

the rule-of-mixture for the transverse stiffness of unidirectional composites, given by
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(Jones, 1999)

E =
E1E2A

A1E2 + A2E1

(3.53)

where Ei and Ai/A, i = 1, 2, are the modulus and area fractions for the two phases in

a composite; this is equivalent to the ‘springs-in-series’ model. For the purpose of the

edge effects model, the role of the two constituent materials are taken by

1. two horizontal boundary layers of total area fraction A1/A =
√

3l/H and ‘local’

modulus E1 = β1(E∗)UC, where the scalar parameter β1 > 1 is to be calibrated

later using numerical results; and,

2. the ‘bulk’ region with area fraction A2/A = (H −
√

3l)/H and ‘local’ modulus

E2 = (E∗)UC.

By substituting the above into Eq. (3.53) and using H =
√

3(H/2), the following

scaling law is obtained

E∗

(E∗)UC
=

β1H

2 + β1(H − 2)
. (3.54)

Now consider the vertical boundary layers; the role of the two constituent materials in

Eq. (3.37) are taken by

1. two weak vertical boundary layers of total area fraction A1/A = l/W and elastic

modulus E1 = α(E∗)UC, where α < 1 is to be calibrated from numerical FE

experiments; it will shown that α is not a scalar but a function of H; and,

2. the ‘bulk’ region with area fraction A2/A = (W − l)/W and ‘local’ modulus

E2 = (E∗)UC.

By substituting the above in Eq. (3.37) and usingW = (W+1)/2 the following scaling

law is obtained:

E∗

(E∗)UC
=
W − 1 + 2α

W + 1
. (3.55)
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To obtain α, consider lattices with W = 1, which are totally covered by the two weak

boundary layers; it follows from Eq. (3.55) that E∗/(E∗)UC = α. However, as it was

hinted above and from Fig. 3.31, the horizontal boundary layers also extend within the

vertical boundary layers; thus, the response of a lattice withW = 1 should be a function

ofH . The response due to the presence of horizontal boundary layers within the vertical

boundary layers is modelled using Eq. (3.54); however (E∗)UC is substituted with

β2(E∗)UC, where the scalar parameter β2 < 1 is introduced to capture the reduced

‘local’ stiffness of the weak boundary layer, compared to the ‘bulk’ cells. Thus, the

following scaling law is reached

E∗

(E∗)UC

∣∣∣∣
W=1

= α = β2

(
β1H

2 + β1(H − 2)

)
(3.56)

where the scalar parameters β1 and β2 remain to be calibrated from numerical results

for W = 1 lattices.
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Figure 3.32: Variation of E∗/(E∗)UC with H for lattices with W = 1. Three relative

densities are shown ρ = 0.001, 0.01, 0.1.

Figure 3.32 plots E∗/(E∗)UC against H , as estimated from FE models, for lattices with

W = 1. As H increases, E∗/(E∗)UC is found to converge to 0.8585; this is the value

for parameter β2. By calibrating for best fit, β1 = 1.04 is obtained. The scaling law, Eq.

(3.56), with the calibrated scalar parameters is also presented in Fig.3.32; an excellent

agreement with FE results is demonstrated. Additionally, results for three different rela-
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tive densities are shown, which are found to be nearly identical; this observation further

supports the earlier statement that ρ is insignificant in the edge effects mechanism for

Triangular lattices under uniaxial loading.

Finally, to obtain an expression for the combined influence from the presence of hori-

zontal and vertical boundary layers in a lattice of anyW andH , Eq. (3.55) is multiplied

by (3.54) to give

E∗

(E∗)UC
=

[
W − 1 + 2α

W + 1

] [
β1H

2 + β1(H − 2)

]
(3.57)

where α is given by Eq. (3.56), β1 = 1.04 and β2 = 0.8585. Equation (3.57) is plotted

in Fig. 3.29 against the results from FE models, showing a very good agreement for the

entire range of W and H investigated here.

Equation(3.57) is also plotted for the effective uniaxial strength in Fig. 3.30a; a rea-

sonable agreement with the FE results is obtained. However, the scalar parameter β2 is

found to require adjustment; β2 = 0.65 is found to be a more appropriate value. This

indicates that the knockdown in effective properties due of the vertical weak boundary

layer is more prominent for yield strength compared to stiffness. For example, consider

the W = 5 lattice in Figs. 3.29a and 3.30a; the converged value at high H is 0.96 for

E∗/(E∗)UC but only 0.88 for σ∗y/(σ
∗
y)UC. The loss in accuracy of Eq. (3.57) to predict

the effective strength is not surprising, since it is known that the rule-of-mixtures is

not very well suited for modelling the strength of composites materials (Jones, 1999).

Therefore, in order to model the uniaxial strength of Triangular lattice in a more de-

tailed and accurate manner, alternative theories will have to be used.

3.5.2 Shear

Similarly with the Triangular lattice under axial loading, shear is also studied by em-

ploying numerical finite element models. The competing influences of lattice widthW ,

height H and relative density ρ are presented first followed by a model to capture the

edge effects mechanism.
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3.5.2.a Effective Modulus and Yield Strength

Finite element models of Triangular lattices subjected to shear are used to investigate

the effect of lattice height W and height H on the effective shear modulus G∗/(G∗)UC

and strength τ ∗/(τ ∗)UC; the results are summarised in Figs. 3.33 and 3.34, respectively.

All results are for lattices with relative density ρ = 0.1. In a similar manner as the

Kagome lattice in shear, see Fig. 3.23, with increasing lattice width, W , the effec-

tive properties approach the corresponding properties of an infinite-sized lattice. Also

similarly to the Kagome lattice, the rate of increase of modulus and strength values

with W depends on H; the higher the H , the higher W is required to obtain effective

properties near the infinite-sized counterparts. These results indicate to a similar edge

effects mechanism as the Kagome lattice in shear; i.e. the presence of two vertical weak

boundary layers with length lBL and lBL depends on lattice height H . Consequently,

the lattice aspect ratio R = W/H is a significant parameter for the Triangular as well;

this will be elucidated later on. A marked difference from the response of the Kagome

lattice, is that for H = 2 lattices, G∗/(G∗)UC = τ ∗/(τ ∗)UC = 1, regardless of W .
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Figure 3.33: Variation of normalised effective shear modulus G∗/(G∗)UC with W .

Figure 3.35 shows the variation of G∗/Es with ρ for lattices with R = 1 and 1/3. The

linear dependence for both lattice dimensions is maintained even for R < 1. This
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Figure 3.34: Variation of normalised effective shear yield strength τ ∗y /(τ
∗
y )UC with W .

indicates that the deformation remains stretch-dominated, even though there is signifi-

cant knock-down on G∗/(G∗)UC; this is also observed from Fig. 3.33, see for example

H = 32 and W < 30. Consequently, one can safely conclude that ρ has absolutely

no influence on the edge effects mechanism; this is in contrast with the finding for the

Kagome lattice.

10−3 10−2 10−1 100

10−5

10−4

10−3

10−2

10−1

ρ

s
/E∗

G

= 60H3,/= 1R

= 54H,= 1R

ρ̄8
1=

sE

∗G

Eq.(1.9)

FE

1

Figure 3.35: Variation of shear modulus G∗/Es with ρ for lattices with low R.
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3.5.2.b Strain maps

To elucidate the mechanism responsible for the dependence of effective properties on

specimen size, macroscopic strain maps are generated and shown in Fig 3.36 for lat-

tices of various dimensions. The strain maps plot the effective strain at the cell-scale

(γcell
12 ) and not the strain at each individual cell wall. They are generated by using the

displacement field estimated from FE; see Appendix C for more details on the proce-

dure. All strain maps are generated for the same applied strain, γ∗12, which is within the

linear regime of the macroscopic response.

First consider the special case of a lattice with H = 2; see Fig 3.36a. As it was pointed

out above, such lattices are not influenced by edge effects, which is also confirmed

here. The macroscopic cell strain is equal to γ∗12 in all cells of the lattice; this highlights

that no boundary layer develops in lattices with H = 2. The reason behind the lack of

boundary layer is believed to be the restricted rotational degree of freedom of all the

nodes at the stressed surfaces T and B. By keeping W constant and increasing H , two

weak vertical boundary layers at the lateral L and R become evident and their range of

influence increases with H; compare Figs 3.36a, e and b. The weak boundary layers

are associated with γcell
12 /γ

∗
12 < 1 values, whilst the ‘bulk’ region with γcell

12 /γ
∗
12 = 1.

By studying the deformed FE models of lattices, the cells near the boundaries are found

to rotate - similar to a rigid body rotation - without significant deformation. On the

other hand, the cells within the bulk of the lattice deform significantly, without any

rigid body rotation; however rigid body translation is observed to accommodate the

remote applied shear. The difference of the deformation mode between the boundary

layers and bulk cells explains why the macroscopic cell strain is significantly lower in

the boundary cells.

With further increase of H , and R < 1 (see Fig 3.36c and d), the two boundary lay-

ers clearly start to interact together and γcell
12 /γ

∗
12 < 1 is observed in the entire lattice.

The edge effects mechanism for lattices with R < 1 is clearly different compared to

lattices with R > 1 and it does not involve the presence of weak vertical boundary lay-

ers. However, a macroscopic bending mode is superimposed with shear deformation,

similarly to what was reported by Diebels and Steeb (2002) for Voronoi lattices. Thus
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Figure 3.37: Distribution of RF1 along the stressed surface for lattices of different

H and constant W = 81. The dots indicate the presence of boundary nodes. The

vertical dashed lines correspond to the border of boundary layer, defined as RF1 <

0.6 (RF1)UC.

a significant reduction in G∗/(G∗)UC is observed; Fig. 3.33 shows that the effective

modulus of lattices with H = 32 and W < 30 is G∗/(G∗)UC < 0.3.

3.5.2.c Lattices with R > 1 - Edge effects model

First, lattices with R > 1 are considered, in order to develop a model that captures

the effect of the weak boundary layers on the macroscopic shear modulus; lattices

with R ≤ 1 are considered in Section 3.5.2.d. In a similar manner as the Kagome

lattice, the reaction forces along the x1 direction (RF1) obtained from finite elements

are plotted in Figure 3.37 for the nodes at the T stressed surface. RF1 is normalised by

the corresponding value for an infinite-sized lattice

(RF1)UC = (G∗)UC lγ
∗
12 (3.58)

where γ∗12 is the applied remote shear strain, and is chosen in the linear elastic regime.

RF1 is found to be significantly reduced near the L and R surfaces; this is a reflection

of the presence of two weak boundary layer emanating from each stress-free surfaces

L and R. A smooth increase of RF1 is observed as one moves from the boundaries
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Figure 3.38: Variation of boundary layer length lBL with H for Triangular lattice sub-

jected to shear.

into the lattice. In the central part of long enough lattices, RF1 = (RF1)UC as one

would expect. In contrast with the Kagome lattice in shear, and Triangular in uniaxial

loading, there is no sharp demarcation of the boundary layer. The range of influence of

the vertical boundary layer, lBL, is defined here as RF1/ (RF1)UC < 0.6; this is shown

with dotted lines in Fig. 3.37. As already noted from Fig. 3.36, lBL increases with

lattice height H; however for H = 2, no boundary layer is obtained, i.e. lBL = 0.

The boundary layer length lBL is plotted against H in Fig. 3.38. Lattices with different

W are found to develop identical boundary layers for the same H . The dependence of

lBL on H is modelled using a power law of the form

lBL

l
= a(H − 2)b (3.59)

where the scalar parameters are calibrated from the numerical FE results; a = 0.7 and

b = 0.55. As H → W , significant deviation between the FE results and Eq.(3.59) is

observed. This indicates that the two vertical boundary layers interact together resulting

to a higher lBL; for example the data point for W = 61 and H = 41 is well higher than

what expected from Eq. (3.59).

An exact scaling law to capture the size effects - in the manner introduced for the

Triangular lattice under uniaxial loading - is not possible to be developed here, because

of the diffused, rather than sharp, boundary layer. However, the rule-of-mixtures from
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Eq. (3.37) is used to give an approximation. The role of the two constituent materials

are taken by

1. two vertical boundary layers of total area fraction A1/A = 2lBL/W and ‘local’

modulus G∗ = β(G∗)UC, where β is a scalar parameter to be calibrated in the

range 0 < β < 1; and

2. the ‘bulk’ region with area fraction A2/A = (W − 2lBL)/W and ‘local’ modulus

G∗ = (G∗)UC

By substituting the above in Eq. (3.37) and using W = (W + 1)/2, the following

scaling law is obtained:

G∗

(G∗)UC
= 1− 4lBL(1− β)

W + 1
(3.60)

where β is to be determined from calibrating to FE results.

Equation (3.60) is shown in Fig. 3.33 along with the FE results, for the calibrated

parameter β = 0.6; the value of β agrees favourably with the definition of lBL. A

reasonably good agreement is achieved, considering that the scaling law captures very

roughly the effect of the diffused boundary layers. Additionally, Eq. (3.60) is also

found to give a good prediction for the effect of lattice dimensions on the shear yield

strength τ ∗/(τ ∗)UC, as shown in Fig. 3.34; however the calibrated parameter needs to

be β = 0.3.

3.5.2.d Lattices with R ≤ 1

Figures 3.33 and 3.34 also plot results for R ≤ 1 lattices; estimates using the scaling

law for R ≤ 1 are shown with dashed line. It is not surprising that Eq. (3.60) fails to

accurately predict the FE results for R ≤ 1 lattices and large deviation are observed.

To quantify the edge effects for lattices of any R, the results from FE models are pre-

sented on a contour plot of G∗/(G∗)UC in the W and H space, shown in Figure 3.39a.

As expected, the contour line G∗/(G∗)UC = 1 coincides with a horizontal line pass-

ing through H = 2. All the other contour lines fall on straight lines with origin at

W = H = 0; for example for lattices with W = H , the knockdown in modulus is

G∗/(G∗)UC ≈ 0.45, regardless of W . As R decreases < 1, there is no lower bound
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forG∗/(G∗)UC; however, as it was noted above, a bending-dominated response is never

obtained for the Triangular lattice in shear, regardless of R, see Fig. 3.35.

3.6 Comparison of lattice micro-architectures

The responsible mechanisms for the edge effects presented in this Chapter are com-

pared with the corresponding mechanisms for other lattice micro-architectures, for

which results already exist in literature. For the bending dominated micro-architectures

– periodic Hexagonal and stochastic Voronoi – the impact of edge effects was quanti-

fied for the uniaxial modulus againstW and for shear modulus againstH; the combined

effect of both W and H has not been reported. Onck et al. (2001) investigated edge

effects for periodic Hexagonal lattices analytically whilst the stochastic Voronoi lat-

tices were studied numerically by Tekoglu et al. (2011). Lastly, results for the presence

of edge effects in Diamond lattices, subjected to uniaxial and shear loading have been

addressed by (Zupan et al., 2004); both E∗ and G∗ were found to exhibit a dependence

on aspect ratio W/H . Hence, the comparison that follows does not directly compare

the Diamond lattice with Hexagonal and Voronoi lattices.
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3.6.1 Bending dominated lattices

3.6.1.a Uniaxial loading
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Figure 3.40: Effect of lattice width W on the uniaxial modulus for Square (S), Kagome

(K), Triangular (T), Hexagonal (H) and Voronoi (V) lattices. For Voronoi lattices, the

mean and ± one standard deviation are shown.

Figure 3.40 plots the effective uniaxial modulus E∗/(E∗)UC against W for the three

periodic lattices studied here, along with the results for Hexagonal and Voronoi lat-

tices. The size effects equation for Hexagonal lattices given by Onck et al. (2001) is

a discontinuous function for different W ; these are listed in Table 3.5 and reproduced

in Figure 3.40. Consequently, a ‘scatter-band’ is formed that captures the influence of

W on E∗; this is plotted with dotted lines. The numerical results for Voronoi lattices

follow a similar trend; the error-bars indicates the standard deviation. Both Hexagonal

and Voronoi lattices are found to develop a weak boundary layer at the two stress-free

surfaces, L andR, of fixed length, which are responsible for the decrease ofE∗/(E∗)UC

for lattices with low W .

Of the three periodic lattices investigated here, only the Kagome lattice shows sim-

ilar weak boundary layers that span several cells from the L and R surfaces. The

length of the boundary layer in a Kagome lattice, lBBL, is found to depend on ρ (Eq.
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1 ≤W < 2 2 ≤W < 3 3 ≤W < 4 8 ≤W < 9 16 ≤W < 17

E∗

(E∗)UC

1

2W

41

28W

165

67W

7.45

W

15.45

W

Table 3.5: Size effect for E∗/(E∗)UC of periodic Hexagonal lattices as a function of W

(Onck et al., 2001).

(3.47)), unlike the bending dominated lattices. For Kagome lattice of high relative den-

sity, say ρ = 0.2, the influence of edge effect is similar, quantitatively, to the bending

dominated lattices. On the other hand, low density Kagome lattices, say ρ = 0.01,

show a completely differently response, with much greater reduction in E∗/(E∗)UC,

because the weak boundary layers has a much larger range of influence. For the stretch-

dominated Triangular lattice, the edge effects are significantly less pronounced than any

other lattice micro-architecture; both W and H have little influence over its effective

E∗/(E∗)UC. The mechanism behind the edge effects in Triangular lattices is associated

with the presence of vertical weak boundary layers that span half-cell in width and hor-

izontal stiff boundary layer of one cell in height. Lastly, the Square lattice is unaffected

by edge effects.

3.6.1.b Shear loading

For the Hexagonal lattice, an analytical solutions for G∗/(G∗)UC is presented by Onck

et al. (2001) for lattice with 1 ≤ H ≤ 3; shown in Fig 3.41. Only values for c = 0.5

are shown, since c = 0.5 is the case for which edge effects have the most influence on

G∗/(G∗)UC; c is the equivalent to parameter λ for the Hexagonal lattice as studied by

(Onck et al., 2001, p.692). Significant stiffening of the Hexagonal lattice is reported,

with up toG∗/(G∗)UC = 4.2 forH = 1. A similar trend is reported for Voronoi lattices.

The edge effect mechanism, for both Hexagonal and Voronoi lattices, is associated with

the presence of strong boundary layers at the stressed surfaces T and B.

Among the three periodic lattices studied here, the Square lattice exhibits the most

similar edge effect mechanism to the Hexagonal and Voronoi lattices. This is not

surprising, since the Square lattice subjected to shear is a bending-dominated micro-

architecture. However, the stiffening effect for the Square lattice is significantly less
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pronounced compared the Hexagonal lattice, onlyG∗/(G∗)UC = 1.8; this is for λ = 0.5

and W →∞.

For Kagome and Triangular lattices subjected to shear, the aspect ratio R – and not H

– is the most important dimensional measure that characterises edge effects. For both

lattices, the mechanism responsible for edge effects is the weak boundary layers that

emanate from the stress-free surfaces, L and R, with range of influence that depends

on H . The boundary layer induced in a Kagome lattice exhibits a clear demarcation for

sufficiently low ρ, while a transition zone appears for higher ρ. In a Triangular lattice, ρ

is found to have no influence on the edge effect mechanism. For lattices whereR >> 1,

the size of the boundary layers is rather small for both lattice mirco-architectures, and

the influence of edge effects is negligible, hence G∗/(G∗)UC ≈ 1. For R = 1, the

weak boundary layers cover the entire length of the lattice, and G∗/(G∗)UC ≈ 0.5 with

decreasing ρ; this is observed both Kagome and Triangular lattices.
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Figure 3.41: Effect of lattice height H on the shear modulus for Square (S), Kagome

(K), Triangular (T), Hexagonal (H) and Voronoi (V) lattices. For Voronoi lattices, the

mean and ± one standard deviation are shown.
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3.6.2 Diamond lattice

The edge effects mechanism in a Diamond lattice is in the form of an angular boundary

layer at the lateral L and R stress free boundaries of the lattice. The length of these

regions, along x1 axis, is lBBL = H . Consequently, the uniaxial and shear moduli,

E∗/(E∗)UC and G∗/(G∗)UC, of a Diamond lattice dependent on both W and H . The

dependence of effective properties on lattice size is described by (Zupan et al., 2004)

E∗

(E∗)UC
=

G∗

(G∗)UC
=

(
1− 1

(W/H)

)
W/H > 1 (3.61)

The three lattice studied here, subjected to shear, are compared with the Diamond lattice

in Fig 3.42.

The edge effects mechanism in a Diamond lattice is also observed in Kagome lattices

subjected to shear. Due to the differences in micro-architecture, lBBL =
√

3H/3 in a

Kagome lattice. As a result, the reduction in G∗/(G∗)UC with decreasing R is lower

compared to a Diamond lattice. The Triangular lattice subjected to shear also shows a

dependence on R, however the responsible mechanism is different. Two vertical weak

boundary layers emanate from the L and R surfaces, whose range of influence depends

on H and have no sharp border with the ‘bulk’ region. The Square lattice subjected

to shear is also found to have a minor dependence on R. The mechanism behind it is

completely different than the other three lattices. The dependence onW arises from the

presence of weak boundary layers at the L and R surfaces, that span for only one cell,

whilst the dependence on H is due to the stiff boundary layer at the stressed surface

that diminishes after one cell. Consequently, the size effect becomes considerable only

for R << 1.

For Kagome and Triangular lattices with R < 1, the macroscopic bending mode be-

comes dominant, and G∗/(G∗)UC decreases significantly with decreasing R. For suf-

ficiently low ρ, the Kagome lattice becomes a bending-dominated micro-architecture,

and G∗/Es scales with ρ3. On the other hand, the Triangular lattice is always a stretch-

dominated micro-architecture, regardless of the knockdown on G∗/(G∗)UC.
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Figure 3.42: Variation of G∗/(G∗)UC with R for Square (S), Kagome (K), Triangular
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3.7 Summary

In conclusion, a brief comparison between the mechanisms responsible for edge effects

for each of the lattices is presented here. Universally, horizontal and vertical boundary

layers are found to emanate from the stressed (T and B) and stress-free (L and R)

surfaces, respectively. The range of influence of these boundary layers in some cases is

constant or may vary with lattice dimensions and/or relative density, depending on the

lattice micro-architecture and the imposed loading. Table 3.6 summarises the range of

influence of the boundary layers for all three lattice micro-architectures. Their size is

noted by lH and lV for the horizontal and vertical boundary layers respectively.

The presence of vertical boundary layers results to a size dependence on lattice width

W . On the other hand, horizontal boundary layers result to a size dependence on lattice

height H , respectively. The vertical boundary layers that originate from the stress-free

surfaces, are always weaker than the bulk region of the lattice. Conversely, the hori-

zontal boundary layers are found to always be stiffer than the bulk region. Also listed

in the Table 3.6 is which of the lattice dimensional measures influence the macroscopic

response of a finite-sized lattice compared to its infinite-sized counterpart. These are

classified as of major or minor importance, indicated by • and • respectively.
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Lattice Loading W H R ρ lV/l lH/l Notes

Square
σ∗22

τ∗12 • • 1 > 1 The majority of contribution in the

horizontal boundary layer is con-

fined to a single cell.

Kagome
σ∗22 • • 10/(8ρ) For low ρ, the deformation is bend-

ing dominated; E∗/Es ∝ ρ3.

τ∗12 • • (H + 1) This is only strictly applicable for

very low ρ; for moderate to high ρ,

strong transition zones are formed

that reduces the impact of the

boundary layer. For R < 1, the

deformation is bending dominated;

G∗/Es ∝ ρ3.

Triangular
σ∗22 • • 1/2 1

τ∗12 • • > 1 Vertical boundary layers form only

for R > 1 and H > 2. For R ≤

1, the macroscopic bending mecha-

nism is dominant.

Table 3.6: Summary of the dimensions of vertical lV and horizontal lH boundary layers

and which lattice dimensions are influential in edge effects, classified as of • major or

(•) minor importance.



Chapter 4

Fatigue response of periodic lattices

4.1 Introduction

In this Chapter, the constant amplitude fatigue response of periodic lattices – Triangu-

lar (T), Kagome (K), Diamond (D), Square (S) and Hexagonal (H) – to cyclic shear

and uniaxial compression-compression (C-C) loadings will be investigated. Finite ele-

ment simulations are carried out using ABAQUS/Standard (a commercial FE package)

where a non-linear continuous fatigue damage model, modified to incorporate nonlo-

cal material damage, is implemented into the FE models of the lattices from previous

Chapters.

Existing experimental data on the fatigue life of lattices deals primarily with stochas-

tic (non-periodic) foams; various authors have studied the shear, compression-

compression (C-C) and tension-tension (T-T) fatigue response of stochastic foams

– both closed and open cells – and their key results are summarised in Table 1.2. The

exceptions are recent works by Cote et al. (2007a,b) on the cyclic shear response of

sandwich beams with a Diamond and Pyramidal core. Based on their results, Cote et al.

(2007a) concluded that micro-architecture plays an insignificant role on the fatigue per-

formance of periodic lattices. A numerical approach, using FE, will be employed here

to establish whether this is indeed the case by simulating the fatigue response of other

periodic micro-architectures. Harte et al. (2001) has previously shown that stochastic

foams exhibit significantly shorter fatigue life and lower endurance strength under

cyclic shear compared to C-C loading; it is, as yet, unclear whether the same, and to

what extent, also applies to periodic lattices.

Five different periodic micro-architectures are investigated in this study. The current

work will also establish how the presence, and severity, of imperfections affect the

fatigue performance and endurance strength of these periodic lattices; the results will be
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used to define upper and lower limits for the fatigue life of real periodic lattices (lattices

with slight imperfections). The mechanisms that are responsible for the differences in

fatigue life and endurance strength between the different lattice micro-architectures,

and the effects of imperfections, will be elucidated in this work.

4.2 Methodology

In this section, the methodology employed in this study – including terminologies, FE

models set-up, non-linear continuous damage model, and the coupling between the

former and latter to account for nonlocal material damage – will be presented.

Table 4.1 lists the dimensions of the lattices that are modelled in FE: they are expressed

in terms of the number of complete cells along their width and height. The size of each

lattice is decided based on a compromise between minimising edge effects (on their

modulus and yield strength) – these were addressed in Chapter 3 – and to keep the

simulation times manageable.

Diamond (D) Triangular (T) Kagome (K) Square (S) Hexagonal (H)

W 20 21 20 20 15

H 3 6 5 7 9

Table 4.1: Dimensions of the lattices (in terms of number of complete cells along their

width and height) modelled in FE for the fatigue simulations

4.2.1 Preliminaries

4.2.1.a Terminologies

Figure 4.1 shows a typical constant amplitude stress-time loading history that is used

in this study. For regular constant amplitude loading cycle of period T , the load varies

between a maximum (σmax) and minimum (σmin) value. Note that material strain rate

sensitivity and their time-dependent behaviour are not considered here. Hence, the

time variable t can be normalised by the period T to give the number of cycles, viz.

N , t/T . The exact functional form of the loading/unloading curve is not important in

the following analysis since all the parameters that are needed to characterise the cyclic

load are functions of σmax and σmin.
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Figure 4.1: A regular constant amplitude stress-time loading history with R < 0 and

σ̄ > 0.

The load ratio R is defined as the ratio of the minimum to maximum stress given by

R ,
σmin

σmax
(4.1)

where R > 0 refers either to compressive-compressive (C-C) or tension-tension (T-

T) loading; whilst R < 0 refers to alternate compressive-tension cyclic loadings. The

parameters σmax andR are sufficient to fully define a regular load cycle. Two additional

parameters that are commonly used along with the aforementioned are the mean stress

(σ̄) and stress amplitude (σamp) given by

σ̄ ,
σmin + σmax

2
=
σmax

2
(1 +R) (4.2)

and

σamp ,
σmax − σmin

2
=
σmax

2
(1−R). (4.3)

Existing experimental data on the fatigue performance of materials are typically pre-

sented in the form of S − N curves that plots σmax against the number of cycles-to-

failure (Nf ) for a given load ratio R. The S − N curve approach is only applicable to

high-cycle fatigue situations where the number of cycles to failure, typically, exceeds

Nf > ×103 (Bannantine et al., 1989): this will be the case in the present study. The
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maximum stress σmax that does not cause fatigue failure for N < Ne, is termed the

fatigue endurance strength σe; in this study Ne = 2× 107 is adopted.

In order to distinguish between macro- and micro- level responses, and their corre-

sponding variables, the superscript ( )∗ is used here to denote macro-level effects, this

is the same as with previous Chapters. However, the subscript ( )s, used previously to

denote micro-level effects, is dropped here for the sake of brevity. The maximum stress

σ∗max is typically normalised by a reference material strength obtained from monotonic

loading. In the case of foams and lattices, their peak stress σ∗p are often used as the

reference material strength. Here, in this study, this peak stress is the yield strength σ∗y

of the lattices, extracted using a method described previously in Chapter 2.

4.2.1.b Damage parameters

Following Kachanov (1986), a scalar isotropic damage parameter is introduced as fol-

lows:

ω ,
A

A1

(4.4)

where A and A1 is the damaged and initial (undamaged) cross-sectional area of the

strut, respectively. By using the concept of actual stress, Eq.(4.4) can be rewritten as

ω = 1− E

E1

, 0 ≤ ω ≤ 1 . (4.5)

whereE andE1 is the modulus of the damaged and undamaged strut, respectively. Note

that ω is a monotonically increasing parameter; ω = 0 corresponds to an undamaged

strut whilst ω = 1 corresponds to a fully damaged (failed) strut that has lost its load

carrying capacity completely. Since ω is directly related with a reduction in elastic

modulus, it is referred to as the ‘modulus damage’ parameter.

In a similar vein, a modulus damage parameter may also be defined on the macro-level

given by

ω∗ = 1− E∗

E∗1
0 ≤ ω ≤ 1 (4.6)



4.2. Methodology 121

where E∗1 corresponds the macroscopic modulus of an undamaged lattice at N = 1.

Similarly, for cyclic shear, it follows that ω∗ = 1−G∗/G∗1. ω∗ = 1 indicates that com-

plete macro-level failure has occurred for the lattice which is no longer able to sustain

any further loading. In the present study, complete macro-level failure is assumed to

occur when ω∗ = 0.9 is reached and the corresponding load cycle at which this occurs

is the number of cycles to failure N∗f .

The non-linear continuous damage model - this is addressed later in Section 4.2.4 -

makes use of a ‘fatigue damage parameter’D. This should not be confused with ω, even

though it will be shown later on that there is a one-to-one correspondence between these

two parameters. Note that during cyclic loading, damage accumulation occurs within

the constituent struts of a lattice; hence, it is important to stress that, D is only defined

at the micro-level. The fatigue damage parameter D is associated with the remaining

life of a strut, i.e. cycles to Nf , instead of damaged area used to characterise ω. Thus,

D = 0 denotes an undamaged (pristine) strut, whilst D = 1 indicates that the strut has

ruptured and reached the end of its fatigue life.

4.2.2 Overview of approach

Figure 4.2 gives an overview of the approach – details of each individual elements are

covered later – adopted in this study. Finite element (FE) models are generated for each

lattice micro-architecture in ABAQUS/Standard. Regular cyclic macroscopic loading

of constant amplitude is imposed to each of these models, which depends on the user-

defined macroscopic load ratio R∗, and either σ∗max/σ
∗
y (C-C loading) or τ ∗max/τ

∗
y (shear

loading). The reference material strength, σ∗y and τ ∗y , needed for the normalisation

are to be determined a priori from their monotonic stress-strain response: this is also

obtained using FE. Details of the FE model set-up are given in Section 4.2.3. The stress

distribution in each strut are calculated by FE at the two extreme load levels, viz. σmax

and σmin. These information are next used to calculate the fatigue damage parameter D

and the modulus damage parameter ω in each strut by the non-linear continuous damage

(NLCD) model, to be covered in Section 4.2.4. To circumvent the mesh convergence

issue that is often associated with numerical simulations of damage, a nonlocal damage

scheme – presented in Section 4.2.5 – is implemented. With increasing number of load
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(FE) computational scheme.
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cycle N , the modulus damage ω in each strut increases monotonically; this leads to a

corresponding monotonic increase in macroscopic modulus damage ω∗ of the lattice.

Simulation continues until complete macro-level failure occurs at ω∗ = 0.9. Since it is

practically impossible to simulate every load cycle in a fatigue ‘numerical experiment’,

a technique known as a ‘jump-in-cycle’ has been implemented - details of which are

given in Section 4.2.6.

The NLCD-FE scheme was implemented in a DELL workstation equipped with 6-core

Intel Zeon 3.33Ghz processor and 24GB of memory. For the specimen sizes that were

modelled, the computational time for an analysis for a specified macroscopic load ratio

R∗ and σ∗max/σ
∗
y (C-C loading) or τ ∗max/τ

∗
y (shear loading) varies between 4 hours for

a Square lattice to 12 hours for the more complex Kagome lattice. For some analyses

involving larger lattices - see Section 4.6.4 - the computational times were found to

increase by six fold when doubling the specimen size. Such long computational times

were too prohibitive for the current study, thus the specimen sizes were chosen as per

Table 4.1.

4.2.3 Set-up of FE models

Finite element (FE) models of the periodic lattices, with dimensions listed in Table 4.1,

are generated in ABAQUS/Standard (a commercial FE package): their details were

previously described in Chapter 3 and are not repeated here. Cyclic loading is applied

to the lattice – in a load-controlled manner – through traction boundary conditions im-

posed on the surface nodes in ∂V T (or Top or T ), see Fig. 3.2.2. The macro-level

stresses, viz. σ∗22 or τ ∗12, that were applied to the FE models are pre-determined by

the user-prescribed load ratio of R∗ and the maximum macroscopic stresses of either

σ∗max/σ
∗
y (C-C loading) or τ ∗max/τ

∗
y (shear loading). The overall fatigue response of a lat-

tice is characterised by monitoring its macroscopic damage parameter ω∗ (see Eq.(4.6))

with the number of cycles. Its macroscopic elastic modulus is estimated by measuring

the macroscopic strain accumulation ε∗max with the number of cycles.

The FE mesh comprises of m number of B22, using standard ABAQUS terminology,

beam elements per strut (or cell wall); the number of elements m needed to give con-

verged results will be addressed in Section 4.3.3. Unlike the B21 beam elements used
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previously in Chapters 2 and 3, these are also Timoshenko (shear flexible) beam el-

ements but with a quadratic interpolation function and two integration points. Since

this is a stress-based fatigue damage analysis, a higher-order element is needed here to

accurately model the internal stress state of each strut.

4.2.4 Fatigue damage model

A non-linear continuous damage (NLCD) model, first introduced by Chaboche and

Lesne (1988), is coupled to the FE model to capture the cumulative effects of fatigue

damage on the micro-scale, for each of the constituent struts that make up a lattice.

A generic version of the NLCD model is first presented in Section 4.2.4.a and the

specifics of how it is to be coupled with the aforesaid FE models are presented later in

Section 4.2.4.c. It is worth emphasising that all the parameters of the NLCD model are

micro-level quantities and the material properties are those of the strut (or cell wall)

material.

4.2.4.a NLCD model

The NLCD model that has been implemented in this study was originally developed

by Chaboche and Lesne (1988) to capture both fatigue damage initiation and fatigue

damage propagation. Recall that the fatigue damage parameterD of a strut is associated

with its remaining cycles to failure. Hence, the damage accumulation rate dD/dN in

a strut may be expressed as a function of the state of damage D and the load cycle

parameters (σmax and σ̄) as follows:

dD

dN
= Dα(σmax,σ̄)

[
σmax − σ̄
M(σ̄)

]β
(4.7)

where α andM are functions of the load cycle parameters and β is a scalar parameter to

be calibrated to experimental data in Section 4.3.1. Like all continuum damage models,

the damage accumulation rate is always positive so that (dD/dN) > 0. By integrating

Eq.(4.7) from D = 0 (at N = 1) to complete strut rupture when D = 1 (at N = Nf )

the total number of cycles-to-failure of a strut can be found as follows:



4.2. Methodology 125

Nf =
1

1− α(σmax, σ̄)

[
σmax − σ̄
M(σ̄)

]−β
. (4.8)

The function M takes the form of

M (σ̄) = M0(1− bσ̄) (4.9)

where b and M0 are scalar parameters to be calibrated in Section 4.3.1. Various forms

of the function α have been proposed in the literature; in this study, we adopt the one

suggested by Chaboche and Lesne (1988) and Dattoma et al. (2006) as follows:

α(σmax, σ̄) = 1− c
〈
σmax − σe(σ̄)

σu − σmax

〉
(4.10)

where c is, again, another scalar parameter to be calibrated to experimental data in

Section 4.3.1, σu is the ultimate tensile strength and σe is the fatigue endurance strength

of the strut (or parent) material. The piecewise function 〈g〉 in Eq.(4.10) is defined as:

〈g〉 =

0 g ≤ 0

g g > 0 .

(4.11)

If σmax < σe, it follows from Eq.(4.10) that α = 1, and Eq.(4.8) predicts an infinite Nf ,

as required. The fatigue endurance strength is known to depend on the mean stress σ̄,

which is given by (Chaboche and Lesne, 1988)

σe(σ̄) = σ̄ + (1− bσ̄)σe0 (4.12)

where b is the same scalar parameter that also appears in Eq.(4.9) and σe0 is the fatigue

endurance strength that corresponds to a fully reversed load cycle of σmax = −σmin and

R = −1.

4.2.4.b Relationship between ω and D

Equations (4.7)–(4.12) are sufficient to estimate the accumulation of fatigue damage

D at the micro-level but the modulus damage parameter ω had not been addressed.
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Figure 4.3: The locations in a B22 beam element where the fatigue damage parameter

Dj
i are computed.

Chaboche and Lesne (1988) have shown that there is, indeed, a one-to-one correspon-

dence between D and ω given by

ω = 1− (1−D)
1

β+1 . (4.13)

Equation (4.13) is used to link D and ω in the present study.

4.2.4.c NLCD-FE coupling

The FE model predicts the internal state of stress for each element; this information is

used to calculate σmax, σmin, σ̄ and R for every element in the corresponding FE mesh.

For every beam element, these four parameters are computed at three locations, viz.

both nodes and the mid-span, as shown in Fig. 4.3. In the computation of the afore-

mentioned, the linear stress variation through the transverse (or thickness) x2 direction

of each element is ignored. Instead, the maximum absolute stress – one that develops

along the outermost fibre of each element – is used; this leads to a tacit assumption that

tensile and compressive stresses cause the same fatigue damage.

With the load cycle of each element fully defined, the NLCD model estimates the dam-

age accumulation rate dD/dN – using Eq.(4.7) – at the three aforementioned locations

for every element. To avoid the mesh convergence issues, a nonlocal approach is imple-

mented to perform the ‘spatial-averaging’ of dD/dN across elements: the procedure

is described in Section 4.2.5. With dD/dN known, D is calculated by integrating Eq.

(4.7) over a number of a jump-in-cycle δN . For every ith element, the fatigue damage

parameter Dj
i (j = 1, 2, 3) is computed at the three locations. Since, a single ωi pa-

rameter is needed to characterise each element, this will be obtained by averaging Dj
i

across the i-th element. Hence, Eq.(4.13) is modified to give
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ωi = 1−

1−

3∑
j=1

Dj
i

3


1

β+1

. (4.14)

Once D and ω are determined, the FE model is updated for the next load cycle by

replacing the elastic modulus of each element with the one predicted using Eq.(4.5). A

‘jump-in-cycle’ procedure will be implemented – see Section 4.2.6 – so that simulations

need not be performed for every load cycle in the fatigue analysis.

Recall that an ideal nodal design is assumed in the FE models. Consequently, the stress

distribution is each cell wall is not affected by their neighbourhood cell walls that meet

at a common vertex. Since the damage law used here is stress-based, the impact of

an idealised nodal design is more important compared to the FE models from earlier

Chapters 2 and 3. Consequently, the results presented should be treated with caution

although they can be considered as the ‘average’ response of real lattices. The damage

accumulation in lattices with a more realistic nodal design can be either more or less

rapid leading to shorter or longer fatigue life, respectively. This is a subject that requires

further investigation and is not covered here.

4.2.5 Nonlocal damage

It is well known, and it shall be demonstrated in Section 4.3.3.a, that continuum dam-

age models that need to take into account material strain softening are also highly mesh

dependent. As the mesh gets progressively finer, the strain-softening damage tends to

localise into a zone of vanishing volume, leading to failure at zero damage energy dissi-

pation – this is physically unrealistic but a mathematically possible solution (Pijaudier-

Cabot and Bazant, 1987). A direct consequence of strain localisation is spurious mesh

sensitivity. A crude way to overcome this is to impose – in an ad-hoc manner – a lower

limit on the element size (Bazant, 1976; Bazant and Cedolin, 1976). A more general

and fundamental approach to avoid damage localisation into an infinitesimally small

volume, and its associated spurious mesh sensitivity issues, is to adopt a nonlocal con-

tinuum approach, first proposed by Pijaudier-Cabot and Bazant (1987). This approach

serves as a damage localisation limiter by imposing a minimum size in form of a mate-
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rial property and allows the FE meshes to be successfully refined to achieve converged

stress-strain distribution.

4.2.5.a Formulation

Following Pijaudier-Cabot and Bazant (1987), the nonlocal field f for a point x in the

domain V is defined as

f(x) =

∫
V

g′(x, ξ)f(ξ)dξ (4.15)

where f(x) is the local field and g′(x, ξ) is a prescribed nonlocal weight function to be

provided later. In the present study, the domain V refers to each individual strut. As

alluded to earlier, the nonlocal approach is applied to the local field dD/dN which is

calculated by Eq.(4.7).

The point x at which the nonlocal field f is calculated is termed an ‘effect’ point, while

all the other points ξi are ‘source’ points, where i = 1, 2, . . . , n and n(= 2m + 1) is

the total number of points in the domain V . Recall that there are m number of beam

elements that make up a domain and each beam element has three computational points;

the two computational points at the end nodes that belong to two different elements are

considered only once.

If the domain is infinite, then the weight function g′(x, ξi) depends only on the distance

r between the ‘effect’ and ‘source’ points where ri = |x− ξi|. However, if the domain

contains boundaries, which is the case here, then it is necessary to scale the weight

function as follows:

g′(x, ξi) =
g(ri)∫

V
g(ri)dζ

(4.16)

where g(ri) is a monotonically decreasing non-negative function of ri. The most com-

mon choice for g(ri) in the literature is a Gaussian distribution function given by

g(ri) = exp

(
− r2

i

2l2nl

)
(4.17)
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where lnl is an internal characteristic length - a material parameter - associated with

the nonlocal continuum. Note that lnl - a parameter on the micro-scale - should not

be confused with the cell wall length l which is a characteristic length - a meso-scale

parameter - of a lattice. For metals, lnl is typically between the range of 0.2 − 0.5mm

(Ahad et al., 2014; Giry et al., 2011; Samal et al., 2009); following the suggestion by

Ahad et al. (2014) for 6061-T6 aluminium alloy, lnl = 0.4mm is adopted in the present

study.

Figure 4.4 shows the variation of g(r) along a strut of length l = 7.5mm; this corre-

sponds to the cell wall length of the Diamond lattice investigated by Cote et al. (2007a).

The ‘effect’ point is placed at 1/4 of the strut’s length. For the nonlocal scheme to be ef-

fective, a number of ‘source’ points must be located within the range of influence from

the ‘effect’ point. To clarify this point, consider a strut modelled with just two beam el-

ements (this gives a total of five computational points at x/l = 0 , 1/4 , 1/2 , 3/4 , 1);

their ‘source’ points are indicated by the red dots in Fig. 4.4. From Fig. 4.4, g(r) ≈ 0

for all but the ‘effect’ point at x/l = 1/4. By increasing the number of elements in

each struts, say to m = 16, the number of ‘source’ points increases and now there are

approximately 10 ‘source’ points that can influence the ‘effect’ point; see blue dots in

Fig. 4.4. Hence, a sufficiently fine mesh is required for the nonlocal damage to be

effective; this will be addressed later in Section 4.3.3.

4.2.6 Jump-in-cycle procedure

The jump-in-cycle procedure - first proposed by Lemaitre (1992) and adopted by

Warhadpande et al. (2010) and Weinzapfel and Sadeghi (2013) - is implemented here

to speed up the simulations; this procedure negates the need to run a FE simulation

for every cycle in the entire life of a lattice. For clarity of explanation, a counter k is

introduced here to denote the number of completed FE simulation runs.

A jump-in-cycle procedure assumes that the state of stress in each strut, and thus their

corresponding (dD/dN), predicted at the kth simulation run - and corresponds to cycle

Nk - remain the same for a block of cycles δNk such that
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Figure 4.4: The Gauss distribution function along a strut of length l = 7.5mm with

the ‘effect’ point located at 1/4 of a strut’s length. The locations of the computational

points for two example cases (2 and 16 elements per strut) are shown.

max

[
δNk

(
dD

dN

)i
k

]
= δD , for i = 1, 2, . . . ,m (4.18)

where m is the total number of computational points in a given lattice. The (k + 1)th

simulation run corresponds to cycle Nk+1 = Nk + δNk. Thus, the ‘jump-in-cycle’

method gives a piecewise linear approximation of the damage parameters - D, ω and

ω∗ - with cycles N .

The parameter δD is introduced to control how large each δNk can be and this is kept

constant throughout the fatigue simulation. δD needs to be sufficiently small so that

the piecewise linear approximation does not induce significant error in the non-linear

dependence of stress- and damage-state, but large enough to ensure that the simulation

time is not excessive. As with any strain-softening damage simulation, the solution of

the problem is not unique. The choice of δD has a direct influence over the strain ac-

cumulation solution given by the NLCD-FE model. A value of δD = 0.1 was deemed

satisfactory and this is chosen based on extensive numerical checks to ensure that the

predictions by the NLCD-FE model matches the experimental results as closely as pos-
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sible

To better understand how the ‘jump-in-cycle’ technique is integrated into the NLCD-

FE model, the various stages of the fatigue simulation, see also Fig. 4.2, are itemised

as follows:

1. Given the desired R∗ and σ∗max, an initial FE simulation run (k = 1 and Nk = 1)

is carried out for one load cycle to predict the macroscopic modulus E∗k .

2. At the two extremes of the load cycle (σimin and σimax), the stress state at ev-

ery computational points i = 1, 2, . . . ,m of every struts in the FE model are

calculated, as described in Section 4.2.4.c. The parameters Ri, σ̄i and σiamp are

estimated at each computational point, i, using Eqs.(4.3), (4.1) and (4.2), respec-

tively.

3. The damage accumulation rate at each computational point (dD/dN)ik is calcu-

lated using Eq.(4.7).

4. Apply the nonlocal damage scheme for (dD/dN)ik as described in 4.2.5.

5. The ‘jump-in-cycles’ δNk is estimated using Eq.(4.18).

6. With Di
k, (dD/dN)ik and δNk now known, the fatigue damage in computational

point i is calculated for the (k + 1)th simulation run as follows:

Dk+1 = Dk +

(
dD

dN

)i
k

δNk (4.19)

7. The corresponding modulus damage for each element ωjk+1 are calculated using

Eq.(4.14)

8. Update the FE model with the new values for the damage variables, ωk+1 and

Dk+1. Any elements with ωk+1 > 0.99 are deleted from the FE mesh.

9. Repeat from Step 1 with the updated FE model and using Nk+1 = Nk + δNk.

As previously reviewed in Chapter 1, most macroscopic strain-cycle curves exhibit a

knee where macroscopic failure follows soon after this point. For all lattices investi-

gated here, this point is reached by ω∗ < 0.5; hence, this is used as the threshold to
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determine the number of cycles to failure N∗f at the macro-scale. Last, a simulation run

is terminated - even if ω∗ > 0.5 is not reached - if the total number of cycles exceeds

the ‘infinite’ life limit of N > 2× 107.

4.3 Model calibration and validation

The validation of the NLCD-FE model is carried out in four separate stages as follows:

1. In Section 4.3.1: The NLCD model of Section 4.2.4 is calibrated to the high-cycle

fatigue data for Aluminium alloy Al2014-T6 obtained from existing literature.

2. In Section 4.3.2: The coupled NLCD-FE model of Section 4.2.4.c is used to sim-

ulate a thin rectangular tensile specimen – this is for a fully dense Aluminium

Al2014-T6 specimen rather than a lattice – subjected to cyclic compression-

compression (C-C). This is to ensure that the coupled NLCD-FE model can re-

produce the output of the NLCD model - one that has not been coupled to the FE

model - and that the ‘jump-in-cycles’ procedure does not induce any error.

3. In Section 4.3.3: The NLCD-FE model is implemented for a single strut (or cell

wall) modelled as an end-loaded cantilever beam. Mesh sensitivity study is per-

formed to determine the mesh size that is needed to obtain converged results,

before implementing the NLCD-FE model to simulate the high-cycle fatigue

response of lattices. Additionally, the need to implement a nonlocal damage

scheme will be highlighted here.

4. In Section 4.4: Predictions by the NLCD-FE model are compared against existing

experimental data for Diamond lattices subjected to cyclic shear loading by Cote

et al. (2007a). The fully-validated NLCD-FE model is subsequently used to study

the fatigue behaviour of other lattice micro-architectures.

4.3.1 Calibration of parameters - Stage 1

The material from which the struts are made is characterised by E, σy, σe0 and σu.

Here, four additional scalar parameters, viz. M0, c, β and b, are introduced by the

NLCD model that have to be obtained by calibration, through fitting Eq.(4.8) to the

experimental S − N data. Data for fully reversed loading (R = −1) are needed to
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estimate M0, c and β whilst data for different R values are needed to estimate b; this

makes it challenging to find comprehensive data from the literature. Experimental data

for Al2014-T6 given in MIL-HDBK-5H (1998) are used here for the calibration: they

are plotted in Fig. 4.5. As to be expected, there is a significant amount of scatter in the

experimental data for high cycle fatigue tests.
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Figure 4.5: Al 2014-T6 stress-life data at various load ratioR and the curves correspond

to NLCD model predictions using the calibrated parameters in Table 4.2.

Ideally, the aforementioned parameters would need to be calibrated to as-brazed AISI

304 stainless steel: this is the strut material from which the Diamond lattices in the

experimental study by Cote et al. (2007a) were made. However, experimental S − N

data for the 304 stainless steel are given only for R = 0.1 and 0.5 by Cote et al.

(2007b). The lack of S − N data for R = 0 makes it impossible to properly calibrate

the parameters of the NLCD model. Hence, we shall calibrate the NLCD model using

data for Al2014-T6 instead. Since the major purpose of this work is to compare the

fatigue performance of various lattice micro-architectures, the choice of strut parent

material is not important.

Table 4.2 lists the calibrated parameters M0, c, β and b alongside material properties

for Al2014-T6 given in MIL-HDBK-5H (1998). Predictions by Eq.(4.8), using the cal-

ibrated parameters of Table 4.2, is also plotted in Fig. 4.5. The NLCD model captures
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E † σu
† σy

† σe0
†

69GPa 538MPa 496MPa 105MPa

M0
‡ c ‡ β ‡ b ‡

3.2GPA 1.125 4.233 0.7345/σu

Table 4.2: Material properties for Al2014-T6 and the calibrated NLCD model parame-

ters. † indicates property given in MIL-HDBK-5H (1998), whilst ‡ refers to calibrated

parameters.
well the effects of R and σmax on Nf . If the maximum stress value σmax/σy is too high,

then the number of cycles to failure Nf < 103; this is a case of low-cycle fatigue which

is beyond the scope of this work. On the other hand, if maximum stress does not exceed

the fatigue endurance strength given by Eq.(4.12), then the σmax/σy vs Nf curve is a

horizontal line which indicates ‘infinite’ life.

Figures 4.6a and b show the predicted damage accumulation of D and ω with N , using

the calibrated parameters with Eqs.(4.7) and (4.13). Two load ratios are shown: (a)

fully reversed R = −1 and (b) R = 0.1. When R = 0.1, σmax/σy = 0.3 is below the

fatigue endurance strength leading to ‘infinite’ life; this can be inferred from Fig. 4.5.

D is seen to accumulate more rapidly than ω due to their non-linear relationship given

by from Eq. (4.13): the relationship between D and ω is plotted in Fig. 4.6c. As to

be expected, D = ω = 1 at N = Nf . The plots of Fig. 4.6 give a general overview

of the rate at which fatigue and modulus damage accumulates in the struts of a lattice.
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Figure 4.6: Damage accumulation (D and ω) with number of cycles for (a) R = −1

and (b) R = 0.1; (c) Variation of ω with D.
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The combination of σmax/σy and R experienced by each strut directly affects the rate

at which D and ω increases with N . As ω in the struts increases, it is expected that the

macroscopic modulus damage ω∗ of the lattice also increases.

4.3.2 Uniaxial loading - Stage 2

In the second stage of the validation process, predictions by the coupled NLCD-FE

model of a thin, fully-dense rectangular tensile specimen are compared to those of

the NLCD model. The reactangular specimen is modelled with solid (CPS8) finite

elements; details of the coupling between the FE and NLCD models were presented

in Sections 4.2.4–4.2.6. Since there is a uniform stress distribution in the rectangular

specimen, no mesh dependency is observed. The comparison is shown in Fig. 4.7,

where D and ω are plotted against N , for the load case of R = 0.1 and σmax = 0.7σy.

Results for two different values of δD = 0.1 and 0.2, see Eq. (4.18), are presented.

A smaller δD value gives better curve resolution but it requires a higher number of

simulation runs. Predictions by the coupled NLCD-FE model is in excellent agreement

with those by the analytical NCLD model: the results show a good match for both δD

values. The same is true even if a lower value for δD, e.g. 0.01, is used but they are

not plotted for brevity. This indicates that the coupling of the NLCD model to FE did

not induce any unwanted numerical artefacts; a key objective of the second step in the

validation process. The above demonstrates that the coupled NLCD-FE model is able

to successfully reproduce the S −N curves of Fig. 4.5 with good accuracy.

4.3.3 Single cell wall in bending - Stage 3

The third stage of the validation process will examine the sensitivity of damage accu-

mulation in a single strut (or cell wall) to bending deformation. A single cell wall is

modelled as an end-loaded cantilever beam of length l = 7.5 mm and thickness t = 0.3

mm; their dimensions are the same as the struts (cell walls) in the Diamond core lat-

tice in Cote et al. (2007a). The cantilever is modelled with m number of B22 beam

elements; the element number i = 1, 2, . . . ,m from the fixed end is indicated in Fig.

4.9. Results with and without the inclusion of nonlocal damage will be presented to

highlight their differences and the need to considering nonlocal continuum.
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Figure 4.7: Predicted damage-cycle curves, incorporating the jump-in-cycle procedure,

for the load case of σmax/σy = 0.7 and R = 0.1.
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Figure 4.8: End-loaded cantilever beam modelled by four (m = 4) B22 beam elements.

The dots indicate the three damage computational points of each element.

The end load P that was applied is always aligned in the x2 direction, i.e. it does not

follow the curvature of the beam as it bends, so that its tip deflection is given by

δ2 =
Pl3

3EsI
(4.20)

where I = t3d/12 is the second moment of area and its out-of-plane depth is d = 1.

Mesh sensitivity study will be carried out for R = 0.1 and Pmax = 0.7Py, where Py is

the end-load needed to initiate plastic deformation at the fixed-end. The macro-level

damage ω∗ is not determined by Eq.(4.6); instead, it is given by
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ω∗ = 1− (δ2)1

δ2

(4.21)

where (δ2)1 is the end deflection of the undamaged beam.

4.3.3.a Without nonlocal damage

Mesh sensitivity study is performed without taking into account nonlocal damage; this

is done by setting lnl = 0 in Eq. (4.17). The accumulation of ω∗ is plotted against N

in Fig. 4.9 for seven FE models with progressively finer mesh. As alluded to earlier, a

finer mesh does not lead to converged results. Even though ω∗ starts increasing from

approximately N = 2.2 × 105 for all the meshes shown, their subsequent response

varies significantly.

A plateau region develops afterwards; this is a direct consequence of (dD/dN)i=1 → 0

in step 3 in Section 4.2.6 where the superscript i denotes the element number in Fig.

4.9. This happens because as ω → 1, the local stress in the element at the fixed-end

(i = 1) reduces significantly so that (dD/dN)i=1 → 0, see Eq. (4.7). Consequently,

any further increase in ω∗, beyond the first plateau region, must be from contributions

by the rest of the elements (i > 1) in the FE mesh. For coarser mesh, say m = 2, the

local stress in the second element (i = 2) is not high enough to reach (dD/dN)i > 0;
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Figure 4.9: Results showing mesh sensitivity for an end-loaded cantilever beam with

m number of beam elements without considering nonlocal damage.
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hence, dω∗/dN = 0.

With a finer mesh, say 20 elements, the internal stress in the second element (i = 2)

element is sufficiently high so that (dD/dN)k=2 >> 0 and the plateau region, seen in

the coarse mesh, disappears. Notwithstanding, a converged response is not observed

with increasingly finer mesh; thus, without considering nonlocal damage, the NLCD-

FE model is not useful.

4.3.3.b With nonlocal damage

Figure 4.10 presents the results of the same mesh sensitivity study from previously

but, this time, taking into account the effects of nonlocal damage. Results for the two-

element (m = 2) mesh is nearly identical to the previous one without nonlocal damage.

This is because there are insufficient computational points for the nonlocal scheme to

be effective. However, if more than 4 elements are used, a significant difference be-

tween the predicted ω∗−N curves begin to emerge. Because of the nonlocal averaging

scheme, the rate of initial damage accumulation - dω∗/dN - is slower and the plateau

region observed previously without nonlocal damage disappears. Figure 4.10 shows

that a converged response is, indeed, achieved with successively finer mesh. A FE

mesh comprising of 20 elements per strut (or cell wall) is deemed to be sufficient to

model a converged response for lattices.
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Figure 4.10: Results showing mesh sensitivity for an end-loaded cantilever beam with

m number of beam elements. NL indicates that nonlocal damage was implemented.



4.4. Shear fatigue of Diamond lattices - Stage 4 139

4.4 Shear fatigue of Diamond lattices - Stage 4

The 4th, and final, stage of validation comprised of two parts: predictions for its mono-

tonic shear response are validated first followed by its cyclic response. To this end, the

experimental data of Cote et al. (2007a) on Diamond lattices are used here. It needs to

be emphasised that the FE model is used on its own, without the NLCD model, when

simulating the monotonic response of a lattice. Ordinarily, the coupled NLCD-FE ap-

proach, with nonlocal damage, is always used.

There are two reasons why the monotonic response is first validated. Firstly, the pa-

rameter τ ∗max (or σ∗max in C-C loading) is to be normalised by τ ∗y (or σ∗y); this is estimated

a priori in a monotonic analysis. Recall that Cote et al. (2007a) uses the peak value

τ ∗p to normalise their data (τ ∗max). Here, τ ∗y is used in place of τ ∗p , since our FE model

does not account for the strain softening regime post τ ∗p . Secondly, it remains to be

shown that the FE model of a lattice can accurately predict the monotonic stress-strain

response for a load cycle; in particular, for loadings in the range of τ ∗max (≤ 0.8τ ∗y ) and

σ∗max (≤ 0.8σ∗y) that will be used in subsequent cyclic simulations.

In the second part of the validation, predictions by the coupled NLCD-FE are compared

to the shear fatigue data of Cote et al. (2007a). Recall in Section 4.3.1 that there are

insufficient S −N data on the AISI 304 stainless steel to properly calibrate the NLCD

model. Instead, the cyclic response of the NLCD-FE model will be validated using

the parameters calibrated to Al2014-T6. As Cote et al. (2007a) reported, the fatigue

performance of lattice materials is independent of the choice of cell wall material. Thus,

the choice of material for the NLCD-FE model is not expected to be the source of any

discrepancies in the validation process; which will be shown to be the case.

4.4.1 Monotonic shear loading

4.4.2 Specimen dimensions

The prismatic Diamond lattices in Cote et al. (2007a) were manufactured using AISI

304 stainless steel sheets of thickness t = 0.3 mm. Two relative densities of ρ = 0.08

and 0.15, corresponding to a cell wall length of l = 7.5 mm and 4 mm, respectively,

were tested. All their specimens are of aspect ratio R = W/H = 12 and H = 5. Ac-
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cording to Eq. (3.61) in Chapter 3, these specimens are sufficiently large with minimal

influence from edge effects.

4.4.2.a Material properties of cell wall

The face-sheets and diamond-core assembly in Cote et al. (2007a) were brazed together

using a Ni-Cr 25-P10 alloy at an elevated temperature. Consequently, the properties of

their stainless steel struts are not the same as commercially available ones. However, in

a companion paper, Cote et al. (2006) provided the mechanical properties of as-brazed

AISI 304 stainless steel alloy; they are listed in Table 4.3 and these were used in our

FE model to simulate the monotonic response of the Diamond lattices.

E σy dσ/dε

210GPa 210MPa 2.1GPa

Table 4.3: Material properties for as-brazed AISI 304 stainless steel alloy. (Cote et al.,

2006)

4.4.2.b Results

The current FE model matches successfully the linear-elastic response of the diamond

lattice but not its non-linear response. It overestimates τ ∗y by up to 30% for both relative

densities. The perfect bonding between the Diamond core and the face-sheets, assumed

in our FE model, is unlikely to be the key source of discrepancy since Cote et al. (2007a)

have noted that their lattice deform by the buckling of its struts at the peak value, while

the softening regime - post-peak stress - is associated with fracture of the brazed joints.

Instead, the perfect lattice microstructure of the FE model is thought to be the more

likely source.

Imperfections are introduced to each strut, in the form of an initial transverse deflection,

given by

δ2(s) = κbt sin
(πs
l

)
(4.22)

where κb is a dimensionless parameter that controls the severity of imperfection and s is

the arc length along the strut measured from one end (Cote et al., 2006). The imposed
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transverse deflection corresponds to the buckling mode of a pin-ended strut that are

estimated a prior in a standard eigenvalue analysis. It is worth emphasising that Cote

et al. (2006), too, found this to be necessary in their FE simulations of the Diamond

lattices.

Figure 4.11 compares the FE predictions, using κb = 0.2, to the experimental data.

The inclusion of strut imperfections lead to a significant reduction in the predicted τ ∗y ;

they are now within 6% of the τ ∗p values reported by Cote et al. (2007a) which suggests

that using τ ∗y , in place of τ ∗p , for normalisation is unlikely to lead any significant error

in subsequent fatigue analyses. Even though, there is a significant difference between

their corresponding shear strains although they do not affect the fatigue analysis. The

imposed macroscopic loading in a fatigue analysis is always within the linear regime -

in the range where τ ∗max < 0.8τ ∗y - hence the difference between the shear strain for τ ∗y

and τ ∗p becomes insignificant. Additionally, the small range of imposed macroscopic

loads means that the inability of the FE model to follow the experimental results post τ ∗p

is not problematic to the cyclic analyses for the above reason. Therefore, it is deemed

acceptable to use τ ∗y and σ∗y for normalisation.
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Figure 4.11: Monotonic shear stress-strain curves – predicted by FE and measured

experimentally – for Diamond lattices constructed using AISI 304 stainless steel.
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4.4.3 Cyclic shear loading

Cote et al. (2007a) presented experimental data on Diamond lattices of relative density

ρ = 0.08 subjected to cyclic shear at a load ratio R = 0.5; and, of ρ = 0.15 at

R = 0.5 and R = 0.1. Fatigue failure in the lower density lattice (ρ = 0.08) was

reported to originate from bending deformation of the constituent struts near the edges

of the specimen; these regions are known to be affected by edge effects as previously

discussed in Chapter 3. By contrast, the higher density lattices (ρ = 0.15) fail by shear

fatigue at the brazed joint between the core and the face-sheets. Since the NLCD-FE

model does not model interfacial failure between core and face-sheets, validation will

be limited to those results for ρ = 0.08 and R = 0.5.

4.4.3.a Specimen dimensions

To minimise computational time, since a large number of simulation runs is needed,

smaller-sized lattices compared to that used by Cote et al. (2007a) were modelled. The

Diamond lattices simulated, here, contain 20 (W ) × 3(H) complete cells, see Table

4.1. Based on Eq.(3.61), this specimen size is only marginally affected by edge effects

compared to those of Cote et al. (2007a); under monotonic loading, a slight ≈ 5%

reduction in E∗ compared to that of Cote et al. (2007a) is expected here. It will be

shown later that the larger lattice, under cyclic loading, gives slightly reduced N∗f for

the same τ ∗/τ ∗y .

4.4.3.b Material properties of cell wall

To circumvent the lack of data - see Section 4.3.1 - the validation of the cyclic response

for Diamond lattices will be performed using material properties, and NLCD parame-

ters, calibrated to Aluminium Al 2014-T6 which are listed in Table 4.2. It will be shown

that this does not pose a problem in terms of the predicted results. Moreover, this can

be further justified based on one of the key conclusions by Cote et al. (2007a) where

it was reported that the normalised shear endurance strength (τ ∗e /τ
∗
p ) is independent of

cell wall material, relative density ρ and core topology. Since the main objective of this

work is to investigate the influence of lattice micro-architecture on fatigue life, the roles

played by cell wall material and relative density may be considered to be negligible.
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4.4.3.c Results

Figure 4.12 plots the predicted S − N data by the NLCD-FE model in normalised

∆τ ∗/τ ∗p − N∗f and τ ∗max/τ
∗
p − N∗f space. Just like the monotonic case, all the results

shown are for imperfect struts with κb = 0.2. The predictions for relative density

ρ = 0.08 and load ratio R = 0.5 are close to the experimental data of Cote et al.

(2007a). The NLCD-FE model is found to predict slightly longer life, by ≈ 1/5 of a

decade; this can be attributed to simulating smaller-sized lattices compared to that used

by Cote et al. (2007a), which will be clear later on.

Experimental data for the higher density (ρ = 0.15) lattices are also plotted in Fig.

4.12 for two load ratios R = 0.1 and 0.5. Since interfacial failure is not modelled,

our numerical predictions only capture the influence of increasing ρ on the fatigue

response; this is unlike in Cote et al.’s experiments where additional fatigue process

also occurs at the interface between core and face-sheets. At load ratio R = 0.1 and

ρ = 0.15, the NLCD-FE model predicts higher N∗f compared to experiment, see Fig.

4.12b. The slightly higher N∗f is due to the smaller specimen size that was simulated

and the disregarding of the interfacial failure mechanism. At load ratio R = 0.5, and
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Figure 4.12: Predicted shear S − N data for Diamond lattices using the NLCD-FE

model. Experimental data by Cote et al. (2007a) are included for comparison.
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ρ = 0.15, the NLCD-FE model again predicts slightly higher N∗f ; only for τ ∗max/τ
∗
p =

0.45 the difference is significant which is believed to be caused by premature failure

due to imperfections in the core and face-sheet brazing. The numerical predictions for

ρ = 0.08 and ρ = 0.15 at the same load ratio R = 0.5 shows that the higher density

lattice has a life which is approximately half decade shorter; this is less evident in the

experiments since the results for higher ρ are affected by interfacial failure and, to some

extent, data scatter.

Figure 4.12 shows that the NLCD-FE model is capable of reproducing, with sufficient

accuracy, the fatigue response of Diamond lattices. Additionally, the effects of load

ratio R and relative density ρ on fatigue life are, also, successfully captured by the cur-

rent NLCD-FE model. It is important to emphasise that the use of Al2016-T6 material

properties instead of 304 stainless steel did not appear to have affected the ability of the

NLCD-FE model to estimate the normalised fatigue response of Diamond lattices - this

is consistent with what was reported by (Cote et al., 2007a) that the normalised shear

endurance strength (τ ∗e /τ
∗
p ) is independent of cell wall material and relative density ρ.

The four stages of model validation and calibration are now complete, and their predic-

tions were shown to be sufficiently accurate. The fully validated NLCD-FE model is

next used to simulate the fatigue response of other lattice micro-architectures.

4.5 Imperfection sensitivity of fatigue response

The fully-validated NLCD-FE model is employed here to simulate the shear and

compression-compression (C-C) fatigue response of five periodic lattices with differ-

ent micro-architectures; their dimensions are listed in Table 4.1. We showed previously

that the monotonic and cyclic response of the Diamond lattices measured in experi-

ments can only be accurately predicted if imperfect struts are modelled. Therefore, an

imperfection sensitivity analysis is carried out to establish the bounds of the S − N

curve for the different micro-architectures. Sensitivity analysis is presented for shear

and C-C loading in the Section 4.5.1 and 4.5.2, respectively. For completeness, a sen-

sitivity analysis for the Diamond lattices subjected to cyclic shear is also presented.

Following the approach used during validation, the imperfections introduced by esti-
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mating the buckling modes through an eigenvalue analysis; this is carried out for all

lattices that deform predominantly in stretch, viz. Diamond, Kagome, Triangular lat-

tices, and for the Square under uniaxial loading (only). The range of κb is different for

each micro-architecture; this is listed in the corresponding figures as they appear. For

the bending dominated lattices - the Hexagonal and the Square in shear - imperfections

are imposed via the vertex perturbation method described in Eq.(1.5). Recall that ver-

tex perturbation is controlled by a parameter κv. The range of κv is kept to moderate

levels of between 0 ≤ κv ≤ 0.1 so that the perturbed lattice is not too distorted.

The load ratio and relative density for all subsequent analyses is the same as that used

for validation: R = 0.5 and ρ = 0.08. The cell wall length l is kept the same at

l = 7.5mm for all lattices because it may influence the predicted fatigue response

through the nonlocal continuum length scale lnl = 0.4mm; recall that if nl is too small

compared to the size of beam elements, the nonlocal averaging scheme is no longer

effective. Consequently, the uniform cell wall thickness t for each lattice will need to

be adjusted accordingly to achieve the desired relative density ρ.

4.5.1 Shear fatigue

Figure 4.13 plots the predicted shear fatigue data, in τ ∗max/τ
∗
p − N∗f space, for the five

different micro-architectures. The three stretch-dominated micro-architectures - Tri-

angular, Kagome and Diamond - exhibits a significant reduction in fatigue life with

increasing κb. However, their sensitivity to κb - parameter controlling the severity of

imperfections - varies. For Kagome, there appears to have no effect on the estimated

life beyond κb > 0.2. By contrast, this is not the case for Triangular lattices, at least

for the range of κb investigated, where N∗f decreases monotonically with increasing κb

without a lower bound. Further increase to κb results in convergence issues with the

FE model. The Diamond lattice was found to be the least sensitive to imperfections,

with only a small reduction of estimated life with increasing κb. Predictions by the

NLCD-FE model is an excellent match to the experimental data of Cote et al. (2007a)

in Fig.4.13c. The sensitivity analysis shows that any value of κb > 0 provide a good

estimate to the experimental data; however, κb = 0.2 must be used from the monotonic

analysis, see Section 4.4.2.b.
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Figure 4.13: Shear fatigue data for stretch-dominated (Triangular, Kagome, Diamond)

and bending-dominated (Hexagonal and Square) lattices. Imperfections in the shape

of buckling modes were imposed to each strut for the stretch-dominated lattices and

by vertex perturbation for the bending-dominated lattices. All data shown are for load

ratio R = 0.5 and ρ = 0.08.
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Figure 4.14: Shear fatigue data for lattices (a) without imperfections and (b) with im-

perfections. All data shown are for load ratio R = 0.5 and ρ = 0.08.

It is evident from Fig. 4.13 that all bending-dominated lattices are nearly insensitive

to the presence, and also the extent, of imperfections; only the Square lattice shows a

slight decrease in fatigue life when κv = 0.1 - note this is a relatively severe imperfec-

tion. The reason for the insensitivity of bending-dominated lattices is that their fatigue

failure mode - due to the bending of cell walls - remains the same with and without the

introduction of imperfections. By contrast, the stretch-dominated lattices are sensitive

to buckling imperfections because their deformation mode switches from axial loading

of cell walls, for the perfect lattice, to localised bending at the buckled cell walls for

the imperfect.

The predicted S − N data corresponding to their (a) perfect (κv = κb = 0) and (b)

imperfect states are plotted in Fig. 4.14. For the perfect lattices, their fatigue life are

different for the different micro-architectures. The Diamond lattice has the longest fa-

tigue life and the Square has shortest. More importantly, there is no evidence to suggest

that stretch-dominated lattices have a longer fatigue life compared to their bending-

dominated counterpart. In general, the trend in Fig. 4.14a is in contrast to the findings

by Cote et al. (2007a) where they concluded that the fatigue life and endurance strength

of lattices are insensitive to their micro-architecture.
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Data plotted in Fig. 4.14b for the imperfect lattices were generated by using κb = 0.2

(for stretch-dominated) and κv = 0.1 (for bending-dominated). The predicted S − N

data collapse into two main clusters, separated by as much as 1.5–2 decades in N∗f .

Imperfections in the Triangular and Kagome lattices lead to a reduction fatigue life,

and their S − N data collapses onto the same cluster as with the Square lattice. The

imperfect Diamond lattice show similar fatigue response with the Hexagonal lattice.

If higher κb and κv values were used in the simulations, the aforesaid trends are not

expected to be altered dramatically, since all except the Triangular lattice are not greatly

affected by increased imperfections. For lower imperfection values, the differences

between the S−N data of the five lattices will decrease so that the data may no longer

fall into the two aforesaid clusters.

Even though the resulting S − N data fall into two clusters, one cannot necessarily

conclude that the lattices in each cluster fail by two different mechanisms. For all lat-

tices - in both clusters - fatigue damage were found to initiate and accumulate at the

cell walls where bending deformation is most severe before accumulating in other cell

walls; this will be discussed in greater detail in Section 4.6.2. The imperfection param-

eters presented here may not necessarily be representative of commercially-available

Triangular and Kagome specimens; experimental data are needed to justify the use of

κb = 0.2. Hence the collapse of all S −N data into two clusters may not be witnessed

in reality and is a coincidence of the imperfections that were chosen. Nevertheless,

Figs. 4.14a and b provides an upper and lower bound in the expected life of the lattice

micro-architectures.

4.5.2 Compression-Compression fatigue

Figure 4.15 plots the predicted compression-compression S−N data for different sever-

ity of imperfections. Similar to cyclic shear, Kagome and Triangular lattices exhibit a

significant reduction in fatigue life with increased imperfections. The Diamond lattice,

on the other hand, is relatively insensitive to imperfections; a significant reduction in

fatigue life is noted only if an unrealistically high imperfection parameter, say κb = 20

is introduced. This is because the buckling eigenmode shapes estimated by ABAQUS

are significantly less severe compared to the other two lattices and to the corresponding
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Figure 4.15: Imperfection sensitivity of predicted C-C fatigue data for periodic lattices.

All data shown are for load ratio of R = 0.5 and ρ = 0.08.
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Diamond lattice subjected to shear. In its perfect state, a Square lattice would exhibit

unusually high endurance strength and long fatigue life since all the vertical constituent

struts are loaded axially. This is, of course, unrealistic since all real lattices have slight

imperfections; therefore the C-C fatigue data for a perfect Square lattice are omitted

from the discussion in Section 4.6. Even with a slight amount of buckling imperfec-

tion, say κb = 0.01, the fatigue life of the Square lattice is reduced significantly to a

level comparable to the other lattices; a further increase of κb, leads to further reduction

in fatigue life. In contrast to the stretch-dominated lattices, the Hexagonal lattice is in-

sensitive to imperfections; this is in agreement with what is observed for shear cyclic

loading.

Figure 4.16 shows the predicted C-C fatigue data for lattices in their (a) perfect (κv =

κb = 0) and (b) imperfect states. Similar to shear, the S − N data for the perfect

lattices in Fig. 4.16a do not collapse into a single line indicating the dependence of

fatigue life on lattice micro-architecture. In their perfect state, the Diamond lattice is

again found to have the longest fatigue life of the four lattices, with the exception of

Square which is not representative of real lattices. However, if one ranks the lattices
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Figure 4.16: C-C fatigue data for lattices (a) without imperfections and (b) with imper-

fections. All data shown are for load ratio R = 0.5 and ρ = 0.08.
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from longer to shorter life, the order is different compared to cyclic shear loading. By

introducing imperfections, the S −N data again collapse into two clusters. Unlike for

shear, the Kagome and Triangular lattices exhibit similar fatigue response and have the

shortest life. Data for the imperfect Square lattice is clustered together with those for

Hexagonal and Diamond: this is different to the results for shear in Fig. 4.14. Similar

with shear, the initiation and accumulation of fatigue damage is linked to the cell walls

that experience the highest bending stresses; this will to be discussed in Section 4.6.2.

Fatigue experiments reported by Harte et al. (2001) have found that the endurance

strength of 3D Alporas foams in C-C and T-T is 0.55σp and 0.5σp, respectively. How-

ever, in cyclic shear, their endurance strength is found to be significantly lower at

0.35τp. Since stochastic 3D foams are also bending-dominated, comparisons can be

made to the Hexagonal lattices here. A similar difference in endurance strength be-

tween C-C and shear cyclic loading is also observed here for Hexagonal lattices where

the endurance strength is estimated to be 0.5σy and 0.4τy, respectively. The aforesaid

results show that predictions by the NLCD-FE model is able to predict the trend of

available experimental data relatively well.

4.6 Discussions

4.6.1 Macroscopic modulus damage accumulation

Figures 4.17 and 4.18 plots the macroscopic modulus damage accumulation (ω∗)

against number of cycles N for shear (τ ∗max/τ
∗
y = 0.56) and C-C ( σ∗max/σ

∗
y = 0.75),

respectively. Note that increasing ω∗ corresponds to a reduction in the macroscopic

stiffness (E∗) of a lattice through Eq. (4.6). The two applied macroscopic maximum

stress were chosen since they give the biggest differences in N∗f amongst the five lat-

tices. The symbol ×k, in Figs. 4.17 and 4.18, indicates the kth instance when cell

wall(s) fail, and the corresponding cycle at which this occurs is denoted by Nk. A cell

wall is considered to have failed, and thus deleted from the FE mesh, if its modulus

damage parameter ω > 0.99, see Section 4.2.6. Unlike imperfect lattices, cell walls of

perfect lattices tend to fail simultaneously in groups of more than one, rather than in-

dividually (one at a time), because of geometric symmetries in the micro-architecture.
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Figure 4.17: Macroscopic modulus damage accumulation (ω∗) during shear fatigue at

load ratio R = 0.5 and τ ∗max/τ
∗
y = 0.56 for (a) perfect and (b) imperfect lattices. ×

indicates the instance at which cell wall failures are observed. (c) Locations of failed

cell wall in lattices that contain no imperfections.
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Figure 4.18: Macroscopic modulus damage accumulation (ω∗) during C-C fatigue at

load ratio R = 0.5 and σ∗max/σ
∗
y = 0.75 for (a) perfect and (b) imperfect lattices. ×

indicates the instance at which cell wall failures are observed. (c) Locations of failed
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Figure 4.19: Locations of failed cell walls predicted by the NLCD-FE model for an

imperfect Triangular lattice subjected to cyclic shear.

The locations of the failed cell walls in a lattice, and the sequence at which this occurs,

are also shown in Figs. 4.17 and 4.18 - this is only shown for the perfect lattices.

4.6.1.a Perfect vs imperfect lattices

The fatigue response of a perfect lattice and its imperfect counterpart is compared in

Fig. 4.17. Take, for example, the case of a Triangular lattice subjected to shear. In

its perfect state, cell wall failures are observed in just two instances. Four cell walls

fail simultaneously at N1 followed by another four at N2; their locations in the lattice

are shown in Fig. 4.17. The NLCD-FE model predicts that the failure of just four

cell walls is sufficient to reach ω∗ ≈ 0.3. Beyond N2, the next set of cell walls, in

total 16, to fail is sufficient to cause failure with ω∗ ≈ 1; these are not indicated in

the lattice diagram for clarity. For the imperfect case, cell walls fail in a progressive

manner. The first cell wall to fail occurs much earlier in the load cycle, at N1 = 4×104

compared to N1 = 2 × 106 for its perfect counterpart. The location of the first failed

cell wall is directly related to the imposed buckling eigenmodes estimated from the FE

model. Cell wall failures are observed at five different instances until the final rapid

damage accumulation phase causes complete failure. In contrast to a perfect lattice,

cell wall tends to fail individually one-by-one, rather than in groups, the location of the

failed cell walls is indicated in Fig. 4.19. The first cell wall to fail at N1 is directly

associated with the imposed buckling imperfection in that cell wall. One may conclude

that imperfections gives rise to more gradual macroscopic failure in terms of modulus

damage accumulation.

Similar observations to the above are also made for the other lattice micro-architectures

for both shear and C-C loading. For the stretch-dominated lattices, the presence of
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buckling imperfection tends to trigger fatigue failure at a lower N1 compared to the

perfect counterpart; see, for example, Fig. 4.18. The location of the failed cell wall at

N1 is always associated with the location of most severely buckled strut. Even though

the presence of imperfections leads to a significant reduction in fatigue life - as pre-

viously discussed in Section 4.5 - the more progressive modulus degradation may be

preferable in practical applications, instead of the rapid failure, which would allow

time for detection of fatigue damage. For bending-dominated micro-architectures - the

Hexagonal and Square lattice in shear - the imperfections that were introduced through

vertex perturbation hardly affects their fatigue life. Similarly, the way ω∗ accumulates

in bending dominated micro-architectures is also insensitive to imperfections. How-

ever, the loss of perfect periodicity of micro-architecture again means that cell wall do

not fail in groups and a slightly more progressive accumulation of ω∗ is observed; this

is most evident for Square lattices under shear.

A comparison between the location of failed cell walls in an imperfect Diamond lattice

subjected to shear, as predicted by the NLCD-FE model, and the experimental results

from Cote et al. (2007a) is shown in Fig. 4.20; note that the experimental results are

presented for one end of the specimen and is rotated by 90◦ to the horizontal. The

first cell wall to fail is found in exactly the same location for both the numerical and

experimental results, which is near one of the four corners of the lattice. The second

cell wall to fail is further away from the boundaries; the location between experimental

and numerical results do not exactly match because of the different dimensions of the

specimen. The next cell wall failures are observed to be increasingly away from the

boundary and towards the central part of the specimen. Another important observation

that is common between the numerical and experimental results, is that the macroscopic

lattice failure is triggered by the failure of few cell walls, while the rest of the specimen

remains mostly undamaged. These observations further validate the capabilities of the

current NLCD-FE to simulate fatigue damage/failure in the lattices.

4.6.1.b Bending- versus stretch-dominated lattices

Figures 4.17 and 4.18 highlight significant differences in the fatigue response of stretch-

and bending-dominated micro-architectures: the latter exhibits greater damage accu-
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Figure 4.20: (a) Locations of failed cell walls as estimated by the NLCD-FE model for

the Diamond lattices subjected to cyclic shear. (b) Photographs of the experimentally

observed sequence of failed cell walls in a Diamond lattice subjected to cyclic shear

(Cote et al., 2007a). The last photograph, N = 12 × 106, corresponds to macroscopic

lattice failure.

mulation in the early stages before the first set of cell wall fails (N < N1). On the

contrary, the three stretch-dominated lattices, ω∗ is nearly zero for N < N1. A poten-

tial advantage of bending micro-architectures in real application is the ability to detect

the accumulation of fatigue damage relatively early before the onset of catastrophic

failure at N∗f . However, this may interfere with the design requirements of the lattice

and thus negate the above benefit. The more progressive ω∗ accumulation in bending-

dominated lattices (Hexagonal and Square in shear) is associated with a higher percent-

age of cell walls that experience fatigue damage. This is illustrated in Fig. 4.21, where

the percentage of cell walls with damage ω > 0.01, for the analysis step prior to N1, is

plotted against N∗f . Evidently, the stretch-dominated lattices show significantly lower

percentage of damaged cell walls compared to the Hexagonal and Square lattices.

The endurance strength of the cell wall material σ∗e at a load ratio ofR = 0.5 is≈ 0.6σ∗y ,

as shown Fig. 4.5; damage accumulate in any cell wall that experience higher stress

than σ∗e . For the same applied normalised remote stress, σ∗max/σ
∗
y or τ ∗max/τ

∗
y , a consid-

erably higher proportion of cell walls exceed σe in bending-dominated lattices - 70%

for the Square in shear and 25% for the Hexagonal, see Fig. 4.21 - in comparison to the

stretch-dominated counterpart - all< 2% in shear and< 8% in C-C. However, this does
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not necessarily correlate to lower N∗f as is clearly seen in Fig. 4.21. This is due to the

strain softening in a larger proportion of the cell walls in the bending-dominated lattices

that reduces the local cell wall stresses. This subsequently decreases the damage accu-

mulation rate in these cell walls, see Eq.(4.7), and eventually the bending-dominated

micro-architectures are found to have comparable N∗f to their stretch-dominated coun-

terparts.

The observations for the perfect lattices also hold for imperfect ones. The imperfect

stretch-dominated lattices accumulate fatigue damage in an even smaller percentage of

cell walls prior to N1 since damage is isolated in the cell walls the buckle the most. On

the other hand, for bending-dominated lattices, there is hardly any difference in their

fatigue response regardless of whether imperfections are present. However, as previ-

ously addressed in Section 4.5,N∗f is reduced for stretch-dominated lattice but is hardly

affected for bending-dominated lattices. Hence, the percentage of damaged cell walls

cannot be used to explain the differences in N∗f among the five micro-architectures.

The percentage of cell walls that accumulate damage is characteristic of the lattice

micro-architecture. Additionally, from Fig. 4.17 and 4.18 it becomes apparent that each

micro-architecture accumulate damage in cell walls at different regions of the lattice.

Naturally, the next question to be addressed is what causes this difference and whether

the boundary layers influence these observations in any way; this will be addressed

next.
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From Section 4.6.2 onwards, we shall focus only on perfect lattices unless otherwise

stated. This allows us to isolate the role of micro-architecture on fatigue response

without the influence from random imperfections and buckled cell walls.

4.6.2 Damage distribution maps

Damage maps are generated for the lattices in a similar manner as the strain maps of

Fig. 3.36 by replacing shear strain γ∗12 with element modulus damage ω; see Eq.(4.13).

To construct these maps, ω is interpolated across the lattice area to generate a continu-

ous map – instead of plotting ω along individual cell walls – that would provide a better

visualisation of the damage distribution of an entire lattice. The damage map serves two

purposes: (1) to highlight differences in the percentage of damaged cell walls between

bending- and stretch-dominated lattices; and, (2) highlight region(s) within a lattice

where damage had occurred and/or with the greatest accumulation of damage.

First, the micro-level damage (ω) distribution is plotted for the cycle that corresponds

to macroscopic modulus damage ω∗ ≈ 0.02, in Fig. 4.22. The two extreme cases -

in terms of the percentage of damaged cell walls - of Hexagonal and Triangular lat-

tices are shown; note that the number of cycles needed to reach ω∗ ≈ 0.02 varies

significantly which depends on loading and micro-architecture. Even though both lat-

tices have identical knocked-down in macroscopic modulus (ω∗ ≈ 0.02), their internal

damage distribution, and percentage of damaged cell walls, are very different. For the

Triangular lattice, damage is highly localised in just a few cell walls of between 4 and

8 depending on micro-architecture; we will show later that this applies to all stretch-

dominated lattices. By contrast, damage is highly diffused and affect a large region

of the bending-dominated lattices. Note that the severity of damage are different in

each case; the damaged cell walls in the Triangular lattice reach a maximum ω = 0.4,

although for the Hexagonal lattice is just ω = 0.1.
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(a) Shear, N = 1.9× 106 (b) C-C, N = 6.1× 104

(c) Shear, N = 3.7× 104 (d) C-C, N = 9.6× 103

Figure 4.22: Damage distribution maps in (a,c) shear (τ ∗max/τ
∗
y = 0.56) and (b,d) C-C

(σ∗max/σ
∗
y = 0.75). The state of damage is plotted for the indicated cycle N , for which

the macroscopic modulus damage is ω∗ ≈ 2%.

Figures 4.23 and 4.24 show the damage maps for each lattice micro-architecture sub-

jected to cyclic shear (τ ∗max/τ
∗
y = 0.56) and C-C (σ∗max/σ

∗
y = 0.75); the case of a perfect

Square lattice in C-C is not considered which was explained earlier. The maps are plot-

ted for just before N = N1, where N1 corresponds to the cycle when cell wall(s) first

fail, see Fig. 4.17 and 4.18. This means that the maximum ω is similar in all lattices,

however ω∗ varies substantially between bending- and stretch-dominated lattices, as

already discussed previously. These maps clearly show that damage is highly localised

for the Diamond, Triangular and Kagome lattices compared to Hexagonal and Square

lattices. For all three stretch-dominated lattices, considerable ω is accumulated in only

four cell walls, while the rest of cell walls have ω ≈ 0. By contrast, ω is spread to

significantly greater proportion of the cell walls in the two bending-dominated lattices.

For the Hexagonal lattice, nearly all of its cell wall are damaged, with the exception of

those near its boundaries. The reverse is observed for the Square lattice - the specimen

remains undamaged at its bulk cells, whilst damage occurs next to the lattice bound-

aries.
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Figure 4.23: Damage distribution maps of lattices under cyclic shear. Damage levels

shown correspond to just before N = N1, where N1 corresponds to the cycle when

cell wall(s) first fail. Data shown is for R = 0.5 and τ ∗max/τ
∗
y = 0.56. The borders of

boundary layers are shown with green colour. For diffused boundary layers, the arrows

indicate the direction of decreasing boundary layer influence.
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Figure 4.24: Damage distribution maps of lattices under cyclic shear. Damage levels

shown correspond to just before N = N1, where N1 corresponds to the cycle when

cell wall(s) first fail. Data shown is for R = 0.5 and σ∗max/σ
∗
y = 0.75. The borders of

boundary layers are shown with green colour. For diffused boundary layers, the arrows

indicate the direction of decreasing boundary layer influence.
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The regions in a lattice where elevated damage is observed, e.g. ω ≈ 0.5 in the damage

maps, is a consequence of edge effects. The cell walls within these regions are the first

to fail at cycle N = N1. In Figs. 4.23 and 4.24, the border between a boundary layer

and ‘bulk’ cells is indicated with green lines; these are described in detail in Chapter

3. However, for some lattices - the Kagome and Hexagonal in compression and the

Triangular and Square in shear - there is no clear border between a boundary layer and

the bulk cells; an approximate boundary is shown using dotted lines and the direction

towards which its influence decreases is indicated with arrows. For the lattices that

have a clear border between boundary layer and bulk cells, the location of maximum

ω occurs along the border; this is also the location of the first cell wall failure. For the

lattices without a definite border, the location of high damage is within the boundary

layers. These results are not surprising. The cell walls within the boundary layers

experience higher local stresses compared to the bulk of the lattice cells because the

‘local’ lattice modulus within the boundary layers is reduced compared to the ‘bulk’

modulus, see Chapter 3. The only exception the Hexagonal lattice in shear where the

cell walls in the bulk of the lattice are highly damaged, rather than in the boundary

layers. This is believed to be due to the bending mode superimposed on shear for

specimens of low aspect ratio (W/H), which induces stiffer boundary layers relative

to the bulk cells (Diebels and Steeb, 2002).

4.6.3 Fatigue response of infinite-sized lattices

Even though all three stretch-dominated lattices, in their perfect state, fail by the same

macroscopic damage accumulation mechanism - i.e. by rapid complete lattice failure

following N1 - the estimate N∗f for each lattice vary significantly. The next point to be

investigated is the fatigue response in the absence of boundary layers, by addressing

two questions: (1) does a finite- and infinite-sized lattice of the same stretch-dominated

micro-architecture have the same N∗f and (2) is the differences in N∗f , among the dif-

ferent stretch-dominated micro-architectures, also witnessed for the infinite-sized lat-

tices? To investigate this, the FE models used in the unit-cell approach of Chapter 2, are

adopted here and coupled with the NLCD-FE model. By using the necessary boundary

conditions, Eqs.(2.9) and (2.12), the effects of finite boundaries are eliminated, so the

role of lattice micro-architecture is isolated.
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Figure 4.25: Macroscopic modulus damage accumulation, ω∗, under (a) shear

(τ ∗max/τ
∗
y = 0.75) and (b) C-C (σ∗max/σ

∗
y = 0.75).

Figure 4.25 shows the macroscopic modulus damage accumulation, ω∗, for Kagome,

Triangular and Diamond lattices in shear and C-C loading. The infinite-sized lattices

were found to have substantially longer N∗f compared to their finite-sized counterparts.

In shear loading, the applied macroscopic stress shown is τ ∗max/τ
∗
y = 0.75; the value of

τ ∗max/τ
∗
y = 0.56 used in Fig. 4.17, gives no damage, since the stress in all cell walls are

below the endurance strength σe.

By comparing the three infinite-sized lattice micro-architectures together, a different

picture emerges compared to their finite-sized counterparts; the differences among the

three micro-architectures are significantly less pronounced here. For shear loading and

finite-sized lattices N∗f ranges from 5 × 104 for the Kagome lattice to 3 × 105 for the

Diamond lattices; see Fig. 4.14a. However for the infinite-sized lattices, the range in

fatigue life is 106 < N∗f < 3×106; interestingly, the order of shorter to longerN∗f is the

same. In C-C loading, the differences among the three infinite-sized lattices are negli-

gibly small with N∗f ≈ 106, contrary to what is observed for finite lattices where N∗f

ranges from 8× 104 for the Triangular to 106 for the Diamond lattice. The small differ-

ences in N∗f for shear fatigue can be explained by looking at cell wall stresses. Figure

4.26 plots the normalised maximum stress in cell walls for each lattice, σmax/ (σs)y,

with N∗f . For shear loading, a near linear correlation is found. For compression, all

three lattices are found to have similar σmax/ (σs)y, which is unsurprising since there

are no differences in N∗f .
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Figure 4.26: Variations of maximum normalised cell wall stress, σmax/ (σs)y, with N∗f

for infinite-sized stretch-dominated lattices in (a) shear and (b) C-C loading.

4.6.4 Effects of specimen size

From the results in Section 4.6.3 above, it can be deduced that cells in the bulk of

a lattice play a secondary role in the fatigue response of periodic micro-architectures

whilst the boundary layers have the dominant role. The nature, size and the influence

of the boundary layers is directly linked to the lattice micro-architecture and the remote

loading as already discussed in detail in Chapter 3. One would expect that the fatigue

response of a very large finite lattice would approach the corresponding response of an

infinite-sized lattice, as is the case with the monotonic properties.

In order to investigate the above hypothesis, a set of preliminary results are produced as

a basis for further future work. Figure 4.27 plots ω∗ −N curves for Diamond and Tri-

angular lattices in shear, where specimens of various sizes - without any imperfections

- are shown. The fatigue response of both lattices is found to be sensitive to specimen

size. For the Diamond lattice, their fatigue life is found to reduce as the specimens gets

bigger, despite that the specimens are of similar R = W/H - hence their monotonic

properties have very similar values. A similar trend is also observed for the Triangular

lattice, where the larger the lattice the lower the N∗f . This is observed for both aspect

ratio W/(H−2) presented; from Fig. 3.39, Triangular lattices of the same Rc have the

same shear monotonic properties. Further work is thus required to better understand the

mechanisms that leads to this specimen size dependency. A likely explanation for this,

is that the local stresses within the boundary layers are higher for the larger specimens,

hence fatigue damage initiates at an earlier cycle, leading to reduced N∗f .
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Figure 4.27: Macroscopic modulus damage accumulation, ω∗, for (a) Diamond and (b)

Triangular lattices of various sizes W ×H . The loading is cyclic shear with τ ∗max/τ
∗
y =

0.56 and load ratio R = 0.5.

4.7 Summary

In this Chapter, the fatigue performance of periodic lattices was investigated by adopt-

ing a fatigue damage model coupled with lattice finite element models. Initially, the

method is validated using experimental results for Diamond lattices subjected to shear

fatigue, showing very good agreement. The effect of load ratio R and τ ∗max/τ
∗
y are

shown to be adequately captured by the model.

The fatigue response of Diamond, Triangular, Kagome, Square and Hexagonal lattices

in shear and compressive cyclic loading and its sensitivity on the presence, and severity,

of imperfections is investigated. For the stretch-dominated lattices, imperfections are

introduced based on the buckling of the constituent struts - as given by eigenvalue

analysis - whilst for the bending-dominated lattices the vertex perturbation method.

The fatigue life and endurance strength of stretch-dominated micro-architectures, are

found to be significantly reduced by the presence of imperfection; the extend of the

reduction depends on the lattice and the severity of buckling modes considered. On the

other hand, the bending dominated micro-architectures are insensitive to the presence

of imperfections.

For perfect lattices, the estimated fatigue life is found to depend on lattice micro-

architecture, but there is no indication that the stretch-dominated micro-architectures
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hold any advantage over the bending-dominated ones. For imperfect lattices, some lat-

tices are found to give similar fatigue response and cluster together in the estimated

S − N diagrams. However, this is only intended to give an approximate lower bound

of the fatigue life in real lattices.

The bending-dominated lattices are found to accumulate damage in a greater percent-

age of cell walls as opposed to stretch-dominated lattices, where significant damage is

observed in only few cell walls; in some cases only four. This leads to a more progres-

sive macroscopic damage accumulation rate in the bending-dominated lattices. The

location where elevated damage is concentrated is found to be directly associated with

the presence of edge effects. By using the unit-cell approach, as introduced in Chapter

2, with stretch-dominated lattices, the lattice micro-architecture in the bulk of a spec-

imen is shown to have only a minor influence on the estimated fatigue life; the small

differences are explained by the cell wall stresses. The cells at the boundary layers are

thus more influential on the estimated life. The differences in estimated fatigue life

among the five lattices are thus attributed to the differences in the induced boundary

layers in each of the lattices. Lastly, the role of specimen size is briefly investigated

where larger lattices are found to give shorter fatigue life; further work is thus required

to delineate why the specimen size affects the estimated fatigue response.



Chapter 5

Fracture

5.1 Introduction

In this chapter, the fracture behaviour of stochastic lattices, made up of elastic-brittle

ligaments (or struts), will be studied and the results compared to their periodic counter-

parts. Previously, Fleck and Qiu (2007) and Romijn and Fleck (2007) had characterised

the fracture behaviour of elastic-brittle periodic lattices – Triangular, Kagome, Hexag-

onal, Square and Diamond – in both their perfect and perturbed (by using the vertex

perturbation technique described in Section 1.1.2) states. Here, a similar ‘boundary-

layer analyses’ (BLA) shall also be employed to quantify the bulk toughness of the

non-periodic Voronoi lattices. The BLA approach assumes the existence of an ide-

alised K-field around the crack-tip of these stochastic lattices and it will be used to

investigate the effects of cell-regularity, relative density, mode mixity and T -stress,

upon the predicted toughness, as well as the location of incipient cell wall fracture.

Two commonly-used test specimen geometries will also be modelled using FE and the

fracture toughness predicted by these will be compared to predictions by the BLA. The

differences in predictions will be explained through a numerical-based ‘displacement

field analysis’ (DFA) approach.

5.2 Methodology

Voronoi lattices – with a range of Λ – are generated following the procedure outlined in

Section 1.1.3. They are modelled using finite elements; the procedures were described

in Chapters 2 and 3 so they are not repeated here. It is worth emphasizing that the

corresponding results for each Λ are based on an average of 20 independent tessella-

tions: this is necessary because of the stochastic nature of the cell micro-architecture

in Voronoi lattices. Two different methods are employed here to impose the remote
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loading to these lattices. First, the BLA is used to study the idealised stress-field that

would develop around the crack-tip, in a manner similar to existing literature (Choi and

Sankar, 2005; Fleck and Qiu, 2007; Romijn and Fleck, 2007). In addition, two standard

test-specimen geometries – the single-edge notched in three-point-bending (SEN-3PB)

and the compact tension (CT) specimens – are also modelled using FE. The BLA ap-

proach tacitly assumes an infinite-sized lattice that is not influenced by edge-effects,

i.e. the toughness estimated by the BLA is a bulk (intensive) value. However, with the

standard test-specimen approach, the lattice may/may not be influenced by size and/or

boundary effects; this is to be investigated in Section 5.4. One would expect similar

toughness predictions by the BLA and the two standard specimen configurations, pro-

vided the latter are sufficiently large to minimise the impact of size effects. However,

it will be shown later that this is not always the case and the reasons for this will be

identified.

For both methods, a deterministic approach, similar to that employed in Choi and

Sankar (2005); Fleck and Qiu (2007); Romijn and Fleck (2007), is employed to de-

termine the fracture toughness of a lattice. The cell walls in a lattice are assumed to

be elastic-brittle with no dependence on scale, i.e. failure always occurs at the same

maximum stress, regardless of the cell wall dimensions. For such an idealised material,

failure occurs when the local stress at the outermost fibre of any beam element in the

lattice reaches the cell wall fracture strength of σf .

5.2.1 Boundary-layer analysis (BLA)

Figure 5.1 shows a schematic of a typical Voronoi lattice (Λ = 1) with n × n cells

that has been implemented in ABAQUS/standard®. A long plane-strain crack of length

α = nd0/2 is assumed to align along the negative x1 axis, where d0 = l
√

3 and l is the

uniform cell wall length corresponding to a periodic Hexagonal lattice. The crack-tip is

located at the nucleation point of the crack-tip cell. The displacement field associated

with the in-plane stress field around a crack-tip, this is given in Eq.(1.14), is applied to

the boundary nodes of the FE mesh. This approach was employed by Fleck and Qiu

(2007) and Romijn and Fleck (2007). The predicted toughness corresponds to the value

of applied stress intensity factor (SIF), K, such that the maximum local tensile stress
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Figure 5.1: Schematic of the model used in a BLA that contains a long plane-strain

crack aligned along the negative x1 axis. The Cartesian coordinates (x1, x2) and polar

coordinates (r, θ) are centred at the crack-tip.

in any ligament reaches σf .

The displacement field (u1, u2) associated with the asymptotic K-field – the leading

term in Eq.(1.14) – around a plane-strain crack in an infinite elastic solid is given by

(Kanninen and Popelar, 1985)

ui =
1

2G∗ps

√
r

2π

[
KIûi(θ, ν

∗
ps)

I +KIIûi(θ, ν
∗
ps)

II] ; i = 1, 2 (5.1)

where ûi(θ, ν∗ps)
I and ûi(θ, ν∗ps)

II are functions of θ; the plane-strain Poisson’s ratio ν∗ps of

the lattices; and, G∗ps is the macroscopic plane-strain shear modulus. For mixed-mode

loading, the relative contributions of KI and KII are controlled by means of an elastic

mode-mixity parameter M defined as (Shih, 1974)

M =
2

π
tan−1

(
KII

KI

)
; 0 ≤M < 1 (5.2)

where the limiting values of M = 0 and M → 1− correspond to pure mode I and mode

II SIF, respectively. The decoupling of modes in isotropic elasticity allows the total

energy release rate G for mixed mode fracture to be written as

G =
K2

I

E∗ps
+
K2

II

E∗ps
(5.3)
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from which an effective SIF may be defined as follows:

Keff =
√
K2

I +K2
II . (5.4)

To account for the second term of Eq.(1.14) – the T -stress – an additional term is added

to the displacement field in Eq.(5.1), accordingly, as follows:

u1 =
(1− ν∗ps)

2G∗ps
Tr cos θ and u2 = −

ν∗ps

2G∗ps
Tr sin θ . (5.5)

The magnitude of T -stress is typically normalised by the effective SIF to give the stress

biaxiality ratio defined as

B =
T

Keff
√
α

. (5.6)

By imposing the K-displacement field on the lattice boundary, it is tacitly assumed

that the lattices are isotropic and homogeneous with effective elastic properties that are

known a priori. Recall that the macroscopic elastic properties of infinite-sized Voronoi

lattices were previously presented in Chapter 2; see, specifically, Figs. 2.7 and 2.8.

Since the elastic properties were obtained under plane-stress conditions, they need to

be modified to their plane-strain equivalent before they can be used with Eq.(5.1). The

elastic modulus of the lattices in the prismatic x3 direction is E33 = ρEs and its Pois-

son’s ratio is ν31 = ν32 = νs (Gibson and Ashby, 1997). Under plane-strain conditions,

with ε3 = 0 and σ3 = ν31σ1 + ν32σ2, the modified elastic moduli and Poisson’s ratio

become

E∗ps =
2E∗

2− 3ρ2ν2
s

, ν∗ps =
2 + 3ρ2ν2

s

2− 3ρ2ν2
s

, G∗ps =
E∗ps

2(1 + ν∗ps)
. (5.7)

The finite element mesh used is similar to that described earlier in Section 2.5.2. A

crack is generated along the negative x1-axis by splitting the beams at x2 = 0, so that

a traction-free crack plane is created. Numerical checks have shown that it suffices to

model each cell wall with four Timoshenko beams elements (B21) without any loss of
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Figure 5.2: Typical variation of the mode I fracture toughness of a periodic Hexagonal

lattice against overall lattice size of n× n cells predicted by a BLA.

accuracy. Even though a BLA is employed to estimate the fracture toughness of infinite-

sized lattices, the actual lattice modelled in FE is finite-sized. By imposing Eq.(5.1) to

the boundaries of the FE mesh, one tacitly assumes far-field loading conditions, i.e. the

lattice is infinite. To this end, the lattice modelled would need to be sufficiently large

so that its boundary does not affect the crack-tip stress state. The macroscopic fracture

toughness of the Voronoi lattices was found to be sensitive to lattice size. Figure 5.2

shows how the mode I fracture toughness, KIC, of a periodic lattice (Λ = 1) varies with

the overall lattice size (of n×n cells). The same also applies to non-periodic Hexagonal

lattices. As a compromise between computational time and numerical accuracy, all

simulations were performed using lattices with 200× 200 cells.

5.2.2 Standard test specimen configurations for toughness testing

Figure 5.3 shows the schematic of two finite-sized standard test-specimen geometries,

viz. CT and SEN(B)-3PB, that are modelled using finite elements; hereinafter, they are

simply referred to as standard specimens for brevity. The specimen size is dictated by

its principal dimensionW , whilst the rest of its dimensions scale proportionally withW

according to ASTM E399-12e1 (2012), E1820-11e2 (2011) and D5045-99e1 (2007).

The specimen size W will be normalised by their respective characteristic cell size to

give W/d0. Note that a K-based method, e.g. ASTM E399-12e1 (2012), recommends
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Figure 5.3: Schematics of the set-up for (a) SEN(B)-3PB and (b) CT specimen config-

urations

minimum test specimen size requirements to ensure that the plastic zone around the

crack-tip is small compared to the specimen cross section so that fracture occurs under

nominally linear-elastic conditions. However, this need not be considered here since

the present work is concerned only with elastic-brittle ligaments where no plastic zone

develops in the lattices. A macroscopic crack aligned in the x1 direction – note the

orientation of the axes in the SEN(B)-3PB specimen in Fig. 5.3a – of length α = 0.5W

is used throughout the analysis.

One of the key objectives in this study is to compare the toughness prediction by the

BLA for an infinite-sized lattice to those ‘measured’ by the two finite-sized standard

specimen configurations. As it will be shown later, cell microstructural variations

around the crack-tip can cause significant variations in the predicted toughness. There-

fore, to make sensible comparisons, it is imperative that the topology of those cells

surrounding the crack-tip is identical for both the standard specimens and that used in

the BLA. To achieve this, each independent tessellation generates a master lattice which

is ‘trimmed’ to give seven different specimen sizes, viz. W/d0 = 10, 15, 20, 25, 30, 50

and 100, for each of the two configuration. The ‘trimming’ process, shown schemat-

ically in Fig. 5.4, generates lattices that contain identical set of cells surrounding the

crack tip, regardless of W/d0, for both standard specimens and that used in the BLA.

Frictionless surface interaction is used to model contact between the pins and specimen

shown in Fig. 5.3, with the former as solid non-deformable bodies. For the standard
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Figure 5.4: Schematic of the trimming process to generate CT (blue) and SEN(B)-3PB

(red) specimens of various sizes (only two sizes are shown here). The actual dimension

of the BLA lattice (green) used is much larger than the one shown here, which is for

illustration purposes only.

SEN(B)-3PB configuration, a finite displacement is prescribed to the loading pin along

the x1 direction and all degrees of freedom of the other pins are constraint. For the

standard CT configuration, a relative displacement is imposed on the two loading pins

along the x2 direction, whilst keeping their other degrees of freedom constraint. No

other boundary conditions are imposed on the lattice itself. Just like in the BLA, the

FE mesh is modelled with four Timoshenko beam (B21) elements per cell wall and

plane strain conditions are enforced along the prismatic x3 (out-of-plane) direction.

For the two different standard specimen configurations, fracture toughness is estimated

by recording the pin load PQ, corresponding to the onset of fracture in any ligament,

and substituting this into (E399-12e1, 2012)
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KIC = 3
PQ√
W

S

W

√
α

W

1.99−
(
α
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) (
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) [
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(
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]
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(5.8)

to calculate the toughness predicted using a SEN(B)-3PB configuration and into

KIC =
PQ√
W

(
2 +

α

W

)
[
0.886 + 4.64 α

W
− 13.32

(
α
W

)2
+ 14.72

(
α
W

)3 − 5.6
(
α
W

)4
]

(
1− α

W

)3/2

(5.9)

for the CT configuration.

5.3 Fracture toughness of infinite-sized Voronoi lattices

In this section, the ‘boundary-layer’analysis (BLA) is employed to investigate the ef-

fects of cell-regularity Λ, relative density ρ and T -stress on the bulk mode I (KIC) and

mode II (KIIC) toughness of Voronoi lattices. Mixed-mode loading - controlled by a

mode-mixity parameter M - is introduced to construct the fracture loci of Voronoi lat-

tices and how they are affected by Λ and T -stress. The sensitivity of the location of

incipient cell wall fracture to mode-mixity M is also investigated.

5.3.1 Mode I and mode II fracture toughness

Figures 5.5a to 5.5f show the deformed FE mesh for Voronoi lattices, of identical rel-

ative density ρ = 0.1, with different cell-regularity (Λ → 0+, 0.7, 1) subjected to pure

mode I and II loadings. Only 50× 50 cells are shown in each case; they were truncated

from larger lattices of 200× 200 cells.

The average fracture toughness of the lattices were fitted to the scaling law (Fleck and

Qiu, 2007; Gibson and Ashby, 1997)

KC

σf
√
l̂

= Dρd (5.10)
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Figure 5.5: Typical lattice deformation under mode I, mixed-mode and mode II load-

ings. Lattices shown have cell-regularity Λ → 0+,Λ = 0.7 and Λ = 1, and identical

relative density of ρ = 0.1.
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Λ 0 0.25 0.5 0.6 0.7 0.8 1

Mode I d 1.974 1.987 1.988 1.987 1.981 1.987 1.994

D 0.691 0.790 0.825 0.795 0.836 0.887 0.927

Mode II d 2.001 2.010 2.004 2.015 2.010 2.013 2.019

D 0.420 0.442 0.461 0.479 0.480 0.480 0.486

Table 5.1: Fitted coefficients to the scaling law given in Eq.(5.10).

and plotted on a log-log scale in Fig. 5.6. Note that Eq.(5.10) uses the average cell wall

length l̂ from Table 2.2. Recall that for the non-periodic lattices, their toughness is an

average of twenty tessellations but their respective error bars are not shown for the sake

of clarity. Figure 5.6 shows that the predicted lattice toughness fits well the scaling law

of Eq.(5.10) with the fitted coefficients tabulated in Table 5.1.

Regardless of cell-regularity or the loading mode, the fracture toughness KC has a

quadratic dependence on ρ. This is to be expected since a Voronoi lattice, whether peri-

odic or non-periodic, has an average nodal connectivity of 3 and, therefore, they deform

primarily by cell wall bending with negligible contributions from axial stretch. The ef-

fects of cell-regularity upon the lattice toughness is determined by the pre-exponent

D which is given in Table 5.1. It shows that the average mode I toughness is more

sensitive to cell-regularity than its corresponding mode II counterpart.

Figure 5.7 plots KC/(σfρ
2) against l̂ for lattices with the same relative density ρ = 0.1.

The square root dependence of KC/(σfρ
2) on the average cell wall length l̂ (see

Eq.(5.10)) is the same for both periodic and non-periodic lattices with identical ρ.

Therefore, adjusting either the cell wall thickness uniformly or the average cell wall

length proportionally to obtain the required ρ has no effect upon the pre-exponent D

in Eq.(5.10). This contradicts the findings of Choi and Sankar (2005) for cubic 3D lat-

tices, where the authors reported a difference in response when ρ is adjusted by chang-

ing cell size rather than cell wall thickness; the validity of their results were similarly

questioned by Romijn and Fleck (2007).

Figure 5.8 shows the variation of the average non-dimensional toughnessKC/(σfρ
2
√
l̂)

with cell-regularity under pure mode I and II loadings. Again, each data point is the

average of twenty tessellations and the error bar corresponds to their standard devi-
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Figure 5.7: Variation of normalised fracture toughness KC/(σfρ
2) against average cell

wall length l̂ for stochastic Voronoi (Λ = 0.5) and Hexagonal (Λ = 1) lattices to mode

I and mode II loadings. Each data point corresponding to a stochastic lattice is based

on an average of twenty tessellations and the error bar indicates standard deviation. All

lattices have identical relative density of ρ = 0.1.
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ation. The effect of ρ is eliminated by the non-dimensionalisation, so the two plots

for ρ = 0.05 and 0.1 nearly collapse on each other. One observes an almost linear

reduction in the average mode I toughness with decreasing cell-regularity, by up to

25% between Λ = 1 and Λ → 0+. Note that a 15% reduction in ρ would be needed

to achieve a corresponding reduction in the toughness of a periodic Hexagonal lattice

(Λ = 1). This suggests that cell-regularity Λ has a significant effect upon the mode I

toughness of the lattices, but is secondary compared to the effects of ρ. No inference

could be made for mode II loading since the fluctuations in toughness are nearly the

same for all Λ. By contrast, as the cells become more irregular, the average in-plane

elastic moduli of the lattices increases by up to 20% between Λ = 1 and Λ → 0+;

this increase depends on ρ as seen in Fig. 2.7). Note that the standard deviation does

not appear to be influenced by Λ. In general, the toughness can vary by up to ±20%

from the mean value between tessellations. The main reason for the high variability is

because cell wall fracture can initiate several cells away from the crack tip, depending

on the local cell topology; this is to be addressed in Section 5.3.3.

Romijn and Fleck (2007) reported that for lattices with ρ = 0.01, there is a 30% reduc-

tion in their averageKIC and a 20% increase in their averageKIIC value if vertex pertur-
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Figure 5.8: Variation of non-dimensional mode I and II fracture toughness

KC/(σfρ
2
√
l) against cell-regularity for lattices with ρ = 0.05, 0.1. Each data point

is an average of twenty tessellations and the error bar indicates standard deviation.
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bation with κv = 0.5, see Eq.(1.3), is introduced into the lattice. As noted in Chapter 1,

a non-periodic lattice generated using the vertex perturbation technique by Romijn and

Fleck (2007) would still give a substantively less random cell microstructure (measured

in terms of the distribution of cell area) than a Voronoi lattice of Λ = 0.5. Nevertheless,

the difference in KIC of the average Λ = 0.5 Voronoi lattice compared to the periodic

Hexagonal is less than 10% whilst the difference in KIIC is negligible. The reason for

this discrepancy is unclear although one possibility is that the cells in a two-dimensional

Voronoi lattice, regardless of its cell-regularity, are always convex unlike those gener-

ated by the random cell wall perturbation technique where the local Poisson’s ratio may

be negative - this is due to re-entrant cell walls - in some cases.

5.3.2 Mixed-mode fracture toughness

Figures 5.5g to 5.5i show the deformed FE mesh for Voronoi lattices, with different

cell-regularity (Λ → 0+, 0.7, 1), under mixed mode loading of M = 0.5. At each

mode-mixity M , the combinations of KI and KII needed for a cell wall to fracture are

used to generate the fracture loci plotted in Fig. 5.9a. The loci are plotted for a constant

ρ = 0.1 and each data point is the average of 20 tessellations. It must be noted that the

fracture loci are insensitive to ρ.

The fracture locus of a periodic lattice comprises of two distinct straight line segments

separated by a kink at M ≈ 0.15; the same is reported by Fleck and Qiu (2007). This

kink coincides with a jump in the location of wall fracture as mode-mixity changes,

from A to B as shown in Fig. 5.9b. For the stochastic Voronoi lattices, the absence

of a kink in Fig. 5.9a is a consequence of smoothing when averaging the results from

twenty independent tessellations. In general, the smoothed loci appears as a quarter

ellipse that are largely similar for different values of Λ.

Notwithstanding, the fracture locus of individual tessellations always shows straight

line segments as shown in Fig. 5.10a for four different Λ = 0.5 tessellations. Without

averaging, the loci remain inner convex envelopes, but unlike in Fig. 5.9a, are a series

of straight segments separated at multiple kink(s), each corresponding to a jump in the

cell wall fracture location at that mode-mixity. Figure 5.10b shows the lattice topology

for tessellation 1. For this particular tessellation, fracture initiates at cell wall marked



180 5.3. Fracture toughness of infinite-sized Voronoi lattices

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6                +0→Λ
5Λ = 0.
7Λ = 0.

Λ = 1

IC/KIK

IC
/
K

II
K

(a)

A
B

(b)

Figure 5.9: (a) Normalised fracture loci for Hexagonal and stochastic Voronoi lattices.

All lattices have identical relative density of ρ = 0.1 and each data point corresponding

to Λ 6= 1 is the average of twenty tessellations; (b) Location of cell wall fracture for a

periodic Hexagonal lattice. Points A and B indicates the location of fractured cell wall

under pure mode I and mode II loadings, respectively.
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Figure 5.10: (a) Normalised fracture locus of four typical Voronoi tessellations gener-

ated for Λ = 0.5 and Λ = 1; (b) Location of cell wall fracture for Tessellation 1 in (a)

whereA,B andC indicates the switch in fracture location with increasing mode-mixity

M .
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A if mode-mixity M < 0.14, at B if 0.14 ≤ M ≤ 0.6 and at C if M > 0.6. Note that

the number of kinks and at which mode-mixity it appears vary from one tessellation

to another without a set pattern for non-periodic lattices: this contrasts with a periodic

one.

5.3.3 Location of fracture initiation

Unlike solid materials, the crack path in lattices is, in general, discontiguous where the

location of the incipient wall fracture can, in extreme cases, occur up to six cells away

from the crack-tip cell (Motz and Pippan, 2002; Olurin et al., 2000; Saenz et al., 2011).

For a Hexagonal lattice, fracture initiation always occurs at point A for pure mode I

loading as shown in Fig. 5.9b. This contrasts with the assumption made by Gibson

and Ashby (1997) and Maiti et al. (1984) where the cell wall immediately ahead of

the crack-tip, part of the crack-tip cell, is assumed to fracture first. For mode-mixity

M ≥ 0.15, the fracture site switches to point B. All subsequent values of M , including

for pure mode II fail at cell wall B. This switch coincides with a kink in the fracture

locus in Fig. 5.9a. It is worth noting that ρ has no effect upon the location of fracture -

this is consistent with that reported in Fleck and Qiu (2007).

For stochastic lattices, the number of kinks in the fracture loci - that correspond to a

shift in fracture location - and at which mode-mixity they appear vary from one tes-

sellation to another without a set pattern. It appears that local variations in the cell

topology have a strong influence on the stress magnitude in individual cell walls and,

consequently, the location of incipient wall fracture. The differences in the results be-

tween lattices of the same Λ are indicative of the sensitivity of the predicted toughness

on the local cell topology surrounding the crack-tip. The cell-regularity parameter, Λ,

is merely a global parameter that places a constraint on the minimum cell size and the

distribution of cell sizes in a lattice, and it has no direct control over the cell topology

surrounding the crack-tip.

Figure 5.11 shows the location of the fractured cell walls for Voronoi lattices of two

different ρ (0.05 and 0.1) at three different mode-mixities - mode I, II and M = 0.5.

Recall that the FE model, see Fig. 5.1, was set-up in such a way that the crack-tip

coincides with the nucleus of the crack-tip cell. Each fracture location map plots the
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Figure 5.11: Location of incipient wall fracture in stochastic lattices. The mid-point of

the fractured cell wall is shown as a dot and the orientation of the cell wall as a line.

The circular contours indicate the average number of cells away from the crack-tip.
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predicted fracture sites from all twenty tessellations carried out for every Λ investigated.

The dot • in the failure map indicates the fracture site whilst the line indicates the

orientation of the failed cell wall. The contours of constant radius give the average

number of cells away from the crack-tip cell, calculated by taking the average distance

of the cell vertices from the crack tip for one hundred tessellations. Unsurprisingly,

there is a significant amount of scatter in the observed failure sites, indicating that the

fracture process in stochastic Voronoi lattices is highly random. It is evident that the

majority of the failures occur near the crack tip, in cells adjacent to the crack-tip cell.

However, fractured cell walls were also observed up to six cells away from the crack-

tip cell, which is consistent with experimental observations (Motz and Pippan, 2002;

Olurin et al., 2000; Saenz et al., 2011). As Λ decreases, the observed fracture locations

are increasingly dispersed which is consistent with the increased level of randomness

in cell topology. Notice that ρ has almost no influence over the location of fracture, this

is the same for Hexagonal lattices; compare (a,b), (c,d) and (e,f) in Fig. 5.11.

The loading mode appears to have a strong influence over how the failed cell walls

are clustered around the vicinity of the crack-tip. Under mode I loading, most of the

fractured cell walls are clustered between the sectors of −120◦ > θ > −45◦ and

45◦ > θ > 120◦ - see Fig. 5.11a and b. In mode II, the majority of the fractured cell

walls are clustered between −30◦ > θ > 30◦ ahead of the crack-tip, with significant

notable exceptions behind the crack-tip. For mixed-mode loading (Fig. 5.11c and d

shows the case for M = 0.5), the fractured cell walls are clustered between the sectors

of 0◦ > θ > 45◦ and −135◦ > θ > −90◦. As mode-mixity increases from 0 to 1,

the clustering of the failed walls also shifts relative to the crack plane as depicted in

Fig. 5.11. In general, it is observed that lattices of different Λ exhibit similar clustering

patterns at the same mode-mixity. There appears to be no direct correlation between the

location, orientation and length of fractured cell wall with variations in the macroscopic

lattice toughness.
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5.3.4 Effects of T -stress

By combining the displacement fields corresponding to the asymptotic K-field and T -

stress, Eqs.(5.1) and (5.5) respectively, the effects of T -stress are investigated using

the BLA method. Because no contact algorithm is incorporated into the FE model,

the two sets of nodes that define the traction-free crack plane are not allowed to come

into contact, thus limiting the range of B that can be investigated. In the present study,

contact between the crack planes occurs at B > 0.3 (for mode I) and at B > 0 (for

mode II). For mixed-mode loading, the mode-mixity directly influences when contact

between the crack faces will occur; for example, at M = 0.5 crack closure occurs for

B ≥ 0.2 as shown in Fig. 5.12.

Figure 5.12 shows the effect of T -stress on the normalised effective toughness,

Keff,C/K
0
eff,C, where K0

eff,C is the corresponding critical SIF for B = 0. Again, the

data points for Λ 6= 1 is the average of twenty tessellations. It would appear that the in-

fluence of T -stress on the normalised effective toughness is most pronounced for mode

I loading with negative T -stresses. The normalised effective fracture toughness of a lat-

tice decreases rapidly with increasing negative T -stresses: at B = −1, the reduction in

effective toughness is, on average, nearly 75% for mode I and 50% for mode II loading.
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Figure 5.12: Variation of the normalised toughness Keff,C/K
0
eff,C against T -stress for

Voronoi lattices with different (a) cell-regularities and (b) relative densities
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Figure 5.13: Fracture loci of Voronoi lattices at increasing negative T -stress. The two

straight lines correspond toM = 0.4 and 0.7. All lattices have identical relative density

of 0.1. Each data point corresponding to Λ = 0.5 is the average of twenty tessellations.

The opposite is true for positive T -stresses, since an additional negative displacement

component in the x2 direction reduces the cell deformation in the vicinity of the crack

tip, leading to enhancement of the normalised effective toughness as seen in Fig. 5.12.

Again, mode I loading is more sensitive to the presence of positive T -stresses than

mode II.

Figure 5.12a shows that T -stress has the same effect on the normalised effective tough-

ness Keff,C/K
0
eff,C for both the periodic Hexagonal and stochastic Voronoi (Λ = 0.5)

lattices. At M = 0.5, the effective toughness of a stochastic Voronoi lattice is only

marginally lower than a corresponding Hexagonal one for negative T -stresses. Figure

5.12b compares the same for lattices of different ρ, at 0.05 and 0.1. In general, lat-

tices of a higher ρ are less affected by a finite T -stress which agrees with Fleck and

Qiu (2007). However, the reduction in effective toughness caused by a reduction in

ρ is only marginal, and comparatively insignificant, compared to the overall reduc-

tion caused by the introduction of T -stresses. Regardless, the quadratic dependence of

toughness K0
eff,C on ρ still holds.

Figure 5.13 shows the effect of T -stress on the normalised fracture loci for lattices with

Λ = 0.5 and 1. For negative T , the fracture locus expands as shown because mode I
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toughness is more sensitive to the inclusion of T -stresses than mixed-mode or mode

II. Unlike a Hexagonal lattice with zero T -stresses, the kink is now less prominent

and the switch in the initial cell wall fracture location occurs at a higher mode mixity

(at M = 0.4 and 0.7 for B = −0.5 and −1, respectively, indicated with dotted lines

in Fig. 5.13). At B = −1, the KII/KIC ratio becomes nearly doubled, from 0.47 to

0.95 and from 0.53 to 1.08, for a periodic lattice and a non-periodic lattice (Λ = 0.5),

respectively.

In the presence of finite T -stress, the clustering of the incipient cell wall changes

dramatically. Figure 5.14 shows the results for twenty lattices, with cell-regularity

Λ = 0.5, subjected to mode I, mode II and mixed mode (M = 0.5) loading at different

stress biaxiality ratio B. An increasing T -stress alters the clustering pattern and has the

effect of shifting the fractured cell walls to locations more typical of mode I loading as

described above. For high T -stress levels in Figs. 5.14j-l (B = −2 shown here), the

fracture locations recorded were very similar irrespective of mode-mixity. Note also

the observed locations for mode I remain unchanged at all values of B.

One likely reason for the significant dependence of T -stress to the effective macro-

scopic toughness of 2D Voronoi lattices is their near-unity Poisson’s ratio ν∗ps. Referring

to Eq.(5.5), T -stress induces additional boundary displacement which is predominantly

confined in the x2 direction, with minimal contribution in the x1 direction, if ν∗ps is close

to unity. Consequently, the effects of T -stress may not be as significant in lattices with

Poisson’s ratio between 0.3 − 0.5 (e.g. other periodic lattices and foams (Gibson and

Ashby, 1997)), and this would somewhat suppress the effect of T -stress upon tough-

ness.

5.3.5 Comparison with periodic lattices

In this section, the bulk toughness of stochastic Voronoi lattices, estimated previously

by the BLA, will be compared to existing results for periodic lattices obtained from the

literature and were reviewed in Chapter 1.

Figure 5.15 compares the toughness of periodic lattices reported by Romijn and Fleck

(2007) to the stochastic Voronoi lattices reported here. It is unsurprising that Voronoi

lattices of any cell-regularity – only Λ = 0.5 is shown in Fig. 5.15 – have a quadratic
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Figure 5.14: Failure locations of twenty different Voronoi lattices with Λ = 0.5. The

lattices are loaded under mode I, mode II and mixed mode (M = 0.5) with various

values of negative T -stress.



188 5.3. Fracture toughness of infinite-sized Voronoi lattices

dependence on relative density, much like the periodic Hexagonal lattices, since they

also have average nodal connectivity of 3; this is exemplified by d = 2 in Eq.(5.10).

Additionally, the pre-exponent D of both the Hexagonal and Voronoi lattices are also

similar; hence, the two curves in Fig. 5.15 are close to one other, particular for mode

II loading. The Triangular lattice, on the other hand, has an exponent of d = 1 whilst

the Kagome has d = 1/2, both being stretch-dominated lattices. The Square and Dia-

mond lattices, both are stretch-dominated architectures, also have an exponent d = 1 in

mode I although their pre-exponent D is significantly lower than the Triangular lattice.

Lattices that deform primarily by the same mechanism always have the same expo-

nent d; however, a lower pre-exponent D leads to a lower bulk toughness; compare,

for instance, the toughness of Diamond, Square and Triangular lattices in Fig. 5.15.

Interestingly, the exponent d of a Square lattice, but not for Diamond, changes from 1

in mode I to 3/2 in mode II. This oddity is observed because a Square lattice deforms

by stretch under uniaxial loading but by bending under shear. Overall, the Triangular

lattice has superior toughness compared to all other lattice micro-architectures – only

the Kagome lattice shows slightly higher toughness for ρ < 0.1. Under mode I loading,

the Hexagonal and Voronoi lattices, have the lowest toughness amongst all lattices. In
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Figure 5.15: Comparison of fracture toughness between stochastic Voronoi (Λ = 0.5)

and periodic lattices under (a) mode I and (b) mode II loadings. Each data point for

Voronoi is based on an average of 20 tessellations. Curves plotted for periodic lattices

are Eq.(1.17) with D and d as listed in Table 1.4.
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mode II, the toughness of a Square lattice is even lower compared to the Hexagonal and

stochastic Voronoi lattices.

Romijn and Fleck (2007) have previously reported that the toughness of some periodic

lattices is highly sensitive to imperfections - see review in Section 1.1.2. However, the

effects of ρ on toughness – this is reflected by the exponent d – have only been studied

for a maximum possible value of κv = 0.5. All the periodic lattices, with the exception

of Triangular, have an exponent of d ≈ 2 following vertex perturbations: this suggests

a shift in their dominant deformation from stretch to bending. The Triangular lattice, on

the other hand, remains stretch-dominated even with the introduction of imperfections

so that its exponent remains at d = 1. However, the aforementioned observations are

based on results for κv = 0.5, which is unrealistically imperfect. At more reasonable

values of κv, say κv < 0.1, the switch in the exponent d, from d = 1 to ≈ 2, is not

expected to happen since the lattices are expected to deform by a combination of stretch

and bending.

Romijn and Fleck (2007) reported the effects of κv on toughness – reduction or increase

– for lattices of relative density ρ = 0.01. The reduction in toughness, is greatest for the

Kagome and Diamond lattices: a 90% and 80% reduction, respectively, at κv = 0.5.

This huge reduction is primarily the result of a shift in the dominant deformation from

d = 1 to d ≈ 2. The Square lattice also exhibits a 80% reduction in toughness for

mode II but only 20% in mode I at κv = 0.5. This is because a Square lattice, in its

perfect (unperturbed) state, has d = 1 and d = 1.5 for mode I and II, respectively,

but this switches to d ≈ 2 for both modes (I and II) in its highly perturbed state.

Consequently, the larger knock-down in mode I toughness. The bending-dominated

Hexagonal lattice, on the other hand, shows a smaller reduction of 20% in mode I

but an enhancement of 20% in mode II at κv = 0.5; the similar reduction/increase is

because they have the same d for both its perfect and perturbed states. Even though

the Triangular lattices remain stretch-dominated after vertex perturbation, their pre-

exponent D is reduced significantly, by approximately 50% at κv = 0.5. However, as

κv reduces, the reduction in toughness is found to reduce for all lattices. The reduction

for κv = 0.1 is approximately 1/2 of the values indicated above for the extreme case

of κv = 0.5; this applies to all the lattices. Even though, the disparity in toughness
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between a Hexagonal lattice and the other four periodic micro-architectured lattices

reduces in the presence of vertex perturbation, Romijn and Fleck (2007) found that

the Hexagonal lattice always has the lowest toughness. Therefore, it is reasonable to

conclude that the Square, Diamond, Triangular and Kagome lattices - even in their

highly perturbed state - would have higher fracture toughness compared to stochastic

Voronoi lattices of any cell-regularity Λ.

5.4 Finite-sized standard test specimens

Previously in Section 5.3, the ‘bulk’ toughness for Hexagonal and Voronoi lattices were

predicted by using a BLA. Here, their fracture toughness will be predicted by modelling

two types of standard test specimen geometries, viz. CT and SEN(B)-3PB, in FE. The

objectives of this study are two fold. First, to establish how specimen size affects

the predicted toughness by the two different specimen geometries. Recall that only

elastic-brittle fracture is considered so the specimens are not bounded by any sizing

requirements given by ASTM E399-12e1 (2012). Second, the effects of different test

specimen geometries are to be investigated through comparing their predicted tough-

ness to the corresponding bulk value obtained by BLA. If test specimen geometry is

unimportant, and provided sufficiently large test specimens were modelled to eliminate

size effects, then one would expect similar toughness predictions by the BLA and the

two specimen geometries; however, it will be shown that this is not the case.

Recall that the lattice ‘trimming’ process, see Fig 5.4, ensures that identical cell topol-

ogy exists around the crack-tip for both the standard test specimens and BLA; this

eliminates variation in predicted toughness from cell microstructural variations around

the crack-tip. To limit the number of dependent parameters that need to be consid-

ered, all FE simulations are restricted to Voronoi lattices of cell-regularity Λ = 0.5 and

Λ = 1, with identical relative density of ρ = 0.1. The effects of ρ, average cell size l̂

and material properties are accounted for by normalising the predicted toughness with

ρ2σf
√
l̂. As in previous sections, each data point plotted are from an average of 20

tessellations and the error bar always refers to ± one standard deviation.
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5.4.1 Effects of test specimen size

Figure 5.16a shows how the predicted toughness KIC/(ρ
2σf
√
l̂) varies with specimen

size for a SEN(B)-3PB configuration. Notice that the specimen size is characterised

here by the uncracked ligament length (W −α)/d0. A minimum of 10 cells are needed

along the principal dimension W to ‘measure’ representative, i.e. size-independent,

toughness values. The results show that reduced toughness can be expected if under-

sized specimens were used. For the smallest specimen ((W − α)/d0 = 5) simulated

here, the toughness is ≈24% lower than its representative converged value.

A similar trend is also observed for perfect Hexagonal lattices in Fig. 5.16a. The slight

variations around the converged toughness value originates from the pin-specimen con-

tact geometry, which alternates between two configurations that correspond to speci-

men with odd and even number of Hexagonal cells along W (Christodoulou and Tan,

2013). The predicted toughness by a corresponding ‘boundary-layer’analysis (BLA)

is shown in the same figure as solid horizontal lines and their corresponding standard
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Figure 5.16: Effects of uncracked ligament length (W −α)/d0 on the predicted tough-

ness by a (a) SEN(B)-3PB and (b) CT standard specimen configuration. Data for

Voronoi (Λ = 0.5) lattices are average of twenty tessellations and the error bars cor-

respond to ± one standard deviation. Predictions by BLA are also plotted: solid hori-

zontal line gives the mean value of twenty tessellations, while the hatched region corre-

sponds to± one standard deviation. Results from the corresponding Hexagonal lattices

(Λ = 1) are also included.
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deviation as a hatched region. Note that the BLA predicts normalised toughness close

to unity with zero standard deviation for a Hexagonal lattice (Λ = 1). It is worth noting

that the SEN(B)-3PB configuration consistently over-predicts the representative bulk

toughness of a lattice, estimated from BLA, by approximately 10%. This is observed

for both the Λ = 0.5 Voronoi and Hexagonal lattices. The cause of this anomaly will

be identified later in Section 5.4.4.

Figure 5.16b plots the same for a CT configuration. Similar to the above, under-

sized specimens also predict a reduced toughness value. A minimum specimen size of

(W−α)/d0 > 10 is, also, needed to obtain a representative converged toughness value.

However, the reduction in toughness for an under-sized specimen is less pronounced in

the CT configuration – approximately 16% lower, compared to 24%, for the smallest

specimen of (W − α)/d0 = 5. The discrepancy between the toughness predicted by

a BLA and the CT configuration is even greater compared to the SEN(B)-3PB con-

figuration. This difference is 23% for the Voronoi lattices and 17% for a Hexagonal

lattice.

5.4.2 Strain maps

Continuous strain maps are generated – Appendix C describes the procedure – to elu-

cidate the two different contributions to edge effects in a finite-sized specimen. The

effects of overall specimen size on the strain field that develops in a specimen is first

investigated. The strain field of a sufficiently large specimen, one which is unaffected

by the aforesaid size-effect, will be compared to that predicted by a corresponding

BLA: the objective is to identify the source of the discrepancies between the predicted

toughness by the two test specimens and the BLA as shown in Fig. 5.16.

Figures 5.17 and 5.18 shows the strain maps for SEN(B)-3PB and CT specimens of

various sizes. Also shown is the corresponding strain map – truncated to size for the

purpose of comparison – predicted by a BLA. Each strain map plots the equivalent

strain corresponding to the incipient cell wall fracture given by

ε̄eq =
ρEs

σf

√
2

3
εijεij. (5.11)
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Recall that all maps plotted are the average of twenty tessellations.

The incomplete cells at the boundary are more compliant compared to its bulk - so

they are more likely to distort and rotate. Consequently, strain localisation bands –

comprising of deformed cells of varying severity – are observed to emanate from the

contact with the pin(s) into the bulk of the lattice; this is referred to as indentation-

induced. The indentation-induced strain localisation bands develop within the un-

cracked ligament of the SEN(B)-3PB configuration, whilst, they emanate at approx-

imately +45 deg / − 45 deg from the top/bottom pin holes, respectively, into the bulk

of the lattice in the CT configuration.

Two more strain localisation regions are observed, these are due to the presence of

the crack; referred to as crack-induced. These two regions emanate at a direction of

±120 deg from the x1 axis. They are clearly evident in the strain maps from the BLA

in Figs. 5.17 and 5.18 which corresponds to an idealised K-controlled fracture. A
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Figure 5.17: Equivalent strain (ε̄eq) maps for three specimen sizes, viz. W/d0 = 10, 20

and 50, corresponding to the SEN(B)-3PB configuration. The corresponding strain

map from a BLA is also shown. All maps plotted are the average of twenty Voronoi

tessellations.
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Figure 5.18: Equivalent strain (ε̄eq) maps for four specimens sizes, viz. W/d0 =

10, 20, 50 and 100, corresponding to the CT configuration. The strain map predicted by

a BLA is also shown with the corresponding location of the loading pins indicated for

the purpose of comparison. All maps plotted are the average of twenty tessellations.
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length of approximately 20d0 is required to diffuse the high strain concentration near

the crack-tip to moderate levels, e.g. from ε̄ > 0.3 near the crack-tip to ε̄ < 0.1 in the

far field.

Depending on the size of the specimen, the indentation-induced strain field(s) may

interact with the crack-induced strain field; this is particularly obvious for the smaller

specimens of W = 10d0 and 20d0. In both configurations, the smallest specimen

(W/d0 = 10) shows considerable interactions between the indentation- and crack-

induced fields. As W/d0 increases, the interaction between the two fields reduces.

Only when the specimens are sufficiently large (W/d0 = 50 and 100), a crack-induced

strain field reminiscent of the one predicted by a BLA is able to develop fully.

5.4.3 Discrepancies in predictions

For sufficiently-large test specimens, the interactions between the crack and

indentation-induced strain field reduce considerably and, consequently, the tough-

ness predicted by both the CT and SEN(B)-3PB specimens appear to reach a converge

value. Even though specimen size does not affect the results, the predicted toughness

by both standard specimens are still higher than that estimated by the BLA, see Fig.

5.16. Results from the SEN(B)-3PB specimen consistently over-predicts the toughness

predicted by the BLA, by approximately 10%. This is observed for both the stochastic

Voronoi and regular Hexagonal lattices. For the CT specimen, the difference is even

greater, approximately 23% for Voronoi and 17% for Hexagonal. It is important to

emphasise that the analyses are unaffected by cell microstructural variations around the

crack-tip by virtue of how the lattices were generated (see Fig. 5.4 in Section 5.2.2),

and any discrepancies in the predicted toughness must be due to the loading imposed

at the boundary which is generic to the specific specimen geometry.

From the strain maps shown in Figs. 5.17 and 5.18, it is evident that the strain field

for the larger specimens – W/d0 > 20 – differs considerably compared to the corre-

sponding idealised crack-induced strain field predicted by BLA. For the SEN(B)-3PB

configuration, bands of strain localisation develop ahead of the crack-tip – a direct

consequence of the compression induced by the loading pin. For the CT configura-

tion, the strain localisation bands emanate from the crack-tip at approximately ±135◦
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as opposed to ±120◦ predicted by an idealised BLA. Since the strain maps for the

W/d0 > 20 specimens reveal a more complex strain/stress state compared to the one

predicted by the BLA, it is believed that the K-field may not uniquely characterise

the crack-tip conditions in the two test specimens, even if they are unaffected by size-

effects. As shown earlier in this Chapter, the inclusion of a +ve T -stress leads to an

increase in the estimated toughness for Voronoi lattices. It is important to investigate

whether higher order terms are present and if their presence can explain the discrepan-

cies in the predicted toughness in Fig. 5.16.

5.4.4 Displacement field analysis (DFA)

A numerical-based displacement field analysis, or DFA for brevity, will be employed

here to investigate the significance of the higher-order terms – see Eq.(1.14) – in relation

to the crack-tip strain field that developed in the finite-sized test specimens of Figs

5.17 and 5.18. The method makes use of the nodal displacements predicted by the FE

models, immediately before the incipient fracture of any cell wall. For simplicity, the

analysis is performed using only Hexagonal lattices (Λ = 1) since their mechanical

response is largely similar to the stochastic Voronoi lattices. Additionally, only the

largest specimen of W/d0 = 100 is used to prevent artefacts that might arise from the

interaction between the crack- and indentation- induced strain fields.

5.4.4.a Formulations

The general form of the in-plane displacement field of a linear elastic cracked body,

under pure mode I loading, can be expressed by a series expansion as follows (Liu

et al., 2004; Williams, 1957):

u1 =
∞∑
n=1

{
An

rn/2

2G∗

[
κ∗ cos

n

2
θ − n

2
cos
(n

2
− 2
)
θ +

(n
2

+ (−1)n
)

cos
n

2
θ
]}

+ uT1

u2 =
∞∑
n=1

{
An

rn/2

2G∗

[
κ∗ sin

n

2
θ +

n

2
sin
(n

2
− 2
)
θ −

(n
2

+ (−1)n
)

sin
n

2
θ
]}

+ uT2

(5.12)

where (r, θ) are polar coordinates centred at the crack tip as shown in Fig. 5.1, κ∗ =

(3− ν∗)/(1 + ν∗), G∗ is the macroscopic lattice shear modulus and ν∗ the macroscopic
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lattice Poisson’s ratio of Hexagonal lattices, given in Figs. 2.7 and 2.8. The first term

in the series is proportional to the mode I SIF (A1 = KI/
√

2π) and the second to the

T -stress (A2 = T/4). Equation (5.12) also includes contributions from rigid body

translation (uT1 , u
T
2 ).

The objective of DFA is to fit the displacement field predicted by FE to Eq.(5.12) for

a pre-specified number of amplitude terms An, where n = 1, . . . , N . The approach is

similar to the ones employed in Sanford (1979), McNeill et al. (1987) and Yoneyama

et al. (2007). The difference in this study is that the displacement field is predicted by

FE rather than measured experimentally. Suppose that M points exist in a lattice with

known in-plane displacements, then an over-determined set of simultaneous equations

can be set-up by Eq.(5.12) which can be solved iteratively using the Newton-Raphson

method. For points k = 1, . . . ,M , the error of the displacement prediction (h1,k, h2,k)

at the ith iteration is estimated as follows:

(h1,k)i = (u1,k)i − U1,k

(h2,k)i = (u2,k)i − U2,k

(5.13)

where (U1,k, U2,k) is the known in-plane displacement from FE and ((u1,k)i, (u2,k)i) is

the displacement estimated by Eq.(5.12). The corresponding unknown amplitude and

translational terms at the ith iteration are given by (A1)i , . . . , (AN)i , (uT1 )i and (uT2 )i.

Equation (5.13) can be expanded using Taylor series to give

(h1,k)i+1 =(h1,k)i +

(
∂h1,k

∂A1

)
i

∆A1 +

(
∂h1,k

∂A2

)
i

∆A2 + . . .

+

(
∂h1,k

∂AN

)
i

∆AN +

(
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∂uT1

)
i

∆uT1
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(
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+

(
∂h2,k

∂AN
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i

∆AN +

(
∂h2,k

∂uT2

)
i

∆uT2

(5.14)

Setting (h1,k)i+1 and (h2,k)i+1 to zero, the system of equations can be recast in a matrix

format of
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h = b∆ (5.15)

where

h =
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.

(5.16)

The correction matrix ∆ is found by rearranging Eq.(5.15) to give ∆ = (bTb)−1bTh.

Since bTb is positive-definite, the system of equations is readily solved using Cholesky

decomposition. The entries in ∆ for the next iteration, viz. (i + 1)th, are updated

accordingly as follows: (A1)i+1 = (A1)i + ∆A1 , . . . , (An)i+1 = (An)i + ∆An ,

(uT1 )i+1 = (uT1 )i + ∆uT1 and (uT2 )i+1 = (uT2 )i + ∆uT2 .

The predicted KIC value by either Eq.(5.8) or (5.9) - depending on the configuration

being investigated - is used as the initialisation value for (A1)1. All the higher-order

and translational terms, viz. (A2)1 , . . . , (AM)1 , (uT1 )1 , (uT2 )1, are set to zero for

iteration i = 1. The root mean square (RMS) error between the estimated displacement

field and FE values for the ith iteration is defined as

RMS errori =

√√√√ M∑
k=1

(h1,k)2
i + (h2,k)2

i

M
(5.17)
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where M is the number of points with known displacement. A converged solution to

Eq.(5.12) is deemed to be achieved if the RMS error between successive iterations is

less than 1%. In all cases, it was found that the iterative procedure converges within 4

iterations. It is worth noting that the starting point of the iterative procedure, viz. (An)1

, (uT1 )1 and (uT2 )1, has no influence on the final converged results.

Two prerequisites must, however, be met if the DFA is to return meaningful and ac-

curate results. First, the converged solution for all unknown amplitudes An must be

independent of the number of terms N in the series expansion. Second, the set of

points with known displacement k = 1, . . . ,M , must be selected so that they give a

converged set of amplitude terms An. Ayatollahi and Nejati (2010) recommend that

points too close to the crack tip and/or specimen boundaries should be avoided as they

have a significant influence on the amplitude terms. The choice of the M points used

in the present study is investigated next.

5.4.4.b Selection of M known ‘displacement’ points

An annulus of inner radius rDFA, centred at the crack-tip, and two cells in width is intro-

duced. All nodes in the FE mesh that lie within this annulus are included in the set of

M known points used to fit Eq.(5.12). Figure 5.19 shows the variation of estimated A1

andA2 values with annulus radius rDFA/d0 forN = 4, 8, 10 and 15 terms. The radiusR

corresponding to the best converged A1 and A2 terms is chosen for the final DFA. Fur-

ther analyses reveal that changing the width of the annulus, to include more/less known

points, does not affect the results shown in Fig. 5.19. For the ‘boundary-layer’problem,

convergence of both A1 and A2 is reached between 50 ≤ rDFA/d0 ≤ 80. In the case

of the SEN(B)-3PB configuration, A1 and A2 convergence is reached for an annulus

radius of 30 ≤ rDFA/d0 ≤ 40. If a larger radius is chosen, the converged results begin

to diverge, albeit only slightly, as the outer annulus is closer to the boundaries. The CT

configuration shows converged results for rDFA/d0 > 20.

5.4.4.c Number of terms

Figure 5.19 appears to show a significant difference in the results when using low

or high number of terms, N . Therefore, the minimum number of terms N needed
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Figure 5.19: Variation of the amplitude terms A1 and A2 with annulus radius R/d0 in

the (a) ‘boundary-layer’problem, (b) SEN(B)-3PB and (c) CT configurations.

to achieve converged An coefficients must be determined. Figure 5.20 plots the nor-

malised SIF at the instant of fracture - estimated by A1 - against the number of terms N

considered in Eq.(5.12). For comparison, the toughness predicted by Eqs.(5.8), (5.9)

and the corresponding BLA are also shown as horizontal lines. It is of interest to exam-

ine whether the converged results for the SIF at the instant of fracture, KIC, is identical

for both specimen configurations and BLA, and how these estimates compare to the

KIC predicted by Eqs.(5.8) and (5.9).

It is hardly surprising that theKIC estimated by a DFA of the boundary-layer problem is

identical to the applied SIF at fracture in Eq.(5.1), since the conditions are of ideal K-

controlled fracture. The slight increase in A1 for N > 2 is due to the numerical nature

of the analysis. In a CT configuration, the KIC estimated by DFA converges to the

corresponding K-controlled BLA value for N ≥ 7. This suggests that for a sufficiently
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Figure 5.20: Variation of KIC estimate with increased number of terms, N . The sym-

bols denote displacement field analysis (DFA) and the straight lines corresponds to

predictions from Eqs.(5.8) and (5.9).

‘large’ CT specimen configuration - where the crack-tip stress concentration is not

influenced by any boundary effects - the stress singularity at the onset of fracture is the

same as for the idealised K-controlled fracture given by the BLA. However, Eq. (5.9)

seems to over estimate its magnitude by approximately 20%.

Displacement field analysis of the SEN(B)-3PB configuration shows that at least nine

terms are needed to obtain a convergedKIC value, which is lower than what is predicted

by Eq.(5.8). Although the converged toughness estimated by the DFA is still approx-

imately 5% higher than the corresponding from BLA and the one predicted by DFA

of the CT configuration. This suggests that the specific geometry of a SEN(B)-3PB

specimen influences the magnitude of SIF that is needed to initiate fracture, resulting

to higher toughness estimates. This is believed to be related to crack-deflection and

crack-bridging. Unlike in solid materials, fracture in lattice materials typically occurs

within a sector between ±45◦ − 90◦ from the crack-plane and between 1-6 cells away

from the crack-tip. The maximum bending stress in a SEN(B)-3PB configuration oc-

curs at the mid-span of the specimen, i.e. directly ahead of the crack-tip. Hence the

opening stress, σ22, varies substantially along the x2 direction, something which is less

pronounced in the CT configuration and the BLA model. Since the fractured ligaments

is few cells away from the point of maximum opening stress, a higher stress singularity



202 5.4. Finite-sized standard test specimens

0 5 10 15

0

0.2

0.4

0.6

0.8

1

Number of Terms, N

 B

BLA, DFA
CT 
CT
CT, DFA

SEN(B)-3PB
SEN(B)-3PB
SEN(B)-3PB, DFA

BLA -   -controlledK 1 1
2 2
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at the crack-tip is required to obtain the same stress conditions at the fracture location

in a SEN(B)-3PB geometry compared to the CT specimen.

Figure 5.21 plots the value of T -stress estimated by the DFA, through parameter

A2. Note that the T -stress has been normalised to give the stress biaxiality ratio

B = T
√
πα/KIC, where KIC is the critical SIF estimated by A1. For the BLA, the con-

verged value of B is zero, which is to be expected since it corresponds to K-controlled

fracture. Although, significant T -stress is induced in both specimen configurations.

Convergence of the stress biaxiality ratio B in the CT and SEN(B)-3PB configurations

is again obtained with seven and nine terms, respectively. Theoretical estimates for B

are given by Larsson and Carlsson (1973) and Leevers and Radon (1982), which are

plotted in the same Figure as horizontal lines; notice that the two theoretical estimates

vary slightly from one another. The B value estimated by a DFA of the CT config-

uration is in excellent agreement with the theoretical predictions reported in Larsson

and Carlsson (1973). For the SEN(B)-3PB configuration, however, the estimated B

by DFA is closer to the theoretical estimate in Leevers and Radon (1982) - the reason

behind this inconsistency remains unclear. Notwithstanding, the good agreement with

the theoretical predictions from literature in Fig. 5.21 provide further validation for the

results given by DFA.
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5.5 Summary

The fracture toughness and the location of fracture initiation were studied with the

boundary-layer analysis method for stochastic Voronoi lattices of varying degree of

cell-regularity, Λ. The pure mode I toughness of a Voronoi lattice decreases as it be-

comes more irregular with an overall reduction of up to 25% for completely random

lattices. There is no indication that pure mode II fracture toughness is affected signif-

icantly by cell irregularities. The macroscopic toughness of the lattices was found to

have a quadratic dependence upon ρ for all values of Λ because of their bending dom-

inated response. The Voronoi lattices, whether periodic Hexagonal or non-periodic,

have a greater resistance to mode I than mode II loading. The mode I toughness of

the lattices are more sensitive to cell topological variations in the vicinity of the crack

tip than mode II. Fracture loci for the lattices are obtained in combined mode I and

mode II stress intensity factor space. Although there are considerable variations be-

tween the fracture locus of different tessellations with the same Λ, this study shows

there is a 70% chance the critical effective SIF of a stochastic Voronoi lattice will be

greater than a corresponding Hexagonal one of the same relative density for all mode

mixities M > 0. The effects of including T -stress was also investigated where a sig-

nificant decrease/increase in fracture toughness is observed: for example, at B = −1,

the reduction in the effective toughness of the lattice is nearly 75% for mode I and 50%

for mode II loadings. This trend reverses with positive T -stresses. The present study

found that the reduction/increase in toughness caused by changes in relative density or

cell-regularity is insignificant when compared to the overall reduction/increase due to

the inclusion of a T -stress.

Significant scatter in the initial cell wall fracture location is observed: the majority

of failed cell walls occur near the crack tip, although they are also observed at up to

five cells away from the crack-tip cell, suggesting a highly discontinuous cracking path

that is bridged by many un-cracked ligaments. As mode-mixity changes from mode I to

mode II, the clustering of the fractured cell walls shifts relative to the crack plane and is

reminiscent of the evolution of the plastic zone shape in fully dense solids from LEFM.

The introduction of a T -stress changes considerably the clustering of the fractured cell

walls: mode I remains, in general, unaffected, whilst for mode II and mixed mode
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loadings at high T-stresses, the clustering is reminiscent of that seen in mode I loading.

There is no correlation between the calculated fracture toughness for different lattice

realisations, with the same Λ and ρ, and the location where cell wall cracking first

initiates.

The effects of specimen size and configurations on the estimated toughness were inves-

tigated for stochastic Voronoi lattices, by studying two standard specimen geometries,

the CT and SEN(B)-3PB. It was shown that at least 10 cells are needed along the un-

cracked ligament length (W − α)/d0 for both the CT and SEN(B)-3PB configurations

to estimate a converged value for toughness, unaffected by specimen size. The origin

of this size effect was found to be the result of interactions between the indentation-

and crack- induced strain concentrations. Furthermore, it was shown that the fracture

toughness obtained by using standardised procedures developed for solid materials and

polymers, viz. ASTM E399, E1820 and D5045, are approximately 20% and 10%

higher than a corresponding idealised boundary-layer analysis for the CT and SEN(B)-

3PB configurations, respectively. Displacement field analysis revealed that the actual

SIF at the onset of fracture are indeed close to that predicted by the boundary-layer

analysis which suggest that the ASTM test procedures overestimate the toughness of

stochastic Voronoi lattices considerable. The numerical results are further validated by

comparing the stress biaxiality ratio B, estimated by a displacement field analysis, to

theoretical predictions obtained from the literature.



Chapter 6

Conclusions and further research

6.1 Conclusions

This thesis addressed some important aspects of the mechanical response of lattice ma-

terials by investigating: (1) their monotonic uniaxial and shear mechanical properties,

and how they are affected by edge effects and specimen size; (2) their fatigue perfor-

mance in compression and shear; and, (3) their brittle fracture response. Five periodic

lattice micro-architectures – viz. the Hexagonal, Triangular, Square, Diamond and

Kagome – and the stochastic Voronoi were studied in order to highlight the differences

in their macroscopic response.

The findings from these analyses, presented previously in Chapters 2-5, are summarised

below.

6.1.1 Edge effects

In Chapter 2, the bulk uniaxial and shear moduli, and yield strength, of infinite-sized

periodic lattices were estimated, through judicious choice of unit-cells; it was demon-

strated that their predictions are in excellent agreement with the scaling laws from exist-

ing literature. The moduli and strength of stretch-dominated micro-architectures - Tri-

angular, Diamond, Kagome and Square (uniaxial loading only) - scale linearly with ρ.

As for the bending-dominated micro-architectures - Hexagonal and Square (shear load-

ing only) - their moduli scale with ρ3, and their yield strength with ρ2. Additionally, the

average bulk properties of stochastic Voronoi lattices were found to be broadly similar

to periodic Hexagonal lattices; however, varying degree of knock-down/enhancement

in their mechanical properties was noted depending on Λ and ρ; again, an excellent

agreement with results in the literature is demonstrated.

In Chapter 3, finite-sized Square, Kagome and Triangular lattices were investigated
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to elucidate the mechanism(s) responsible for their respective edge effects; results for

Hexagonal, Diamond and Voronoi lattices are available in the literature. For all lattices,

horizontal and/or vertical boundary layers are found to emanate from the horizontal

stressed and lateral stress-free surfaces, respectively; their range of influence is found

to depend on lattice micro-architecture and the imposed loading.

Under uniaxial loading, the modulus and strength of a Square lattice depends on W if

λ 6= 0.5; H and ρ were found to be insignificant. It was shown that this size-dependent

effect, unlike the rests, is a direct consequence of its open-cells on the stress-free L and

R boundaries and there is no mechanism involved. In shear, however, a Square lattice

develops a weak vertical boundary layer that extends by one cell in width from each end

of the specimen and if W is small, this leads to a considerable reduction in its effective

properties. Additionally, a horizontal stiff boundary layer also develops that extends by

more than one cell in height into its bulk region. For lattices with H = 1 and very large

W , a significant enhancement of it effective modulus is observed G∗/(G∗)UC = 1.8;

however this is not observed for τ ∗y /(τ
∗
y )UC.

A Kagome lattice, under uniaxial loading, develops two weak vertical bending bound-

ary layers (BBLs); its range of influence increases with decreasing relative density ρ.

The cells outside these BBLs – in the bulk-region – were found to have the same ‘lo-

cal’ modulus as its infinite-sized counterpart. If the lattices is sufficiently wide and the

relative density is high enough, W > 100 and ρ > 0.1, then their effective properties

approach its infinite-sized counterpart. On the other hand, if a lattice has a small width

W and of sufficiently low ρ, it deforms primarily by bending, rather than stretch; this

leads to a substantial reduction in their effective modulus and strength since they scale

with ρ3 and ρ2, respectively. Under shear, the Kagome lattice develops two angular-

shaped BBLs – one from each end of the stress-free lateral boundaries L andR – where

their range of influence depends on H; as a result, the effective shear properties depend

on aspect ratio W/H . The ‘local’ modulus of the BBLs is found to be G = 0.5(G∗)UC

whereas for the ‘bulk’ region (G∗)UC. For the critical aspect ratio W/H = 1, the entire

lattice is covered by the BBLs and the effective stiffness is only G∗/(G∗)UC = 0.5; as

W/H increases, the effective properties approach those for an infinite-sized lattice. For

W/H < 1, the relative density ρ becomes a dominant parameter; at sufficiently low ρ,
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the Kagome lattices deforms primarily by bending rather than stretch, and a significant

reduction in its effective properties is noted.

The Triangular lattice in uniaxial loading develops strong horizontal - one cell in height

- and weak vertical - of half cell in width - boundary layers. A dependence of effective

properties on both W and H is obtained, although in any case the estimated properties

are within 5% of the bulk properties. Under shear, two weak vertical boundary layers

develop, whose extend depends on H; for W/H >> 1, the effective properties ap-

proach those for an infinite-sized lattice. A H = 2 lattice does not develop a boundary

layer regardless of W and its effective properties are those for an infinite-sized lattice;

G∗/(G∗)UC = τ ∗y /(τ
∗
y )UC = 1. If W/H << 1, the effective shear properties reduce

significantly without a lower bound. Unlike the Kagome lattice, the Triangular lat-

tice is always a stretch-dominated micro-architecture regardless of W/H and ρ and its

mechanical properties scale linearly with ρ.

6.1.2 Fatigue

In Chapter 4, the fatigue performance of periodic lattices (Diamond, Triangular,

Kagome, Square and Hexagonal) in shear and C-C cyclic loading were studied by im-

plementing a fatigue damage model – modified to consider nonlocal damage effects –

into the FE models. The effects of imperfections upon their fatigue response were also

studied.

The fatigue life (Nf ) and endurance strength of stretch-dominated lattices are found

to be significantly affected by imperfections; the extent of the reduction depends on

their micro-architecture. The Diamond lattice was found to be the least sensitive of all

the stretch-dominated micro-architectures whilst the Kagome and Triangular lattices

presents significantly reduced fatigue life if imperfections are introduced; this is for

both shear and C-C loading. A perfect Square lattice under C-C fatigue gives unreal-

istically high Nf ; it reduces to values similar to the Diamond lattice when imperfec-

tions are introduced. On the other hand, the fatigue performance of bending dominated

lattices - Hexagonal and Square under shear - were found to be insensitive to imper-

fections. The fatigue life of the perfect lattices, without imperfections, depends on

their micro-architecture; however, there is no indication that stretch-dominated micro-
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architectures has any significant advantage over their bending-dominated counterparts.

Damage accumulation in stretch-dominated lattices were found to occur in only a few

cell walls. The consequence of this is that macroscopic modulus damage accumulation

rate, up until the point of first cell wall failure, is nearly zero. By contrast, the bending-

dominated lattices accumulate damage over a significantly large area of the lattice; this

leads to a more progressive macroscopic modulus damage accumulation rate. For both

stretch and bending-dominated lattices, the locations where damage accumulates were

found to be determined by the presence of boundary layers. The differences in fatigue

performance among the five micro-architectures is attributed to differences in the stress

distribution within the boundary layers of each lattice.

6.1.3 Fracture

In Chapter 5, the brittle fracture response of stochastic lattices was investigated by

utilising the Voronoi construction.

Voronoi lattices, regardless of their cell-regularity Λ, always have a greater resistance

to fracture in mode I compared to mode II. As Λ reduces, the mode I toughness reduces

by up to 25%, whilst its mode II toughness is relatively unaffected. The toughness

of the lattices have a quadratic dependence on ρ at all Λ - a result of their bending-

dominated deformation. Under mixed mode loading, the fracture locus differs signifi-

cantly between tessellations even for lattices with identical cell regularity Λ. For neg-

ative/positive T -stress, a significant decrease/increase in effective fracture toughness is

observed, respectively.

The crack propagation in stochastic Voronoi lattice is found to be highly discontiguous,

with fractured cell wall fractures observed at up to six cells away from the crack-tip.

With increasing mode-mixity from mode I to mode II, the location of cell wall fracture

shifts relative to the crack plane. With high negative T -stress, the location of cell wall

fracture changes drastically; for mode II and mixed mode loadings at high T -stresses,

the location is reminiscent of that seen in mode I loading, whilst mode I remains in

general unaffected.

It was shown that the CT and SEN(B)-3PB test specimens require at least 10 cells
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in their uncracked ligament to ‘measure’ a converged toughness that is unaffected by

specimen size. The origin of this size effect has been traced to interactions between

the indentation- and crack-induced strain fields. Additionally, it was shown that the

‘measured’ toughness by the CT and SEN(B)-3PB specimens is 20% and 10% higher

than the ones estimated by an idealised K-controlled fracture; the source behind this

discrepancy is found to be the equations for KIC as given by the ASTM testing stan-

dards.

6.2 Further research

The results reported in this thesis have addressed several hitherto unexplored aspects

of the mechanical response of micro-architectured lattice materials. Several aspects of

this work would benefit from a more thorough, in-depth, investigation, whilst the rests

lay the foundation for further work as follows:

1. The current investigation into edge effects, and their impact on the effective

macroscopic properties, was confined to strictly periodic lattices. However, all

real micro-architectured lattices have some inherent imperfections; it is unclear

to what extent the conclusions of Chapter 3 are affected for imperfect lattices.

This needs to be addressed in the future so that a better understanding is obtained

for the response of real lattice material. Both imperfections in the form of vertex

perturbation, controlled using parameter κv, and buckling eigenmodes will be

interesting to be investigated.

2. The presence of edge effects was investigated for lattices subjected to simple

loading; uniaxial and simple shear. Currently, it is unknown whether - and how

- the edge effect mechanisms reported in Chapter 3 change under more complex

loadings, such as biaxial and combined axial-shear loading. An extension of the

current work is thus necessary to address this.

3. In Chapter 4, some preliminary results show that the fatigue performance of lat-

tice material is affected by specimen size. A detailed work is required to quantify

this dependence on specimen size and to reveal the mechanism responsible for

this.



210 6.2. Further research

4. The dependence of toughness on specimen size was highlighted for stochastic

Voronoi and periodic Hexagonal lattice. This work is proposed to be extended

to include the other four periodic lattice micro-architectures which is currently

missing from literature.

5. The study on fracture was restricted to elastic-brittle lattices, whilst the majority

of lattices, in real-life, are constructed using metals or polymers. A proposed

extension of this work is to relax the elastic-brittle material assumption and to

include the effects of cell wall plasticity. This is potentially useful to advise the

sizing of test specimens for the toughness testing of lattice materials.



Appendix A

Square lattice - Shear
Here, each matrix is presented in its entirety for each of the three cases studied for an

infinite wide lattice, and H = 1, 3, 5. The equations that need to be solved are the

following

Mm = F . (A.1)

The number of unknowns for each case are 8, 14 and 20 respectively. The slope-

deflection equations are written in the following form

θ =
l

EsI
Θm (A.2)

and are used to determine the deformation strain for a given applied external force.
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A.1 Square lattice H = 1, 8 unknowns

m =
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(A.3)

M =
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A.2 Square lattice H = 3, 14 unknowns
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(A.8)

The following are the equivalent of Eq. (3.17) for the H = 3 lattice:

MT1 = MB4 =
6λ2 + c1λ+ 0.5c2

c
F l (A.9)

M1T = M4B =
6λ2 − 0.5c2

c
F l (A.10)

M11 = M44 =
3c1λ

2 + 3c2λ

c
F l (A.11)

M23 = M32 =
Fl

2
(A.12)

M12 = M43 =
−0.5c3λ

2 + 6c2λ+ 0.5c2

c
F l (A.13)

M21 = M34 =
0.4c2λ

2 + 6c1λ+ 0.5c3

c
F l (A.14)

M22 = M33 =
0.2c2λ

2 + 5.4c2λ+ 0.4c2

c
F l (A.15)

where c = 12λ + c1 and c1 = 13
14
, c2 = 15

14
, c3 = 11

14
. The shear strain, γ12 is obtained as

follows

γ12 =
uT + uB + u12 + u23 + u34

3l + 2λl

=
λ (θT1 + θB2) + θ12 + θ11 + θ23 + θ22 + θ34 + θ33

3 + 2λ

(A.16)
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A.3 Square lattice H = 5, 20 unknowns

m =
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The following are the equivalent of Eq. (3.17) for the H = 5 lattice:

MT1 = MB6 =
6λ2 + d1λ+ 0.5d2

d
F l (A.20)

M1T = M6B =
6λ2 − 0.5d2

d
F l (A.21)

M11 = M66 =
3d1λ

2 + 3d2λ

d
F l (A.22)

M34 = M43 =
Fl

2
(A.23)

M12 = M65 =
−0.5d3λ

2 + 6d2λ+ 0.5d2

d
F l (A.24)

M21 = M56 =
0.5d3λ

2 + 6d1λ+ 0.5d4

d
F l (A.25)

M22 = M55 =
0.2λ2 + 5.8λ+ 0.5d3

d
F l (A.26)

M23 = M54 =
−2d5λ

2 + (6 + 2d5)λ+ 0.5 (2d6 + d5)

d
F l (A.27)

M32 = M45 =
2d5λ

2 + (6− 2d5)λ+ (d6 − d7)

d
F l (A.28)

M33 = M44 =
d5λ

2 + (6− d5)λ+ d6

d
F l (A.29)

where d = 12λ+d1 and d1 = 181
195
, d2 = 209

195
, d3 = 168

195
, d4 = 153

195
, d5 = 1

65
, d6 = 30

65
, d7 =

1
390

. The shear strain, γ12 is obtained as follows

γ12 =
uT + uB + u12 + u23 + u34 + u45 + u56

5l + 2λl

=
λ (θT1 + θB2) + θ12 + θ11 + θ23 + θ22 + θ34 + θ33 + θ45 + θ44 + θ56 + θ55

5 + 2λ
(A.30)



Appendix B

Estimation of r̂G
The average value of rG(λ) of Eqs. (3.39) and (3.40), is estimated so that the area

bounded between the curve below rG(λ) and above line rG = r̂G equates the area

bounded above rG(λ) and below rG = r̂G. As an example consider the curve of Figure

B.1.

1A

2A

3A
G
r̂

)
λ(

Gr

λ
2λ 3λ1λ 4λ

Figure B.1: Estimating r̂G.

In total, three areas are bounded by the line and curve, A1, A2, A3 are given by

A1 =

∫ λ2

λ1

rG(λ) dλ− (λ2 − λ1)r̂G

A2 = −
∫ λ3

λ2

rG(λ) dλ+ (λ3 − λ2)r̂G

A3 =

∫ λ4

λ3

rG(λ) dλ− (λ4 − λ3)r̂G

(B.1)
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By equating the total area above to the total area below the line, i.e. A1 + A3 = A2,

gives

(λ4 − λ1)r̂G =

∫ λ4

λ1

rG(λ) dλ . (B.2)

This result is the same as the mean value of n data points, if the rG(λ) is discritised at

n equally spaced points in the range λ1 − λ4.



Appendix C

Macroscopic strain maps
Macroscopic strain maps are generated to assist with the visualisation of the deforma-

tion field at the cell-scale. The approach follows the one used by Tekoglu and Onck

(2008). Each cell in a lattice is first triangulated, using Delaunay triangulation. For

illustration, a Voronoi lattice is used, which presents the most complicate geometry; as

shown in Figure C.1. The total number of triangles n, after triangulation, depends on

the number of vertices of a given cell.

2x

1x

1
1u

2
1u

1

2

3

Figure C.1: Delaunay triangulation of a single cell with 7 vertices which gives 5 trian-

gles, shown in red, following triangulation.

When the technique is used for the triangular lattice, no triangulation is required prior

to any further analysis.
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By assuming that each triangulated region j has a constant strain, i.e. forming a con-

stant strain triangle in standard FE terminology, the vertex displacements ui (i = 1, 2)

from the FE analysis can be used to estimate its strain by

εj =


ε11

ε22

ε12

 =
1

2Aj


x23

2 0 x31
2 0 x12

2 0

0 x32
1 0 x13

1 0 x21
1

x32
1 x23

2 x13
1 x31

2 x21
1 x12

2





u1
1

u1
2

u2
1

u2
2

u3
1

u3
2


(C.1)

where Aj is the area of triangle, xpqi = xpi − xqi where p, q = 1, 2, 3 and upi is the

displacement of node p in the direction i. The overall or ’apparent’ strain of a cell, εcell,

is based on the weighted area-average strain of the n triangulated regions in that cell.

εcell =

∑n
j=1 εjAj∑n
j=1Aj

(C.2)

where εj is the strain tensor for triangle j, Aj is the area of triangle j for a cell with n

triangles.



Appendix D

Abaqus/Standard numerical methods
This Appendix describes the numerical methodologies adopted by the commercial fi-

nite element package Abaqus/Standard, with particular emphasis on those required in

this work.

Abaqus/Standard constructs the stiffness matrix which is solved either through the stiff-

ness method for linear problems, or Newton’s method for nonlinear problems. For

nonlinear problems, the solution cannot be calculated by solving a system of linear

equations given by the stiffness matrix. Abaqus/Standard estimates the solution by

specifying the loading as a function of time and incrementing time to compute the non-

linear response of the system. Sources of nonlinearity can be due to material, element

geometry and boundaries. In this thesis, only material nonlinearity was considered; all

finite element models were performed within a small-strain context.

Abaqus/Standard divides the simulation into a number of time increments and finds

the approximate equilibrium solution at the end of each time increment. Using the

Newton’s method, it often takes Abaqus/Standard several iterations to determine an

acceptable solution to each time increment. An iteration is an attempt to find an ac-

ceptable approximate equilibrium solution in an increment. If the solution is deemed

not acceptable, Abaqus/Standard tries another iteration; with each iteration the solution

should converge closer to equilibrium. If not, Abaqus/Standard tries to find a solution

with smaller time increment. In this thesis, automatic time incrementation was used

with initial time increment set to 0.01s for 1s step duration.

D.1 Determining convergence

To better understand the process used by Abaqus/Standard to estimate an equilibrium

configuration, consider a body with external forces, P, and the internal forces, I. For the
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body to be in equilibrium, P − I = 0. To estimate the response of a nonlinear body

to a small load increment δP0 - at displacement u0 and load P0 - Abaqus/Standard uses

the tangent modulus K0 to calculate a displacement correction δu0. Abaqus/Standard

then calculates the structures internal forces I1 for displacement u1 = u0 + δu1
0 and

calculates

R1 = P1 − I1

where P1 = P0 + δP0 and R1 is the force residual for the iteration with δu0. If R1 = 0

for all degrees of freedom in the model, then the structure is in equilibrium and the

solution is adopted as a point of the load-deflection curve. However this is never the

case for a nonlinear problem. A tolerance value is used by Abaqus/Standard for R1 in

order to adopt a solution as an equilibrium state; a value of 0.5% of the average force

(time and space averaged) in the structure is used.

If the iteration is not deemed to have converged, Abaqus/Standard uses the tangent

modulus at u1, K1, together with R1 to determine another displacement correction δu1

that brings the structure closer to equilibrium. A new force residual is calculated, R2,

and if it still does not fulfil the convergence criteria, the process is repeated. Each

iteration requires Abaqus/Standard to construct the model’s stiffness matrix and solve

the system of equations; thus the computational cost of each increment is the same as

for a single linear analysis. As a consequence the computational cost of a nonlinear

analysis, is many times that of its linear counterpart.

D.2 Viscous damping

Solving nonlinear problems is usually unstable and Abaqus/Standard provides an auto-

matic mechanism for stabilizing unstable quasi-static problem by adding a damping to

the model. Viscous forces of the form

Fv = cM
δu

δt

are added to the global equilibrium equations
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P − I − Fv = 0

where M is an artificial mass matrix, c the viscous damping factor, δu
δt

are the nodal

velocities and δt is the time increment.

In most problems the first increment of the analysis is stable, hence there is no need

to apply damping. The damping factor is then determined such that the viscous dissi-

pation energy is a small percentage of the extrapolated strain energy for the next time

increment; a value between 1×10−4 to 1×10−3 was used in this work depending on the

problem at hand. However, in order to ensure that the inclusion of viscous dissipation

does not interfere with the accuracy of the finite element solution, the viscous damping

energy is compared with the total strain energy of the structure.; the ratio of the two has

to be small and not exceed the tolerance specified in the solver.
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