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Summary

Exposure of bone-marrow-derived dendritic cells (BMDC) to high-dose

ultrapure lipopolysaccharide for 24 hr (LPS-primed BMDC) enhances

their potency in preventing inter-photoreceptor retinoid binding protein:

complete Freund’s adjuvant-induced experimental autoimmune

uveoretinitis (EAU). LPS-primed BMDC are refractory to further exposure

to LPS (= endotoxin tolerance), evidenced here by decreased phosphoryla-

tion of TANK-binding kinase 1, interferon regulatory factor 3 (IRF3),

c-Jun N-terminal kinase and p38 mitogen-activated protein kinase as well

as impaired nuclear translocation of nuclear factor jB (NF-jB) and IRF3,

resulting in reduced tumour necrosis factor-a (TNF-a), interleukin-6

(IL-6), IL-12 and interferon-b secretion. LPS-primed BMDC also show

reduced surface expression of Toll-like receptor-4 and up-regulation of

CD14, followed by increased apoptosis, mediated via nuclear factor of

activated T cells (NFATc)-2 signalling. LPS-primed BMDC are not only

homotolerant to LPS but are heterotolerant to alternative pathogen-asso-

ciated molecular pattern ligands, such as mycobacterial protein extract

(Mycobacterium tuberculosis). Specifically, while M. tuberculosis protein

extract induces secretion of IL-1b, TNF-a and IL-6 in unprimed BMDC,

LPS-primed BMDC fail to secrete these cytokines in response to M. tuber-

culosis. We propose that LPS priming of BMDC, by exposure to high

doses of LPS for 24 hr, stabilizes their tolerogenicity rather than promot-

ing immunogenicity, and does so by multiple mechanisms, namely (i)

generation of tolerogenic apoptotic BMDC through CD14:NFATc sig-

nalling; (ii) reduction of NF-jB and IRF3 signalling and downstream pro-

inflammatory cytokine production; and (iii) blockade of inflammasome

activation.

Keywords: dendritic cells; experimental autoimmune uveoretinitis; endo-

toxin tolerance; heterotolerance; uveitis.
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protein; s.c., subcutaneous; TBK1, TANK-binding kinase 1; TGF-b, transforming growth factor b; TLR, Toll-like receptor;
TNF-a, tumour necrosis factor a; tolDC, tolerogenic DC; TRIF, TIR-domain-containing adapter-inducing interferon-b; upLPS,
ultrapure LPS
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Introduction

Uveitis is a major cause of blindness in humans.1,2 In

most cases the aetiology of uveitis is unknown, although

bacterial and viral infections, as well as systemic diseases,

are recognized causes and associations. Autoimmunity to

retinal or other ocular antigens is considered to be mech-

anistic in non-infectious uveitis.3 Treatment of non-infec-

tious uveitis centres around non-specific therapy using

immunosuppressive agents, or biologics such as anti-

tumour necrosis factor-a (TNF-a) antibodies.4,5 These

therapies are associated with considerable toxicity and so

much research effort has focused on the development of

customized and targeted immunotherapies5,6 including

cell-based therapies.7

Dendritic cells (DC) are professional antigen-presenting

cells specialized in uptake, processing and presentation of

antigens to T cells. DC play an important role in the

priming of the adaptive immune response due to their

ability to directly stimulate naive T cells. However, one of

their main functions appears to be a homeostatic one of

maintaining tolerance to self-antigens.8–12 Recently autol-

ogous tolerogenic DC (tolDC) modified in vitro with a

nuclear factor-jB (NF-jB) inhibitor and loaded with

citrullinated peptide antigens have been successfully used

to treat patients with rheumatoid arthritis in a Phase 1

clinical trial.13 Indeed, inoculation of tolDC into the site

of inflammation is being trialled as a means to induce

local tissue tolerance.14 However, most work on tolDC

has been in pre-clinical disease models, including autoim-

mune uveoretinitis.15–17

Traditionally, non-activated tolerogenic “immature”

DC have high endocytic capacity and express low levels

of “activation” markers (MHC II, CD40, CD80, CD83

and CD86) whereas immunogenic DC have reduced

endocytic function, express high levels of “activation”

markers and have strong T-cell priming ability.18 Ligation

of innate immunoreceptors such as Toll like receptors

(TLR) by bacterial products such as lipopolysaccharide

(LPS) leads to activation of DC and promotes immunity,

specifically in the form of T-cell responses, if appropriate

antigens are presented by the activated DC.19,20 However,

phenotypic characterization alone is insufficient to deter-

mine whether DC will induce tolerance or immunity.21,22

In addition, it has been suggested that irrespective of the

desired therapeutic outcome (induction of tolerance for

prevention of autoimmune disease or immunity for treat-

ment of cancer) DC activation is essential for the effec-

tiveness of immunotherapy as activated DC preferentially

migrate from the peripheral tissues into the draining

lymph nodes where antigen-specific interaction with

T cells occurs.23–25

Interestingly, there are considerable experimental data

showing that pre-treatment of DC with LPS generates

cells that promote tolerance rather than immunity15,26–32

although the mechanism of tolerance induction in DC is

not fully understood. Lipopolysaccharide-activated

macrophages and DC become refractory to further stimu-

lation with LPS,33 a phenomenon known as endotoxin

tolerance (ET), which has been attributed to various fac-

tors including: (i) the blockade of intracellular signalling

events and subsequent gene re-programming; (ii) up-reg-

ulation of anti-inflammatory cytokines like interleukin-10

(IL-10) and transforming growth factor-b (TGF-b); and
(iii) down-regulation of surface expression of the TLR4

receptor.34 The majority of studies in myeloid cells on ET

have been conducted using macrophages and have shown

decreased phosphorylation levels of NF-jB as well as

other signalling molecules such as p38 mitogen-activated

protein kinase (p38 MAPK) and c-Jun N-terminal kinase

(JNK) while displaying increased levels of phosphorylated

extracellular signal-regulated kinase and IL-10 secre-

tion.35–39 In further studies it was shown that previous

exposure to LPS led to impaired activation of TANK-

binding kinase 1 (TBK1) and interferon regulatory factor

3 (IRF3) signalling through TIR-domain-containing adap-

ter-inducing interferon-b (TRIF) pathway,38,40 which has

been attributed to the lipid A component of LPS.41 LPS

priming of DC has shown similar results for activation of

myeloid differentiating factor 88 (MyD88) downstream

signalling35 but a decrease in activation of the TRIF path-

way in endotoxin-tolerant DC (ET-DC) has not been

reported to date. A major difference between ET-macro-

phages and ET-DC, however, has been in the induction

of apoptosis: ET-macrophages, although down-regulated/

modified in several of their pro-inflammatory signalling

pathways, continue to survive in an alternatively activated

state, whereas ET-DC progress to apoptosis after some

days in culture (reviewed in ref. 30).

We have previously shown that LPS-primed bone-

marrow-derived DC (BMDC), inoculated subcutaneously

(s.c.) as a single injection, suppressed experimental

autoimmune uveoretinitis (EAU) in the C57BL/6

mouse, induced using interphotoreceptor retinoid-bind-

ing protein (IRBP) peptide emulsified in complete Fre-

und’s adjuvant (CFA) containing Mycobacterium

tuberculosis.15,42 However, in our previous work the

LPS extract contained small amounts of other

TLR.15,43,44 Here, we show that TLR4-specific ultrapure

(up)LPS-primed phenotypically activated BMDC, rather

than worsening the severity of EAU, significantly

prevent the development of EAU. We show that

upLPS-primed BMDC are endotoxin homotolerant (ET-

BMDC) and further show that they are heterotolerant

to M. tuberculosis protein extract in that they are (i)

susceptible to apoptosis45–47 (confirmed here) through a

CD14/nuclear factor of activated T cells (NFATc)-asso-

ciated mechanism, and (ii) fail to secrete IL-1b on
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exposure to M. tuberculosis extract. As M. tuberculosis

mediated C-type lectin receptor signalling via the Syk/

CARD-9 complex,48 a major route for inflammasome

activation, has been shown to be an essential mediator

of IRBP-CFA-induced EAU,48,49 we propose that inhibi-

tion of IL-1b secretion is one mechanism whereby

heterotolerant LPS-primed BMDC promote immunolog-

ical tolerance. We also show that additional mecha-

nisms are at play including induction of BMDC

apoptosis as well as disruption of NF-jB and IRF3-

mediated cytokine secretion. However, as signalling

through the IL-1 receptor has recently been shown to

be critical for the development of EAU, we suggest that

M. tuberculosis antigen, LPS-activated, heterotolerant

BMDC mediate their tolerogenicity primarily through

suppression of IL-1b production.50

Materials and methods

Animals

Inbred 8- to 12-week-old C57BL/6J mice were provided

by the Medical Research Facility at the University of

Aberdeen. TLR4-deficient mice, originally generated by

Dr Shizuo Akira (Osaka University, Osaka, Japan), were

obtained from Professor Gordon Brown (University of

Aberdeen, UK). The procedures adopted conformed to

the regulations of the Animal License Act (UK) and to

the Association for Research in Vision and Ophthalmol-

ogy statement for The Use of Animals in Ophthalmic and

Vision Research.

Isolation and culture of BMDC

The BMDC were prepared and cultured as described

previously, with modifications.15 In brief, BM was

flushed from tibias and femurs of C57BL/6J mice and

after purification (depletion of T cells, B cells and MHC

II+ cells), was cultured at 6 9 105 cells/ml in bacterio-

logical Petri dishes with complete RPMI-1640 containing

10 ng/ml recombinant granulocyte–macrophage colony-

stimulating factor (GM-CSF; R&D Systems, Minneapolis,

MN). Fresh medium was added on days 2 and 4. On

day 6 cells were harvested and depleted of contaminat-

ing granulocytes. The remaining cells were plated at

1 9 106 cells/ml and after in vitro stimulation with LPS

Escherichia coli 0111:B4 [standard purity grade LPS from

Sigma (St Louis, MO), upLPS from Invivogen (San

Diego, CA); 1 lg/ml] or M. tuberculosis extract [gener-

ated by sonication of non-viable M. tuberculosis H37Ra

purchased from Difco (BD, Franklin Lakes, NJ); 15 lg/
ml] used for adoptive transfer experiments or analysis

by flow cytometry, Western blotting or confocal micro-

scopy. For some experiments BMDC were pre-incubated

with purified anti-CD14 antibody (15 min, 10 lg/ml;

BD Biosciences, San Jose, CA).

Flow cytometry

The BMDC were incubated with purified anti-CD16/32

antibody followed by surface staining with antibodies

against CD11c-allophycocyanin (APC), CD11b-peridinin

chlorophyll protein (PerCP) Cy5.5, CD86-phycoerythrin

(PE), MHC II I-Ab-FITC, CD40-BV421, F4/80-PE, Gr-

1-APC-Cy7, CD115-PE-Cy7 (eBioscience, San Diego,

CA), CD14-APC (BioLegend, San Diego, CA), TLR4-PE

(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany),

Annexin V-FITC and -7AAD. Antibodies were purchased

from BD Biosciences unless otherwise stated. Multi-col-

our flow cytometry experiments were performed using

LSR-II and LSR-Fortessa analysers (BD Biosciences). The

FACS data files obtained were analysed with BD FACS DIVA

and FLOWJO (Flowjo, Ashland, OR) software. Unstained

sample and fluorescence minus one controls were used to

set gates during analysis.

Measurement of cytokine production

To measure cytokine production by BMDC, cell culture

supernatant was collected and analysed for the presence

of IL-6, IL-10, IL-12, IL-1b and TNF-a using the Mouse

Inflammatory Cytometric Bead Assay kit and FACS Array

system (BD Biosciences). Interferon-b (IFN-b) was

detected by ELISA (PBL Biomedical Laboratories, Piscat-

away, NJ).

Adoptive transfer experiments

On day 6 of culture, BMDC were stimulated with LPS

(standard or upLPS) at 1 lg/ml, and control BMDC were

incubated in medium alone. IRBP 1–20 peptide

(GPTHLFQPSLVLDMAKVLLD; New England Peptide,

Gardner, MA) was also loaded at 30 lg/ml to induce an

antigen-specific response. After addition of LPS and

peptide, the cells were cultured overnight before being

harvested with Accutase (PAA Laboratories). A total of 106

BMDC in a volume of 100 ll PBS were injected s.c. into

the nape of the neck of each mouse. For studying the effects

of BMDC on EAU (see below), mice were immunized with

IRBP 1–20 peptide 24 hr after BMDC transfer.

Disease induction and evaluation

EAU was induced by immunizing s.c. with 500 lg of IRBP
1–20 peptide emulsified in CFA supplemented with anad-

ditional 2�5 mg/ml M. tuberculosis H37Ra (Difco) at the

back of the hind legs. Pertussis toxin (1 lg; Health Protec-

tion Agency, Chorley, UK) was also administered intraperi-

toneally at the time of IRBP peptide immunization.
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Twenty-eight days post-immunization eyes were examined

and fundus images were taken from mice using an endo-

scopic imaging system (see next section). Mice were then

killed by asphyxiation in CO2, and eyes were harvested and

immediately fixed and embedded for sectioning.

Imaging mouse fundus

Images of the retinal fundus were acquired using an

endoscopic imaging system described previously.51 Mice

were anaesthetized with an intraperitoneal injection of a

mixture of 20 mg/ml Ketaset (Fort Dodge Animal Health

LDT, Overland Park, KS) and 1 mg/ml Domitor (Orion

Pharma, Espoo, Finland) diluted in PBS. Pupils were

dilated with one drop of 0�5% (weight/volume)

tropicamide (Chauvin Pharmaceuticals, Kingston-upon-

Thames, UK) and one drop of phenylephrene hydrochlo-

ride (Chauvin Pharmaceuticals). Viscotears liquid gel

(Novartis, Basel, Switzerland) was used on the corneal

surface during the imaging. Several images of the fundus

from different directions were taken. Images were scored

according to clinical scoring system described by Xu et al.

with modifications.51

Histology

To correlate the clinical observations with the patholog-

ical changes, first we imaged the eyes, then mice were

killed and their eyes were collected for histological

examination. Eyes were fixed in 2�5% glutaraldehyde,

embedded in resin and sectioned. Sections (~3 lm) of

each globe were taken at several different levels. The

sections were subsequently stained with haematoxylin &

eosin. Severity of disease was scored on a scale of 0

(no disease) to 4 (maximum disease) in half-point

increments, according to a semi-quantitative scoring

system described previously.52

Western blotting

Whole-cell protein lysates from cultured BMDC were pre-

pared using cell lysis buffer (50 mM Tris–HCl, 1 mM

EDTA, 1 mM ethylene glycol-bis(2-aminoethylether)-N,N,

N’,N’-tetraacetic acid, 50 mM sodium fluoride, 5 mM

sodium pyrophosphate, 10 mM sodium b-glycerol 1-phos-
phate, 1 mM dithiothreitol, 1 mM sodium orthovanadate,

0�27 M sucrose, 1% Triton X-100) supplemented with a

complete protease inhibitor cocktail and PhosSTOP phos-

phatase inhibitor cocktail. Equivalent amounts of cell

lysates (30 lg) were loaded and separated by SDS–PAGE
followed by electrotransfer to nitrocellulose membranes

(Invitrogen, Waltham, MA). The following anti-mouse

antibodies were used for immunoblotting: phospho-

TBK1/NAK (Ser172) (D52C2), TBK1 (108A429; Santa

Cruz Biotechnology, Santa Cruz, CA), phospho-NF-jB

p65 (Ser536) (93H1), NF-jB p65 (C22B4), phospho-

stress-activated protein kinase (SAPK)/Jun amino-term-

inal kinase (JNK) (Thr183/Tyr185) (98F2), SAPK/JNK,

phospho-IRF3 (Ser396) (4D4G), IRF3 (D83B9), phospho-

p38 MAPK (Thr180/Tyr182) (D3F9), p38 MAPK, IjB-a
(112B2), phospho-MAP Kinase Activated Protein Kinase

(MAPKAPK)-2/MAPK-activated protein kinase 2 (MK2)

(Thr222) (9A7), MAPKAPK-2, caspase-1 (clone 4B4;

Genentech, South San Francisco, CA), ASC/CARD5

(clone 8E4.1; Genentech), caspase 11 (clone 17D9; Novus

Biologicals, Littleton, CO) and GAPDH (Abcam, Cam-

bridge, UK). Antibodies were purchased from Cell Signal-

ing Technology (Danvers, MA) unless otherwise stated.

The membranes were imaged with the Odyssey Infrared

Imaging System (Licor Biosciences, Lincoln, NE).

Confocal microscopy

For assessing the effect of LPS on nuclear translocation

and/or activation of IRF3, NF-jB and NFATc2, BMDC

were seeded (1 9 105/well) in polylysine or collagen-

coated 16-well chamber slides (Thermo Scientific Nunc,

Waltham, MA) and cultured overnight. The next day

BMDC were stimulated with 1 lg/ml LPS for 1 hr (chal-

lenge) or 24 hr (priming). In addition, in some experi-

ments 24 hr LPS-primed BMDC were further challenged

with LPS for 1 hr. After stimulation, culture medium was

removed and cells were fixed in 4% formaldehyde, perme-

abilized with 0�2% Triton X-100 and blocked with 10%

donkey serum (Bio-sera, Kansas City, MO) in PBS/0�2%
BSA for 1 hr. Cells were incubated for 1 hr at room tem-

perature with rabbit monoclonal antibodies against total

NF-jB p65 or IRF3 (Cell Signaling). Alternatively, cells

were incubated overnight at 4° C with NFATc2 antibody

(ImmunoGlobe, Himmelstadt, Germany). After primary

antibody incubation, cells were washed with PBS/0�2%
BSA and incubated with donkey anti-rabbit Alexa Fluor

488 secondary antibody (Invitrogen) and/or Phalloidin

(Sigma). Following a wash step as above, cells were stained

with DAPI. All samples were viewed using Zeiss 700 Laser

Scanning Confocal Microscope (Carl Zeiss, Oberkochen,

Germany). Acquired images were analysed using the ZEN

2009 LE software (Carl Zeiss). Nuclear translocation was

quantified by counting the number of cells with nuclear

localization of IRF3, NF-jB and NFATc2 and is expressed

as percentage of the total number of DAPI-stained nuclei

(cells touching the edge of the field were excluded).

Statistics

Data are presented as mean � SEM; n is indicated in the

figure legends. Statistical significance in in vivo EAU

experiments was analysed using Kruskal–Wallis test and

differences between groups of interest were measured

using two-tailed Mann–Whitney U-test. Analysis of all
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other data was done using non-parametric unpaired two-

tailed t-test. P-values < 0�05 were considered significant

(GRAPHPAD PRISM 5.04; GraphPad, San Diego, CA).

Results

Phenotypically activated LPS-primed BMDC reduce
the severity of EAU in C57BL/6 mice

We have previously demonstrated that 24 hr LPS-primed

BMDC inhibit EAU in C57BL/6 mice.15 However, these

data were difficult to interpret mechanistically due to the

relative impurity of the LPS, which has subsequently been

shown to contain both TLR4 and TLR2 ligands.43,44 In

the present study, IRBP 1–20 peptide-pulsed, upLPS-

primed BMDC, which were on average 85%

CD11c+ CD11b+ (Fig. 1, upper panel), expressed

increased levels of CD86 (CD86-PE median: 134�3 � 7�4
unstimulated BMDC versus 3427�0 � 264�2 upLPS-trea-

ted BMDC; P < 0�0001), MHC II (MHC II-FITC median:

462�8 � 21�6 unstimulated BMDC versus 758�5 � 32�3
upLPS-treated BMDC; P = 0�0003) and CD40 (CD40-

BV421 median: 305�0 � 9�9 versus 2804�0 � 39�45,
respectively; P < 0�0001; Fig. 1 lower panel). In addition,

assessment of CD115, F4/80 and Gr-1 expression on the

cell surface revealed that GM-CSF cultured upLPS-primed

BMDC used in this study contained a sub-population of

macrophages (see Supplementary material, Table S1).

Adoptive transfer of IRBP-pulsed LPS-primed BMDC sig-

nificantly suppressed the signs of EAU both clinically and

histologically (Fig. 2a,b).The data reported here indicate

that upLPS-primed BMDC although phenotypically

“activated” had a tolerizing effect that was specifically

mediated through TLR4.

LPS priming of BMDC induces up-regulation of
CD14, NFATc2 activation and progressive apoptosis

We wished to determine the molecular events occurring

in LPS-primed BMDC and assess their potential role in
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Figure 1. Lipopolysaccharide (LPS)-primed bone-marrow-derived dendritic cells (BMDC) are phenotypically “activated”. T-cell, B-cell and

MHCII+ cell-depleted bone marrow cells were cultured with granulocyte–macrophage colony-stimulating factor for 6 days. The cells were then

further depleted of Gr-1-positive granulocytes and cultured for 24 hr with or without ultra pure LPS (upLPS). After 24 hr BMDC were harvested

and analysed by flow cytometry. Cells were stained with fluorescent antibodies against CD11c, CD11b, CD86, MHCII and CD40. In the upper
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were performed in four replicates per experimental condition, histograms are representative of three separate experiments with similar results.
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promotion of immunological tolerance. In agreement

with other studies15,35,53 we observed a 3�2-fold down-

regulation of TLR4 expression [PBS-treated BMDC mean

fluorescence intenisty (MFI): 168�7 � 0�7; LPS-treated

BMDC MFI: 53�0 � 1�0; P < 0�0001] in LPS-primed

BMDC and a corresponding 1�7-fold up-regulation of

CD14 co-receptor expression (PBS-treated BMDC MFI:

15941�0 � 385�6; LPS-treated BMDC MFI: 27823
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Figure 2. Lipopolysaccharide (LPS) -primed “activated” bone-marrow-derived dendritic cells (BMDC) suppress experimental autoimmune uveo-

retinitis (EAU). After 6 days of culture in the presence of granulocyte–macrophage colony-stimulating factor, purified BMDC were further

depleted of Gr-1-positive granulocytes and stimulated for further 24 hr with interphotoreceptor retinoid-binding protein (IRBP) 1–20 peptide

with or without addition of LPS [standard or ultrapure (upLPS)]. To test the tolerogenic properties of IRBP-specific LPS-primed BMDC, cells

were inoculated subcutaneously into the neck of C57BL/6 mice 24 hr before EAU induction. Control mice were treated with PBS only. (a) The

upLPS-primed BMDC significantly suppressed EAU as assessed by clinical fundoscopy and histology and were as effective as “standard” LPS-

primed BMDC. One representative experiment is shown; two independent experiments were performed; each experiment had six independent

replicates of each group. Each point represents mean EAU score from one mouse, data from each group are presented as mean � SEM. Statisti-

cal analyses performed include Kruskal–Wallis test (P = 0�065 and P = 0�029 for fundoscopic and histological scores, respectively) followed by

two-tailed Mann–Whitney U-test (P = 0�04 and P = 0�01 for upLPS-primed BMDC by fundoscopy and histology, respectively) to assess differ-

ences between groups of interest. (b) Representative histopathology of the eyes from C57BL/6 mice injected with PBS or upLPS-primed BMDC

(magnification 940, scale bar 100 lm). Black arrows indicate as follows: 1, vasculitis (inflamed blood vessel); 2, granuloma (group of inflamma-

tory cells); 3, vitritis (inflammatory cells in the vitreous); 4, inflammation-induced loss of photoreceptor outer segments in PBS-treated group

compared with mice treated with upLPS-primed BMDC (arrowhead).

Figure 3. Lipopolysaccharide (LPS) down-regulates Toll-like receptor 4 (TLR4) expression, induces secretion of pro- and anti-inflammatory

cytokines and promotes apoptosis of bone-marrow-derived dendritic cells (BMDC). (a) Histograms show the surface expression of TLR4 and

CD14 after priming with LPS for 24 hr (red) compared with unstimulated BMDC (blue). Cells were stained with antibodies against TLR4 and

CD14. Experiments were performed in triplicate per experimental condition, histograms shown are representative of three separate experiments

with similar results. (b) BMDC were pre-treated with anti-CD14 antibody followed by priming with LPS for 24 hr. BMDC culture supernatant

was collected and analysed for presence of various cytokines. Data shown are mean of three separate experiments � SEM. Significance was calcu-

lated between the LPS-primed group and CD14/LPS-treated group (t test). (c) BMDC were seeded in chamber slides and primed with LPS for

24 hr, cells in the control group were unstimulated. After 24 hr BMDC were fixed and stained with anti-NFATc2 antibody and DAPI as

described in the Materials and methods section. Images were taken using an LSM700 microscope under magnification 940, scale bar 50 lm. (d)

BMDC were seeded in 24-well plates in 1 ml of cRPMI and stimulated with LPS for 24, 48 or 72 hr. After 24 hr, 0�5 ml of fresh cRPMI was

added to each well. Cells were harvested at each time-point and stained with CD11c-allophycocyanin, Annexin V-FITC and -7AAD. Gating strat-

egy: early apoptotic cells (Annexin V+, 7AAD�), late apoptotic cells (Annexin V+, 7AAD+), necrotic cells (Annexin V�, 7AAD+). Data presented

on the graphs are mean of three separate experiments � SEM (t-test).
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� 475�8; P < 0�0001; Fig. 3a). Lipopolysaccharide-primed

BMDC were induced to secrete several cytokines includ-

ing IFN-b, IL-10, TNF-a and IL-6 (Fig 3b). Small,

probably non-physiologically significant, amounts of IL-

12 were also produced. Of these, only IFN-b secretion

was dependent on CD14 (Fig 3b). Interestingly, LPS-
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primed BMDC did not produce significant amounts of

IL-1b, although blockade of CD14 induced TLR4-inde-

pendent IL-1b production (Fig. 3b). As previously

reported by Zanoni et al.,47 expression of CD14 by

BMDC was associated with increased expression and

nuclear translocation of NFATc2 (Fig. 3c; LPS priming

increased nuclear localization of NFATc2 35-fold com-

pared with unstimulated BMDC, P < 0�0001) as well as

with increased levels of both late apoptosis and necrosis

at 48 hr and necrosis at 72 hr after LPS exposure

(Fig. 3d). Endogenous levels of apoptosis-associated pro-

teins, Bim and Bcl2, were up-regulated by 24 hr LPS

priming but no marked increase in either was observed

after 1 hr duration re-challenge (data not shown).

LPS priming of BMDC induces endotoxin tolerance
and disables activation of MyD88 and TRIF signalling
pathways

Although induction of apoptosis in LPS-primed BMDC

offers a potential explanation for their enhanced tolero-

genicity,45,54 tolDC are also known to be generated by

inhibition of core transcription factor pathways such as

NF-jB.55 The LPS-primed macrophages and DC fail to

be activated by a second exposure to LPS, a phenomenon

known as ET.56 In this study, we confirmed that activa-

tion of both the MyD88 and TRIF signalling pathways in

LPS-primed BMDC is decreased or does not occur on

second exposure to LPS (LPS–LPS homotolerance;

Fig. 4a,b). BMDC challenged with LPS for 1 hr showed

increased levels of phosphorylated NF-jB and concomi-

tant loss of nuclear factor of j light polypeptide gene

enhancer in B cells inhibitor a (IjB-a) (Fig. 4a). In con-

trast, 24 hr LPS-primed BMDC challenged with LPS for

the second time failed to induce NF-jB nuclear transloca-

tion (Fig. 4b; 19-fold reduction in the nuclear localiza-

tion, P < 0�0001). Similar reduction in the response of

LPS-primed BMDC upon LPS re-challenge was observed

for p38 MAPK and MK2 as well as TBK1, IRF3 and JNK

(Fig. 4a,b; LPS priming reduced nuclear localization of

IRF3 upon re-challenge threefold; P = 0�0066). Concur-

rent with the reduced signalling in LPS-primed BMDC

through MyD88 and TRIF signalling pathways on re-chal-

lenge with LPS, cytokine production including TNF-a,
IL-6 and even the small amounts of IL-12 were markedly

reduced whereas the amount of secreted IL-10 increased

(Fig. 5). In addition, the ability of BMDC to secrete

TGF-b was assessed; however, the amounts produced

were below the limit of detection (data not shown).

Importantly, the typical strong induction of IFN-b57 by

LPS was completely abrogated on re-challenge with LPS

(Fig. 5).

LPS-primed BMDC are heterotolerant to
mycobacterial protein

Since adoptive transfer of upLPS-primed BMDC sup-

pressed the development of EAU (Fig. 2a,b), and such

DC are clearly refractory to a second challenge with LPS

in vitro (Figs 4a,b, and 5), we hypothesized that their

enhanced tolerogenicity might be due to the BMDC being

refractory to a second challenge in vivo, i.e. they might

display “heterotolerance”, as in the EAU model the

“second challenge” would be mediated by CFA containing

heat-killed M. tuberculosis H37Ra. Mycobacterium tubercu-

losis activates the innate immune system through multiple

pattern recognition receptors, including TLR4, TLR2,

Dectin-1, mannose receptors and others.58 We therefore

tested whether LPS-primed BMDC were heterotolerant to

M. tuberculosis by challenging the cells in vitro with a

protein extract of M. tuberculosis with or without previ-

ous exposure to LPS.

We first examined the response of BMDC to a single

exposure to M. tuberculosis. In contrast to LPS, M. tu-

berculosis had a minimal modifying effect, either as a

single challenge or after LPS-priming, on the activation

level of NF-jB and p38 MAPK and failed altogether to

activate TBK1, IRF3 and JNK in BMDC (Fig. 4a).

Accordingly M. tuberculosis-challenged BMDC did not

produce IL-12 or IFN-b while the level of secreted IL-6

and TNF-a was also low compared with LPS-challenged

BMDC (Fig. 5).

We also explored inflammasome activation and IL-1b
production by BMDC. Interleukin-1b is a pro-inflamma-

tory cytokine that plays an important role during IRBP-

CFA-induced EAU.59 Production of active IL-1b occurs

by way of inflammasome activation through both canoni-

cal and non-canonical pathways (reviewed in refs 60–62).
Activation of caspase 1 and apoptosis-associated speck-

like protein containing CARD (ASC) is required for

Figure 4. Lipopolysaccharide (LPS) -primed bone-marrow-derived dendritic cells (BMDC) are refractory to a second challenge with LPS. BMDC

were generated from wild-type (WT) or Toll-like receptor 4 knockout (TLR4 KO) mice according to the protocol described in Materials and

methods. On day 6 of culture, BMDC were treated with LPS [standard or ultrapure (upLPS)] for 24 hr (LPS priming); a control group was incu-

bated with complete medium alone. After 24 hr, BMDC were re-challenged for 1, 24, 48 or 72 hr with LPS or Mycobacterium tuberculosis (Mtb).

Following the second stimulation BMDC were lysed and proteins were isolated, or in the case of cells cultured in the chamber slides, cells were

fixed and stained for confocal microscopy as described in Materials and methods. (a) Influence of LPS priming on the responsiveness of BMDC

and activation of TIR-domain-containing adapter-inducing interferon-b (TRIF) and myeloid differentiating factor 88 (MyD88) -dependent path-

ways. Representative Western blots shown (n = 3). GAPDH used as loading control. (b) Effects of LPS desensitization on the nuclear transloca-

tion of nuclear factor-jB (NF-jB) and interferon regulatory factor 3 (IRF3). Scale bar 50 lm.

ª 2016 The Authors. Immunology Published by John Wiley & Sons Ltd., Immunology8

I. P. Klaska et al.



canonical IL-1b production, but caspase 11 mediates

non-canonical inflammasome activation.61 As shown in

Fig. 4(a) the phosphorylation level of caspase 11 was

increased 24 hr after exposure to LPS (or M. tuberculosis),

but was abrogated upon M. tuberculosis re-challenge. No

differences were noted in the levels of caspase 1 and ASC

WT BMDC
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among differentially activated BMDC. Interestingly, LPS

singly or on re-challenge failed to induce IL-1b secretion

whereas challenge with M. tuberculosis induced prominent

IL-1b secretion, which was markedly suppressed in LPS-

primed BMDC (Fig. 5). This effect was only partially lost

in LPS-primed BMDC from TLR4 knockout mice, indi-

cating that the M. tuberculosis ligands in this extract were

acting by additional pathways, such as TLR2 and Dectin-

1.48 These data for the first time show that LPS (endo-

toxin) “heterotolerance” or “crosstolerance” to
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Figure 5. Analysis of cytokine secretion from lipopolysaccharide (LPS) -primed bone-marrow-derived dendritic cells (BMDC) upon re-stimula-

tion. On day 6 of culture, BMDC from wild-type (WT) or Toll-like receptor 4 knockout (TLR4 KO) mice were primed with LPS [standard or

ultrapure (upLPS)] for 24 hr, a control group was incubated with complete medium alone. After 24 hr, culture medium from both groups was

gently removed and fresh medium was added. Cells were re-stimulated for 6 hr with LPS or Mycobacterium tuberculosis (Mtb). Following a sec-

ond stimulation, culture supernatant was collected and levels of secreted cytokines including interleukin-10 (IL-10), tumour necrosis factor-a
(TNF-a), IL-6, IL-12, interferon-b (IFN-b) and IL-1b were analysed using ELISA or cytometric bead assay. Data shown are mean of three sepa-

rate experiments � SEM. Significance was calculated using t-test.
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M. tuberculosis ligands, i.e. where cells pre-exposed to

LPS are refractory to a subsequent challenge with M. tu-

berculosis ligands, was inducible in BMDC. Heterotoler-

ance has been previously shown in vitro using LPS and

the TLR2 agonist Pam3Cys in the context of TNF-a sig-

nalling for both macrophages and DC.63,64 However, here

we provide the first evidence, using TLR4 knockout

BMDC, that LPS hetero-/cross-tolerance occurs through

LPS/TLR4 signalling and inflammasome signalling medi-

ated via abrogation of non-canonical caspase-11 activa-

tion (Fig 4a) and IL-1b secretion (Fig 5). Interestingly, an

opposite effect was observed with regard to IL-10 secre-

tion: LPS-primed BMDC challenged with LPS or M. tu-

berculosis exhibited an increased IL-10 response which

was also TLR4 specific (Fig. 5).

Earlier we showed (Fig. 3d) that LPS stimulation pro-

motes apoptosis of BMDC. Here, we further explored the

effect of LPS-priming on survival of BMDC upon in vitro

challenge with M. tuberculosis (Fig. 6). Interestingly,

BMDC primed with upLPS for 24 hr were significantly

more susceptible to apoptosis/necrosis on encounter with

M. tuberculosis compared with unstimulated BMDC

(2�2-fold increase in early apoptosis; 1,5-fold increase in

late apoptosis; 4-fold increase in necrosis).

Discussion

Recently, there has been considerable interest in develop-

ing specific cell-based immunotherapies using DC. Here

the mechanisms underlying the tolerogenic properties of

BMDC in the suppression of EAU, the mouse model of

human sight-threatening autoimmune uveitis, were exam-

ined. DC have the homeostatic function of promoting

immunological tolerance to self-antigens thereby prevent-

ing the development of autoimmune disorders.65 Both

pre-clinical and clinical studies have shown that adop-

tively transferred DC have potent immunosuppressive

properties.14,66–68 However, there is a risk that DC placed

in the pro-inflammatory environment of the host with

active autoimmune disease would convert to activated

self-antigen-presenting DC, promoting immunity rather

than tolerance, thereby worsening the disease. Therefore,

much effort has been directed to develop protocols that

stabilize the tolerogenic properties of DC, which would

ultimately ensure safety and effectiveness of DC-based

vaccines.

The data in this report confirm previous studies15,42

showing efficacy of LPS-primed BMDC in preventing the

development of EAU, an effect mediated by LPS engage-

ment of TLR4 on the BMDC. Similar results have been

found in other models and also in parallel clinical studies

using autologous DC.69,70

It is important to note that the population of

GM-CSF-cultured BMDC used in this study is DC-

enriched (GM-DC) and contains a sub-population of

macrophages (see Supplementary material, Table S1). The

depletion procedure used to purify BMDC was designed

to maximize the proportion of DC progenitors in the ini-

tial plating out of the cells but, as has recently been

described, some progenitors differentiate into macro-

phages (GM-Mφ).71 However, GM-DC are migratory

whereas GM-Mφ are sessile71 and administration of

BMDC by s.c. inoculation, as described here, preferen-

tially permits BMDC homing to the draining lymph

node.15,72 We therefore attribute the tolerogenic effects to

the migratory GM-DC in the mixed population.

There are several possible mechanisms whereby upLPS-

priming of BMDC mediates their tolerogenic effect in

preventing EAU and other experimental autoimmune

models. Our previous data15,42 showing that s.c. adminis-

tration of LPS-primed BMDC induces expansion of regu-

latory T cells at the skin-draining lymph nodes, suggest

that CD4+ regulatory T cells are likely to contribute

toward the observed tolerogenic effect. Induction of regu-

latory T cells by LPS-primed ET-DC is probably a conse-

quence of modified cell signalling induced in the DC by

high-dose LPS, which includes reduced signalling through

NF-jB (see also Fig. 4a,b), and specifically the NF-jB
subunit RelB, which when combined with p50 is known

to regulate DC activation and maturation.73,74 Most

recently RelB inhibitor-treated autologous DC have

shown efficacy in a Phase 1 clinical trial of patients with

rheumatoid arthritis.13 Interestingly, although most of the

studies investigating ET have been in vitro studies in
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Figure 6. Effect of lipopolysaccharide (LPS) -priming on survival of

bone-marrow-derived dendritic cells (BMDC) upon in vitro chal-

lenge with Mycobacterium tuberculosis (Mtb). BMDC were seeded in

24-well plates in 1 ml of cRPMI and primed with ultrapure LPS

(upLPS) for 24 hr, controls were incubated in cRPMI alone. After

24 hr, medium from each well was removed and replaced with fresh

medium, and the cells were either unstimulated or challenged with

Mtb protein extract for a further 24 hr. The cells were then har-

vested and stained with anti-CD11c antibody-APC, Annexin V-FITC

and 7AAD. Gating strategy: early apoptotic cells (Annexin V+,

7AAD�), late apoptotic cells (Annexin V+, 7AAD+), necrotic cells

(Annexin V�, 7AAD+).; n = 3, mean � SEM (t-test).
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which macrophages,39,75 and less so DC,35 are refractory

to a second challenge with LPS (“homotolerance”) a few

studies have shown that macrophages pre-exposed to one

TLR-agonist become unresponsive to challenge with

another TLR-agonist (“heterotolerance”). For instance,

LPS-primed macrophages fail to respond to a second

challenge with extracts from other Gram-negative bacte-

ria.37,64,76 One study has also shown that LPS-primed

BMDC are heterotolerant to Pam3Cys, an effect con-

trolled by IL-1 receptor-associated kinase M, which is an

intracellular negative regulator of TLR signalling.63 How-

ever, the present study is the first to report heterotoler-

ance of LPS-primed BMDC to mycobacterial proteins. As

ET is a feature of several conditions involving multiple

organisms (e.g. those involved in sepsis or hepatic ischae-

mia) the above data may have therapeutic implications.

Inhibition of NF-jB downstream signalling may not be

the only mechanism for tolerogenicity of LPS-primed

BMDC. Zanoni et al.30,47,77 have shown that LPS-primed

BMDC are programmed for apoptosis, unlike LPS-primed

macrophages which, although refractory to a second chal-

lenge of LPS, survive in culture for prolonged periods.

Here we show that up to 25% of BMDC primed with

LPS for 48 hr show signs of apoptosis after 8 days in cul-

ture (Fig. 3d). In addition, we confirm the link between

LPS-induced BMDC apoptosis with increased expression

of CD14 and the induction of NFATc2 (Fig. 3).47 Apop-

totic cells are known to promote immune tolerance when

administered in vivo. In particular, the clearance of apop-

totic cells has been identified as an event that is directly

responsible for tolerance induction. Further, it has been

demonstrated that administration of apoptotic BMDC

suppresses immune responses and inhibits experimental

diseases such as LPS-induced airway inflammation.54 In

contrast, necrotic cells are thought to play the opposite

role and trigger inflammatory rather than regulatory

responses. In our recent report72 we showed that only a

small percentage of the total inoculated tolerogenic

BMDC traffics to the draining lymph nodes, suggesting

that the majority of cells die at the site of administration.

We believe that the latter is most likely to be responsible

for the observed, although non-significant, dampening

effect of unstimulated BMDC on EAU severity. Anderson

et al. 23 have previously demonstrated that DC activation

is required for their migratory capacity and as a result it

is vital for effectiveness of DC-based vaccines both with

tolDC and immunogenic DC. Accordingly we have con-

firmed that LPS-primed BMDC are capable of signifi-

cantly reducing the severity of EAU (Fig. 2). In addition,

we have previously shown that upon s.c. administration,

LPS-primed BMDC selectively traffic and progressively

accumulate in the draining lymph nodes (up to 6�5% of

inoculated BMDC could be detected on day 6 post injec-

tion).15 We believe that the enhanced migratory abilities

of LPS-primed BMDC together with, but not limited to,

their increased susceptibility to apoptosis (Fig. 6) are

directly correlated with their greater effectiveness, com-

pared with non-activated BMDC.

Interestingly, human tolDC, generated with dexametha-

sone and the active form of vitamin D3, were shown not

only to maintain their tolerogenic function upon activa-

tion with maturation stimuli (LPS) but were superior in

terms of their migratory activity toward CCL19 (con-

firmed in our report72) and had enhanced antigen-pre-

senting ability.23 Citrullinated-peptide-pulsed tolDC have

also been reported to be safe and effective in a Phase 1

clinical study in patients with rheumatoid arthritis.13 Fur-

thermore, tolDC generated according to the protocol

described above (for safety purposes LPS has been substi-

tuted with the synthetic TLR4 ligand namely monophos-

phoryl lipid A) were recently tested in a Phase 1 clinical

trial in patients with rheumatoid arthritis or inflamma-

tory arthritis.14 The outcome of this small Phase 1 clinical

trial suggests that DC therapy is safe and potentially effec-

tive in treatment of rheumatoid arthritis. Furthermore,

local induction of tolerance may be possible as autolo-

gous DC inoculated directly into the joint in rheumatoid

arthritis patients appear to be safe and show early signs

of effectivity.

Alternatively, tolerogenicity of LPS-primed BMDC

in vivo in the EAU model may be a manifestation of

heterotolerance in which the second challenge is provided

by agents required for disease induction. In the model of

IRBP-CFA-induced EAU, heat-killed mycobacteria in the

CFA are the most likely candidate to provide this chal-

lenge. Here we have shown that LPS-primed BMDC are

heterotolerant to M. tuberculosis protein extract. Unlike

LPS, M. tuberculosis protein does not activate signalling

by way of the TRIF pathway (TBK1/IRF3), so there

appears to be no induction of type 1 IFN (Figs 4a and 5).

However, a single exposure of BMDC to M. tuberculosis

induces a high level of IL-1b even in the absence of

TLR4, which is almost completely abrogated in LPS-

primed BMDC (Fig. 5). Interleukin-1b is known to acti-

vate DC, including through an autocrine loop, towards a

mature phenotype and functionality for antigen presenta-

tion. Mycobacterium tuberculosis activates DC through

several ligands including TLR2 and Dectin-1, and less so

TLR4 with downstream activation of the inflammasome

and secretion of IL-1b. Furthermore, Dectin-1, Mincle

and signalling through the Syk/Card 9 complex are

required for induction of EAU by way of IRBP:CFA.48,49

As signalling by the IL-1 receptor has recently been

shown to be critical for the induction of EAU,50 it is a

distinct possibility that LPS-primed BMDC prevent IRBP:

CFA-induced EAU by blocking BMDC inflammasome

activation and IL-1b production.

In summary, LPS-priming of BMDC using the protocol

described here clearly has an enhancing and stabilizing

effect in preventing IRBP:CFA-induced EAU. At least
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three potential mechanisms have been described which

could mediate this effect including (i) induction of apop-

tosis in BMDC through CD14:NFATc2 signalling; (ii)

reduction of NF-jB and IRF3 signalling and downstream

pro-inflammatory cytokine production; and (iii) blockade

of M. tuberculosis-induced inflammasome activation.

Initial clinical results in rheumatoid arthritis have

shown that targeting NF-jB/RelB alone may be effective

in controlling disease. However, therapeutic strategies

which would allow targeting of several pathways towards

immune tolerance, as identified here, might optimize DC-

based cell therapy for many of these conditions.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Table S1. Ultrapure lipopolysaccharide (upLPS) -

primed bone-marrow-derived dendritic cells (BMDC)

generated by culture of purified bone marrow cells in the

presence of granulocyte–macrophage colony-stimulating

factor contain low numbers of macrophage/monocyte sig-

nature markers. The table shows the percentage of cells

expressing CD115, F4/80 or Gr-1 (gated on total cell pop-

ulation). Data from one of the two experiments per-

formed in four replicates per experimental condition are

shown.
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