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ABSTRACT 68 

 69 

Aims  The 50th anniversary of the publication of the seminal book, The Theory of Island 70 

Biogeography, by Robert H. MacArthur and Edward O. Wilson is a timely moment to 71 

review and identify key research foci that could advance island biology. Here we take a 72 

collaborative horizon-scanning approach to identify 50 fundamental questions for the 73 

continued development of the field. 74 

 75 

Location  Worldwide. 76 

 77 

Methods  We adapted a well-established methodology of horizon scanning to identify 78 

priority research questions in island biology, and initiated it during the Island Biology 79 

2016 conference held in the Azores. A multidisciplinary working group prepared an 80 

initial pool of 187 questions. A series of online surveys was then used to refine a list of 81 

the 50 top priority questions. The final shortlist was restricted to questions with a broad 82 

conceptual scope, and which should be answerable through achievable research 83 

approaches. 84 

 85 

Results  Questions were structured around four broad and partially overlapping island 86 

topics, including: (Macro)Ecology and Biogeography, (Macro)Evolution, Community 87 

Ecology, and Conservation and Management. These topics were then subdivided 88 

according to the following subject areas: global diversity patterns (5 questions in total); 89 

island ontogeny and past climate change (4); island rules and syndromes (3); island 90 
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biogeography theory (4); immigration–speciation–extinction dynamics (5); speciation 91 

and diversification (4); dispersal and colonization (3); community assembly (6); biotic 92 

interactions (2); global change (5); conservation and management policies (5); and 93 

invasive alien species (4). 94 

 95 

Main conclusions  Collectively, this cross-disciplinary set of topics covering the 50 96 

fundamental questions has the potential to stimulate and guide future research in island 97 

biology. By covering fields ranging from biogeography, community ecology, and 98 

evolution to global change, this horizon scan has the potential to foster the formation of 99 

interdisciplinary research networks, enhancing joint efforts to better understand past, 100 

present and future of island biotas. 101 

 102 

 103 

Keywords 104 

Biodiversity conservation, community ecology, extinction, global change, island biology, 105 

island biogeography theory, island evolution, island macroecology, research priorities 106 

 107 

  108 
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INTRODUCTION 109 

 110 

In 1967 Robert H. MacArthur and Edward O. Wilson published The Theory of Island 111 

Biogeography (MacArthur & Wilson, 1967), where they expanded upon an earlier paper 112 

in which they first described their equilibrium theory (MacArthur & Wilson, 1963). In 113 

these works they developed a general mathematical theory to explain the regulation of 114 

species richness on islands. Their theory was based on the argument that island biotas 115 

eventually reach a dynamic equilibrium between processes that add species, particularly 116 

by immigration (plus, for more remote islands, speciation; see MacArthur & Wilson, 117 

1963), counterbalanced by processes that cause local extinction of species. Specifically, 118 

the model at the core of their theory predicts that the rates of these two key processes are 119 

determined by geographical context, represented in the first instance by island area and 120 

isolation. Whereas their general theory was motivated by a desire to formulate ecological 121 

and evolutionary theories based upon population level processes and to introduce a new 122 

rigour into the discipline of island biogeography, their theorizing was inspired by 123 

documented patterns of species abundance, species richness and turnover within and 124 

across islands (Lomolino & Brown, 2009; Wilson, 2010).  125 

 The seminal work of MacArthur and Wilson has subsequently stimulated a 126 

substantial research effort on island biogeography and biodiversity (Whittaker & 127 

Fernández-Palacios, 2007; Losos et al., 2010), and promoted the exploration of islands as 128 

model systems for a more general understanding of biological communities (e.g. Warren 129 

et al., 2015). The similarities between island archipelagos and fragmented continental 130 

landscapes have also triggered interest in applying MacArthur and Wilson’s theory in 131 
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conservation science; for instance, by deriving principles of protected area design and 132 

estimation of species extinctions in fragmented landscapes (e.g. Diamond, 1975). In 133 

addition to the colonization–extinction dynamics forming the core of MacArthur and 134 

Wilson's theory (MacArthur & Wilson, 1967), the authors included speciation as a term 135 

in the model within the 1963 description of equilibrium theory, and provided a 35-page 136 

chapter on ‘evolutionary changes following colonization’ within their 1967 monograph. 137 

Evolutionary processes, however, were set aside from the early chapters of the 138 

monograph, excluded from statements of the Core IBT (Island Biogeography Theory) and 139 

the famous intersecting curves graphic, and were not explicitly integrated in the neutral 140 

mathematical formulation of the model (leading to the erroneous but oft repeated claim 141 

that they ignored speciation). The subsequent development of molecular genetic tools for 142 

evolutionary analysis have prompted renewed interest in the integration of speciation into 143 

the Core IBT (e.g. Emerson & Gillespie, 2008; Rosindell & Phillimore, 2011; Valente et 144 

al., 2015), and improved estimation of historical immigration dynamics based on 145 

phylogenetic relationships among species (Ronquist & Sanmartín, 2011). The Core IBT 146 

is in essence a biologically neutral model – or close to it –, occupying the first 67 pages 147 

of the 1967 monograph, with much of the next 116 pages devoted to theory concerning 148 

population- and species-level traits of island biotas and their dynamics (MacArthur & 149 

Wilson, 1967). Progress on these latter themes has arguably been slower than on issues 150 

surrounding the Core IBT, but recent advances in genomic techniques, trait biology, and 151 

analytical capacity should move forward this agenda (e.g. Gillespie et al., 2012; Heleno 152 

& Vargas, 2015; Santos et al., 2016a). Additionally, while the Core IBT referenced long-153 

term biological dynamics, it did not take into account the dynamic nature of islands 154 
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themselves, and here too, notable advances are being made (e.g. Whittaker et al., 2008; 155 

Borregaard et al., 2016; Fernández-Palacios et al., 2016). 156 

Fifty years on from its publication, MacArthur and Wilson’s (1967) book remains 157 

one of the most influential texts on ecology and evolution, with continued debate over its 158 

strengths and limitations. It has been, and will continue to be, a springboard for research 159 

on the origin and maintenance of biological communities, with particular reference to 160 

marine island systems, but also extending to other island-like systems. Half a century 161 

since this seminal contribution, it is time to review both the new and outstanding 162 

challenges facing the broad discipline of island biology, as well as particularly promising 163 

research avenues (see e.g. Warren et al., 2015; Santos et al., 2016b). The impact of their 164 

monograph is discernibly very broad across island biology, not merely within the 165 

biogeographical literature. In particular, this paper focuses on identifying the 50 most 166 

fundamental questions for present and future island biology research. Inspired by 167 

previous studies seeking to identify priority research questions within a scientific field 168 

based on a cornucopia of proven methods (e.g. Pretty et al., 2010; Sutherland et al., 2011; 169 

Sutherland et al., 2013; Seddon et al., 2014; Kennicutt et al., 2015), we present the 170 

outcome of a survey-based approach initiated at Island Biology 2016: the 2nd 171 

International Conference on Island Evolution, Ecology and Conservation, which was 172 

held at the University of Azores in Terceira Island, July 18–22, 2016. 173 

 174 

 175 

MATERIALS AND METHODS 176 

 177 

Comment [PL1]: This connection is not working. I think that the problem can be solved by leaving out the sentence “The impact . . .” 
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Prior to the Island Biology 2016 conference, a total of 21 conference attendees (see 178 

author list) were identified by the five survey coordinators (JP, RJW, PAVB, JMFP and 179 

BCE), to constitute the ‘50 fundamental questions in island biology’ working group in 180 

which each member encompasses expertise in at least one of the following subject areas: 181 

(i) (Macro-)Ecology and Biogeography, (ii) Speciation and Extinction, (iii) Community 182 

Ecology, (iv) Biotic Interactions, (v) Conservation Biology and Global Change, (vi) 183 

Dispersal and Colonization, and (vii) Palaeobiogeography and Palaeoecology. Two or 184 

three members of the working group were assigned to each subject area, and they had the 185 

possibility to recruit one or two more members to their panel. An eighth panel (viii) was 186 

also formed to identify any key questions that fell outside the scope of the seven original 187 

subject areas. Research interests within the ‘50 fundamental questions in Island Biology’ 188 

working group represent a broad array of geographic areas, model organisms, and 189 

networks of international collaborators. The members of each subject group were asked 190 

to identify at least 15 questions that they viewed as of fundamental interest within their 191 

subject panel. Members were encouraged to consult broadly with colleagues, with the 192 

mentioned option to invite non-conference attendees to join their panels, to provide 193 

additional expertise. A total of 197 questions were compiled in this process, which were 194 

screened for duplication or ambiguity by the five survey coordinators, resulting in a 195 

curated list of 187 questions (hereafter termed List 1; Fig. 1). To facilitate the practical 196 

implementation of the first voting, questions from List 1 were redistributed into four main 197 

island biology topics (e.g. see Carlquist, 1974; Whittaker & Fernández-Palacios, 2007; 198 

and Losos et al., 2010): (i) Island (Macro)Ecology and Biogeography (52 questions) 199 

included questions from the subject areas of (Macro-)Ecology and Biogeography, and 200 
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Palaeobiogeography and Palaeoecology; (ii) Island (Macro)Evolution (63 questions) was 201 

used to group questions on Speciation and Extinction, and Dispersal and Colonization; 202 

(iii) Island Community Ecology (27 questions) comprised questions from Community 203 

Ecology, and Biotic Interactions; and (iv) Island Conservation and Management (45 204 

questions) included questions from Conservation Biology and Global Change. The 407 205 

conference attendees of the Island Biology 2016 conference (see 206 

http://www.islandbiology2016.uac.pt) were invited to participate in four online surveys 207 

(Survey 1), one for each of the four amended groups of topics above. Across the four 208 

surveys, the conference attendees could score each question as ‘fundamental’, ‘not 209 

fundamental’, or leave the answer blank. The order of the questions was randomized for 210 

each new login, so that a specific order of presentation of questions could not bias the 211 

outcome of the surveys; this strategy was retained for the two following online surveys 212 

(see below). For each of the four topics, survey participants were also given the 213 

opportunity to submit one additional question, if they felt such a question was missing 214 

from List 1. 215 

 At the end of Survey 1, the original survey questions were ranked according to the 216 

total number of questions scored as ‘fundamental’, and the top 80 questions selected (List 217 

2). Then, the 44 new questions proposed by survey participants (List 3) were merged with 218 

an equivalent number of questions from List 2, specifically the 44 lowest ranked key 219 

questions, to create a second survey (Survey 2) with 88 questions (List 4). The questions 220 

from List 4 were voted as ‘fundamental’ or ‘not fundamental’ by the 29 members of the 221 

‘50 fundamental questions in island biology’ working group, and ranked. The top 44 222 

questions of List 4 were then refined to eliminate redundant questions or ambiguities 223 

Comment [PL2]: Odd sentence, should maybe be the number of respondents who scored these as fundamental 
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through discussions among the coordinators of the survey, and then merged with the top 224 

36 questions kept from List 2. The list of 80 questions (List 5) was then subject to a third 225 

online survey (Survey 3) involving a broader participation by extending the invitation to 226 

participate to the ca. 400 attendees of the Island Biology 2014 conference held in 227 

Honolulu, Hawaii, who did not attend the Island Biology 2016 conference, and also to the 228 

members of the following island biology related interest groups: American Society of 229 

Naturalists; British Ecological Society; Conservation Specialist Interest Group; Société 230 

Française d’Ecologie; Ecological Society of America; Hellenic Ecological Society; 231 

International Biogeography Society; New Zealand Ecological Society; the Spanish and 232 

the Portuguese Ecological Societies, and other specific working groups and e-mailing 233 

lists related to island biology that the authors could identify. 234 

 235 

Study shortcomings 236 

Across the different phases of this participative process, a determined effort was made to 237 

select experts, questions and voters, representative of the full breadth of island biology 238 

research. In addition, the inclusion of 48 questions suggested online by anonymous 239 

attendees of the Island Biology 2016 conference further contributed to increase the 240 

diversity of backgrounds and expertise reflected in the questions identified (see Fig. 1). 241 

However, despite these efforts, it would be naive to regard our list as definitive and 242 

unbiased, as it inevitably reflects the interests of the particular group of voters who were 243 

contacted and participated in our survey (see e.g. Sutherland et al., 2013; Seddon et al., 244 

2014). For instance, from the 27 initial questions on Palaeoecology & 245 

Palaeobiogeography included in the online Survey 1, only one question [see Q28 in 246 
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Results section] remained in the final list of 50 questions. This may reflect the fact that 247 

only about 10% of the final survey voters identified Palaeoecology & 248 

Palaeobiogeography as one of their fields of expertise (see Results). Such biases in the 249 

composition of the biologists sampled have undoubtedly influenced the balance of the 250 

questions presented here. Despite such shortcomings, by performing several voting and 251 

discussion rounds with a large group of experts from a wide range of organizations, fields 252 

and geographical regions (see Results section for more details), we hope to have 253 

minimized the consequences of individual preferences and other subjective choices.  254 

 255 

 256 

RESULTS 257 

 258 

The number of participants voting in the three rounds of online voting varied. In the first 259 

online survey (Survey 1), the number of participants was distributed into the four topics 260 

as follows: Island (Macro)Ecology and Biogeography (104 participants); Island 261 

(Macro)Evolution (84); Island Community Ecology (82); Island Conservation and 262 

Management (91). This round of voting was completely blind and no information about 263 

the scientific profile of the participants was requested. In the second online survey 264 

(Survey 2), only the 29 authors of this study voted, with each person voting on all the 265 

questions irrespective of topic area. 266 

 In the final round of online voting (Survey 3), 303 people participated, with the 80 267 

submitted questions receiving on average 286.6 (SD ± 2.3) votes. A large proportion of 268 

the 80 questions (77 out of the 80) were considered as ‘fundamental’ by the majority of 269 
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the voters, and the final ranking was thus based on the proportion of ‘fundamental’ votes 270 

with respect to the total numbers of votes (‘fundamental’ + ‘not fundamental’) received 271 

for each question. The percentage of fundamental votes varied between 79% (top) and 272 

39% (the 80th question), while the last question making it into the top 50 attracted 62% of 273 

positive votes.  274 

The scientific profile of the third survey participants was highly diverse, being 275 

distributed across main topics in island biology as identified by the participants 276 

themselves as follows: Conservation, Management & Global Change (290 participants); 277 

Community Ecology (141); Biogeography (137); Biotic Interactions (99); (Macro-278 

)Ecology (76); Dispersal (69); (Macro-)Evolution (58); Island Theory (45); 279 

PaleoPalaeoecology & PaleoPalaeobiogeography (30); and Plant or/& Animal 280 

Physiology (28). An additional 45 participants identified with 11 less common 281 

disciplines. In total, 68.7% (207) participants work on islands and/or island-habitat types, 282 

while 17.8% (54) voters focus their research on other ecological systems. Only 10.2% 283 

(31) participants work both on island and non-island systems. From the voters that 284 

provided information regarding the geographic circumscription of their study areas, the 285 

following insular systems were well represented: Oceania, including Australia, 286 

Melanesia, Micronesia, New Zealand, Polynesia, Galápagos and Juan Fernández (57 287 

participants); North Atlantic including Macaronesia (39); Mediterranean (19); Caribbean 288 

(13); Indian Ocean, including the Mascarenes, Socotra and Madagascar (13); and 289 

Indonesia (6).  290 

Below we present the top 50 priority questions in island biology identified in the 291 

present study. For convenience in presenting the results, questions were compiled into the 292 
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four main island topics used earlier (see List 1 above): (i) Island (Macro)Ecology and 293 

Biogeography (including 16 questions); (ii) Island (Macro)Evolution (11); (iii) Island 294 

Community Ecology (8); and (iv) Island Conservation and Management (15). 295 

Information about each question’s final rank (#) and percentage of votes received (%) is 296 

also provided. 297 

 298 

Island (Macro)Ecology and Biogeography  299 

Global diversity patterns 300 

Q1. What are the relative roles of spatial, historical and ecological processes in driving 301 

taxonomic, phylogenetic and functional diversity patterns of insular systems? [# 7; % 302 

= 75.2] 303 

Q2. How do fundamental biogeographic processes interact through time and space to 304 

establish the island species–area relationship? [# 22; % = 70.5] 305 

Q3. How do taxonomic, phylogenetic and functional diversity compare between 306 

islands and ecologically similar continental areas? [# 27; % = 68.7] 307 

Q4. How important are islands as refuges for now extinct mainland lineages and/or 308 

ecosystems? [# 45; % = 64.5] 309 

Q5. How important are oceanic islands as generators of biodiversity and for the 310 

assembly of continental biota through reverse-colonization and/or colonization de 311 

novo? [# 49; % = 62.2] 312 

 313 

The questions in this section share an emphasis on fundamental large-scale topics. The 314 

first question [Q1], in particular, invokes a research agenda covering all types of island 315 
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systems and multiple facets of biodiversity. This question is a worthy reminder of the 316 

importance of integrating the dynamics of historical/geographical, long-term 317 

environmental, and contemporary ecological time-scales in analyses of insular biota. 318 

Island biologists need to be aware of and integrate knowledge from other natural 319 

sciences, in particular from earth systems science, in understanding long-term dynamics 320 

of island platforms as theatres for the evolutionary play (e.g. Price & Clague, 2002; 321 

Fernández-Palacios et al., 2011; Ali & Aitchison, 2014; Skipwith et al., 2016). How key 322 

biogeographical processes of dispersal/migration, speciation and extinction interact to 323 

shape the form of the island species–area relationship [Q2] remains an important topic 324 

and particular how these processes and patterns vary among different island contexts, 325 

including oceanic, continental-shelf, continental fragment, and habitat islands (e.g. 326 

Triantis et al., 2012; Patiño et al., 2014b; Matthews et al., 2016). Comparisons between 327 

taxonomic (typically the species as unit of analysis), phylogenetic and functional 328 

diversity responses across islands [see also Q29] and between islands and continents [Q3] 329 

represent a very recent development, on which little research has so far been conducted 330 

(but see e.g. Whittaker et al., 2014 and; Weigelt et al., 2015, for examples of intra and 331 

inter-archipelago analyses respectively). Our perception of the roles of islands [Qs 4, 5] 332 

as macroevolutionary sinks (sensu Goldberg et al., 2005), rather than as sources, has been 333 

challenged in recent years, and possibly needs to be reassessed (Bellemain & Ricklefs, 334 

2008). It was long understood that, in general, whereas islands received colonist species 335 

from continents, the reverse process rarely, if ever, happened (e.g. Carlquist, 1974). This 336 

unidirectional view of island colonization was consistent with the notion that islands, as 337 

species poor and disharmonic systems (i.e. lacking the full array of forms found on the 338 
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mainland) were typified by species that had become poor competitors (in the broad 339 

sense). Moreover, islands were viewed as refugial holdouts of persistence for a number of 340 

ancient forms (e.g. Yoder & Nowak, 2006; Vargas, 2007; Wood et al., 2015; Shaw & 341 

Gillespie, 2016), swept away by more recently evolved competitors from former 342 

mainland bastions. More recently, it has become apparent that so-called back-343 

colonizations (or boomerangs sensu Caujapé-Castells, 2011) from islands to mainlands, 344 

or movements across ocean basins via islands and colonization de novo of continents, 345 

have occurred and include some colonist lineages that have had great importance in 346 

shaping current biodiversity patterns. Examples include lineages of birds (e.g. Filardi & 347 

Moyle, 2005; Jønsson et al., 2011; Jønsson & Holt, 2015), insects (Grady & DeSalle, 348 

2008) and plants (Carine et al., 2004; Patiño et al., 2015; Condamine et al., 2016). For 349 

the very reason that addressing these questions requires an integrative approach with the 350 

intersection of disparate fields and methodological approaches, these broad questions [Qs 351 

1–5] remain of central importance within island biology, with evident potential to 352 

continue to generate significant changes in our understanding of this field. 353 

 354 

Island ontogeny and past climate change  355 

Q6. How do rates of colonization, speciation and extinction change during island 356 

ontogeny? [# 9; % = 73.4] 357 

Q7. How do diversification rates of island lineages change with island age? [# 38; % 358 

= 66] 359 

Q8. How important were past geological events and climate change in promoting 360 

island colonization and altering dispersal pathways? [# 20; % = 70.5] 361 
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Q9. How has climate change influenced speciation and extinction within islands? [# 362 

12; % = 72.7] 363 

Following on from the above themes, questions 6–9 embrace specific challenges to our 364 

understanding of the long-term dynamics of insular systems. Notwithstanding the diverse 365 

geological origins and developmental histories of islands, a substantial number of them 366 

are remote, volcanic in origin, and follow a broadly similar ontogeny. Typically, these 367 

islands begin with a building phase, followed by a gradual shift into erosion and 368 

subsidence, eventually leading to them becoming merely sub-ocean surface features. This 369 

developmental pathway, or certain variants ofn it, and their biological consequences are 370 

integrated within the general dynamic model of oceanic island biogeography (Whittaker 371 

et al., 2008; Borregaard et al., 2016), which offers predictions concerning rates of 372 

colonization, speciation, diversification and extinction and how they vary over the 373 

developmental history of islands. Testing such predictions for speciation and extinction is 374 

challenging (see [Qs 17–20]), and further complicated when island age is also integrated 375 

[Qs 6, 7]. It requires a focus on comparing island-specific rates among islands of different 376 

maturity across archipelagos, as opposed to within-lineage rates without implicit 377 

reference to island specific rates (sensu Bennett & O'Grady, 2013), suggesting a need for 378 

innovative approaches involving the comparative analysis of large numbers of time-379 

calibrated phylogenies. 380 

Improved geodynamic data concerning past climate change, wind connectivity, 381 

ocean currents, and sea-level oscillations over the Pleistocene permit the development of 382 

more sophisticated models for inferring shifts in the configuration of islands and their 383 

environment (area, isolation and climate) through time, and their availability has 384 

Comment [PL3]: Which themes? The first set of questions? Either make more explicit, or leave out. It does not seem to play a role. 

Comment [PL4]: Is this what you mean? 



17 

generated increasing interest in the implications of these long-term changes for island 385 

biodiversity patterns and processes (e.g. Carine, 2005; Dalsgaard et al., 2013; Ali & 386 

Aitchison, 2014; Rijsdijk et al. 2014; Ávila et al., 2016; Borregaard et al., 2016; 387 

Fernández-Palacios, 2016; Fernández-Palacios et al., 2016; Steinbauer et al., 2016a,b; 388 

Weigelt et al., 2016). Integrating colonization dynamics into these models [Q8] may 389 

benefit from recent comparative phylogenetic approaches (Ronquist & Sanmartín, 2011), 390 

while understanding how climate change has influenced rates and patterns of speciation 391 

and extinction on islands [Q9] appears to be a particularly challenging area of study. 392 

 393 

Island rules and syndromes 394 

Q10. Is trait evolution fundamentally different on islands than on continents? [# 42; 395 

% = 64.9] 396 

Q11. How robust are the various island rules and syndromes relating to body size, 397 

loss of dispersal, coloration, breeding system, woodiness, and clutch size, among 398 

others? [# 47; % = 63.3] 399 

Q12. To what extent are island populations genetically impoverished, compared to 400 

comparable mainland populations? [# 50; % = 62] 401 

 402 

Since the earliest days of scientific study of island biology, it has been understood that 403 

islands possess peculiar forms and otherwise atypical subsets of ecological and 404 

taxonomic groups (an aspect of island disharmony). Some part of this arises from a 405 

colonization filter through dispersal limitation. Following successful colonization and 406 

establishment on an island, recently arrived colonists are potentially exposed to a range of 407 
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novel biotic and abiotic conditions that have, in many instances, triggered notable 408 

morphological, behavioural and ecological shifts (e.g. Kavanagh & Burns, 2014; Traveset 409 

et al., 2015). Indeed, many of these features were remarked upon and formalized into 410 

syndromes or rules in classic works, particularly in Island Life by Alfred Russel Wallace 411 

(1880) and Island Biology by Sherwin Carlquist (Carlquist, 1974). Not surprisingly, 412 

chapter sSeven of MacArthur & Wilson’s book (1967), entitled ‘Evolutionary Changes 413 

Following Colonization’ ,dealt with some of the most intriguing island syndromes, such 414 

as the loss of dispersal capacity. Specifically, questions 10 and 11 reflect the long-lasting 415 

interest in phenomena such as flightlessness, gigantism, super-generalism, or secondary 416 

woodiness (reviewed in e.g. Jost, 2007; Whittaker & Fernández-Palacios, 2007; Losos & 417 

Parent, 2010; Lens et al., 2013), where empirical evidence has often provided conflicting 418 

signals (e.g. for the loss of dispersability, see Cody & Overton, 1996; Patiño et al., 2013; 419 

Kavanagh & Burns, 2014; Vargas et al., 2014). A few decades ago, a number of seminal 420 

studies (e.g. Frankham, 1997) introduced the idea that island populations are typically 421 

characterized by low levels of genetic diversity [Q12]. Recent analyses of spatial 422 

distribution of genetic variation across island and continental regions have, however, 423 

provided evidence that the expectation of low genetic diversity cannot always be 424 

generalized to island assemblages (e.g. Fernández-Mazuecos & Vargas, 2011; 425 

Hutsemékers et al., 2011; García-Verdugo et al., 2015; but see Illera et al., 2016). It 426 

seems likely that future research on island syndromes will need to continue to pay critical 427 

attention to: (i) the statistical robustness of the patterns concerned (e.g. Meiri et al., 428 

2008); (ii) causal explanations for the patterns, including the extent to which they reflect 429 

in situ evolutionary change versus non-random colonization/persistence (e.g. Valido et 430 



19 

al., 2004; Lomolino et al., 2013); and (iii) the mechanistic explanations for such 431 

distinctive evolutionary pathways (e.g. Burns et al., 2012; Novosolov et al., 2013; Itescu 432 

et al., 2014). As these island-specific syndromes develop from the same eco-evolutionary 433 

processes that operate on the mainland, research on islands and continental counterparts 434 

(e.g. closely related taxa) [Q12] will be key to enhancing our fundamental understanding 435 

of the underlying mechanisms.  436 

 437 

Island biogeography theory 438 

Q13. How do the dynamics of island communities scale up to generate the 439 

biogeographical patterns predicted by island biogeographical theories? [# 37; % = 440 

66.3] 441 

Q14. How can we reconcile island biogeography theories with other ecological and 442 

evolutionary theories to contribute to a general biodiversity theory? [# 15; % = 72.1] 443 

Q15. How applicable are island biogeographical theories derived from real islands to 444 

other forms of insular system, such as sky islands and seamounts? [# 48; % = 62.7] 445 

Q16. How can we best incorporate population genetic and/or phylogenetic data to 446 

advance models of island biogeography? [# 28; % = 68.3] 447 

 448 

Island biogeography has always been a driver for the development of general theories in 449 

ecology and evolution. Hubbell’s (2001) ‘neutral theory of biodiversity and 450 

biogeography’ is one prominent example of how reflection on island theory (specifically 451 

MacArthur and Wilson’s theory) in a broader context, has continued to generate novel 452 

research directions (e.g. Warren et al., 2015; Santos et al., 2016b). Neutral theory 453 
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provides one approach to scaling up from local scale species abundance distribution 454 

patterns and dynamics to emergent biogeographical patterns [Q13], as exemplified by 455 

recent work by Rosindell and colleagues (e.g. Rosindell & Phillimore, 2011; Rosindell & 456 

Harmon, 2013). Although questions specifically on species abundance distributions failed 457 

to make the final cut in the present survey, the significance of improving understanding 458 

of species abundances in insular settings, and how they link to other macroecological 459 

patterns (such as species–area relationships) is implicit in questions 13, 14, and 33 (see 460 

e.g. Fattorini et al., 2016). 461 

Another facet of island theory that can be traced back directly to MacArthur & 462 

Wilson (1967) is the application of theory developed with marine islands (i.e. ‘real 463 

islands’) in mind to other insular contexts [Q15], be they mountain tops (sky islands, e.g. 464 

Sklenář et al., 2014; Steinbauer et al., 2016b), or other habitat islands isolated by a 465 

contrasting non-water matrix type (e.g. Kisel et al., 2011; Matthews et al., 2016). 466 

MacArthur & Wilson themselves highlighted the application of their equilibrium theory 467 

to habitat islands in the context of the fragmentation of formerly extensive, contiguous 468 

ecosystems by anthropogenic land use change, and this remains an area of interest and 469 

contention, with the quantitative implications of such processes for biodiversity 470 

conservation remaining uncertain (Triantis et al., 2010; Axelsen et al., 2013; He & 471 

Hubbell, 2013; Matthews et al., 2016).  472 

 Island biogeographic theory invokes historical biological processes (colonization, 473 

speciation, extinction) to explain contemporary species distribution patterns, which has 474 

yielded a large body of phylogenetic and population genetic island-focussed research. 475 

Such studies help advance models of island biogeography [Q16], link short term, within-476 
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island ecological processes to patterns emerging on large spatial or evolutionary scales, 477 

and thus help to unify theories of ecology and biogeography (e.g. Johnson et al., 2000; 478 

Steinbauer, 2017; see also Qs 17–20). Future statistical advances toward this goal may 479 

include comparing the fit of data among the predictions of competing phylogenetic and 480 

population genetic simulation models (e.g. Chan et al., 2014; Patiño et al., 2015), or 481 

combining phylogenetic and population genetic perspectives into unified statistical 482 

frameworks (e.g. Rannala & Yang, 2003). Combining a phylogenetic perspective with 483 

population genetic approaches may also help to establish links between 484 

macroevolutionary patterns and underlying microevolutionary mechanisms (e.g. Ricklefs 485 

& Bermingham, 2001; Jordal & Hewitt, 2004; Roderick et al., 2012; Paun et al., 2016), 486 

thus advancing our understanding of island biogeographic history. 487 

 488 

 489 

Island (Macro)Evolution 490 

Immigration–speciation–extinction dynamics 491 

Q17. How does the spatial configuration of an archipelago (e.g. intra-archipelagic 492 

connectivity) influence colonization, speciation and extinction over time? [# 23; % = 493 

70.1] 494 

Q18. What is the nature of the relationship between rates of extinction and island 495 

isolation, if any? [# 46; % = 64.1] 496 

Q19. How do the extinction probabilities of island endemic species compare to those 497 

of non-endemic species? [# 33; % = 67.2] 498 
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Q20. How important are diversity-dependent processes for island colonization, 499 

speciation and extinction? [# 11; % = 73] 500 

Q21. How do anthropogenic extinctions affect estimates of speciation and natural 501 

extinction on island systems? [# 43; % = 64.8] 502 

 503 

Island biodiversity emerges from the accumulation of species through time by 504 

colonization and establishment from outside areas, anagenetic change, and extensive 505 

diversification, all being counterbalanced by the depletive effects of extinction. The 506 

relative roles of these macroevolutionary processes are predicted to be functionally 507 

interrelated (e.g. MacArthur & Wilson, 1963, 1967; Emerson & Kolm, 2005; Emerson & 508 

Gillespie, 2008; Whittaker et al., 2008; Rominger et al., 2016), but understanding their 509 

dynamics over time remains a central challenge in island biology. Geographical context 510 

plays an important role in determining how colonization, extinction, and speciation [Qs 511 

17, 18] dynamically vary and interact over time (see Cabral et al., 2014; Papadopoulou & 512 

Knowles, 2015b). While the effect of geography on macroevolution is well understood 513 

for some processes (e.g. cladogenesis generally increases with island area; see Kisel & 514 

Barraclough, 2010), for others, this relationship remains largely unknown (e.g. extinction 515 

versus isolation in Q18). Time-calibrated phylogenies have been of particular interest in 516 

investigating the processes of speciation and colonization, but they provide no direct 517 

evidence for extinction. Thus, while rates of diversification can be derived directly from 518 

dated phylogenies, estimating the underlying rates of colonization, speciation and 519 

extinction is more challenging. However, it is now possible to apply a model-based 520 

approach to estimate how these processes vary through time (Valente et al., 2014, 2015), 521 
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suggesting that there is further potential for phylogenetics to inform island biogeography. 522 

It is important that we note here that Q18 does not, in fact, specify a context involving 523 

extinction of endemic species, and the question of how extinction rate varies with 524 

isolation can be posed for a wide range of island systems and degrees of isolation, 525 

including for instance among non-endemic species on habitat islands (as e.g. Brown & 526 

Kodric-Brown, 1977). 527 

Endemic species distributions have been used together with comparative 528 

phylogenetic analysis to infer colonization, speciation and extinction dynamics with 529 

island ontogeny (Emerson & Oromí, 2005; Givnish et al., 2009; Rosindell & Phillimore, 530 

2011; Shaw & Gillespie, 2016), and may provide a further means to address the influence 531 

of geographical context. Gains may also be made if it were possible to infer per species 532 

contemporary extinction risk due to anthropogenic change processes (a theme covered at 533 

least partially by Q19), which may also aid conservation strategies (e.g. Qs 42–45). 534 

Several models of island biogeography have either implicitly (the taxon cycle, see 535 

Ricklefs & Bermingham, 2002) or explicitly (the general dynamic model, Whittaker et 536 

al., 2008) related the single island endemic status of species to increased extinction 537 

probability relative to other species on the same island. Thus, question 19 can be 538 

addressed not only in a contemporary conservation context but also in relation to longer-539 

term natural turnover. Although extinction is a difficult parameter to quantify, simply 540 

understanding whether there is a fundamental difference in extinction risk between 541 

endemic and non-endemic species [Q19] would be a significant step forward. 542 

MacArthur and Wilson (1967) expressed their intuition of a negative feedback of 543 

diversity on the accumulation of species on an island [Q20], either through an increased 544 
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extinction rate or through a decreased colonization rate by means of niche saturation by 545 

early colonists. Their argument illustrates the early foundation of a still debated question: 546 

is there a limit to the number of species a given area can sustain? This question has been 547 

the subject of recent discussions (Harmon & Harrison, 2015; Rabosky & Hurlbert, 2015) 548 

and its longevity pertains in part to the difficulty of measuring turnover rates let alone 549 

negative diversity feedbacks on evolutionary processes such as speciation. However, a 550 

number of recent methodological developments (Rabosky, 2006; Etienne et al., 2012; 551 

Valente et al., 2015) promise improved analytical power and have already revealed that 552 

diversity-dependence in both colonization and speciation can potentially be inferred from 553 

empirical data based on island phylogenies (Valente et al., 2015). The issue of diversity-554 

dependence [Q20] is central to understanding island biodiversity dynamics, equilibrium 555 

and biotic interactions on evolutionary time-scales [Q6] and promises to remain a key 556 

topic over at least the next few years. 557 

There is no a single path to extinction, and the role of human societies as drivers 558 

of distribution range shifts and extinctions in both recent historical and prehistorical time 559 

has increasingly gained relevance on islands. This significance can be mirrored in the 560 

species listed by the IUCN as extinct, of which 61% were confined to islands (Tershy et 561 

al., 2015), and among the 20 world territories with the highest percentages of extinct and 562 

threatened species in both bird and mammal group lists, 19 and 17 are insular, 563 

respectively (Vié et al., 2009); remarkable statistics given that the 19 bird and 17 564 

mammal territories themselves represent a mere 0.6% and 1.9% of the Earth’s emerged 565 

landmass, respectively (Vié et al., 2009). Compounding these issues is the unknown 566 

degree to which island taxa have been eliminated as a consequence of human 567 

Comment [PL5]: Or just humans? 

Comment [PL6]: Subaerial? 
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colonization of islands and before their scientific documentation [Q21]. For birds in the 568 

Pacific, to take the most infamous example, extrapolations from the relatively small 569 

number of islands studied in detail, suggest that hundreds of undocumented species 570 

extinctions may have taken place following Polynesian colonization (Steadman, 2006), 571 

undermining efforts to estimate natural rates of speciation and extinction from these 572 

insular systems [Q21]. 573 

 574 

Speciation and diversification 575 

Q22. What functional traits (e.g. relating to dispersal capacity, reproduction, trophic 576 

ecology) are associated with high diversification rates within and across island 577 

systems? [# 2; % = 77.9] 578 

Q23. What traits best predict which groups will undergo adaptive radiation on 579 

islands? [# 17; % = 71.1] 580 

Q24. What is the relative importance of ecological versus geographical speciation on 581 

islands? [# 31; % = 67.8] 582 

Q25. What is the influence of gene flow among islands and/or between islands and 583 

mainland areas on speciation rates? [# 19; % = 70.8] 584 

 585 

Spectacular species radiations are perhaps the best known feature of oceanic islands 586 

(Losos & Ricklefs, 2009). However, the majority of lineages either do not diversify at all, 587 

or only to a very limited extent, with high diversification rates typically restricted to a 588 

limited number of lineages within an island or archipelago (for animals see e.g. Ricklefs 589 

& Bermingham, 2007; and Illera et al., 2012; and for plants see e.g. Patiño et al., 2014a). 590 
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Answering the question of why only some lineages diversify is central to a deeper 591 

understanding of island community assembly, the origin of biological diversity in general 592 

[Q22], and adaptive radiations in particular [Q23]. Diversified lineages are often 593 

associated with ecological divergence and adaptive radiation, but non-ecological 594 

mechanisms are also expected in insular settings where the interaction of geology, 595 

topography and climate promote speciation by local geographic isolation [Q24]. 596 

As the number of independent phylogenetic and population genetic studies 597 

increases, comparative analyses can shed light on the functional traits associated with 598 

accelerated diversification rates [Q22]. This approach has recently demonstrated that a 599 

herbaceous dry-fruited ancestral syndrome is frequently associated with diversified plant 600 

lineages across different archipelagos (García-Verdugo et al., 2014). A more complete 601 

understanding of the contribution and functional relevance of speciation to island 602 

community assembly will require not only identifying the traits associated with 603 

diversification, but also the drivers underlying their change, and thus those traits that 604 

underscore adaptive radiation [Q23]. Distinguishing among the drivers of natural 605 

selection, sexual selection and non-selective processes for speciation is not a trivial task, 606 

as multiple drivers may underlie trait divergence. This interconnectedness among the 607 

different drivers of speciation and diversification [Qs 22–24] is exemplified by delphacid 608 

planthoppers of the genus Nesosydne in the Hawaiian islands. Nesosydne are recognised 609 

as an adaptive radiation linked to host plant use, however, sexual selection and non-610 

selective processes also contribute to reproductive isolation via divergence of sexual 611 

signals (Goodman et al., 2015). Another interesting aspect of trait evolution will be to 612 

Comment [PL7]: Genus is, so “Nesosydne is recognized”, but “the species of Nesosydne are” 
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determine whether similar traits promote high diversification rates in both islands and 613 

mainland areas [see Q10]. 614 

Molecular data can provide insight into the importance of geography and gene 615 

flow in the speciation process, both within islands and among islands and mainland areas 616 

[Qs 24, 25]. Intuitively, small amounts of gene flow would seem likely to retard 617 

speciation, but it is increasingly recognised that, at least under some circumstances, 618 

introgression may promote speciation, and that this might be particularly relevant within 619 

insular settings (see Warren et al., 2015; Faria et al., 2016). To understand the influence 620 

of gene flow among islands and mainland areas on speciation rates [Q25], robust 621 

estimates of historical gene flow are required. The advent of high-throughput cost-622 

effective genomic sequencing approaches for non-model organisms will fuel further 623 

advances in our understanding of the interplay between isolation, gene flow and 624 

speciation (e.g. Papadopoulou & Knowles, 2015a). 625 

 626 

Dispersal and colonization 627 

Q26. What is the importance of founder effects for the evolution of island lineages? 628 

[# 8 % = 74.4] 629 

Q27. How frequent is inter-island dispersal and is it enough to form an archipelago-630 

wide metacommunity, or are islands better understood as functionally independent 631 

communities? [# 26 % = 69.1] 632 

Q28. How can palaeoecology contribute to the understanding of species arrival, 633 

establishment and spread on islands? [# 35 % = 66.8] 634 

 635 

Comment [PL8]: Or hybridization? Wiki definition: “the movement of a gene (gene flow) from one species into the gene pool of another by the repeated backcrossing of an interspecific hybrid with one of its parent species.”. note that the 
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High dispersal rates among islands will push populations toward genetic homogeneity, 636 

whereasile low dispersal rates will facilitate divergence among populations on different 637 

islands and high rates of inter-island cladogenetic speciation (Emerson & Faria, 2014). 638 

Despite colonization, establishment and divergence rates being crucial within island 639 

biogeographic theory, both the frequency of dispersal events between islands [Qs 26, 27] 640 

and actual dispersal mechanism responsible for inter-island colonization are unknown for 641 

most species (for plants see Heleno & Vargas, 2015). The arrival of colonizing 642 

propagules to remote islands is intrinsically a rare event, but even when some individuals 643 

make this journey, successful colonization is contingent on their reproduction and the 644 

establishment of a viable population, which can be equally challenging. In the extreme, 645 

the founder may be a single gravid female, a female with stored sperm, or a 646 

parthenogenetic individual, or at most, a small group of individuals. Thus, the limited 647 

genetic diversity transported by these individuals may be decisive for the outcome. 648 

Theory suggests that such founder effects may be a driver of insular evolution, speciation 649 

and further diversification (e.g. Mayr, 1954; Carson, 1968; Templeton, 1980), but they 650 

may equally select for evolutionary lineages that are less negatively affected by low 651 

genetic variation and inbreeding. Importantly, and while the relevance of these founder 652 

effects can be particularly clear for the evolution of island lineages [Q26] they can also 653 

be highly relevant for evolution within habitat islands such as caves, lakes or mountain 654 

tops (e.g. Wessel et al., 2013). This may be particularly relevant if reduced dispersal 655 

ability is a characteristic of island lineages in general and highly diversified lineages in 656 

particular [see Qs 11 and 22].  657 
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One of the key attributes that make islands ideal models for ecology and evolution 658 

is their well-defined borders (Whittaker & Fernández-Palacios, 2007). However, most 659 

islands are embedded in regional groups of islands so that the nearest coast is not of a 660 

continent but of another island. In addition, islands of high elevation are environmentally 661 

diverse (at least in climatic regimes) and source regions for potential colonisers can then 662 

differ between habitats (Steinbauer, 2017). Therefore, archipelago configurations and 663 

environmental gradients can blur the lines of what seems the most relevant unit to study 664 

for particular topics within island biology: the archipelago, the island, or ecozones within 665 

the island. Intuitively, the relevance of archipelago-level process will largely depend on 666 

the frequency of inter-island dispersal, so that when dispersal is low, island-level 667 

processes dominate, and when dispersal is high, archipelago-level processes become 668 

increasingly relevant. Ultimately, inter-island dispersal can be so important that single-669 

island populations are better understood in their broader context, as part of an archipelago 670 

meta-population (Hanski, 1998). As the empirical observation of inter-island movements 671 

is logistically challenging, population genetic data are particularly valuable for estimating 672 

the frequency of inter-island dispersal and thus for exploring question 27. Recent studies 673 

are providing novel insights in this direction (e.g. García-Verdugo et al., 2014; Garrick et 674 

al., 2014; Spurgin et al., 2014; Hendrickx et al., 2015; Vargas et al., 2015; Faria et al., 675 

2016), but more research is needed to generate fine-grained spatial genetic data within 676 

focal archipelagos and provide general answers. 677 

 Palaeoecology is a field of emerging importance in island biology. Palaeoecology 678 

has been used to understand the consequences of human colonization, frequently 679 

characterised by concomitant waves of extinction (Sadler, 1999; van der Geer et al., 680 
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2016). In addition, climate data have been integrated in attempts to distinguish plant 681 

community compositional changes in response to shifts in climate from those in response 682 

to human activity (e.g. Nogué et al., 2013). Extending the application of palaeoecology to 683 

investigate species arrival, establishment, and spread on islands [Q28] may be more 684 

feasible for species of recent origin, such as those that were introduced by early human 685 

colonizers. However, there is also potential for the analysis of much older native species, 686 

where temporal patterns of trait change can also be integrated [see Q23] to understand 687 

radiations (e.g. DeMiguel, 2016). Finally, alongside palaeoecological techniques, the 688 

emerging field of palaeogenomics, based on the analysis of ancient DNA, can become 689 

increasingly relevant for conservation by informing management and restoration 690 

decisions [see Qs 42–46, below] of island ecosystems under past and present 691 

anthropogenic pressure (e.g. Wilmshurst et al., 2014). 692 

 693 

Island Community Ecology 694 

Community assembly 695 

Q29. How do taxonomic, phylogenetic and functional diversitiesy of island 696 

communities change during assembly and disassembly of island systems? [# 39; % = 697 

65.7] 698 

Q30. How do island area, elevation and isolation influence the community 699 

composition and dynamics of island systems? [# 1; % = 78.9] 700 

Q31. What are the relative roles of island age, phylogenetic group and functional 701 

ecology in determining natural (background) extinction rates among oceanic island 702 

taxa? [# 21; % = 70.5] 703 
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Q32. How does the order of colonization influence emergent outcomes in the 704 

assembly of island biotas? [# 13; % = 72.1] 705 

Q33. How important are rare species for the functioning of island communities? [# 706 

30; % = 67.8] 707 

Q34. How does in situ evolution drive the functioning of island ecosystems? [# 14; % 708 

= 72] 709 

  710 

Comparisons of species richness among islands are evolving with the incorporation of 711 

more informative estimators of diversity using taxonomic, phylogenetic and functional 712 

trait data. How these measures of diversity respond to island ontogenetic change at the 713 

community level, and how they are influenced by other abiotic parameters [Qs 29–31] 714 

remains largely unexplored (but see Santos et al., 2011, 2016a; Whittaker et al., 2014; 715 

Cardoso et al., 2015). The unpredictability that accompanies island assembly by 716 

colonization raises the question of how important colonization order (i.e. priority effects) 717 

may be in explaining assembly patterns on both ecological and evolutionary timescales 718 

[Q32]. For example, for evolutionary patterns of assembly it has been suggested that a 719 

‘founder takes all’ density-dependence principle may account for tendencies towards 720 

monophyly in diverse genera of flowering plants that have diversified in situ on certain 721 

oceanic archipelagos (Silvertown, 2004; Silvertown et al., 2005). In addition, 722 

phylogenetic evidence supports the proposition that a ‘progression-rule’ pattern of 723 

younger species being derived from older species found on successively older islands is 724 

commonplace among oceanic archipelagos (Carstensen et al., 2013; Shaw & Gillespie, 725 

2016).  Waters et al. (2013) suggest that it is likely that dispersal of related lineages is 726 
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ongoing, but that establishment of the first founding lineages effectively reduces the 727 

probability of establishment by subsequent migrants (see also Schaefer et al., 2011). 728 

Extending this logic, one can propose that abundance or range size differences between 729 

functionally similar species may be a consequence of colonization order, although over 730 

longer time scales, taxon cycle dynamics may develop a sequential pattern of 731 

colonization, followed by population expansion and subsequent contraction of range of 732 

earlier colonists (e.g. Wilson, 1961; Ricklefs & Bermingham, 2002; Carstensen et al., 733 

2013; Economo et al., 2015). Given the historical dimension to this topic, comparative 734 

phylogenetic analyses for the estimation of relative colonization times should continue to 735 

be a profitable approach. 736 

The majority of the species on Earth present restricted distributions and/or small 737 

abundances, with comparatively few being cosmopolitan in distribution. Remote islands 738 

possess high numbers of endemic species, which are, by nature of the limited size of 739 

islands, rare in the sense that they have small global ranges. What is less clear is whether, 740 

in the absence of human interference, island endemic species are also rare in terms of 741 

population sizes and local density, which constitutes distinct forms of rarity. The 742 

implications of the potential loss of rare species for other species with which they 743 

interact, and for overall patterns of ecosystem form and function, remain under-744 

researched [Q33], with most illustrations of ecological cascades focussed on a limited 745 

range of vertebrate taxa (e.g. giant tortoise, bird communities), which may well have 746 

originally been rare only in the sense of having restricted ranges. To address this issue 747 

will require better data on species distribution and abundance as well as systematic and 748 
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comprehensive community-level assessments of ecosystem form and function (e.g. 749 

Traveset et al., 2013; Trøjelsgaard et al., 2013). 750 

Similarly, the importance of local assembly and in situ evolution for ecosystem 751 

functioning [Q34] remains underexplored (see Warren et al., 2015). As one of the few 752 

case studies in the literature, Rominger et al. (2016) compiled ecological, genetic and 753 

phylogenetic data from a suite of Hawaiian endemic arthropods across a geological 754 

chronosequence to investigate the relative roles of dispersal and in situ differentiation in 755 

the assembly of plant–herbivore networks. Similar, comparative, plot-based and 756 

experimental approaches to exploit the natural chronosequences provided by oceanic 757 

islands hold promise for addressing questions [e.g. Qs 29, 32] posed in this section 758 

seeking to integrate ecological and evolutionary theory (e.g. Heleno et al., 2010; 759 

Trøjelsgaard et al., 2013).  760 

 761 

Biotic interactions 762 

Q35. How do climate and sea-level changes influence biotic interactions on islands? 763 

[# 18; % = 71] 764 

Q36. How do biotic interactions (within and between trophic levels) influence 765 

immigration, extinction and speciation rates on islands? [# 3; % = 77.2] 766 

 767 

The Quaternary period (the last 2.588 Myr) has been a period of major climatic 768 

fluctuation between glacial and inter-glacial conditions, which have driven associated 769 

eustatic changes in sea-level, with an amplitude of the order of 120–130 m. Interglacial 770 

periods are times of high sea-level stands while the lowest sea-levels are typical of late 771 
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glacial stages (e.g. the Last Glacial Maximum c. 21 ka). These changes result in altered 772 

island area, elevation, and effective degree of isolation, largely in synchrony with 773 

changing regional climate regimes. Indeed, many islands have emerged and submerged, 774 

or joined and been parted from larger land-masses, reiteratively, during this period.  775 

On theoretical grounds, islands affected by such processes are expected to have 776 

shown pulses of enhanced immigration and/or extinction, e.g. with sea-level rise after the 777 

LGM driving pulses of extinction, especially from former land-bridge islands. In turn 778 

these changes must be linked to altered patterns of biotic interaction via competition, 779 

predation, predator-release, altered pollination or dispersal networks [Q35]. Recent 780 

improvements in understanding of both regional climate and sea-level adjustments open 781 

the possibility to search for such effects in the structure of contemporary island biotas. 782 

Conversely, over time, ecological and evolutionary adjustments in biotic interactions can 783 

be expected to alter rates of immigration, extinction and speciation and thus equilibrial 784 

levels of species diversity (Wilson, 1969; Whittaker & Jones, 1994; Gravel et al., 2011) 785 

[Q36], although quantifying such effects remains challenging. Similarly, how those 786 

interactions and dynamics have been and may be modified under future climate change 787 

and, for instance associated sea-level change, is a topic of considerable uncertainty 788 

(Tylianakis, 2009; Montoya & Raffaelli, 2010). In a recent review, Barraclough (2015) 789 

summarises that, among other consequences, ecological interactions among species can 790 

promote evolutionary changes through coevolution, and/or alter evolutionary outcomes 791 

by influencing selection pressures relative to specific abiotic conditions. Such divergent 792 

outcomes depend on species numbers and the distribution of interaction strengths across 793 

the interaction network space.  794 
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 One framework for analysing changes in interaction networks was provided by 795 

Holt (1996, 2009) who put forward a model on the spatial limitations to food web size 796 

and structure, based on Core IBT, called the trophic theory of island biogeography. In a 797 

subsequent development, Gravel et al. (2011) developed a stochastic model of multi-798 

species occupancy dynamics, which showed that trophic interactions could have a 799 

substantial impact on how immigration and extinction rates determine patterns of species 800 

richness on islands. Their model focuses on herbivory or predation, but it does not 801 

consider mutualistic interactions (like pollination or seed dispersal) or host–parasite 802 

interactions, which are crucial for biodiversity maintenance and island colonization. 803 

Nonetheless, Gravel et al. (2011) also found that immigration–extinction dynamics could 804 

promote greater occupancy of generalist versus specialist taxa in small areas. Although 805 

their approach is promising, it relies on mechanistic models for simplifying and linking 806 

whole-community empirical evidence (Barraclough, 2015). Further improvements to 807 

such models, for example, by incorporating mutualistic and/or host-parasite interactions, 808 

will be of value for understanding the role of biotic interactions in island community 809 

assembly. 810 

 811 

Island Conservation and Management 812 

Global change 813 

Q37. How, if at all, do island biotas differ from continental biotas in their response to 814 

global change? [# 32; % = 67.5] 815 

Q38. Are island species more prone to extinction than their closest relatives on the 816 

mainland, and if so, why? [# 4; % = 75.5] 817 
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Q39. How can we identify which island taxa are most at risk from global change and 818 

their risk-associated traits? [# 5; % = 75.4] 819 

Q40. What determines anthropogenic extinction rates among island taxa? [# 25; % = 820 

69.7] 821 

Q41. How do anthropogenic changes within islands impact on the capacity of island 822 

species to respond successfully to climate change? [# 44; % = 65.3] 823 

 824 

The Earth’s ecosystems and their biotas are increasingly transformed by direct and 825 

indirect human pressures (e.g. Barnosky et al., 2012), a process particularly evident on 826 

many islands (Caujapé-Castells et al., 2010; Kueffer & Kaiser-Bunbury, 2014; Tershy et 827 

al., 2015). Thus, it remains crucial to better understand how island systems may respond 828 

to anthropogenic threats such as habitat loss, biological invasion and climate change. This 829 

urgency is clearly captured by our survey-based approach, with the two first questions of 830 

this subsection focusing on how island and continental biotas differ in their response to 831 

global-changed processes in which humans are increasingly dominant [Qs 37, 38]. Island 832 

organisms are often characterized by globally small population sizes, limited 833 

geographical distribution ranges, and endemics of narrow distribution, driven by limited 834 

habitat availability and unique traits resulting from prolonged evolutionary isolation (e.g. 835 

Whittaker & Fernández-Palacios, 2007). It is generally thought that these features, in 836 

combination with multiple anthropogenic change agents on islands, combine to make 837 

island species more prone to human-induced extinction than their continental 838 

counterparts [Qs 37, 38]. Despite long-standing hypotheses (e.g. Elton, 1958), most 839 

studies have focussed either on island or continental systems, and more comparative 840 

Comment [PL9]: “and what are their risk-associated traits”? 
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studies are urgently needed, to provide better resolution on levels of island endangerment 841 

and the specific factors and combinations of them that drive extinction risk (but see e.g. 842 

Bowen & Vuren, 1997; Siliceo & Díaz, 2010; Traveset et al., 2016). 843 

Despite the increasing interest on in species responses to ongoing global change, 844 

current predictions and conclusions greatly vary among regions and taxa (e.g. Urban, 845 

2015). Rising rates of extinction create an urgent need to identify the traits and 846 

mechanisms that render species vulnerable to extinction [Qs 39, 40], by answering 847 

questions such as to what extent phylogenetic lineages are equally at risk from the same 848 

anthropogenic threats (e.g. Ducatez & Shine, 2016). Although some traits (e.g. large-849 

bodied animals, flightlessness, strong ecological specialization) have been associated 850 

with species rarity and their proneness to extinction (e.g. Boyer, 2008; Kirkpatrick & 851 

Peischl, 2012; Illera et al., 2016), case studies document that adaptive mechanisms can 852 

counter the genetic disadvantages associated with small population sizes, rescuing 853 

species from the negative consequences of anthropogenic environmental change (e.g. 854 

Lavergne et al., 2012). Therefore, studies that identify the level of risk that global change 855 

poses to species and the specific traits that contribute to extinction risk on islands should 856 

remain a priority [Qs 39, 40], with a particular focus on how climate change may interact 857 

with other threat factors [Q41]. Gaining such information can help identify, forecast and 858 

mitigate anthropogenic threats, ultimately leading to the development of more cost-859 

effective preventative and management strategies (Cardillo & Meijaard, 2012). 860 

 861 

Conservation and management policies 862 
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Q42. How can we identify islands that are more susceptible to biodiversity loss in the 863 

coming decade, and what are the most efficient and cost-effective methods (i.e. 864 

policy; education; research; management) for safeguarding their biodiversity? [# 6; % 865 

= 75.3] 866 

Q43. What are the best strategies for in situ conservation of island species impacted 867 

by non-native species? [# 16; % = 71.6] 868 

Q44. What are the most effective methods for responding to the anthropogenic 869 

extinction crisis on islands? [# 29; % = 68.3] 870 

Q45. How can we best implement long-term monitoring schemes on islands to 871 

provide quantitative evidence of changes within island ecological systems? [# 36; % 872 

= 66.7] 873 

Q46. How can conservation interests best be integrated with other island stakeholder 874 

interests (particularly tourism) on populated islands? [# 41; % = 65.3] 875 

 876 

Whereasile island biologists are well aware that solutions to island conservation problems 877 

require broad interdisciplinary approaches (Kingsford et al., 2009), the questions in this 878 

and the next section [Qs 42–50] are deliberately oriented to scientific issues within island 879 

biology that may inform management strategies [Q42]. While the impacts of non-native 880 

species [Q43, see also Qs 47–50] are not unique to islands, remote islands provide some 881 

of the most familiar and dramatic cases (e.g. the impact of brown tree snake on Guam, 882 

and of rats, cats, rabbits, mongoose and goats on many islands), with much recent effort 883 

devoted to developing effective control and eradication methods that minimize non-target 884 

effects [Qs 42–46]. The scale of the problem is such that, despite notable successes (see 885 
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e.g. Olivera et al., 2010; Rivera-Parra et al., 2012; Nogales et al., 2013; Stokstad, 2013; 886 

Robinson & Copson, 2014), increased efforts are evidently needed. The integration of 887 

biodiversity conservation goals with those of other stakeholders [Qs 42, 46] is an area 888 

where much less published work exists and the potential for political conflict is rife (e.g. 889 

Fernández‐Palacios & de Nascimento, 2011; Fernandes et al., 2015), but in which the 890 

engagement of biologists with other specialists in the development of strategies and 891 

monitoring of impacts is surely crucial (e.g. Gil et al., 2011; Bentz et al., 2013). 892 

 893 

Invasive alien species 894 

Q47. What are the impacts of novel biotic interactions between and among alien and 895 

native species on island biodiversity and ecosystem functioning? [# 10; % = 73.3] 896 

Q48. How does the invasion stage (i.e. colonization, establishment, and long-term 897 

adaptation) of alien taxa affect distribution ranges and biotic interactions of native 898 

insular biotas? [# 24; % = 69.8] 899 

Q49. To what extent can alien species act as functional substitutes for extinct native 900 

species on islands? [# 40; % = 65.5] 901 

Q50. How do the ecological effects of introduced species differ from those of 902 

naturally arriving colonist species on islands? [# 34; % = 66.9] 903 

 904 

Biotic invasions constitute one of the greatest threats to island native biodiversity (e.g. 905 

Caujapé-Castells et al., 2010; Kueffer et al., 2010; McCreless et al., 2016). Given their 906 

geographic isolation, replicated numbers and discrete zonal ecosystems, islands are 907 

model systems for understanding how biological invasions affect community structure 908 
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and ecosystem function, eventually leading to more efficient conservation and 909 

management strategies. A major challenge and a priority in island conservation is to 910 

better understand the responses of ecosystems (Kueffer et al., 2010) and, particularly, 911 

biotic interactions networks (Sax & Gaines, 2008; Heleno et al., 2013) to invasion [Q47]. 912 

It has been proposed that the underlying determinants and subsequent outcomes of 913 

invasions may vary depending on the invasion stage (i.e. the introduction–naturalization–914 

invasion continuum; for a review see Richardson & Pyšek, 2012). Little is known (but 915 

see Traveset et al., 2013) currently about how the different invasion stages negatively 916 

impact geographic distributions and biotic interactions of native insular biotas [Q48]. 917 

With a majority of the economic and practical efforts focused on the ‘invasion’ stage 918 

(Richardson & Pyšek, 2012), research that broadens and improves our understanding of 919 

the factors implicated in the establishment and naturalization for introduced organisms 920 

[Q48] will have important consequences for the management and control of biological 921 

invasions on islands. 922 

Following the logic of MacArthur and Wilson (1967; see also the ‘saturation 923 

point’ proposed by Sax & Gaines, 2008), the natural and/or anthropogenic addition of 924 

new colonizers can potentially result in the local extinction of measurable numbers of 925 

native species, with knock-on consequences for ecosystem functions performed by lost 926 

species (e.g. McConkey & Drake, 2006). More information is needed on the functional 927 

roles played by alien species on islands and the extent to which some may become 928 

effective substitutes for extinct native species [Q49] (Traveset et al., 2013). The existing 929 

literature shows a clear bias towards certain taxonomic groups (for birds, see e.g. Heleno 930 

et al., 2013) and the limited evidence to date suggests that introductions rarely fully 931 
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compensate the functional roles of lost native species (Sobral et al., 2016; but see Olesen 932 

et al., 2002). Studies in which the effects of new natural colonizers and those introduced 933 

by humans are compared [Q50] remain virtually absent, due at least in part to the 934 

difficulties in defining nativeness in organisms for which there is no historical (e.g. fossil, 935 

observation) and/or molecular evidence (e.g. Essl et al., 2015; Patiño & Vanderpoorten, 936 

2015). 937 

 938 

 939 

DISCUSSION 940 

 941 

We conducted this horizon-scanning exercise to help advance the field of island biology 942 

through the identification of 50 key questions to coincide with the 50th anniversary of 943 

MacArthur and Wilson’s seminal monograph. The intention was to generate and select 944 

questions of broad scope, answerable through realistic research approaches. Although 945 

updates of the present list of questions will be necessary in the coming years, we hope 946 

that this contribution will supplement recent efforts to pinpoint challenges and advances 947 

in island biology research (e.g. Fernández-Palacios et al., 2015; Warren et al., 2015; 948 

Borges et al., 2016; Santos et al., 2016b), as it captures many of the top issues and 949 

challenges identified as cross-cutting subject areas. Such a multilateral approach may 950 

foster the formation of interdisciplinary networks formed by island ecologists, 951 

evolutionary biologists, managers and policy makers. 952 

 It is clear that addressing many of the 50 questions will benefit from an 953 

interdisciplinary and integrative approach. To take one methodological area as 954 
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illustrative, phylogenetics has been a core element within research across the first three 955 

subject areas of our study. It features explicitly within five questions [Qs 1, 3, 16, 29, 31], 956 

and is implicit within many others [e.g. Qs 7, 18, 20, 32]. As the number of published 957 

phylogenies increases, researchers will likely find new ways to exploit them, and novel 958 

approaches published in recent years (e.g. Ronquist & Sanmartín, 2011) provide a firm 959 

foundation for continued advances. We suggest that the field is likely to see increased 960 

efforts to integrate across large numbers of independent phylogenies to address 961 

macroecological and macroevolutionary questions in island biology.  962 

Despite the long and critical influence of islands on ecological and evolutionary 963 

theories, focus has typically remained limited to the scale of individual islands or single 964 

archipelagos. In the coming years, the analysis of biogeographical dynamics performed 965 

through the comparative study of multiple archipelagos may provide us with a better 966 

understanding of the regulation of biodiversity at higher levels of spatial organization 967 

(e.g. Price & Wagner, 2011; Cabral et al., 2014; Triantis et al., 2015). To achieve this 968 

will require suitably comparable data across islands and archipelagos, and it is here that 969 

we believe that much progress can be made over the next 50 years. Coarse-grained 970 

analyses of island-scale biota such as those of Price and Wagner (2011), Cabral et al. 971 

(2014), Patiño et al. (2014b) and Triantis et al. (2015) can reveal recurrent patterns that 972 

either invoke or suggest process-based explanations. We predict that analogous but 973 

spatially fine-grained comparative analyses across islands and archipelagos will prove 974 

equally enlightening. Recent plot- or site-based approaches among and within habitats 975 

within islands (e.g. Heleno et al., 2010; Emerson et al., 2017), among islands (e.g. 976 

Rominger et al., 2016) and among archipelagos (Cicconardi et al., 2017) offer useful and 977 
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powerful frameworks. The key will be to coordinate across geographic regions to 978 

generate comparable data through replicated (or at least comparable) sampling. Such 979 

sampling can be directed toward questions from across the four subject areas within 980 

which the 50 questions have been grouped, with the importance for conservation and 981 

management having already been demonstrated (Heleno et al., 2010). Such sampling 982 

calls for increased connectivity among research programs. This is in itself a logistical and 983 

financial challenge, but with the potential for high rewards. 984 

The 50 fundamental questions identified in this paper emphasize the potential for 985 

island biology to inspire and guide empirical, theoretical and applied research questions 986 

related to ecological, evolutionary and conservation science. We hope that this first list of 987 

questions compiled under the legacy of MacArthur and Wilson’s Theory of Island 988 

Biogeography Theory provides a source of inspiration for constructive discussions about 989 

the future agenda of island research and a fruitful arena for the coming generations of 990 

island biologists. 991 

 992 
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