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Abstract 

Coastal ecosystems are considered to be sensitive to changes in environmental forcing, 

particularly sea-level rise. Saltmarshes occupy a discrete lateral and vertical position that 

is fundamentally controlled by the position of sea level, but the nature of other factors 

such as broader scale shoreline dynamics and anthropogenic ensure that the nature and 

extent of sea-level rise impacts on saltmarshes are globally variable, and locally complex. 

Thus, there is a need to understand these controls and to predict the potential response of 

saltmarsh systems to sea-level change at the local scale. The present research presents a 

multifaceted methodology for investigating the response of saltmarshes due to sea-level 

rise at local scales with application to the Odiel saltmarshes (SW-Spain), using elevation 

data derived from Light detection and ranging (LiDAR), high spatial resolution 

multispectral imagery and spatial modelling, that in combination with historical estuary 

evolution and field observation can be applied for effective management and conservation 

of saltmarshes in the context of sea-level change. SLAMM (Sea Level Affecting Marshes 

Model) has been used to evaluate coastal wetland habitat response to sea-level rise 

Accurate model spatial model inputs such as digital elevation models (DEMs) and 

saltmarsh habitat map are essential to reduce uncertainties in the model outputs, and part 

of this thesis has been focused on improving accuracy in saltmarsh elevation and habitat 

maps. Additionally, a sensitivity and uncertainty analysis was undertaken to explore first 

the relative importance of data quality and resolution (spatial and vertical) in the 

elevation data and saltmarsh habitat classification layers, and then the global uncertainty 

of the model outputs using a Monte Carlo approach. Our findings suggested that model is 

sensitive to DEM and habitat map resolution, and that historical sea-level trend and 

saltmarsh accretion rates are the predominant factors that influence uncertainty in 

predictions of change in saltmarsh habitats. 
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1. Introduction and literature review 

1.1. Overall study aim 

Coastal ecosystems are considered to be sensitive to changes in environmental forcing, 

particularly sea-level rise. Saltmarshes occupy a discrete lateral and vertical position that 

is fundamentally controlled by the position of sea level, but the nature of other mesoscale 

factors such as shoreline dynamic (which affects erosion and sedimentation processes) 

and anthropogenic modifications to the coastal zone ensure that the nature and extent of 

impacts and response are globally variable, and locally complex. In this context, there is a 

need to understand these controls and to predict the potential response of saltmarsh 

systems to sea level change at the local scale. This is challenging though because of the 

limited detailed and accurate information about these environments at local scales, and 

the issues related to model systems at landscape scales. Although saltmarshes present a 

challenging environment, the high ecosystem value and their vulnerability to sea-level rise 

mean that monitoring of change, and modelling of future responses are important 

research and conservation aims. The main aim of this thesis is focused on the use of LiDAR 

data and imagery for mapping saltmarsh habitats and as a basis for spatial models of their 

response to sea-level rise under- Mediterranean-Atlantic saltmarshes. This is 

demonstrated through application to the saltmarshes found in the Tinto-Odiel estuary 

(Huelva, NW Spain). 
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1.2. Nature and importance of saltmarshes 

Saltmarshes are coastal wetlands found extensively along low wave energy coastlines 

(Chapman, 1974; Allen & Pye, 1992; Adam, 2002) and are the product of fine sediment 

accumulation and vegetation establishment ( Davidson-Arnott et al., 2002). They comprise 

low-lying areas covered by halophytic vegetation that is adapted to regular flooding by the 

tide, and are typically dissected by networks of tidal channels (Figure 1.1) (Broome et al., 

1988; Pethick, 1992; Allen, 1997; Allen, 2000). The scale of their extent (which range from 

tens to thousands of hectares) can vary depending on local conditions, tidal range and 

geographical constraints (Allen, 2000). Globally they are located throughout the mid- to 

high latitudes, but are replaced in the tropics and sub-tropics by mangrove systems (Allen 

& Pye, 1992). The latitudinal and geographic range contributes significant spatial 

variability in saltmarsh geomorphology, lateral and vertical extent, and plant species 

communities (Long & Mason, 1983). 

 

 

Figure 1.1 Aerial view of saltmarsh environments in Southwest Spain [Photo taken by Jose Antonio 

Fernandez in 2011] 

 

 Prior to the mid-20th century, saltmarshes were often viewed as ‘swampy waste 

lands’, and have historically suffered from human activities that have intensively modified 

them (Doody, 2008; Adam, 2002; Silliman et al., 2009; Gedan et al., 2009). However, in the 

1960s, attitudes began to change when international organisations drew attention to the 

rapid degradation and loss of wetlands (Lefeuvre et al., 2003) and in order to protect 

worldwide wetlands, international initiatives such as the MAR conference (1962) and the 
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Ramsar Convention (1971) were set up. These milestone initiatives set in motion an 

acknowledgement and understanding of how highly valuable these habitats are. 

 Saltmarshes provide a myriad of important ecosystem services that range from their 

role in coastal ecosystem functioning such as nutrient cycling, primary and secondary 

productivity, and decomposition (Nixon, 1980; Costanza et al., 1997; UNEP, 2006), to 

contributing to human well-being by providing food, fibres, water purification, climate 

regulation, flood regulation, coastal protection, recreational opportunities and tourism 

(Millennium Ecosystem Assessment, 2005; Turner et al., 2008). They are among the most 

productive of coastal ecosystems (saltmarsh plants can produce between 100 and 1000 

gCm-2y-1 (McLusky & Elliot, 2004)), providing more ecological services to coastal 

populations than any other coastal environment (Costanza et al., 1997). For example, with 

regard to coastal vulnerability, saltmarshes offer protection against storm surges and 

tsunamis (Gedan et al. 2009), and act as natural sea barriers minimising waves and 

flooding effects in coastal settlements (King & Lester, 1995). 

 Saltmarshes also play a major role in coastal (Gordon et al., 1985; Kaswadji et al., 

1990) and estuarine food chains (Gordon et al., 1985; Lefeuvre & Dame, 1994; Zedler & 

Callaway, 2001; Nixon, 1980), sustaining fishery species (Heck et al., 1989; Boesch & 

Turner, 1984). These intertidal environments are areas of high primary production 

(Gordon et al., 1985; Kaswadji et al., 1990), contributing to roughly 20% of the total net 

biosphere primary production (Duarte & Cebrian, 1996) and their varied halophytes 

communities provide diverse habitats for wildlife such as birds, fishes, crustaceans, 

macroinvertebrates, amphibians and mammals. Furthermore, these environments account 

for 90% of the world’s fish catch (UNEP, 2006). They act as nurseries for many species of 

fish and do so for two main reasons: the food chain is based on the high production of 

vascular plant detritus, and the existence of refuges for escaping from predators (Boesch & 

Turner, 1984). Their shallow and spatially complex habitats generate diverse refuges for 

many fish species that develop partially or completely within their life cycle in these 

environments. 

 In the context of climate change, saltmarshes have acquired a newfound significance 

as carbon sinks (Chmura et al., 2003). Plants such as Spartina spp. have been shown to 

function as a net sink of CO2 from the atmosphere (e.g. Gribsholt and Kristensen, 2003; 

Wang et al., 2007), thereby having an important role in carbon cycling (Cai et al., 2003; 

Sousa et al., 2010). In estuaries, the gross primary production enables CO2 capture from 

the atmosphere and production of organic carbon (Sousa et al., 2010). 

 The high value of ecological services that saltmarshes provide and the importance 

they play in coastal ecosystems and populations is no longer in doubt, but saltmarshes 

remain vulnerable to continued pressures from climate change and anthropogenic 
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activities (e.g. Hartig et al., 2002). Saltmarshes face the threat of permanent inundation 

from accelerated sea-level rise combined with decreasing opportunities for upslope 

migration due to extensive human development of coastal areas (Smith, 2009). Thus, in 

the context of global change and sea-level rise, the study and conservation of these 

important intertidal ecosystems should be prioritised. 

 

1.3. Saltmarsh formation, development and zonation 

Contemporary saltmarshes have evolved under varying directions and rates of sea level 

change. In particular, the sea level changes that have characterised the Quaternary 

(comprising the Pleistocene and Holocene epochs) (Tooley, 1992) have driven significant 

shifts in shoreline position and as a consequence facilitated the development of coastal 

sedimentary environments such as saltmarshes. During the last glaciation maximum (in 

the late-Pleistocene around 20,000 years BP) global sea level was roughly 120 m below 

present (Fairbanks, 1989; Siddall et al., 2003; Lambeck & Chappel, 2001). There is limited 

information about the geomorphology of the coastline at this time (Kennish, 1986), but the 

likelihood of areas supporting saltmarshes would have been low due to climate conditions 

and the limited accommodation space (Adam, 1990; Wolanski et al., 2009). 

 As global temperatures warmed in the early-Holocene, global sea level rose quickly 

as a consequence of eustatic processes. Between 15,000 years BP to 7,000 years BP sea 

level rise was roughly 10 mm yr-1 (Fairbanks, 1989; Lambeck et al., 2002), leading to great 

changes to coastlines. Adam (1990) posits that during this time, the rate of change of the 

coastline position would possibly have been too much to allow for widespread and 

comprehensive marsh development. 

 However, from 7,000 years BP onwards, the global sea level stabilised to within 

metres of the present level with relatively small fluctuations (Lambeck et al., 2002; 

Lambeck & Chappel, 2001) which enabled, in conjunction with the right natural 

conditions, the creation of the present saltmarshes known as the Holocene saltmarshes. 

From a holistic point of view, Holocene saltmarshes are complex morphosedimetary 

systems that are a product of various interrelated components and factors (Allen, 2000). 

The main forcing factors and the linkages have been well-described by several authors 

(Reed, 1990; French, 1991, 1993; Allen, 2000) who have considered the relative 

importance, and eco-morphodynamic feedbacks associated with changes in relative sea 

level and tidal range, mineral sediment supply, productivity and autocompaction at the 

marsh surface (Figure 1.2). 
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Figure 1.2 Forcing factors and linkages of saltmarsh system (Allen, 2000) 

 

 The Holocene saltmarshes can be traced back to c. 6,000-7,000 years ago (Redfield, 

1972; Thomas & Varekamp, 1991) but many are much younger (Adam, 2002). Generally, 

youthful allochthonous (minerogenic) marshes grow rapidly and can mature in a few 

hundred years; most saltmarshes within Europe are minerogenic (Adam, 2002), which 

reflects both climate controls on vegetation development and productivity, but also 

sediment supply. Allochthonous (organogenic) marshes are usually dated from earlier due 

to the physical and sediment supply conditions on the coastal marsh by that time, when 

peats were free to form (Allen, 2000). For example, in Massachusetts and Louisiana (USA), 

minerogenic saltmarshes date back to roughly 3,000-4,000 years ago (Pendland et al., 

1987) and a relic saltmarsh peat found on the continental shelf from 5,000-11,000 years 

ago (Fairbridge 1960; Bricker-Urso, et al. 1989). 

 Saltmarshes formed in the late-Holocene have generally evolved in the context of 

other coastal sedimentary environments that have developed during this period, such as 

barrier islands, spits, embayments, and lagoons (Allen, 2000; Adam, 2002). These systems 

have largely provided more accommodation space than those developed in open coasts of 

previous colder climates, and secondary structures such as spits and barrier islands have 

facilitated low-energy conditions that have favoured the deposition of fine sediments for 

saltmarshes to form. Formation and evolution of Holocene saltmarshes is linked to climate, 

relative sea level position, physical shoreline structure and coastal dynamics (e.g. tidal 

range, sediment supply) resulting in large diversity of geomorphologic forms. 

 The early stages of saltmarsh development require low sloping intertidal 

accommodation space where low wave energy dominates and there is a ready supply of 
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fine sediment (Pethick, 1992; Allen, 2009). Saltmarsh formation is mainly controlled by 

the capability of an intertidal system to retain fine sediment and to accrete its elevation 

(Boorman, 2003), which it is possible when tidal streams are slack during the low and 

high water (Allen, 2009; Allen, 2000). However, the settle sediments can be eroded and re-

suspended, depending of ebb/flood currents dynamics (Allen, 2009) and the nature of the 

sediments (Long & Mason, 1983). 

Once the optimum elevation for vegetation establishment (MHWN) is reached (B 

in Figure 1.3), halophyte seeds distributed by tidal water (Chang et al., 2007; Huiskes et 

al., 1995) may germinate when they find the optimal salinity conditions (Ungar, 1978; 

Chapman, 1974; Naidoo & Naicker, 1992). Initial plant colonisation of tidal flats reduces 

the speed of tidal flows and facilitates sediment trapping, stabilization and sedimentation 

(Erfanzadeh, 2010; Lopez & Garcia, 1998; Neumeier & Ciavola, 2004), which alters the 

hydrodynamics of the intertidal system and facilitates vertical accretion of the marsh 

platform (Nepf, 1999; Nepf et al., 1997; Leonard & Reed, 2002). As the marsh surfaces 

builds up, depth of inundation (over the marsh surface) decreases, which reduces tidal 

sedimentation and increases bio-productivity, leading saltmarshes toward an equilibrium 

elevation relative to mean sea level (Morris, 2007; Morris et al., 2002). 

 

Figure 1.3 (A) High level tidal flat. (B) Low level marsh in which vascular plants have colonized the 

higher points of the tidal flat. (C) High marsh with a fully vegetated surface, except for the creeks 

and pans which are sharply defined by their steep banks [Source: modified from (Long & Mason 

1983)]. 
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Pioneer plant colonisation drives topographic changes due to both surface 

accretion and influence on tidal flow, leading to the development of creek networks (C in 

Figure 1.3). Increased deposition leads to further accretion and the saltmarsh surface 

builds up through the tidal frame; this shift in vertical position drives a change in species 

assemblages as a result of changes in environmental stress and competition (Erfanzadeh, 

2010; Castellanos et al., 1994; Bertness & Callaway, 1994; Hacker & Bertness, 1995; 

Bertness & Yeh, 1994). Saltmarshes that have accreted to the highest elevations of the 

tidal frame can be described as a mature and stable climax ecosystems (Odum, 1971). This 

vegetation change may respond primarily to an elevation gradient resulting in plant 

zonation that might be related to succession processes, which are also influenced by 

abiotic and biotic factors. However, zonation in saltmarshes does not always  show clear 

boundaries and is created by different and commonly overlapping vertical ranges of 

individual plant species (Gray, 1992). 

Early ecological studies of saltmarshes (e.g. Chapman, 1939, 1941) have provided 

the basis for the understanding of saltmarsh development, zonation and vegetation 

succession, which were focused on understanding the presence and controls on species 

distribution and zonation patterns. However, since those early investigations, spatial and 

temporal patterns of halophytes, and their interactions with local physical and biotic 

factors, remain largely uncertain due to the complexity of vegetation dynamics in 

saltmarshes (Silvestri & Marani, 2004). Vegetation response to interactions between 

environmental controls may change geographically, and this complicates the general 

understanding of spatial organisation of species and habitats. 

 Broadly, ecological conditions in saltmarshes can range from marine-dominated to 

terrestrial-dominated influences (Pielou & Routledge, 1976; Doody, 2008), forcing 

patterns of habitats and organisms, and often zonation (Frey & Basan, 1978; Saintilan et 

al., 2009). In general, saltmarsh plant zonation can be considered at two levels: ecosystem 

level and sub-environment or habitat level (Frey & Basan, 1978). The first level mainly 

relates to changes from strictly marine halophytes (e.g. Zostera), through to those species 

tolerant of high salinities (e.g. Salicornia), and those limited between brackish and 

terrestrial conditions (e.g. Juncus). The second level refers to differences in plant species 

features or growth forms caused by variations in the micro-habitat (e.g. Salicornia and 

Spartina ecotypes) (Frey & Basan, 1978). 

 As the saltmarsh develops, some parts of the marsh evolve into older and more 

mature ecosystems occupying higher elevations and comprising increased species 

diversity (Adam, 1990; Long & Mason, 1983; Frey & Basan, 1978) associated with 

terrestrial influences caused by the reduction of tidal submersion. Those areas located in 

higher topographic position are commonly referred to as ‘high marsh’ and those found in 
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low elevations, which are younger, as ‘low marsh’. However, boundaries on these zones 

are not always clear with distance from the sea (Chapman, 1974; Frey & Basan, 1978) due 

to the effect of micro-topography (e.g. depressions, hummocks, creeks) (Boon et al., 2011) 

and the broad tolerance of some species which can be found across a large range of 

marsh/coastal margin elevations (Adam, 1990). 

Additionally, saltmarsh vegetation does not always follow a clear succession 

pattern, and other factors (e.g. climate variation or disturbances) may play an important 

role (De Leeuw et al., 1993; Erfanzadeh, 2010). Hence, the idea of zonation as belts parallel 

to the shore with a well-defined successional (chronosequence-based) gradient is 

controversial and some authors have argued for an appreciation of greater complexity of 

these processes in the saltmarsh environment (e.g. Frey & Basan, 1978; Adam, 1990; Gray, 

1992; Saintilan et al.,2009; Erfanzadeh, 2010). For example, Gray (1992) states that 

“essentially, it must not be assumed that zonation along an elevational gradient (a spatial 

feature) has been wholly, or partly, generated by succession (a temporal phenomenon)”. 

 Some studies show that ecological zonation is not consistent between sites, even 

when considering vertical (tidal frame) position (Frey & Basan, 1978; Adam, 1990; 

Boorman et al., 1998; Nixon, 1982), and the identification of biological criteria to define 

universally comparable zones is not possible (Adam, 1990). This is because ecological 

boundaries are relative rather than absolute (Long & Mason, 1983), and environmental 

forcing (e.g. tidal regime, wave climate, microclimate) is not geographically consistent. For 

example, on large tidal amplitude coasts exposed to some wave action, the low marsh may 

start near to mean high water (MHW), whereas on sheltered coasts with low tidal 

amplitude, vegetation can begin closer to mean low water neaps (MLWN) (Beeftink, 

1977). Therefore it is very difficult to generalise, and the criteria for defining zones may 

vary from coast to coast. However, there is a general consensus that the lower boundary of 

vascular plants is controlled by tolerance of saltwater submersion, whereas the upper 

limit is governed by interspecific competition (Pielou & Routledge, 1976; Gray, 1992; Gray, 

1980; Gray, 1985; Emery et al., 2001). 
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1.4. SW Iberian Peninsula saltmarshes in a global and European context 

At global scales, typologies of saltmarshes are dominated by studies from the 1970-1980s, 

such as Chapman (1974) and Adam (1990), which were based on vegetation distribution. 

Chapman’s (1974) seminal work grouped saltmarshes according to community and 

species distribution, and has provided the basis of most general discussions of global 

distribution of saltmarshes (Adam, 1990, 2009). His observations implied that plant 

species richness could vary significantly among different regions, suggesting after further 

investigations that globally, saltmarshes fell into different groups characterised by distinct 

vegetation types. In his work, 15 saltmarsh types (based mainly on vegetation types) were 

defined; a further step of this work sub-divided some of the most common types into 

smaller groups based on sediment and local coast characteristics. 

 Adam (1990) used Chapman’s (1974) work as a basis of his proposed typology but 

hypothesised that certain classes created in Chapman’s typology, due to geographical 

differences in species, were not warranted given that there are many genera which are 

common across geographic regions. Listed below are Adam’s revised global saltmarsh 

types: 

1. Arctic 

2. Boreal 

3. Temperate 

a. European 

b. Western North American 

c. Japanese 

d. Australasian 

e. South African 

4. West Atlantic 

5. Dry Coast 

6. Tropical (seasonal or permanent dryness)   

 According to Adam (1990), saltmarshes in southwest Spain and Portugal (the 

Iberian Peninsula) would come under the Dry Coast type rather than, intuitively, the 

Temperate – European type as this geographical area is influenced by proximity to the 

Mediterranean and is subjected to a seasonally dry climate and high soil salinities 

regimens. He notes that in this type of saltmarsh the vegetation is ‘characteristically fairly 

open and dominated by low shrubs, most frequently succulently stemmed shrubby 

chenopods’ which is a fair description of saltmarsh vegetation in South-Atlantic Iberian 

Peninsula. However, Adam left the Dry Coast type partially unrefined by stopping short of 

defining subclasses as he felt that to do so would have resulted in a bias towards the 
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Mediterranean1 coastline which would not have been a true reflection of the considerable 

vegetation diversity that exists globally. Finally, he specifically suggests that saltmarshes 

found on the South-Atlantic Iberian Peninsula could be considered an extreme of the 

Temperate class. Adam considered the creation of a new class semi-Mediterranean to 

emphasise the intercontinental affinities. 

 It has been roughly 20 years since Adam published his typology and it seems that 

there has been no significant progress in the development of global saltmarsh typology. 

However, there have been studies that have attempted to compare the saltmarshes found 

in the Dry Coast type environments. For example, Peinado et al. (1995) studied the 

vegetation patterns between saltmarshes found in California, Baja-California and on the 

Iberian Peninsula, and found distinct phytosociological similarities. Considering saltmarsh 

plant community studies in South Africa (Day, 1981), California (Macdonald, 1977b; 

Macdonald, 1977a) and southwest Iberia (Gehu & Rivas-Martinez, 1984), similarities can 

be also found, where a Spartina marsh (S. maritima or S. Foliosa) dominates the low marsh 

and a range of low shrubs (principally chenopods) occupy the mid and upper marsh. 

Comparison of these studies supports the saltmarsh patterns discussed in Peinado et al. 

(1995), showing that southwest Iberian saltmarshes have more similarities with California 

saltmarshes than with European ones. 

 Another work that is worthy of mention here is Britton & Crivelli (1992), which 

includes reference to saltmarshes within a global inventory of wetlands. A continental 

scale grouping is divided into similar bio-climatic sub-regions, describing the physical and 

biotical setting of the major wetland types in each sub-region. In contrast to the 

Chapman/Adam typologies, this scheme places south Europe and North Africa into the 

same group -Mediterranean wetlands- recognising the similarities of these zones. Within 

the Atlantic division of Mediterranean wetlands, tidal wetlands are defined and 

characterised by five classes: 

i. permanently flooded estuaries; 

ii. unvegetated sand and mud flats; 

iii. vegetated flats colonised by Zostera noltii, Z. nana or Ruppia maritima;  

iv. saltmarshes that flood at most high tides and are dominated by Spartina maritima 

and Salicornia sp.; and  

v. saltmarshes that flood only at spring tides (characterised by Arthrocnemum spp.) 

 The classes defined here reflect habitats that occur within the tidal wetland in this 

region rather than specifically relating to saltmarsh. But this provides a fair description of 

the different habitats that occur in southwest Iberia and the Atlantic coast of North Africa. 

                                                             

1 which interestingly strengthens the relevance of this type for the Iberian peninsula, but then weakens it for 

global comparison purposes. 
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More generally, it would seem that there is not a vast amount of literature devoted to this 

topic at a global scale and the small number of studies referring to global saltmarsh 

typologies may be a reflection of the regional and local variability of worldwide 

saltmarshes and the complexity of classifying them. 

 Out of the currently available studies of saltmarsh classification, saltmarshes in 

Europe are broadly classified based on vegetation (bio-geographical regions) and 

geomorphology. Table 1.1 summarises the current state of studies relevant for the present 

study. Classes based on vegetation are restricted to biogeographical zones whereas 

geomorphic types in many cases have little association with vegetation. Ecological 

typologies depend on climate conditions whereas geomorphic typologies express tidal 

range and physiographical constraints. 

 

Table 1.1 Summary of the most relevant European saltmarsh typology studies 

Scope Vegetation-based Geomorphology-based 

Europe Beeftink (1966); Géhu (1972); Westhoff 

& Schouten (1979); Géhu & Rivas-

Martinez (1984) 

Dijkema (1984, 1987) 

NW Europe  Pye & French (1993) 

Southwest-

Iberia 

Peinado et al, (1995); Sanchez et al. 

(1998), Costa et al. (2009); 

 

 

 Biogeographic controls impact species composition and growing season, and this 

imposes a clear north-south pattern. For example, northern marshes have a simpler 

structure influenced by a limited growing season, and southern marshes are characterised 

by year-round continuous growth controlled by temporary summer droughts (Boorman, 

2003). These vegetation differences have enabled the division of Europe saltmarshes into 

different regions such as those presented by Beeftink (1966), Géhu (1972), Westhoff & 

Schouten (1979) and Géhu & Rivas-Martinez (1984) on the level of vegetation units based 

on Western Europe surveys. 

 For example, Géhu & Rivas-Martinez (1984) proposed a saltmarsh typology based 

on the distribution of saltmarsh flora. They defined five main biogeographical regions and 

7 sub-zones (Figure 1.4). Within this typology, the Mediterranean region (3) is divided 

into five zones: Mediterranean-Atlantic, Mediterranean-Tyrrhenian, Inland Iberian, 

eastern Mediterranean zone and the special zone of northern Adriatic. Here, the 

Mediterranean-Atlantic zone (3a) covers the southwest of the Iberian Peninsula and 

northwest of Morocco as a separate zone from the rest of the Mediterranean saltmarshes 

due to the persistence of Atlantic species such as Puccinellia maritima and Spartina 

maritima (Gehu, 1984). Thus, the vegetation found in southwest Iberian saltmarshes tends 
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Atlantic Iberian saltmarshes. 

Based on geomorphological features, the studies focusing on Europe have tended 

not to cover the Mediterranean and far southwest in detail in comparison to northern 

regions. Saltmarsh biotopes of Europe were identified by Dijkema's (1983)

inventory of Europe (Table 1.2). Based on this broad inventory, he proposed a 

geomorphological classification distinguishing autochthonous vs allochthonous 

saltmarshes, and grouped European saltmarshes into five main classes and 12 sub

French (1993) proposed a classification that has many similarities with Dijkema’s, 

but with classes more representative of northwest Europe that link with neighbouring 

sedimentary environments such as mudflats and/or sandflats (Figure 1.

French’s (1993) classification, saltmarsh types such as lagoonal saltmarshes 

which are very common in the Mediterranean, are not described.
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saltmarshes of the south-Atlantic Iberian saltmarshes can be classified as follows:

Saltmarsh biotopes on a geomorphological base. The proportional distri

region is shown based on Dijkema inventory [source: Dijkema, 1984; page 9]
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Figure 1.5 Geomorphological types of saltmarsh [Source: Pye and French, 1993]
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- they are found in Castro Marin (Portugal), in the province of Huelva (e.g. rio Odiel), and 

in the province of Cadiz (e.g. rio Barbate and rio Guadalete). 

 

1.5. Contemporary sea-level rise and saltmarshes 

Saltmarsh environments are considered to be sensitive to changes in environmental 

forcing, particularly to sea-level rise (Luque et al., 1998; Adam, 2002; Smith, 2009; 

Nicholls, 2004; Nicholls et al., 1999; EEA, 2008; IPCC, 2007). Therefore the understanding 

of historical trends and future projections of this phenomenon and their geographic 

variations are extremely important. In this context, in order to study local development 

and responses of saltmarshes, it is essential to understand both global and local sea-level 

change, fluctuations and how these affect and physical processes (e.g. inundation, 

sedimentation and salinity regime) and therefore ecosystem dynamics, in the past, present 

and future. 

 Published studies (Table 1.3) corroborate increasing trends in observed global sea-

level rise (GSLR) during the last century, indicating rates ranging between 1 and 2 mmyr-1. 

Based on corrected gauge records2 from the Permanent Service for Mean Sea Level 

(PSMSL3,) data, several investigations (Miller & Douglas, 2006; Church & White, 2006; 

Holgate & Woodworth, 2004; Douglas, 2001; Peltier, 2001) point out that global rates of 

rise are closer to 2 mmyr-1 than 1 mmyr-1 during the 20th century. Steric4 changes and 

glacial eustasy seem to be crucial factors that have contributed to this observed GSLR 

(Meehl et al., 2007; Domingues et al., 2008; Church et al., 2011). 

  

                                                             

2Gauge records are corrected by models for the glacial isostatic adjustment (GIA), but not for other vertical 

movements. The error in tide-gauge based global average sea level change resulting from GIA is assessed as 

0.15 mm/year (IPCC, 2007). 
3 PSMSL--Bidston Observatory, Birkenhead, England (www.pol.ac.uk/pmsl). It compiles world-wide records 

from over 1400 tide-gauge stations in different countries in order to estimate sea level trends. However, 

because of the poor quality of the records or short time series, only around 400 are useful stations (Gornitz, 

1995). 
4 Changes in sea level due to density variation are referred to as steric changes. 
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Table 1.3 Estimates of GSLR from tide-gauge records [source: updated from Gornitz, 1995]. 

Rates (mmy-1) Comments References 

1.1 ± 0.8 Many stations, 1807-1939 (Gutenberg, 1941) 

1.5 Many stations, 1900-1975 (Klige, 1982) 

1.2 ± 0.3* 130 stations, 1880-1982 (Gornitz & Lebedeff, 1987)α 

1.75 ± 0.13 ^ 84 stations, 1900-1986 (Trupin & Wahr, 1990)# 

1.8 ± 0.1 21 stations, 1880-1980 (Douglas, 1991)# 

1.8 25 stations, 1930-2000 (Douglas, 2001)# 

1.7 ± 0.4 177 stations, 1948-2002 (Holgate & Woodworth, 2004) # 

1.5 – 2.0 9 stations, 20th century (Miller & Douglas, 2006) # 

1.8 ± 0.3 1950-2000  (Church et al., 2004)# 

1.7 ± 0.3 Combined methods, 1870-2001 (Church & White, 2006) # 

1.8 ± 0.3 1971-2008 (Church et al., 2011) 

*Value plus 95% confidence interval; ^Mean and standard deviation; α Long term crustal motion removed; # 

Glacio- and hydro-isostatic removed 

 

 On the other hand, rates in GSLR, based on satellite altimetry, are around 3.1±0.7 

mmy-1 for the period 1993 to 2003 (Miller & Douglas, 2006; Cazenave & Nerem, 2004; 

Leuliette et al., 2004), and around 2.5±0.4 mmy-1 (Cazenave et al., 2009) for the period 

2003-2008. Although these rates are appreciably higher than the average rate for the 20th 

century, short term sea-level rise is difficult to judge due to tidal periodicities which are up 

to 19 years in length. Unlike gauge records, data provided by satellites show the spatial 

variability of sea-level change at the regional scale (Figure 1.6). For example over the 

period 1992 to 2007, the rate of sea level rise range from 0-1 mmy-1 around southwest 

England, to 1.5-2 mmy-1 in southwest Spain and more than 4 mmy-1 in the Black Sea. 

 

 

Figure 1.6 Sea level changes in Europe from 1992-2007 (map based on satellite altimeter data). 

[Source: Guinehut & Larnicol, 2008]. 
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 However, complex mechanisms over different time scales play a crucial role in sea-

level change, which complicates the understanding of this phenomenon as well as the 

contribution of different processes (Rahmstorf, 2007; Meehl et al., 2007; EEA, 2008). This 

has resulted in significant dissimilarities in future projections varying from 0.18 - 0.59 m 

over the period 1999 and 2100 based on physical models (Meehl et al., 2007) to 0.5-1.4 by 

2100 respect the 1990 level (Rahmstorf, 2007) based on semi-empirical models. In 

addition, Katsman et al. (2008), for the same period and method as Rahmstorf, predicts 

that GSLR possibly be ≥0.8 m in the northeast Atlantic Ocean. These results show that 

there are still significant uncertainties in future predictions, obscuring the magnitude of 

this phenomenon and therefore the severity of possible impacts in coastal areas. 

 Although there are still uncertainties about future GSLR projections, there are two 

things that are clear - we are certain that global sea level is rising and we are certain that it 

varies regionally - both of which are indicated in the trends from tide-gauges and satellite-

altimeter data. With relation to saltmarshes, it is very important to consider local sea-level 

changes, regardless of cause, for local studies. In this sense, Relative Sea-Level Rise5 (RSLR), 

which is affected by GSLR and vertical land movements (Pugh, 1987), is a crucial variable 

for foreseeing potential impacts in coastal areas and saltmarsh responses. 

 On the marsh surface, RSLR should be estimated as a function of GSLR, deep 

subsidence (deep primary compaction, secondary compaction and other processes such as 

tectonic activity), and shallow subsidence (primary compaction and decomposition in 

upper few metres sediments) (Rybczyk & Callaway, 2009). These variables have been 

identified in marsh conceptual models (Figure 1.7) as some of the main factors that govern 

adjustments of saltmarsh elevation in a context of sea-level rise (French, 2006). In this 

context, net elevation (considering deep subsidence autocompaction) in saltmarshes is 

subject to RSLR and sediment accretion. The saltmarsh net elevation will determine 

whether or not a saltmarsh will response positively (vertical accretion > sea-level rise) or 

negatively (vertical accretion < sea-level rise) due to sea-level rise. For example, saltmarsh 

systems have responded positively under moderate rates of sea-level rise (1-10 mmy-1) as 

it has been shown in studies of sedimentary sequences (Redfield, 1972; McCaffrey & 

Thompson, 1980) corresponding to mid/late Holocene. 

 However, future net elevation is difficult to predict accurately due to multiple 

processes for estimating this variable operate at different scales (Figure 1.8) (Rybczyk & 

Callaway, 2009) and they are subject to numerous uncertainties such as future projections 

of GSLR and future shallow subsidence rates (for example, below-ground biomass is a 

                                                             

5 ‘Long-term, absolute vertical relationship between the land and the water surface’ (Rybczyk & 

Callaway, 2009) 
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variable difficult to understand and model). Furthermore, the key linkages are non-linear, 

therefore historical data are only of limited value and process models are required for 

future predictions (French, 2006). 

 

Figure 1.7 Conceptual model of principal factors governing adjustment of saltmarsh elevation 

within the tidal frame [Source: French, 2006] 

 

 

Figure 1.8 Processes that affect saltmarsh net elevation due to sea-level rise. Processes shown 

below the time line reduce elevation and those shown above the time line increase elevation. 

[Source: Rybczyk and Callaway, 2009] 
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 Currently, those saltmarshes that respond positively to GSLR will accrete as sea-

level rises and may remain stable during long time periods (Gornitz, 1995; Morris et al., 

2002; Rybczyk & Callaway, 2009), and those that respond negatively may face more 

frequent and longer inundation periods, which may induce habitat conversion or higher 

erosion rates. Tidal wetland loss through erosion, submergence, and related processes 

have been well-documented (Dean et al., 1987; Titus, 1988; Allen & Pye, 1992; Wray et al., 

1995; Van der Wal & Pye, 2004), showing the importance of these issues. 

 Sea-level rise is not the only future threat for saltmarsh survival. For example, 

Nicholls (2004) reviews the potential sensitivity of inundation over certain coastal 

wetlands at local scales under all SRES scenarios proposed by IPCC6 and concludes that 

there will be losses in all scenarios. However, he also stated that anthropogenic marsh 

destruction (e.g. land reclamation) is predicted to be larger in comparison with losses due 

to sea-level rise. Furthermore, the existence of land claim and hard infrastructures can be 

critical for the survival of saltmarshes in a context of sea-level rise. For example, Doody 

(2004, 2012) describe ‘coastal squeeze’ and report current and potential impacts over 

some saltmarshes in England. This term refers to the process where coastal habitats (such 

as saltmarshes) are retreat landward due to sea-level rise or other factors such as 

storminess (Doody, 2012), and they become squeezed into a narrowing zone due to 

artificial margins that have been created (e.g. coastal defences). This process potentially 

occurs in those areas where the saltmarsh accretion rates are lower than the sea-level rise 

rates and the only hope for surviving is to migrate inland. In this sense, the resilience7 to 

sea-level rise of saltmarshes at local scales is strongly related to natural factors such as the 

RSLR and accretion, and also to anthropogenic factors such as habitat fragmentation, 

modification and destruction. 

 

1.6. Predictive models of saltmarsh in a context of sea-level rise 

During the last few decades, different models have been developed at different scales to 

understand saltmarsh evolution in the context of sea-level rise. The majority of these 

models are surface elevation models that investigate the relationship between sea-level 

rise and saltmarsh elevation (Reyes, 2009). Among those models, different types are found 

depending on the scale (Figure 1.9): zero-dimensional models, geomorphic/ecological 

models and landscape models. These models involve different processes operating at 

different scales and they can be very useful to simulate either or both the complex physical 

processes and the sedimentary response in saltmarshes. Although the modelling of 

                                                             

6 Intergovernmental Panel of Climatic Change 
7 Here, resilience is understood as the capacity of ecological systems to absorb recurrent disturbances such as storms or 

floods and to retain essential structures, processes, and feedbacks (Adger et al. 2005). 
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thickness of organic sediment, ΔM is the change in relative sea-level and ΔP is the 

elevation change due to autocompaction of the marsh deposit. 

 The first zero-dimensional mass model to calculate sediment inputs in saltmarshes 

was developed by Krone (1987). He proposed an approach to simulate saltmarsh response 

to historical sea-level change (tested in the San Francisco Bay), based on suspended 

sediment concentration, elevations of water and marsh surface, and median settling 

velocity. The approach calculates the time-dependent sedimentation on a saltmarsh unit 

area, integrating tidal periods. Allen (1990) used a similar approach in order to 

understand long-term saltmarsh growth and response to changing external conditions. He 

tested a simple quantitative simulation model for the accretion of a saltmarsh within tidal 

limits in the Severn estuary (U.K.). Following a similar numerical scheme, French (1991) 

simulated regional subsidence and long-term marsh adjustments to tidal levels in the 

North Norfolk saltmarshes (U.K.). This sedimentary infilling approach was refined for 

application to allochthonous marshes through more complex models. For example, Morris 

et al. (2002) developed a model driven by changes in bioproductivity instead inorganic 

sedimentation. 

 More recent work, has incorporated the relationship between suspended sediment 

concentration (SSC) and inundation height (Temmerman, Govers, Meire, et al., 2003; 

Temmerman et al., 2004). Temmerman et al. (2003) showed that the SSC increases 

linearly with maximum inundation height, and noted that previous works assume a 

constant SSC, which underestimate the observed historical growth. Thus, it is important to 

include this relationship to successfully simulate the long-term vertical growth in tidal 

marshes. 

 Operating at a larger spatial scale, geomorphic and ecological models simulate 

physical and ecological processes across the marsh (Rybczyk and Callaway, 2009). If the 

model simulates processes across a marsh transect is referred to as ‘one-dimensional 

model’, and if it simulates processes across a marsh platform as ‘two-dimensional model’ 

(Fagherazzi et al., 2012). Additionally, if geomorphic models include feedback between 

physical processes and vegetation, they are referred to as ‘eco-geomorphic models’ 

(Fagherazzi et al., 2012). These models can simulate physical exchanges (Allen, 1994), 

biogeochemical processes within the system (Simas et al., 2001), population dynamics 

(Nunes et al., 2003) and marsh platform and creek network evolution (Reyes, 2009) for 

instance. Some of these models introduce spatial variation in order to simulate spatial 

patterns of different variables within the marsh. For example, sedimentation rates vary 

depending on marsh platform elevation and distance from tidal channels and the seaward 

marsh edge (Temmerman et al., 2003; Bartholody, 2012). This recognises the importance 
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of the spatial variability in sedimentation rates which has also been implied in previous 

works (e.g. French and Stoddart, 1992; French et al., 1995). 

 An example of a one-dimensional model is the continuity-based sedimentological 

model for the dominant types of tidal saltmarshes in the temperate zone developed by 

Allen (1994). This model provides an understanding from general principles into the 

origin of most of the essential hydraulic and sedimentary patterns observed from 

saltmarshes. The results presented by Allen (1994) explain processes such as flow 

retardation over marsh platform with increasing distance from creeks and the overall 

marsh platforms vertical growth regime. 

 Two- and three-dimensional models have been developed by several authors 

including empirical and physical models of marsh sedimentation (e.g. Rinaldo et al., 1999; 

Temmerman et al., 2003b; D’Alpaos et al., 2007). For example, Temmerman et al. (2003b) 

proposed a empirical sedimentation model that describes spatial patterns in marsh 

platform sedimentation rates following equation (1.3): 

 

�� � ������������     (1.3) 

 

where SR is the sedimentation rate (g m-2 per spring-neap cycle), H is the marsh platform 

surface elevation (m relative to tidal datum), Dc is the distance to the nearest creek or 

marsh edge (m) and De is the distance to the marsh edge (m) measured along the nearest 

creek. The model parameters k, l, m, and n are estimated by multiple nonlinear regressions 

procedure (for which k > 0 and l, m, n < 0). Temmerman et al. (2005) present an example 

of the spatial implementation of this model for a specific tidal marsh, showing that 

observed sedimentation patterns are well reproduced. 

 Finally, at the largest scales are the landscape models, that operate over larger 

regions simulating mesoscale processes and general trends (Rybczyk & Callaway, 2009) 

over entire estuaries. Within this group of models different approaches can be found: long-

term model concepts such as behaviour-oriented modelling (e.g. Aggregated Scale 

Morphological Interaction between Tidal basin and the Adjacent coast (ASMITA) model 

(Stive et al., 1998)) and spatial landscape modelling such as ecosystem-based landscape 

models (e.g. Coastal Ecological Landscape Spatial Simulation (CELSS) model (Costanza et 

al. 1990) and Sea Level Affecting Marshes Model (SLAMM) (Clough et al., 2010)). 

 In long-term model concepts, variations on small scales are considered as noise, and 

one of the key elements is the reduction of information (Stive et al., 1995). Data reduction 

techniques are essential and allow separation of relevant information from noise and into 

a manageable number of parameters (De Vriend et al., 1993). Information reduction 

involves four levels -the input, physical system or its model, output and interpretation or 
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generalisation (De Vriend et al., 1993)-. For example, behaviour-oriented modelling is one 

approach to long-term modelling and it has been used in several models (e.g. Di Silvio, 

1989; Van Dongeren and De Vriend, 1994; Stive et al., 1998). 

 The ASMITA model (Stive et al., 1998) is an example of the behaviour-oriented 

approach and represents estuarine systems schematically (Rossington et al., 2011). This 

model schematises a tidal inlet as aggregated morphological elements (intertidal area, 

channels and ebb-tidal delta) and characterises each model element by a single variable: 

volume (Kragtwijk et al., 2004). It assumes that each element tends towards a 

morphological equilibrium (when hydrodynamic forcing is constant) definable using 

empirical equations (van Goor et al., 2003; Rossington et al., 2011). Further details about 

this model can be found in van Goor et al. (2003) that describe single, two and three 

element versions of the ASMITA model, and Rossington et al. (2011) that present novel 

schematisations (Figure 1.10). 

 

 

Figure 1.10 Typical two (a) and three (b) element schematisations of ASMITA model [source: 

Rossington et al. (2011)] 

 

 The ASMITA model is considered to be aspatial due to its lack of spatial details 

within the estuary. It considers the estuary as one unit, which limits its resolution and 

ability to project sea-level rise impacts over different sub-environments. Unlike ASMITA, 

the spatial landscape modelling approach incorporates a spatial component. These 

approaches usually divide the studied environment into cells (raster format), and apply 

dynamic ecosystem simulations over each cell, meaning that physical and ecological 

dynamics are performed over every cell. The dynamic simulation of this approach is 
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usually based on a logical decision tree (Sklar et al., 1985) that determines the potential 

change of a cell. 

 Particularly, in ecosystem-based landscape models, the computation of physical 

processes is minimised thus they can be applied at high resolution to large surfaces and 

investigate the spatial interactions among different ecosystem/habitat units (Fagherazzi et 

al., 2012). These models can be divided into models based on direct and indirect 

calculations. Models based on direct-calculations compute simultaneously flow, water 

quality and biological processes in the same time step, allowing feedback mechanisms and 

interactions with results (Fagherazzi et al., 2012). However, they require long simulation 

times. Examples of this type are CELSS (Costanza et al., 1990) and the Barataria-

Terrebonne Ecological Landscape Spatial Simulation model (BTELSS) (Reyes et al., 2000). 

On the other hand, models based on indirect-calculations are easier to compute and 

require less simulation time. They compute physical processes (e.g. hydrodynamics) first, 

and then use the results to simulate biological processes (Fagherazzi et al., 2012). SLAMM 

is one example of this type of models and it has been extensively used (Akumu et al., 2010; 

Chu-Agor et al., 2010; Ehman, 2008; Craft et al., 2009; Sherwood & Greening, 2014; 

Murdukhayeva et al., 2013). 

 At the same time that the development of predictive models, Geographical 

Information Systems (GIS) has greatly improved in the last decades, and it has also been 

used as a tool for assessing coastal vulnerability (Mcleod et al. 2010). This tool has also 

been used coupled with models (e.g. mechanistic models), providing crucial analysis in 

support of modelling (Lyon & McCarthy, 1995; Green & King, 2003) and a powerful 

visualisation tool to evaluate sea-level rise scenarios. An example of combination of GIS 

and modelling is the global coastal geo-database created for vulnerability and impact 

analysis due to sea-level rise at regional/global scales in the DINAST-COAST project 

(Dynamic and Interactive Assessment of National, Regional and Global Vulnerability of 

Coastal Zones to Climate Change and Sea-Level Rise) (DINAS-COAST Consortium, 2006) 

and the linked DIVA model (Hinkel 2005; Hinkel & Klein 2007; Hinkel & Klein 2009). 

However, the DIVA tool does not include many of the processes involved in sea level 

changes (e.g. changes in storms frequency; and accretion) (Mcleod et al., 2010), and only 

integrates two coastal wetlands relevant to Europe (saltmarsh and unvegetated wetland 

such as tidal flats) (Pylarinou, 2015). Another example are inundation GIS tools (Ojeda et 

al., 2011), which are based on flooding a specific site or region using a DEM and different 

sea-level rise scenarios. 

 The main issue with these approaches for modelling sea-level rise is that they do not 

take account of dynamic feedbacks between processes and coastal morphology (e.g. 

accretion increase and/or landward migration in saltmarshes). Despite this limitation, the 
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DIVA tool has been used in different projects such as the BRANCH project in the UK 

(BRANCH Partnership, 2007) to assess climate change impacts (particularly sea-level rise) 

on coastal habitats at the European Union, although it has been criticised as a basis for 

informing governments and coastal managers (Green & King, 2003; Mcleod et al,. 2010). 

One of the spatial models that partially addresses this limitation is SLAMM, offering a 

more dynamic basis for evaluations of sea-level rise impacts at local to regional scales 

(Mcleod et al., 2010; Pylarinou, 2015). 

 SLAMM was developed in the USA by Park (1986) with EPA (Environmental 

Protection Agency) funding. The model is GIS-based, and it simulates some of the main 

processes involved in coastal wetland changes and shoreline modifications under different 

scenarios of sea-level rise (Clough et al., 2010) such as inundation, erosion and accretion 

(Akumu et al., 2010). SLAMM has been run in more than 93 sites to assess changes in 

coastal land cover classes in USA due to sea-level rise. The advantages of this model are 

that it is open source, simple, quick, contains most of the major saltmarsh processes and 

large datasets are not required. However, although this model does not consider future 

changes in hydrodynamics (it assumes that the tidal regime will be constant) and it is a 

spatially simplified erosion model. It includes dynamic feedbacks between processes and 

coastal morphology (such as the ability of the saltmarsh to respond to sea-level rise by 

increasing accretion and/or the landward migration), which is crucial for modelling 

saltmarshes in a context of sea-level rise. 

 Despite their limitations, models such as SLAMM in combination with high 

resolution spatial data and GIS tools currently provide a basis for more mechanistic 

understanding of sea-level rise impacts in saltmarsh environments at landscape scales. 

However, governments and managers should be aware of the limitations of the model 

used to evaluate the effect of sea-level rise in coastal wetlands. In addition, more 

understanding about the uncertainties surrounding these models is crucial to assess the 

model outputs when they are used for informing governments and managers about 

adaptation, migration or policy development. 

 

1.7. Remote sensed data for surveying saltmarshes 

1.7.1. Multispectral data for saltmarsh mapping 

Traditionally, saltmarsh mapping has been performed by a combination of laborious field 

surveys and photo-interpretation from conventional aerial photography. These data offer 

the possibility of manually mapping different marsh habitats with a spatial resolution of a 

few metres, using the texture and grey/colour scale of the photographs as indicators of 

changing vegetation communities (Smith, 2009; Provoost et al., 2005; Dale et al., 1996). 
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One of the advantages of this approach is that aerial photography is often available from 

present day back to the 1940s. This is very beneficial to studies of historical habitat 

change for instance. On the other hand, the major disadvantages are the need for large 

field surveys, which are labour intensive, time consuming and expensive (Gilvear et al., 

2004; Moffett & Gorelick, 2013) and the usually poor spectral resolution of aerial 

photography (black and white, or RGB: limiting automatic vegetation classifications). 

 Significant progress has been made in Earth Observation over the last few decades, 

where improved synoptic coverage and repeatability of remotely sensed digital imagery 

has enabled advancements in saltmarsh characterisation and the monitoring of change 

(e.g. Thomson, 1998; Silvestri et al., 2003; Brown, 2004; Thomson et al., 2004). This 

progress has been chiefly driven by the improvement of remote sensing from spaceborne 

and airborne platforms and associated technology over the time (Table 1.4), which has 

increased their spectral and spatial resolution and the increment of data availability for 

the scientific community (e.g. satellite images, high resolution satellite images and 

multispectral aerial photographs). Overall, remotely sensed data have offered a more 

efficient way of acquiring saltmarsh information compared with the conventional aerial 

photography. 

 The first Landsat was launched in 1972 and with it began the space/satellite remote 

sensing era. Since then, posterior Landsat were launched providing a wide range of spatial 

and temporal coverage of multispectral information8. Unlike old aerial photographs, the 

satellite images obtained by these sensors offered a huge improvement in spectral 

resolution (seven spectral bands), but their spatial resolution (30 m) has been a limitation 

for saltmarsh studies at fine scales (Artigas & Yang, 2006; Zhao et al., 2009). Due to the 

spatial complexity of saltmarsh vegetation, Landsat images are not suitable for detailed 

saltmarsh mapping, although they can be used for other purposes at coarser scales such as 

land-cover mapping or for determining water, mud and vegetation boundaries using un-

mixing techniques (e.g. Zhao et al., 2009). 

  

                                                             

8 http://landsat.gsfc.nasa.gov/data/where.html 
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Table 1.4 Summary of properties of relevant sensor for saltmarsh mapping. 

 1940 1970 1986 1999 2001  

  
 Aerial 

photography 

LandSat SPOT IKONOS QuickBird  

Pixel 

resolution 

(m) 

Few 15-30 2.5-10 1-4 2.44-0.61  

Number of 

bands 

1 or 3 7 1 4 4  

Revolution 

interval 

(days) 

N/A 16 5 3 3  

Country specific sites US 

French/ 

Belgian/ 

Swedish 

US  US   

 

 Since the late nineties, high resolution satellites such as IKONOS and QuickBird 

combined the very high spatial resolution of aerial photographs with the increased 

spectral range and resolution of satellite images. These modern remote sensing 

technologies allow wetland information to be collected more efficiently (Moffett & 

Gorelick, 2013), and with higher spatial resolution (from centimetres to few metres) 

(Gilvear et al., 2004). The high resolution images have been crucial for classifying 

vegetation cover across coastal wetlands (Harvey & Hill, 2001; Belluco et al., 2006; Cao et 

al., 2007; Gilmore et al., 2008; Arroyo et al., 2010) because they provide spatial and 

structural features at the fine scale (Cao et al., 2007), which is essential for distinguishing 

vegetation patterns and creeks. 

 Apart from spaceborne sensors, airborne sensors can also provide very useful 

information for mapping saltmarshes. Unlike spaceborne, data from airborne sensors such 

as digital photogrammetric cameras can be collected on a specific day and at a specific 

time, and generally have greater spatial resolution than satellite images (Thomson et al., 

2004). Modern aerial sensors allow digital photographs to be acquired at greater spatial 

resolution (≤ 1 m) and higher spectral resolution (combining standard RGB colour 

photography with an additional infrared band) than old, standard aerial photography. 

These improvements mean that classification techniques can be applied more successfully 

for saltmarsh mapping, and their results are comparable to those obtained from very high 

resolution satellite-derived imagery (up to 5m). 

 One of the most significant differences between the main sensors relevant to 

saltmarsh mapping is their spatial resolution (Figure 1.11). Belluco et al. (2006) 

investigated how spatial resolution influences classification results in estuarine habitats. 

Improvement in classification is found with an increase in spatial resolution and studies 

show that very high spatial resolution images (e.g. IKONOS-2, QuickBird or multispectral 
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photography) are more suitable for mapping saltmarshes than images from 10 to 30m 

spatial resolution sensors such as Landsat (e.g. Artigas and Yang, 2006; Cao, 2007; Gilmore 

et al., 2008; Arroyo et al., 2010). Very high resolution satellites images (<10 m resolution) 

and digital aerial photographs are the most suitable data for mapping saltmarshes because 

they provide good spatial resolution without losing spectral information, which facilitates 

the characterisation of water bodies and vegetation patterns. However, the classification 

technique applied can also be determinant in the success of saltmarsh mapping. 

 

 

Figure 1.11 Illustrative sample of 30m spatial resolution LandSat-5 image (on the left) and 1m 

spatial resolution aerial photograph (right) for a saltmarsh. 

 

1.7.2. Altimetry data: Light Detection And Ranging (LiDAR) 

Given the importance of elevation as a control on both the physical inundation and 

sedimentation regime (via hydroperiod) and plant and animal communities, accurate 

topographic data are crucial for assessments of saltmarsh response to sea-level rise. 

Existing globally-available digital elevation products such NASA Shuttle Radar Topography 

Mission (SRTM) fail to characterise tidal saltmarshes topography due to their limited 

spatial and vertical resolution (Yang, 2005). In this sense, airborne LiDAR technology may 

have a great potential for monitoring and assessing large areas of coastal wetlands, and 

thus its application to these environments is expected to increase (Cary, 2009). For 

example, the USA and some European countries have already started to use this 

technology to create regional and national Digital Elevation Models (DEMs) (Meng et al., 

2010) for various coastal and flooding applications. 
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 Airborne LiDAR is a laser scanner that determines the distance between ground-

objects and the sensor by measuring the time a pulse of transmitted energy takes to return 

to the LiDAR sensor receiver (Meng et al., 2010). These sensors are usually coupled with 

ground referencing systems, which have enabled the acquisition of high-density geo-

referenced elevation data (Meng et al., 2010; Populus et al., 2001) in a 3D coordinate (X, Y 

and Z) form, enabling geo-referenced altimetry calculations of the terrain and above-

ground objects (e.g. building, and trees). Generally, the point measurements taken by a 

airborne LiDAR sensor are influenced by the following three variables shown in the 

equation 1.4 (all the units are in metres) (Meng et al., 2010): 

 

�����	
 � ��
	��� + ���	����
	��� + ��	���  (1.4) 

 

Where Msensor is the LiDAR sensor measurement, Eground is the bare ground elevation, Eabove-

ground is the height of above ground objects and Enoise is any undesired measurements (e.g. 

birds). The raw data collected by the sensor are ‘point clouds’ usually in ‘LAS’ format. From 

these point measurements, two main products can be derived from LiDAR: the DEM 

comprising ground elevation data (interpolated from the last echo or return; see Figure 

1.12) and the Digital Surface Model (DSM) comprising ground elevation plus ground-object 

elevation data (interpolated from the first echo or returns). Filtering is required to ensure 

the appropriate, high accuracy DEM is generated. 

 

 

Figure 1.12 Example of echo (or returns) of an airborne LiDAR laser beam in two different 

environments: (a) is representing forest environments, where several returns are usually collected; 

and (b) represents saltmarsh environments, where only one return is usually collected due the 

short vegetation that characterises these environments 
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 LiDAR technology is very useful for the characterisation, quantification and 

monitoring of coastal and estuarine environments (Chust et al., 2008; French, 2003) 

particularly for saltmarshes, where subtle variations in the micro-topography can be 

crucial for determining vegetation spatial patterns and other important factors (e.g. 

oxygen and moisture). However, in saltmarsh environments, despite the resolution 

improvements offered by LiDAR technology in comparison with other techniques, the 

vertical accuracy can be different from adjacent upland (Schmid et al., 2011; Hladik & 

Alber, 2012) due to the low penetration of the laser beam through marsh vegetation layer 

(Schmid et al., 2011). Therefore erroneous assumptions and conclusions can result from 

vertical accuracy differences in both uplands and saltmarshes if this limitation is not 

considered. 

 LiDAR data have been applied within saltmarshes for wetland characterisation 

purposes (Rosso et al., 2006; Morris et al., 2005), habitat and vegetation mapping (e.g. 

Brown, 2004; Collin et al., 2010), determination of wetland vegetation height (Genc et al., 

2004), evaluation of SLR impacts (Webster et al., 2006), for the detection of estuarine and 

tidal river hydromorphology (Gilvear et al., 2004) and as a basis for modelling (French, 

2003). Among the applications reviewed in the literature, there are not many studies that 

have extensively investigated the potential of altimetry data combined with intensity data 

(from beam returns) for mapping coastal habitats (Brennan & Webster, 2006), which for 

example could be an important information for mapping low-contrast vegetation in 

saltmarshes. 

 In the context of SLR, common applications of LiDAR data in tidal saltmarshes 

include sea level inundation and spatial models, which require centimetre level accuracy 

due to the importance of the micro-topography in these environments and the scale of sea-

level rise change. However, within saltmarshes, LiDAR systems can fail to distinguish 

centimetre variations between the vegetation canopy (DSM) and bare-ground (DEM) 

(Hopkinson et al., 2004; K. a. Schmid et al., 2011; Hladik & Alber, 2012). Ground filtering is 

the primary step required for DEM production (Meng et al., 2010), which is particularly 

challenging in saltmarsh environments due to the physical structure of vegetation. Many 

halophytes comprise a dense and homogeneous structure. This means the halophytic 

vegetation often simulates a flat surface consistent with bare-ground elevation and 

morphology (Brovelli et al., 2004; Göpfert & Heipke, 2006). This physical characteristic 

complicates the filtering process because is very difficult to discern if the return is 

vegetation or bare-ground. 

 Systematic instrument errors related to the sensor pulse length (laser cavity length) 

can also affect high resolution data in environments with low-lying vegetation such as 



57 

saltmarshes. Populus et al. (2001) argues that pulses less than 3 nanoseconds (ns) apart or 

one metre on the ground cannot be separated, which can negatively affect the 

identification process between low-lying vegetation and ground targets. The problem here 

is that in these cases is not possible to get both front and rear returns. Schmid et al. 

(2011a) refer to this problem as a technical limitation of the LiDAR, stating that the 

elevation of the marsh returns can be at or near the resolving threshold of LiDAR. This 

means that the height difference between some saltmarsh species and the ground is too 

small as the intensity of the first return drops (vegetation) and rises again as a second 

return (ground). Therefore two individual reflected impulses separated by less than the 

pulse length are considered as one return, instead of two returns, and thus the two targets 

are very difficult to separate (K. A. Schmid et al., 2011; Populus et al., 2001). Thus, sensors 

that are capable to collect multiple returns only collect one return in environments 

characterised by short vegetation such as saltmarshes. 

On the basis that there are physical and technical limitations for the use of LiDAR 

in saltmarshes, and the need for high accuracy data in the research applications in these 

environments, some authors (e.g. Populus et al., 2001; Schmid et al., 2011a; Hladik and 

Alber, 2012) have investigated the vertical accuracy of the elevation data from LiDAR, and 

the possibilities of calibration on these environments (Table 1.5). For example, French 

(2003) found an over-estimation of ground elevation by about 10 cm in reclaimed 

wetlands with a grass cover. Furthermore, several studies that focus on taller vegetation 

such as Spartina alterniflora note that DEMs are overestimated with a mean error of 7-17 

cm, where the error seems to increase with vegetation density and height (Morris et al., 

2005; Montané & Torres, 2006; Rosso et al., 2006; K. A. Schmid et al., 2011). Thus, 

saltmarshes characterised by dense tall vegetation, such those found in southern Europe, 

would need to take in account these limitations of LiDAR. 

 

Table 1.5 Studies focused on calculating LiDAR vertical accuracy in saltmarshes 

Purpose Mash type Error (cm) References 

 

 

 

Accuracy 

assessment  

Tidal 

flats/marsh 

 

Spartina 

alterniflora 

 

 

Upland/Marsh 

10/20 

 

 

 

7-17 

 

 

18.2/45.7 

Populus et al. (2001) 

Morris et al. (2005) 

 

Montane & Torres(2006) 

Rosso et al. (2006) 

Schmid et al. (2011)  

 

Hladik and Meffyl (2012) 

Separation of 

Ground and low 

vegetation 

signature 

 

Tidal marsh 

  

Wang et al. (2009) 
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1.8. Summary 

 Chapter 1 has described both the need for modelling the future response of 

saltmarshes due to sea-level rise and the data issues found on these environments related 

to saltmarsh vegetation and elevation mapping. In order to predict futures changes in 

saltmarsh habitats, which are tightly linked to tidal ranges, it is crucial to have a clear 

understanding of the accuracy and precision of vertical elevation data. Saltmarshes 

present a challenging environment, but the high ecosystem value and their vulnerability to 

sea-level rise mean that monitoring of change, and modelling of future responses are 

important research and conservation objectives. 

 Due to the importance of elevation and its relationship with ecological and 

geomorphological processes; morphometry, geomorphology and vegetation have been 

identified as features worthy of analysing and monitoring. In order to investigate these 

components in saltmarshes, remote sensing techniques will be applied to the current data 

available (e.g. LiDAR data and multispectral imagery). As such, the method developed for 

the interpretation of the remote sensing data should be applicable not only for recent data, 

but also for future gathered data in saltmarshes. 

 Spatial landscape models such as SLAMM have been used to evaluate coastal 

wetland habitat response to sea-level rise based on the simulation of key processes, and 

this model seems to be the most suitable for this research. One of the main strengths of 

SLAMM is the ability to explore system responses to different sea-level rise scenarios, but 

uncertainties in predicted response will also reflect uncertainties regarding the primary 

inputs and hence the quality of the original elevation data and habitat classification. Thus, 

it is crucial to undertake sensitivity analysis to explore the relative importance of data 

quality and resolution (spatial and vertical) in the elevation data and saltmarsh habitat 

classification layers. Monitoring and measurement of saltmarsh habitats is time 

consuming and costly, and the acquisition of the SLAMM input layers can require 

significant resources so some understanding of where surveying efforts should be focused 

is necessary. 
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1.9. Aims and objectives 

 The aim of this thesis is focused on the use of LiDAR data and imagery for 

mapping saltmarsh habitats and as a basis for spatial models of their response to 

sea-level rise under-studied Mediterranean-Atlantic saltmarshes. This is 

demonstrated through application to the saltmarshes found in the Tinto-Odiel estuary. 

Specific objectives for achieving this aim are: 

� To investigate the historical changes (human and physical drivers) at the study area 

and their implications for potential impacts due to sea-level rise 

� To investigate the contemporary plant communities and vegetation structure across 

the study area and to explore relationships with ground elevation for 

understanding the potential saltmarsh respond due to sea-level rise 

� To examine different remote sensing techniques for mapping saltmarsh habitats at 

fine scales (1:2,000) and the suitability of these techniques for monitoring 

saltmarsh habitats 

� To explore the suitability of digital elevation models (DEMs) derived from Light 

Detection and Ranging (LiDAR) sensor for modelling sea-level rise future 

projections in Mediterranean-Atlantic saltmarshes (where vegetation is both tall 

and high density) 

� To explore the sensitivity of spatial landscape models such as SLAMM to the input 

data and habitat elevation accuracy and the suitability of SLAMM for predicting 

wetland conversion due to sea-level rise 

� To investigate the potential impacts due to sea-level rise in the study site using 

SLAMM through a uncertainty analysis 
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2. Research Design 

2.1. Study site 

The present study is focussed on South-Atlantic Iberian saltmarshes, identified in chapter 

1 as European saltmarshes with special features, comprising characteristics of both 

Atlantic and Mediterranean saltmarshes. These saltmarshes are found in the Gulf of Cadiz: 

southern Portugal and southwest Spain. In a context of sea-level rise, most of the research 

carried out in Europe has been focussed on northern Europe or Mediterranean 

saltmarshes, leaving a gap for those found in the Gulf of Cadiz. The response of these 

particular saltmarshes to sea level change has not been fully investigated, and this thesis is 

focussed on covering this gap. Pristine ecosystems are rare in Europe, and this study 

assumes that saltmarshes are already subject to human pressures, and it is important to 

investigate these pressures as a whole. 

 

2.1.1. Northern coasts of the Gulf of Cadiz: site selection 

The northern coast of the Gulf of Cadiz extends from the Cape Saint Vincent, Portugal 

(36.9N and 9.0W) to the Gibraltar Strait, Spain (35.95N and 5.6W) (Figure 2.1). It is 

located at the southern edge of the Iberian Peninsula, occupying a transition zone between 

the mid-latitudes and inter-tropical zones (Ojeda, 2003). Although these coasts face the 

Atlantic Ocean, proximity to the African continent and to the Mediterranean Sea have 

strongly influenced physical factors such as climate, wind, tide, swell, and marine currents 

(Ojeda, 1988). These coasts are subject to a complex coastal dynamic that together with 

other phenomena, such as its neotectonic macrostructure and past sea level changes, have 

enabled the formation and development of diverse coastal environments such as beaches, 

barriers island, saltmarshes, embayments, and rocky and sandy cliffs during the Holocene 

(Ojeda, 1988; Zazo, 1980; Ojeda, 2003). 
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Figure 2.1 Location of the Gulf of Cadiz. In red is shown the Odiel-Tinto estuary (Huelva). 

 

 The structural framework imposed by neotectonic activity and geological processes 

significantly controls the coastal landscape in the Gulf of Cadiz (Figure 2.2). Intense 

tectonic activity associated with the location between the European and the African plates 

(Pedrera et al., 2011) has fractured the bedrock, and active faults, subsidence and uplift 

are ongoing, meaning that this coastal zone is one of the most tectonically active of the 

Iberian Peninsula (Ojeda, 1988; Ojeda, 2003). From a morphological point of view, tectonic 

adjustments and variations in lithology have strongly influenced the evolution and 

contemporary morphodynamics of these coasts because they have imposed significant 

structural constraints. The faults and fractures present on the coastline of the Gulf Cadiz 

have led to the division of the coast into four independent sectors (Figure 2.2) with 

different morphologic structures (Ojeda, 1988): 
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Figure 2.2 The main neotectonic macrostructure of Gulf of Cadiz. From east to west, the picture 

shows the main faults and flexion of the province of Cadiz, Huelva and the Algarve. The red square 

states the study site location (Huelva) and the numbers indicate the following location: (1) Tarifa, 

(2) Roche Cape, (3) Sanlucar, (4) Sta. Maria Cape, and (5) San Vincent Cape. [Source: Ojeda, 1988]. 

 

� Sector 1-2 (SP) is characterised by capes and coastal promontories that alternate 

with wide inlets closed by barrier beaches (Ojeda, 1988). 

� Sector 2-3 (SP) is characterised by uneven tectonic levels of Pliocene series that 

have favoured the development of Cadiz Bay (Zazo et al., 1994; Gracia et al., 1990), 

which comprises of saltmarshes, beaches and cliffs. 

� Sector 3-4 (SP) is chiefly characterised by a low-lying sedimentary coast. From east 

to west the following coastal environments occur: on the Spanish side, the existence 

of sand spits, large dune systems and wide marsh land occur associated with the 

Betic depression; between Huelva and the Portuguese border, evolved barrier 

islands and river estuaries can be found (Ojeda, 2003; Zazo et al., 1994); and lastly, 

on the Portuguese side, large barrier systems, lagoons and tidal inlets occur  

(Arnaud-Fassetta et al., 2006). 

� Sector 4-5 (POR) is characterised by carbonate rock cliff (with intense karst 

processes), coves and small beaches associated with medium fluvial estuaries 

(Ojeda, 1988). 

 The current position of the Gulf of Cadiz coastline is a result of sea level stabilization 

that was reached in the mid-/late-Holocene, roughly 5,500 - 6,500 years ago (Pendon et 
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al., 1998; Zazo et al., 1994). Conditions during this period were suitable for saltmarsh 

formation in southwest Andalusia within the flooded coastal valleys, such as the Tinto-

Odiel estuary, and other sheltered parts of the coast (e.g. barrier islands and 

embayments). The Holocene evolution of the Gulf of Cadiz coast is well documented, 

covering the sedimentary infill of the Flandrian estuaries (Dabrio et al., 2000; Borrego et 

al., 1999; Goy et al., 1996; Pendon et al., 1998; Morales et al., 2003; Lario, et al., 2002), and 

the evolution of the spit barrier systems (Zazo et al., 1994; Lario et al., 2002; Goy et al., 

1996; Rodriguez-ramirez et al., 1996). 

 In addition to the long term evolutionary framework and Holocene-modern sea level 

changes experienced in the Gulf of Cadiz, anthropogenic coastal structures built during the 

last few decades have also played an important role in recent coastal evolution (Ojeda, 

2003). Sediment dynamics along the Huelva and Cadiz shoreline have been impacted by 

the construction of dikes, jetties, piers and sea walls, causing changes in sediment 

transport directions, and most notably, present an important control on the broad 

morphodynamics of the coastal system (Zazo et al., 2005). 

 According to Dijkema (1984), ‘barrier connected saltmarsh’, ‘foreland saltmarshes’, 

‘estuarine saltmarsh’ and ‘salines’ are found in the northern coasts of the Gulf of Cadiz. The 

Tinto-Odiel estuary has been identified as one of the largest estuaries in the Gulf of Cadiz 

and encompasses extensive tidal marsh (roughly 12,000 ha) alongside different land uses 

(urban, industrial, conservation, tourism and recreational). Within this estuary, the Odiel 

saltmarshes are considered the largest and most diverse saltmarsh system in the Iberian 

Peninsula (Castellanos et al., 1998), and gaining protected area status in recognition of the 

national and international importance of these wetlands. This protected area includes 

saltmarshes, vegetated barrier islands, dunes and beaches, which have been assigned 

several conservation designations such as the ‘Biosphere Reserve’ (1983), ‘Paraje Natural’ 

(1984), ‘Natural Place of National Interest’ (1984), ‘Special Protection Area’ (1987) and 

‘Ramsar site’ (1989). 

 

2.1.2. The evolution of the Tinto-Odiel Estuary 

The evolutionary context covering both Holocene and century time scales is illustrated in 

Figure 2.3, which shows the infilling process of the Tinto-Odiel Estuary and the transition 

from wave to tide dominates environments. This evolution and the associated transitions 

in sedimentary environments was facilitated by sea-level rise throughout the Holocene - 

the ‘Flandrian transgression’ (Zazo et al., 1994). Sea level was between 125 and 120 m 

lower than the present level (Hernandez Molina et al., 1994) at the end of the last glacial, 

and this was followed by a rapid rise until roughly 7000 years BP (Delgado et al., 2012; 

Lario, 1996), when the rate of sea-level rise decreased (Figure 2.4). Evidence for this has 
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been found in analyses of organic and peat deposits and gravels and shells lags found in 

various cores from the Guadalete and Tinto-Odiel estuaries (Dabrio et al., 1995; Goy et al., 

1996; Lario, 1996; Zazo et al., 1996; Dabrio et al., 1999). This early rapidly rising sea level 

(at a rate of around 1 m every 100 years) resulted in a progressive inundation of the lower 

zones of the Odiel and Tinto rivers, transforming this area into a huge bay with a ‘Y’ shape 

representing the confluence of the two river valleys (Morales & Ojeda, 2010). The filling 

rates (i.e. estuarine sedimentation) at that time were greater than 3 mm y-1 (Lario et al., 

2002b) (Figure 2.5). 

 A renewed acceleration in the rate of sea-level rise took place until the maximum 

landward advance of the marine influence was reached at 7000–6000 years BP (Lario, 

1996; Dabrio et al., 1999). Estuarine infilling, high energy tidal currents and wave action 

were the dominant processes during this stage. The next stage (5,390 ±155 to present) 

was characterised by a stabilised sea level, when low energy processes such as tidal 

currents favoured deposition in shallow creeks and tidal flats (Borrego et al., 1999). 

Complex fluvio-marine sedimentation processes created intertidal flats and early marshes. 
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Figure 2.3 Holocene evolution (based on cores) of the Tinto-Odiel Estuary and saltmarsh formation 

from 10,000-12,000 years ago to present. (a) Reconstruction of lower position of sea level, where 

areas in green simululates the emerged land at that time. (b) Reconstruction of higher sea level 

position during the ‘Flandrien transgression’. Figures from (c) to (i) show the saltmarsh evolution 

in this estuary, where the areas in clear blue is water; dark blue represents tidal wetlands; yellow 

shows sand deposition areas such as beaches, spits and barrier islands; white represents sandy 

tidal flats; green represents fresh water environments. Areas in red (i) show dikes and seawalls 

[Source: Modified from Morales and Ojeda (2010)] 

  



 

Figure 2.4 Holocene sea level trend for the SW Iberian coast [Source: Delgado 

 

Figure 2.5 (a) Holocene sedimentation rates and trends in the Odiel saltmarshes, where MRSLR 

means mean rate of sea

Odiel saltmarshes [Source: 

 

 Based on lithology and biological content (macro

samples collected from a sounding with a continuous core on Bacuta Island (in the central 
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(a) Holocene sedimentation rates and trends in the Odiel saltmarshes, where MRSLR 

means mean rate of sea-level rise and SR sedimentation rate; (b) Location of the cores within the 

Odiel saltmarshes [Source: Lario et al., 2002] 

Based on lithology and biological content (macro- and micro

samples collected from a sounding with a continuous core on Bacuta Island (in the central 

basin of Odiel River estuary) (Borrego et al., 1999), 6 estuarine facies were related to the 

Holocene history of sea-level rise recording the start and development of the Flandrian 

ransgression at the Odiel estuary (Figure 2.6). The start of this transgression was 

recorded at 8720±260 (radiocarbon) years BP (Borrego et al., 1999),

deposition also started in the central part of the Odiel estuary (Pendon 
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Holocene sea level trend for the SW Iberian coast [Source: Delgado et al., 2012]. 
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level rise recording the start and development of the Flandrian 
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., 1999), when sand-bar 

Pendon et al. 1998). From 
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this time until 5,390 ±155 years BP, estuary accretion, high energy tidal currents and wave 

action took place successively (Borrego et al., 1999). The first sandy and muddy deposits 

were generated by sedimentation due to gravity and flocculation of suspended particles 

(when fresh water from the rivers mixes with sea water) (Rubio & Figueroa ,1983). 

Deposition occurred as marginal tidal flats toward the high water shorelines of the two 

valleys, and as inlet-associated island banks within the estuary mouth (Borrego et al., 

1999; Borrego, 1992; Dabrio et al., 2000; Lario et al,. 2002) (Figure 2.6, a). 

 During the stabilised sea level phase (5,390 ±155(radiocarbon) years BP to present), 

the vertical energy was greatly reduced and allowed more deposition in tidal channels 

(Borrego et al., 1999). Subsequently, a barrier island formed and a sandy barrier 

developed at Saltes Island (Suarez Bores, 1971)(after ~3200 BP), creating a sheltered 

zone from the open ocean. The growth of sand barrier islands during this time started the 

dominance of wave activity, although the tidal current was the main agent of sediment 

distribution within the sheltered zone (Pendon et al., 1998). Barrier islands and sand spits 

evolved within the wide entrance (Figure 3.1c-f) which increasingly blocked the inner 

estuaries and caused a shift from high- to low-energy processes and sediment dynamics 

(Zazo et al., 1994; Lario et al., 1995; Lario, 1996). An established fact in the evolution of 

the Tinto-Odiel estuary is the growth and stabilisation of the Saltes Island and Punta 

Umbria spit (the two outermost sand bars) (Pendon et al., 1998) that favoured the 

saltmarsh formation in the sheltered zone. 

 From this time onward, the Odiel estuary mouth became more channelized and the 

tidal channels at the upper and mid- estuary have remained relatively stable for the last 

few centuries (Morales and Ojeda, 2010). The estuary mouth, however, has experienced 

more physical changes during the last centuries and increasingly anthropogenic changes 

during the last decades. The recent sedimentary evolution (1829 – 1994) at the estuary 

mouth has been reported by Borrego et al. (2000), highlighting the impact of dike 

construction in the geomorphology of this part of the estuary. 

 A recent study (Morales, 2016) has shown some geological evidence (based on cores 

and seismic profiles) that the sediments deposited in the Tinto-Odiel estuary are affected 

by recent neotectonic activity. Cores and seismic profiles have showed that sediment 

sequences (regressive Pleistocene and transgressive Holocene sequence) at this estuary 

are cut by normal faults (shown in Figure 2.2). The shape of the upper sediments have 

adapted to the ‘land displacement’ caused by these faults, suggesting a slow and 

progressive vertical movement that cause subsidence (up to 1 mm y-1) (Morales, 2016). 

These vertical movements within the estuary are vital in a context of sea-level rise when 

absolute measurements are considered. However, when relative sea-level rise is used, 

vertical movements are included in the final measurement. For example, sea level 
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measurements from local tidal gauges are relative because they include vertical 

movements plus sea level change. 

 

 

Figure 2.6 (a) Palaeo-geographical evolution, and (b) Flandrian transgression at the central 

estuarine basin of the Odiel and Tinto River mouth, where ‘Faun Ass.’ refers to three faunal 

assemblages (Open bay (OB), Central estuary (CE), and Wave domination (WD)) including remains 

of macrofauna, foraminifers and ostracods plus depositional features (they were identified in a 

sedimentological log constructed from a borehole with a continuous core) [Source: Borrego et al. 

1999] 
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2.1.3. The Odiel saltmarshes and the Tinto-Odiel estuary: site description 

At the beginning of this project the aim was to cover the whole estuary, including both 

Tinto and Odiel saltmarshes. However, the large surface area of these saltmarshes in 

addition with others issues (such as the difficulties associated to field work in saltmarshes, 

the fixed time of this research project and LiDAR data availability) led to the reduction of 

the study area to the Odiel saltmarshes. The Odiel saltmarshes of the Odiel-Tinto estuary 

are situated on the southwest coast of the Iberian Peninsula (Figure 2.7). The Odiel-Tinto 

estuary is positioned in southwest Andalucía and occupies the central part of the Huelva 

coast, where the Odiel and Tinto rivers meet each other in the marine influence sector, 

before entering the Atlantic Ocean. This estuarine system is locally known as the Huelva 

Ria. The Odiel saltmarshes comprise extensive marsh land and unvegetated sand spits, 

coastal sand dunes, beaches and saline lagoons. 

 

 

Figure 2.7 Location of the Odiel saltmarshes and the Tinto-Odiel Estuary. The red line states surface 

area of the study site. 

 

 The Tinto-Odiel estuary is a bar-built system (López-González et al., 2006) with a 

semidiurnal tidal range (Carro et al., 2011). The valleys run through Neogene sediments 

(marly deposits) of the Guadalquivir depression (Cánovas et al., 2007). Within the Gulf of 

Cadiz, the flood tide progresses from the Gibraltar strait to the Portuguese Algarve and the 
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ebb is in the opposite direction (Morales & Borrego, 2000); long-shore drift is from west to 

east. The mean tidal range is 2.1 m and the mean spring range is 2.97 m (Borrego, 1992), 

which is meso-tidal according to Hayes’ (1979) classification. The tidal wave travels into 

the estuary at between 25 and 45 kmh-1, which is attenuated by two dikes (Borrego, 1992) 

located at the mouth of the Huelva Ria and the Punta Umbria Ria. At the open coast, wave 

energy is considered ‘medium’ because wave height exceeds 0.5 m 25% of the time 

(Dabrio et al., 2000). The dominant swell is from the southwest, but swell from the 

southeast also contributes an important characteristic to the local wave climate (Borrego, 

1992). 

 The area has a Mediterranean climate (Csb or Csa according to Koppen 

classification) modified by Atlantic influences, experiencing hot-dry summers (August 

mean temperature of 25°C) and warm-wet winters (January mean temperature of 11°C). 

Wet years can reach an average of 1,200 mmy-1 and dry years an average of 400 mmy-1 

(Sainz et al., 2004). The Mediterranean climate controls the hydrology in this area, 

resulting in rivers with high discharge variability between summer and winter, and 

between years. The Tinto and Odiel rivers have an average flux of 49.8 Hm3 per month, 

which may vary between 100 Hm3 in wet years and 5 Hm3 per month in dry years 

(Borrego, 1992). This great variability in the Odiel hydrologic regime is due to the 

torrential rainfall characteristic of this area. For example, the winter flooding are 500 

greater than in summer, and the 80 % of annual discharge occurs in only few weeks. 

Maximum discharge values during flash flooding can be between 12 and 16 times greater 

than average discharge values (Lopez et al., 2006). 

 Variability in river discharge controls the salinity levels within the estuary, affecting 

sedimentation processes (flocculation and decantation). Additionally, processes of acid 

neutralisation also occur within this estuarine system, where the pH values greatly vary 

(from 2.5-3.5 to more than 7) in a short distance (Carro et al., 2011), which is also affected 

by the intra- and inter-annual discharge variability. The low pH values of these rivers are 

due to the high content of suspended and dissolved trace elements released from the acid 

drainage of the Iberian Pyrite Belt (the largest sulphide open mining area in Europe). The 

neutralisation process also affects the sedimentation within the estuary, favouring the 

sedimentation of fine grains in those areas where the pH contrast is high. 

 The main land use in the Odiel river basin is forestry and there is a low development 

of agriculture and industrial activities (Galván et al., 2016). The substrate of the 

hydrographic network is mainly rocky, and the alluvial deposits are scarce at the upper 

and mid River basin (Lopez et al., 2006). Unlike other small river basins along this coast 

(e.g. Partido river basin (Borja et al., 2009)) strong erosion problems have not been 
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reported in the Odiel River and its water flow has not been regulated (Cendrero et al., 

2005). 

 The main geological substratum of the Odiel River drainage network is the Iberian 

Pyrite Belt (Figure 2.8, a) (very rich in polymetallic massive sulphide deposits), where 

mining activities have had a long history starting around 3000 BP (Nocete et al., 2005). 

However, large scale exploitation of polymetallic massive sulphide is more recent, 

operating from the second half of the nineteenth century until the end of the twentieth 

century (Olías & Nieto, 2015). This intensive exploitation during decades has left large 

amounts of mining wastes deposited in the Odiel and Tinto watersheds. These wastes 

(rich in sulphide) exposed to the atmosphere leads to the oxidation of sulphides that 

release acidity, sulphate and toxic metals (a process often known as acid mine drainage) 

(Galván et al., 2016). However, these deposits have not contributed to add new amount of 

sediments to the rivers, but soluble pollutants that deteriorate the water quality in this 

basin and in the estuary (decreasing pH levels). The geological substratum at the Odiel 

estuary are Holocene sediments overlying Miocene Pliocene siliciclastic sediments formed 

in marine and continental environments (Civis et al., 1987). These sediments are basal 

gray-blue clays and silt (upper estuary), and upper fine sands and grey-yellow silt (mid- 

estuary), and constitute a large system of cliffs along the inner perimeter of this estuary 

(López-González et al. 2006b). 

 In the Odiel estuary the sediment composition is mainly silt (45%), sand (42%), and 

clay (12%), according to the results presented by Lopez-Gonzalez et al. (2006a). They 

reported a longitudinal gradient (Figure 2.8, b) of sediment texture that showed a strong 

seasonal pattern. For example, in winter and autumn the highest sand content is located at 

both fluvial (12s) and marine (1s) extremes (Figure 2.8, b), and decreases toward the mid- 

estuary (9s and 10s). Here, the content of silt presented an opposite tendency, reaching 

their maximum values at sites 9s and 10s, where the process of saline mixture and acid 

neutralisation occur in winter and autumn (Lopez-Gonzalez et al,. 2006a). In contrast, in 

spring, the finest sediments (silt and/or clay) are found at the fluvial and marine extremes. 

At the site 10s, fine sediments are also found at site 10s, where the saline mixture and acid 

neutralisation occur in spring (Carro et al., 2011). In summer, the fluvial discharge is very 

low, and thus the fluvial processes are restricted to the upper part of the estuary. Tidal 

processes dominate the estuary at this time of the year and the pH is more homogeneous 

through the estuary. The longitudinal gradient observed in the sediment texture is similar 

in summer and winter, where the sand content decrease from the upper estuary to site 

10s (Figure 2.8, b), and silt content increase. 
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Figure 2.8 (a) Geological substratum of the Odiel and Tinto River drainage network (the Iberian 

Pyrite Belt) [source: López-González et al. 2006b]; and (b) sediment traps for a sediment texture 

analysis in the Tinto-Odiel estuary [source: Lopez-Gonzalez et al., 2006a] 

 

 The main source of sediments in the Odiel saltmarshes comes from the sediment 

transported by the fluvial currents from the North (mainly from the lower river basin) and 

tidal currents from the South (Atlantic Ocean). Fluvial sediments come mainly from the 

Odiel River (with a river basin of 2,333 km2), although the Tinto River (with a river basin 

of 739 km2) also provide some sediments at the lower estuary confluence. The fluvial 

currents introduce an average of 5,600 tonnes per year in the estuary that in combination 

with marine sediments enable the vertical growth of the saltmarsh (Ruiz et al., 1994). The 

short term accretion rates estimated for the Odiel estuary ranged between 1 and 1.7cm y-1 

(Ruiz et al. 1994). 

 Intra and inter-annual variability in suspended sediment concentrations is a 

common occurrence in tidal marshes and other coastal ecosystems (Schile et al., 2014). At 

the study site, the influence of the Mediterranean climate and storm-based sediment 

pulses on marsh accretion increases the uncertainty on sediment supply when short time 

series are used, because they do not cover the natural variability in suspended sediment 

concentration. In the Odiel saltmarshes, the historical suspended sediment concentration 

is unknown. However, historical accretion rate data are available and provide some 

information about sediment availability and the ability of this particular saltmarsh to 

growth vertically. Long-term accretion rates are crucial for investigating the response of 
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the Odiel saltmarshes due to sea-level rise because they take in account soil compaction 

over the time. Previous research on the Odiel saltmarshes includes the acquisition of 

several cores (Figure 2.9; Table 2.1), where radiocarbon analysis has enabled the 

calculation of accretion rates (Davis et al., 2000; San Miguel et al., 2001; Morales et al., 

2003). These rates have shown that most of the sites investigated at the Odiel saltmarshes 

have been growing vertically a few millimetres per year. However, these rates vary 

depending on the location within the estuary and environment. Figure 2.5 and Table 2.1 

show that different saltmarsh environments have different sedimentation rates. 

 

 

Figure 2.9 Location of the sediment core sites in the Odiel-Tinto estuary. [Source: Morales et al., 

2003] 
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Table 2.1 Published accretion rates in different environment of Odiel saltmarsh 

Site Rates (cmy-1)  Width Environment* Reference 

HCT-1 

HCT-2 

HCT-3 

0.26 +- 0.55 

0.39 +- 0.01 

0.30 +- 0.01 

0-47 cm 

0-32 cm 

0-41 cm 

Channel edge (Davis et al. 2000) 

S-3 

OD-2 

OD-2 

O-1 

TUP 

TUP 

VEC-6 

0.10 +- 0.01 

0.45 +- 0.01 

1.06 +- 0.02 

0.18 +- 0.01 

1.21 +- 0.03 

0.40 +- 0.01 

0.21 +- 0.02 

0-18 cm 

0-15 cm 

0-36 cm 

36-45 cm 

0-40 cm 

40-80 cm 

0-27 cm 

Tidal flat 

Channel edge 

LM 

Channel edge 

LM 

Channel edge 

HM 

(San Miguel et al. 2001) 

VT-8 

VT-15 

- 

- 

ST-1 

- 

VH-5 

VEC-10 

STE-4 

- 

SB-1 

- 

SO-19 

VR-3 

VR-17 

0.141 

0.115 

0.033 

0.433 

0.336 

0.217 

0.436 

0.137 

0.177 

0.070 

0.671 

0.240 

0.241 

0.122 

1.076 

0-240 

0-410 

0-130 

130-390 

390-750 

750-1270 

0-565 

0-400 

0-1400 

0-1000 

1000-3250 

0-1310 

1310-2210 

0-340 

0-355 

Channel + TF 

Channel + TF 

FP 

Channel Edge 

Channel 

TF 

Channel Edge+ HM 

Channel Edge+ HM 

TF 

Channel Edge +HM 

TF 

Channel 

TF 

Channel Edge + HM 

Channel Edge + LM 

(Morales et al. 2003) 

*TF= Tidal flat; HM= High marsh; LM= Low marsh; FP= fluvio-marine Flood Plain 

 

 The saltmarsh vegetation is characterised by Mediterranean saltmarsh species (e.g. 

Salicornia ramossisima, Salicornia fruticosa, Arthrocnemun macrostachyum, Limoniastrum 

monopetalum and Suaeda vera) with some variations due the Atlantic influences (Spartina 

maritima) (Gehu & Rivas-Martinez, 1984). The Odiel saltmarshes have been classified as 

‘Mediterranean-Atlantic saltmarshes’ by Gehu and Martin-Rivas (1984) and as a 

sedimentary shore with ‘barrier connected, foreland and estuarine saltmarshes’ by 

Dijkema (1984). 

 In a local context, these environments provide many ecosystem services that 

directly benefit the local communities and in a regional context, they are of special interest 

for migratory birds due to its strategic location between Africa and Europe. For example, 

these saltmarshes are the nesting place of one of the largest spoonbill (Platalea 

leucorodia) colonies in Europe (30% of total the population in Europe). This species is 

cited in Annexe I of the European Directive with relation to wild birds (79/409, CEE) and 

it has been identified as vulnerable with less than 10,000 couples (8,900 nesting couples, 

BirdLife International 2004). 
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2.2. General methodology: work packages and work flow 

The research conducted here incorporates a multifaceted methodology for investigating 

the response of the Mediterranean-Atlantic saltmarshes due to sea-level rise at local 

scales. This is important because the sustainability of these ecosystems is vulnerable to 

anthropogenic pressures and potential impacts due to sea-level rise, which are locally 

variable. Here, monitoring and projecting future responses in saltmarshes are crucial in 

order to reduce sea-level rise impacts by means of integrated management 

(restoration/adaptation). Thus, the developed methodology will be applied at the estuary 

landscape scale to understand locally the current state of saltmarshes, the recent past and 

the future behaviour. 

 To achieve the aims and objectives previously described, the programme of work 

has been divided into three work packages, summarised as a work flow in the Figure 2.6. 

Each work package follows a different approach, and in order to keep chapter unity, the 

methods for each work package are outlined and explained in each chapter. First, the 

overarching explanation of the work packages and work flow is reviewed here. The three 

work packages broadly reflect i) the recent past evolution (WP1), ii) the contemporary 

nature of the system (WP2), and iii) the future behaviour (WP3) of the Odiel saltmarshes 

(Figure 2.6). They are inherently interlinked through field-data acquisition and analysis, 

secondary data processing and validation, and modelling. 

  



77 

 

 

Figure 2.10Thesis work flow and work packages. 

 

 WP1 focuses on examining and improving understanding of the recent (last 50 

years) geomorphological and anthropogenic evolution of the Odiel saltmarshes. This 

includes establishing saltmarsh development, and researching the relative importance of 

different forcing mechanisms on the development and dynamics of the Odiel saltmarshes. 

In particular, the role of sea-level rise on saltmarsh behaviour will be evaluated. These 

analyses also provide some of the parameters needed for running the sea-level change and 

saltmarsh response using model SLAMM (WP3). The centres of inquiry in this work 

package are: 
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� change analysis of environmental units to ascertain saltmarsh respond to various 

drivers such as sea-level change, costal defend infrastructure construction and 

natural processes; 

� change analysis of saltmarsh shoreline delineated from recent (1956 to 2013) aerial 

photographs to derive saltmarsh erosion rates; 

� synthesis of historical accretion rates from published data (core sediments). Long-

term accretion rates are crucial for investigating the response of the Odiel 

saltmarshes due to sea-level rise. Previous research on the Odiel saltmarshes 

includes the acquisition of several cores (Figure 2.9; Table 2.1). 

� synthesis of historical sea-level trends derived from gauge data and satellite 

altimetry. In the Gulf of Cadiz only two tide gauges have longer series which are 

available from the Permanent Service for Mean Sea Level (PSMSL): the Cadiz (Spain) 

tide gauge (1961 to 2009) and the Lagos (Portugal) tide gauge (1906 to 1990). In 

the study area, the Mazagon (Huelva) tide gauge has been collecting data since 1997 

and is maintained by the national tide gauge network. Mean values during 1997-

2003 of tidal levels from this tide gauge are shown in Table 2.2: levels have been 

calibrated with the Spanish hydrographic datum (Alicante). 

 

Table 2.2 High tide data of the Mazagon tide gauge (Huelva) corrected by reference vertical Datum 

(Spanish hydrographic zero; zero in Alicante). The tide gauge’s original data were referred to its 

own datum and the shown height in the table has been calculated. [Fraile, 2005] 

Mean Tides in Odiel-Tinto Estuary (1997-2003) Tidal coefficient Huelva (m) 

The Highest High Water (HAT + surge)  - 2.77 

Highest Astronomical Tide (HAT) -- highest equinoctial spring 

tide 

1.2 2.09 

Mean Higher High Water (MHHW) -- mean High equinoctial 

spring tide 

1 1.78 

Mean High Water Spring (MHWS) -- mean High spring tide 0.94 1.69 

Mean High Water (MHW) --mean High daily tide 0.7 1.32 

Mean High Water Neap (MHWN) 0.45 0.93 

(weak High neap tide)  0.2 0.55 

Height difference between tide gauge mean level and reference 

topographic zero (Alicante)  

- 0.39 

 

 WP2 focuses on assessing the present nature of the study site (the Odiel 

saltmarshes). This package acquires, collates and examines high resolution data to 

spatially characterise the current morphological, sedimentary and ecological nature of the 
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saltmarshes. Work undertaken in this package produces a suite of data layers (DEM, slope 

and saltmarsh habitat map) necessary to progress the modelling work in WP3. The centres 

of inquiry in this package are summarized below: 

� saltmarsh habitat and species survey, including an analysis of the spatial 

organisation of plant species and vegetation communities, and elevation-ranges 

associated with; 

� saltmarsh surface sedimentation rates, derived from field-based sediment trap 

measurements, to ascertain associations between topography, vegetation 

communities and deposition rates; 

� saltmarsh vegetation and habitat mapping using several image classification 

techniques (pixel based and object based supervised classification) and remotely 

sensed data (satellite imagery and aerial photography), incorporating evaluation of 

these approaches to find the most suitable method for mapping and monitoring 

Odiel saltmarsh habitats in the context of available data. 

� topographic surveying, and analysis of saltmarsh morphology using LiDAR data to 

thoroughly characterise saltmarsh structure and eco-geomorphology; 

�  The final work package (WP3) is based on the application of a sea-level change 

saltmarsh response model to the Odiel saltmarshes. Here, the SLAMM model (Clough 

et al. 2010) has been applied. All data compiled and processed in WP1 and WP2 are 

integrated into the progression of this modelling. This work package is focussed on 

understanding SLAMM and undertaking a suite of different scenarios that address 

uncertainty in both sea-level rise projections and data resolution. 

2.3. Data description 

2.3.1. Andalusian Vegetation map 

The digital vegetation map of Andalucia (at a scale of 1:10,000) provides the only site-

wide vegetation data that includes the whole of the Odiel saltmarshes. The surveys that 

underpin the map were undertaken by Environmental Ministry of Andalucia between 

1993 and 2003 for Andalucía, and specifically 2003 for the Odiel saltmarshes. Data was 

derived through photo-interpretation (based on aerial photography from 1993 and 2003) 

and digitisation of homogeneous polygons at 10,000 scale supported with ground truth 

surveys by means of vegetation quadrats (0.5 x 0.5 m). The resulting geodatabase is 

detailed and provides percentage vegetation cover of the dominant species in every 

polygon. This map is published by the Environmental Ministry of Andalucía and is 

available by request. The primary use of this data is in the selection of training areas for 

the image classification processing and validation during previous years. 
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2.3.2. Airborne LiDAR 

A combined LiDAR sensor and photogrammetric camera flight (Table 2.3) was carried out 

on 29th January 2013 specifically for this study and has been funded by the project ‘Detail 

mapping and web dissemination of demographic, tourist and environmental data for 

vulnerability assessments linked to beach erosion in the Andalusia Coast (sea level rise 

associated to climate change)’ (Department of Geography, University of Seville). Data were 

collected for the whole Odiel saltmarshes during the low tide (-1.1 m; tidal coefficient= 89) 

to minimize the amount of water on the marsh surface. Reported vertical and horizontal 

accuracies for the LIDAR sensor are 0.07-0.10m and 0.15-0.17m respectively. A high 

resolution aerial photograph (R, G, B, IR, and panchromatic bands) was also taken with 

0.15 m spatial resolution. The final products of this flight were: raw LiDAR data (‘LAS’ 

files), multispectral aerial photographs (102 photograms), digital surface model (DSM) 

and digital elevation model (DEM). 

 

Table 2.3 Details of the LiDAR flight carried out in February 2013 

 

 

 

 

 

 

 

2.3.3. Aerial photography 

Aerial photography is the primary geospatial imagery used here to explore the evolution 

of the study area during the last 50 years, from which shorelines can be digitised and 

erosion rates calculated. Additionally, they are used as the basis for past habitat mapping. 

There are several aerial photographs available for the study site from the last few decades. 

Aerial photographs available range between 1956 and 2011 and have a spatial resolution 

of between 0.5 and 1 metre (Table 2.4). The oldest photography (1956) and was carried 

out by the military service of USA. This photography was only available as a hard copy, but 

between 2005 and 2006 was georeferenced and converted into a digital orthophoto and 

thus now is also available in digital format. This is important as the data provides 

information about the saltmarshes before the significant anthropogenic modification that 

LiDAR Flight 

Sensor name ALS50 II 

Flight height 1450 m – 1600 m  

Pulse frequency Until 145.3 kHz (145,300 pulses/s) 

Altimetry precision expected 10cm 

Number of Collected returns  4  

Recorded intensity Once per pulse 

Multiples Pulses in Air Yes 

Points density 2 points*m-2 
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occurred during the seventies. A range of other post-1970s orthophotos is available for the 

study area, accessible through inter-operable services9. 

 

Table 2.4 Aerial photographs available for the study area [Source: www.idendalucia.es] 

Year Resolution (m) Type Source 

1956/57 1 B/W Military service USA 

1977/83 0.5 B/W Spanish National Photogrametric flight  

1984/85 1 B/W Spanish National Photogrametric flight 

2001/02 0.5 B/W Spanish National Photogrametric flight 

2007 0.7 Colour Spanish National Photogrametric flight 

2008/09 0.5 Colour(R, G, B, IR) IECA - PNOA  

2010/11 0.5 Colour Spanish National Photogrametric flight 

Feb-2013 0.15 Colour(R, G, B, IR) Dept. Geography (University of Seville). It 

was acquired in combination with a 

LiDAR flight 

 

2.4. Field campaigns 

Fieldwork undertaken for this research was organized into seven campaigns (Table 2.5). 

The first campaign was mainly exploratory (for familiarisation purposes) to establish 

access points for saltmarsh and to review the vegetation species presence. This campaign 

helped plan the other campaigns. During the second campaign, a random vegetation and 

sediment survey were carried out, and ground truth data for image classification purposes 

were also collected. The third campaign focussed on deployment of sediment traps across 

the saltmarsh systems, selecting different saltmarsh habitats. The fourth was a 

continuation of the vegetation survey and ground-truth data collection. During this 

campaign, elevation surveys were also carried out. Two elevation surveys were 

undertaken: the first one on the boundaries of the marsh (over roads), and the second one 

within the saltmarsh. Finally, the fifth campaign was a continuation of the elevation survey 

within the saltmarsh. 

Table 2.5 Campaigns overtaken for field data acquisition 

Campaign Starting date Finishing 

date 

1 05/09/2011 09/09/2011 

2 13/09/2011 25/09/2011 

3 28/12/2011 07/01/2012 

4 03/09/2012 22/09/2012 

5 26/08/2013 30/08/2013 

 

                                                             

9 http://www.ideandalucia.es/index.php/en/visualizacion-wms/44-servicios-de-ortofotos-y-

ortoimagnees-generales  
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3. Historical evolution of the Odiel saltmarshes (Tinto-Odiel estuary) 

The coastal zone is subjected to a dynamic equilibrium especially sensitive to any 

alteration (natural or anthropogenic). In order to assess the potential impacts of sea-level 

rise, it is crucial to understand the parameters that control the current behaviour of a 

particular coastal site and their recent evolution. The aim of this chapter is to analyse and 

quantify the anthropogenic and the geomorphological changes in the Odiel estuary 

(incorporating the Odiel saltmarshes and the lower reaches of the Tinto-Odiel estuary) 

over recent decades. The response of the system is evaluated in the context of key driving 

mechanisms, such as sea-level rise, and broader environmental changes. To address this 

aim, decadal geomorphological and anthropological changes within the estuary and across 

the saltmarsh are explored through spatial analysis of available aerial photography. The 

results presented here provide context information to assess future sea-level rise impacts 

in a human-modified saltmarsh such as the Odiel saltmarshes in Chapter 7, as well as 

medium term horizontal erosion rates that are required for modelling those impacts. 

 

3.1. Methods 

3.1.1. Data 

The data availability limits the time frame available for analysis to the last 60 years. The 

earliest aerial photography available is from 1956 (1 m spatial resolution) and the most 

recent 2013 (0.15 m spatial resolution); the interval between surveys is approximately 

decadal, although no surveys were undertaken in the 1960s leaving a gap of 20 years in 

the early part of the dataset. Landsat imagery is also available for the study area since 

1983, but the spatial resolution (30 m) of these images does not allow a fine quantitative 

analysis of the saltmarsh, in particular small infrastructures such as dikes/sea walls or the 

horizontal saltmarsh retreatment or growth. Furthermore, there is not LandSat imagery 

available for the 1950s and 1960s during the period when major anthropogenic changes 

occurred. Thus LandSat imagery has not been used for this study. Previous to this time 

there are several published historic maps and charts of this area for the following years: 

1862 (Spanish Royal Navy; Figure 3.1), 1875 (Hydrographical Agency), 1936 (Spanish 

National Geographic Institute) and 1946 (Cartography Institute of Andalucía; Figure 3.2). 

These maps are the only information source that shows the geomorphogy of the estuary 

before the 1960s, and have been used here for obtaining qualitative information only. 

They have not been used for calculating quantitative habitat change and erosion rates, due 

to the lack of information about the indicator used for shoreline drawing and resolution. 



Figure 3.1 Configuration of the Tinto

Fernandez y Coria; and published by Spanish Royal Navy (1862)]

 

he Tinto-Odiel estuary mouth in 1862 [Source: map surveyed by 

Spanish Royal Navy (1862)] 
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surveyed by 
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Figure 3.2 Configuration of the Tinto-Odiel estuary in 1946 [Source: map published by Cartography 

Institute of Andalucía, 1946] 
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3.1.2. Decadal estuarine changes 

The investigation of decadal estuarine changes has been carried out through the 

digitisation of geomorphological and anthropogenic features at different points in time 

from aerial and satellite imagery (between 1956 and 2013). The change detection analysis 

was based on the geospatial mapping from these resources for years: 1956, 1979, 1984, 

2001, 2007 and 2013. The features recognised on the aerial photos were digitised and on 

completion of this task for all coverages, the features were rationalised to 9 classes: 

- Backshore: the unvegetated supratidal zone 

- Hard infrastructure:  hard coastal structures such as dikes, sea walls and 

embankments. 

- Harbour: marinas, fishing and industrial ports 

- Saltmarshes: high density and low density saltmarsh vegetation 

- Reclaimed area: areas modified by humans where the natural functions have been 

modified. For example, saltmarsh environments transformed into salt factories or 

dried up for agriculture or other activity 

- Sand dune: this category refers to active and stable barrier island and sandy spits 

that have been colonised partially or completely by vegetation 

- Tidal channel: sub-tidal channel 

- Intertidal mud: muddy intertidal flats and channels 

- Intertidal sand: sandy intertidal flats and bars 

 

 The digitisation process was undertaken at the scale of 1:2,000 within an ESRI geo-

database (ArcGIS 10.2), using the indicators shown in Table 3.1. Firstly, all polygons were 

created across the 2013 aerial photography (after visual photo-interpretation), producing 

the ‘2013 layer’ (spatial resolution). The aerial photography for other years were not 

digitised from scratch but modified from previous layers. For example, polygons included 

in the ‘2013 layer’ were modified (down-dated) for generating the ‘2007 layer’; the ‘2007 

layer’ was used for generating the ‘2001 layer’ and so on. Only polygons that experienced 

changes between years were modified. Thus, the unchanged polygons will have the same 

boundaries in all years, reducing potential manual error in polygon delimitation or data 

entry in the attribute table. This approach also reduces the execution time. In addition, the 

final layers were submitted to a quality control through the topology error tool in ArcGIS 

10.2, where the following rules were used: “polygons must not overlap” and “polygons 

must not have gaps”. In total, more than 1000 topology errors were corrected. 
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Table 3.1. Indicators used for the digitalisation process 

Class Indicator 

 Lower limit Upper limit 

Backshore The wet mark visible from the high tide   The vegetation boundary 

Hard infrastructure The outer limit of the coastal 

infrastructure 

 

Saltmarshes The saltmarsh vegetation boundary 

facing tidal flats or channel 

The saltmarsh vegetation 

upper boundary 

Reclaimed area Outer limit of the sea wall or the visible 

transformation 

 

Sand dune The backshore or tidal flat Urban areas/ other cover class 

Tidal channel Permanently flooded zone The lowest low tide found 

Intertidal mud Tidal channel Other cover class 

Intertidal sand Tidal channel Other cover class 

 

 The change detection analysis was carried out in Microsoft access, analysing the 

geo-database tables produced during the digitisation process. The surface area of each 

class per year was calculated and compared over the studied time period. The percentage 

of change (PoC) between years was also calculated for pair of years for the whole period 

following equation 5. The PoC is the absolute change experienced by one class when the 

class surface area in the initial year is compared with the final year of a certain time 

interval. The PoC values can be positives or negatives, indicating the change direction: 

negative values means loss of area and positive gain of area. 

���� =
���	�
�

�

∗ 100      (5) 

where, �� is the surface area (ha) of the class � in the initial year of the time interval, and 

�� is the surface area (ha) of the same class in the final year. 

 

3.1.3. Saltmarsh patch analysis 

The procedure followed for analysing saltmarsh patches at landscape scale has been based 

on the principles of landscape fragmentation using the Land Fragmentation Tool10 (LTF 

v2.0). Although this tool has been developed following the forest fragmentation 

classification described in Vogt et al. (2006), and using equivalent procedure, it can be 

applied to any land cover type of interest (saltmarshes in this case). LFT is a python script 

that runs out of ArcToolbox in ArcGIS 9.3 or 10.0, and enable to perform patch analysis in 

an intuitive and efficient manner. 

                                                             

10 developed by Jason R. Parent and James D. Hurd with the support of the Center for Land use Education and 

Research, and the Department of Natural Resources and the Environment at the University of Connecticut 



 LFT classifies a land cover (raster form

edge width: patch (pixels that form small fragments of the land cover of interest), 

(outer perimeter of the core), perforated

(Figure 3.3). In the particular case of tidal marshes due to the spatial distribution of 

channels and creeks that perforate saltmarsh habitats, it has been noted that inner and 

outer core perimeter has been classified as 

considered the same for this analysis and have been named 

literature related to “edge effect” in 

considered suitable for this study based on the Odiel saltmarshes size and the results 

presented by Benoit and Askins 

(<10 m) and natural (<30m) barriers affect different saltmarsh birds distribution and 

nesting in Connecticut saltmarshes). The input data used to run this analysis were raster 

files with two classes: ‘non saltmarsh’ (cell value=1) and ‘saltmarsh’ (cell value=2). The 

inputs raster were derived from the digitised layers (1956, 1977 and 2013) in the change 

detection analysis, where the ‘shapefiles’

and reclassified using ArcGIS 10.2.

 

Figure 3.3 Four classes of spatial pattern exhibited within land cover data

 

 The analysis carried out here has been adapted and interpreted based on saltmarsh 

patch analysis. The purpose of this analysis is to identify those saltmarsh zones that are 

potentially more sensitive to sea-level rise. These zones include saltmarsh patches

that form small fragments of saltmarsh) and edges (pixels that occur along the perimeter 

of core zones) originated naturally or by human pressures. Patches and edges are assumed 

to be less resilient to new pressures than cores due to the smaller s

to others land cover types (“edge effect”). The pixels classified as core are outside the 

LFT classifies a land cover (raster format) into four categories based on a specified 

(pixels that form small fragments of the land cover of interest), 

perforated (inner perimeter of gaps in the core) and 

. In the particular case of tidal marshes due to the spatial distribution of 

channels and creeks that perforate saltmarsh habitats, it has been noted that inner and 

perimeter has been classified as perforated. Thus edges and perforated

considered the same for this analysis and have been named edge. Due to the lack of 

literature related to “edge effect” in saltmarshes, an edge width of 20 m has been 

suitable for this study based on the Odiel saltmarshes size and the results 

 (2002) (where they reported that small anthropogenic 

(<30m) barriers affect different saltmarsh birds distribution and 

nesting in Connecticut saltmarshes). The input data used to run this analysis were raster 

files with two classes: ‘non saltmarsh’ (cell value=1) and ‘saltmarsh’ (cell value=2). The 

aster were derived from the digitised layers (1956, 1977 and 2013) in the change 

shapefiles’ were converted into raster files (5m cell size) 

and reclassified using ArcGIS 10.2. 

 

lasses of spatial pattern exhibited within land cover data [Source: Vogt 

The analysis carried out here has been adapted and interpreted based on saltmarsh 

patch analysis. The purpose of this analysis is to identify those saltmarsh zones that are 

level rise. These zones include saltmarsh patches

that form small fragments of saltmarsh) and edges (pixels that occur along the perimeter 

of core zones) originated naturally or by human pressures. Patches and edges are assumed 

to be less resilient to new pressures than cores due to the smaller size and the proximity 

to others land cover types (“edge effect”). The pixels classified as core are outside the 
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based on a specified 

(pixels that form small fragments of the land cover of interest), edge 

(inner perimeter of gaps in the core) and core 

. In the particular case of tidal marshes due to the spatial distribution of 

channels and creeks that perforate saltmarsh habitats, it has been noted that inner and 

perforated are 

. Due to the lack of 

m has been 

suitable for this study based on the Odiel saltmarshes size and the results 

(where they reported that small anthropogenic 

(<30m) barriers affect different saltmarsh birds distribution and 

nesting in Connecticut saltmarshes). The input data used to run this analysis were raster 

files with two classes: ‘non saltmarsh’ (cell value=1) and ‘saltmarsh’ (cell value=2). The 

aster were derived from the digitised layers (1956, 1977 and 2013) in the change 

were converted into raster files (5m cell size) 

Vogt et al., 2006] 

The analysis carried out here has been adapted and interpreted based on saltmarsh 

patch analysis. The purpose of this analysis is to identify those saltmarsh zones that are 

level rise. These zones include saltmarsh patches (pixels 

that form small fragments of saltmarsh) and edges (pixels that occur along the perimeter 

of core zones) originated naturally or by human pressures. Patches and edges are assumed 

ize and the proximity 

to others land cover types (“edge effect”). The pixels classified as core are outside the 
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“edge effect” and are assumed to be more resilient. Core pixels are sub-divided into three 

categories: small core (<100 ha), medium core (100-200 ha) and large core (>200 ha). 

 

3.1.4. Shoreline changes: horizontal erosion and sedimentation rates 

In order to investigate shoreline changes in the Odiel saltmarshes, shorelines were 

digitised as polylines for the following years: 1956, 1979, 1984, 2001 and 2013 (Figure 

3.4). The digitisation of the shorelines was carried out under the same specifications 

explained in section 3.2.1. The indicator used for the shoreline digitisation was the 

saltmarsh vegetation boundary. This indicator was selected due to its stability over time 

(Pajak & Leatherman, 2002) and because it was a feature clearly visible in all images. 

 

Figure 3.4 Shoreline digitalisation for calculating rate-of change in the Odiel saltmarshes. The 

shorelines are displayed over the 1956 aerial photography 
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 Decadal shoreline change in the Odiel saltmarshes was analysed using the Digital 

Shoreline Analysis System (DSAS v4.0). DSAS is a freely available extension for ESRI 

ArcGIS that enables the calculation of shoreline rate-of change statistics from a time series 

of multiple shoreline positions (Himmelstoss, 2009). DSAS works by generating 

orthogonal transects from a given baseline at a user-defined separation. For this work 100 

m separation was given and 782 transects were generated (Figure 3.5). The generated 

transects are used to calculate retreat or advance of the shoreline for each of the time 

intervals. Then, DSAS calculates rates-of-change and associated statistics that are reported 

in an attribute table. The DSAS tool requires user data to meet specific field requirements. 

DSAS produces several shoreline change measures within the transect output layer. The 

measurement used here is the end point rate (EPR) and linear regression rate-of-change 

(LRR). The EPR is calculated by dividing the net distance of shoreline movement by the 

time elapsed between the earliest and latest measurements (i.e. the oldest and the most 

recent shoreline); the LRR statistic can be determined by fitting a least squares regression 

line to all shoreline points for a particular transect (the rate is the slope of the line) 

(Himmelstoss, 2009). The EPR reflects the net rate of change, in this case from 1956 to 

2013; the LRR expresses a rate of change that takes into account all time steps across the 

available data. 

 In order to characterise saltmarsh shoreline behaviour, a cluster analysis was 

performed using the relative shoreline distance at each time interval for each transect 

(N=782). Different clustering approaches were carried out including average (mean 

distance) and Ward’s hierarchical method. The clustering approach used was the average 

method (in ‘R’ v.2.15.1), which gave the best cophenetic correlation (CC = 0.98) when 

compared with other methods (for example Ward’s method CC = 0.37). Cluster analyses 

have been proved to be a suitable method for classify coastal areas as it was reported by 

Scott et al., (2011). 
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Figure 3.5 Orthogonal transects generated by DSAS (ArgGIS 10.2) from a digitised onshore baseline 

for shoreline change analysis in the Odiel saltmarshes. 
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3.2. Decadal geomorphological and anthropologic changes 

Odiel saltmarshes have experienced important changes during the last decades in the 

studied area (Table 3.2; Figure 3.6; Figure 3.7). The results derived from the change 

detection analysis by class show that during the time period 1956-1979, the total 

saltmarsh surface area was dramatically reduced roughly 1,000 ha (Table 3.2), which is 

closely related to the increase in the reclaimed area (~ 1,000 ha). The saltmarsh class 

experienced a loss of more than 25% between these years (Table 3.3), while the reclaimed 

area class increased its total surface by >100% for the same time interval. The surface 

area of the harbour / hard infrastructure classes also increased between 1956 and 1979: 

the PoC for harbour is 18.1% (surface area increase of 0.35 ha) and >100% for hard 

infrastructure (surface area increase of 16.5 ha). The PoC for the classes backshore, 

intertidal mud and intertidal sand were-40.3, -16.8 and -89% respectively, reducing their 

surface area by 27, 176 and 448 ha approximately. The reduction of these three classes is 

closely related to the expansion in the tidal channel (> 540 ha). 
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Table 3.2 Surface area in hectares computed per class and year of the Odiel saltmarshes 

 
1956 1979 1984 2001 2007 2013 

Backshore 67.7 40.4 71.5 55.8 52.9 50.2 

Hard infrastructure 15.8 32.3 49.8 69.2 69.6 68.9 

Harbour 1.9 2.3 2.8 3.0 3.1 3.2 

Saltmarshes 4147.6 3083.9 3190.2 3303.2 3347.0 3362.3 

Reclaimed area 978.4 2146.4 2125.6 2138.6 2153.7 2135.6 

Sand dune 228.5 229.5 210.0 328.6 355.7 361.4 

Tidal channel 2315.6 2844.9 2402.9 2307.5 2267.6 2253.6 

Intertidal mud 1048.8 872.8 1052.6 955.3 925.5 930.6 

Intertidal sand 503.2 55.1 202.1 146.4 132.6 141.9 

TOTAL (ha) 9307.6 9307.6 9307.6 9307.6 9307.6 9307.6 

 

 

 These results indicate that the Odiel saltmarshes experienced high anthropogenic 

pressure between 1956 and 1979 that caused a reduction in saltmarsh habitat due to land 

reclamation and the construction of the Juan Carlos I dike (and associated road). The land 

reclamation process was due to the development of large industrial salt factories from 

1960 in the central section of the studied area (Figure 3.7), which also explained the 

growth in coastal defences such sea walls and embankments. However, the main factor 

that has caused the hard infrastructures growth in this time interval is the construction of 

the Juan Carlos I dike. 

 

 

Figure 3.6 Percentage of surface area computed per class and year of the Odiel saltmarshes 
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Figure 3.7 Decadal changes of the Odiel Saltmarshes between 1956 and 2013

  

Decadal changes of the Odiel Saltmarshes between 1956 and 2013
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Decadal changes of the Odiel Saltmarshes between 1956 and 2013 
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Table 3.3 Percentage of change (PoC) per period analysed. This percentage represents the relative 

surface loss or gain experienced per class during each period. Negative values state percentage of 

surface loss and positive values percentage of surface gain in the final year respect the initial year 

 1956-1979 1979-1984 1984-2001 2001-2007 2007-2013 1956-2013 

Backshore -40.3 76.9 -22.0 -5.2 -5.2 -25.95 

Hard infrast. 104.1 54.1 39.0 0.5 -0.9 335.66 

Harbour 18.1 22.3 8.2 2.2 3.2 64.80 

Saltarshes -25.6 3.4 3.5 1.3 0.5 -18.93 

Reclaimed 

area 
119.4 -1.0 0.6 0.7 -0.8 118.28 

Sand dune 0.4 -8.5 56.5 8.3 1.6 58.09 

Tidal channel 23.6 -15.5 -4.0 -1.7 -0.6 -2.12 

Intert. mud -16.8 20.6 -9.2 -3.1 0.5 -11.27 

Intert. sand -89.0 266.5 -27.6 -9.3 7.0 -71.80 

 

 At the estuary mouth, the most notable geomorphological changes between 1956 

and 1979 are observed across the tidal flats (mud and sand), tidal channel and backshore. 

This part of the estuary is very dynamic owing to its exposure to strong tidal currents and 

high energy swell, in addition to receiving large volumes of sediment from further along 

the coastline through longshore drift. The composition of the estuary mouth in 1956 is 

completely different to the one observed in 1979 (Figure 3.8). In 1956, a large amount of 

sediment occupies the nearshore and mouth forming sand bars, spits and extensive sandy 

tidal flats. Multiple tidal channels cut through the mouth sand bars, with morphologies 

comparable to ebb-tidal deltas (Fitzgerald, 1984). By 1979, these sediments amalgamated 

with one long sand spit growing north toward Saltes Island, between the Punta Umbria Ria 

(west) and Huelva Ria (east) and favouring the saltmarsh formation in the sheltered area 

(1979 map; Figure 3.11). 

 During 1979 and 1984 time period all the classes increased their surface except the 

reclaimed area, sand dune and tidal channel. The reclaimed area decreased by c. 20 Ha, 

related to the cease and abandonment of some traditional salt flats (e.g. some plots in 

Salinas de Astur). Natural tidal flooding returned to these areas resulted in some initial 

colonisation by saltmarsh vegetation. This recovery is shown in the PoC for the saltmarsh 

class: 3.4% (total surface increase in 1984 was ~106 ha). The area of sand dune shrank by 

8.5% (19.5 ha), explained by a growth in the backshore (~31 ha), while the tidal channel 

shrank in nearly 15% (~440 ha) which it is related to the increase in the tidal flat classes 

(sand and mud). Harbour and hard infrastructure also increased their surface area during 

this period: more than 20% (~0.5 ha) and 50% (~17.5 ha) respectively. The growth in the 

harbour class is due to the expansion of the industrial area and the creation of the New 

Port infrastructures at the west shore of the Huelva Ria. The great increase in the hard 
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infrastructure surface on the other hand is due to the continuation of the Juan Carlos I dike 

construction that in 1984 was roughly 9 km longer than in 1979. The construction of this 

coastal infrastructure has produced geomorphological changes in the estuary mouth, 

retaining and stabilising sandy sediments, and creating sheltered areas that have favoured 

saltmarsh creation (Figure 3.9). 

 During the next time period (1984-2001), the backshore, tidal channel, intertidal 

mud and intertidal sand reduced their surface area by 21.9, 3.9, 9.2 and 27.6 % 

respectively (Table 3.3). These changes are relate to the net increase in sand dune area by 

more than 50% (~118 ha), which mainly occurred within the developing spits at the 

estuary mouth. The combination of spit development and extension of the Juan Carlos I 

dike promoted stabilisation and vegetation colonisation across much of the intervening 

tidal flat, leading to conversion into sand dune (Figure 3.10). Likewise, saltmarsh surface 

area within the estuary mouth increased (~113 ha) in this period, mostly a product of 

vegetation colonisation and hence loss of mud flat (by ~86 ha). The hard infrastructure 

also increased in this time interval (~19.5 ha) through further extension of the Juan Carlos 

I dike, which is roughly 3.5 km longer in 2001 than in 1984, and the construction of a new 

dike at the Punta Umbria Ria mouth (Figure 3.10). 
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Figure 3.8 Geomorphological changes at the Tinto-Odiel estuary mouth between 1956 and 1979. It 

should be noted that some sandy bars approaching the Punta Umbria Ria mouth in 1956 are out of 

the study area 
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Figure 3.9 Geomorphological changes at the Tinto-Odiel estuary mouth between 1979 and 1984. 

The Juan Carlos I dike construction created a barrier between both Ria mouth (Punta Umbria and 

Huelva) favoured sandy sediment retention and sheltered environments 
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Figure 3.10 Geomorphological changes at the Tinto-Odiel estuary mouth between 1984 and 2001 
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 Between 2001 and 2007, the changes are less pronounced and the percentages of 

change (PoC) values are lower as it shown in Table 3.3, which in part reflects the shorter 

time frame covered between these surveys. The backshore and intertidal sand areas 

reduced by 2.9 and 13.7 ha respectively, while the sand dune area increased in 27.1 ha. The 

total saltmarsh surface area also grew during this period: 43.8 Ha, reducing the total 

surface of intertidal mud by 3 % approximately (~29.8 ha). The geomorphological 

composition of the estuary mouth in 2007 remains similar to 2001 (2001 map; Figure 

3.10). A similar story is evident from the final time interval (2007-2013), with PoC <10% 

for all the classes. The most significant changes in this time period are related to increases 

in sand dune (5.6 ha), mud (~5 ha) and sand (~9 ha) intertidal, and saltmarsh areas (~15 

ha). Much of this change reflects stabilisation and sedimentation, particularly enhanced by 

vegetation growth of habitats created within the complex of developing spits within the 

estuary mouth. The hard infrastructure surface area is reduced by 0.5 Ha, which it is 

related to the removal of some sea wall sections and small dikes. 

 Estuary evolution over recent decades has been greatly affected, directly and 

indirectly, by the construction of the Juan Carlos I dike. This hard infrastructure divided 

the Calatilla, Bacuta and Saltes islands in two sections, causing division of the saltmarsh 

habitat and tidal channels. Figure 3.14 illustrates how three tidal channels located in the 

Saltes Island were impacted by dike construction, particularly in terms of introducing a 

new topographic divide to the east of the pre-existing natural drainage divide. The 

channels and creeks located at the eastern part of the natural drainage divide have been 

greatly modified as it shown in 1979 map. In 1979, the creek sections located to the west 

of the dike, but to the east of the natural drainage divide, were not able to drain toward the 

main channel, allowing standing water to accumulate (these creeks were no longer 

receiving regular tidal incursion by 1979). Creeks to the east of the dike maintained tidal 

connectivity, but likely experienced some changes due to the decrease in creek length 

imposed by the barrier. 

 The evolution from 1979 to 2013 of these fragmented channels (1, 2 and 3) is shown 

in Figure 3.14. Between 1984 and 2001, the fragmented channels on the west side of the 

dike were artificially connected to some of the pre-existing channels that drained to the 

west of the natural drainage divide. Some of the management work on this site during the 

1980s and 1990s was focussed on reconnecting these channels to the tidal influence again 

(Natural Park Office, pers. comm.). Although these interventions have greatly improved 

the drainage and tidal connectivity across the eastern portions of the saltmarsh, channels 

2 and 3 still do not fully drain to the west, and they retain water closer to the dike, thereby 

effectively acting as deep salt pans. 



 

Figure 3.11 Habitat and tidal channel fragmentation of the Saltes Island caused by the Juan Carlos I 

dike construction (shown as red)

area. As it shown in the 1979 map, two tidal c

preventing drainage through the

 

Habitat and tidal channel fragmentation of the Saltes Island caused by the Juan Carlos I 

(shown as red). The black dash line represents the watershed boundary in this 

area. As it shown in the 1979 map, two tidal channel sections have been isolated, and the dike is 

ng drainage through the natural watershed drainage 
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Habitat and tidal channel fragmentation of the Saltes Island caused by the Juan Carlos I 

. The black dash line represents the watershed boundary in this 

hannel sections have been isolated, and the dike is 
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3.3. Saltmarsh patch analysis at landscape scale 

 The results of the patch analysis are shown in Table 3.4 and Figure 3.12. Between 

1956 and 1979 the Odiel saltmarsh patch area increased from 7.06 ha to 15.86 ha. The 

growth in small saltmarsh fragments is mainly due to reclamation processes carried out 

during this period (~25% of the saltmarsh surface in 1956 was converted into industrial 

salt factories by 1979). At this time many sea walls were built to control the flooding 

leaving some saltmarshes patches along the outer perimeter sea walls. The increased 

patchiness in 1979 coincides with a reduction of the core surface area. For example, large 

and medium core areas lost 1013.31 and 177.62 ha respectively. Edge areas decreased by 

c. 120 ha in 1979, mainly due to the reclamations. 

 By 2013, the patch surface area increased by a further 4 ha. This growth is related to 

an increase in saltmarsh division in some zones, but also by new habitat creation (of small 

fragmented areas) in other zones (mainly at the river mouth). The core surface area 

increased reflecting efforts taken by the Natural Park managers over the last decade 

(Natural Park pers. comm.) to reconnect divided zones and the promote new saltmarsh 

growth. As expected, the edge surface area has also increased due to new saltmarsh 

creation. 

 

Table 3.4 Variation of saltmarsh patch, edge and core surface area (ha) per year (1956, 1979 and 

2013) 

1956 1979 2013 

Patch 19.60 44.07 48.78 

Edge 1930.03 1810.93 2054.30 

Small core (<100 ha) 277.41 270.91 306.74 

Medium core (100-200 ha) 1820.25 806.94 955.59 

Large core (>200 ha) 493.69 316.07 317.24 

 

  



 

 
Figure 3.12 Patch type present in the Odiel saltmarshes in 1956, 1979 and 2013

 

Patch type present in the Odiel saltmarshes in 1956, 1979 and 2013
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Patch type present in the Odiel saltmarshes in 1956, 1979 and 2013 
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3.4. Decadal shoreline change: horizontal erosion and sedimentation rates 

The most striking result in the analysis of saltmarsh shoreline change is the significant 

difference in behaviour between the northern and southern marshes over recent decades 

(1956-2013). The Odiel saltmarshes in the mid/lower estuary have mostly retreated 

whereas those in the upper estuary have mostly advanced (Figure 3.13). Within the upper 

estuary, the greatest growth is experienced on the east shore of the Retamal creek, where 

the horizontal growth rate is > 2.5 my-1. Saltmarsh shorelines associated with the islands 

within the mid/lower estuary show recession over the same time frame: Enmedio Island 

for example has eroded at a rate of 0.5-2.5 my-1. Although the results using EPR (map A, 

Figure 3.13) and LRR (map B, Figure 3.13) statistics show similar tendencies, some 

differences are evident. These are particularly associated with stretches experiencing 

smaller rates of change where calculation of the EPR (which only uses the initial and final 

years) masks some inter-decadal variability that is picked up in the LRR statistic. 

 



Figure 3.13 Erosion and sedimentation rates

2013 (displayed over 1987 spot image). The variable the end point rate (EPR) is represented in 

map A, and linear regression (LRR) in map B; w

blue dots sedimentation rates (horizontal growth) and yellow dots no shoreline changes

 

Erosion and sedimentation rates (in my-1) in the Odiel saltmarshes between 1956 and 

2013 (displayed over 1987 spot image). The variable the end point rate (EPR) is represented in 

map A, and linear regression (LRR) in map B; where red dots mean erosion rates (retreatment), 

blue dots sedimentation rates (horizontal growth) and yellow dots no shoreline changes
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in the Odiel saltmarshes between 1956 and 

2013 (displayed over 1987 spot image). The variable the end point rate (EPR) is represented in 

here red dots mean erosion rates (retreatment), 

blue dots sedimentation rates (horizontal growth) and yellow dots no shoreline changes 



 Further testing was carried out to determine if the rate statistics appropriately 

represented shoreline evolution. Tran

and the relative shoreline position (with respect to earliest year: 1956) was calculated and 

plotted. EPR and LRR statistics do not comprise sufficient information to explain the 

behaviour of different sectors of the saltmarshes over the time, although they were 

suitable to quantify the erosion and sedimentation rates during the total studied time 

period. An example time series of relative change in shoreline position is shown in 

3.14. The EPR and LRR statistics assume a linear behaviour (EPR=0.04 myr

LRR=0.05 myr-1) whereas the real shoreline tendency of this transect is more complicated: 

advancing during the first 20 years, maintaining the same position for the next 18 years 

and retreating during the last 13 years.

 

Figure 3.14 Shoreline position relative to the

transect 348 

 

 In order to characterise saltmarsh shoreline behaviour, a cluster analysis was 

performed using the relative shoreline distance at each time 

(N=782). The clustering approach used was the average method (in ‘R’ v.2.15.1), which 

gave the best cophenetic correlation (CC = 0.98) 

example ward method CC = 0.37). Results from the cluster analysis divided the dataset 

into 7 groups representing types of shoreline tendency

shoreline tendency at each transect represented by each group is shown in 

and the characterisation of the saltmarsh shoreline by group is shown in 

of the transects (N=740) were classified as group 1, and only 4

highlighting that most of the saltmarsh margins are behaving similarly.
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Further testing was carried out to determine if the rate statistics appropriately 

represented shoreline evolution. Transects showing different behaviours were selected 

and the relative shoreline position (with respect to earliest year: 1956) was calculated and 

plotted. EPR and LRR statistics do not comprise sufficient information to explain the 

rs of the saltmarshes over the time, although they were 

suitable to quantify the erosion and sedimentation rates during the total studied time 

period. An example time series of relative change in shoreline position is shown in 

. The EPR and LRR statistics assume a linear behaviour (EPR=0.04 myr

the real shoreline tendency of this transect is more complicated: 

ancing during the first 20 years, maintaining the same position for the next 18 years 

and retreating during the last 13 years. 

relative to the 1956 location (in metres) from 1956 and 2013 at 

In order to characterise saltmarsh shoreline behaviour, a cluster analysis was 

performed using the relative shoreline distance at each time interval for each transect 

pproach used was the average method (in ‘R’ v.2.15.1), which 

correlation (CC = 0.98) when compared with other methods (for 

example ward method CC = 0.37). Results from the cluster analysis divided the dataset 

types of shoreline tendency (between 1956 and 2013

shoreline tendency at each transect represented by each group is shown in Figure 3.

the characterisation of the saltmarsh shoreline by group is shown in Figure 3.

of the transects (N=740) were classified as group 1, and only 40 transects as other groups, 

that most of the saltmarsh margins are behaving similarly. 

1970 1980 1990 2000 2010 2020
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Further testing was carried out to determine if the rate statistics appropriately 

sects showing different behaviours were selected 

and the relative shoreline position (with respect to earliest year: 1956) was calculated and 

plotted. EPR and LRR statistics do not comprise sufficient information to explain the 

rs of the saltmarshes over the time, although they were 

suitable to quantify the erosion and sedimentation rates during the total studied time 

period. An example time series of relative change in shoreline position is shown in Figure 

. The EPR and LRR statistics assume a linear behaviour (EPR=0.04 myr-1 and 

the real shoreline tendency of this transect is more complicated: 

ancing during the first 20 years, maintaining the same position for the next 18 years 

 

1956 location (in metres) from 1956 and 2013 at 

In order to characterise saltmarsh shoreline behaviour, a cluster analysis was 

for each transect 

pproach used was the average method (in ‘R’ v.2.15.1), which 

with other methods (for 

example ward method CC = 0.37). Results from the cluster analysis divided the dataset 

between 1956 and 2013). The 

Figure 3.15 

Figure 3.16. Most 

0 transects as other groups, 

2020
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 Shorelines classified as group 1 are characterised by an initial growth or retreat 

followed by a general stabilisation, with a small net change in position. Shorelines 

distributed in the north and northwest (e.g. Calatilla Island and San Andres creek) showed 

very small changes over time. Rates of change increase slightly between 1979 and 1984, 

but the last 30 years is characterised by a stabilisation of the shoreline. The rates of 

change within this area are mostly ±0.1 my-1. In the west (e.g. Salinas de Astur and Liebre 

Island), shorelines are characterised by an initial growth followed by retreat and then 

stabilisation. The growth at the beginning lasted 20 - 30 years, but after 1984 all transects 

experienced retreat until 2001. Since then, the shorelines seem to be relatively stable with 

only minor variations (positive or negative) of ±0.1 my-1. Shorelines within the mid 

estuary (mainly Enmedio Island and Liebre Island) have a general recessional tendency 

with some evidence of stabilisation over the last decade. During the first two decades 

some of the transects showed a small advance to 1979 followed by retreat. The shoreline 

retreat in these areas ranged between 1 and 30 m approximately, where large areas of the 

marsh environment have been converted in industrial salt production. The remaining 

saltmarsh here seems to have been adjusting to the new conditions. 

 Group 2 and 6 represent shorelines with a general recessional tendency, where 

erosion rates are slower in the first decades followed by an increase between 1984 and 

2001 and a more recent period of stabilisation when the changes are less pronounced. The 

main differences between these two groups is that, during the last 6 years, the first group 

maintains a decreasing tendency and the second one shifts to an increasing tendency. The 

recession in group 6 reaches up to 110 m, but far less in group 2 (< 50 m) for most of the 

transects. This group is distributed across Punta Umbria ria. Shorelines in group 3 and 5 

showed a tendency for shoreline growth followed by stabilisation during the last couple of 

decades. However, during the first two decades some transects in group 3 show retreat, 

but this ceases after 1979 following the growth tendency of the other transects. The main 

difference between these two groups is that the final stabilisation started in 1984 in group 

5, and in 2001 in group 3. These groups are exclusively found in the north estuary. 

 Group 4 and 7 presented a growth tendency, but with some differences. Shorelines 

in group 7 are characterised by significant advance (up to ~ 200 m) during the first 

decades followed by a decrease in rate of change, and then stabilisation in latter decades. 

Unlike group 7, shorelines in Group 4 maintained the same position between 1956 and 

1984, which was then followed by rapid advance (up to ~ 80 m) during the 1980s and 

1990s. During the last 12 years, shorelines in group 4 were stabile and no major changes 

were observed. These groups are found only in one sector of the Odiel saltmarshes: along 

the east shore of the Retamal and Burrillo creek. 

 



 

Figure 3.15 Relative shoreline distance (in metres) 

saltmarshes. Transects were grouped based on cluster analysis (

and each group represents some similarities in

N indicates the number of transects in 

 

  

shoreline distance (in metres) relative to 1956 for each transect in the Odiel 

grouped based on cluster analysis (Average Hierarchical Clustering)

some similarities in shoreline behaviour over time (1956-2013)

s in each group 
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1956 for each transect in the Odiel 

Hierarchical Clustering), 

2013), where 
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Figure 3.16 Characterisation of the shoreline changes in the Odiel saltmarshes based on cluster 

analysis. The legend indicates the group of each shoreline sector; where red/orange colours state a 

retreatment tendency and blue/green colours progradation. 
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3.5. Forcing of coastal change 

3.5.1. Wind speed and wave climate 

The climate of the Huelva coast is mild, characterised by low-mid energy wind and swell 

(Figure 3.17). The wind regime at the Tinto-Odiel estuary mouth is dominated by 

southwest to north-westerlies, and the dominant swell comes from the south-west (Figure 

3.17, A). Mean wind speed ~ 17 km south from estuary mouth is 4.6 ms-1 (for the period 

1958 and 2015). Wind at gale force speeds and above (>34 knots (~17.5 ms-1)) represents 

~0.02% of the wind speed record and higher wind speeds are generally from the south-

west. Monthly variation in wind and wave climate over the last 50 years comprises a 

seasonal pattern whereby winter months experience higher wind speeds and larger waves 

in comparison to summer months (Figure 3.18). 

 

A B 

 
 

Figure 3.17 Wind (A) and wave (B) roses (1958-2015) for the Huelva coast (6.92° W, 37.08° N; 

SIMAR model point 5031022 in red). [source: http://www.puertos.es/en-us/oceanografia/Pages 

/portus.aspx] 

 

 



Figure 3.18 Review of time series (1958 

W, 37.08° N; SIMAR model point 5031022). From top showing monthly mean and max wind speeds, 

significant wave height and mean period. [source: 

us/oceanografia/Pages/portus.aspx

 

 The time series data imply some change in wind and wave climate in the late 1990s 

and 2000s, but this is more likely a product of changes in the modelling approach used to 

derive this data (Puertos del Estado

SIMAR-44 numerical modelling product (1958

present), the latter of which incorporated a significant change in model resolution

(Puertos del Estado, 2015)

series structure in Figure 3.21

instrument (observed) data for this region is limited spatially and temporally. For 

Review of time series (1958 – 2015) wind and wave climate for the Huelva coast (

; SIMAR model point 5031022). From top showing monthly mean and max wind speeds, 

and mean period. [source: http://www.puertos.es/en

us/oceanografia/Pages/portus.aspx] 

The time series data imply some change in wind and wave climate in the late 1990s 

and 2000s, but this is more likely a product of changes in the modelling approach used to 

(Puertos del Estado, 2015). These time series products are fused from 

44 numerical modelling product (1958-1999) and WANA prediction data (2000 to 

present), the latter of which incorporated a significant change in model resolution

2015). These timings are clearly visible as distinct changes in time

series structure in Figure 3.21. Reliance on simulated climate data is

instrument (observed) data for this region is limited spatially and temporally. For 
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2015) wind and wave climate for the Huelva coast (6.92° 

; SIMAR model point 5031022). From top showing monthly mean and max wind speeds, 

http://www.puertos.es/en-

The time series data imply some change in wind and wave climate in the late 1990s 

and 2000s, but this is more likely a product of changes in the modelling approach used to 

. These time series products are fused from 

1999) and WANA prediction data (2000 to 

present), the latter of which incorporated a significant change in model resolution in 2006 

. These timings are clearly visible as distinct changes in time 

. Reliance on simulated climate data is not ideal, but 

instrument (observed) data for this region is limited spatially and temporally. For 



example, data recorded by the Gulf of Cadiz weather buoy only extends back to 1996 

(Figure 3.19) and data has only been recorded at the Huelva weather station (

since 1984. These shorter-term datasets reinforce the seasonal nature of the wind and 

wave climate across this region, but helpfully clarify that there is limited evidence for a 

change in these climate metrics around 1999 and 2006. Some longer

evident in the Gulf of Cadiz data that implies a lull in wind and wave energy from 2003 to 

2008, but this is partly due to data gaps during this time period that might have 

preferentially removed higher wind speed/wave height records.

 

Figure 3.19 Review of time series (1996 

buoy (6.96° W, 36.48° N). From top showing monthly mean and max wind speeds

wave height (m) and mean perio

us/oceanografia/Pages/portus.aspx] 

example, data recorded by the Gulf of Cadiz weather buoy only extends back to 1996 

) and data has only been recorded at the Huelva weather station (Figure 3.

rm datasets reinforce the seasonal nature of the wind and 

wave climate across this region, but helpfully clarify that there is limited evidence for a 

change in these climate metrics around 1999 and 2006. Some longer-term patterns are 

Cadiz data that implies a lull in wind and wave energy from 2003 to 

2008, but this is partly due to data gaps during this time period that might have 

preferentially removed higher wind speed/wave height records. 

Review of time series (1996 – 2015) wind and wave data for the Gulf of Cadiz wave 

). From top showing monthly mean and max wind speeds (ms-1)

and mean period (s). [source: http://www.puertos.es/en
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example, data recorded by the Gulf of Cadiz weather buoy only extends back to 1996 

Figure 3.20) 

rm datasets reinforce the seasonal nature of the wind and 

wave climate across this region, but helpfully clarify that there is limited evidence for a 

term patterns are 

Cadiz data that implies a lull in wind and wave energy from 2003 to 

2008, but this is partly due to data gaps during this time period that might have 

 

2015) wind and wave data for the Gulf of Cadiz wave 

), significant 

http://www.puertos.es/en-
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Figure 3.20 Review of time series (1984 – 2015) wind data recorded at the Huelva weather station 

(6.92° W, 37.28° N; WMO station code 08383). From top showing monthly median and extreme 

wind speeds, annual wind direction frequency and annual median and extreme wind speed from 

each wind direction quadrant. [data source: http://www.badc.ac.uk] 
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The Huelva weather station wind record is more complete, and suggests some change in 

the degree of seasonality through time. The records imply that higher energy conditions 

characterised the mid-late 1980s and that there was a slight decrease in median wind 

speed during the late 1990s and early 2000s. Overall however, the evidence for distinct 

shifts in wind energy through time is limited, but the frequency distribution of wind 

direction suggests that the last 10 years has experienced an increase in wind from the 

southeast, with relative decreases in the frequency of wind from the southwest and 

northeast. In 2005, there was a peak in wind from the northeast with an associated drop in 

the frequency of wind from the northwest. After this time, northeasterlies returned to 

their long-term average (~35%), but southeasterlies increased from a long-term average 

of ~10% to 18%. The shifts in wind direction were not associated with any specific change 

in median speed, but there is some indication in the data that extreme wind speeds from a 

northeasterly direction have increased. 

 

3.5.2 Rainfall and river discharge 

Rainfall in Huelva is very seasonal and the annual precipitation may occur in a few days a 

year (torrential rain). Rainfall records from the Huelva weather station were analysed 

monthly and annually within the studied time period (Figure 3.21) in order to investigate 

if there was any relevant change. A monthly standard deviation greater than the mean 

suggests a great variability in the monthly rainfall for all the time periods analysed. Annual 

rainfall also varies between years, presenting differences in the annual mean with 

standard deviation greater than 100 mm for all time step periods, but again any relevant 

change was observed between periods. 

 For example, from August 1996 to July 1997, 67 % of the annual rainfall occurred in 

21 days of December and January (Castillo et al., 1999). Periods of torrential rain coincide 

with increases in the flow of the Odiel River (Castillo et al., 2000). Rainfall also varies 

greatly between years, presenting great differences in annual sums (Figure 3.21). In 1996 

the total precipitation in the Odiel saltmarshes was nearly 1100 mm, and less than 300 

mm in 1966 for instance. 
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Figure 3.21 Monthly and annual rainfall (mm) from 1956 to 2013 in Huelva, where SD is the 

standard deviation [data source: 

http://catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d] 

 

 

 There are few gauge stations in the Odiel river basin. However, these stations lack 

complete discharge datasets due to the shortage of new gauge stations or the 

malfunctioning of old ones (Gibraleon and Calaña stations). One of the oldest stations is 

the Gibraleon gauge station located at the upper Odiel estuary (Figure 3.22, B). The 

historical discharge data for this station are summarised in Figure 3.22 (1969-1994) and 

Figure 3.23 (1980-2006). Figure 3.22 and Figure 3.23 showed the great inter- and intra-

annual discharge variability of the Odiel River. The annual flux for some years was greater 

than 500 hm3, while for other years was less than 50 hm3. For example, flux values smaller 

than 200 Hm3 were recorded in 1973-1975 and 1980-1982, and values between 500 and 

800 hm3 in 1969, 1970, and 1977-1979. The maximum value (1800 hm3) recorded during 

the period 1969-2006 was reached in 1989. This peak value suggests that the greater 

erosion rate estimated for the period 1984-2000 could have been influenced by greater 

river discharge during this period. 
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Figure 3.22 Discharge data for the Odiel 

1994 showing: (A) annual discharge; (B) location of the gau

monthly discharge; and (D) frequency [Source: 

 

Figure 3.23 Annual discharge of the Odiel River

in red between 1980 and 2006, stating the constr

[Source: Olias Alvarez et al., 2010] 

Discharge data for the Odiel River at the Gibraleon gauge station between 1969 and 

annual discharge; (B) location of the gauge stations and Odiel sub

monthly discharge; and (D) frequency [Source: Lopez et al., 2006] 

 

of the Odiel River in blue (at Gibraleón gauge station) and Odiel River 

between 1980 and 2006, stating the construction of three water reservoir (black lines)
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between 1969 and 

ge stations and Odiel sub-basins; (C) 

) and Odiel River 

(black lines) 



117 

 However, discharge data recorded at Gibraleon station are not complete due to the 

malfunctioning of the gauge during  flood events (usually in autumn and winter) (Galván 

et al. 2016), leaving a gap between 1997 and 2002. Data for these years are not available 

and thus the relation between discharge and horizontal erosion is difficult to assess for the 

whole time period. Although rainfall data are available at the estuary, this variable usually 

does not well explain discharge data (Galván et al,. 2016). In the Odiel river basin rainfall 

varies greatly from North (upper River basin) to South (low River basin and estuary). For 

example, the average rainfall is ~500 mm y-1 near the coast, and ~1000 mm y-1 at the 

upper river basin (Olias Alvarez et al., 2010). Rainfall is not considered a good indicator of 

discharge values (Galván et al,. 2016) for covering the gap between 1997 and 2000. Galván 

et al. (2016) approached this issue by modelling daily water balance based on soil type, 

slope, land-use and weather data. The measured and simulated data at the Gibraleon 

station is shown in Figure 3.24. Overall, the period 1982-2000 seems to reach higher 

values in discharge than for the period 2001-2010. 

 

 

Figure 3.24 Monthly discharges (measured and simulated) of the Odiel River at the Gibraleon gauge 

station between 1982 and 2010 
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3.5.3. Local mean sea-level change 

The only tide gauge located near the Odiel saltmarshes with more than 10 year data is the 

“Huelva tide gauge”, located at the estuary mouth in the Mazagon marina (location shown 

in Figure 3.25). This is one of the tide gauges that the PSMSL uses to estimate mean sea 

level. The monthly data downloaded from the PSMSL data set is display in Figure 3.25. The 

data showed that sea level in the Odiel saltmarshes is rising 3.33 mmy-1. However, short 

time series could be influenced by other factors (e.g. tide cycles). Thus, in order to 

understand the evolution of the local mean sea level in the Odiel saltmarshes several mean 

sea level data set from different tidal gauges in the Gulf of Cadiz have also been explored. 
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Figure 3.25 Monthly mean sea level (mmRLR) from 1997 to 2013 at the Huelva tide gauge (location 

shown as red dot) [source: PSMSL] 

 

 The evolution of mean sea-level at different stations in the Gulf of Cadiz is displayed 

in Figure 3.25 and their location in Figure 3.26. All the stations showed an increasing 

tendency in mean sea-level. However, the rates varied depending on location, it should be 

noted that the time series of different locations do not cover the same time period and 

some stations presented gaps. Lagos and Cadiz II station covered the oldest time dataset 

but they presented long gaps. For example, in the Lagos stations the data collection ceased 

in 2000 presenting gaps in between and at the end of the series. Cadiz III presented data 

from 1960 without important gaps. The rate of sea-level rise in this station was of 3.81 

mmy-1 showing similar rates to the Huelva station. 
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Figure 3.26 Monthly mean sea level (mmRLR) at different stations in the Gulf of Cadiz (Bonanza, 

Huelva, Cadiz (I and II) and Lagos (Portugal) tide gauges) [Source: PSMSL] 

 



Figure 3.27 Tidal gauge location

specifying those found in the Gulf of Cadiz (Bonanza, Huelva, Cadiz (I and II) and Lagos (Portugal) 

tide gauges) [Source: Fraile 

 

3.6. Summary and discussion

The spatial distribution and tendency of change in 

decades is shown in Figure 3.

occurred between 1956 and 1979, when the Odiel saltmarshes suffered a great 

transformation (Figure 3.

development of the city of Huelva and adjacent towns

industrial salt production

saltmarsh habitat (Figure 3.

the green policies in Spain during late 

by several nature conservation designations (Biosphere reserve, Paraje Natural, special 

protection area and RAMSAR place). 

earlier decades and initiation of new growth in 

increased the core surface area shown in the patch analysis (

and 1990s, the system re

creation at the lower estuary (increasing the 

increase in the erosion rates at mid estuary. In addition, during this time conservation 

measures began to be applied over the remain

habitat loss and favouring habitat recovery 

 The human activities identified in the Odiel saltmarshes (e.g. industrial development 

and hard structure construction) have also been the cause of 

saltmarshes worldwide such as in the USA 

physical habitat modification or habitat loss result 

structures such dikes, piers, levees or water control embankments 

Tidal gauge location at different stations in the South of the Iberian Peninsula, 

specifying those found in the Gulf of Cadiz (Bonanza, Huelva, Cadiz (I and II) and Lagos (Portugal) 

Fraile (2011)] 

and discussion 

The spatial distribution and tendency of change in the Odiel saltmarshes during 

Figure 3.28 and Figure 3.29 respectively. The m

1956 and 1979, when the Odiel saltmarshes suffered a great 

Figure 3.28). This transformation was the consequence of industrial 

development of the city of Huelva and adjacent towns, and conversion of marsh areas for 

industrial salt production during the 1960s and 1970s, resulting in 

Figure 3.29), and an increase in saltmarsh patches

the green policies in Spain during late 1970s and early 1980s, the study area was covered 

nservation designations (Biosphere reserve, Paraje Natural, special 

protection area and RAMSAR place). This led to a cessation of the destructive 

and initiation of new growth in saltmarsh area (Figure 3.

increased the core surface area shown in the patch analysis (Table 3.

the system re-adjusted to these new conditions, which has induced new habitat 

creation at the lower estuary (increasing the saltmarsh surface) and possibly 

erosion rates at mid estuary. In addition, during this time conservation 

measures began to be applied over the remaining saltmarsh habitats, reducing greatly the 

habitat loss and favouring habitat recovery in the most recent decades.

The human activities identified in the Odiel saltmarshes (e.g. industrial development 

and hard structure construction) have also been the cause of salt

saltmarshes worldwide such as in the USA (Kennish, 2001). Direct impacts 

physical habitat modification or habitat loss result from the construction of hard 

s such dikes, piers, levees or water control embankments 
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th of the Iberian Peninsula, 

specifying those found in the Gulf of Cadiz (Bonanza, Huelva, Cadiz (I and II) and Lagos (Portugal) 

Odiel saltmarshes during recent 

. The most dramatic changes 

1956 and 1979, when the Odiel saltmarshes suffered a great 

consequence of industrial 

, and conversion of marsh areas for 

, resulting in large-scale loss of 

, and an increase in saltmarsh patches. With the growth of 

, the study area was covered 

nservation designations (Biosphere reserve, Paraje Natural, special 

This led to a cessation of the destructive processes of 

Figure 3.29), which also 

Table 3.4). During the 1980s 

new conditions, which has induced new habitat 

marsh surface) and possibly some 

erosion rates at mid estuary. In addition, during this time conservation 

saltmarsh habitats, reducing greatly the 

decades. 

The human activities identified in the Odiel saltmarshes (e.g. industrial development 

saltmarsh loss in other 

. Direct impacts such as 

the construction of hard 

s such dikes, piers, levees or water control embankments (Turner & Rao, 1990; 
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White & Morton, 1997; Bryant & Chabreck, 1998). However, long-term indirect impacts 

are also associated with these anthropogenic perturbations. For example, Kennish (2001) 

states that the construction of hard structures (e.g. water control embankments and dikes) 

as well as canals and their associated damaged banks modifies the saltmarsh hydrology, 

interfering often with the natural tidal flooding and drainage. Consequently, the water 

flow over the saltmarsh surface is also altered, reducing sediment supply and connectivity, 

thereby affecting vertical accretion and vegetation colonisation. 

 In the Odiel saltmarsh, water control embankments for instance have been 

extensively built during the latter half of the 20th century for large-scale modern industrial 

salt production installations. These structures in addition with the Juan Carlos I dike 

construction have modified the hydrology of the system, altering the tidal flooding and 

drainage in some creeks and across the marsh surface. These new conditions have 

possibly induced erosion processes around the Enmedio Island as is highlighted in Figure 

3.30. For example, between 1956 and 1979, the Enmedio Island shoreline showed small 

changes and growth in some sectors; however, from 1979 this tendency changed showing 

saltmarsh retreat and rates of retreat reached a maximum between 1984 and 2001. 
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Figure 3.28 Changes experienced the Odiel saltmarshes per time interval. Grey represents areas 

that did not change within the time interval; red identifies areas that changed cover class. 

 



 

Figure 3.29 Variation and tendency followed by e

time. The Y axis represents the surface area (ha)

  

Variation and tendency followed by each cover class in the Odiel saltmarshes over the 

surface area (ha) occupied by each class and the X axis the year.
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ach cover class in the Odiel saltmarshes over the 

the year. 
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Figure 3.30. Horizontal Erosion and sedimentation rates (End Point Rate in my-1) at different time 

periods in the Odiel saltmarshes 
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 Castillo et al. (1999) reported severe horizontal erosion along the Enmedio Island, 

sampling 25 sites from July 1996 to July 1997 using 84 iron poles (1.7 m height) as 

markers. On average, they identified a saltmarsh cliff retreat of -29 cm yr-1 stating 3000 m2 

of saltmarsh loss that had led to 1850 m3 of sediment remobilisation and consequent 

deposition on the channel bed. They also suggested a possible correlation between rainfall 

and erosion rates through the year indicating that although the mid-estuary 

hydrodynamics was mainly dominated by tidal forces, the seasonal tendencies were 

modulated by fluvial discharges. Similar findings relating erosion/sedimentation 

processes and climatic factors were reported by other authors (e.g. Barros, 1996; Cahoon 

et al., 1996) in Mediterranean climate saltmarshes. But further work on erosion patterns 

(between 1956 and 1996) led Castillo et al. (2000) to dismiss the idea of a correlation 

between erosion and rainfall due to lack of ongoing evidence. In this work, the erosion 

patterns are analysed in a longer period (1956-2013), showing some evidence that the 

greater erosion rates at the mid estuary between 1984 and 2001 were probably 

exacerbated by greater river discharges during this time period. However, it should be 

noted that this relationship was not clear when rainfall data were analysed. 

 Although gradual saltmarsh cliff erosion is a natural process, particularly along 

channel margins, caused by tidal flow and ebb and fluvial currents (Chapman, 1974), the 

results presented here showed that the anthropogenic modifications of the Odiel 

saltmarshes also played an important role in the erosion processes during the 1980s and 

1990s along the Enmedio Island. Here, severe erosion processes were induced due to 

saltmarsh retreat that was initiated by reclamation processes and dike construction 

(Figure 3.30). Between 1984 and 2013, erosion rates were possibly reduced due to system 

adjustment to the new conditions and some conservation measurements carried out by 

the Natural Park office (e.g. wooden revetments along the Enmedio Island south shore) in 

combination with lower values of river discharge. 

 The constructions of the Juan Carlos I dike modified the maritime connection 

between Huelva and Punta Umbria Ria, increasing the boat traffic in two marsh creeks 

(Burro and Burrillo channels). Ojeda et al. (1995) describes that the Burro and Burrillo 

channels have different hydrodynamics within the estuary due to their role as the only 

navigable channels connecting the Huelva Ria and Punta Umbria Ria after the construction 

of the Juan Carlos I dike. Over the decadal scale considered here, post- dike construction 

erosion rates in the Burrillo channel were greater than in the rest of the channels around 

the Enmedio Island, and this could be related to an increase in maritime traffic. Castillo et 

al. (1999) also identified greater erosion rates along the Enmedio Island shore facing the 

Burrillo channel than along other shorelines of the island. They highlighted that the waves 

created by the passing boats are possibly increasing the erosion rates at this location 
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simply due to the increase in maritime traffic. Erosion processes induced by passing boats 

have also been indentified in other saltmarshes in the U.S.A. (Schwimmer, 2001; Houser, 

2010). 

 In the Tinto-Odiel estuary, the system response to anthropogenic and natural 

drivers has been observed in geomorphological and habitat changes, as well as in 

shoreline change described along the Odiel saltmarshes. Here, different system responses 

have been identified within the estuary that is expressed in a north-south spatial pattern. 

Thus, three zones have been identified within the estuary: upper, mid and low estuary. 

 In the upper estuary, although saltmarsh habitats were lost due to hard structures 

and harbour construction, the saltmarsh shows growth over recent decades (groups 3, 4, 5 

and 7 in the cluster analysis). This growth tendency is also related to the saltmarsh 

restoration projects carried out by the Huelva port office as compensation measurements 

to reduce the impacts of port and harbour construction. Shorelines included in groups 5 

and 7 showed behaviours that are directly related to these compensation measurements 

(e.g. plantation of Spartina maritima on mud flats (Castillo & Figueroa, 2009)). In the 

context of sea-level rise, the local mean sea-level in the Tinto-Odiel estuary has been rising 

at a rate of around 3.3 mmy-1 (between 1996 and 2013). However, the sedimentation rate 

estimated for this part of the estuary is 4.36 mmy-1 (VH5 in Figure 2.9) (Morales et al., 

2003). Thus, apart from the restoration actions taken in some areas, the saltmarsh growth 

shown in the results seems to be logical due to these conditions. Greater river flooding 

during the late 80s did not increased erosion in this part of the estuary, possibly due to the 

in this part of the estuary dominate sedimentation processes and the fluvial sediments 

(sand) are usually deposited here during winter/autumn. 

 In the mid estuary, human modifications have caused harmful effects over the 

saltmarsh, resulting in large scale saltmarsh retreat and loss over time. The recessional 

tendency is related to natural processes (e.g. tidal flow and ebb and fluvial currents) 

exacerbated by human impacts (e.g. hydrological changes and waves generated by passing 

boats) and possibly by sea-level rise. For example, the accretion rate for the marsh 

platform in the Enmedio Island has been estimated at 2.1 ±0.02 mmy-1 (San Miguel et al. 

2001). This value is smaller than the local mean sea-level rise rate (3.3 mmy-1). Thus, it is 

quite possible that sea-level rise is outpacing sedimentation at this site, which is another 

factor adding to the erosive tendency in this part of the estuary. As in other estuaries, the 

sedimentary dynamic here is primarily controlled by tidal regime. The tidal current 

velocities in relation to tide height and the number of periods of flooding and exposure are 

important factors controlling sedimentation processes across these intertidal habitats and 

estuarine channels (Swinkbanks and Murray, 1981). In this sense, the industrial salt 

production, which needs 65 tonnes of seawater to produce one tonne of sodium chloride 
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(Adam, 2002), may have altered sedimentation patterns in the area through modifications 

to the water regime and sediment supply. Overall, shorelines included in groups 1, 2 and 3 

seem to be responding to hydrodynamic changes caused by the saltmarsh reclamation, 

and shorelines in groups 5 and 6 to the effect of the passing boats in navigable channels. 

However, all the mentioned impacts in combination with the irregular annual fluvial 

discharge and rising rate in sea-level make difficult to identify and quantify the 

contribution of each phenomenon to these erosion process. 

 In the lower estuary, close to the mouth region, the sedimentary dynamics are 

controlled by a combination of tide and swell (Morales et al., 2003). The dominant waves 

come from the southwest, influencing a long-shore drift that transports sediment west to 

east, from the main source of sandy sediments - the Guadiana River at the border between 

Spain and Portugal, along the Gulf of Cadiz shoreline. This explains the formation and 

development of spits along river mouths within the region. The long-shore drift reaches 

up to 300,000 m3y-1 (Ojeda et al. 2011), and in combination with strong tidal currents and 

persistent swell, these natural conditions explain the dynamic the estuary mouth, where 

significant morphological changes have occurred over the last 50 years. However, the Juan 

Carlos I dike and the Punta Umbria dike construction greatly influenced the dynamics of 

this part the estuary. 

 The great accumulation of sediments at the estuary mouth retained by the Juan 

Carlos dike has also reduced the marine influence in this sector. These new conditions 

have induced new habitat creation such as saltmarshes, beaches and sand dunes during 

the last decades. In particular, creation of new saltmarsh has been favoured due to the 

conversion of previously high energy environments into low energy, back-barrier 

environments. Additionally, the Juan Carlos I dike has divided the tidal low-lying 

sediments at the south of the Saltes Island changing the geomorphology of this sector and 

creating two lagoons with different drainage conditions. The west part due to the great 

sediment retention has a slower drainage than to the east (Castellanos et al., 1999). 

Furthermore, sea-level rise at this sector may have influenced some of the processes 

related to sediment transport but its impact is difficult to assess due to change the 

configuration of the lower estuary resulting from dike construction. 

 Overall, based on the analysis of the climate data, it is not possible to identify any 

significant climatic shifts that fully explain the changes observed in the Tinto-Odiel 

estuary, suggesting that the role of sea-level plays an important role. However, the effect of 

the sea-level rise is also manifested in different ways in different parts of the estuarine 

system depending on their natural features and anthropogenic history. 
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4. Contemporary baseline assessment of the saltmarsh bio-geomorphology 

The aim of this chapter is to investigate the contemporary plant communities and 

vegetation structure across the Odiel saltmarshes, looking at relationships with some 

environmental factors (mainly ground elevation) and (short-term) sedimentation rates for 

understanding saltmarsh response to sea-level rise. The definition of saltmarsh habitat 

types based on vegetation surveys was crucial for mapping saltmarsh habitats later on 

(Chapter 5) using supervised image classification techniques. This map is used for 

improving LiDAR-derived DEM (in Chapter 6) and it is one of the input layers for running 

spatial landscape models such as SLAMM (Chapter 7). Short-term sedimentation rate is a 

key variable to understand the contemporary sediment availability within this 

saltmarshes, and the ability to grow vertically as the sea level rises. This information is 

mainly contextual and it is used to assess the current state of the Odiel saltmarshes. 

 

4.1. Introduction: environmental factors controlling saltmarshes 

Spatial patterns in saltmarsh ecology are not governed by a single feature such as tidal 

forcing or salinity, and multiple factors are required to explain them. Saltmarsh 

ecosystems are largely controlled by 10 major environmental factors: tides, salinity, soil, 

drainage, aeration, water table, rainfall, evaporation, temperature and biota (Chapman, 

1941). These environmental factors are interrelated, affecting saltmarsh functioning, 

processes and plant zonation (Figure 4.1). For example, subtle gradients in elevation can 

be associated with variations in other factors such as oxygen availability (Mitsch & 

Gosselink, 2000), soil moisture/soil water salinity (Adam, 1990; Gray & Brunce, 1972), soil 

redox potential (Armstrong & Beckett, 1985; Pezeshki. 2001), availability of nutrients 

(Levine et al., 1998), and concentrations of organic matter (Mudd et al., 2009; Morris & 

Haskin, 1990; Groenendijk, 1987), all of which contribute to the characteristic patterns of 

spatial and vertical zonation found in saltmarsh macrophytes (Crain et al., 2004; Bertness 

& Hacker, 2013). 



Figure 4.1 Interrelation of environmental factors affecting saltmarshes [
and Bertness, 2001] 

 

 Key to saltmarsh ecomorphological 

(inundation) period (Long & Mason

Frey & Basan, 1978). These impart significant controls on saltmarsh functions such as 

accretion, plant zonation and development of creek networks

(the hydroperiod) relate to the period of time that the marsh substrate is covered by 

seawater (number of floodings) 

saltmarsh accretion (Long & Mason

French, 1993), which in combination with shallow and deep subsidence control saltmarsh 

elevation. 

 Apart from the direct flooding effect that the rise and fall of the tide can cause over 

saltmarshes, the water level variation notably influences other factors such as aeration 

within the marsh soil, salinity of the soil solution and the soil texture 

Chapman, 1974). Salinity in saltmarshes can vary significantly due to rainfall, temperatur

evaporation, freshwater discharges and the proximity to the open sea. While the flux of 

salt varies with elevation, decreasing in higher positions due to the reduction in flooding 

frequency, the interstitial soil water salinity does not seem to follow a

1990). Lower saltmarshes have low variation in soil salinity, showing a strong correlation 

Interrelation of environmental factors affecting saltmarshes [modified from

ecomorphological development are tidal range and the submersion 

(Long & Mason, 1983; Adam, 1990; Doody, 2008; Chapman

. These impart significant controls on saltmarsh functions such as 

tion, plant zonation and development of creek networks. Timescales of inundation 

(the hydroperiod) relate to the period of time that the marsh substrate is covered by 

seawater (number of floodings) and sediment supply. They are strongly related to 

& Mason, 1983; Adam, 1990; Allen & Pye, 1992; Allen

, which in combination with shallow and deep subsidence control saltmarsh 

Apart from the direct flooding effect that the rise and fall of the tide can cause over 

saltmarshes, the water level variation notably influences other factors such as aeration 

within the marsh soil, salinity of the soil solution and the soil texture (Hinde

. Salinity in saltmarshes can vary significantly due to rainfall, temperatur

evaporation, freshwater discharges and the proximity to the open sea. While the flux of 

salt varies with elevation, decreasing in higher positions due to the reduction in flooding 

frequency, the interstitial soil water salinity does not seem to follow any pattern 

. Lower saltmarshes have low variation in soil salinity, showing a strong correlation 

130 

 

modified from Nibbakeb 

are tidal range and the submersion 

2008; Chapman, 1974; 

. These impart significant controls on saltmarsh functions such as 

Timescales of inundation 

(the hydroperiod) relate to the period of time that the marsh substrate is covered by 

strongly related to 

1992; Allen, 2000; 

, which in combination with shallow and deep subsidence control saltmarsh 

Apart from the direct flooding effect that the rise and fall of the tide can cause over 

saltmarshes, the water level variation notably influences other factors such as aeration 

(Hinde, 1954; 

. Salinity in saltmarshes can vary significantly due to rainfall, temperature, 

evaporation, freshwater discharges and the proximity to the open sea. While the flux of 

salt varies with elevation, decreasing in higher positions due to the reduction in flooding 

ny pattern (Adam, 

. Lower saltmarshes have low variation in soil salinity, showing a strong correlation 



131 

with fluctuations in inundation water salinity regardless of precipitations or droughts (De 

Leeuw et al., 1993; Rozema & Diggelen, 1991). In contrast, at higher elevations other 

factors such as temperature and rainfall can raise or lower salt concentration resulting in 

greater spatial and temporal variation in marsh soil salinity (Adam, 1990; Smith, 2009; 

Pratolongo et al., 2009). For example, in drier periods with higher temperatures and low 

rainfalls, evaporation will increase and therefore the soil salinity concentration will also 

increase. This process is more evident in arid and semi-arid climates. 

 Salinity can be a major factor in controlling vegetation distribution, although other 

soil factors also must be taken in account (Chapman, 1974). The relationship between soil 

salinity and vegetation cover has been discussed by several authors based on local studies 

(Crain et al., 2004; Redondo et al., 2004; Huckle et al., 2000; Tyler, 1971), which conclude 

that high salinity levels can influence plant distribution on saltmarshes due to 

physiological tolerance. Additionally, soil salinity also affects other variables such as 

primary production and plant growth. For example, Curco et al. (2002) showed that 

primary production increases as soil salinity decreases in a Mediterranean saltmarsh, and 

experiments by Rozema et al. (1991) indicated that high salinity reduces growth of the 

species tested (Scirpus maritimus and Puccinellia maritima). Hence, soil salinity on high 

marshes, which can strongly depend of temperature, rainfall and evaporation, can 

influence plant zonation and growth. 

Edaphic characteristics such as aeration, soil texture, redox potential, nutrient levels 

and drainage can also be important in controlling vegetation type (Gray & Brunce, 1972; 

Chapman, 1974) and plant growth (Rozema et al., 1991). Early studies of saltmarsh soil 

aeration (Teal & Kanwisher, 1961; Howes et al., 1981) showed that oxygen was only found 

in the upper few centimetres with reducing conditions elsewhere, except for well-drained 

areas. More recent studies (e.g. Rozema et al., 1991; Rozema, 1993) investigate plant 

growth at different CO2 concentrations (at 340 p.p.m. CO2 (ambient) and 580 p.p.m. CO2) in 

aerobic and anaerobic conditions, concluding that the growth of grass species such as 

Scirpus maritimus and Puccinellia maritima is greater under anaerobic solution and 

elevated CO2 conditions. The soil aeration in saltmarshes is strongly related to the 

frequency and duration of tidal flooding (Adam, 1990). Higher elevations are increasingly 

aerated due to the reduction in hydroperiod; soils across lower elevations are prone to 

being water-logged. Therefore, topography and elevation may create significant temporal 

and spatial differences in soil aeration within the marsh (Armstrong et al., 1985). This 

variable is also related to texture and drainage properties of the soil. For example, soils 

with high content of clay will have less aeration due to their structure which also leads to 

poor drainage. In contrast, sandy soils are more free-draining and aerated than clay soils. 
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 Finally, flora, fauna and microorganisms (such as fungus and bacteria) are important 

biological factors controlling saltmarshes. Halophytes are very important in saltmarsh 

development (Erfanzadeh, 2010; Long & Mason, 1983; Cahoon et al., 2000), promoting 

vertical accretion. The presence of vegetation reduces water flow speeds, favouring 

sediment deposition (Boorman et al., 1998; Boorman 2003). Microorganisms and fauna 

also play an important role in saltmarsh functions, most specifically in terms of nutrient 

cycles (Lillebø et al., 1999). Odum (1971) considers microorganisms the primary 

consumers in detritus-based systems such as saltmarshes. Furthermore, transport of 

nutrients is controlled by both benthic animals (e.g. bivalves, crabs) and water circulation 

within estuaries (Levin et al., 2001; Pratolongo et al., 2009). Other herbivores such as 

water birds can consume and then export the biomass to others saltmarshes or wetlands 

(Pratolongo et al., 2009). 

 

4.2. Methods 

4.2.1. Vegetation survey design  and analysis 

Quadrats are an effective sampling unit for vegetation surveys, particularly those 

associated with grassland communities such as saltmarshes (Kent & Coker, 1992; Roman 

et al., 2001; Elzinga et al., 1998). The Odiel saltmarshes do not follow a clear zonation 

within parallel belts to the shoreline and thus the use of transects was deemed 

inappropriate. Two campaigns in September 2011 and 2012 were carried out, where 

vegetation was surveyed using a 1 × 1 m quadrat (Figure 4.2, Figure 4.3). In total, 156 sites 

were sampled across the Odiel saltmarshes. Quadrats were located using a semi-random 

positioning process. First a 200m x 200m grid was generated to cover the study site using 

Arcmap (ArcGIS); a spreadsheet-based random number table (Microsoft Excel) was used 

to select the grid cells to sample. On the ground, 1 x 1 m quadrats were semi-randomly 

positioned within each grid cell (the final location was limited by difficult access and creek 

network). In each quadrat, plant species presence and abundance (percentage cover), 

vegetation height (sward height following (Van der Graaf et al., 2002)) and soil strength 

(using a Pilcon shear vane (Brown et al., 1998)) were measured.  

 In order to explore plant species assemblages on the Odiel saltmarshes and 

investigate community zonation, the plant species data were analysed using TWINSPAN 

(version 2.3). TWINSPAN is a top-down clustering approach that performs a hierarchical 

division of species and samples (Lepš & SImilauer, 1999; Hill & Šmilauer, 2005). 

TWINSPAN performs a two-way classification, which effectively groups samples and 

species, using ordinations (Correspondence Analysis) to inform the divisions in terms of 

identifying the main gradients in the data. TWINSPAN also expresses ‘indicator species’ 



133 

that provide some criterion for the communities defined in the division process. In 

addition, elevation data were extracted for every quadrat using 2013 DEM in ArcGIS 

(v10.2). 

 

 

Figure 4.2 Quadrat location of the vegetation survey undertaken in the Odiel saltmarshes. 
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Figure 4.3 Example of the 1x1m quadrat used for the random vegetation survey. 

 

4.2.2. Soil survey and analysis 

Sediment samples were collected from 1 in 3 quadrats to explore broad relationships 

between basic soil properties and plant species assemblages and to provide contextual 

information. The transportation of the soil samples from the study site (Huelva, Spain) to 

the laboratory (London, UK) in cool boxes was the main reason to collect 1 soil sample in 3 

quadrats. As this thesis is not focused on analysing soil properties, the chosen size sample 

was considered suitable to provide contextual information. Additionally, Euclidian 

distance to the nearest main creek was also estimated in ArcGIS (v10.2) using the quadrat 

location (points) and a digitised creek network layer (based on 2013 aerial photography). 

 The soil samples, collected in plastic bags, were stored in a cool box, and then 

returned to the laboratory and stored at 4°C until they were processed. Samples were then 

analysed for moisture content (loss on drying), and organic and carbonate content (loss on 

ignition). Sequential loss on ignition (LOI) is a simple approach for estimating the organic 

matter and inorganic carbon content in sediments using linear relations between LOI and 

organic and inorganic carbon content (Santisteban et al., 2004). This approach is easy to 

implement in the laboratory, which makes this method widely used (e.g. Korsman et al., 

1999; Dodson & Ramrath 2001; Heiri et al., 2001; Boyle, 2004). In saltmarshes, this 

methods has also been widely used (e.g. Temmerman et al., 2003; Ashley & Zeff 1988; 

Curco et al., 2002; Sousa et al., 2010; Vranken et al., 1990). The procedure followed for this 

work was: 

a- Loss on drying was use to estimate moisture content. For each sample, 2 g of wet 

sediment was weighed into an empty crucible of known weight. All crucibles were 

placed in the oven overnight at 105°C and then placed in a desiccator for cooling to 

prevent re-absorption of moisture. The crucibles were weighed again and the 
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sample weight remaining after drying was calculated. As a proportion of the 

original 2g sample weight, this provided percentage moisture content 

b- Loss on ignition was undertaken at 550°C (LOI550), a method for estimating organic 

content. The previously dried subsamples of sediment were placed (in their 

crucibles) in a 550°C furnace for 2 hours. When the crucibles were cooled slightly 

they were placed in a desiccator, to fully cool before being weighed. Percentage 

organic content was calculated as the proportion of the dry weight lost on ignition. 

c- Loss on ignition was undertaken at 925°C (LOI925), a method for estimating 

carbonate content. The remaining ash samples were returned to a 925°C furnace 

for 4 hours. The crucibles were removed and placed in a desiccator and re-

weighed when cooled. The difference between the ash weight and the weight lost 

at 925°C was multiplied by 1.36 (the difference between the molecular weights of 

CO2 and CO3) to derive the carbonate content which is then expressed as a 

percentage of the dry weight. 

 

4.2.3. Sediment traps design and analysis 

Sediment traps were deployed for 4-6 month periods (from Jan 2012 to March 2014) to 

estimate annual measures of sediment deposition rates within different habitats across 

the Odiel saltmarshes (tidal flat, vegetated tidal flat, low marsh, and middle-high marsh) 

(Figure 4.4). Ceramic tiles (20 x 20 cm) were placed glazed-side up and levelled with the 

soil surface (as described in Darke & Megonigal (2003) and Pasternack & Brush (1998) 

with 15 - 20 cm wire pins to secure them (Figure 4.5) In order to estimate sediment bulk 

density, sediments were also collected using a ‘density ring’ for each site. Sediment traps 

have successfully been used to estimate short term accretion rates in marshes in USA (e.g. 

Neubauer et al., 2002; Darke & Megonigal, 2003), Spain (e.g. Lopez-Gonzalez et al., 2006) 

and Canada (e.g. Robert et al., 1991). Initially, 18 sample sites were set along the marshes 

with two tiles at each site. However, due to problems with access, 8 of the sample sites 

(located on Enmedio Island) had been discarded. Thus, 6 new sample sites were set in 

locations with easier access in 2013. 
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Figure 4.4 Location of the sediment traps. 

 

 

Figure 4.5 Ceramic tile located at mid-low saltmarsh habitat. 
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Sediment deposited on the tiles was collected in large plastic bags (previously weighed in 

the laboratory): sediment was removed from the tile using a spatula and washing with 

water (using a spray bottle) when necessary (which was also collected in the bag). These 

samples were stored in cool bags for transportation (from Spain to the UK), and then 

returned to the laboratory and stored at 4°C. The samples - both those collected from the 

tiles and those collected in the density rings - were later processed to measure wet and 

dry weights. The wet sediments were weighed, dried (at 105°C) and weighed again. Wet 

and dry bulk densities (ρw and ρd respectively) were calculated for each site based on the 

known volume of the density ring (15.5 cm3) (Equation 4.1): 
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 (4.1) 

 

where Mw and Md are wet and dry masses for a known volume V. Deposition rates were 

calculated as a bulk mass deposition for each time frame (4-6 month time period), and 

these were converted to accretion rates using the bulk density to calculate sediment 

volume deposited on every tile which equated to a vertical rate when tile area and time 

period were accounted for (Neubauer et al., 2002; Bricker-Ursoet al., 1989). These 

calculations provide an estimate of accretion rates, but do not take into account post-

deposition compaction. 
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4.3. Characterization of Odiel saltmarsh vegetation 

The results obtained from the vegetation survey showed the diverse plant community that 

occur within the tidal frame of the Odiel saltmarshes. Here (within the tidal frame), the 

halophytes are represented by 5 families and 10 genera (Atriplex, Inula, Salicornia, 

Puccinellia, Limoniastrum, Limonium, Spartina, Suaeda, Salsola and Scirpus) comprising 17 

species Table 4.1. 

 

Table 4.1 Plant species found on the Odiel saltmarshes. 

Family Species 

Amaranthaceae Atriplex portulacoides 

 Salicornia fruticosa 

 Salicornia perennis (subesp.) perennis 

 Salicornia perennis (subesp.) alpini 

 Salicornia ramosisima 

 Salicornia macrostachyum 

 Salsola vermiculata 

 Suaeda maritima 

 Suaeda vera 

  

Asteraceae Inula crithmoides 

  

Cyperaceae Scirpus maritimus 

  

Plumbaginaceae Limoniastrum monopetalum 

 Limonium vulgare 

 Limonium algarvense 

 Limonium ferulaceum 

  

Poaceae Puccinellia maritima 

 Spartina densiflora 

 Spartina maritima 

 

 The spatial distribution of species surveyed is shown in Figure 4.6. Some species 

exhibit an extensive spatial distribution whilst others have a localised distribution. For 

example, Atriplex portulacoides is a ‘generalist’ species and is found throughout the 

estuary. Species such as Salicornia perennis, Salicornia fruticosa, Salicornia ramosissima, 

Salicornia macrostachyum, Limoniastrum monopetalum, Limonium sp.and Suaeda sp. are 

mainly distributed at the central part of the estuary. Spartina densiflora, however, tends to 

be found in larger patches in the inner (far north) estuary. There are some species that are 

mainly found nearer the estuary mouth (southern extent) such as Puccinellia maritima and 

Spartina maritima. 
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Figure 4.6 Spatial distribution of plant species in the Odiel saltmarshes based on vegetation survey 
(quadrats). 

 

 Plant species data were analysed using two-ways indicator species analysis 

(TWINSPAN) to divide the species and samples into groups to explore possible classes of 

plant communities. The analysis highlights the most common plant associations and a 



potential organisation of species assemblages in the Odiel saltmarshes (

first division in the TWINSPAN results splits the data into two groups. 

perennis and S. ramosissima are the indicators of one group, which are associated with the 

low marsh. S. fruticosa, A. portulacoides

are associated with the mid- and high marsh, were indicators for the second group.
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Figure 4.7 Summary of the cluster analysis obtained in TWINSPAN. The numbers refer to number of 
quadrats that contain the species mentioned

potential organisation of species assemblages in the Odiel saltmarshes (Figure 4.

first division in the TWINSPAN results splits the data into two groups. S. perennis

are the indicators of one group, which are associated with the 

A. portulacoides, Sp. densiflora and S. perennis subsp. alpini

and high marsh, were indicators for the second group.

Further divisions split these groups into more specific communities that can be described 

h, salt pan, mid marsh and high marsh habitats (Figure 4.7). Within the high 

marsh community further divisions in TWINSPAN results (4th division; 23 q

as a separate community. This specific community was observed in 

the field forming large homogeneous patches of Sp. densiflora along the 

estuary, and it was quite different to others high marsh communities at the mi

estuary. The field evidences supported by the TWINSPAN results led to consider this 

community as a different habitat type referred to as Spartina marsh. Furthermore, the 

canopy height of this community was also quite distinct to the other communities (

). Thus, the Odiel saltmarshes habitats can be best described as comprising low marsh, 

salt pan, mid marsh, high marsh and Spartina marsh. General floristic characteristics 

key plant communities found in the Odiel saltmarshes are summarised in Table 4.

Summary of the cluster analysis obtained in TWINSPAN. The numbers refer to number of 
quadrats that contain the species mentioned. 

140 

Figure 4.7). The 

S. perennis subsp. 
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as a separate community. This specific community was observed in 

 upper-mid 

estuary, and it was quite different to others high marsh communities at the mid- and low 

estuary. The field evidences supported by the TWINSPAN results led to consider this 

community as a different habitat type referred to as Spartina marsh. Furthermore, the 
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Figure 4.8 Canopy height for different saltmarsh habitats at the Odiel saltmarshes. 

 

Table 4.2 Summary of floristic characteristics of the key plant communities in the Odiel marshes. 

Community Key species Diversity Structure 

Low marsh S. perennis (subsp. perennis); A. 

portulacoides, 
Low Continuous sward 

Salt pans S. ramosissima Low Low spatial density 

Mid marsh S. perennis (subsp. alpini); A. 

portulacoides, 
High Continuous sward 

High marsh -
Salicornia 

S. fruticosa High Mixed 

High marsh -
Spartina 

Sp. densiflora Low Homogeneous and 
tall 

 

 Of particular note, pioneer saltmarsh (Spartina maritima), which occurs on the tidal 

flats, is not well represented in the TWINSPAN analysis because the surface area of the 

pioneer marsh in the Odiel saltmarshes is relatively small compared with other habitats. 

Additionally, these species are usually found forming little islands over unconsolidated, 

sparsely-vegetated tidal flats, which complicate the access for vegetation surveys. 

 Broadly, the low marsh is mainly represented by S. perennis (subsp. perennis) and A. 

portulacoides, although others species such as Li. vulgare, Pu. maritima, Su. maritima, S. 

ramosissima and short Sp. densiflora can also be found with less frequency and abundance. 

The average canopy height of this habitat ranges between 15 and 24 cm, with an average 

of roughly 17 cm. The distribution of the low marsh community is related to younger 

saltmarshes closer to the estuary mouth and more centrally along channel and creek 
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edges. Some differences in diversity are evident across this community depending on its 

location within the estuary. Closer to the estuary mouth, the low marsh patches cover 

large surface areas and more plant diversity (up to 7 species) can be found, while those 

patches located along channels and creeks across the mid and upper estuary cover smaller 

surface area and the diversity is lower (up to 2 or 3 species). Figure 4.9 (A) displays 

different sites of low marsh habitats found in the low estuary. 

 The mid-marsh community mainly comprises S. perennis (subsp. alpini) and A. 

portulacoide, although others species such as S. fruticosa and Sp. densiflora can also be 

found with less frequency and abundance. These communities usually present a dense 

canopy, which form a tortuous root system of roughly 20-30 cm above ground. The mid-

marsh habitats in the Odiel saltmarshes are mainly found across the mid and low estuary. 

The average height canopy for this community is 38 cm approximately, presenting a wider 

range of heights than the low marsh communities. Figure 4.9 (B) shows different examples 

of mid-marsh environments within the low estuary. 

 



Figure 4.9 Examples of low (A) and mid (B) marsh habitats in the Odiel saltmarshes

 

 The salt pan habitat mainly comprises bare mud and 

which are recognised as a single group in the TWINSPAN analysis. Plant diversity in this 

habitat is quite low due to the hypersaline conditions, and only 

covering the salt pans (

saltmarsh vegetation). The growth structure of this habitat (mainly 

species) is characterised by low plant density (

average height of 25 cm

vertical main stem and erect lateral branches. This habitat is found 

within the mid-high marsh platform. In summer, bare mud in salt pan

by a layer of salt when the estuarine water is evaporated. In pans located 

elevations, which are 

Examples of low (A) and mid (B) marsh habitats in the Odiel saltmarshes

The salt pan habitat mainly comprises bare mud and S. ramosissima

which are recognised as a single group in the TWINSPAN analysis. Plant diversity in this 

habitat is quite low due to the hypersaline conditions, and only S. ramosissima

covering the salt pans (S. ramosissima was the only annual species found within the 

saltmarsh vegetation). The growth structure of this habitat (mainly 

species) is characterised by low plant density (notable spacing among single plants

average height of 25 cm. The structure of individual plants is characterised by a jointed 

main stem and erect lateral branches. This habitat is found across

high marsh platform. In summer, bare mud in salt pan

by a layer of salt when the estuarine water is evaporated. In pans located 

which are more frequently flooded, S. perennis (subsp. 
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Examples of low (A) and mid (B) marsh habitats in the Odiel saltmarshes. 

S. ramosissima (Figure 4.10), 

which are recognised as a single group in the TWINSPAN analysis. Plant diversity in this 

S. ramosissima was found 

was the only annual species found within the 

saltmarsh vegetation). The growth structure of this habitat (mainly represented by one 

spacing among single plants) and 

is characterised by a jointed 

across lower elevations 

high marsh platform. In summer, bare mud in salt pans is usually covered 

by a layer of salt when the estuarine water is evaporated. In pans located across lower 

(subsp. perennis) was also 



found. The plants covering the perimeter of the salt pans are

conditions and S. macrostachyum was usually found covering those areas

 

Figure 4.10 Salt pan habitat in the Odiel saltmarshes. 
over the salt pan (pink colour) and Salicornia macrostachyum

 

 With regard to the high marsh, two main sub

observations): one is dominated 

characterised by S. fruticosa and 

most frequent in the Odiel saltmarshes. Most of the saltmarsh platform located at the mid 

and outer estuary is dominated by 

Spartina marsh. In the high 

macrostachyum, L. monopetalum, L. ferulaceu, I. crithmoides, S. vera, S. Vermiculata

algarvense11 and S. densiflora are also found, whereas the Spartina

of large Spartina-only areas (often referred to as ‘Spartina Sea’) with less than 10% of 

other species such as A. macroshtachyum

                                                             

11 L. algarvense is endemic to the South
species in the Iberian Peninsula. 

found. The plants covering the perimeter of the salt pans are adapted to very high salinity 

was usually found covering those areas. 

Salt pan habitat in the Odiel saltmarshes. Salicornia ramosissima appears in the front 
Salicornia macrostachyum in the back (green colour)

With regard to the high marsh, two main sub-groups are found (based on field 

dominated by S. densiflora (Figure 4.11A) and the other 

and A. portulacoides (Figure 4.11B). These habitats are the 

most frequent in the Odiel saltmarshes. Most of the saltmarsh platform located at the mid 

and outer estuary is dominated by Salicornia marsh and at the mid-upper estuary by 

 marsh, other species such as A. portulacoides, A. 

L. monopetalum, L. ferulaceu, I. crithmoides, S. vera, S. Vermiculata

are also found, whereas the Spartina marsh is mainly formed 

only areas (often referred to as ‘Spartina Sea’) with less than 10% of 

A. macroshtachyum. 

is endemic to the South-Atlantic Iberian saltmarshes and it is considered vulnerable 
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adapted to very high salinity 
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in the back (green colour). 

groups are found (based on field 

the other is 

). These habitats are the 

most frequent in the Odiel saltmarshes. Most of the saltmarsh platform located at the mid 

upper estuary by 

A. portulacoides, A. 

L. monopetalum, L. ferulaceu, I. crithmoides, S. vera, S. Vermiculata, L. 

marsh is mainly formed 

only areas (often referred to as ‘Spartina Sea’) with less than 10% of 

Atlantic Iberian saltmarshes and it is considered vulnerable 



Figure 4.11 (A) Spartina marsh and (B) high marsh habitat in the Odiel saltmarshes

 

4.4. Habitat environmental charac

 To provide contextual information, the influences of environmental factors on 

different habitat were explored by looking at 6 parameters: % dry weight, % moisture 

loss, shear strength, % carbonates, % LOI and distance from creeks. Results showe

(Figure 4.12) that low marsh and mid marsh habitat have similar range values in 

parameters such as % moisture loss, % dry weight and % carbonates, s

soil properties for these two habitats. The first two parameters covered a broad range 

from 15 to 70 % approximately, and the third one covered a narrower range (1.6 

low marsh and 1.3 

infiltration capacity suggesting high content in clay and frequent flooding, which are 

features representative of low and mid marsh habitats. However, these habitats were also 

found in parts of the saltmarsh (at the low estuary) with highe

may explain the high values in dry weight and low values moisture loss. For % LOI, mid 

marsh (~13%) presented slightly higher mean than low marsh (~11%), and covered a 

broader range values than low marsh. This means that the organi

marsh is slightly higher than in the low marsh. Leaf litter was found in both habitats, but in 

the mid marsh higher root density was observed which may explain the higher values. 

Mean carbonates values were higher than high marsh and s

(A) Spartina marsh and (B) high marsh habitat in the Odiel saltmarshes

Habitat environmental characterisation 

To provide contextual information, the influences of environmental factors on 

different habitat were explored by looking at 6 parameters: % dry weight, % moisture 

loss, shear strength, % carbonates, % LOI and distance from creeks. Results showe

) that low marsh and mid marsh habitat have similar range values in 

parameters such as % moisture loss, % dry weight and % carbonates, s

soil properties for these two habitats. The first two parameters covered a broad range 

from 15 to 70 % approximately, and the third one covered a narrower range (1.6 

low marsh and 1.3 – 2.8 % in mid marsh). High values in moistur

infiltration capacity suggesting high content in clay and frequent flooding, which are 

features representative of low and mid marsh habitats. However, these habitats were also 

found in parts of the saltmarsh (at the low estuary) with higher content in sand, which 

may explain the high values in dry weight and low values moisture loss. For % LOI, mid 

marsh (~13%) presented slightly higher mean than low marsh (~11%), and covered a 

broader range values than low marsh. This means that the organi

marsh is slightly higher than in the low marsh. Leaf litter was found in both habitats, but in 

the mid marsh higher root density was observed which may explain the higher values. 

Mean carbonates values were higher than high marsh and salt pan habitats possibly due to 
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(A) Spartina marsh and (B) high marsh habitat in the Odiel saltmarshes. 

To provide contextual information, the influences of environmental factors on 

different habitat were explored by looking at 6 parameters: % dry weight, % moisture 

loss, shear strength, % carbonates, % LOI and distance from creeks. Results showed 

) that low marsh and mid marsh habitat have similar range values in 

parameters such as % moisture loss, % dry weight and % carbonates, suggesting similar 

soil properties for these two habitats. The first two parameters covered a broad range 

from 15 to 70 % approximately, and the third one covered a narrower range (1.6 - 3 % in 

2.8 % in mid marsh). High values in moisture loss state low 

infiltration capacity suggesting high content in clay and frequent flooding, which are 

features representative of low and mid marsh habitats. However, these habitats were also 

r content in sand, which 

may explain the high values in dry weight and low values moisture loss. For % LOI, mid 

marsh (~13%) presented slightly higher mean than low marsh (~11%), and covered a 

broader range values than low marsh. This means that the organic content in the mid 

marsh is slightly higher than in the low marsh. Leaf litter was found in both habitats, but in 

the mid marsh higher root density was observed which may explain the higher values. 

alt pan habitats possibly due to 
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higher shell content. This can be explained by the presence of grazing gastropods, which is 

usually higher in lower parts of the saltmarshes. On average, shear strength in the low 

marsh presents lower values than the mid marsh, reaching values down to 8 KPa (the 

lowest value of the dataset), which was expected due to higher water content in the soil 

and lower density root system. 

 High marsh covers a narrower range for % dry weight and % moisture loss than the 

mid and low marsh; between 62 and 79.5 % for dry weight and between 21 and 37 % for 

moisture loss. These values suggest lower content in clay and less frequent tidal floods, 

which is a feature of high marsh habitats. Conversely for % LOI and % carbonates, the high 

marsh covers a broad range of values overlapping with low and mid marsh at the bottom 

values. However, this habitat includes much higher values of both these parameters than 

other parts of the system. The average carbonate content is lower than in other habitats 

suggesting less shell content in the sediments, which is expected for higher soil elevations 

in saltmarshes due to the decrease in gastropods. However, the high values of the 

carbonate range are possibly explained by residual shell deposits found across the high 

marsh. Low values in organic matter are probably due to the high sand content in the soil 

samples, which get higher near the sandy barrier islands. The distance from creeks and the 

shear strength (KPa) parameters for high marsh also have a broad range of values, 

reaching higher values than other habitats as it was expected. The micro-topography 

characteristic of saltmarsh environments leads to complex spatial patterns where high 

marsh can be found near or far from creeks. In the case of the shear strength, high values 

are also characteristic of high marshes, showing more developed soils with more dense 

root systems and with less water content. However, lower values of this parameter are 

possibly showing once again higher content in sand in some parts of the high marsh. 



Figure 4.12

 

 The results showed that the Spartina marsh has high values in parameter such as % 

moisture loss, % LOI and % carbonates, and low values for % dry weight and distance 

from creeks. In comparison with other habitat types, the Spartina marsh covered the 

highest values of the data set for % moisture loss (max. value = 74 %) and LOI (max. value 

= 32 %). Higher values in moisture loss and low dry weight state soils with higher content 

in clay and low infiltration capacity, showing the tolerance of this species to 

sediments. Across the mid

surrounding ponds. The high values in soil organic matter are possible due to root 

rhizome production and leaf litter deposition. The higher carbonate contents 

higher shell content in the soil samples that could be related to gastropods found in salt 

ponds. For shear strength and distance from creeks, this habitat showed lower and 

12 Environmental parameters box plots for each habitat type

The results showed that the Spartina marsh has high values in parameter such as % 

moisture loss, % LOI and % carbonates, and low values for % dry weight and distance 

from creeks. In comparison with other habitat types, the Spartina marsh covered the 

t values of the data set for % moisture loss (max. value = 74 %) and LOI (max. value 

= 32 %). Higher values in moisture loss and low dry weight state soils with higher content 

in clay and low infiltration capacity, showing the tolerance of this species to 

sediments. Across the mid-estuary, this habitat type was usually found near ponds and/or 

surrounding ponds. The high values in soil organic matter are possible due to root 

rhizome production and leaf litter deposition. The higher carbonate contents 

higher shell content in the soil samples that could be related to gastropods found in salt 

ponds. For shear strength and distance from creeks, this habitat showed lower and 
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Environmental parameters box plots for each habitat type. 

The results showed that the Spartina marsh has high values in parameter such as % 

moisture loss, % LOI and % carbonates, and low values for % dry weight and distance 

from creeks. In comparison with other habitat types, the Spartina marsh covered the 

t values of the data set for % moisture loss (max. value = 74 %) and LOI (max. value 

= 32 %). Higher values in moisture loss and low dry weight state soils with higher content 

in clay and low infiltration capacity, showing the tolerance of this species to anoxic 

estuary, this habitat type was usually found near ponds and/or 

surrounding ponds. The high values in soil organic matter are possible due to root 

rhizome production and leaf litter deposition. The higher carbonate contents suggest 

higher shell content in the soil samples that could be related to gastropods found in salt 

ponds. For shear strength and distance from creeks, this habitat showed lower and 
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narrower range of values than high marsh for instance. This is showing once again the 

preference and tolerance of Spartina densiflora to anoxic/clay soils. 

 Finally, salt pan habitats showed low values for % LOI, % carbonates and shear 

strength and a narrower range than low and mid marsh. For example, this habitat reached 

the lowest value of the data set for % LOI (0.6 %) and carbonates (0.1%). Additionally, salt 

pans also reached the lowest value of the data set for moisture loss (3.7 %) and the highest 

value for % dry weight (~ 96 %). These results show that salt pan sediments have less 

organic content than other habitats and that sediment moisture can reach lower values as 

they are more susceptible to desiccation processes. These results were expected as the 

extreme salinity conditions in these habitats determine the low biocoenoses, limiting the 

presence of gastropods and vegetation. For example, very low plant density or bare soil is 

characteristic of this habitat type, and leaf litter was not usually found on the ground 

surface. Low values in moisture loss were also expected as these habitats are located in 

higher elevations where tidal floods are less frequent. Furthermore, evaporation reaches 

high values due to high temperatures and low precipitation during summer periods, and 

soil can dry up very quickly leaving a thin salt layer over the pans. 

 In order to investigate the ground elevation distribution per habitat, elevation 

values were extracted from the LiDAR-derived DEM for each quadrat location (Figure 

4.13) and represented within the context of the tidal frame. The analysis of habitat types 

and the associated elevation values as expected shows a strong dependence of habitat 

presence on soil elevation in pioneers, low, mid and high marsh/Spartina marsh. However, 

salt pan elevations overlap with mid, high and saltmarsh habitats. The results revealed 

that saltmarsh vegetation in all habitats were found above mean high water neap (MHWN) 

except for low marsh vegetation and pioneers that were found below this tidal level. The 

mean ground elevation of high marsh and Spartina marsh was found between the high 

astronomical tide (HAT) and mean high water spring (MHWS), and the mean elevation of 

the mid- marsh and the salt pan between MHWS and mean high water (MHW). The salt 

pan soil elevation was expected to overlap other habitats because these pans are 

depressions over mature saltmarshes with lower elevation than the habitats surrounding 

them. 
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Figure 4.13 Ground elevation above mean sea level (m) of each habitat type in the Odiel 
saltmarshes. Elevation is referred to the Spanish vertical datum (zero in Alicante). Pioneers 
elevation (Spartina maritima) has been included 

 

4.5. Short accretion rates 

The results of the short accretion rates are shown in Table 4.3. These results revealed that 

the highest mean accretion rate (~15 cmy-1) was found within vegetated tidal flat habitat 

(site H) and the lowest (~2 cmy-1) was in the high marsh habitat (site L), located on the 

saltmarsh platform with 1 m height cliff at the edge of the platform (Table 4.3). Results 

were examined by comparing accretion rates across the main sampling period 

(spring/summer or autumn/winter, where accretion rates might reflect changes in 

productivity) and by habitat type (Figure 4.14). Accretion rates did not show differences 

between sampling period, but the rates by habitat type decrease from a maximum over the 

tidal flat, through the low marsh to a minimum in the mid-high marsh. Additionally, in 

order to check if there were significant differences between sampling period and between 

habitats, a Kruskal Wallis test was carried out. Results revealed that there is no significant 

difference in median accretion rate between sampling period, but did show significant 

differences between habitat (at the 95% level: p=0.04). 
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Table 4.3 Short accretion rates for each site; where D is dry density (cm3y-1), T total time surveyed, 
M mean accretion rates (cmy-1), SD standard deviation Dshore distance from shore (m), and Z soil 
elevation (metres above the Spanish hydrographic zero). 

Site DD 
(cm3y-1) 

T 
(days) 

Mean 
(cmy-1) 

SD DShore 
(m) 

Z 
(m) 

Habitat description 

F 0.79 1012 5.65 2.62 1 1.34 High marsh (~0.5m height marsh cliff) 

L 0.19 550 1.98 0.78 10 1.86 High marsh (~1m height marsh cliff) 

N 0.41 679 2.74 0.28 30 1.22 Mid marsh (lagoon) 

M 0.22 802 3.3 1.28 80 1.31 Mid marsh 

A 0.67 1123 3.74 4.32 0.3 0.82 Low marsh (lagoon) 

O 0.34 679 9.97 3.23 10 0.97 Low marsh (lagoon) 

C 0.74 413 5.2 2.66 0.5 1.01 Low marsh (lagoon) 

I 0.4 362 7.8 4.46 5 1.23 Low marsh 

K 0.19 125   0.5 1.32 Low marsh 

P 0.23 189 6.89 2.34 15 1.35 Low marsh 

B 0.63 1003 7.23 5.98 0 0.45 Vegetated tidal flat (lagoon) 

H 0.93 373 14.99 6.96 0 0.93 Vegetated tidal flat 

D 0.49 1012 14.31 5.84 0 0.43 Tidal flat  

E 0.85 1012 7.64 2.19 0 0.6 Tidal flat  

G 0.75 610 5.93 3.2 0 0.73 Tidal flat 

J 0.4 487 5.52 1.98 0 0.92 Tidal flat 

 

 Although habitat type influenced the accretion rates, the results showed that site 

features and location also influenced the rate values. Within the same habitat type 

differences were found depending on location and geomorphology. For example, those 

tiles located at saltmarsh sites facing a lagoon (e.g. site B; ~7 cmy-1) showed smaller 

accretion rates than those facing channels (e.g. site H; ~15 cmy-1). The accretion rates 

within the equivalent habitats decrease when the distance from shore increases. However, 

the distance from shore for sites within a lagoon does not seem to show any pattern within 

the same type of habitat. For example, distance from shore in site A is lower than in site O, 

but the accretion rate is higher in site O than in site A. 
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Figure 4.14 Accretion rates in the Odiel saltmarshes per habitat type and two main sampling 
(spring/summer and autumn/winter) seasons between 2012 and 1014. 

 

4.6. Summary and discussion 

Habitat zonation within the Odiel saltmarshes can be best described as comprising low 

marsh, salt pan, mid- marsh, high marsh and Spartina marsh. Although some of the species 

tend to be found in the same type of habitat within the saltmarsh, there are some species 

that do not follow any pattern and occupy a diverse range of elevations and situations 

within the saltmarsh. The species identified with these features are A. portulacoides (low, 

mid and high marsh) and Sp. densiflora (low, mid and high marsh; although the latter is the 

most frequent habitat where it has been found in large homogenous patches). A. 

portulacoides is a species with a great environmental adaptability (Cott et al., 2013) and its 

broad distribution within the Odiel saltmarshes is not surprising. Sp. densiflora has been 

previously identified as a species with broad tolerances to grow beyond its optimum 

environment (Snow & Vince, 1984) and has been shown to exhibit a wide ecological range, 

and thus it is expected to find it throughout the Odiel saltmarsh (Castillo et al., 2010). This 

species is originally from South America and it is spreading throughout the estuary and it 

is hybridising with the local Spartina sp. (Sp. maritima). It has been found everywhere in 

the Odiel saltmarsh but was spread mainly in homogeneous patches across the upper 
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estuary. However, it seems to be colonising the mid estuary slowly, reducing the plant 

diversity. The great environmental adaptability of these two species makes them more 

resilience to environmental changes and they could be used as key species to monitor 

changes over the time within the Odiel saltmarshes. The increase in their distribution 

within the estuary could be an indicator of environmental changes. In the case of the Sp. 

densiflora and its hybrid, the broad colonisation of low, mid and high marsh habitats 

throughout the estuary is already affecting the biodiversity of the Odiel saltmarshes (Nieva 

et al., 2001), decreasing saltmarsh plant diversity. This colonisation is likely to be 

accelerated in a context of sea-level rise. 

 Another species that was found in different types of habitat was S. ramossisima, but 

it is not found everywhere like A. portulacoides and S. densiflora. In this study, it was found 

in low marsh habitat forming homogeneous meadows of this species or with S. perennis 

subsp. perennis, and in a higher topography within salt pans. Figueroa et al. (1987) 

reported the distribution of this plant species in the Odiel saltmarsh between MHW and 

LLW within low marsh habitats and in higher topography salt pans (where the tidal flood 

occurs during high tidal coefficient of high water or equinoctial tides). In this work, this 

species was also found in salt pan located between the MHWN and the HAT. 

 With regard to plant distribution based on elevation in the Odiel saltmarsh, other 

authors have reported similar findings to the results presented here. For example, 

Castellanos et al. (1994) indicated that lower elevations are dominated by Sp. maritima 

(pioneers) (although sometimes Sp. densiflora can also be found), and that higher 

elevations are usually occupied by shrubby species such as A. macrostachyum, L. 

monopetalum and Su. vera. They also indicated that in mature saltmarshes, the vegetation 

commonly found in the creek embankments are Sp. densiflora, A. portulacoide and I. 

crithmodey. Previously, Rubio & Figueroa (1983) had documented that the dominant 

species at intermediate levels (between mud flats and high marsh) are S. perennis, A. 

portulacoides and Sp. densiflora, and in salt pans, S. ramossisima, S. fruticosa and A. 

macrostachyum (Rubio & Figueroa, 1983). In this study, S. fruticosa for example was also 

found in high marsh habitats, but within transition zones (at higher locations) A. 

macrostachyum was found instead. 

 The role of elevation in determining distribution of plant communities depends on 

two factors: the tolerance of individual species to physical and chemical factors associated 

with submergence and the interactions (competition) between species with potentially 

overlapping tolerances (Castillo et al., 2000). The vertical elevation of some halophytes 

seems to cover a relatively wide range (Silvestri et al., 2005; Castillo et al., 2000) as it has 

been identified in this work, and their distribution across the saltmarsh could also be 

related to biotic interactions (Ungar, 1998). Although the elevation range for different 
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habitats overlapped in the vertical, the average values presented differences (Figure 4.13) 

among high/Spartina, mid and low marsh, showing their tolerance to tidal submergence 

and salinity. 

 Previous work in the Odiel saltmarsh showed a correlation between salinity and 

elevation due to the high evaporation in Mediterranean climate, where salinity tends to 

increase with elevation (Castillo et al., 2000). For example, Sp. maritima is the species that 

showed more tolerance to tidal flooding and less tolerance to salinity. This species was 

found forming homogenous patches over unconsolidated mud flats at lower elevations 

and with S. perennis (subsp. perennis) at slightly higher elevations. On the other hand, A. 

macrostachyum within the high marsh was found in the highest elevation of the saltmarsh, 

showing high tolerance to high levels of salinity. 

 Another example of vegetation differences based on elevation (which determine 

tidal submergence and salinity tolerance) is the two sub-species of S. perennis (subsp. 

alpini and perennis). These species were found at different elevations overlapping only 

around half a metre in the vertical. The subspecies perennis was found at lower elevations 

primarily in low marsh habitats and the subspecies alpini at higher elevation covering mid 

marsh habitats. 

 Redondo-Gómez et al. (2007) carried out an experiment to explain the distribution 

of these two sub-species of Salicornia perennis (perennis and alpini) in the Odiel 

saltmarshes. Their results revealed that subsp. perennis was distributed at lower 

elevations and failure to survive above its limit was related to hypersalinity and water 

stress in summer; and that subsp. alpini was found at higher elevations and the failure to 

survive above its limit was associated with its intolerance of increasingly hypoxic 

(reducing sediments). These preferences may explain the growth differences of these two 

sub-species observed during the field work. For example, S. perennis subsp. alpini was 

usually found in a very dense canopy, forming a tortuous root system of roughly 20-30 cm 

above ground when it was found at lower elevations. Furthermore, the division of the tidal 

low-lying sediments at the south of the Saltes Island by the Juan Carlos I dike has created 

two lagoons at both sides of the dike with very different drainage conditions. Saltmarshes 

located at the west side of the dike have a slower drainage than those located to the east 

due to the sand accumulation retained in the west by the dike and also due to the slightly 

higher elevation in the west side (Castellanos et al., 1999). These two subspecies could be 

key species to identify changes due to sea-level rise due to S. perennis subsp. alpini 

intolerance of increasingly hypoxic conditions as shown by Redondo-Gómez et al. (2007). 

The swap of the subsp. alpini by subsp. perenni, and the above-ground root system 

observed during the field work could be indicators of the current sea-level rise at the Odiel 

saltmarshes. 
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 With regard to environmental factors, only a few seem to explain habitat type and 

the presence of different vegetation. For example, salt pans are characterised by low 

organic content possibly related to degraded organic matter, low and mid marsh by 

low/intermediate organic content mainly related to leaf litter and root density, and 

Spartina marsh by high values mainly related to root rhizome production and leaf litter 

deposition. However, high marsh habitats appear to have a broad range of values that 

could be related to its presence in sandy and muddy soils. With regard to moisture loss, 

the salt pan and high marsh habitats presented the lowest average values and Spartina 

marsh the highest value which is not surprising due to the broad ecological range of this 

species. However, mid and low marsh showed intermediate values, which is not expected 

for low marsh habitats. Low marsh habitats are usually characterised by high soil 

moisture, low dry weight and low shear strength (Ponnamperuma, 1972). These results 

could be explained by the presence of low marsh (S. perennis subesp. perennis and A. 

portulacoildes) in sandy sediments with higher porosity (less capability to retain water) 

and higher dry weight. It also should be noted that vegetated tidal flats (S. maritima) are 

classified by other authors as low marsh (Castellanos et al., 1994) and here they have been 

considered as a separate habitat that it has not been included in this analysis due to the 

low number of samples collected. 

 Overall, Spartina marsh and salt pans were more different to the other habitat types. 

In the case of Spartina marsh, the unexpected narrower range values in some of the 

analysed parameters could be related to the fact that this plant species was not usually 

found in very sandy soils in the survey undertaken here. The similarities between low 

marsh and mid marsh are possibly related to the fact that these two types are dominated 

by the same species (S. perennis) but different subspecies. 

 Broadly, soil properties such as soil texture, aggregate stability, infiltration capacity, 

organic or chemical content and shear strength play an important role in erosion 

processes (Morgan, 2005). These properties largely define the resistance of a soil to be 

eroded by an erosion agent (e.g. water). Some authors (Watts et al. 2003; Teisson & 

Fritsch, 1988) have used shear strength to explain erosive events, suggesting that erosion 

occurs once a critical shear stress is exceeded (exerted by the moving fluids over a bed of 

sediments). Particularly in saltmarshes, the analysis of soil shear strength can provide 

some information to explain the mechanics of erosion processes in generally weak 

saltmarsh clays and cohesive sands (Boudreaux, 2009). The improvement of this 

parameter in areas with erosion problems could play an important role in preventing or 

reducing erosion in saltmarshes. Plant roots for example can improve soil shear strength, 

and can act to reinforce a mass of soil against shear failure (Zhang et al. 2009), increasing 

soil stability and surface erosion resistance (Nugent, 2011; De Baets et al. 2005). 



155 

 The zonation in the Odiel saltmarshes is mainly driven by elevation and salinity. Soil 

texture (sandy to silt-clay) is possibly playing an important role in zonation as it has also 

been identified in other Mediterranean saltmarshes (Landi & Angiolini, 2015); although it 

has not been shown in the Odiel results here, it could be an interesting question to follow 

in future studies. For example, other authors (Ayyad & El-Ghareeb, 1982; Conesa et al., 

2011; Ihm et al., 2007) reported that zonation in coastal saltmarsh vegetation near sand 

dunes are greatly influenced by texture and salinity gradients, as well as soil-water 

relationships and soil texture. Thus, although the Odiel saltmarshes is greatly influenced 

by elevation due to its meso-tidal regime, in higher elevations (apart from salinity) plant 

zonation could be related to soil texture. This has been clearly observed in Limoniastrum 

monopetalum that was found broadly in sandy soils. 

 Short-term accretion rates can greatly vary spatially and temporally in saltmarshes. 

Accretion rates across saltmarsh habitat types largely depend of the tidal flood duration, 

where sites that are more frequently flooded for longer tend to show higher rates (Reed, 

1990; Cahoon et al., 1995; Leonard, 1997). Spatial and temporal variations of flooding 

frequency across the saltmarsh are subjected to seasonal or interannual sea level 

variations, influencing spatial and temporal deposition rates (Neubauer et al., 2002). In the 

Odiel saltmarshes, a relationship between deposition rates and habitat type was observed, 

where lower elevation habitats showed higher deposition rates. Furthermore, deposition 

rates within the same habitat type showed a spatial pattern depending on site location and 

geomorphology. This behaviour makes sense as interior sites are usually further from the 

sediment sources (e.g. main creeks) as sediments are deposited while they are 

transported across the saltmarsh first through small creeks and then across the inner 

saltmarsh flat (French & Spencer, 1993; Leonard, 1997). 

 Previous work (Castellanos et al., 1998) undertaken in the Odiel saltmarshes 

showed similar relationship between accretion rates and habitat type, indicating 

dependence between accretion rates and saltmarsh geomorphology. Castellanos et al. 

(1998) in their work also showed a seasonal pattern. In this work, a significant 

dependence between deposition and sampling seasons was not observed. This could be 

caused by the fact that the sampling period in this work covered two seasons, while 

Castellanos et al. (1998) recorded accretion rates monthly. Also, the interannual variation 

of Mediterranean climates could be playing an important role when different years are 

compared. 

 Finally, it is important to bear in mind that the short accretion rates do not take into 

account shallow and deep subsidence, thus these data are not suitable for modelling the 

potential respond of saltmarshes due to sea-level marsh. For this purpose, long term 

accretion rates should be used as the rates presented by Morales et al. (2003) (Table 2.1). 
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However, the results obtained here are used qualitatively for investigating the sediment 

availability within the saltmarsh. The results showed that there are sediments available 

within the Odiel saltmarshes, enabling the vertical growth of these saltmarshes. For 

example, accretion rates in mud flats and vegetated mud flats located near main channels 

shown much higher values than other habitats and locations. This information is crucial in 

a context of sea-level rise, and it will help to assess potential impacts in Chapter 7. 
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5. Remotely sensed data for saltmarsh habitat classification 

The aim of this chapter is to examine different remote sensing techniques for mapping 

saltmarsh habitats at fine scales (1:2,000), and the suitability of these techniques for 

monitoring saltmarsh habitats. Pixel-based and object-based image analyses are examined 

for mapping saltmarsh habitats accurately using a sub-site. The best approach is then used 

for mapping the entire Odiel saltmarshes. The final map is used for improving LiDAR-

derived DEM in Chapter 6 and as one of the input layers for running landscape models in 

Chapter 7 (SLAMM). 

 

5.1. Introduction 

Image classification is one of the most common image processing techniques for 

translating remotely sensed data into useful geographical information such as vegetation 

or habitat maps. Image classification is defined as “the aspect of image processing in which 

quantitative decisions are made on the basis of the data present in the image, grouping pixels 

or regions of the image into classes representing different ground-cover types” (Rees, 1999). 

Classifying remotely sensed data into a thematic map is challenging because the 

classification process may be affected by many factors such as the complexity of the 

landscape, characteristics of the remotely sensed data, image processing and classification 

approaches (Lu & Weng, 2007). In saltmarshes, accurately mapping detailed features 

within saltmarshes from remotely sensed data is an even greater challenge due to the low 

spectral contrast between plant species and the small scale of vegetation patterns. These 

are well recognised as the main limitations in saltmarsh mapping (e.g. Silva et al., 2008; 

Adam et al., 2009; Kelly et al., 2011) that complicate the classification process more than 

in other coastal or terrestrial environments. 

 The selection of a suitable classification approach for a specific study can be difficult. 

Generally, this is so because many factors such as data characteristics (e.g. spatial 

resolution and source), classification technique and availability of classification software 

play an important role in the classification results (Lu and Weng, 2007), and the use of 

different data or classifiers may result in different outputs. In addition, a wide range of 

classification approaches now exists, which may complicate the selection process further. 

Rees (1999), Tso and Mather (2009) and Horning et al. (2010) review techniques and 

classifiers, and in general, approaches can be grouped by specific criteria (Table 5.1) such 

as type of pixel information, whether training areas are used or not (i.e. supervised or 

unsupervised), or whether parameters are used or not.  

 Saltmarsh classifications reported in the literature fall into four main categories of 

image classification (Table 5.2). Sub-pixel based analysis (SPBA) (e.g. He et al., 2010) has 
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been applied to satellite imagery such as LandSat in order to capture information within 

the pixel (e.g. water, mud and vegetation). Application of pixel based image analysis 

(PBIA) is more common and diverse, and is used at several spatial scales due to the 

different nature of remotely sensed data (e.g. aerial photography and very high resolution 

satellite images). Studies at habitat (e.g. Thomson et al., 2004; Chust et al., 2008) and plant 

species level (e.g. Belluco et al., 2006) are common. Use of object based image analysis 

(OBIA) is rather more limited and has been applied to specific saltmarsh features (e.g. Kim 

et al., 2010), a few plant species and identification of mud (Ouyand et al., 2011). 
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Table 5.1 Types of image classification approaches based on different criteria. It should be noted 
that the inclusion in one category does not exclude a classification to be grouped into other 
categories. [Source: modified from Lu and Weng, 2007] 

Criteria Categories Characteristics Example of classifiers 

Whether 
training 
samples are 
used or not 

Supervised 
classification 

Land cover classes are defined. Sufficient reference 
data are available and used as training samples. 
The signatures generated from the training 
samples are then used to train the classifier to 
classify the spectral data into a thematic map. 

Maximum likelihood, 
Minimum distance, 
artificial Neural network, 
decision tree classifier. 

Unsupervised 
classification 

Clustering-based algorithms are used to partition 
the spectral image into a number of spectral classes 
based on the statistical information inherent in the 
image. No prior definitions of the classes are used. 
The analyst is responsible for labelling and 
merging the spectral classes into meaningful 
classes. 

ISODATA, K-means 
Clustering algorithm. 

Whether 
parameters 
such as 
mean vector 
and 
covariance 
matrix are 
used or not  

Parametric 
classifiers 

Gaussian distribution is assumed. The parameters 
(e.g. mean vector and covariance matrix) are often 
generated from training samples. When landscape 
is complex, parametric classifiers often produce 
‘noisy’ results. Another major drawback is that it is 
difficult to integrate ancillary data, spatial and 
contextual attributes, and non-statistical 
information into a classification procedure. 

Maximum likelihood, 
linear discriminant 
analysis. 

Non-
parametric 
classifiers 

No assumption about the data is required. Non-
parametric classifiers do not employ statistical 
parameters to calculate class separation and are 
especially suitable for incorporation of non-
remote-sensing data into a classification 
procedure. 

Artificial neural network, 
decision tree classifier, 
evidential reasoning, 
support vector machine, 
expert system. 

Which kind 
of pixel 
information 
is used 

Per-pixel 
approach 

Traditional classifiers typically develop a signature 
by combining the spectra of all training-set pixels 
from a given feature. The resulting signature 
contains the contributions of all materials present 
in the training-set pixels, ignoring the mixed pixel 
problems. 

Most of the classifiers, 
such as maximum 
likelihood, minimum 
distance, artificial neural 
network, decision tree, 
and support vector 
machine. 

Sub-pixel 
approach 

The spectral value of each pixel is assumed to be a 
linear or non-linear combination of defined pure 
materials (or endmembers), providing 
proportional membership of each pixel to each 
endmember. 

Fuzzy-set classifiers, 
subpixel classifier, spectral 
mixture analysis. 

Object-
oriented 
approach 

Image segmentation merges pixels into objects and 
classification is conducted based on the objects, 
instead of an individual pixel. No GIS vector data 
are used.  

Most of the classifiers used 
in per-pixel approach (to 
see ecognition for more 
details). 

Per-field 
approach 

GIS plays an important role in per-field 
classification, integrating raster and vector data in 
a classification. 

GIS-based classification 
approaches. 

 

 SPBA is most appropriate for middle spatial resolution data (between 10 and 30 m) 

such as LandSat imagery. This approach has been used for mapping features within the 

marshes and plant species. For example, He et al. (2010) explored the feasibly of spectral 

mixture analysis of LandSat TM for monitoring estuarine vegetation. They conclude that 

this technique with appropriate endmembers (or pure material) had relatively 
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satisfactory accuracy for monitoring vegetation. However, this technique shows some 

limitations because the endmember selection is very complicated in mosaic vegetation 

structures of saltmarsh environments (Silvestri et al., 2003). 

 The more widely applicable PBIA method allows use of different data types, and low 

to high spatial resolution. Yang and Liu (2005) argue that spectral confusion is the major 

limitation for reaching adequate accuracy using this approach when medium spatial 

resolution data and broad spectral bands are used in mapping saltmarshes. The majority 

of the recent studies reviewed in the literature used high spatial resolution images for 

performing PBIA (Table 5.2), which it is consistent with Yang’s arguments. In addition, 

Beluco et al. (2006) state that high spatial resolution data benefit the classification results 

for two main reasons: i) smaller pixel size increases the number of pixels per each training 

area, and ii) heterogeneity within the pixel is reduced. This means that there are more 

pixels available for training the classifier, and the distinction between classes may 

improve. 

 

Table 5.2 Summary of the main classification approaches used in saltmarsh mapping 

Categories Classifier Classified features Data used References 

Pixel based 
Supervised 
classification 

Maximum 
likelihood 

Vegetation, water, mud 
Vegetation zones, sand, 
mud and stone 
Five plant sp. and soil 

LandSat; Photo 
CASI; CASI+Lidar 
ROSIS,CASI, MIVIS  
and QuickBird 

Ramsey & Laine (2013) 
Thomson et al. (2004) 
Brown (2004) 
Belluco et al. (2006) 

Unvegetated/vegetated  
Coastal land-cover 
Plant communities 

Photo 
Photo+Lidar 
Lidar 

Van der Wal et al. (2008)  
Chust et al.(2008) 
Collin et al.(2010)  

Spectral 
angle mapper 

Four plant species and 
soil 

ROSIS,CASI, MIVIS, 
QuickBird 

Marani et al. (2006) 
Belluco et al. (2006) 

Neural 
network 

Vegetation zones, mud 
and water 

CASI Brown (2004) 

Pixel based 
Unsupervised 
classification  

K-means 
Four plant species and 
soil  

ROSIS,CASI, MIVIS, 
QuickBird 

Belluco et al. (2006) 

Object based 

Several 
classifiers 
available in 
eCognition 

Two plant species, mud 
Vegetation zones 
Vegetation, mud ,water 
Two plant species, mud 
Segmentation  

Landsat 
Landsat 
Photo 
QuickBird 
 

Hurd et al. (2006) 
Tian et al. (2008) 
Kim et al. (2011) 
Ouyang et al. (2011) 
Moffett & Gorelick (2013) 

Sub-pixel  
based 

Spectral 
mixed 
analysis 

Few plant species, mud 
and water  

Landsat He et al. (2010) 

 

 PBIA is increasingly used to map saltmarshes, usually for identifying whole wetlands 

from other land-cover classes (e.g. Chust et al., 2008; Ramsey & Laine, 2013) and for 

identifying features or plant zonation within the saltmarsh (e.g. Belluco et al., 2006; 

Marani et al., 2006). Nevertheless, the studies that attempt to classify features within the 

saltmarsh through supervised techniques seem to be applied to relatively small study 
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sites. This is so because the classifiers are very sensitive to the quality and quantity of 

training areas selected, and in small sites it is easier to gather representative and spatially 

distributed ground data for selecting suitable training areas (Thomson et al., 2004). 

 OBIA has been tested with LandSat images (Hurd et al., 2006; Tian et al., 2008), 

however high spatial resolution imagery has been used more recently to successfully 

distinguish small objects within the saltmarshes (Moffett & Gorelick, 2013) such as ponds, 

small creeks and vegetation patches. This is an emerging research area; published 

examples are few and quite recent, focused on evaluating segmentation parameters and 

environment-specific methods (Kim et al., 2011; Moffett & Gorelick, 2013), which at 

present show little consensus within saltmarsh applications. The low spectral contrast of 

tidal saltmarsh vegetation has limited the OBIA-studies to distinguish between water, mud 

and water combined (Hurd et al., 2006; Kim et al., 2011) and few plant species (Ouyang et 

al., 2011). However, as it has been reported that the low contrast of vegetation may 

depend on the specific nature and structure of local vegetation and that differentiation 

between species can therefore vary geographically; i.e. the rules defining specific species 

and habitats likely vary from saltmarsh to saltmarsh. 

 Regardless of the classification method, some authors (Gilmore et al., 2008; Chust et 

al., 2008; Arroyo et al., 2010) have included elevation data within the classification 

process for distinguishing species of low spectral contrast located at different elevation 

within the marsh due to the complications for separating saltmarsh plant species or 

communities,. This is possible because there is a tight relationship between species and 

elevation that underpins zonation and habitat patches within saltmarsh environments 

(Sanchez et al., 1996; Bockelmann et al., 2002; Silvestri et al., 2005). Elevation data has 

been used to improve the classification process of both PBIA and OBIA approaches. 

 Overall, the success in saltmarsh mapping strongly depends on the particular 

characteristics of each site, including vegetation species present at each site. Thus, it is 

important to explore different approaches for a particular site in order to maximise the 

possibilities of selecting the most suitable approach for that site. Here, two image 

classification approaches were analysed using a representative smaller site (the Saltes 

Island). Then, the best approach was applied to classify saltmarsh habitats across the 

entire study area. The results obtained were combined with the vector information 

digitised in Chapter 3 to map the entire Odiel saltmarshes protected area. The resulting 

classification is a primary input describing the estuarine environment in the SLAMM 

model applied in Chapter 7 to examine the impact of future change in sea level. 
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5.2. Class definition and preliminary data processing  

The analyses undertaken focus on the saltmarsh environment and thus all the defined 

classes for image classification were orientated towards saltmarsh habitats. During the 

class selection process, it was also important to consider the limitations of the method, 

and available sources for distinguishing among the classes. The class selection is not an 

easy task, and it can influence the degree of successful classification results later on. The 

saltmarsh species-assemblages used to define the habitat classes were previously derived 

from field-based vegetation survey data (Chapter 4). The vegetated saltmarsh 

environment was thus represented by low marsh, salt pans, mid marsh, high marsh and 

Spartina (high) marsh. 

 However, some of these species-assemblages are composed by similar species 

making difficult their spectral recognition as a single class. A spectral separability analysis 

was applied in ENVI (v 4.6) using training areas and the 2013 aerial photography (red, 

green, blue and IR bands) before performing the supervised classifications. After testing 

the separability among classes, some of the previously defined classes were merged. Mid 

marsh and high marsh were spectrally confused due to both are characterised by tall 

salicornia species (S. fruticosa and S. perennis subsp. perennis); and low marsh and 

(vegetated) salt pan were also confused due to both are characterised by short Salicornia 

species (S. perennis subesp. perennis and S. ramossisima). Thus, mid marsh and high marsh 

were merged into Salicornia marsh as they mainly contained Salicornia sp. with similar 

height/structure; and low marsh and (vegetated) salt pan were combined into low marsh 

class. However, some of the classes that showed spectral confusion were kept when these 

classes occurred at different topographic elevations and were form by different species 

characterised by different vegetation height such as Spartina marsh and low marsh. The 

following 5 classes were established for performing supervised classifications (Figure 

5.1): 

• Low marsh: Salicornia perennis perennis, Salicornia ramossisima and Atriplex 

portulacoide. This class usually have a darker colour than Salicornia marsh due to 

this vegetation is flooded during the high tide and the vegetation is usually covered 

by thin layer of mud 

• Salicornia marsh: >90% of Salicornia fruticosa and Salicornia perennis subsp. alpini, 

and <10 % of other species such as Arthrocnemum macrostachyum, Atriplex 

portulacoide, Limoniastrum monopetalum or Spartina densiflora 

• Spartina marsh: >90% Spartina densiflora and <10% of other species such as 

Salicornia fruticosa, Atriplex portulacoide and Arthrocnemum macrostachyum. 

• Mud: bare mud 

• Water: ponds 
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Figure 5.1 View of the 5 classes defined from the 2013 aerial photography (0.16 cm resolution), 
where each letter refers to the following class: (a) Mud, (b) Low marsh, (c) Salicornia marsh, (d) 
Spartina marsh, (e) Water 
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5.3. Training and validation areas sampling design for image classification 

Training areas and validation areas are a very important part of the image classification 

process. Training areas enable supervised classifications to be undertaken, whilst 

validation areas are used to assess the results of the classification. The quality of these 

areas, as well as the algorithm used to perform the classification, determine the overall 

classification accuracy. Hence the selection of these areas was planned thoroughly before 

undertaking field surveys. 

 Training areas should be located on those places where homogeneous samples of 

known cover class are found (Tso & Mather, 2009). Training areas are ground-controlled 

data or information regarding the nature of study area and should accommodate the intra-

class variability within the study site. Thus, the selection of these areas was based on the 

diversity of each class during fieldwork undertaken in September 2011 and 2012. 

However, in order to prevent positive biases for estimating the classification accuracy, 

training areas of each class must be different and relatively far apart from the validation 

areas (Belluco et al., 2006). For example, if both areas are neighbours, the probability of 

similarity is higher, resulting in overestimates of the accuracy. The number of training 

areas collected ranged from 40 to 60 areas (polygons) per class. 

 Validation areas are ground-truth data that have been collected randomly for 

assessing the results of the classification. A stratified sample method was performed for 

validating selected areas by class and generating random points within a pre-defined 

classified layer (using the 2003 Andalusian vegetation map; see section 2.3.1). This was 

undertaken in ArcGIS - ArcToolbox 10.2 (Management tool – Feature class – Create random 

points). The sample size is very important because it provides information about the 

classification accuracy (confusion matrix) and assists in validating classification results. 

Therefore, the sample size should be representative of the population, and it should give 

enough random information for training the statistical classifiers. Based on similar studies 

(Canovas, 2012), a minimum number of 20 validation areas per class should be 

considered. 

 The training and validation areas were digitised over the 2013 aerial photography in 

ArcGIS 10.2 at 1:2.500 scales. The training areas were photo-interpreted using 

information from field surveys, a geo-referenced photograph catalogue (Figure 5.2) 

generated for this work, elevation data and the pre-existing vegetation map (2003). In the 

case of validation areas, the ground-truth data (field-based vegetation survey) was used. 

The GPS points were converted into ‘shapefiles’ containing the ground-truth data 

information, then this information was used to digitise homogeneous polygons over the 

2013 aerial photography. 
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Figure 5.2 Sites of the ground-based photography integrated in the photo catalogue. 
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5.4. Method 

In order to explore the best classification approach, PBIA and OBIA were performed over 

the 2013 aerial photography using the four spectral bands (Blue, Green, Red and IR), and 

then these four bands plus LiDAR-derived elevation data (DSM). In order to reduce 

processing time and to explore the different classifications and data, a sub-site was 

selected: the Saltes Island a central part of the Odiel-Tinto estuary with an area of 665 ha 

approximately (Figure 5.3). Due to the low spectral contrast among saltmarsh classes, the 

main channels and non-saltmarsh habitat were masked in order to avoid spectral noise 

and focus on the saltmarsh-specific habitats. Based on the results obtained in the OBIA and 

PBIA classifications, the best approach was then applied to the saltmarsh environments 

over the entire study area using a saltmarsh mask Figure 5.4. 

 

 

Figure 5.3 Location of the sub-site for performing different image analysis approaches: the Saltes 
Island (The Odiel saltmarshes, SW Spain) 

 

 



 

5.4.1. Pixel Based Image Analysis (PBIA)

Maximum likelihood (ML) algorithm was applied to perform two supervised 

classifications using ENVI (v 4.6): one with only four spectral bands (Blue, Green, Red and 

Infrared); and the other one with four spectral bands plus elevation data (DEM). This 

algorithm performs statistical supervised pattern recognition calculating the probability of 

a pixel belonging to each predefined class. In this approach, a pixel is associated to the 

class to which the probability is the highest and it is based on Bayesian prob

more details see: Tso and Mather (2009

majority/minority analysis implemented in ENVI, where a kernel matrix with size 3x3 was 

Figure 5.4 Workflow diagram of the method used

Pixel Based Image Analysis (PBIA) 

Maximum likelihood (ML) algorithm was applied to perform two supervised 

classifications using ENVI (v 4.6): one with only four spectral bands (Blue, Green, Red and 

Infrared); and the other one with four spectral bands plus elevation data (DEM). This 

thm performs statistical supervised pattern recognition calculating the probability of 

a pixel belonging to each predefined class. In this approach, a pixel is associated to the 

class to which the probability is the highest and it is based on Bayesian prob

Tso and Mather (2009: 58)). The post-classification was based on 

majority/minority analysis implemented in ENVI, where a kernel matrix with size 3x3 was 
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Workflow diagram of the method used 

Maximum likelihood (ML) algorithm was applied to perform two supervised 

classifications using ENVI (v 4.6): one with only four spectral bands (Blue, Green, Red and 

Infrared); and the other one with four spectral bands plus elevation data (DEM). This 

thm performs statistical supervised pattern recognition calculating the probability of 

a pixel belonging to each predefined class. In this approach, a pixel is associated to the 

class to which the probability is the highest and it is based on Bayesian probability (for 

classification was based on 

majority/minority analysis implemented in ENVI, where a kernel matrix with size 3x3 was 
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used. The calibration of the classifier was performed through training areas digitised in 

ArcMap (ArcGIS 10.2). 

 

5.4.2. Object Based Image Analysis (OBIA) 

5.4.2.1. Image segmentation 

The segmentation process was performed in two main steps. The first step was to apply 

the Multi-Resolution Segmentation (MRS) algorithm integrated in eCognition Developer 

software (v 8.7) (Baatz & Schäpe, 2000; Benz et al., 2004; Moffett & Gorelick, 2013) to the 

2013 aerial photography. As described in Benz et al. (2004), MRS is a region-growing 

method that groups randomly selected pixels in a scene into objects by automated merger 

decisions based on a homogeneity criterion and scale parameter. The homogeneity 

criterion of the MRS algorithm measures how homogeneous or heterogeneous a pixel (or 

object) is based on a combination of colour and shape properties of both the initial and the 

potential resulting image object. The segmentation process is based on the following 

settings that must be defined by the user: 

� Spectral value (or colour) versus shape heterogeneity weights: this controls the 

importance of the spectral and shape information within the segmentation (from 0 

to 1, it must be specified how much weight is given to each property, which must 

then sum to 1). The colour homogeneity is based on the standard deviation of 

spectral bands (which can also be also weighted). In this analysis, it was given 

double weight to the NIR band than to the other bands. The shape homogeneity is 

based on the deviation of a compact or smooth shape. 

� Smoothness versus compactness weights: this controls the object shape 

information and determines how much the object shape is spatially compact versus 

spectrally homogeneous and less compact (Moffett & Gorelick, 2013), which also 

must sum to 1. 

� Scale parameter: this is the threshold that limits overall object colour and shape 

complexity. Higher scale parameters means less restriction for merging pixels (or 

objects) and therefore the resulting object will be bigger, while smaller scales will 

result in smaller resulting objects.  

All this information is computed to determine whether to merge a pair of adjacent pixels 

(or objects) or not. For example, a pair of objects is merged when the shape and spectral 

heterogeneity does not exceed the defined scale parameter (Moffett & Gorelick, 2013). 

Here, different scale parameters were previously applied to a selected subset in order to 

investigate the optimal parameter. The optimal scale parameter for this analysis was 10. 

This scale parameter lets us distinguish small creeks and ponds at object level, which are 

the smallest objects to be recognised in the image. 
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 In order to merge partially small objects previously created, the second step was to 

perform the same segmentation process to the brightest objects in the scene (which are 

related to vegetation patches and salt pans that usually form bigger patches than small 

creeks and ponds). The brightest objects were merged using a larger scale parameter (15). 

5.4.2.2. Image classification 

Image classification is then applied to the objects previously created. The K-nearest 

neighbour (KNN) classifier (Kim et al., 2011) was the algorithm used for performing the 

classification. First, the classifier was trained with training points obtained by following 

the below steps (for avoiding user intervention in the object creation): 

1. Training areas in shapefile format (ArcGIS) used in PBIA were imported to 

eCognition and used in a intial segmentation with the parameters specified above 

and specifying that the resulting objects respect the training area boundary. This 

means that one training area could be divided into smaller objects, but the outside 

border will remain unchanged in the new objects. 

2. The new training areas (now forming smaller polygons) are exported into ArcMap, 

where the polygon layer is converted into a layer of points, where every point is 

located within a polygon (object) and contains class information (code and name). 

3. The point layer is then used for training the resulting objects from the segmentation 

process in the OBIA (this time without specifying to use the training areas layer in 

the segmentation process). 

 

5.4.3. Accuracy assessment 

The accuracy assessment of the image classification is evaluated through visual 

comparisons with information obtained from field campaigns and confusion matrices using 

validation areas. The evaluation process used mostly direct information on the spatial 

vegetation distribution obtained in Chapter 4, although the pre-existing vegetation map 

(2003) and information reviewed in from the literature (Castellanos et al., 1994) were 

used to support this field data. Here, a coefficient agreement for nominal scales, called the 

Kappa index (Cohen, 1960), was also calculated. 

 

5.5. Exploring the best approach for mapping saltmarsh habitats 

The results of PBIA and OBIA obtained using i) the four spectral bands and ii) the four 

spectral bands plus the DEM layer are shown in Figure 5.5 and the confusion matrices in 

Table 5.3. Overall, the classifications using OBIA presented better results than PBIA. The 

overall accuracy was 54.5 % for PBIA and 70.1 % for OBIA. Additionally, there were 
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significant increases in classification accuracy (Table 5.3) when the additional DEM layer 

was added to the classifier used in PBIA (71.8 %) and OBIA (83.1 %). 

 The gain in accuracy achieved using the DEM was greater for PBIA (+17 % 

corresponds to a 32 % improvement) than OBIA (+13 % relates to an 18 % improvement). 

Part of the increase in overall accuracy in PBIA and OBIA when the DEM layer was added 

appears to be due to an increase in discrimination between the low marsh and Spartina 

marsh, and Salicornia marsh and Spartina marsh (Table 5.3). For example, the Spartina 

marsh accuracy increased from 5.7 % to 67.1 % in PBIA (Table 5.3; A and B) and from  

31.7 % to 74.1 % in OBIA (Table 5.3; C and D) when the DEM layer was added. The 

accuracy of this class has increased due to a reduction in the areas of low marsh and 

Salicornia marsh misclassified as Spartina marsh. The accuracy (in both PBIA and OBIA) 

was not affected for the water class when the DEM layer was used, and it was slightly 

affected for classes such as mud, low marsh and Salicornia marsh. Overall, the classification 

using OBIA was more accurate than the classification using PBIA. All classes except mud 

were better classified using OBIA than PBIA. Thus, OBIA including DEM layer was 

considered the best approach for mapping the entire study area. 
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Figure 5.5 Image classification of Saltes Island using different data and image analysis techniques: 
(A) Pixel-based image analysis with only spectral data; (B) Pixel-based image analysis adding 
elevation data (DEM); (C) Object-based image analysis with only spectral data; and (D) Object-
based image analysis adding elevation data. [B, C and D results overleaf]. Note: only intertidal and 
saltmarsh environments are considered here, and all other habitats have been masked 
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Figure 5.5 cont. Image classification of Saltes Island using different data and image analysis 
techniques: (A) Pixel-based image analysis with only spectral data; (B) Pixel-based image analysis 
adding elevation data (DEM); (C) Object-based image analysis with only spectral data; and (D) 
Object-based image analysis adding elevation data.. Note: only intertidal and saltmarsh 
environments are considered here, and all other habitats have been masked 
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Figure 5.5 cont. Image classification of Saltes Island using different data and image analysis 
techniques: (A) Pixel-based image analysis with only spectral data; (B) Pixel-based image analysis 
adding elevation data (DEM); (C) Object-based image analysis with only spectral data; and (D) 
Object-based image analysis adding elevation data.. Note: only intertidal and saltmarsh 
environments are considered here, and all other habitats have been masked 
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Figure 5.5 cont. Image classification of Saltes Island using different data and image analysis 
techniques: (A) Pixel-based image analysis with only spectral data; (B) Pixel-based image analysis 
adding elevation data (DEM); (C) Object-based image analysis with only spectral data; and (D) 
Object-based image analysis adding elevation data.. Note: only intertidal and saltmarsh 
environments are considered here, and all other habitats have been masked 
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Table 5.3 Confusion matrices and kappa indices of different classification approaches and data at 
the Saltes Island (2013). The values in the confusion matrices are in percentage and represent the 
producer accuracy (which highlights how well the map objects have been classified) 

(A) Pixel - based classification: multispectral data 
Classif/Ground data Water Mud Low marsh Salic. marsh Spart. marsh 
Water 92.3 0 0 0 0 
Mud 0 87.5 0 0 0 
Low marsh 7.7 12.5 89.6 36.5 52.9 
Salic. marsh  0 0 10.3 61.2 41.4 
Spart. marsh 0 0 0 2.4 5.7 

Total accuracy (%)= 54.5   Kappa Index = 0.49 
 

(B) Pixel - based classification: multispectral data + DEM 
Classif/Ground data Water Mud Low marsh Salic. marsh Spart. marsh 
Water 92.3 0 0 0 0 
Mud 3.8 88.9 0 0 0 
Low marsh 0 11.1 96.5 22.3 13.2 
Salic.marsh 0 0 3.4 69.6 19.8 
Spart. marsh 3.8 0 0 12.5 67.0 

Total accuracy (%)= 71.8   Kappa Index = 0.65 
 

(C) Object - based classification: multispectral data 
Classif/Ground data Water Mud Low marsh Salic. marsh Spart. marsh 
Water 97.6 0 0 0 0 
Mud 0 77.7 0 0 0 
Low marsh 2.4 22.3 92.6 3.9 55.0 
Salic. marsh 0 0 7.4 81.5 13.3 
Spart. marsh 0 0 0 14.6 31.7 

Total accuracy (%)= 70.1   Kappa Index = 0.59 
 

(D) Object - based classification: multispectral data + DEM 
Classif/Ground data Water Mud Low marsh Salic. marsh Spart. marsh 
Water 97.6 0 0 0 0 

Mud 0 78.3 0 0 0 
Low marsh 2.4 21.7 93.1 0.2 6.3 
Salic. marsh 0 0 6.9 83.7 19.6 
Spart. marsh 0 0 0 16.1 74.1 

Total accuracy (%)= 83.1   Kappa Index = 0.76 
 

5.6. Odiel saltmarsh mapping 

The classification results for the saltmarsh habitats in the Odiel saltmarshes are shown in 

(Figure 5.6). The habitat map reveals a complex pattern in the spatial distribution of these 

habitats. The Spartina marsh, which is characterised by dense and dominant coverage of 

Sp. densiflora, and the Salicornia marsh, characterised by S. perennis subsp alpine and S. 

fruticosa (mid-high saltmarsh habitats), are most abundant. The Spartina marsh is mainly 

distributed in the upper-mid estuary, and the Salicornia marsh in the mid- and low 

estuary.  
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Figure 5.6 Odiel saltmarsh habitat mapping using object-based image analysis (multispectral data 
and elevation data derivate from a combined photogrammetric and LiDAR flight) 

 

 The low and mid saltmarsh are closely associated in terms of their plant species 

communities, characterised in the main by S. perennis and A. portulacoides, but 

distinguished by growth structure where plants are notably shorter in the low marsh (S. 
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perennis subsp perennis, S. ramosissima) areas than in the mid- saltmarsh areas (S. 

perennis subsp alpini). Very low density vegetation, bare mud (intertidal flats and salt 

pans) and water (small creeks and ponds), are found throughout the estuary, but the salt 

pans are a more prominent feature of the upper estuary. Zonation is strongly influenced 

by the creek network, and patterns of habitat distribution closely follow this network. 

 The overall accuracy of the classification was 85% and the Kappa coefficient 0.79 as 

it is shown in the confusion matrix (Table 5.4). As this information does not show how 

well individual classes have been classified, the user12 and producer13 accuracy was also 

estimated. Focusing on the producer accuracy, which highlights how well the map objects 

have been classified, all the cover classes have reached values over 80%. Mud and low 

marsh were classified with producer accuracy greater than 90% (95 and 92% 

respectively), while water, Salicornia marsh and Spartina marsh were slightly less (84, 83 

and 82% respectively). The average height canopy (DSM) between low marsh and the rest 

of vegetation classes played an important role in the classification results, enabling high 

accuracy values for this class. 

 

Table 5.4 K-nearest neighbour confusion matrix for the 5 saltmarsh habitat cover classes. The 
columns represent the reference data derived from validation areas and the rows the user data 
derived from the classification results 
 
User/Ref. class Water Mud Low marsh Salic. marsh  Spart. marsh  Total 
Water 5966 0 0 0 0 5966 
Mud 933 5273 112 0 0 6318 
Low marsh 121 0 9389 800 640 10950 
Salic. marsh 0 0 613 18807 2053 21473 
Spar. marsh 0 0 87 2991 17118 20196 
Total 7100 5557 10201 22598 20924   
Accuracy             
Producer (%) 84 95 92 83 82   
User (%) 100 83 86 87 85   
Overall (%) 85           
Kappa Coefficient 0.79           
 

5.7. Discussion and summary 

To map saltmarsh habitats with high accuracy is a challenge due to the low spectral 

contrast between plant species and the small scale of vegetation patterns (Adam et al., 

2009; Kelly et al., 2011; Silva et al., 2008). In this sense, the combination of spectral and 

elevation information significantly improved saltmarsh mapping, allowing higher accuracy 

values. The results obtained in this work have shown the improvements of adding 

                                                             

12 It refers to the probability of that a certain class on the ground is classified as such. 
13 It refers to the probability of a pixel labeled as a certain class in the map is really this class. 
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elevation data to the image analysis of saltmarsh habitats (Table 5.3) using two 

approaches: OBIA and PBIA. 

 Using multispectral and elevation data, OBIA showed a higher overall accuracy and 

Kappa coefficient than PBIA. However, when the accuracy values are considered per class, 

some classes were well classified in both OBIA and PIBIA, while others classes were better 

classified in one approach than in the other one. The classes that were classified with very 

high accuracy values in both approaches were water and low marsh. However, classes such 

as Salicornia marsh, Spartina marsh were better classified using OBIA (obtaining higher 

accuracy values). Unlike other classes, mud was classified better in PBIA than OBIA, 

although in both cases reached high accuracy values (> 78%). The better results in OBIA is 

probably so because in OBIA adjacent pixels with similar features were merged before 

performing the classification reducing the ‘salt and pepper’ effect characteristic in PBIA 

classifications. Apart from the influence of working with pixel or objects on the 

classification results, the classifiers used in PBIA and OBIA were different. This fact can 

also influence the classification results. 

 High overall accuracy (85%) was also obtained over the entire study site integrating 

a large expanse of saltmarsh. This result is comparable to the values obtained by Brown 

(2004) and Belluco et al. (2006). However, they applied a pixel-based classification 

(maximum likelihood classifier) to a smaller saltmarsh area using hyperspectral satellite 

images (CASI) and elevation data. The overall accuracy obtained by them were 79 (Brown, 

2004) and 92 % (Belluco et al., 2006). The high spectral resolution of these images 

provided more information to discriminate between saltmarsh plants with low spectral 

contrast. Interestingly, results from the Odiel saltmarsh present a higher accuracy for bare 

mud (95%) than in the Brown (2004) study (75%). The segmentation process previous to 

the classification has helped in saltmarsh feature recognition in classes such as water and 

mud, resulting in high individual accuracy values: 84% water (ponds and small creeks) 

and 95% for mud (tidal flats and salt pans). 

 The application of PBIA approach in saltmarsh environments has some advantages 

and drawbacks. This is a useful approach for its broad spatial coverage, repeatability, 

analytical speed and automation potential (Adam et al., 2009; Moffett & Gorelick, 2013). 

However, there are also some drawbacks when high resolution imagery is used due to 

complex spatial patterns in saltmarsh at the fine scale and the low spectral contrast in 

vegetation classes (Ouyang et al., 2011). Ouyang et al. (2011) state that high resolution 

images in saltmarshes may produce ‘salt and pepper’ effect, resulting in noisy maps. The 

spectral contrast level in saltmarsh may distinct in different sites depending mainly on 

species presence (Silvestri et al., 2003; Rosso et al., 2005; Artigas and Yang, 2006; Andrew 

and Ustin, 2008) and season (Gao and Zang, 2006; Gilmore et al., 2008). Thus, the success 
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of this method for mapping saltmarshes can strongly depend on remotely sensed data 

characteristics and time of the year acquired, as well as on plant species found at the site. 

 In contrast to PBIA, OBIA considers more variables that act simultaneously toward 

the common aim of distinguishing saltmarsh vegetation classes (in this particular case). 

These variables are the pixel spectrum, its relative spatial location, and the local spectral 

homogeneity and shape of adjacent groups of similar pixels (Moffett & Gorelick, 2013). All 

these variables can help to improve vegetation pattern recognition in saltmarshes, and 

thus to minimise the ‘salt and pepper’ effect typical of PBIA approaches. Several authors 

argue that, in general, this approach offers better results than pixel based approaches 

(Chen et al., 2006; Smith, 2009; Blumberg & Zhu, 2007; Platt & Rapoza, 2008). However, 

the major disadvantage of OBIA in comparison to PBIA is that it is a semi-automatic 

process that requires more user inputs. Thus, it is very dependent on user knowledge, 

which makes generalisation of the approach rather difficult. 

 In short, saltmarshes are generally characterised by small scale vegetation zones 

and low spectral contrast among plant communities, which can complicate the 

classification processes mixing plant species cover and therefore reduce the accuracy of 

results. To minimise noise and maximise accuracy, it is very important to select (where 

possible) the most suitable data set comprising appropriate spatial and spectral resolution 

and high resolution elevation data, in addition to a suitable classification approach that 

specifically addresses the classification needs identified. The approaches frequently used 

for classifying saltmarshes are PBIA and OBIA, which have showed advantages and 

disadvantages based on site specifications and data, but evidence from the Odiel 

saltmarshes shows that OBIA can handle many of the challenges of habitat classification 

mapping. 
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6. Correction and assessment of LiDAR-derived DEM 

The aim of this chapter is to investigate the effectiveness of using elevation ground control 

points (differential GPS) and vegetation surveys to improve vertical accuracy in a LiDAR-

derived DEM for modelling potential sea-level rise impacts in Atlantic-Mediterranean 

saltmarshes, through the application of habitat-specific correction factors in the Odiel 

saltmarshes (Spain, Gulf of Cadiz). Essential to this process is the availability of a high-

resolution habitat map, and here the Odiel saltmarsh habitat map obtained in Chapter 5 

was used for this purpose (85% overall accuracy). The resulting DEM was used in Chapter 

7 as one of the main inputs that feeds the predictive model (SLAMM). 

 

6.1. Introduction 

Accurate digital elevation models (DEMs) of saltmarshes are crucial for both conservation 

and management goals. Light detection and ranging (LiDAR) is increasingly used for 

topographic surveys due to the ability to acquire high resolution data over spatially-

extensive areas. This capability is ideally suited to saltmarsh environments, which are 

often vast, inaccessible systems where topographic variations can be very subtle. 

Derivation of surface (DSMs) versus bare ground elevation models (DEMs) relies on the 

ability of the LiDAR sensor to accurately record multiple returns. In saltmarshes however, 

the dense stands of low (< 1 m) vegetation commonly found precludes the acquisition of 

more than one return, and the resulting DEM is no different to the DSM. Establishing the 

offset between ground and vegetation surface in order to correct the LiDAR-derived DEM 

can be challenging due to the spatial variability in saltmarsh habitats. 

 Under the physical limitations mentioned in Chapter 1, LiDAR-derived DEMs 

covering high-density vegetation saltmarshes are generally not accurate enough to 

distinguish topographic structure at the resolution that is used to determine tidal flooding 

or vegetation patterns (Hladik and Alber, 2012). Thus, a corrected DEM becomes essential 

for certain applications (e.g. tidal flooding and sea-level rise assessments) in saltmarshes 

characterised by dense evergreen vegetation, such those found in southern Europe. 

Previous works in saltmarshes have investigated and applied the minimum bin gridding 

method (e.g., Ewald, 2013; NOAA, 2010; Schmid et al., 2011), analysis of airborne infrared 

photography taken during a rising tide (Andrade et al., 2014) and species-specific 

correction factors (e.g. Hladik and Alber, 2012; Hladik et al., 2013; McClure et al., 2015) for 

‘user-modified’ DEM creation. In the case of using species-specific correction factors for 

correcting LiDAR-derived DEM, the work carried out by Hladik and Alber (2012) and 

Hladik et al. (2013) in a saltmarsh in Georgia (Atlantic coast, USA), and by McClure et al. 

(2015) in a saltmarsh in San Francisco bay (Pacific coast) showed that the DTM mean 
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errors can be significantly reduced using this method. However, accurate vegetation maps 

are required for its appliance over large areas. 

 

6.2. Method 

This methodology employed a multi-layered approach to develop and apply a habitat-

specific correction factor (HSCF) for a semi-automated adjustment of LiDAR-derived DEMs 

(Figure 6.1) with application to the Odiel saltmarshes. Although similar approaches have 

previously been applied (e.g. Hladik and Alber, 2012; Hladik et al., 2013; McClure et al., 

2015) to reduce mean vertical error in LiDAR-derived DEMs, all previous studies were 

conducted in the USA. Saltmarsh habitats in the US, especially those found in the Atlantic 

coast present dissimilarities to those located in Europe due to a range of differences in, for 

example, extent, vegetation type and structure. For example, saltmarshes in the Gulf of 

Cadiz comprise complex creek networks compared with the broad coastal tidal plains of 

the Atlantic US coast (Phinn et al., 1996). Saltmarshes found on the Pacific US coast, 

particularly in California, present more similarities to Atlantic-Mediterranean saltmarshes 

in the Gulf of Cadiz (Peinado et al., 1995) than those found in the Atlantic US coast, 

although species composition is distinctly different (e.g. S. pacifica vs S. perennis; Sp. foliosa 

vs Sp. densiflora and S. emerisi vs S. ramosissima are respectively associated with Pacific US 

and Gulf of Cadiz coasts). Thus, the success of this method applied to those saltmarshes 

found in the Gulf of Cadiz could vary based on these dissimilarities due to the difficulties 

related to saltmarsh species and habitat mapping. Thus, it is still unknown whether the 

use of habitat-specific correction factors can effectively reduce DTM vertical errors in all 

saltmarsh environments. 

 Unlike other approaches, the method undertaken here used remote sensed data 

acquired in a combined photogrammetric and LiDAR flight, with random vegetation 

surveys and object-based image analysis (OBIA) to apply the correction over the entire 

Odiel saltmarsh system. The production of a high-resolution habitat map was central to 

this approach in terms of facilitating the spatially-variable application of the habitat-

specific correction factor (HSCF) to the input (unmodified) LiDAR-derived DEM. The 

habitat map was derived from high resolution multispectral aerial photography (using 

RGB and NIR bands) and LiDAR-derived DSM (final result in Chapter 5). Due to vegetation 

height within Salicornia class was found to greatly vary depending on location; this class 

was divided into tall and short salicornia based on vegetation height (modified saltmarsh 

map). The acquisition of field data, comprising measurements of precise ground elevation, 

vegetation structure and height provided the information needed to calibrate and validate 

the correction factor. 

 



 

6.2.1. Study sites 

Two sites within the Odiel saltmarshes 

although canopy height data were collected across the entire saltmarsh for exploring 

height similarities within the same habitat type, and the potential of this method for 

application over the whole study area (the Odiel saltmarshes, 

selection was based on covering all habitat types previously 

Odiel saltmarshes. The first site (Site 1) is approximately 10 ha and located in Saltes Island 

(Figure 6.2). Habitats here are typical of those found throughout the mid

Odiel estuary saltmarshes with a dominance o
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Figure 6.1 Workflow diagram of the method used

within the Odiel saltmarshes were selected to develop

although canopy height data were collected across the entire saltmarsh for exploring 

height similarities within the same habitat type, and the potential of this method for 

application over the whole study area (the Odiel saltmarshes, 

selection was based on covering all habitat types previously defined (Chapter 4) for the 

The first site (Site 1) is approximately 10 ha and located in Saltes Island 

(Figure 6.2). Habitats here are typical of those found throughout the mid

Odiel estuary saltmarshes with a dominance of Salicornia species: high marsh (

, and S. fruticosa), mid marsh (S. perennis subsp. alpini

), low marsh (mixture of S. perennis subsp. perennis, Atriplex portulacoide and

), creeks and intertidal flats. The second site (Site 2) covers nearly 4 ha and is 
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Workflow diagram of the method used 

develop and test the method, 

although canopy height data were collected across the entire saltmarsh for exploring 

height similarities within the same habitat type, and the potential of this method for its 

application over the whole study area (the Odiel saltmarshes, Figure 2.7). The sites 

defined (Chapter 4) for the 

The first site (Site 1) is approximately 10 ha and located in Saltes Island 

(Figure 6.2). Habitats here are typical of those found throughout the mid-high and lower 

species: high marsh (S. 

S. perennis subsp. alpini and Atriplex 

S. perennis subsp. perennis, Atriplex portulacoide and 

. The second site (Site 2) covers nearly 4 ha and is 



located in the upper estuary, near the town of Corrales (Figure 6.2). This site provides 

good examples of salt pans and mid

densiflora, which it is poorly represented in Site 1.

Figure 6.2 Study area and site locations at the Tinto
Ground control points (GCPs) collected for both sites are represented by black dots

located in the upper estuary, near the town of Corrales (Figure 6.2). This site provides 

good examples of salt pans and mid- and high marsh habitats dominated by 

epresented in Site 1. 

Study area and site locations at the Tinto-Odiel estuary (Huelva, Southwest Spain). 
collected for both sites are represented by black dots 
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located in the upper estuary, near the town of Corrales (Figure 6.2). This site provides 

and high marsh habitats dominated by Spartina 

 

Odiel estuary (Huelva, Southwest Spain). 
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6.2.2. Field data 

Using the habitat classes defined for the Odiel saltmarsh habitat map (Chapter 5), a 

vegetation height survey was undertaken to ascertain the variance in canopy height across 

habitats within the entire Odiel saltmarshes and . Here, 12 representative sites covering 

different habitat types were sampled, where vegetation canopy height was surveyed at 

100 randomly located points within a 10x10 m quadrat. Canopy heights measured in each 

habitat type from different sites were compared using one-way analysis of variance 

(ANOVA). Additionally, a Tukey’s Honest Significant Difference (HSD) test (confidence 

level = 0.95) was also used. Statistical analyses were performed using the software R 

(version 2.15.1). 

A topographic survey of the saltmarsh was also undertaken at the testing sites. For 

this, ground control points (GCPs) - 260 within Site 1 and 132 within Site 2 - were 

established, at which ground elevation, canopy height and plant species presence were 

recorded (Figure 6.2). Ground elevation at the GCPs was surveyed using a Real-Time 

Kinematic (RTK) Leica-1200 (base station) GPS and two rovers with 0.02 m vertical and 

0.01 m spatial accuracy. The RTK Rover foot was placed flush with the marsh surface for 

ground elevation points. Orthometric heights (Zero in Alicante - the equivalent of mean 

sea level) were calculated from RTK elevations using the Spanish Geodetic Survey GEOID 

(as used for LiDAR elevations) EGM08-REDNAP (“Red Espanola De Nivelacion de Alta 

Precision”, Spanish High Precision Positioning Network). The total data set of 392 GCPs 

collected within the study sites were divided into training (70% of the GCPs; N=282) and 

validation data sets (30% of the GCPs; N=121). In addition, 20 GCPs were also collected 

over bare areas (bare ground and roads) for assessing the accuracy of the LiDAR data. 

 

6.2.3. Remote sensed data 

A LiDAR dataset was acquired in a combined LiDAR sensor and photogrammetric camera 

flight carried out in January 2013. Data were collected for the whole Odiel estuary during 

low tide (tide level = -1.1 m relative to MSL; tidal coefficient = 89) to minimize the amount 

of water on the marsh surface. Reported vertical and horizontal accuracies for the LiDAR 

sensor are 0.07-0.10 m and 0.15-0.17 m respectively.  The sensor collected up to 4 returns 

on upland areas (mean point density = 2 points per square metre), but across the 

saltmarsh and intertidal environment, only one return was recorded, meaning the ‘LAS’ 

files provided little further information for modelling the ground surface in this system. 

Thus, the DSM and the DEM are identical across the saltmarsh: the unmodified elevation 

dataset is henceforth referred to as the LiDAR-derived DEM, and was resampled to 1 m 
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resolution. Elevations were positioned in the Spanish vertical reference frame (Cero in 

Alicante) and projected onto the UTM (WGS-1984) coordinate (zone 29N) system. 

 A discordance between ground elevation and LiDAR survey dates arose due to 

weather conditions: the LiDAR flight had been planned to coincide with the field survey 

(which was undertaken in October 2012), but was delayed to January 2013(when weather 

and low tide conditions were next optimum). The tide coefficient was similar to that of the 

ground survey. Although not ideal, both surveys were still undertaken within the same 

winter period, thereby reducing the potential for significant change between surveys. 

Furthermore, except S. ramosissima most of the saltmarsh plant species found in Odiel 

saltmarshes such as S. fruticosa, S. perennis, A. macrostashyum and S. densiflora are 

perennial (Figueroa et al., 1987), which enables a stable evergreen vegetation canopy over 

the saltmarsh through the whole year. This has been checked and confirmed during the 

field campaigns. 

 

6.2.4. DEM corrections based on HSCF 

The habitat-specific correction factor (HSCF) was based on the vertical bias, or mean 

error, of the LiDAR-derived DEM with respect to the ground-truth data (the training 

GCPs). Ground elevations surveyed at 70% of the GCPs were compared to the DEM 

elevation values for the same locations. The difference between these two values at each 

GCP was used to first compute the vertical bias, and second, summarised as a mean 

correction factor for each habitat type. The vertical bias (CFi) has been previously used to 

compute correction factors for saltmarshes in Hladik and Alber (2012) and it is calculated 

as: 
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where ZDEMi is the elevation derived from the LiDAR-derived DEM, and ZGCPi is the elevation 

measured by RTK-dGPS, at each GCPi. For each habitat type j, a habitat-specific correction 

factor (HSCFj) is then computed from the arithmetic mean of all CFi that relate to each 

habitat type. 

Application of these habitat-specific correction factors to the Odiel study sites was 

undertaken using the high resolution saltmarsh habitat cover map (derived from the OBIA 

classification in Chapter 5). This facilitated the spatialisation of all HSCFj into a new layer 

HSCFmap (at 1m spatial resolution), and the correction of the LiDAR-derived DEM to a user-

modified DEM (mDEM) where: 
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The GCP validation dataset (30% of the collected GCPs) was use

and assess the difference between the LiDAR

(the true accuracy of the original LiDAR product). The vertical accuracy assessment of 

both elevation models was carried out using two error metrics: mean

Square Error (RMSE).

 

6.2.5. Saltmarsh habitat map

A high resolution habitat map was produced 

on a combined data product covering just the saltmarsh region (

non-marsh habitats (supratidal spits, reclamations) were masked. The source layers were 

multispectral aerial photography (January 2013) comprising panchromatic, 

red, green and blue bands and the

DSM of the saltmarsh environments). 

habitat-specific correction factor, 

tall Salicornia and short 

on the plant height survey undertaken for this work, which showed significant height 

differences within Salicornia 

eCognition is the possibility of 

particularly useful in or

classification (e.g. saltmarsh habitat map) based on a rule set without running the whole 

process again. The resulting map is shown in 

 

Figure 6.

 

The GCP validation dataset (30% of the collected GCPs) was use

and assess the difference between the LiDAR-derived DEM over vegetated environments 

(the true accuracy of the original LiDAR product). The vertical accuracy assessment of 

both elevation models was carried out using two error metrics: mean

 

Saltmarsh habitat map 

A high resolution habitat map was produced (Chapter 5) through the application of OBIA 

on a combined data product covering just the saltmarsh region (Figure 5.

marsh habitats (supratidal spits, reclamations) were masked. The source layers were 

photography (January 2013) comprising panchromatic, 

red, green and blue bands and the raw (unmodified) LiDAR-derived DEM (

saltmarsh environments). This habitat map produced 

specific correction factor, within which the Salicornia marsh

short Salicornia (a modified habitat map). This decision was made based 

on the plant height survey undertaken for this work, which showed significant height 

Salicornia dominated saltmarsh. One of the advantages of using OBIA in 

eCognition is the possibility of hierarchical structure of cover classes 

particularly useful in order to divide or merge different classes within the final 

classification (e.g. saltmarsh habitat map) based on a rule set without running the whole 

The resulting map is shown in Figure 6.4. 

Figure 6.3 Hierarchical structure of cover classes used in eC
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The GCP validation dataset (30% of the collected GCPs) was use to validate mDEM 

derived DEM over vegetated environments 

(the true accuracy of the original LiDAR product). The vertical accuracy assessment of 

both elevation models was carried out using two error metrics: mean error and Root Mean 

through the application of OBIA 

Figure 5.6). Water and 

marsh habitats (supratidal spits, reclamations) were masked. The source layers were 

photography (January 2013) comprising panchromatic, near-infrared, 

derived DEM (equivalent to a 

produced was used to apply a 

Salicornia marsh class was divided into 

. This decision was made based 

on the plant height survey undertaken for this work, which showed significant height 

he advantages of using OBIA in 

structure of cover classes (Figure 6.3). This is 

der to divide or merge different classes within the final 

classification (e.g. saltmarsh habitat map) based on a rule set without running the whole 

 

ierarchical structure of cover classes used in eCognition. 
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6.3. Results 

6.3.1. Ground survey 

Results from the saltmarsh ground survey showed significant plant height differences 

within Salicornia marsh. Thus, this class was divided into short Salicornia and tall 

Salicornia. Figure 6.5 highlights the variance in canopy height across habitat types in the 

Odiel saltmarshes. Canopy heights measured in the different habitats (2 sites in low marsh, 

3 in short Salicornia, 3 in tall Salicornia and 3 in Spartina marsh) were compared using 

one-way analysis of variance (ANOVA), which proved that there were significant 

differences in height means between habitats (p < 0.001). Additionally, the Tukey’s HSD 

(confidence level = 0.95) clarified that the height means were significantly different 

between different habitats (results were considered significant when p < 0.05) but were 

similar among the same habitat type. 
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Figure 6.4 Marsh habitat map of the Odiel saltmarshes (SW Spain) for applying the habitat-specific 
correction factor 
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 Results from the RTK survey at Site 1 and Site 2 showed that ground elevation 

ranged from 0.03 to 3 m in Site 1 and from 1.2 to 2.4 m in Site 2, and vegetation height 

from 0.03 to 0.61 and 0.05 and 1.07 m respectively. The GCPs were classified by habitat 

type, divided as 41 points within low marsh, 153 in short Salicornia, 102 in the tall 

Salicornia and 96 in the Spartina marsh. Ground elevation measured at each GCP in these 

different habitats was also compared using one-way analysis of variance (ANOVA), which 

proved that there were significant differences in ground elevation means between habitat 

types (p < 0.001). Additionally, the Tukey’s HSD clarified that the elevation means were 

significantly different between these cover classes. 

 

 

Figure 6.5 Vegetation height per habitat type at different sites, where “Lmarsh” means low marsh, 
“SSalicor” short Salicornia, “TSalicor” tall Salicornia and “Spmarsh” spartina marsh. The numbers 
state different sites within the Odiel saltmarshes. 

 

6.3.2. DEM production and accuracy assessment 

The HSCFs were only computed for vegetated saltmarsh habitat classes (Table 6.1) and the 

unvegetated classes (mud and water) were added to the mask layer (with a HSCF value of 

zero) to avoid negative bias. The results highlight that the Spartina marsh has the highest 

canopy and the largest standard deviation compared with the other classes. The variability 

in canopy height (reflected in the standard deviation) is explained by the structure of this 

plant, which grows in erect clumps of slender stems with long and narrow leaves. Other 

saltmarsh vegetation is distinctly shorter and less variable. 

  



191 

 

Table 6.1 Habitat-specific correction factors (HSCF), the associated standard deviation (SD) and the 
root mean square error (RMSE). 

Habitat class HSCF values (m) SD (m) RMSE 

Low marsh 0.15 0.067 0.104 

Short Salicor. 0.25 0.066 0.068 

Tall Salicor. 0.32 0.088 0.142 

Spartina 
marsh 

0.55 0.16 
0.292 

Mask 0 - - 

 

 The HSCF for each habitat class were converted to a spatially-distributed HSCF map 

using the habitat classification (Figure 6.6). This was applied as a spatially-distributed 

correction layer to the unmodified LiDAR-derived DEM across the whole study area. 

Comparison of unmodified and corrected DEMs are provided in Figure 6.7, for the area 

covered by Site 1 and Site 2, which highlights the changes in ground elevation as a result of 

the correction.. As it was expected the changes are more pronounced in those areas where 

the vegetation canopy was higher (i.e. the Spartina marsh). The supratidal zone, channels 

and bare mud remain the same as these were masked from the analysis. The two profiles 

(Transect 1 and 2) shown in Figure 6.6 clearly illustrate the spatially-varying elevation 

differences between the LiDAR-derived DEM and the corrected mDEM. 

 Accuracy was assessed in both the original DEM and corrected mDEM using a 

selection of ground control points (distinct from those used in the derivation of the 

correction factors). The results show that the HSCF considerably reduced the overall 

vertical mean error in both sites (Table 6.2): from 0.23 to 0.13 m in Site 1 and from 0.45 to 

0.09 m in Site 2. The unmodified DEM mean vertical error was greater than 0.1 m (the 

LiDAR reported mean error) for all habitat classes, except for low marsh. In the case of 

unvegetated areas the mean vertical error remained under the reported LiDAR accuracy 

(0.1 m): 0.09 m in bare mud areas and 0.04 in roads. In contrast, the mean vertical error in 

the corrected mDEM remains well within the reported LiDAR vertical mean error (0.1 m) 

for all habitat types except for Spartina marsh (that is slightly higher) as shown in Table 

6.2. The mean vertical biases in the taller and usually denser habitat types (Spartina marsh 

and tall Salicornia) are significantly decreased from the original DEM to the corrected 

mDEM: the mean error was reduced from nearly 0.53 to 0.13 m in Spartina marsh, and 

from 0.35 to 0.02 in tall Salicornia. The surface level in the rest of habitat classes was all 

slightly under-predicted in the corrected mDEM due to over estimation of the correction 

factor: low marsh (-0.02 m) and short Salicornia (-0.06 m). In order to investigate whether 
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the over-estimated correction factor was caused by the averaging technique selected (the 

mean), the median was also applied. Nevertheless, the results were unchanged when 

applying a different averaging technique. 

 

 
Figure 6.6 Habitat-specific correction factor (HSCF) map, where the correction factor for each 
habitat class has been spatially-distributed using the Odiel saltmarsh habitat map 
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Figure 6.7 Map of the two areas used as test sites for unmodified DEM corrections showing the 
unmodified and user-modifier DEM for Site 1 and Site 2, where: (a) and (b) are the unmodified and 
the user-modified DEM respectively in Site 1; and (c) and (d ) are the unmodified and the user-
modified DEM respectively in Site 2. Two transects (Transect 1 and Transect 2) were selected for 
comparing the height profiles of both DEMs at Site 1 and 2. In the profile graphs, note the 
differences in canopy heights in the unmodified DEM and the user-modified DEM, and the 
overlapping at creeks (where a mask was used). 

 

 

Table 6.2 Error statistic of the unmodified and user-modified DEM for each habitat cover class 
regard to GCP survey; where ‘ME’ is the mean error or vertical bias, ‘SD’ is the standard deviation 
and ‘RMSE’ the root mean square error. 

 Unmodified DEM User-modified DEM 

Habitat class ME (m) SD (m) RMSE (m) ME (m) SD (m) RMSE (m) 

Bare mud 0.09 0.04 0.01 Not used Not used Not used 

Low marsh 0.09 0.09 0.02 -0.02 0.08 0.06 

Short Salicor. 0.26 0.11 0.08 -0.06 0.13 0.05 

Tall Salicor. 0.35 0.18 0.15 0.02 0.17 0.03 

Spar. marsh 0.53 0.13 0.29 0.13 0.16 0.15 

Roads 0.04 0.05 0.004 Not used Not used Not used 

Overall site 1 0.23 0.13 0.07 0.13 0.14 0.06 

Overall site 2 0.45 0.19 0.24 0.09 0.18 0.16 
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Figure 6.8 Mean error (ME) and root mean square error (RMSE) per habitat cover class. The ME 
and RMSE is compared between the unmodified DEM and the User-modified DEM. 

 

 

6.4. Discussion and summary 

LiDAR is one of the sensors that better captures the smaller-scale structural complexity of 

saltmarsh topography over extensive areas. However, it is extremely important to be 

aware of the limitations and real accuracy of this sensor data for saltmarsh environments. 

Although the LiDAR sensor used for this work collected up to 4 returns, for the majority of 

the saltmarsh environment only one return was collected. Thus, in the filtering process, it 

was not possible to discriminate bare ground from saltmarsh vegetation for DEM 

generation. Based on the analysis undertaken for this work, a LiDAR-derived DEM 

(without any user modifications) can accurately represent saltmarsh elevations for only 

non-vegetated (e.g. intertidal flat and salt pan) or low density, short (< 0.2 m) plant 

habitats. The accuracy calculated for these habitats remained below 10 cm, which is the 

vertical resolution of the LiDAR-derived data. However, the accuracy of the unmodified 

DEM decreases significantly in habitats characterised by dense, tall vegetation (> 0.2 m 

height). Similar findings have been reported by other authors (Hladik and Alber, 2012; 

Schmid, Hadley and Wijekoon, 2011; Wang et al., 2009). 

LiDAR-derived DEM accuracy in saltmarsh environments can be improved by user 

modifications. For example, minimum bin-gridding from LiDAR data has been shown to 

decrease vertical errors in vegetated environments (Ewald, 2013). However, in open areas 

such as mud flats, it can produce elevations below the true ground surface (negative bias) 

(Rosso, Ustin, and Hastings, 2003). This technique can also reduce the resolution, and 
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hence possibly lose small scale topographic features in the process. It is here where the 

user must balance the importance of resolution over accuracy (Schmid et al., 2011). 

The development and application of spatially variable correction factors has been 

shown clear benefits. Application of a correction factor that varies depending on 

vegetation characteristics reduces vertical errors in vegetated saltmarshes without 

reducing the spatial resolution. Furthermore, this technique does not compromise the 

accuracy in open areas such as mud flats if unvegetated areas are masked (where the 

correction is zero, and therefore no change is made). Masking is often considered an 

arduous process as it frequently relies on manual digitisation. But habitat classification 

through an object-based image analysis approach has the added benefit of including the 

identification of small features of unvegetated classes (ponds and salt pans), which can 

then be assigned to a mask. Thus, negative bias in those areas is avoided. 

 High resolution habitat classification using object-based image analysis has been 

used in this work to accurately capture vegetation characteristics on the basis of distinct 

communities and plant structure. Specific correction factors based on high resolution 

habitat maps derived from canopy heights and spectral information have the benefits of 

being applied to broad areas with less effort. However, to map saltmarsh habitats with 

high accuracy is a challenge due to the low spectral contrast between plant species and the 

small scale of vegetation patterns (Adam et al., 2009; Kelly et a.l, 2011; Silva et al., 2008). 

In this sense, the combination of spectral and elevation information significantly improves 

saltmarsh mapping as it has been shown in Chapter 5, allowing higher accuracy values. 

 The corrected DEM obtained after application of the HSCF across the entire Odiel 

estuary saltmarsh environment has improved the overall accuracy of the ground elevation 

data, obtaining comparable results to those achieved by Hladik and Alber (2012). The 

accuracy improvements obtained in this modified DEM provide a saltmarsh elevation 

dataset suitable for applications such as modelling of sea-level rise and sedimentation in 

these environments. Elevation accuracy is crucial for these types of modelling because 

subtle changes in topography affect other factors that control saltmarsh dynamics (e.g. 

flooding and soil salinity). Projections of future global sea-level rise vary from 0.18 - 0.59 

m (over the period 1980-1999 and 2090-2099) based on physical models (Meehl et al., 

2007a, 2007b). This means that the DEM accuracy has to be smaller than sea-level rise 

projections over these reasonable timescales in order to accurately investigate potential 

impacts. In the LiDAR dataset presented here, the best accuracy in elevation data that can 

be obtained is 0.1 m, which is the real accuracy of the elevation raw data collected from 

LiDAR sensor at up-land known locations. However, it has been shown that the real 

accuracy of the original DEM in the Odiel saltmarshes is poorer than 0.1 m (up to 0.53 m in 

Spartina marsh for instance) due to the high density of the vegetation canopy. Thus, the 
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unmodified DEM in this particular case would not be suitable for modelling sea-level rise 

effects over the Odiel saltmarsh due to the mean vertical bias in large areas of the 

saltmarsh is nearly the same that the top range of the future sea-level rise projections 

(0.59 m). However, the corrected DEM is better able to distinguish topographic structure 

at the resolution that is used to determine future flooding due to sea-level rise. 
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7. Future response of Odiel saltmarsh due to SLR using SLAMM: sensitivity 

analysis and uncertainty assessment 

The aim of this Chapter is to assess the potential of the Sea Level Affecting Marshes Model 

(SLAMM) for investigating the response of Atlantic-Mediterranean saltmarshes and its use 

in managerial schemes, through the application of sensitivity and uncertainty analysis in 

the Odiel saltmarshes (Spain, Gulf of Cadiz). The spatial input data (DEM and habitat map) 

and some parameter (e.g. erosion) needed for running the model have been generated in 

previous chapters of this thesis. 

 

7.1. Introduction 

SLAMM version 6.2 (Clough et al., 2010) was used to evaluate coastal wetland habitat 

response to sea-level rise. SLAMM simulates 6 key processes involved in wetland 

conversions and shoreline modifications during long-term sea-level rise: inundation, 

accretion, erosion, overwash, saturation, and salinity. In order to simulate these processes 

over a specific site in the context of sea-level rise, SLAMM uses spatial data including a 

DEM, slope and wetland category maps, and site specific parameters such as tidal range, 

accretion rates, erosion rates, historical sea-level trends and mean sea level. To represent 

conversion among wetland classes, SLAMM uses a flexible and complex decision tree 

incorporating geometric and qualitative relationships (Clough et al., 2010). 

 One of the main strengths of SLAMM is the ability to explore system responses to 

different sea-level rise scenarios, but uncertainties in predicted response will also reflect 

uncertainties regarding the primary inputs and hence the quality of the original elevation 

data and wetland classification maps. This chapter first undertakes a sensitivity analysis to 

explore the relative importance of data quality and resolution (spatial and vertical) in the 

elevation data and saltmarsh habitat classification layers. Monitoring and measurement of 

saltmarsh habitats is time consuming and costly, and the acquisition of the SLAMM input 

layers can require significant resourcing. Some understanding of where surveying efforts 

should be focused is therefore necessary, particularly for authorities with financial 

constraints. An analysis of potential impacts of sea-level rise over the Odiel saltmarshes 

under different IPCC scenarios (A1B, A1T, A1F1, A2, B1 and B2) using SLAMM in 

conjunction with the input layers generated in previous chapters (e.g. the modified 2013 

DEM and saltmarsh habitat map) is then presented. Additionally, an uncertainty analysis 

on model inputs was undertaken to identify the important input parameters that control 

model output uncertainty. Finally, the modelled potential sea-level rise impacts over the 

Odiel saltmarshes are assessed in combination with saltmarsh erosion rates obtained from 

Chapter 3. This is used to generate a saltmarsh classification based on sensitivity due to 

sea-level rise. 
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7.2. SLAMM model inputs 

7.2.1. Elevation data 

Elevation data are the most important SLAMM input data and high quality altimetry data 

are required to reduce uncertainties. For example, the model uncertainties are 

considerably reduced when LiDAR-derived DEM data are used Elevation in combination 

with tidal data determines the vertical and spatial extent and frequency of inundation. The 

input elevation data also define the base line for future predictions. In SLAMM, input 

elevation data must be corrected to set the mean tide level (MTL) to zero because this is 

the internal model vertical datum (Clough et al., 2010). The required elevation data 

adjustment is done following equation (7.1): 

 

����(���� ) = ����(
�"#�� ) −	����%&''   (7.1) 

 

Where, ElevDatum is the elevation of each cell given a vertical datum (m), and Elevcorr is the 

site or cell by cell correction (MTL minus datum, in metres). In the case of the Odiel 

saltmarshes site, the reference vertical datum is the zero in Alicante (mean sea level). 

When high quality elevation data are not available, SLAMM employs a tool called NWI 

(National Wetland Inventory), a pre-processor that estimates elevation ranges as a 

function of tide ranges and known relationships between wetland types and tide ranges. 

 
7.2.2. Sea-level rise estimation 

SLAMM projects future sea-level rise over the initial conditions based on historical local 

sea-level and global sea-level trends. The sea-level rise is estimated at each projected time 

step as given in equation (7.2) (Clough et al., 2010). 

 

�()��&�*+ = ,�-./��()��&�*+ +
(1*�'234�5671*�'28)(9�:";�<=4>?6–9�:";�<A64B?6)

C   
  (7.2) 

 

where: 

�()��&�*+= Projected local sea-level rise at current model year (m); 

= ,�-./��()��&�*+ = Global average sea-level rise predicted in current model year (m); 

D�/E��&�*+ = Current model year; 

D�/E� = Date when model started (latest NWI map date); 

�FGH�()�&%�+l= Site specific historic trend of sea-level rise (mm/yr); 

�FGH�()�+&I�+ = 1.7 mm/yr global historic trend based on IPCC (2007a); 
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7.2.3. Processes involved in the spatial model 

SLAMM integrates four factors directly involved in the fate of tidal saltmarshes in a 

context of sea-level rise: inundation, erosion, accretion and salinity. These are 

parameterised as follow: 

• Inundation: the rise of water levels and the salt boundary is defined by reducing 

elevations of each cell as sea levels rise, thus keeping MTL constant at zero. The 

effects on each cell are calculated based on the minimum elevation and slope of 

that cell. 

• Erosion: horizontal erosion is triggered based on a threshold fetch and the proximity 

of the wetland to estuarine water or open ocean. When these conditions are met, 

horizontal erosion occurs at a rate based on site. If the maximum fetch is less than 

9 km, horizontal erosion does not occur. 

• Accretion: vertical sedimentation due to inorganic sediment accumulation and 

marsh biogenic production may be specified on a spatially variable basis or a 

model of accretion as a function of elevation, salinity, and/or distance to channel 

may be specified. SLAMM accretion relationships are empirical, defined as given by 

equation (7.4): 

J%*++ = J*+*K(L ∗ �)     (7.4) 

where: 

J%*++= predicted accretion rate for a cell, (mm/year) 

J*+*K= accretion rate for a cell as a function of elevation alone 

D= factor representing distance to river or tidal channel 

S= salinity factor representing salinity effects 

 

• Salinity: in a location with defined fresh-water flows, land categories can migrate 

based on changes in salinity. This is modelled based on a relatively simple salt 

wedge approximation. Variable fresh-water flows may be specified. 

 

7.2.4. Wetland conversion 

SLAMM uses a decision tree, based on the information given in Table 7.1, when converting 

one wetland category to another in the event of inundation or erosion. Wetland 

conversion under sea-level change conditions occurs when sea-level rise exceeds 
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sedimentation or accretion rates and when the minimum elevation of a cell is below the 

minimum elevation for a specific wetland category. The wetland lost fraction (which it is 

transferred to another category) is calculated as function of the cell slope, the minimum 

elevation for that category, and the lower elevation boundary for that category. Thus, 

SLAMM assumes that conversion of a zone from one category to another is a linear 

function of the elevation range that is lost due to sea-level rise within the cell (Clough et 

al., 2010). Erosion will occur for those categories adjacent to water when the maximum 

fetch for a certain cell is greater than 9 km. 

 A connectivity model is also available in SLAMM and it can be used optionally. When 

this model is used, an eight-sided connectivity algorithm is used to examine cells in the 

context of their direct neighbouring cells. At the beginning of each time-step, each cell is 

marked with one of the following categories: above salt bound (connectivity is irrelevant); 

connected to salt water source; not connected to salt water source; and diked (lack of 

connectivity assumed). For example, if freshwater wetlands and dry lands are not 

connected to salt water due to the existence of a seawall, they are not assumed to be 

subject to inundation due to sea-level rise. 

 
Table 7.1 Summary of the wetland category conversions relevant for this study due to inundation 
and erosion [modified from Clough et al. (2010)]. 

 Inundation 

Non-adjacent to open water 

Erosion 

Adjacent to open 
water and fetch > 

9km (erosion) 

Category Converts to Converts to 

Dry land Transitional salt marsh, ocean beach, 

or estuarine beach, depending on 
context  

 

Tidal fresh marsh Irreg. Flooded Marsh Tidal Flat 

Transitional Salt Marsh 

Irreg. Flooded Marsh 

Reg. Flooded Marsh 

Reg. Flooded Marsh 

Tidal Flat 

Reg. Flooded Marsh Tidal Flat Tidal Flat 

Ocean Flat Open Ocean Open Ocean 

Tidal Flat Estuarine Water Estuarine Water 

Estuarine Beach 

Ocean beach 

Open water 

Open water 

Open water 

Backshore Estuarine beach  

Estuarine water If the cell is within 500m of the open 

ocean then it is converted into open 
ocean. 
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7.3. Data and methods 

7.3.1. SLAMM sensitivity analysis on spatial data 

Sensitivity analysis on spatial data was based on the quality of the model input data using 

different resolution elevation and habitat maps. Sensitivity analysis based on habitat cover 

maps has not been explored previously. Thus, the effort here has been focussed on 

investigating how different resolutions of habitat map in combination with different 

quality elevation data will affect model results. For this purpose, different tests have been 

run in SLAMM using a representative site within the Odiel saltmarshes. 

 A smaller study site within the Odiel saltmarshes was selected in order to reduce 

model running time and to assess changes between tests. The selected study site to run 

the sensitivity analysis tests was part of the Saltes Island (Figure 7.1). This island has 

representative environments of the whole Odiel saltmarshes, where habitats such as 

beaches, tidal flats, low marsh, high marsh, transitional marsh and up-land can be found. 

 The input data used for this analysis are listed in Table 7.2Table 7.2  and Figure 7.2, 

and the combination of these data within the SLAMM sensitivity analysis is shown in 

Figure 7.2. The model inputs tested were the marsh habitat maps (MHM) (Figure 7.3), the 

digital elevation models (DEM) (Figure 7.4) and the elevation range for each habitat 

category. Site parameters were kept constant and are summarised in Table 7.3. The 

habitat map MHM_1 was derived from the combination of the saltmarsh habitat map 

(supervised classification performed in Chapter 5), and 2013 estuarine habitat map 

(digitised in Chapter 3). The resulting map was reclassified using SLAMM categories. 

MHM_2 and MHM_3 were derived from simplification of MHM_1 (reducing the number of 

creeks, and reducing the resolution of spatial pattern of different saltmarsh habitats. This 

means that some pixels from different habitats will be misclassified). Additionally, a 

habitat map based on saltmarsh habitat elevation ranges was also generated (MHM_4). 

MHM_4 was created by reclassifying the user-modified DEM (generated in Chapter 6) into 

elevation intervals, which closely related to saltmarsh habitat types (zonation) (Silvestri et 

al. 2005). On the other hand, three different DEMs were used to test SLAMM. The first one 

is a 1 m spatial resolution LiDAR-derived DEM (DEM_1) without corrections (in this case 

the DEM is identical to DSM as it has been explained in Chapter 6), the second one a user-

modified DEM (DEM_2) (obtained by correcting DEM_1 using a habitat-specific correction 

factor; Chapter 6), and the third one is a 10 m spatial resolution DEM (DEM_3) (source: 

Andalusian Environmental Agency). Finally, the elevation inputs (EIN) (Table 7.4) specific 

for each habitat type was also tested modifying the values by (a) ±0.2 m and (b) ± 0.4 m. 

EIN are the site specific elevation ranges per habitat defined in the Odiel saltmarsh by 

Rubio and Figueroa (1983). 
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Figure 7.1 Location of the study site (red line) for testing model sensitivity 

  



Table 7.

Name 

DEM_1 Unmodified LiDAR

DEM_2 Modified LiDAR

DEM_3 DEM of the Andalusian Coast (10m spatial 

MHM_1 Marsh Habitat Map derived from supervised 
classification using 2013 aerial photography and DEM_2
(1 m spatial resolution)

MHM_2 Manual simplification of MHM

MHM_3 Manual simplification of MHM

MHM_4 Reclassification of DEM

range. For Upland categories and backshore 
height range overlap

EIN Elevation inputs per habitat category 

EIN_a (+-0.2m)

 

Figure 7.2 Flow chart of the input 

 

Table 7.2 Summary of data used as inputs in SLAMM

Description 

Unmodified LiDAR-derived DEM (1m spatial resolution) 

Modified LiDAR-derived DEM (1m spatial resolution) 

DEM of the Andalusian Coast (10m spatial resolution) Andalusia

Marsh Habitat Map derived from supervised 
classification using 2013 aerial photography and DEM_2 
(1 m spatial resolution) 

Manual simplification of MHM1 (5 m spatial resolution) Derived 

Manual simplification of MHM2 (5 m spatial resolution) Derived from MHM

Reclassification of DEM2 based on habitat elevation 

range. For Upland categories and backshore (where the 
height range overlaps, manual editing was carried out) 

Elevation inputs per habitat category (zonation) 

0.2m); EIN_b (+-0.4m) 

(Rubio & 

Flow chart of the input data used in the sensitivity analysis based on spatial data
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in SLAMM 

Source 

LiDAR flight 

Chapter 5 

Andalusian Environmental 
Ministry 

Chapter 6 

Derived from MHM1 (e.g. 
less small creeks than 

MHM1) 

Derived from MHM2 (e.g. 
only the main channel) 

Derived from DEM2 

(Rubio & Figueroa, 1983) 

 

based on spatial data 
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Figure 7.3 Marsh habitat maps (MHM) from Table 7.2 used as different inputs for testing SLAMM 

 

 

Figure 7.4 Digital elevation models (DEM) Table 7.2 used as inputs for testing SLAMM 

 

Table 7.3 Site specific input parameters required for SLAMM 

Input parameters 

Description Punta Umbría Ria 

NWI Photo Date (YYYY) 2013 

DEM Date (YYYY) 2013 

Direction Offshore [n,s,e,w] South 

Historic Trend (mm/yr) 3.3 

MTL-NAVD88 (m) 0.39 

GT Great Diurnal Tide Range (m) 3.11 

Salt Elev. (m above MTL) 2.09 

Marsh Erosion (horz. m /yr) 0.0105 

T.Flat Erosion (horz. m /yr) 0.003 

Reg. Flood Marsh Accr (mm/yr) 6.57 

Irreg. Flood Marsh Accr (mm/yr) 2.5 
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Table 7.4 Elevation inputs (EIN) specific for each habitat type 

SLAMM Category  Min Elev. Min Unit Max Elev. Max Unit 

Dry Land 4.05 Metres 7 Metres 

Trans. Salt Marsh 3.62 Metres 4.05 Metres 

Reg. Flooded Marsh 0.8 Metres 1.2 Metres 

Estuarine Beach -1 HTU 1 Salt Elev. 

Tidal Flat -0.08 Metres 0.8 Metres 

Irreg. Flooded Marsh 1.2 Metres 3.62 Metres 

Vegetated Tidal Flat 0.6 Metres 0.8 Metres 

Backshore 1 Salt Elev. 3.048 Metres 

 

 Five tests have been run in SLAMM to perform this sensitivity analysis (Table 7.5). 

Test 1 explores the optimum cell size for the data available for the study area. The 

optimum cell size is then used for running the other tests. Test 2 investigates the model 

outputs using different marsh habitat maps. Here, four marsh habitat maps with different 

resolutions have been used, which have been defined previously (MHM_1, MHM_2, MHM_3 

and MHM_4). Test 3 explores the model outputs varying habitat elevation range inputs: 

EIN_a (±0.2m) and EIN_b (±0.4m). Test 4 investigates the benefit of using high resolution 

habitat maps when only poor resolution DEMs are available. Here, the elevation pre-

processor tool is also tested. Finally, Test 5 explores the differences between DEM_1 

(unmodified) and DEM_2 (modified). 

 

Table 7.5 Summary of the test specifications used for running sensitivity analysis in SLAMM 

 
Test 1 Test 2 Test 3 Test 4 Test 5 

Cell size (m) 3, 5, 10 5 5 5 5 

DEM DEM_2 DEM_2 DEM_2 DEM_3 DEM_1 

DEM_2 

MHM MHM_1 MHM_1 

MHM_2 
MHM_3 

MHM_4 

MHM_1 

 

MHM_1 

MHM_3 

MHM_1 

Elev. Pre-p* False False False False/True False 

Elevation 
ranges 
(zonation) 

EIN EIN EIN 

EIN_a (±0.2m) 

EIN_b (±0.4m) 

EIN EIN 

 * Elevation pre-processor 
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7.3.2. The Odiel saltmarshes SLAMM simulation 

SLAMM was run for the entire study area (The Odiel saltmarshes, see Figure 2.7) using 

high resolution input data: MHM_1 (Figure 7.3) and DEM_2 (see Figure 7.4). The study 

area was divided into sub-sites (Figure 7.5) based on published long-term accretion rates 

(Table 2.1) and the observed erosion tendency observed (Chapter 3). Thus, the model 

parameters for all sites were exactly the same as those used for the sensitivity analysis 

except for accretion and erosion rates (Table 7.6). The NWI elevation pre-processor was 

not used since high resolution data were available. In the SLAMM execution options, the 

developed dry land was protected, and the connectivity and soil saturation options were 

selected. The future projections were estimated for 2050, 2075 and 2100 using the mean 

of the IPCC sea-level scenarios available in SLAMM (A1B, A1T, A1F1, A2, B1 and B2). 

 

 

Figure 7.5 Sub-sites used for running SLAMM (in the simulation for the entire study area) 
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Table 7.6 Model parameters with sub-site specifications 

Parameter SubSite 1 SubSite 2 SubSite 3 SubSite4 SubSite 5 

Horizontal Marsh Erosion (my-1) 0 0.23 0.16 0.05 0.33 

*Reg. Flood Marsh Accr (mmy-1) 2.41 2.41 6.71 10.6 10.6 

*Irreg. Flood Marsh Accr (mmy-1) 2.86 2.1 2.1 2.1 2.1 
*Accretion rates were taken from Table 2.1 

 

7.3.3. SLAMM uncertainty analysis 

SLAMM version 6.2 has the ability to perform uncertainty analysis (Figure 7.6) thus 

allowing the user to see how input uncertainties affect the outputs. For example, if the 

user assumes the accretion rate (mmy-1) of regularly flooded marsh follows a normal 

distribution of mean x and standard deviation y, SLAMM will randomly generate an 

accretion rate consistent with the distribution defined beforehand and calculate the 

resultant impact in hectares of the regularly flooded marsh and other marsh usage 

classification. Furthermore, SLAMM not only has the ability to repeat this process any 

number of times (for example 10,000) but also allows the user to specify many more input 

uncertainty distributions (say the accretion rate of irregularly flooded marsh and 

historical sea-level rise for instance). 

 

 

Figure 7.6 Uncertainty model integrated in SLAMM (v 6.2) 

 

The uncertainty analysis was performed on results using a Monte Carlo approach to 

provide confidence statistics for model results as a function of input uncertainties. The 

Monte Carlo framework undertaken for this work was essentially the following: 
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1. To define the input uncertainty distributions (e.g. normal, triangular or uniform.) 

2. To decide how many simulations/ runs lead to results which are robust (i.e. not seed 

sensitive) and accurate. 

3. Once the number of simulations is decided, use a random generator to generate the 

input values which are consistent with the previously defined distributions. 

4. To use these randomly generated input values to feed into the SLAMM model and to 

evaluate how the model outputs are affected (full calculation). If the number of 

simulations was set at 10,000 for example, then this process would be repeated 

10,000 times, leading to 10,000 different model output outcomes. 

5. To analyse the distribution of the 10,000 model output outcomes to see if there are 

any common patterns helping the user to understand the dynamics/ interaction of 

the previously defined uncertainty distributions of the model inputs. 

 

 Steps 1, 2, 3, and 5 were easy to perform, while difficulty was encountered at step 4 

where one simulation took roughly 10 minutes to perform. Often, 10,000 simulations are 

normally deemed satisfactory (Chu-Agor et al., 2011) to get robust and accurate results, 

which would lead to a total compute time of 1666 hours or 69 days using a single 

computer. 

 Uncertainty distributions (step 1) were constructed for each of the model inputs 

(Table 7.7), where it was assumed that the inputs follow a triangular distribution. 

Triangular distributions give more importance to the extreme values that normal 

distributions and it was considered more suitable for this analysis. Other authors also 

used triangular distributions for the same parameters to perform uncertainty analysis in 

saltmarshes (Chu-Agor et al., 2010; Chu-Agor et al., 2011). It has been assumed that the 

uncertainty distributions of the accretion rates of both regularly and irregularly flooded 

marshes follow a joint distribution; while distributions of the sea-level rise, historical sea 

level rise, and accretion rates of regular/ irregular flooded marsh were assumed to be 

independent of each other. The values of the distributions were defined using published 

and observed data. The SLR2100 distribution values were defined using different published 

projections for global sea-level rise by 2100 range between 0.6 and 2.5 m (this range was 

based on the AR4 WG1 IPCC scenario and predictions from Vermeer & Rahmstorf (2009) 

and Pfeffer et al. (2008)); the Htrend used the observed local (Gulf of Cadiz) minimum, 

maximum and most likely (average) (Figure 3.26); and the reg-accre and irreg-accre used 

the published Odiel saltmarshes accretion rates: minimum (-3 standard deviation of the 

manifested values), maximum (+3 standard deviation of the manifested values) and most 

likely (average of the manifested values). 
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Table 7.7 Input factors for SLAMM and assumed statistical distributions for the uncertainty 
analysis, where ‘T’ means triangular distribution (minimum, most likely, maximum) 

Input factor Description Unit SLAMM 

value 

Distribution 

SLR2100 Predicted sea-level rise by 2100 metres 1 T(0.6, 1, 2.5) 

Htrend Local historical sea-level rise trend mmy-1 3.3 T(1.4, 3.3, 5) 

Reg-accre RegFM vertical accretion/erosion mmy-1 6.5 T(-9, 6.5, 21) 

Irreg-accre IrregFM vertical accretion/erosion mmy-1 2.4 T(-1.7, 2.4, 6.3) 

 

 The next steps were to determine the number of simulations (step 2) and to use the 

random generator to produce random number to feed into the model (step 3). The 

number of simulations (N) for performing uncertainty analysis was determined using 

equation (7.5) (proposed in Sobol’s method (Sobol, 1993)), and used by Chu-Agor et al. 

(2011) to perform uncertainty analysis): 

N= (k + 2) M   (7.5) 

 

where k is the number of input factors and M is the sample size (usually between 500 and 

1000). In this analysis, there were four input factors (SLR2100, Histtrend, reg-accre and 

irreg-accre) and the value of M was 1000, leading to a total of 10,000 simulation. Random 

number generation was undertaken in both SLAMM and Excel. 

 Step 4 as defined above is the ‘full calculation’ approach – values of model inputs 

consistent with previously defined uncertainty distributions are pushed into the SLAMM 

which are then used by the model to calculate the final output in terms of hectares of 

marsh classifications by the year 2100. All the dynamics and interactions of the input 

variables are fully captured in this computationally intensive approach leading to an 

accurate output. Due to the impracticality of this approach (respect to the computing 

time), another approach was alternatively proposed: the ‘sensitivities’ approach. This 

approach uses a mono-factorial (once at a time) analysis by using Taylor’s theorem (one 

variable). By using this theorem, one would be able to approximate linearly (red box 

below) the value of the output once the value of the input variable was known: 

 

 

and thus a large amount of computing time would be saved in the process if f’(a) and f’’(a) 

are known. However, the cost of the approach would be not being able to fully capture the 

cross effects of input variables on the final output. 
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 In order to investigate whether the model outputs follow a linear behaviour and 

thus to check the suitability of the sensitivity approach, a sensitivity analysis was 

conducted by varying model parameters by ± 5, 10 and 15 % (one parameter was changed 

at a time per each SLAMM simulation), considering a 1 m eustatic sea-level rise by 2100 

and the parameter defined in Table 7.3 as the base case. Additionally to determine which 

parameters most affect model outputs when comparing results, the screening sensitivity 

method proposed by (Morris, 1991) was used. The Morris method analyses the observed 

elementary effects (for example, changes in an output due to changes in a particular input 

exclusively) when random input factors are used. The input factors assessed were sea-

level rise by 2100 (total projected rise in metres), site-specific historical sea-level trend, 

great diurnal tide range, regularly flooded marsh accretion rate, irregularly flooded marsh 

accretion rate, horizontal marsh erosion and tidal flat erosion. The qualitative nature of 

the Morris method limits its use to only identify the important inputs factors that drive 

model output uncertainty (Chu-Agor et al., 2011). 

 Results from the sensitivity analysis were first assessed in terms of change in the 

outputs (surface area in ha) per each habitat category to check linear and non linear 

behaviours. Then, two sensitivity measures were calculated (the mean elementary effect, 

µ, and the standard deviation of the elementary effects, σ) to determine the qualitative 

importance of each input factor. The mean elementary effect estimates the overall effect of 

the inputs factors on a given output, and the standard deviation the higher-order 

characteristics of the input factors (such as curvatures and interactions) (Chu-Agor et al., 

2011). These results were assessed by plotting σ on the vertical axis and µ on the 

horizontal axis.  

 The relationship between input and output variables observed in previous results 

seemed to be linear. This meant that for whatever inputs values generated according to 

the uncertainty distributions, the output would be assumed to follow in a linear fashion. 

However, while cross checking whether ‘extreme’ input values would result outputs 

behaving in a linear fashion was led to the fact that outputs did indeed behaved non-

linearly. Non-linear behaviour must be captured in order for the sensitivities approach to 

work. It is possible to capture the non-linearity using the quadratic approximation 

highlighted in the red box (the rate of change of delta) of the Taylor series below: 

 

 

 

However, the effort required to calculate them did not justify the reward and it was 

decided to use the full calculation approach but with linear interpolation due to the 
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unfeasible model running times of the complete full calculation (~10,000 simulations), 

both within this study but likely experienced by other users as well. 

 The full calculation approach using linear interpolation was performed choosing a 

set of input values covering the range of the uncertainty distribution defined for each 

input factors (roughly 15 values were chosen for each input factor). These values were 

entered into SLAMM individually, changing the values of only one input factor at a time 

while the other inputs were held constant and equal to the base case. The computing time 

here was reduced to roughly 6 hours, making this approach feasible for this work. 

 The input – output relationship was assessed by plotting the change of the input 

factor (horizontal axis) and the change in the surface area (ha) of each saltmarsh habitat 

category (vertical axis). For example, for an input value of 0 m for sea-level rise, this would 

mean a 100% decrease against the base case of 1m. For input values that do not fall upon a 

point that was previously calculated by the SLAMM model, then linear interpolation is 

used (Figure 7.7). Note that extrapolation techniques were not required as the extreme 

values determined by the input distributions were directly used in the SLAMM full 

calculation run. 

 

 

Figure 7.7 Example of the linear interpolation for irregularly flooded marsh accretion (for 1 m 
eustatic sea-level rise) using a set of inputs values that covered the full range of the uncertainty 
distribution. The values for the point dataset were calculated in SLAMM changing the SLR values 
while the other inputs were held constant. 

 

 Finally, the distribution of the 10,000 model output outcomes obtained using the full 

calculation with linear interpolation is analysed (step 5). With the randomly generated 

inputs values defined by the uncertainty distributions, coupled with the input-output 

relationships, it is possible to see what the approximate model output will be. Because of 
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the speed of this approach, it is quick to repeat the ten thousand simulation run many 

times (ten times) and found that the approximate model outputs were not seed sensitive. 

The uncertainty was then assessed in two ways. The first assessment was based on the 

uncertainty of the future sea-level rise by 2100 (keeping the other input factors constant), 

and the second one was based on the uncertainty of the important input factors for 1 m 

sea-level rise by 2100. 

 

7.3.4. Classification of saltmarsh vulnerability due to sea-level rise 

In order to explore the most sensitive zones of the saltmarshes due to a potential sea-level 

rise, the Odiel saltmarsh was classified using different information obtained from 

historical, present and modelled data. A saltmarsh vulnerability ranking (from very low to 

very high) was based on results from the entire Odiel saltmarsh simulation, saltmarsh 

shoreline tendency (Chapter 3) and the presence of barriers. The projected map used was 

the 2050 projections under the AB1 IPCC scenario. The selection of 2050 was based on the 

similarities of the results for all the scenarios (model projections for 2050 were practically 

identical), and the likelihood of the saltmarsh processes (e.g. accretion, erosion, tidal 

prism) to remain similar to the current conditions. The shoreline tendency was considered 

because SLAMM does not take into account erosion rates if the fetch is smaller than 9 km. 

However, in the Odiel saltmarsh it has been shown that this parameter was very 

important, and possibly will be exacerbated in the context of sea-level rise. Shoreline 

tendency was categorised as retreat, growth and stable tendency. Finally, the barrier 

presence was selected as barriers that would prevent saltmarsh habitats to migrate inland 

are present. Thus it was considered an important variable to take in account in 

combination with the shoreline tendencies. The barriers layer integrated the urban zones, 

roads, sea-walls and dikes across the saltmarsh and around the saltmarsh border in 2013. 

 The procedure followed for classifying saltmarshes according to its vulnerability to 

sea-level rise is shown in Figure 7.8. In order to compare the initial condition map (InitM) 

and the 2050 projected map (ProjM), both maps were reclassified into four classes: 

regularly flooded marsh (RegFM), tidal flat (TF), irregularly flooded marsh (IrregFM) and 

rest. Then, ProjM was extracted from InitM using the ArcMap raster calculator (spatial 

analysis tools, ArcGIS 10.2). Those zones that were projected to experience RegFM and TF 

loss was classified as very high vulnerability due to these habitats will be lost in 2050 

according to the model outputs, and those zones that were categorised as RegFM in the 

2050 projection were classified based on the vulnerability ranking showed in Table 7.8. 

Saltmarsh zones that did not experience any changes were considered to be ‘not sensitive’. 

 



Figure 7.8 Flow diagram of the procedure for classifying saltmarsh according to its 
sea-level rise; where Reg
marsh. 

 

Flow diagram of the procedure for classifying saltmarsh according to its 
egFM is regularly flooded marsh, TF tidal flat and Irreg
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Flow diagram of the procedure for classifying saltmarsh according to its vulnerability to 
oded marsh, TF tidal flat and IrregFM irregularly flooded 
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Table 7.8 Vulnerability ranking for classifying irregularly flooded marsh (in 2013) converted into 
regularly flooded marsh 

 Very low Low Medium High Very high 

Shoreline tendency Growth stable stable retreat retreat 

Barriers presence (within 

200 m from the shore)* N/Y N Y N Y 

*Double of the maximum retreatment tendency projected by 2050 based in the observed rate (Max horizontal 
erosion (96.2 m) * 2 ~ 200 m) 
 

7.3.5. Comparison of SLAMM and UCL-modified SLAMM 

The code of the SLAMM version 6.01 was modified by Pylarinou (2015) in order to suit the tidal 

sedimentary environments found in Europe, specifically those found in the UK. She modified the 

SLAMM source code to include a simplified land cover classification based on UK coastal and 

estuarine categories, and a set of modified habitat transition rules and amended rules specifying 

their relation to the tidal frame. Additionally, the modified SLAMM also runs the erosion module 

when the fetch is smaller than 9 Km, which it is quite normal in European saltmarshes. As this 

modified version of SLAMM addresses some of the initial issues found running the original version 

of SLAMM at the Odiel saltmarshes (erosion rates are not included if the fetch < 9Km), both models 

original and modified were run in order to investigate the differences between them and the 

importance to add a parameter such as horizontal erosion. 

 

Table 7.9 UK default elevation ranges according to tidal ranges used in the modified SLAMM [Source: 
Pylarinou (2015)] 

 SLAMM 
category No 

Category Name Default Min. 
Elev. 

Default Min. 
Elev. 

Estuarine 
Habitats 

1 

7 

20 

8 

11 

17 

Dry Land 

Transitional Marsh 

Upper Marsh 

Lower Marsh 

Tidal Flat 

Estuarine subtidal 

HAT 

MHWS 

MHW 

MHWN 

LAT 

 

HAT 

MHWS 

MHWN 

LAT 

Open 
Ocean 

Habitats 

12 

13 

19 

Ocean beach 

Ocean flat 

Open Ocean 

LAT 

LAT 

 

HAT 

HAT 

LAT 
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Figure 7.9 SLAMM decision tree modification including tidal ranges (where grey arrows state inundation, and 
red arrows erosion) [Source: Pylarinou (2015)] 

 

Table 7.10 Site parameters for original and modified SLAMM [Source: Pylarinou (2015)] 

ORIGINAL SLAMM CODE MODIFIED SLAMM CODE 
Historic Trend (mm yr-1) Historic Trend (mm yr-1) 
GT Great Diurnal Tide Range (m) GT Great Diurnal Tide Range (m) 
Salt Elevation (m above MTL) Salt Elevation (m above MTL) 

HAT (m) 
MHWS (m) 
MHW (m) 
MHWN (m) 
LAT (m) 

Marsh Erosion (m yr-1) Marsh Erosion (m yr-1) 
T. Flat Erosion T. Flat Erosion 
Reg.  Marsh Accr. (mm yr-1) Lower Marsh Accr. (mm yr-1) 
Irreg. Marsh Accr. (mm yr-1) Upper Marsh Accr. (mm yr-1) 
Tidal Fresh Marsh Accr. (mm yr-1) Tidal Fresh Marsh Accr. (mm yr-1) 
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7.4. Results 

7.4.1. Sensitivity analysis based on spatial inputs 

The results suggested that the role of elevation is the most important factor controlling 

model outputs. The role of the marsh habitat map is also important; however it has not the 

same impact on all the defined categories (Figure 7.10). The spatial model results for the 

tests performed are shown in Figure 7.11 and Figure 7.12. These results are reported by 

Test type and habitat category. 

 

 

Figure 7.10 Surface area (%) of the outputs for 0.5 m sea level rise projected for 2100 and its 
variation per category when different inputs are used 
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Figure 7.11 Model outputs per test for 0.5 m sea level rise projected for 2100 (see Table 7.2 and 
Table 7.5) 
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With regards to the test type, Test 1 showed that the cell size does not have a great impact 

in outputs when 3 m and 5 m cell sizes are used. However, the model outputs varied when 

10 m cell size are used (Figure 7.12). Thus, to run SLAMM with a cell size smaller than 5 m 

is not recommended because it significantly increases the model execution time and only 

negligible change in model output. Although SLAMM is flexible with regard cell sizes, cell 

widths usually range between 5 m and 30 m depending on site and input data availability 

(Clough et al., 2010). 

 The sensitivity of SLAMM to different habitat maps is tested in Test 2 and results are 

compared in Figure 7.12. The results revealed that habitat map resolution considerably 

influences model results, highlighting the importance of the MHM, especially in open 

water, estuarine water and saltmarsh categories such as irregularly flooded marsh and 

vegetated tidal flat. The impact on the two first categories is due to elevation input ranges 

for these categories which are not defined in SLAMM. Thus, MHM strongly controls these 

two categories. For example, in Figure 7.12 creeks are highlighted in red due to in MHM3 

only main channels are drawn. Thus, it is relevant to map the small creeks. In the case of 

MHM1 and MHM4, two maps of the same resolution are compared. The results here 

showed some differences as well. However, the differences are spread along the marsh 

area. These differences showed the importance of the habitat map on the model results. 

Thus, high resolution habitat maps that represent the complexity of the marsh habitats are 

essential. 

 Test 3 shows the importance of the habitat elevation range predefined within the 

model. Elevation inputs strongly control the model outputs, where variations of a few 

centimetres in the vertical influence model results (Figure 7.10; Figure 7.11). The result of 

this test showed the importance of correctly defining the habitat elevation ranges, which 

should also be site specific. Test 4 shows model output differences when the pre-processor 

tool is on and off using poor resolution DEM and either the high resolution or poor 

resolution (Figure 7.12) habitat maps. Results significantly changed when the pre-

processor tool was turned on in both cases. The model is also sensitive to a change in the 

resolution of the habitat map when the pre-processor tool is on and a poor resolution DEM 

is used, showing important changes when both result maps are compared. Test 5 

compares the model results when the LiDAR-derived DEM (DEM1) and modified (using a 

habitat-specific correction factor) DEM (DEM2) are used. The results (Figure 7.12) showed 

that small differences in the marsh elevation model (<0.5 m) affect model results. 
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Figure 7.12 Comparison of the result obtained per test performed. Ti indicates the test carried (e.g. 
test 1, test 2, etc.) followed by the specific input that was modified within each test, where MHM 
refers to Map Habitat Map, DEM to Digital Elevation Model, EIN to elevation inputs and ’5/10 m’ to 
the cell size. The pre-processor tool was (by default) off in all the tests, and only in test 4 (T4) was 
on (stated by ‘T’) and off (stated by ‘F’) to compare the utility of high resolution habitat maps when 
high resolution DEM are not available (see Table 7.2 and Table 7.5). 
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With regard to habitat category, the variation in surface area by habitat type is shown 

in Figure 7.13 and the percentage of change respect the best estimate or base case 

(Test1_5m) is shown in Table 7.11. The outputs for developed dry land are quite stable, 

keeping roughly the same surface area in all tests except in Test2_MHM4 and 

Test4_MHM3_F. This is due to this category being protected when the model was run. The 

differences detected in Test2_MHM4 are due to the habitat map used (MHM4), where the 

area of developed dry land is less in the initial year (for example small dikes and jetties are 

not represented) and thus the surface area in the final year is expected to be less. The 

differences found in Test4_MHM3_F are due to the poor resolution habitat map and DEM 

used in this test. When the elevation pre-processor is used these differences are 

minimised as it is shown in Test4_MHM3_T. 

The outputs undeveloped dry land results are less consistent between tests, and this is 

because this zone is not protected. Thus, habitat conversion occurs when sea level rises. 

Results showed that Test1_3m, Test1_5m, Test2_MHM4 and Test4_MHM1_T have similar 

model outputs, stating that for this category the model is not sensitive to cell size (3 m and 

5 m), habitat map based on elevation and poor spatial resolution DEM (10 m) when the 

elevation pre-processor is used with high resolution habitat map (MHM1). This category is 

sensitive to poor resolution habitat maps and to DEM (when the pre-processor is not used 

or used with poor resolution habitat map). 

For transitional marsh, Test1_3m Test2_MHM2 and Test2_MHM4 had similar outputs 

than the base case (Test1_5m); showing small variations respect the base case (0.1 % for 

Test1_3m and 2.3 % for Test2_MHM4). These results suggest that this category is not 

sensitive to cell size (when 3 m cell size was used), and is not very sensitive when MHM4 

were used. However, when MHM2 and MHM3 were used the output surface was reduced 

5% and 16 % respect the base case respectively. This category is also sensitive to cell size 

when this is greater than 5 m (~17.4 % output change respect the base case), to DEM 

spatial resolution (~100 % output change for T4_MHM1_F for instance) and to the 

elevation range predefined for this category (e.g. ~70 %. output change for EIN+b). 

Regularly flooded marsh was not sensitive to cell size. Results for Test1 were almost 

identical to the base case and the percentage of change was 0.02% for 3 m cell size and 

0.05 % for 10 m cell size (~ 1 ha). Habitat map resolution influences the model results. For 

example, when MHM2 and MHM3 were used, outputs differ from the best estimate 

(MHM1) by roughly 10 ha (~6 % and -7 % respectively). The results showed similar 

surface area when MHM1 and MHM4 were used (~0.2 % change respect the base case). 

Thus this category can be based on elevation data if a high resolution habitat map is not 

available. However, this category is very sensitive to DEM resolution and elevation ranges. 

When these variables were tested the results varied from 20 to 70 ha (from ~14 to 44 %). 



Table 7.11 Percentage of change
(Test1_5m), changing one input layer at a time and keeping the model parameter const

Percentage of change of the model outputs per category respect the base case 
(Test1_5m), changing one input layer at a time and keeping the model parameter const
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respect the base case 
(Test1_5m), changing one input layer at a time and keeping the model parameter constant. 
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Irregularly flooded marsh did not change with cell size nor when MHM2 was used. 

However, the results varied slightly when MHM3 (~2 ha less than MHM) and MHM4 (~2 

ha more than MHM1) were used. This category was sensitive to DEM spatial resolution 

and elevation range. Outputs varied greatly (more than 50 ha) when the elevation pre-

processor was used in Test4. 

Tidal flat outputs were exactly the same when 3 and 5 m cell size were used, however 

they slightly changed (~1 ha) when cell size was 10 m. This category was very sensitive to 

habitat map variation, resulting in different outputs. For example, the surface area was 

approximately 20 ha for MHM1, 36 ha for MHM2, 55 ha for MHM3 and 12 ha for MHM4. 

The variation of surface area is due to representation: in MHM2 tidal creeks have been 

simplified and in MHM3 they have been deleted. In the case of MHH4 the channel system is 

also different to MHM1 as this map is based on elevation. This category was sensitive to 

DEM spatial resolution and elevation ranges. Outputs varied greatly (more than 50 ha) 

when the elevation pre-processor was used in Test4. 

The vegetated tidal flat category in SLAMM is converted to water in the event of 

inundation or erosion, but it never generates new habitats within this category (menaning 

that reg. flooded marsh will not be converted into this category if inundation occur, but 

into tidal flat). Therefore this category never grows in surface area. Here, this category is 

only represented in MHM1 (it has not been included on the other habitat maps). Thus, 

there are only outputs for those tests where MHM1 was used. Outputs for different cell 

sizes were very similar and only slightly different when a poor spatial resolution DEM was 

used. The surfaces values greatly increased when the elevation habitat range was 

decreased. 

Estuarine beach outputs are similar in all tests except for Test4, presenting variation 

smaller than 5 ha. The surface area of this category greatly changed (between 15 and 35 

ha) when DEM3 was used. Estuarine open water was not sensitive to cell size and habitat 

elevation range; however, it was sensitive to habitat map and DEM resolution. SLAMM 

does not define an elevation range for this category, thus it was expected to be 

independent of elevation range. This category is based on DEM values and habitat map.  

Open ocean outputs were very similar in all tests except when MHM3 is used. It means 

that this category is only sensitive to habitat maps and it only changed when MHM3 was 

used because in other maps the surface is exactly the same. Ocean beach was more 

sensitive to habitat maps than to DEM resolution. Outputs greatly changed in those tests 

where MHM3 and MHM4 were used. In contrast, backshore was very sensitive to DEM 

resolution, but was not sensitive to habitat map resolution. Outputs were very similar in 



all tests except in those tests where DEM3 was used, where the surface area varied more 

than 13 ha (~80 % change).

Figure 7.13 Habitat surface variation by test performed; x axis shows t
and y axis the different test applied
uses the highest resolution input data). *This
Test5_DEM2 

 

all tests except in those tests where DEM3 was used, where the surface area varied more 

than 13 ha (~80 % change). 

Habitat surface variation by test performed; x axis shows the surface area in hectares
and y axis the different test applied. The optimum test across all categories is Test 1_5m (which 
uses the highest resolution input data). *This test out is the same than Test2_MHM1, Test3_EIN and 
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all tests except in those tests where DEM3 was used, where the surface area varied more 

 
he surface area in hectares 

The optimum test across all categories is Test 1_5m (which 
test out is the same than Test2_MHM1, Test3_EIN and 
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7.4.2. Potential impacts due to sea-level rise in the Odiel saltmarshes 

The conversion habitat maps resulting from the Odiel saltmarshes simulation under the 

IPPC scenario A1B for 2050, 2075 and 2100 are shown in Figure 7.14. For A1B scenario, 

2050 map showed the spatial distribution of habitats conversion projected by this time. 

Here, a large extension of irregularly flooded saltmarsh (nearly 1,500 ha; 90% of the initial 

surface) in 2013 is converted into regularly flooded marsh throughout the estuary. Only 

few sites in the upper estuary maintain the irregularly flooded marsh habitats. Tidal flat is 

reduced by roughly 40% (575 ha) in 2050, mainly in the main channels and creeks. 

However, new tidal flat are also predicted to occur in the mid (e.g. Enmedio Island) and 

low estuary (e.g. Saltes Island) due to conversion from regularly flooded marsh. 

Undeveloped dry land surface is also predicted to be greatly reduced by about 60%. This 

category is converted into transitional marsh. Thus, transitional marsh habitats are 

predicted to increase more 300 ha (~400%). Furthermore, estuary beach, estuary water 

and open ocean are predicted to increase roughly 40 ha, 1000 ha and 50 ha respectively. 

Vegetated tidal flat, backshore and ocean flat are predicted to be reduced by 94 % (~5 ha), 

37 % (~12 ha) and 29 % (~13 ha). 

 The habitat conversion for 2075 sea-level rise projection under the scenario A1B 

were less pronounced. The surface area for all the habitats varied less than 2 ha in this 

year with respect to 2050 except for tidal flat and regularly flooded marsh habitats which 

varied in about 8 ha. Undeveloped dry land, regularly flooded marsh and irregularly flooded 

marsh increased their surface area. However, the surface area of backshore, vegetated tidal 

flat, open ocean, estuary open water, ocean flat, tidal flat, estuary beach and transitional 

saltmarsh was reduced. For 2100, the results showed that habitat conversion for this year 

were greater than for 2075 (Figure 7.14). Undeveloped dry land, transitional saltmarsh, 

regularly flooded marsh, ocean flat, vegetated tidal flat, irregularly flooded marsh and 

backshore reduced their surface area by 26 % (~57 ha), 96 % (~380 ha), 2 % (~51, 26 ha), 

90 % (~26 ha), 80 % (~0.26 ha), 30% (~62 ha) and 30% (~6 ha) respectively. 

Nevertheless, estuary beach, tidal flat and estuary open water increased their surface area 

by 0.7 % (~0.5 ha), 41 % (~334 ha) and 10% (~180) ha respectively. 
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Figure 7.14 Potential habitat conversion due to sea-level rise in the Odiel saltmarshes using, using 
the IPCC A1B scenario 
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The variation found in the results under different scenarios is shown in Figure 7.15. 

Overall, the results for all categories were very similar for 2050 and presented more 

disagreement in 2075 and 2100 depending on the observed category. The surface area of 

the undeveloped dry land decreased more than 60 per cent in 2050 respect 2013 for all the 

scenarios as it is shown in Figure 7.15. For 2075, the results are more inconsistent 

revealing differences of almost 43 ha. However, not only the surface variation is different, 

the tendency of the predicted changes also varied. For example, in the scenario A1B the 

surface area for this category increased, while for the rest of scenarios this category 

decreased. These results revealed the inconsistency of different scenarios for 2075. For 

2100, the results also varied among scenarios, showing differences of roughly 43 ha. 

However, for this year the tendency of this category is decreasing in all of them. 

Transitional marsh increased in 2050 for all scenarios, maintaining similar values for 

all of them (between 395 and 399 ha). In 2075, this category dramatically decreased in all 

scenarios except in scenario A1B. While the transitional saltmarsh surface area was 397 

ha for A1B scenario, for the rest range between 17 and 28 ha. Predictions for 2100 only 

varied few hectares compared with 2075 results for all scenarios except for A1B, where 

the surface area dropped from 397 to 17 ha. The results disagreement among scenarios 

for this year ranged between 14 and 28 ha. 

Regularly flooded marsh surface increased more than double in 2050 projections for 

all scenarios, maintaining similar values for this year (maximum variation between 

scenarios was 2 ha). The projections in 2075 and 2100 presented more disagreements 

when all the scenarios were compared. In 2075, this category increased between 1 and 

135 ha for all the scenarios except for A1F1 that decreased in 30 ha. The variation among 

scenarios for this year was 167 ha. In 2100, the projection for this category decreased for 

all scenarios, reaching variations up to 330 ha. 

Tidal flat surface projected for 2050 decreased between 40 and 41% for all scenarios, 

presenting surface area variations between 1 and 19 ha. The projections for 2075 revealed 

increments in the surface area of this category for all scenarios except for A1B that 

decreased its surface respect 2050. Total variation among scenarios projection was 349 

ha. For 2100, there was an increment of this category under all scenarios. However, the 

absolute values of the surface area varied considerably, showing differences up to 360 ha 

between scenarios. 

Irregularly flooded marsh decreased its surface area in 89% approximately for all 

scenarios in 2050. Absolute values went down from nearly 1,900 ha in 2013 to 200 ha in 

2050. Projections for 2075 presented disagreements among scenarios. While the surface 

area increased about 8 ha for A1B scenario, decreased between 7 and 47 ha for the other 

scenarios. Differences among scenarios went up to 70 ha for this year. Projections for 
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2100 showed that this category decreased under all scenarios. However, the results 

among scenarios for 2100 varied more than for 2075, reaching differences of 115 ha. 

Vegetated tidal flat surface area projected for 2050 decreased greatly (94%) for all the 

scenarios, reducing its surface area from nearly 6 ha to less than half hectare. Here, the 

results for all scenarios were very similar and the maximum variation between them was 

0.03 ha. For 2075, the decreasing tendency carried on with a lower rate. However, 

differences between scenarios were greater for this year (~0.22 ha). For 2100, this 

category also decreased under all scenarios, varying between 0.14 and 0.03 ha. It should 

be noted that SLAMM does not consider new creation of this category. 

Estuarine open water surface area projected for 2050 was very similar for all the 

scenarios, reaching values of roughly 2,345 ha (68% increment in the surface area respect 

2013). In 2075, the surface area of this category also increased but the results varied 

between 2 and 135 ha depending on the scenario. Projections for this category in 2100 

also predicted increments in the surface area for all scenarios. The disagreements among 

them varied between 12 and 101 ha. 

Projections for estuary beach revealed an increasing tendency for all scenarios and 

years, except for A1B scenario in 2075. Between 2013 and 2050, these habitats are 

predicted to increased in about 41 ha for all scenarios (maximum variation= 0.7 ha). In 

2075 and 2100, the projections showed increasing of less than haft hectare respect 2050 

and 2075 respectively. The variation between scenarios was similar for both years, 

reaching a maximum of 0.8 ha. 

Backshore habitats were predicted to be reduced in about 37% in 2050 respect the 

surface area in 2013. The total surface area was projected to be reduced from 32 ha in 

2013 to 20 ha approximately in 2050. Variations between scenarios for this year were 

smaller than 0.5 ha. In 2075, the surface area for the scenario A1B increased slightly from 

the results obtained for 2050 (0.2 ha). However, for the rest of the scenarios the surface 

area was reduced in 2075 between 2 and 5 ha depending on the scenario. The surface area 

of this category was also predicted to be reduced in 2100 for all scenarios. For this year, 

results projected for different scenarios varied between 11 and 16 ha. 

Ocean flat projected for 2050 reduced their habitats in about 28%. The total surface 

area was predicted to decrease from about 40 ha in 2013 to 28 ha in 2050. The maximum 

variation between scenarios was 0.5 ha. In 2075, these habitats are also projected to be 

reduced. However, there are significant disagreements in the quantity. For example, while 

the surface area under A1B scenario was predicted to be roughly 28 ha, under A2 scenario 

was 3.6 ha. In 2100, projections under different scenarios are more consistent than for 

2075, ranging between 3.2 and 4.5 ha. 



Finally, open ocean is projected to increase

showed that these habitats increased 21% 

between different scenarios (259 h

consistent and showed disagreements between scenarios. For example, for the scenario 

A1B this category decreased slightly (0.23 h

category increased between 44 and 55 h

consistent, increasing for all scenarios. This category increased 68
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Figure 7.15 Potential Odiel saltmarshes habitat conversion (in h
A1F1, A2, B1 and B2 IPCC scenarios) projected for 2050, 2075 and 2100.

is projected to increase in the next decades. Projections for 2050 

showed that these habitats increased 21% over the 2013 area and there is consistency 

259 ha approximately). Projections for 2075 were less 

consistent and showed disagreements between scenarios. For example, for the scenario 

egory decreased slightly (0.23 ha) respect 2050. For the rest of scenarios this 

between 44 and 55 ha. For 2100, the projected results were m

consistent, increasing for all scenarios. This category increased 68 ha for A1B scenario, 

a for the rest. 

marshes habitat conversion (in ha) due to sea-level rise 
A1F1, A2, B1 and B2 IPCC scenarios) projected for 2050, 2075 and 2100. 
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7.4.3. SLAMM uncertainty analysis 

In order to assess whether the outputs follow a linear relationship, previous results from 

the sensitivity analysis based on inputs factors were assessed (Table 7.12). Change in the 

outputs (surface area of each habitat type) respect the base case was computed for every 

simulation run in SLAMM varying input factors by plus or minus 5, 10 and 15 %. Overall, 

although changes in model outputs (surface area) respect the base case varying inputs 

factors seemed to be quite linear for all habitat types, ‘extreme’ input values showed non-

linear behaviours (highlighted cells in Table 7.12). These previous results also revealed 

that some habitats are more sensitive than others to variations in input factors and some 

habitats are not sensitive to certain input factors at all. For example, undeveloped dry land 

and transitional marsh are only sensitive to variations in sea-level rise and local historical 

trend, and regularly flooded marsh was sensitive to all parameters except great diurnal 

tidal range. The great diurnal tidal range variations only affected a few habitats such as 

estuary beach, ocean flat, estuary open water and open ocean. 

 In saltmarsh habitats particularly, model outputs were most sensitive to changes in 

sea-level rise projected to 2100 and saltmarsh accretion (Table 7.12). For example, by 

decreasing saltmarsh accretion by 15 %, the regularly flooded marsh area decreased by  

3.2 % (~ 66 ha) and tidal flat area increased by 6.5 % (~ 66 ha); increasing sea level-rise 

by 15 % resulted in a 2.9 % (~ 61 ha) decrease in regularly flooded marsh area and a 1.5 %  

(~ 15 ha) increase in tidal flat. Saltmarsh model outputs were less sensitive to site 

historical sea-level rise, and were not sensitive to other parameters. Irregularly flooded 

marsh was less sensitive to sea-level rise (projected by 2100) and accretion rates than 

regularly flooded marsh, decreasing less than 4 ha when sea-level rise increased by 15 % 

and less than 1 ha for the same variation in saltmarsh accretion rates. 

 

  



230 

Table 7.12 Changes in the surface area (model outputs in hectares) of the each habitat type in 
comparison to the base case (parameters of the study site), varying ± 5, 10 and 15 % of inputs 
parameters directly related to saltmarsh habitats for a 1 m sea-level rise scenario in 2100; where 
SLR2100 is the projected sea-level rise by 2100, HisTrend site historical trend of sea-level rise, GT 
(great diurnal tidal range), Reg-Accr regularly flooded marsh accretion and Irreg-accr irregularly 
flooded marsh accretion. Numbers in bold indicate the maximum magnitudes of change for each 
input parameter, and highlighted cells state ‘non-linear’ behaviours for each input parameter in 
each category. 

Habitat type % 
SLR100 

(+) 
SLR100 

(-) 

His 
Trend 

(+) 

Hist 
Trend

(-) 
GT(+) GT(-) 

Reg- 
Accr + 

Reg-
Accr - 

Irreg- 
Accr + 

Irreg- 
Accr - 

Dry Land 5 -3.74 4.33 -1.45 1.35 0.00  0.00 0.00 0.00 0.00 0.00 

TransM 5 3.09 -3.68 1.21 -1.14 0.00  0.00 0.00 0.00 0.01 -0.01 

RegFM 5 -26.0 34.13 -9.28 10.17 0.00  0.00 37.21 -28.1 -0.36 0.35 

EstuBeach 5 -0.19 -0.01 -0.06  0.06 0.57  -0.63 0.00 0.00 0.00 0.00 

Tidal Flat 5 8.26 -13.4  3.51  -4.19 0.00 0.00 -37.2 28.1 0.00 0.00 

OceBeach 5 -1.35 1.38  -0.42 0.42 0.03 0.00 0.00 0.00 0.00 0.00 

Ocean Flat 5 -0.06 0.03  -0.01 0.01 0.04 -0.18 0.00 0.00 0.00 0.00 

EstuWater 5 19.4 -22.5 6.30 -6.53 -0.59  0.63 0.00 0.00 0.00 0.00 

Open Ocean 5 2.31 -2.13 0.75 -0.72 -0.04  0.18 0.00 0.00 0.00 0.00 

IrreFM 5 -1.30 1.49  -0.43 0.46 0.00  0.00 0.00 0.00 0.35 -0.34 

Backshore 5 -0.36 0.38  -0.12 0.13 0.00  0.00 0.00 0.00 0.00 0.00 

Dry Land 10 -7.09 9.92 -2.61 2.78 0.00  0.00 0.00 0.00  0.00 0.00  

TransM 10 5.84 -8.19 2.17  -2.34 0.00  0.00  0.00 0.00  0.01 -0.01 

RegFM 10 -45.9 79.30  -17.8 21.20 0.00  0.00  86.5 -49.6 -0.74 0.69 

EstuBeach 10 -0.40 -0.21  -0.17  0.05 1.11  -1.23  0.0  0.00 0.00 0.00  

Tidal Flat 10 10.9 -33.6 6.40  -8.52 0.00  0.00  -86.5 49.6  0.00 0.00 

OceBeach 10 -2.72  2.65  -0.83  0.86  0.03  -0.03 0.00 0.00 0.00 0.00 

Ocean Flat 10 -0.15  0.04  -0.03  0.02  0.05  -0.55  0.00 0.00 0.00 0.00 

Estu Water 10 38.1 -49.5 12.47  -13.8 -1.14  1.26  0.00  0.00  0.00  0.00 

Open Ocean 10 4.58 -4.32  1.50  -1.41  -0.05  0.55  0.00  0.00  0.00  0.00 

IrreFM 10 -2.44 3.20  -0.87  0.94  0.00  0.00  0.00  0.00  0.73  -0.68  

Backshore 10 -0.66 0.77  -0.23  0.25  0.00  0.00  0.00  0.00  0.00  0.00  

Dry Land 15 -10.6 15.54  -3.69  4.25  0.00  0.00  0.00  0.00  0.00  0.00  

TransM 15 8.97 -12.5 3.05 -3.60 0.00 0.00 0.00 0.00 0.0  -0.02 

RegFM 15 -61.4 127.4 -25.6 33.35 0.00 0.00 137.9  -66.1 -1.15  1.03  

EstuBeach 15 -0.62 -0.49 -0.18 -0.01 1.62  -1.79 0.00 0.00 0.00 0.00 

Tidal Flat 15 14.8 -61.7 8.20 -13.1 0.00  0.00 -137.9 66.1 0.00 0.00 

OceBeach 15 -4.10 3.76 -1.33 1.34 0.03 -0.09 0.00 0.00 0.00 0.00 

Ocean Flat 15 -0.28 0.04 -0.05 0.03 0.05 -1.16 0.00 0.00 0.00 0.00 

Estu Water 15 50.9 -71.8 18.94  -22.0 -1.65 1.88  0.00 0.00 0.00 0.00 

Open Ocean 15 6.69  -6.57 2.26  -2.09 -0.05 1.16 0.00 0.00 0.00 0.00 

IrreFM 15 -3.48  5.16 -1.28  1.46  0.00 0.00 0.00 0.00 1.13 -1.01 

Backshore 15 -1.00  1.18 -0.35 0.38  0.00 0.00  0.00  0.00  0.00 0.00 

 

 Input factors in saltmarsh habitats were then qualitatively evaluated using the 

Morris method (Morris, 1991). The results from this analysis are shown in (Figure 7.16), 

indicating the ‘important input factors' that influence uncertainty in the outputs based on 
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 The results from the input-output relationship have been focused on the saltmarsh 

outputs: regularly flooded marsh, irregularly flooded marsh, tidal flat, transitional saltmarsh 

and estuarine open water. The output variations obtained for these categories when the 

input factors were changed (varying one input factor at a time in SLAMM) is shown in 

Figure 7.17. Model output results showed that estuary water and regularly flooded marsh 

followed an inversely proportional relationship for all the input factors as was expected: 

for example, when the regularly flooded marsh surface area increases, the estuarine water 

decreases and vice versa. This is due to the regularly flooded marsh converting to tidal flat 

when inundation occurs, and conversion of tidal flat continues to estuarine water. The 

tidal flat behaviour showed a non-linear relationship when inputs factor were changed. 

Results showed negative changes in tidal flat area with respect to the baseline case when 

the input values were either increased or decreased for all the input factors, except for the 

irreg-accre. In SLAMM, the tidal flat category is integrated in the regularly flooded marsh 

accretion model, explaining the particular behaviour of this category in Figure 7.17. One 

would expect to see positive change in this area in relation to negative changes in the 

input values with respect to the baseline in all input factors, but this behaviour is only 

observed in the irreg-accre input factor. In the case of the transitional and irregularly 

flooded marsh surface area is projected to be lost under all the sea-level rise scenarios by 

2100, and in general the remaining area showed small changes to the variation of all input 

factors. Irregularly flooded marsh showed slightly bigger changes in area when the irreg-

accre rates were varied, following a proportional relationship between outputs and inputs. 

The predicted input-output relationship for sea-level rise results revealed that an 80% 

(0.2 m by 2100) decrease in sea-level rise of 1 m would mean an increase of 1,617 ha in 

regularly flooded marsh, a 280 ha decrease in tidal flat and a 1,536 ha decrease in 

estuarine open water when compared to the output base case for year 2100. If the sea-

level rise is +80% (1.2 m; it should be note that the base case is 1 m and the change is 0%), 

then the change in output will be -444, -955 and +1,455 ha change respectively. Two 

interesting output behaviours that are closely related to each other are observed in the 

regularly flooded marsh and tidal flat categories: 

A. With regard to the regularly flooded marsh output variation, results showed that 

negative variations from the baseline case closer to -1 (meaning a SLR2100 input closer 

to 0 m by 2100) created little impact in the regularly flooded marsh outputs. This is due 

to the accretion rates being higher than the potential sea-level rise by 2100. When the 

sea level rises more than 0.5 m by 2100 (which is roughly the accretion expected by 

that time in the baseline case), the surface area of the regularly flooded marsh 

dramatically drops with increase in SLR2100 until it reaches the value of 1.3 m. A SLR2100 
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input value ≥1.3 m or higher (positive change with respect to the baseline case; Figure 

7.18), regularly flooded marsh continues to lose area with increasing SLR. Changes in 

this category are much less dramatic, showing less variation in surface area with 

respect to the baseline case (ha). This behaviour is explained by the fact that lower 

SLR2100 values (in combination with the base case accretion rates) will prevent the loss 

of the initial (2013) regularly flooded marsh surface area by 2100, but it will not 

prevent the loss of irregularly flooded marsh and conversion to regularly flooded marsh 

will occur. Additionally, conversion from tidal flat to regularly flooded marsh will also 

occur due to increase in elevation on this habitat. These particular situations (with 

SLR2100 values ≤0.5 m) will considerably increase the surface area of the regularly 

flooded marsh as well as the differences with the base case. For SLR2100 values greater 

than the base case the regularly flooded marsh and SLR input change seems to follow a 

linear behaviour. 

B. With regard to the tidal flat outputs, negative variations in the ‘SLR2100’ input factor 

closer to -1 m change with respect to the base case (Figure 7.17) (-1 m SLR2100 change 

over the base case means 0 m sea-level rise by 2100) follow a decrease tendency. This 

behaviour is explained by the fact that lower values of SLR2100 (in combination with the 

base case accretion rate; ~ 0.5 m by 2100) will increase the initial (2013) tidal flat 

vertical elevation by 2100. The new higher elevation condition prevents permanent 

inundation in some of the lower elevation ranges in this category, and conversion from 

tidal flat to regularly flooded marsh occurs in the higher part of its elevation range. Due 

to the conversion into regularly flooded marsh, part of the tidal flat total surface area is 

lost. As the sea-level rises and gets closer to the 0.5 m inflexion point, tidal flat loss 

increases due to inundation of this category at the lower end of its elevation range 

reducing even more the total surface area of this category. This situation thus explains 

the unexpected initial drop in area change with respect to the baseline case. SLR2100 

input values greater than 0.5 m and smaller than 1 m lead to a switch in the tidal flat 

behaviour, decreasing the hectare differences respect the base case as the input value 

gets closer to 1 m (base case). This behaviour is explained by the fact that sea-level rise 

is higher than the total accretion by 2100, and part of regularly flooded marsh is 

converted into tidal flat. This situation carries on until 1 m SLR2100, where the tendency 

changed again establishing another important threshold. For SLR input values greater 

than 1 m, tidal flat follows the expected behaviour showing negative changes with 

respect to the baseline case as SLR2100 input values increase. In these cases, the sea level 

is much higher (more than double) than total accretion resulting in permanent 

inundation of tidal flat and regularly flooded marsh. Thus, greater surface area of tidal 

flat is lost with respect to the baseline case. 



 

Figure 7.17 Input-output relationship for saltmarsh categories in SLAMM (v. 6.2), where one input 
factor was change at a time while the rest were held constant and equal to base case.
axis states the changes in hectares of each saltmarsh category in comparison with the base case, 
and the horizontal axis the changes in the input factor values respect the base the case.
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simulations, thus, for simplicity, the saltmarsh categories have been added together. The 

‘total saltmarsh’ is defined as the combination of regularly flooded marsh, irregularly 

flooded marsh, and transitional marsh categories. For the total saltmarsh, the uncertainty is 

assessed in two ways. The first assessment is based on the uncertainty of the future sea-

level rise by 2100 (keeping the other input factors constant). The second assessment is  

based on the uncertainty of the Htrend, reg-accre and irreg-accre input factors for a 1 m 

sea-level rise by 2100. For a given set of ten thousand simulations, the total saltmarsh 

changes were ordered from the largest negative to largest positive, and frequency 

distribution were calculated as shown in Figure 7.18 and Figure 7.19. 

 The effect of the 1 m scenario sea-level rise using the full range variability of input 

factors (Histrend, reg-accre and irreg-accre) was evaluated by analysing the variability of 

the outputs. Interestingly, total saltmarsh showed a bimodal distribution, one peak of 

which suggested a decrease in surface area while the other peak showed an increase 

(Figure 7.18). Overall, results revealed that there are 4,401 simulations that showed a 

decline of the total saltmarsh, which can be interpreted as a 44 % chance of this 

happening, where 214 simulations showed a complete elimination of marsh (~ 1 % 

chance of occurring). On other the hand, there are 5,599 simulations, where total 

saltmarsh increasing is observed (~ 56 % chance of happening). ). This is encouraging as it 

demonstrates that saltmarsh creation is possible under a rising sea-level given a suite of 

favourable factors (related to sedimentation rates). 

 The bimodality observed in the output distribution states that there are 

combinations of input can result in either gain or loss of the saltmarsh surface area respect 

the base case. It should be noted that the variability in the saltmarsh categories (Figure 

7.16) was mainly attributed to the individual effects of accretion rates (reg-accre) and 

SLR2100. In the case of regularly flooded marsh (the category that contributes the most to 

the total saltmarsh hectares by 2100), reg-accre was the most important input factor 

controlling output variability. The gain in saltmarsh surface area can be due to tidal flat 

being converted to saltmarsh (as a result of increasing vertical elevation as observed in 

Figure 7.17) or due to higher-elevation coastal habitats being converted to saltmarsh 

(saltmarsh transgression). However, the loss of saltmarsh is because the saltmarsh is 

converted to tidal flat, where sedimentation rates are usually greater and could lead to 

new saltmarsh generation. 
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When results are compared with the initial case (2013), the worst guess keeping 

the site parameter constant was a loss of 98 % of the vegetated saltmarshes (over 2013 

saltmarsh surface area) in a sea-level rise scenario of 2.3 m, and the best guess was a loss 

of 91% in a sea-level scenario of 0.6 m. However, in simulations where saltmarsh 

accretion increased over time, the total saltmarsh loss over 2013 was reduced. For 

example, the best guess was a saltmarsh loss of 7% (over 2013 saltmarsh surface area) in 

a 1 m sea-level rise scenario by 2100, assuming 3.5 mmyr-1 historical sea level trend, 18.5 

mm yr-1 accretion rates in regularly flooded marsh and 2.6 mmyr-1 in irregularly flooded 

marsh. These findings showed once again the importance of the future accretion rates 

(and hence sediment availability and supply) in the fate of the Odiel saltmarshes. 

 

7.4.4. Odiel saltmarsh vulnerability due to sea-level rise 

The resulting map when ProjM was extracted from InitM is shown in Figure 7.20. This 

map showed those saltmarsh zones that did not experience any change, RegFM loss, TF 

loss and RegFM projected by 2050. It should be noted that more that 80% of the irregFM 

was converted into regFM, and that the remaining irregFM did not experience any change. 

New irregFM was not created in 2050 according to the model results, and it explains why 

this class did not appear in the method diagram (Figure 7.8).Based on this initial result, a 

summary classification of the Odiel saltmarsh sensitivity due to sea-level rise is shown in 

Figure 7.21 based on integration of the analyses of shoreline tendency, sea-level impacts 

on saltmarsh behaviour and estuary margin context. Results revealed that saltmarshes 

classified with high and very high sensitivity are mainly located in the mid- and low 

estuary. These zones comprise irregularly flooded marsh, regularly flooded marsh and tidal 

flat habitats that exhibit a high risk of being lost by 2050. The majority of the saltmarsh 

habitats that showed low and very low sensitivity were located in the upper estuary. 

These zones mainly included irregularly flooded marsh in 2013 that were converted in 

regularly flooded marsh by 2050. 

 

 



Figure 7.20 Odiel saltmarsh predicted change for 2050 under the IPCC scenario AB1, barriers 
presence in 2013, and shoreline tendency over the last 50 years.

 

Odiel saltmarsh predicted change for 2050 under the IPCC scenario AB1, barriers 
presence in 2013, and shoreline tendency over the last 50 years. 
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Odiel saltmarsh predicted change for 2050 under the IPCC scenario AB1, barriers 



239 

 

Figure 7.21 Classification of the Odiel saltmarsh vulnerability due to sea-level rise based on 2050 
predicted change 
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7.4.5. Comparison of original and modified SLAMM 

The results of habitat change for saltmarsh environments in the Odiel saltmarsh using the 

original and modified SLAMM are shown in Table 7.13 respectively. The results showed 

that the main habitat surface change was driven by the modified rules for defining habitat 

types. In the original version, SLAMM uses the ground elevation range defined by the user, 

while in the modified version this is overruled by the tidal frame elevations defined in the 

parameters (e.g. HAT, MHHW) for saltmarsh habitats. Thus when the model was run for 

the initial year (2013), the surface area of low marsh and tidal flat were significantly 

different to the results observed in the original version. It should be noted that in this first 

run, the site parameters (sea level rise, erosion and sedimentation for instance) are the 

same due the habitat map and elevation map have the same date (2013). This means that 

the model is adjusting their habitat types to the defined rules and elevation ranges. Due to 

these differences between original and modified version, these two versions are not 

directly comparable, and the results using the erosion module cannot be compared. 

 However, in order to investigate the importance of the erosion parameter in the 

model results at the Odiel saltmarshes, the modified version was run two times: 1) using 

the erosion rates (modified_E1) for the study site (Table 7.6), and 2) assuming that the 

erosion rates were zero (modified_E0) (as it is assumed in the original version when the 

fetch is smaller than 9 Km). The results are shown in Table 7.13 for those saltmarsh 

habitats that are affected by erosion: tidal flat and low marsh. The results revealed that 

erosion rates decrease the surface area in tidal flat by roughly 3.5 ha every 25 years. In the 

case of low marsh, the surface area was reduced 1.2 ha in 2050, 4.8 ha in 2075 and 3.3 ha 

in 2100. Although this number seems to be quite small (<1 %) compared with the total 

surface area of these habitats, it should be taken in account that erosion processes mainly 

occurs in the mid- estuary. Thus, ~20 ha of these habitats at the mid estuary would be lost 

by 2100, which is more significant than if whole saltmarshes are considered.  

 In terms of surface area, the erosion process do not seem to have a big impact in 

output results. However, the volume of sediment that potentially will be eroded and 

deposited on channel beds will be significant depending on the height of the marsh cliff. 

For example, if the marsh cliff is 0.5 m height, the potential sediment loss would be 

roughly 15.000 m3 every 25 years for tidal flat. In the case of low marsh the sediment loss 

would be 6000 m3 in 2050, 24000 m3 in 2075and 16500 m3 in 2100. But SLAMM results 

are based on surface areas and thus the contribution of including erosion rates do not 

change significantly the model outputs. 

 

  



241 

Table 7.13 Model results in hectares for Tidal flat and Low marsh habitats using the original 
SLAMM (v6.01), the modified SLAMM with zero erosion rates (Modified_E0) and the modified 
SLAMM with erosion rates estimated for the Odiel saltmarshes (Modified_E1). 

Habitat type Original Modified_E0 Modified_E1  (E1-E0) 

Tidal flat (ha) 

    Initial condition 1358.07 1358.07 1358.07 0.00 

2013 1043.48 519.32 519.32 0.00 

2050 1243.45 461.86 458.78 -3.08 

2075 1381.30 639.76 636.20 -3.56 

2100 1420.27 719.88 716.03 -3.85 

Low marsh (ha) 

    Initial condition 996.45 996.45 996.45 0.00 

2013 2515.71 2875.24 2875.24 0.00 

2050 3081.07 3206.31 3207.54 -1.23 

2075 3057.50 3059.59 3064.36 -4.77 

2100 3065.48 3000.69 3004.01 -3.32 
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7.5. Summary and discussion 

Broadly, results from all models are subject to uncertainty related to limitations in input 

data, incomplete knowledge about input factors that control the system behaviour, and 

simplifications to the system to accommodate the model (Clough et al., 2012). One of the 

main strengths of SLAMM is the ability to explore system responses to different sea-level 

rise scenarios, but uncertainties in the predicted response will also reflect uncertainties 

associated with the primary inputs and hence the quality of the original elevation data and 

habitat classification. Thus, it was crucial to undertake sensitivity analysis to explore the 

relative importance of data quality and resolution (spatial and vertical) in the key spatial 

inputs of elevation and saltmarsh habitat classification. Table 7.14¡Error! No se 

encuentra el origen de la referencia. summarises the sensitivity of each coastal habitat 

to different inputs. As expected, the DEM was the most important spatial input controlling 

output variability, which is in agreement with the work presented by other authors (Chu-

Agor et al. 2011; Chu-Agor et al. 2010; Linhoss et al. 2013; Akumu et al. 2010; Pylarinou 

2015) and bare-earth LiDAR-derived DEMs should be used to run the SLAMM as this 

reduces model uncertainty considerably (Gesch 2009). In the case of saltmarshes with 

high-density tall vegetation (>2 m height) such as those found in Mediterranean-Atlantic 

saltmarshes, it is also important to correct bare-earth LiDAR-derived DEMs to reduce 

model uncertainty (as it was indicated in Chapter 6). 

 Results from the sensitivity analysis showed that predicted habitat changes in all the 

analysed categories (except backshore) were sensitive to resolution in habitat and 

elevation maps. Elevation range (pre-defined for each habitat) and un-modified LiDAR-

derived DEM only showed sensitivity to saltmarsh habitats (transitional marsh, regularly 

flooded marsh, irregularly flooded marsh, tidal flat and vegetated tidal flat). In the case of 

the un-modified DEM, it was expected that only saltmarsh habitats were sensitive to this 

input since these were the habitats to be corrected using habitat-specific correction 

factors (see Chapter 6 for more details). The elevation range that defines the boundaries of 

each saltmarsh category was also crucial to predict the fate of these habitats. 

 However, the key finding of the sensitivity analysis based on spatial data was the 

sensitivity of the model outputs to habitat distribution. It was previously assumed not to 

have great impact over the model inputs. Almost all categories were sensitive to the 

habitat maps when the rest of inputs (spatial layers and parameters) were held constant. 

In particular, saltmarsh habitats were especially sensitive to the creek network spatial 

resolution, showing variations in the model outputs when the creek network was 

simplified. In contrast with the findings presented by Pylarinou (2015), these results 

suggest that map modifications (or errors) influence model outputs for all saltmarsh 

categories. Pylarinou (2015) reported that only lower elevation saltmarsh habitats were 
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sensitive to map errors due to the initial ‘adjustment’ of the habitat map (considering the 

elevation of each cell and the defined elevation ranges for each category) based on the 

process of inundation, and ignoring the process of aggradation. However, she states that 

when a saltmarsh habitat is misclassified with a higher elevation category, conversion to 

the ‘correct’ category will take place when inundation occurs. 

 A different behaviour was observed in the results presented here, possibly because 

the sensitivity analysis was based on testing the model sensitivity to the spatial pattern 

resolution of a high resolution habitat map (mapping complex saltmarsh spatial patterns 

with an overall accuracy of 83 %) rather than testing the model sensitivity to 

misclassification of two categories. Model outputs showed variations in the saltmarsh 

habitat spatial distribution (Figure 7.12) for both lower and higher elevation categories. 

This behaviour could be explained by the fact that the elevation range of some saltmarsh 

categories (based on real data) defined in this work overlap one another as shown in 

Table 7.4. This means that two cells classified as regularly flooded marsh (from 1 to 1.6 m) 

and tidal flat (from 0.32 to 1.2 m) for instance can have the same elevation (ranging from 1 

to 1.2 m) in the ‘initial condition’ based on the habitat map elevation. In this case, the 

regularly flooded marsh will convert into tidal flat when the elevation of that cell declines 

below 1 m (due to combined accretion and inundation processes). Thus, misclassified cells 

within a common elevation range are not ‘adjusted’ by the model when the ‘initial 

condition’ is run, making the model sensitive to the habitat map. In this sense, accurate 

habitat maps are essential in order to keep these possible errors to minimum. Values 

between 80 and 85 % are considered the minimum level of interpretation accuracy in the 

identification of land cover categories using remote sensed data (Anderson, 1971). 

 

Table 7.14 Sensitivity of each habitat map category to spatial layer input data. Those cells that were 
ticked showed sensitivity to the input data described in each column. 

 Habitat 
map 

Elevation 
range 

Poor resolution 
DEM3 (10m) 

Un-modified 
DEM1(1m) 

Developed Dry Land �   �   

Undeveloped Dry Land �   �   

Transitional Marsh �  �  �  �  

Regularly Flooded Marsh �  �  �  �  

Irregularly Flooded Marsh �  �  �  �  

Tidal Flat �  �  �  �  

Vegetated Tidal Flat �  �  �  �  

Estuarine Beach �   �   

Estuarine Open Water �   �   

Open Ocean �   �   

Ocean Beach �   �   

Backshore   �   
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 In general, uncertainty analysis propagates the uncertainties in model inputs to the 

outputs, while sensitivity analysis determines the contribution of each input factor to the 

uncertainty of the outputs (Chu-Agor et al., 2011). Uncertainty analysis in this work was 

carried out using a Monte Carlo approach to provide confidence statistics for model 

results. However, to run ‘full calculations’ of a great number of simulations (e.g. 10,000) in 

SLAMM to develop this approach was not feasible for this work due to time constraints 

and lack of computational resources. Alternatively, linear interpolation based on a smaller 

set of SLAMM simulations (roughly 15 for each input factor) was used in order to get the 

10,000 output variations needed for analysing uncertainty. The weakness in this approach 

is that inter-relationships between input factors are ignored as only one input was 

changed at a time, resulting in an overestimation of the results approximation. Thus, the 

output approximation of the ‘linear interpolation’ must be treated with caution especially 

with extreme input values. 

 In order to capture how inputs work together on the output would require more 

SLAMM runs. For example, in observing how two inputs behave together on four outputs 

would require 121 X 4 calculations (~ 40 hours). Given there are four inputs, this would 

lead to 6 combinations leading to potentially 240 hours of work which is roughly 25% of 

doing the full calculation method (~ 833 hours). Due to time constraints, the model inter-

relationship was not calculated here. However, the development of these calculations 

could provide interesting results to fully understand the output behaviours and how much 

of the output variation is explained by interactions between the input factors. For 

example, Chu-Agor et al. (2011) used full calculations and concluded that 90% of the 

variance in saltmarsh outputs was explained exclusively by accretion and only 1% by 

historic trend, of which 7 % was explained by interactions with other input factors. 

 Previous sensitivity analysis based on model parameters (input factors) undertaken 

by other authors (Craft et al. 2009; Chu-Agor et al. 2011) has shown that saltmarsh model 

outputs are sensitive to historic trend of sea-level rise and accretion using earlier versions 

of SLAMM (v5 and v6). The sensitivity analysis carried out here for v6.2 of SLAMM showed 

results comparable to those presented by Chu-Agor et al. (2011) for a site at Santa Rosa 

Barrier Island, Florida. Interestingly, the results presented here have revealed that for 

regularly flooded marsh, the most important input factor driving output variation is 

accretion rate, which may outpace a 1 m sea-level rise by 2100. This finding is important 

for the management of the Odiel saltmarshes because it shows the importance of the 

accretion processes over other input factors, and the need to understand sediment 

sources, availability and budgets within the system. 

 Results from the uncertainty analysis showed the probabilty of ocurrence of 

different combinations of input factors in a context of sea-level rise and how it potentially 
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affects the fate of the Odiel saltmarshes. The key finding of this part of the analysis is the 

bimodality observed in the results, showing that the system can respond positively 

(gaining elevation above mean sea level) or negatively (losing elevation) to sea-level rise 

driven by change in the other main processes (e.g accretion rates). In this context, 

understanding the conditions driving saltmarsh increase or decrease is essential for 

assessing the vulnerability of the Odiel saltmarshes and developing management 

measurements For example, there is a 40 % chance that part of the Odiel saltmarshes will 

respond positively to increases in accretion rates in the context of a 1m sea-level rise by 

2100 without introducing any specific management measures, reducing the total 

saltmarsh loss. This suggests that increasing saltmarsh accretion through specific 

measurements (e.g. planting Sp. maritima in bare tidal flats (for example see Castillo & 

Figueroa (2009), or controlling the vertical erosion processes) possibly help the system to 

cope as sea level rises and thus prevent 60% chance of losing saltmarsh. 

 The response of Odiel saltmarshes to sea-level rise using different IPCC scenarios 

showed similarities in 2050 model outputs for all scenarios, and significant discrepancies 

between scenarios in 2100 outputs. This suggests that as sea-level rise accelerates, more 

variability is introduced into the output highlighting the importance of sea-level rise 

scenarios in the prediction of potential impacts over saltmarsh habitats. Additionally, the 

differences found in the probability of losing saltmarsh when different sea-level scenarios 

and when 1 m sea-level scenario (plus variations in the input factors) were used reiterates 

the importance of accretion processes in the fate of the Odiel saltmarshes. 

 The short term accretion rates estimated in this thesis (Chapter 4) and the long term 

accretion rates estimated by other authors (Table 2.1) show that there is sediment 

available to enable saltmarsh vertical growth. However, what remains unknown is the 

time that these saltmarshes will need to cope in the case of a quick acceleration in sea-

level rise. The short term sedimentation rates estimated in flat mud and vegetated flat 

mud close to main creeks are much greater than in other habitats and locations, meaning 

that longer flooding periods near to main creeks (source of sediments) increase 

sedimentation rates. This process ensures that lower surfaces raise at a faster rate, and 

catch up with the height of the marsh platform enabling marsh growth in a quasi-

horizontal platform (Haslett, 2009). As the habitat conversion occurs and the 

geomorphology of the saltmarsh changes (e.g. creek network and lagoons), sedimentation 

rates within the saltmarsh will change, and those sites converted into tidal flat or low 

marsh will increase their rates. Additionally, based on the information reviewed about the 

Tinto and Odiel evolution, the sedimentation rates in this estuary increased as the sea-

level rise (Figure 2.5), and it is very possible that it will occur again. 
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 The spatial classification of saltmarsh vulnerability due to sea-level rise proposed 

here (Figure 7.21) is an important integration of the analyses undertaken and is a 

potentially powerful tool for those responsible for addressing management of the system 

in the medium term, and in particular in the context of sea-level rise. This map 

incorporates saltmarsh erosion tendency (it should be noted that original SLAMM does not 

take into account horizontal erosion rates when the fetch is < 9 km) facilitating the 

identification of the most vulnerable parts of the saltmarsh shoreline by 2050. Horizontal 

erosion (saltmarsh shoreline retreat) has been identified in Chapter 3 as an important 

factor driving saltmarsh loss in the last few decades and it is likely to increase predicted 

saltmarsh loss. As this factor can be controlled by soft engineering tecniques for instance 

(e.g. wooden revetments; (Castillo et al., 2000)), management schemes can be 

implemented by limiting erosion processes at those sites classified as sensitive. In the case 

of the Emedio Island, wooden revetments were inserted in order to reduce the horizontal 

erosion. This measurement has reduced the horizontal erosion rates in this island and it 

could be an effective measure to apply in other sectors of the Odiel saltmarsh. 

 A modified-version of SLAMM (Pylarinou, 2015) was compared with the original 

(v6.01) in order to explore the influence of horizontal erosion parameter in a context of 

sea-level rise. However, the results showed that these two models (original and modified) 

are not directly comparable due to the modifications of habitat type definition and 

conversion rules. The importance of the erosion parameter was then tested using the 

modified SLAMM only, and comparing model results when SLAMM was run with ‘erosion’ 

and ‘not erosion’. The results revealed that the surface area of tidal flat and low marsh 

habitats in 2100 is reduced by ~10 ha (over 2013 surface area) when lineal erosion is 

taken in account. In terms of surface area, these numbers are not significantly important 

considering the total surface area of these habitats. However, these numbers become more 

important when the volume of the sediments that potentially will be eroded was 

estimated. Considering a marsh cliff of 0.5 m, the total sediment eroded would be 45,000 

m3 for tidal flat habitats and 46,500 m3 for low marsh habitats. 

 Overall, SLAMM has resulted to be a useful landscape model in simulation of the 

Odiel saltmarshes for obtaining previous results and for detecting vulnerable areas within 

the whole saltmarshes. The utility of this model has also been recognised by other authors 

at other saltmarsh sites (Linhoss et al., 2013; Geselbracht et al., 2011; Mcleod et al., 2010). 

Some of the advantages of this model include (Table 7.15): its flexibility in scales; its 

ability to represent potential wetland impacts due sea-level rises; its ease and speed to 

run; and it contains the major processes involved in wetland. However, further 

investigations are needed in those areas considered very vulnerable due to the 

disadvantages found in this model (Table 7.15). One of the main disadvantages is that 
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SLAMM accretion relationships are empirical (defined between accretion rates and cell 

elevations among other factors) rather than mechanistic, and thus they do not integrate 

variables such as vegetation sediment trapping efficiency, inundation frequency, and 

sediment concentrations for instance (Clough et al., 2012). Other disadvantages are that 

SLAMM does not consider future changes in hydrodynamics and future tides are held 

constant. Due to these SLAMM limitations, it is recommended to use SLAMM in 

combination with other models such as physical models of sedimentation and/or 

hydrodynamic (e.g. Rinaldo et al., 1999; Temmerman et al., 2003b; D’Alpaos et al., 2007) 

over those sites considered very vulnerable. Then, monitoring and data collection can be 

focussed on those vulnerable areas, providing detailed information for managers and 

decision makers. 

 

Table 7.15 Disadvantages and advantages of sea level affecting marsh model (SLAMM) 

Disadvantages Advantages 

• Future changes in hydrodynamics are not 

represented 

• Tide held constant over time  

• Spatially simple erosion model  

• Accretion rates are affected by bank 

sloughing 

• Do not consider erosion rates when the 

fetch is > 9 Km (Original version) 

 

• Open source 

• Relatively quick to run 

• Flexibility in scales 

• Contains major processes pertinent to 

wetland fate 

• Provide spatial information to identify 

very sensitive sites due to sea-level rise 
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8. Final discussion and conclusions 

8.1 The SLAMM model for saltmarsh management in the context of sea-level rise: 

uncertainties and limitations 

SLAMM is an open source model that is easy to run and it has been used for investigating 

potential impacts due to sea-level rise over coastal wetland habitats due to sea-level rise in 

a range of different locations, though primarily the USA (e.g. Linhoss et al. 2013; Hauer et 

al. 2015; Ehman 2008; Craft et al. 2009; Akumu et al. 2010). Here, SLAMM was run to 

forecast the effect of sea-level rise on Mediterranean-Atlantic saltmarshes using the Odiel 

saltmarshes (Huelva, SW Spain) as study site. This study has shown that SLAMM was 

suitable for modelling large expanses of Mediterranean-Atlantic saltmarsh and that it 

could be a helpful tool for detecting sensitive areas within saltmarshes in the context of a 

rising sea level, and it could help managers to decide where to do further investigations 

and monitoring. For example, results from the model can help managers and decision 

makers to plan adaptation strategies for saltmarshes at local scales, and also to detect 

sensitive sites to run more complicate physical models. However, there are many 

uncertainties related to potential sea-level rise impacts over saltmarshes and it is 

important to be aware of them when projections are used in managing saltmarshes. The 

main uncertainties detected here were due to model limitations and data quality, and 

those surrounding forecast of sea-level rise. 

 The first uncertainty detected in saltmarsh modelling was related to the 

simplification of the saltmarsh processes assumed by SLAMM. Models and empirical 

relationships used to predict the effects of sea-level rise may simplify relationships 

(assuming a constant state) (Linhoss et al., 2013), and assume that coastal geomorphology 

does not change as sea level rises, which it is very unlikely. For example, as coastal barrier-

lagoon systems breach, inundation dynamics will change (Murdukhayeva et al., 2013). 

Particularly, SLAMM lacks feedback mechanisms that may play an important role in the 

system as sea-level accelerates. For example, increasing inundation of saltmarshes may 

increase macrophyte production and lead to increased vertical accretion (Morris et al., 

2002). Additionally, processes such as tidal range are assumed to be constant and 

therefore with increasing progression from the initial condition into a simulation, 

uncertainties in model prediction will increase. In this sense, the historical evolution of the 

studied system plays an important role in identifying the main drivers acting within the 

system and how the system has evolved. By looking further into the past, the system 

response due to past sea-level rise for instance can provide useful information for 

contextualising the future response of the system. Furthermore, due to all these 

limitations of predictive models like SLAMM, uncertainty analysis considering probability 

distributions becomes essential to assess the probability of different system responses. 
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The accurate definition of these probability distributions is crucial to reduce uncertainty, 

and historical data should be analysed. 

The second uncertainty surrounding modelling saltmarsh response to sea-level 

rise is data source quality and resolution. The resolution of input data is an important 

factor in spatial models like SLAMM, and is usually constrained by data source 

(Murdukhayeva et al., 2013). Elevation data and habitat map accuracy have been 

identified here as key components contributing to uncertainty in SLAMM habitat 

predictions in the context of sea-level rise. In this work, a methodology for improving the 

accuracy of the LiDAR-derived DEM and saltmarsh habitat maps has been proposed, and 

this can be applied to other saltmarsh environments. In this sense, it is highly 

recommended to do a rigorous validation of the LiDAR-derived data (e.g. DEM), especially 

in saltmarshes where perennial tall vegetation and high vegetation density are found, such 

as those in the Mediterranean-Atlantic saltmarshes. For example, in the case of the Odiel 

saltmarshes, the LiDAR-derived DEM showed vertical errors of up to 0.5 m in areas 

colonised by tall vegetation (Sp. densiflora). 

 Apart from uncertainties related to the model and input data, there are also 

uncertainties directly linked to the effects of sea-level rise on saltmarshes to consider. The 

sea-level rise predictions themselves are uncertain, and different projections for global 

sea-level rise by 2100 range between 0.18 and 0.59 m (IPCC AR4 WG1, 2007), 1.4 m 

(Vermeer & Rahmstorf, 2009), and up to 2 m (Pfeffer et al., 2008). These projections are 

based on historical and empirical methodologies. Additionally, local projections for the 

Odiel saltmarshes estimated from historical trends and future projections using a 

correlation factor (Fraile-Jurado & Fernandez-Diaz, in press.) include 0.64 – 0.86 m (IPCC 

scenarios: RCP2.0, RCP4.5, and RCP8.0), 1.07 – 2.27 m (Pfeffer et al., 2008) and 1.17 m 

(Rahmstorf, 2007). 

 Finally, management strategies themselves may have uncertain consequences. Thus, 

to make robust management decisions, it is essential to assess diverse information and 

their associated uncertainty (Linhoss et al., 2013). For this purpose, a multi-criteria 

decision analysis (MCDA) can provide a suitable tool to integrate information of different 

nature (Kiker et al., 2008; Linkov et al,. 2006), including results from several predictive 

models. The use of predictive models such as SLAMM can also be used as a tool for 

assessing the effectiveness of different management measures for instance. For this 

purpose, SLAMM can be run multiple times using different input data (for example, to 

include artificial measures to favour accretion rates and how the system will respond to 

those changes). 
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8.2. Conclusions 

 This thesis set out to show how a multifaceted methodology for investigating the 

response of saltmarshes due to sea-level rise at local scales in the Odiel saltmarshes (SW 

Spain) can inform managerial schemes in the context of sea-level change. The approach 

described here used elevation data derived from light detection and ranging (LiDAR), high 

spatial resolution multispectral imagery (1 m) and spatial modelling in combination with 

historical estuary evolution and field observations. The potential of reduced complexity 

models such as the Sea Level Affecting Marsh Model (SLAMM), widely used in the USA, has 

been assessed here as a tool to provide information for coastal managers regarding the 

impact of sea-level rise on saltmarsh habitats and their associated uncertainties. 

 In the Tinto-Odiel estuary, the system response to anthropogenic and natural 

drivers has been observed in changes to geomorphology and habitats, as well as 

movement in saltmarsh shorelines. A key finding here is that the effect of the sea-level rise 

is manifested in different ways in different parts of the estuarine system, depending 

particularly on their anthropogenic history. In the upper estuary, saltmarshes showed 

growth over recent decades. Sedimentation rates here (4.36 mmy-1) are greater than the 

historical relative sea level rise (3.3 mmy-1) recorded for the Tinto-Odiel estuary, but there 

have also been important restoration projects carried out here (e.g. plantation of pioneers 

over mud flats) that have benefitted the growth of the saltmarshes. In the mid estuary, 

saltmarsh habitats showed a recessional tendency driven by several factors such as 

reclamation, waves generated by the increase of passing boats, and possibly by sea-level 

rise. Sedimentation rates in this part of the estuary are lower than relative sea level rise, 

thus it is quite possible that sea level rise is outpacing sedimentation at this site. 

Additionally, it is possible that greater river discharge between 1984 and 2001 (reaching 

the maximum value recorded for the period 1969-2006: 1800 hm3 in 1989) exacerbated 

the recessional tendency as the shoreline analysis shows enhanced rates of erosion during 

this period. In the lower estuary, the configuration of the estuary mouth has completely 

changed during the last 50 years with the construction of the Juan Carlos I dike, creating 

two lagoons, and a complex of new back-barrier and saltmarsh environments. Sea-level 

rise may have influenced some of the sediment transport processes here, but its impact is 

difficult to assess due to the far more imposing changes in the configuration of the lower 

estuary resulting from dike construction. 

 Plant communities found throughout the Odiel saltmarshes followed a habitat 

zonation that can be best described as comprising low marsh, salt pan, mid- marsh, high 

marsh and Spartina marsh. This zonation did not follow parallel rings from the shore, but 

a more complex distribution, showing the complexity of the saltmarsh micro-topography. 

Vegetation surveys showed that most species were always found within the same habitat 
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type, indicating a close relationship with soil elevation (that implies, more or less, 

tolerance to flooding and salinity conditions for instance). However, A. portulacoides and 

Sp. densiflora were found across a diverse range of elevations and situations, showing their 

great environmental adaptability. It is possible that these species will be more resilient to 

sea-level rise, and as such, they may have an advantage over other species, which could 

lead to a plant diversity loss. These species could be considered as key species to monitor 

medium term changes within the Odiel saltmarshes, and the increase in their spatial 

distribution within the estuary could be an indicator of environmental changes such as 

sea-level rise. The shift from S. perennis subsp. alpini (due to its intolerance of increasingly 

hypoxic soil conditions) to S. perennis subsp. perenni could also be an indicator of the 

effects of sea-level rise at the Odiel saltmarshes, and that sedimentation rates are not 

keeping pace with (or outpacing) sea level rates. 

 A relationship between habitat type and sedimentation rates was observed, where 

lower elevation habitats showed higher deposition rates. Furthermore, deposition rates 

within the same habitat type showed a spatial pattern depending on site location and 

geomorphology. As sea-level rises, the geomorphology and distance to main creeks are 

likely to change and thus the accretion rates. Based on short and long term accretion rates, 

sediment is clearly available for accretion across the Odiel saltmarshes. However, although 

vertical growth occurs across the saltmarshes, the horizontal erosion estimated at the 

central part of the Odiel estuary has caused retreat of the saltmarsh shoreline and loss of 

some habitat over recent decades. Erosion and sedimentation rates are very important 

variables to monitor within saltmarshes, and potential changes in these variables have 

important impacts on saltmarsh environments. Thus, the monitoring of these two 

variables should be prioritised in management strategies. In addition, the integrated 

management of sediment budgets within the river basin must be considered to ascertain 

future sediment availability. 

 Accurate spatial data, such as saltmarsh habitat map and digital elevation models 

(DEMs) are essential to deliver an effective representation of the system, and also reduce 

uncertainties in modelling procedures. Part of this thesis focused on improving accuracy 

in saltmarsh habitat (Chapter 5) and elevation (Chapter 6) data. In this sense, object based 

(OBIA) and pixel based (PBIA) image classification were explored for high resolution 

saltmarsh mapping (using spectral and elevation data) and the generation of habitat-

specific correction factors for improving accuracy in LiDAR-derived DEMs. Image 

classification results showed that overall accuracy in object-based classification 

(combining spectral and elevation data) reached greater values (83.1%) than pixel based 

classification (0.65 %), suggesting that an OBIA approach using LiDAR-derived data was 

more suitable for mapping small spatial patterns within saltmarsh habitats. This method 
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would complement habitat monitoring to understand changes over the time and assess 

response of the plant communities to sea-level rise at the landscape scale. However, it 

should be noted that these results are highly dependent on data available and the site 

characteristics (e.g. vegetation patterns and plant species). 

 With regard to DEMs, the work undertaken here highlighted that LiDAR-derived 

data do not provide accurate DEMs in saltmarsh environments where high-density and tall 

vegetation is present. This is a significant limitation in the use of LiDAR-derived DEMs for 

applications and investigations that require high accuracy, such as tidal flooding, 

sedimentation, and management and conservation activities in a context of sea-level rise. 

The study undertaken here (Chapter 6) demonstrates that application of a habitat-specific 

correction factor is a suitable approach for improving DEM accuracy in Atlantic-

Mediterranean saltmarshes. After applying the correction factors, the error of the 

corrected DEM was lower than the reported LiDAR-derived DEM accuracy (0.1 m) for all 

habitat types, except for the Spartina marsh that was slightly higher (0.13 m). High 

resolution habitat maps based on canopy heights are appropriate tools for applying 

correction factors to large study areas as has been shown in this work. Finally, this 

research also showed the importance of elevation accuracy in low-lying areas like 

saltmarshes and highlights the need for DEM corrections when certain applications such 

sea-level rise projections are used. In this sense, this work offers saltmarsh managers a 

robust approach that can be adopted by others where improvements in the accuracy of 

LiDAR-derived DEMs is required; this is particularly important for evaluating saltmarsh 

change in a context of sea-level rise. 

 A sensitivity and uncertainty analysis was undertaken to explore the relative 

importance of data quality and resolution (spatial and vertical) in elevation data and 

saltmarsh habitat classification layers, and also the global uncertainty of the model 

outputs using a Monte Carlo approach. Monitoring and measurement of saltmarsh habitats 

is time consuming and costly, and the acquisition of the SLAMM input layers (with high 

spatial resolution) can require significant resourcing. Thus the results presented here 

provide a better understanding of where surveying efforts should be focused, if necessary. 

The findings show that the SLAMM model is sensitive to DEM and habitat map resolution, 

and that historical sea-level trend and saltmarsh accretion rates are the predominant 

input factors that influence uncertainty in predictions of change in saltmarsh habitats. The 

understanding of the past evolution of the system as well as the contemporary situation is 

crucial to provide accurate uncertainty distributions and thus to set a robust baseline for 

future predictions. 

9.  The predicted response of the Odiel saltmarshes due to sea-level rise, based on the 

uncertainty analysis, suggested possible gain or loss of saltmarsh habitats (over the 
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base case which used the current site parameters) depending on the combination of 

input factors within their proposed uncertainty ranges for a 1 m sea-level by 2100, 

and considered the full range of variability of the most sensitive input factors 

(accretion rates and site historical sea-level rise). Based on local projections of sea-

level rise through to 2100, and assuming that the accretion rates and historical sea 

level trend do not change over the time, the worst-case estimate was a loss of 98 % of 

the vegetated saltmarshes over the initial case (2013) with a sea-level rise scenario of 

2.3 m, and the best case was a loss of 91% with a sea-level scenario of 0.6 m. However, 

in simulations where saltmarsh accretion increased over time, the total saltmarsh loss 

was reduced. For example, the best case was a saltmarsh loss of 7% (over the initial 

case , saltmarsh surface area in 2013) with a 1 m sea-level rise scenario (by 2100) 

assuming 3.5 mmyr-1 historical sea level trend, 18.5 mm yr-1 accretion rates in 

regularly flooded marsh and 2.6 mmyr-1 in irregularly flooded marsh. These findings 

show the importance of the future accretion rates (and hence sediment availability 

and supply) in the fate of the Odiel saltmarshes. 

  The potential of reduced complexity models such as the Sea Level Affecting Marshes 

Model (SLAMM), widely used in the USA, has been assessed here as a tool to provide 

appropriate information for coastal wetland managers regarding the likely impact of sea-

level rise on Mediterranean-Atlantic saltmarshes. The original version of SLAMM (v 6) 

does not take into account shoreline erosion rates where the fetch is less than 9 km (as is 

the case in the Tinto-Odiel saltmarshes). This should be considered when this model is run 

over tidal flat and low marsh habitats. Overall, SLAMM is able to provide general 

information about potential impacts due to sea-level rise at the landscape scale, but fails to 

provide detailed information at smaller scales due to the model limitations (e.g. simplified 

erosion model, and it hydrodynamic changes are not considered). Thus, in order to 

implement management strategies in a context of sea-level rise, it is highly recommended 

the use of this model at landscape scale in combination with other predictive models at the 

process scale at smaller sites that have been identified as very vulnerable to sea-level rise. 

Finally, SLAMM results should be treated with caution and they should be used in 

combination with uncertainty analysis to provide probability of occurrence. 
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