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Abstract 

Biomarkers of neurodegenerative disorders are needed to assist in diagnosis, to monitor 

disease progression and therapeutic interventions, and to provide insight into disease 

mechanisms. One route to identify such biomarkers is by proteomic and peptidomic analysis 

of cerebrospinal fluid (CSF).  

In the current study, we performed an in-depth analysis of the human CSF endopeptidome to 

establish an inventory that may serve as a basis for future targeted biomarker studies. High-

pH reversed-phase HPLC was employed for peptide fractionation followed by low-pH nano-

LC-MS analysis. Different software programs and scoring algorithms for peptide 

identification were employed and compared. 

A total of 18,031 endogenous peptides were identified (FDR = 1%), increasing the number of 

known CSF peptides 10-fold compared to previous studies. The peptides were derived from 

2,053 proteins of which more than 60 have been linked to neurodegeneration. Notably, among 

the findings were six peptides derived from microtubule-associated protein tau, three of which 

span the diagnostically interesting threonine-181. Also, 213 peptides from amyloid precursor 

protein (APP), 58 of which were partially or completely within the sequence of amyloid β 1-

40/42, as well as 109 peptides from apolipoprotein E, spanning sequences that discriminate 

between the E2/E3/E4 isoforms of the protein. 
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Introduction 

Analysis of cerebrospinal fluid (CSF) is valuable to study neurodegenerative disorders (1). 

Research on diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) would 

benefit greatly from new biomarkers that can aid in diagnosis, be used for monitoring disease 

progression, and provide insight into the disease mechanisms. As new disease-modifying 

therapies are being developed, for example against AD (2), there will be an increased need for 

biomarkers that enable earlier and more accurate diagnosis, as well as to provide means to 

monitor disease progression and response to treatment. 

Produced as an ultra-filtrate of blood in the ventricles and around the blood vessels of the 

central nervous system (CNS), CSF circulates around the brain and the spinal cord and is 

drained into the blood, with a turnover time of approximately 8 h (3). A multitude of 

molecules shed by cells in the brain are present in CSF, and thus, many processes in the CNS 

are dynamically reflected in the molecular composition of the CSF. Approximately 20% of 

the protein content is derived from the CNS through the interstitial fluid and the remainder 

can be traced to plasma constituents passing the blood-brain barrier (4-9). Shotgun proteomic 

studies of CSF have led to the identification of biomarker candidates of several 

neurodegenerative disorders, including AD, PD, and multiple sclerosis (10). 

Studies by our group and others have revealed that CSF, besides proteins, contains many 

endogenous peptides (11-16). Their concentration being dependent on a variety of processes, 

such as enzymatic protein processing, secretion, and aggregation, these peptides may convey 

valuable biomarker information. Such information may obviously be lost when following the 

currently standard analytical strategy in proteomics of digesting the sample proteins with 

trypsin and basing protein quantification on measurement of tryptic peptides. 



From an analytical point of view, endogenous peptides are attractive: circumventing 

proteolytic digestion eliminates a source of analytical variability and reduces cost and sample 

preparation time, which are important aspects for establishing assays for clinical research and 

routine settings. Furthermore, endogenous peptides can be readily isolated by molecular-

weight ultrafiltration from the high-abundant proteins that make up the bulk of the CSF 

protein contents, such as albumin and immunoglobulins, allowing a larger volume of CSF 

peptide extract to be used for LC-MS analysis and thereby enabling detection of lower-

abundant peptides. 

In a pilot study we identified quantitative differences in endogenous peptides in AD patients 

compared to controls (17), suggesting their potential as biomarkers. In a recent study, we used 

endopeptidomics to detect changes in the abundance of endogenous CSF peptides in healthy 

individuals following treatment with the -secreatase inhibitor semagacestat demonstrating 

target engagement (18). 

In order to further investigate the potential of endogenous peptides in CSF as biomarkers, the 

aim of the current study was to expand the known CSF peptidome to include also more low-

abundant peptides. Our approach was to implement a step of peptide pre-fractionation to 

allow increased CSF volume to be used for LC-MS analysis, and employing software that 

employs different algorithms for peptide identification and scoring of spectrum matches. 

 

Experimental Procedures 

Participants and sampling of cerebrospinal fluid 

Cerebrospinal fluid was sampled from one patient diagnosed with hydrocephalus undergoing 

evaluation at Lund University Hospital, Lund, Sweden; as well as from CSF pooled from five 

individuals undergoing evaluation at the Clinical Neurochemistry Laboratory, Sahlgrenska 



University Hospital, Mölndal, Sweden. Sampling was performed by lumbar puncture in 

accordance with a standardised protocol previously developed on site. Non-soluble material, 

cells and cell debris in the CSF were removed by centrifugation at 2000 x g and +4 °C for 10 

min. Surplus CSF from patients undergoing clinical evaluation was used for this project after 

de-identification, as approved by the regional ethics committee at the University of 

Gothenburg.  

Materials 

Ammonium bicarbonate (AmBic) [40867-F], 25% ammonium hydroxide [30501], 1 M 

triethylammonium bicarbonate pH 8.5 (TEAB) [T7408], 8 M guanidinuim hydrochloride 

(Gua-HCl) [G9824], ≥98% sodium deoxycholic acid (Na-DOC) [30970], ≥98% tris(2-

carboxyethyl)phosphine (TCEP) [C4706], ≥ 99% iodacetamide (IAA) [I1149], 99% 

trifluoracetic acid (TFA) [T6508] and 98% formic acid (FA) [56302-F] were all acquired 

from Sigma-Aldrich; HPLC-gradient grade Far-UV acetonitrile (AcN) [A998] and iso-

propanol [A520] from Fisher Scientific; trypsin acquired from Promega [V5111]]; Amicon 

Ultra-15 Centrifugal Filter Units 30 kDa Molecular weight cut-off (MWCO) ultracentrifuge-

filters [UFC903024] were obtained from Merck Millipore and Sep-Pak® Vac 1cc (100mg) 

C18 cartridges [WAT023590]was obtained from Waters. 

CSF sample preparation – endogenous peptides 

CSF peptide extracts were prepared according to a previously described protocol (19), 

modified to accommodate a larger sample volume. Briefly, 1.5 ml aliquots of CSF were 

thawed at room temperature (RT), vortexed gently, and transferred to 15 ml Falcon tubes. 

Aliquots of 1 M TEAB (250 µl) and 8 M GuaHCl (750 µl) were added and the samples were 

vortexed gently. Reduction of protein/peptide disulphides was attained by addition of a 

solution of 200 mM TCEP (60 µl), 300 mM TEAB (60 µl) followed by 1 h incubation at +55 



°C under gentle agitation. The samples were subsequently alkylated by addition of 60 µl 400 

mM IAA (aq) followed by 30 min incubation at RT in darkness. The samples were diluted by 

addition of 2.38 ml water (MilliQ) to a total volume of 5 ml and vortexed. 

Isolation of endogenous peptides was performed by ultrafiltration using 30 kDa MWCO filter devices. 

The filters were conditioned by adding a solution of 100 mM TEAB, 3 M Gua-HCl (5 ml) and 

centrifuging at 2,500 x g for 20 min at RT, discarding the flow-through. The samples were then loaded 

and centrifuged (2,500 x g for 45 min, RT). To improve recovery, 50 mM AmBic (3 ml) were loaded, 

spun through (RT, 2,500 x g for 20 min) and pooled with the filtrate.  

The sample was acidified (final pH ≈ 3) by titration with 0.1% TFA and subsequently 

desalted by SPE (SEP-Pak C18), operated using a vacuum chamber. The cartridge was 

conditioned with 2 x 1 ml 84% AcN, 0.1% TFA, and equilibrated by 2 x 1 ml 0.1% TFA, 

after which the sample was loaded, washed with 2 x 1 ml 0.1% TFA and subsequently eluted 

with 1 ml 84% AcN, 0.1% TFA. Finally the eluate solvents were evaporated in a vacuum 

concentrator and at –80 °C. 

CSF sample preparation – tryptic peptides 

For comparing the identification rates of endogenous and tryptic peptides, an aliquot of the 

CSF sample from the hydrocephalus patient was digested with trypsin. CSF (100 µl) was 

thawed at RT, vortexed gently and transferred to a 1.5 ml Eppendorf tube. Aliquots of 1 M 

TEAB (16.7 µl) and 3.3% Na-DOC (50 µl) were added and the sample was vortexed. 

Reduction of protein disulphides was performed by adding an aliquot of 200 mM TCEP, 300 

mM TEAB (4 µl) followed by 1 h incubation at +55 °C under gentle agitation. Cysteines were 

alkylated by addition of 400 mM IAA (4 µl) followed by 30 min incubation at RT in 

darkness. Trypsin (Promega, 20 µg) was dissolved in 50 mM acetic acid (100 µl) and pre-

incubated for 15 min at 37 °C. A 25 µl aliquot of the solution was transferred to the sample, 



which was incubated 12 h at 37 °C. The sample was subsequently desalted, concentrated, and 

stored as described above. 

Alkaline Reverse-Phase HPLC Separation and Fraction Concatenation 

HpH-RPLC fractionation was performed according to the method of Bath et al (20) with 

minor method alterations, using a Ultimate 3000 HPLC system (Thermo) equipped with an 

integrated fraction collector adapted for 96-well deep well plates. Endogenous peptide 

extracts (from 1.5 ml CSF) were dissolved in 2.5 mM NH3(aq) and 2% AcN (15 µl), and 

separated over an XBridge Peptide BEH C18 Column, 130 Å . The mobile phases consisted of 

(A) pure water; (B) 84% AcN; and (C) 25 mM NH3(aq). Buffer C was made fresh at the start 

of each trial and kept on ice to minimize NH3(aq) decomposition/evaporation. The LC was 

operated at a constant flow of 100 µl/min with a constant concentration of 10% Buffer C, and 

using the following gradient: t (min)=0, %B=2%; t=4, B=2%; t=50, B=90%; t=66, B=90%; 

t=67, B=2%; t=76, B=2%. Fraction collection was started at t=4 min, collecting 72 one-

minute fractions in a cycling pattern over 24 wells in a 96-well deep-well plate, resulting in 3 

concatenated fractions per well. The fractions were further concatenated by combining the 

contents of well 1 and 13, 2 and 14, 3 and 15 etc., resulting in 12 samples, each containing six 

of the original fractions. The fractions were subsequently split in two aliquots, vacuum 

concentrated and stored at –80 °C until LC-MS analysis. 

LC-MS 

Chromatography was performed on an Ultimate 3000 RSLC nano system (Thermo) in trap 

column configuration (trap column: Acclaim® PepMap 100 (Thermo), 75 µm x 2 cm, C18, 

100 Å pore size, 3 µm particle size; separation column: Acclaim® PepMap C18, 75 µm x 500 

mm, 100Å pore size, 2 µm particle size). The mobile phases were (A) 0.1% FA and (B) 84% 

AcN, 0.1% FA. Sample aliquots corresponding to 750 µl CSF were dissolved in 0.05% TFA, 



2% AcN (6 µl) (loading buffer). 5 µl were loaded at 5 µl/min using 0.05% TFA, 2% AcN. 

The following gradient was used: t (min) =0, B=2%; t=10, B=2%; t=11, B=7%; t=100, 

B=26%; t=170, B=45%; t=175, B=80%; t=181, B=2%; t=210, B=2%. The LC was connected 

to an Orbitrap Fusion™ Tribrid™ mass spectrometer (Thermo) via a FlexiSpray nano-ESI 

interface (Thermo). Full scan spectra were recorded in MS mode at a resolution setting of 

120,000 (2.0e5 AGC target) over the m/z range 350-1400. The mass spectrometer was 

operated in the data-dependent acquisition mode, recording MS/MS spectra from the top ten 

most intense peaks with m/z > 150 and within the intensity range 1.0e4-1.0e5 were selected 

for fragment ion analysis. Precursor ions were isolated using a quadrupole isolation window 

of 3 m/z. Dynamic exclusion was used, with an exclusion time of 15 s and an m/z tolerance of 

±10 ppm. Fragmentation was performed in the higher-collision energy dissociation (HCD) 

cell (29% collision energy) and MS/MS acquisitions were recorded in the orbitrap at a 

resolution setting of 30,000 (5.0e4 AGC target value). A replicate analysis was performed of 

each fraction. 

Peptide identification 

Peptide identification was performed using Mascot v2.4 (Matrix Science), SequestHT 

(Thermo), and PEAKS Studio v7.5 (Bioinformatic Solutions Inc.). The following settings 

were used for all three programs unless otherwise specified: database: UniProt_SwissProt 

[version2015_11]; taxonomy: homo sapiens; enzyme: none (trypsin for digested samples); 

max. missed cleavages: 0 (endogenous peptides), 2 (tryptic peptides); instrument (Mascot 

only): ESI-Trap; min. peptide length (SequestHT only): 6; precursor mass tolerance: 15 ppm; 

fragment mass tolerance: 0.05 Da; static modifications: Carbamidomethyl (C); dynamic 

modifications: Oxidation (M); peptide-spectrum match (PSM) validator: Target Decoy or 

Percolator (Mascot and Sequest HT only) or Decoy Fusion (PEAKS only); target FDR: 0.01. 



Evaluation of the respective capacity of Mascot and Sequest HT to identify peptides from 

mass spectra was performed by comparing the results from two different scoring functions for 

PSM-validation; the Percolator algorithm (21, 22) and a regular target decoy (TD) validator 

(23), both implemented in the software Proteome Discoverer 2.0 (Thermo). 

Confirmation of identification of tau endogenous peptides in CSF 

Two synthetic, stable isotope-labelled peptides, NH2-TPPAPKTPSSGEPP[K(13C6)]-COOH 

and NH2-TPPAPK[T(PO3H2)]PSSGEPP[K(13C6)]-COOH, corresponding to amino acids 

175-190 of microtubule-associated protein tau, were custom synthesized (AQUA peptides; 

Thermo Scientific) to confirm the identification of their native counterparts. 50 fmol each of 

175NH2-TPPAPKTPSSGEPP[K(13C6)]-COOH190 and 175NH2-

TPPAPK[T(PO3H2)]PSSGEPP[K(13C6)]-COOH190 were spiked into the endogenous sample 

corresponding to 1.5 ml CSF following pre-treatment but prior to fractionation. 

Results and Discussion 

To increase the number of identified endogenous peptides in CSF we supplemented a previously 

developed protocol (19, 24), based on molecular weight ultrafiltration, with an additional peptide 

fractionation step employing high-pH reversed-phase chromatography according to the method 

described by Batth and colleagues (20). Besides reducing sample complexity, pre-fractionation 

enabled us to use a fivefold larger volume of CSF for nano-LC-MS analysis compared to our previous 

studies, permitting the detection of lower-abundant peptides. We also evaluated software programs 

that use different strategies for peptide identification and validation of PSMs. Identified peptides were 

evaluated based on previously reported association to neurodegenerative disorders and peptides of 

particular interest (i.e., derived known or potential biomarkers) were examined further. 

Peptide identification 

The identification success rate is generally lower for endogenous peptides than for tryptic 

peptides. An LC-MS data set of tryptic peptides from CSF, consisting of 427,613 MS/MS 



spectra, resulted in 36,886 confident (FDR<1%) PSMs, corresponding to 8.6% identified 

spectra, while a set of endogenous CSF peptides, consisting of 269,945 MS/MS spectra, 

yielded 3,094 accepted PSMs, i.e., only 1.1% identified spectra. A reason for the lower 

identification rate for endogenous peptides may be that they differ in composition compared 

to tryptic peptides: for example, they are on average longer, and contain lysine and arginine 

residues internally but not necessarily at the C-terminus. Thus PSM scoring algorithms 

optimized for tryptic peptides may not be optimal for endogenous peptides. To test this 

hypothesis, we searched LC-MS data from one sample (12 HpH-RPLC fractions) with the 

software programs Mascot (25, 26) and SequestHT (27, 28), which are based on fragment ion 

fingerprinting (26, 29), for both programs using either the default scoring algorithm or the 

Percolator algorithm (21, 30). While both algorithms use the target/decoy approach to assess 

the correctness of PSMs, Percolator employs machine learning to improve the base scoring 

algorithm based on a subset of highly confident PSMs in an iterative process. Thereby, the 

algorithm can adapt to the general fragmentation characteristics of peptides in the given 

sample and mass spectrometric experiment. Mascot identified 1,276 endogenous peptides 

using the default algorithm, and 8,679 peptides using Percolator, corresponding to over a 6-

fold increase (Figure 1A). Sequest HT identified 1,694 endogenous peptides using its default 

scoring algorithm, and improved more than four-fold, to 7,288 peptides when instead 

applying Percolator (Figure 1B). For tryptic peptides the differences between Percolator and 

the default scoring algorithms were smaller: Mascot identified 5,824 peptides using the 

default algorithm and 7,926 peptides using Percolator, corresponding to an increase of 36% 

(Figure 1C), and SequestHT 7,028 peptides using the default algorithm and 7,917 using 

Percolator, corresponding to an increase of 12% (Figure 1D). 

Another difference regarding identification of endogenous peptides compared to tryptic 

peptides is that no enzymatic cleavage can be specified in the database search. Thereby, the 



number of peptide sequences to evaluate increases by a factor of 100-1,000, increasing the 

occurrence of incorrect PSMs. De novo sequencing is an alternative to fragment ion 

fingerprinting for peptide identification, in which partial peptide sequences are extracted by 

using intrinsic m/z information in MS/MS spectra (31). Because this approach does not rely 

on knowledge of the amino acids at the peptide termini, we hypothesized that it may be more 

successful for identification of endogenous peptides. To test this hypothesis, we searched the 

LC-MS data from the previous section using PEAKS Studio (32), which identifies peptides by 

de novo sequencing followed by a tag search (33, 34), and uses a PSM validator which 

combines machine learning and target decoy functions, some of which are also featured in 

Percolator, in a decoy fusion PSM validator (35). PEAKS identified 10,967 peptides (1% 

FDR), i.e., nearly 2,500 peptides more than Mascot and more than 3,000 peptides more than 

SequestHT (Figure 2).  

The identification overlap between PEAKS and the data-dependent search engines was quite 

small. Compared to 70% peptide identification conformity between Mascot and Sequest HT, 

the identification overlap between PEAKS and either of the other two search engines was less 

than 20%, and the total overlap between all three was less than 15% (Figure 2). The number 

of peptides identified with the different programs and scoring algorithms are listed in Table 1. 

The small overlap between the fingerprinting and de novo based methods raises the question 

of whether the identifications are correct or not. While correctness cannot be directly tested in 

this data set, for the subset of MS/MS spectra with assigned PSMs in at least two programs, 

the percent discrepant PSM assignments between the programs could reveal if the actual FDR 

of either of the programs is higher than the target value. The discrepancies between the 

programs were below 2% in all cases, thus not indicating erroneous FDR (Table 2). 

In conclusion, for identification of endogenous peptides by fragment ion fingerprinting, the 

optimal scoring algorithm differs from that of tryptic peptides, and a significant improvement 



can be achieved by using an adaptive scoring approach such as Percolator. Further, our results 

show that peptide identification based on de novo sequencing and fragment ion fingerprinting 

are complementary and should be used in combination for increased number of identified 

peptides. 

Evaluation of biomarker candidates 

Combining the results from the two CSF samples searched by three search engines resulted in a total 

of 18,031 unique endogenous peptides (FDR=1%), derived from 1,918 proteins. The set of proteins 

identified in our study was compared to CSF biomarkers and biomarker candidates presented in four 

recent review articles (3, 10, 36, 37) (see Table 3). 

Microtubule-Associated Protein Tau 

Among the identified endogenous peptides of particular interest were five derived from 

microtubule-associated protein tau (Table 4, Figure 3). In humans the primary role of tau is to 

stabilise neuronal microtubules, which are vital to axonal transport (38, 39). Intraneuronal 

aggregation of tau in the brain is involved in several neurodegenerative diseases, which are 

collectively referred to as tauopathies (40, 41). A specific pathophysiological trait of AD is 

phosphorylation of one or several tau-motifs (42-44), resulting in so-called 

hyperphosphorylated tau (p-tau). Hyperphosphorylation causes tau to dissociate from the 

microtubule-network, leading to its breakdown, and eventually results in cell-death (44, 45), 

resulting in increased CSF tau level (46-48). Together with the amyloid beta 1-42 peptide 

(Aβ1-42), total tau (t-tau) and p-tau can be used to diagnose AD with high sensitivity and 

specificity (1, 37, 48, 49).  

A study in which fractionated CSF proteins were analysed by Western blot demonstrated the 

existence of a multitude of tau protein fragments spanning a wide molecular weight range 

(47). The data indicated differences in the abundance of several fragments between AD 



patients and controls, suggesting that it may be important to study the disease association of 

specific tau fragments or endogenous tau peptides. Our study is the first to report endogenous 

tau peptides in human CSF. Interestingly, four of the identified peptides (tau 175-189, tau 

175-190, tau 175-193 and tau 176-190) span Thr-181, which is the phosphorylation site 

detected by the most commonly used immunoassay for p-tau (50). The identity of tau 175-190 

was verified by spiking a CSF sample with custom synthesized tau 175-190 and analysing by 

LC-MS (Figure 4). Additionally, tau 175-190 with phosphorylated Thr-181 was spiked in, 

demonstrating also the presence of the phosphorylated form in CSF (data not shown). Further 

studies are under way to evaluate the performance of tau 175-190 and p-tau 175-190 as 

biomarkers of AD and other tauopathies.   

Amyloid   

A total of 213 peptides belonging to the amyloid precursor protein (APP) were identified. Of 

these, 58 were located fully or partly within the APP672-713 (APP770; identifier: P05067-1) 

sequence, corresponding to Aβ1-42, the main constituent of amyloid plaques, one of the 

hallmark pathological lesions of AD (Supplemental Table s1). A majority of the truncated, 

endogenous Aβ peptide forms we report on here have been previously identified using a 

combination of immunoprecipitation (IP) and MS (51, 52). However; we identified a number 

of truncated segments not previously reported, in some cases likely because their sequences 

were outside the epitopes of the antibodies (12EF325, 6E10, and 4G8) used. A further three 

peptides (-10 to 9, -15 to 9 and -8 to 2) were not completely located within the Aβ sequence. 

Endogenous peptides located within the Aβ1-42 sequence are of particular interest when 

studying enzymatic processing of the Aβ/APP, e.g., to confirm target engagement of beta-

secretase inhibitor treatment (53) 



Apolipoprotein E 

109 endogenous peptides derived from apoE were identified (Supplemental Table s1). Apolipoprotein 

E (apoE) is a glycoprotein which known functions involve CNS lipid transport and peripheral 

circulation (54). It is also believed to be a “progenitor” for bioactive polypeptides resulting from 

proteolytic cleavage of the protein (55-57). ApoE is known to be involved in AD and other 

neurodegenerative diseases (58-60), and there is evidence suggesting the protein affects AD through 

interaction with Aâ1-42 (61, 62), but the exact mechanism is still not fully understood. 

There are three major isoforms of apoE in humans which differ by two single-amino acid 

substitutions: å2 - Cys130/Cys176; å3 - Cys130/Arg176 and å4 - Arg130/Arg176. Carrying at least one allele 

å4 of the APOE gene (APOE) correlates with an increased risk of developing AD (58, 60, 63), whilst 

å2 (APOE2) seems to have a neuroprotective function (62, 64), and å3 (APOE3) is neutral in terms of 

AD risk (60). 

We identified 109 endogenous apoE peptides covering >70% of the protein-sequence. Among 

the identified peptides were 6 spanning AA-130, and 3 spanning AA-176 allowing for 

separate quantification of endogenous peptides produced from the different genetic variants in 

future studies.  

 

Conclusions 

The described sample preparation, peptide fractionation, and peptide identification using 

different search engines significantly expanded the known CSF peptidome. The large number 

of endogenous CSF peptides identified, many of which have been reported to be associated 

with neurodegenerative diseases and comprising also peptides from low-abundant proteins, 

strongly suggests that this class of molecules is a promising source of biomarkers to explore 

in clinical studies. 
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Tables 
 
Table 1. Number of endogenous CSF peptides identified using Mascot and SequestHT with 
Percolator or the default scoring algorithms, or PEAKS. 
 

Protein identification 
software 

Scoring algorithm Number of identified 
peptides 

Default 1,276 / 5,824 Mascot 
(endogenous / tryptic) Percolator 8,679 / 7,926 

Default 1,694 / 7,028 Sequest HT 
(endogenous / tryptic) Percolator 7,288 / 7,917 

PEAKS 
(endogenous) 

De novo-sequencing/ 
Target Decoy Fusion / 

10,967 



 

Table 2. Discrepancy between protein identification software. 
 

Identification 
software compared 

# Mutual 
peptide IDs 

# Identical 
peptide ID/Scan 

# Peptide ID 
discrepancies 

Peptide ID 
discrepancy (%)

Mascot - PEAKS 18,337 17,984 353 1.93 

SequestHT - PEAKS 16,108 16,044 64 0.40 

Mascot - SequestHT 17,323 17,235 88 0.51 



 
Table 3. 
 

Protein Acc. No. Disease 
# Peptides 
identified 

Secretogranin-1 P05060 AD, PD (10) 681 
Clusterin P10909 AD, MS, PD (10) 318 
Amyloid beta A4 protein P05067 AD, CJD (3) 213 
SeroTransferrin 
(Transferrin, Beta-1 
metal-binding globulin)  

P02787 AD, MS (3, 10) 189 

SPARC-like protein 1 Q14515 AD, MS (10) 179 
ProSAAS Q9UHG2 AD, MS (10) 153 
Cystatin-C P01034 AD, PD (3, 10) 140 
Prostaglandin-H2 D-
isomeras (Beta-trace 
protein)  

P41222 
AD, MS, Spinal canal 
stenosis, Bacterial meningitis
(3, 10) 

123 

Apolipoprotein E P02649 AD, MS (3, 10) 109 
Beta-2-microglobulin P61769 AD, MS, PD (10) 96 
Complement C3 P01024 AD, MS (10) 65 
Neuronal pentraxin 
receptor 

O95502 AD, MS, PD (10) 65 

Complement C4-A P0C0L4 AD, MS (10) 62 
Superoxide dismutase 
[Cu-Zn] 

P00441 AD, PD, MS (10) 61 

Transthyretin (ATTR, 
Prealbumin) 

P02766 AD, PD, MS (3, 10) 61 

Fibrinogen beta chain P02675 AD, PD (10) 56 
GAP43 (neuromodulin) P17677 AD (36) 39 
Vitamin D-binding 
protein 

P02774 AD, PD, MS (10) 38 

Gelsolin P06396 AD, MS, PD (10) 37 
Insulin-like growth 
factor-binding protein 5 

P24593 AD, PD (10) 37 

Zinc-alpha-2-glycoprotein P25311 AD, PD, MS (10) 37 
Alpha-1B-glycoprotein P04217 AD, MS, PD (10) 31 
Beta-2-glycoprotein 1 P02749 AD, PD (10) 31 
Actin, cytoplasmic 1 P60709 AD, MS (10) 23 
Apolipoprotein D P05090 AD, MS (3, 10) 23 
Alpha-1-Antitrypsin P01009 AD, MS (10) 22 
Contactin-1 Q12860 AD, MS (10) 22 
Alpha-1-acid glycoprotein 
1 (Orosomucoid 1) 

P02763 AD, MS, PD (10) 21 

Retinol-binding protein 4 P02753 AD, MS, PD (10) 21 
Polymeric 
immunoglobulin receptor 

P01833 AD, PD (10) 18 

Kallikrein-6 Q92876 AD, MS, PD (10) 17 
Serum amyloid A protein 
precursor 

P0DJI8 AD, PD (10) 17 

Somatostatin P61278 AD, Depression (3) 17 



EGF-containing fibulin-
like extracellular matrix  
protein 1 

Q12805 AD, MS (10) 15 

Cell growth regulator 
with EF-hand domain 
protein 1 

Q99674 AD, PD (10) 14 

Dystroglycan Q14118 AD, MS (10) 14 
Angiotensinogen P01019 AD, MS, PD (10) 13 
IL-6 soluble receptor P40189 AD, Stroke (3) 13 
Adherens junction-
associated protein 1 

Q9UKB5 AD, PD (10) 12 

Ceruloplasmin P00450 AD, MS, PD (10) 11 
Neurofilament medium 
polypeptid 

P07197 MS, MSA (3) 10 

72 kDa type IV 
collagenase 

P08253 MS, PD (10) 9 

Insulin-like growth factor 
binding protein-3 

P17936 CNS tumours (3) 8 

Hypocretin-1 (Orexin-A) O43612 Narcolepsy (3) 7 
Synaptotagmin-1  P21579 AD (3) 7 
Creatine kinase B-type  P12277 CJD (3) 6 
Microtubule-associated 
protein tau 

P10636 AD, CJD, PD (3) 5 

Myelin basic protein  P02686 MS (3) 5 
Neurexin-1-alpha Q9ULB1 AD, PD (10) 5 
Pigment epithelium-
derived factor 

P36955 AD, ALS, MS, PD (3, 10) 5 

Pro-opiomelanocortin  P01189 Infantile Autism (3) 5 
Alpha-2-macroglobulin P01023 MS, PD (10) 4 
Disintegrin and 
metalloproteinase 
domain-containing 
protein 17 

P78536 AD (3) 4 

132 kDa protein 
(Transcriptional-
regulating factor 1) 

Q96PN7 AD, PD (10) 3 

Acyl-CoA-binding 
protein 

P07108 AD (3) 3 

Neurospecific enolase  P09104 CJD (36) 3 
14-3-3 protein P31947 CJD (3) 2 
BACE2 Q9Y5Z0 AD (37) 2 
Neurogranin Q92686 AD (37) 2 
Cochlin O43405 AD, PD (10) 1 
Glutamine Synthetase P15104 AD (3) 1 
Neurofilament heavy 
polypeptide 

P12036 MS, MSA (3) 1 

Neurofilament light 
polypeptide 

P07196 MS; MSA (36) 1 

Visinin-like protein 1  P62760 AD (37) 1 



Table 4. Endogenous peptides identified from microtubule-associated protein Tau. The amino 
acid sequence position corresponds to isoform Tau-F (Protein accession nr. P10636-8). 
 

 
Position Sequence Charge MW (monoisotopic) [Da] 

171-180 IPAKTPPAPK 2 1018.62 

175-189 TPPAPKTPPSSGEPP 2 1458.74 

175-190 TPPAPKTPPSSGEPPK 2/3 1586.83 

209-224 SRTPSLPTPPTREPK 3 1662.90 

212-224 TPSLPTPPTREPK 3 1419.77 



 
 
 
Figure legends 

 

Figure 1. 

Comparison of number of identified endogenous (A, C) and tryptic (B, D) peptides with 

Mascot (A, B) and SequestHT (C, D). PSM were scored using the default scoring algorithm 

of the respective software (blue) as well as the machine learning-based algorithm, Percolator 

(yellow). 

 

Figure 2. 

Comparison of number of identified endogenous peptides with Mascot, Sequest HT, and 

PEAKS Studio. 

 

Figure 3. 

Endogenous peptides identified from microtubule-associated protein Tau (Accession no. 

P10636-8). The sequence of isoform Tau-F (441 aa) is shown. 

 

Figure 4. 

Identification verification of endogenous Tau 175-190 by spiking CSF with synthetic heavy 

isotope labelled peptide 175NH2-TPPAPKTPSSGEPPK(13C6)-COOH190  (+6 Da). (A) XIC of 

heavy labelled (top) and endogenous (bottom) peptides shows co-elution. (B) The endogenous 

and heavy labelled peptide signals (M+2H2+) are separated by 3 m/z, as expected. (C) The 

endogenous (bottom) and heavy (top) labelled peptides display similar fragment ion patterns. 
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