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 22 

Summary 23 

1. Bumblebees (Bombus spp.) are important pollinators of both crops and wild flowers.  Their 24 

contribution to this essential ecosystem service has been threatened over recent decades by 25 

changes in land use, which have led to dramatic declines in their populations.  In order to design 26 

effective conservation measures it is important to understand the effects of variation in 27 

landscape composition and structure on the foraging activities of bumblebees. However, these 28 

issues remain poorly understood. 29 

2. We used field surveys, molecular genetics and fine resolution remote sensing to estimate the 30 

locations of wild bumblebee nests from the locations of related workers across a 20 km2 31 

agricultural landscape in southern England, for five species, including the rare B. ruderatus. We 32 

compared worker foraging distances between species and examined how variation in landscape 33 

composition and structure affected patterns of foraging. 34 

3. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. 35 

lapidarius and B. ruderatus exhibited significantly greater mean foraging distances (around 500 36 

m) than B. hortorum and B. pascuorum (around 300 m). 37 

4. There was wide variation in worker foraging distances between colonies of the same species.  38 

This variation was strongly influenced by the amount and spatial configuration of available 39 

foraging habitats in the local landscape. Shorter foraging distances were found for colonies 40 

where the local landscape had a high coverage and low fragmentation of semi-natural 41 

vegetation including managed agri-environmental field margins. Floral cover of preferred forage 42 

plants had the strongest effects on worker foraging distance. 43 

5. Synthesis and applications. The amount and spatial configuration of floral resources are 44 

important in determining the foraging distances of worker bumblebees.  This may underlie one 45 

of the mechanisms contributing to the decline of some bumblebee species with land use 46 

change, as in resource-poor landscapes workers must travel further to collect sufficient 47 
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resources, incurring higher energetic costs. The strength of the relationships found between 48 

foraging habitat and worker foraging distance also suggests that there is potential for 49 

improvements to be made in the design and implementation of agri-environment options 50 

aimed at providing foraging habitat for bumblebees.    51 

Keywords: Spatial ecology, Bombus, wild colonies, pollination, foraging range, landscape scale, Agri-52 

environment 53 

54 
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 55 

Introduction 56 

Bumblebees are important pollinators of wild plants (Holzschuh et al. 2011; Kovács-Hostyánszki et 57 

al. 2013) and a range of crops (Garratt et al. 2014).  They therefore provide an essential ecosystem 58 

service, affecting the stability of natural ecosystems as well as agricultural productivity.  Many 59 

bumblebee species worldwide have undergone declines, driven by a range of factors including 60 

habitat loss and fragmentation following agricultural intensification (Williams & Osborne 2009).  As a 61 

result there is great interest in the likely impacts of ongoing modifications to the landscape on 62 

ecosystem service delivery by bumblebees, and in methods by which landscapes might be enhanced 63 

in terms of suitability for bumblebee populations.  Such methods include the many agri-environment 64 

schemes whose aims include providing foraging resources for pollinating insects (Carvell et al. 2006; 65 

Carvell et al. 2007). 66 

As worker bumblebees are central place foragers, the spatial and temporal distribution of resources 67 

surrounding the colony is important in determining the energetic returns of foraging trips and 68 

ultimately the viability of a colony (Dukas & Edelstein-Keshet 1998).  Many models of pollinator 69 

foraging and pollination services rely on accurate parameterisation of foraging distance and resource 70 

value of different habitats (Cresswell, Osborne & Goulson 2000; Lonsdorf et al. 2009; Raine, Rossmo 71 

& Le Comber 2009). Indeed, if land management for bumblebees is to be successful (and cost 72 

effective), it is important to have accurate information on how far workers travel to forage and the 73 

extent of variation within and between species. However, this information is currently limited for 74 

wild colonies of most bumblebee species, and there is a corresponding lack of knowledge on how 75 

landscape composition and structure affect foraging patterns. 76 

Wild colonies of many species of bumblebee are subterranean or concealed in dense vegetation, 77 

making them difficult to find.  Therefore studies of worker foraging distance have tended to rely 78 
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upon observations of workers from small numbers of  wild or experimentally reared colonies 79 

(Walther-Hellwig & Frankl 2000; Westphal, Steffan-Dewenter & Tscharntke 2006b; Osborne et al. 80 

2008), inferences from worker density and landscape composition (Westphal, Steffan-Dewenter & 81 

Tscharntke 2006a; Suzuki, Kawaguchi & Toquenaga 2007) or genetic analyses of bumblebees 82 

captured at foraging sites (Chapman, Wang & Bourke 2003; Darvill, Knight & Goulson 2004; Knight et 83 

al. 2005; Charman et al. 2010; Dreier et al. 2014b). The first two approaches exhibit various 84 

limitations: studies are too labour-intensive to apply to large samples or must make simplifying 85 

assumptions about resource distribution and constancy of foraging ranges.  In contrast, genetic 86 

analyses permit inferences regarding bumblebee spatial ecology based on large numbers of wild 87 

colonies.  Such studies typically involve sampling worker bees and reconstructing colony 88 

memberships on the basis of individual multilocus genotypes to obtain numbers or densities of 89 

colonies (Herrmann et al. 2007; Knight et al. 2009; Goulson et al. 2010).   Recently, these methods 90 

have also been used to estimate the foraging distances of individual colonies (Carvell et al. 2012; Jha 91 

& Kremen 2013).  However, so far such studies have used data from workers sampled at discrete 92 

sites (e.g. spatially separated forage patches or transects), constraining the range of foraging 93 

distances and spatial patterns that they are able to detect. 94 

In this study, we used genetic analyses to estimate worker foraging distances for five social 95 

bumblebee (Bombus) species (including B. ruderatus Fabricius which is rare in the UK and in decline 96 

throughout Europe) and combined these with data on habitat and floral resources to answer the 97 

following questions.  Firstly, how does the distance that workers travel from the colony to forage 98 

vary between species sampled across a common landscape?  Secondly, do the distances travelled by 99 

workers vary between colonies within species depending on their location in the landscape? Thirdly, 100 

how do habitat composition and landscape structure affect worker foraging distance?  101 

We sampled workers across the entirety of a landscape that varied in habitat composition and had 102 

been mapped at a fine spatial resolution. This is the first time that this approach has been applied at 103 
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such a fine spatial scale and to both common and declining species within a shared landscape. Our 104 

methods have the advantages of increasing the likelihood of detecting sister workers at multiple 105 

sites and of sampling a high proportion of colonies in the landscape (Dreier et al. 2014b). We found 106 

significant effects of both habitat composition and landscape structure on the estimated foraging 107 

distances of workers from different colonies, and discuss the implications of our findings for 108 

effective management for bumblebee conservation within agricultural landscapes. 109 

110 

Page 6 of 33Journal of Applied Ecology



For Peer Review

7 

 

 111 

Methods 112 

STUDY LANDSCAPE AND STUDY SPECIES 113 

The study was conducted over a 20 km2 area of farmland centred on the Hillesden Estate, 114 

Buckinghamshire, UK (51.95 N, 01.00 W; Fig. S1).  The landscape is typical of southern lowland 115 

England, being dominated by arable fields of autumn-sown wheat  Triticum aestivum L., oilseed rape 116 

Brassica napus L. and field beans Vicia faba L., interspersed with fields of permanent pasture (mostly 117 

ryegrass Lolium perrene L. and white clover Trifolium repens  L.) and scattered small woods and 118 

copses.  Most fields are bordered by low (<2 m), shrub hedgerows with scattered, mature trees.  The 119 

landscape also contains several small villages, giving some cover of gardens and associated suburban 120 

vegetation.  The Hillesden Estate itself forms around 10 km2 of the study landscape.  This estate has 121 

been managed since 2005 under a range of agri-environment options typical of the UK’s entry level 122 

stewardship (ELS) agri-environment scheme.  These include field margins and field corners sown 123 

with grass, perennial wildflower and annual bird food seed mixes aimed at promoting a range of 124 

farmland biodiversity target taxa including pollinating insects (see Redhead et al. (2013) and 125 

Broughton et al. (2014) for further details).   126 

Of the five study species, four are common and widespread across much of the UK (B. terrestris L., 127 

B. lapidarius L., B. pascuorum Scopoli, B. hortorum L.) while one (B. ruderatus) has suffered 128 

significant declines in recent decades and is a conservation priority species listed under Section 41 of 129 

the UK Natural Environment and Rural Communities Act 2006 (NERC 2006). The five species vary in 130 

their forage plant choice and nesting behaviours .  Bombus terrestris and B. lapidarius typically have 131 

large colonies and short-tongued workers that visit a wide range of flowers, whereas B. pascuorum 132 

and B. hortorum tend to live in smaller colonies and have longer-tongued workers that specialize in 133 

foraging at flowers with long corolla tubes (Benton 2006). B. ruderatus is ecologically similar to B. 134 

hortorum, these being the longest-tongued UK Bombus species. 135 
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 BUMBLEBEE SAMPLING AND GENETIC ANALYSIS 136 

Workers of all five study species were sampled between 20th June and 5th August 2011, using 137 

gridded survey maps to ensure full coverage of the entire study landscape (see Supplementary 138 

material Fig. S1. and Dreier et al. (2014b) for full details). All encountered workers of the target 139 

species were caught, their locations recorded using a handheld GPS (Garmin Etrex 10, accurate to 3 140 

m) and foraging behaviours noted. The identity of the visited forage plants was also recorded. The 141 

tarsal tip  was non-lethally removed from the right mid-leg of each bee (Holehouse, Hammond & 142 

Bourke 2003), and preserved in 100% ethanol until DNA extraction. DNA was isolated from each 143 

tarsal sample using the standard HotSHOT protocol (Truett et al. 2000). Field identification to species 144 

was subsequently confirmed with PCR-based molecular identification tools (Dreier et al. 2014a; 145 

Dreier et al. 2014b) for the species pairs B. hortorum/B. ruderatus and B. terrestris/B. lucorum L., in 146 

which the workers are difficult to separate using morphological characters alone. Individuals were 147 

then genotyped at 10-14 microsatellite loci (Dreier et al. 2014a). Sister relationships among workers 148 

were estimated from individual marker genotypes using the maximum likelihood sibship 149 

reconstruction method in COLONY version 2.0 (Wang 2004). For full details of the genetic analysis, 150 

see Dreier et al. (2014a, 2014b) 151 

COLLECTING HABITAT DATA 152 

Survey maps of habitat data were based on a land use/land cover (LULC) map derived from two 153 

airborne remote sensed sources - Light Detection and Ranging (LiDAR) and hyperspectral imaging. 154 

These remote sensed data were acquired by the Natural Environment Research Council Airborne 155 

Research and Survey Facility on 28th August 2007.  Supervised classification of the hyperspectral 156 

dataset, combined with a digital canopy height model derived from LiDAR, produced a high 157 

resolution (0.5 x 0.5m pixels) LULC map.  For further details on the collection and processing of the 158 

LiDAR and hyperspectral data, see Redhead et al. (2013).  For the current study, the LULC map was 159 

simplified to nine classes - arable, short grass, mixed low vegetation, garden and urban vegetation, 160 
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woody vegetation, ELS field margin, road and building, water, bare soil (see Figure 1 and 161 

supplementary material, Figure S1) - and updated manually to reflect changes in ELS management. 162 

The LULC map was used to systematically survey the study landscape in terms of its value for 163 

bumblebees.  Every mapped LULC polygon representing a discrete habitat parcel (i.e. an area of 164 

contiguous land use clearly visible in the field) was surveyed during July and August 2011, to 165 

estimate the percentage flower cover (i.e. vegetative cover multiplied by proportion in flower) of 166 

target plant species, families or groups (given in Supporting Information, Table S1).  Any changes in 167 

the extent of parcels identified in the field were manually added to the LULC map.  In total, 18.7 km2 168 

of the study landscape were surveyed in this way.  For the remaining 6.5% of the study area that was 169 

not surveyed (because of access restrictions, mostly on pasture fields and suburban areas on the 170 

edge of the study area), floral data were estimated by taking the mean cover of values from parcels 171 

of the same LULC class within 500 metres of the focal parcel.   Handling of the LULC map and survey 172 

data, and estimation of colony locations (see below), was performed in ArcMAP v10.0 (© ESRI, 173 

Redlands, CA, USA). 174 

ESTIMATING COLONY LOCATIONS, FORAGING DISTANCES AND RELATIONSHIPS WITH LANDSCAPE VARIABLES  175 

Locations were estimated for all colonies from which two or more sister workers had been inferred 176 

in the sample.  Colonies from which only a single worker was inferred (‘singletons’) were excluded 177 

from further analyses as they cannot yield a meaningful estimate of colony location (Carvell et al. 178 

2012). Estimated colony locations were derived using a mean centre approach. This took the mean 179 

Easting and Northing of worker locations from each sibship and plotted the resultant coordinates 180 

(Fig. 1).  This ‘mean centre’ approach had several advantages over other methods tested in 181 

preliminary analyses (Carvell et al. 2012; Dreier et al. 2014b).  These locations were then ‘snapped’ 182 

(i.e. moved to coincide exactly with the coordinates of another feature) to the nearest LULC class 183 

that might have formed suitable nesting habitat for bumblebees (i.e. all classes except arable fields, 184 
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roads, buildings and water). Most locations did not require snapping, and, of those that did, 80% 185 

were moved less than 50 m.  186 

The straight-line distance of each worker to its estimated colony location was calculated.  The mean 187 

of these distances for all workers in a colony was then calculated to give a ‘colony-specific foraging 188 

distance’.  To estimate the resource quality of the landscape surrounding each colony, a buffer with 189 

a radius equal to its colony-specific foraging distance was created around the colony location (Figure 190 

1). The proportion of each LULC class (mixed low vegetation and ELS margins being combined to a 191 

single ‘mixed vegetation’ class, i.e. to include non-woody, non-crop, forbs or forb-grass mixtures) 192 

and the floral cover of plant groups within this buffer were then determined.  Floral cover of 193 

surveyed plant groups was further grouped in terms of the plants' relative value as forage resources 194 

for bumblebees. These groupings were ‘non-crop’, ‘visited’ (visited by foraging workers  during 195 

sampling) and ‘preferred’ (the five plant groups with the highest mean number of observed worker 196 

visits to species within the group, as listed in Supporting Information, Table S1).   Three metrics of 197 

landscape structure were also calculated within the buffer area, chosen on the basis of having been 198 

demonstrated to provide ecologically informative measures of the spatial configuration of habitats 199 

(Riitters et al. 1995; Moser et al. 2002) or to influence the foraging distances of bumblebees 200 

(Cranmer, McCollin & Ollerton 2012): 201 

i. Mean patch edge:area ratio for patches of mixed vegetation; a measure of the 202 

fragmentation of resource patches surrounding each colony, incorporating patch size.   203 

ii. Mean shape index for patches of mixed vegetation, calculated as patch perimeter divided by 204 

the square root of patch area, multiplied by 0.25; a measure of the average complexity of 205 

patch shapes (equalling one for perfectly square patches, decreasing without limit as 206 

patches become more irregular), independent of patch area.   207 
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iii. Hedgerow proximity index, calculated by summing the distance to the nearest three 208 

hedgerow intersections; an index of the amount and complexity of hedgerow in the local 209 

landscape.  210 

STATISTICAL ANALYSIS 211 

The relationship between each habitat variable and log (base 10) transformed colony-specific 212 

foraging distance was analysed for each species by independent general linear models (GLM) 213 

performed in R (R Core Team 2013).  Colonies with less than 95% coverage of habitat data within the 214 

buffer were excluded from these analyses (n= 21).   Colonies with a mean colony-specific foraging 215 

distance of less than 20 m were also excluded (n = 25).  The latter were excluded because such 216 

colonies were likely to have resulted from sampling related workers in a single resource patch.  We 217 

then examined R2 and AIC values from each GLM to identify the best fitting models. 218 

219 
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 220 

Results  221 

A total of 2577 workers were sampled and genotyped from the five target species (sample sizes 222 

given in Table 1).  The total estimated number of colonies within the landscape varied between 223 

species (Table 1), but not in direct proportion to the number of individual workers sampled, with 224 

some species having higher proportions of singletons (e.g. B. hortorum and B. terrestris).  225 

Worker foraging distances differed significantly between species (Table 1, One-way ANOVA, F4, 1551 = 226 

26.42, p <0.01). Species mean foraging distances formed two groups (Tukey post-hoc tests, 227 

Supporting Information, Table S2) - with shorter distances of around 300 m for B. pascuorum and 228 

B. hortorum and significantly longer distances of around 500 m for B. terrestris, B. lapidarius and 229 

B. ruderatus. Maximum foraging distances were considerably greater, with an individual worker of B. 230 

terrestris reaching 2878 m from its estimated colony location (see Table 1 for other species maxima). 231 

There was no consistent effect of size of sibship on estimated foraging distance, for any species. 232 

Colony-specific foraging distances varied widely between colonies of the same species. A range of habitat 233 

variables showed significant relationships with colony-specific foraging distances across species (Table 2). 234 

Overall there was a strong, significant negative effect of cover of mixed vegetation, such that increasing cover 235 

decreased the colony-specific foraging distances of all species (Fig. 2). This relationship was markedly weaker 236 

for B. terrestris. Cover of arable land showed the reverse relationship (Fig. 2), such that greater arable cover 237 

resulted in greater colony-specific foraging distances. This relationship was strongest for B. terrestris and B. 238 

lapidarius.  239 

Significant effects of floral cover on colony-specific foraging distances were found only for non-crop 240 

vegetation. A significant, negative relationship between colony-specific foraging distance and non-crop floral 241 

cover surrounding the colony was observed for all species, with highest model fit for longer-tongued species 242 

(B. pascuorum, B. hortorum and B. ruderatus). Limiting the floral cover data to worker-visited plant groups 243 

made little difference to model fit. However, further refinement of to worker-preferred plant groups improved 244 

the explanatory power of the models (Table 2), especially for the two long-tongued species B. hortorum and B. 245 
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ruderatus. The decline in colony-specific foraging distance with increased worker-preferred floral cover was 246 

also notably steeper for these two species (fig.  3). 247 

Among the landscape structure metrics, there was a significant positive relationship between colony-specific 248 

foraging distance and mean edge area ratio for all species (Table 2). For B. terrestris, B. lapidarius and B. 249 

ruderatus, mean edge area ratio was a better predictor of colony-specific foraging distance than proportion of 250 

mixed vegetation. For B. hortorum and B. pascuorum, the opposite was true, with mean edge area ratio of 251 

secondary importance compared to proportion of mixed vegetation. In contrast, shape index only had a 252 

significant effect in B. hortorum and B. pascuorum, and in neither case did it improve model fit above total 253 

cover of mixed vegetation. The hedgerow proximity index showed low model support for all species (Table 2).  254 

255 
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 256 

Discussion 257 

 In this study we used genetic analyses to determine colony membership for worker bumblebees of 258 

five species sampled across an agricultural landscape and thereby estimate colony locations and 259 

foraging distances at the level of individual workers. We found significant differences in worker 260 

foraging distances between the five study species, which could be divided into ‘long’ (B. lapidarius, 261 

B. terrestris and B. ruderatus) and ‘short’ (B. hortorum, B. pascuorum) range foragers.  We also 262 

showed that the colony-specific foraging distance varied widely within each species depending on 263 

the location of colonies within the landscape with respect to the availability and configuration of 264 

floral resources. This confirms the potential for bumblebees to show foraging plasticity in response 265 

to changes in resource availability (Jha & Kremen 2013), but suggests that differences between 266 

species and the scale of land-use changes could be critical in designing management practices to 267 

conserve bee populations and enhance pollination services. 268 

VARIATION IN WORKER FORAGING DISTANCES BETWEEN SPECIES 269 

Our estimates of mean and maximum foraging distance for each species (Table 1) fell within the 270 

range of previous estimates for B. terrestris, B. lapidarius and B. pascuorum. Despite variation in 271 

both these estimates and our colony-specific foraging distances, our results confirm that B. terrestris 272 

workers may forage several kilometres from the colony (Walther-Hellwig & Frankl 2000; Knight et al. 273 

2005; Westphal, Steffan-Dewenter & Tscharntke 2006a; Osborne et al. 2008) and that  B. pascuorum 274 

generally travels shorter distances (Darvill, Knight & Goulson 2004; Knight et al. 2005), although 275 

occasional individuals can still be found almost two kilometres from the colony (Chapman, Wang & 276 

Bourke 2003; Carvell et al. 2012).  While some studies have suggested that B. lapidarius has a similar 277 

mean foraging range to B. pascuorum (Knight et al. 2005; Carvell et al. 2012), our results indicate 278 

that B. lapidarius is more similar in its foraging range to B. terrestris (Walther-Hellwig & Frankl 2000; 279 
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Westphal, Steffan-Dewenter & Tscharntke 2006a), as might be predicted from the similar ecology 280 

and population status of the two species. 281 

No previously published foraging distances are available for B. hortorum or B. ruderatus.  Both are 282 

long-tongued species, with a high level of specialisation on long-corolla flowers such as red clover, 283 

Trifolium pratense L. (Carvell et al. 2006), lending them particular ecological importance as 284 

pollinators (Garratt et al. 2014). However, the two species have shown contrasting population 285 

trends, with B. hortorum remaining widespread throughout Europe (Goulson et al. 2005) and 286 

B. ruderatus showing significant contractions in its native range.  Our results showed B. hortorum to 287 

have the shortest mean and maximum worker foraging distances of the five species, whereas the 288 

values for B. ruderatus were relatively high.  This is counter to the expectation that species with the 289 

shortest foraging ranges should be most at risk from lack of forage in the local landscape, and thus 290 

most threatened by changes in land use.  It is therefore unlikely that the typical foraging distance 291 

alone determines the species-level response to landscape changes.  292 

RELATIONSHIPS BETWEEN HABITAT COMPOSITION AND COLONY-SPECIFIC FORAGING DISTANCES 293 

The amount of floral resources provided by non-crop vegetation, whether measured directly or by 294 

proxy as cover of the mixed vegetation landcover class, always showed a significant negative 295 

relationship with foraging distance, such that colonies in areas of the landscape with least floral 296 

resources had on average more distantly-foraging workers (Table 2).   Longer foraging distances may 297 

be either beneficial or injurious at the colony level, since workers face a trade-off between the 298 

increased costs of foraging and potential energetic gains (Schmid-Hempel & Schmid-Hempel 1998; 299 

Cresswell, Osborne & Goulson 2000).  Although relationships between habitat and foraging distance 300 

should be interpreted with caution, due to potential influences from variables not measurable by the 301 

methods of this study (e.g. differing mean body size, colony size, population density, intensity of 302 

competition), our results suggest that contrasting situations may occur in different species. 303 

Widespread species with longer foraging distances, such as B. terrestris and B. lapidarius, may be 304 
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more flexible in their ability to compensate for a resource-poor local landscape by increasing search 305 

effort to find more distant patches of high quality forage (Walther-Hellwig & Frankl 2000; Westphal, 306 

Steffan-Dewenter & Tscharntke 2006a; Osborne et al. 2008).  These two species have been observed 307 

to dominate the bumblebee communities of modern arable land (Bommarco et al. 2011). As short-308 

tongued generalists, such species also have the widest range of potential food sources, and so are 309 

most likely to find viable resources by increasing foraging distance.  This is supported in our study by 310 

the comparatively weak relationships with habitat displayed by B. terrestris and B. lapidarius.  In 311 

contrast, B. ruderatus was the only species to show a longer mean foraging distance and yet retain 312 

strong relationships between colony-specific foraging distance and floral cover, especially with the 313 

worker preferred floral cover, which included red clover.  These findings are a likely consequence of 314 

its specialised flower choices, such that workers from nests in resource-poor parts of the landscape 315 

must travel long distances to reach suitable forage patches.  They may not, however, be able to 316 

reach a point where the proportional cover of resources offsets the costs of increased travel.  Similar 317 

situations may hold for other rare or declining species such as B. distinguendus Morawitz, the only 318 

other rare UK bumblebee species for which foraging distance has been directly studied.  This species 319 

also has relatively long foraging distances, and a similar level of specialisation on floral resources 320 

which are increasingly less common under agricultural intensification (Charman et al. 2010).  321 

Neither B. pascuorum nor B. hortorum are showing the declines that might be expected given their 322 

comparatively short average foraging distances and strong relationships between foraging distance 323 

and local habitat, although there is evidence that their prevalence in the bumblebee community has 324 

declined in modern arable landscapes (Bommarco et al. 2011). Bombus pascuorum has a medium 325 

tongue-length and has been associated with a wide range of forage plants (Dramstad & Fry 1995), 326 

including flowering crops (Herrmann et al. 2007; Garratt et al. 2014).  This lack of specialisation, seen 327 

in our results by the low increase in model fit between non-crop and worker preferred floral cover, 328 

may allow it to maximise the value of the local area by intensive use of all available resources, as 329 

suggested for the related B. muscorum L. by Walther-Hellwig and Frankl (2000).  The widespread 330 
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status of B. hortorum despite its similarity to the declining B. ruderatus has been a continuing 331 

enigma, with suggested explanations including differences between the species in their proximity to 332 

the edges of their global distributions (Goulson et al. 2005) and, as recent evidence from the current 333 

study landscape suggests, lower colony densities and levels of genetic diversity in B. ruderatus 334 

(Dreier et al. 2014b).  Our results add to these findings by suggesting that B. ruderatus uses the 335 

landscape at a different spatial scale, more similar to that of B.lapidarius and B. terrestris, despite an 336 

apparent preference for a restricted subset of plant groups where they occur.   337 

For all species, total floral cover including cover of flowering crops did not show a significant effect 338 

on colony-specific foraging distance.  A similar result was found for B. vosnesenskii (Radoszkowski) in 339 

the USA by Jha and Kremen (2013), with no apparent effect of total floral cover, although there are 340 

considerable differences in spatial scale and sampling approach between the study of Jha and 341 

Kremen (2013) and the current study.  The most abundant flowering crop in our landscape (and in 342 

the UK), oilseed rape, has been implicated in affecting bumblebee colony size, local worker 343 

abundance and worker foraging patterns, but these effects can be short-lived, due to its 344 

comparatively short flowering period (Westphal, Steffan-Dewenter & Tscharntke 2003; Westphal, 345 

Steffan-Dewenter & Tscharntke 2009; Kovács-Hostyánszki et al. 2013; Persson & Smith 2013). In the 346 

present study, surveys were conducted well after the peak flowering period of oilseed rape so that 347 

even later-flowering fields are likely to have already declined in value, and indeed no workers were 348 

observed foraging on oilseed rape in our study.  Such a lack of response to mass-flowering crops 349 

emphasizes the importance of longer-flowering semi-natural resources for sustaining the full colony-350 

cycle of bumblebees. 351 

RELATIONSHIPS BETWEEN LANDSCAPE STRUCTURE AND COLONY-SPECIFIC FORAGING DISTANCES 352 

The spatial arrangement of resources is well established as a potential driver of pollinator 353 

abundance and foraging patterns (Rundlof, Nilsson & Smith 2008; Cranmer, McCollin & Ollerton 354 

2012) , and, at larger scales, habitat fragmentation is frequently cited as a major driver of 355 
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biodiversity loss (Krauss et al. 2010).  At the scale of the current study, it was evident that landscape 356 

structure was important to varying degrees for the different species of bumblebee.   357 

In agricultural landscapes dominated by large open spaces, linear features, like hedgerows,  may 358 

provide important flyways for pollinators that facilitate movement between forage patches 359 

(Cranmer, McCollin and Ollerton (2012) .  Our study found only weakly supported relationships 360 

between the abundance and proximity of hedgerows in the local landscape and worker foraging 361 

distances.  This does not mean that hedgerows are not important to worker movements but rather 362 

that in our landscape hedgerows did not promote a significant increase in the mean distance 363 

travelled.   364 

Species with longer foraging distances responded more strongly to edge area ratio than to total 365 

cover of mixed vegetation. Edge area ratio decreases with increasing patch area, such that 366 

landscapes with a low edge area ratio are likely to be composed of large, compact foraging resource 367 

patches, while those with a high edge area ratio will reflect greater fragmentation.  368 

Bombus ruderatus showed the strongest relationship with this variable, corroborating previous 369 

suggestions that B. ruderatus requires not only the presence of long corolla flowers but large, 370 

continuous tracts of habitat containing these species (Goulson et al. 2005).     371 

Over longer foraging distances, travel between patches becomes more feasible, as does covering an 372 

elongated or irregular patch, so it might be expected that total area and fragmentation are more 373 

important than the shape of patches for species foraging over greater distances.  Indeed, 374 

B. terrestris, B. lapidarius and B. ruderatus did not show any significant relationship with patch shape 375 

index.  Although B. hortorum and B. pascuorum did show a significant relationship, patch shape 376 

index added little to the amount of variation explained by total mixed vegetation cover. Thus a 377 

larger total area of floral resource, in large patches, spaced within the mean foraging range of the 378 

species, remains the most beneficial situation for all five species.  This is in some respects supportive 379 
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of current UK agri-environmental practice as many options targeted at pollinators are implemented 380 

as field margins and are thus linear in nature, helping to decrease distance between patches.   381 

IMPLICATIONS FOR DESIGN AND IMPLEMENTATION OF LAND MANAGEMENT FOR BUMBLEBEE CONSERVATION 382 

Overall our study suggests that even within a relatively small landscape area, bumblebee worker 383 

foraging distances vary according to resource availability.  Several studies have asserted that 384 

common bumblebees may form useful proxies for rare, and thus more difficult to study, species by 385 

virtue of shared ecological attributes such as nesting ecology, tongue-length or life-cycle (Walther-386 

Hellwig and Frankl 2000, Jha and Kremen 2013).  By sampling both common and rare species within 387 

a shared landscape, our study shows that even ecologically and morphologically similar species can 388 

respond to landscape composition and structure in different ways, and that this may provide insight 389 

into the causes of their different trends at a population level (Osborne et al. 2008a). 390 

 Our results suggest that provision of floral resources under agri-environment schemes, for example 391 

by sowing of targeted wildflower mixtures (Carvell et al., 2007), is likely to reduce net energy 392 

expenditure by reducing the distance workers are required to travel in order to forage, for many 393 

bumblebee species.  These effects are likely to be most pronounced where resources are sited in 394 

such a way as to increase connectivity at a scale relevant to the foraging range of most colonies. Our 395 

estimates suggest that, in the study landscape, 5 - 10% floral cover of non-crop, semi-natural 396 

vegetation or 1 - 3% floral cover of preferred forage species should allow workers of the studied 397 

bumblebee species to forage at or below their species mean distance from the colony.  Reducing 398 

energy expenditure is likely to enhance the survival of colonies and contribute to promoting 399 

bumblebee population stability and growth.  However, further work on the impact of the landscape 400 

on colony survival and dispersal over time would be valuable in quantifying the importance of forage 401 

at different times of year, and the requirements for nesting and overwintering sites, all of which are 402 

also potential targets for conservation management. 403 

404 
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 Table 1. Sample sizes (N) and descriptive statistics for worker foraging distances, for each of the five 552 

Bombus species.  Sample sizes are given with and without ‘singletons’ (colonies from which only a 553 

single worker was sampled). 554 

Species 

Worker foraging distance (m) Colonies 

N all 

workers 

N non-

singletons 
Mean   SE Max 

N all 

colonies 

N non-singleton  

colonies 

B. terrestris 382 187 551.40 39.83 2878.00 264 69 

B. lapidarius 1171 774 536.39 16.02 2059.00 668 271 

B. pascuorum 548 311 336.86 19.92 1808.00 360 123 

B. hortorum 262 117 272.98 20.15 810.00 193 48 

B. ruderatus 214 168 501.62 33.71 2350.00 88 42 

 555 

556 
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Table 2. Results of linear regression of colony-specific foraging distance against log-transformed 557 

habitat variables, for five Bombus species. N = number of colonies.  For land-use/land-cover classes, 558 

results are shown for only arable (AR) and mixed vegetation (MV) as these were the two variables 559 

showing statistical significance or high levels of model support.   Floral cover variables are: total for 560 

all plant groups (ALL), non-crop (NC), worker-visited (WV) and worker-preferred (WP) species or 561 

groups.  Landscape structure metrics are: mean edge area ratio (EA), mean shape index (SI) and 562 

hedgerow proximity index (HI).  Asterisks denote significance at: * P < 0.05, ** P <0.01, *** P <0.001 563 

    AR MV ALL NC WV WP EA SI HI 

B. terrestris Slope 2.713 -2.096 0.420 -4.020 -4.092 -4.928 1.383 0.151 0.072 

N = 65 R
2
 0.327 0.072 -0.013 0.203 0.206 0.219 0.146 -0.016 -0.015 

DF = 63 p <0.001*** 0.017* 0.652 <0.001*** <0.001*** <0.001*** 0.001*** 0.891 0.831 

 AIC 64.045 84.974 90.643 75.083 74.815 73.753 79.578 90.835 90.808 

                      

B. lapidarius Slope 1.955 -3.469 0.061 -2.686 -2.581 -4.002 1.574 -0.450 0.520 

N = 248 R
2
 0.177 0.153 -0.004 0.063 0.058 0.085 0.189 -0.002 0.035 

DF = 246 p <0.001*** <0.001*** 0.873 <0.001*** <0.001*** <0.001*** <0.001*** 0.474 0.002** 

 AIC 216.108 223.190 265.328 248.298 249.448 242.182 212.363 264.835 255.401 

                      

B. pascuorum Slope 3.396 -4.616 -0.930 -6.359 -6.341 -9.082 2.636 -3.601 0.754 

N = 108 R
2
 0.354 0.481 0.009 0.416 0.417 0.428 0.315 0.138 0.057 

DF = 106 p <0.001*** <0.001*** 0.165 <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 0.008** 

 AIC 109.362 85.621 155.535 98.483 98.227 96.128 113.511 138.127 147.682 

                      

B. hortorum Slope 2.059 -4.411 -0.013 -4.294 -4.325 -7.339 1.252 -5.982 -0.368 

N = 44 R
2
 0.165 0.507 -0.024 0.253 0.256 0.383 0.084 0.205 0.001 

DF = 42 p 0.004** <0.001*** 0.986 <0.001*** <0.001*** <0.001*** 0.032* 0.001** 0.312 

 AIC 38.510 15.321 47.485 33.641 33.438 25.225 42.596 36.376 46.402 

                      

B. ruderatus Slope 1.553 -3.034 -0.066 -4.849 -4.880 -13.590 2.661 -1.368 0.093 

N = 41 R2 0.143 0.373 -0.025 0.364 0.369 0.508 0.485 -0.007 -0.023 

DF = 39 p 0.009** <0.001*** 0.938 <0.001*** <0.001*** <0.001*** <0.001*** 0.401 0.764 

  AIC 18.607 5.788 25.968 6.360 6.086 -4.130 -2.294 25.224 25.878 

564 
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 565 

 566 

Figure 1.  Example of the colony location estimation method, overlain on the land use/land cover 567 

map, for two bumblebee colonies (A and B).  Black/white circular symbols = capture locations of 568 

workers determined to be from a given colony following genetic analysis. Stars = mean centres of 569 

these locations, i.e. estimated colony locations.  Solid/dashed lines = buffers with a radius equal to 570 

the mean distance of all full sister workers to their estimated respective colony locations (i.e. 571 

‘colony-specific foraging distance’)  572 
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 573 

Figure 2.  Plots of proportional cover of arable fields (black lines and symbols) and mixed vegetation 574 

(grey lines and symbols) against colony-specific foraging distance for five Bombus species; (a) 575 

B. terrestris, (b) B. lapidarius (c) B. pascuorum (d) B. hortorum (e) B. ruderatus.  Trendlines back-576 

transformed from linear regression of log transformed data (statistics in table 2). 577 

 578 
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 579 

Figure 3. Plots of proportional cover of worker-preferred floral groups (specified in table S1) against 580 

colony-specific foraging distance for five Bombus species: (a) B. terrestris, (b) B. lapidarius (c) 581 

B. pascuorum (d) B. hortorum (e) B. ruderatus.  Trendlines back-transformed from linear regression 582 

of log transformed data (statistics in table 2). 583 

 584 
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Supporting Information 587 

Additional Supporting Information may be found in the online version of this article: 588 

Fig. S1. Map of the study landscape in Buckinghamshire, Southern England, UK, showing aggregate 589 

land use/land cover classes derived from remote sensing data 590 

Table S1.  Plant groups used for field survey of habitat across the study landscape   591 

Table S2. Results of Tukey post-hoc tests on bumblebee worker distance from colony, between all 592 

possible pairs of study species 593 
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Fig. S1 Map of the study landscape in Buckinghamshire, Southern England, UK, showing aggregate 

land use/land cover classes derived from remote sensing data. Black grid lines represent 250 m x 250 

m survey cells used to ensure full coverage of the study area for worker sampling and habitat 

surveys.  Based on map in Dreier et al. (2014) with updated class descriptions and colour scheme.
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Table S1.  Plant groups used for field survey of habitat across the study landscape.  Two measures of 

bumblebee visitation are given for the five Bombus study species - the percentage of foraging 

workers recorded on all species within each group and the mean number of worker visits per plant 

species within each group.  Also given are the status of each group (Y = included, N = excluded) in 

the ’worker- visited’ (i.e. visited by foraging workers during worker sampling) and ‘worker-preferred’ 

(i.e. the five plant groups with the highest mean number of visits per species) subsets.  

Plant Group Example Species Percentage of 

foraging workers 

Mean number of 

visits per species 

Visited Preferred 

Red clover  Trifolium pratense 24.23% 592 Y Y 

White/Alsike clover  Trifolium repens / hybridum 32.71% 400 Y Y 

Lotus spp. Lotus corniculatus 8.60% 210 Y Y 

Knapweeds, Scabious, Teasels Centaurea spp., Dipsacus fullonum 12.20% 149 Y Y 

Other clovers  Melilotus officinalis 2.74% 67 Y Y 

Blue composites  Cichorium intybus 2.42% 59 Y N 

Other woody Rosaceae  Rubus spp. 1.92% 47 Y N 

Thistles  Cirsium arvense, Carduus crispus 3.44% 28 Y N 

Boraginaceae Borago officinalis 1.64% 20 Y N 

White composites Leucanthemum vulgare 2.42% 15 Y N 

Vetches  Vicia spp., Lathyrus spp. 2.29% 14 Y N 

Other Cruciferae Raphanus sativus 1.06% 13 Y N 

Poppies  Papaver spp. 0.45% 11 Y N 

Ericaceae and Lavendula Erica spp., Lavendula spp. 0.25% 6 Y N 

Lamiaceae and Scrophulariaceae Ajuga reptans, Ballota nigra 1.68% 5 Y N 

Other fruiting/flowering tree Malus spp. 0.16% 4 Y N 

Other woody species Buddleja davidii 0.12% 3 Y N 

Rosaceae, non-woody  Rosa spp. 0.12% 3 Y N 

Others, non-woody Apiaceae,   Violaceae,  1.31% 2 Y N 

Yellow composites Taraxacum agg, Picris echioides 0.25% 2 Y N 

Cereals  Triticum aestivum, Zea mays 0.00% 0 N N 

Convolvulaceae Calystegia sepium 0.00% 0 N N 

Crataegus spp. Crataegus monogyna 0.00% 0 N N 

Field bean  Vicia faba 0.00% 0 N N 

Gorse  Ulex europeaus 0.00% 0 N N 

Oilseed rape  Brassica napus 0.00% 0 N N 

Prunus spp.  Prunus spinosa 0.00% 0 N N 

Salix spp.  Salix caprea 0.00% 0 N N 

 

 

 

Page 32 of 33Journal of Applied Ecology



For Peer Review

3 

 

 

Table S2. Results of Tukey post-hoc tests on bumblebee worker foraging distance, between all 

possible pairs of study species.  Mean foraging distances shown in parentheses. Tests show that 

species can be split into ‘shorter’ and ‘longer’ range foragers. Asterisks denote significance at: * P < 

0.05, ** P <0.01, *** P <0.001, NS, not significant. 

 B. lapidarius 

(536) 

B. pascuorum 

(337) 

B. hortorum 

(273) 

B. ruderatus 

(502) 

B. terrestris 

(551) 
0.953  NS <0.001 *** <0.001 *** 0.932  NS 

B. lapidarius 

(536) 
 <0.001 *** <0.001 *** 0.998  NS 

B. pascuorum 

(337) 
  0.997  NS <0.001 *** 

B. hortorum 

(273) 
   <0.001 *** 
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