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Abstract   In recognition of Rolf Biehler’s contribution to probability and statis-

tics education, we chose to re-visit his chapter in the edited book, Chance Encoun-

ters: Probability in Education. In particular, we examine three themes concerning 

the concept-tool gap, levels of access to concepts, which can be concealed by 

technology, and issues around demonstration and proof. We found many insights 

that resonate with current practice two decades later. Nevertheless, we argue that 

during that time, some progress has been made in how we can conceptualise the 

issues. For example, we discuss: (i) how it is now possible to unpick the meta-

phorical understanding that could emerge from the use of black boxes by reference 

to utility-based understanding; (ii) four principles that could inform how black 

boxes might be designed to support utility-based understanding; (iii) how the im-

portance of explanation may overshadow a more traditional emphasis on proof. 

Introduction 

In 1991, Kapadia and Borovcnik invited leading researchers at the time to discuss 

issues on probability education. As a result, the edited book, Chance Encounters: 

Probability in Education, set out a critical review of the state of research in this 

field in 1991. In a sense the book demarcates an era dominated by the seminal re-

search of psychologists such as Piaget, Fischbein and Kahneman and Tversky 

from a modern era in which educationalists in mathematics and statistics educa-

tion have sought to resolve the many issues raised in the earlier work by conduct-

ing experimental studies to further theoretical development on how children learn 

to deal with uncertainty and how tools might be designed to support that learning. 

In this chapter, we focus on Chapter 6, Computers in Probability Education, in 

the original book (Biehler 1991). Rolf Biehler reviewed the opportunities and con-

straints being offered by what was then a newly emerging technology. At the time 
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of writing the book, Rolf was in his late 30s and now two decades later, it seems 

timely to revisit his text to consider whether the issues he raised have been re-

solved or at least come to be better understood, whether they have simply disap-

peared as the technology itself has improved, and indeed whether new opportuni-

ties and constraints have since emerged. 

It is worth pausing to remind the reader about the context in 1991. We were 

early career researchers, studying the potential for using the latest digital tool, the 

laptop, in primary schools. Secondary schools in the UK possessed at best a room 

of computers, based on idiosyncratic operating systems, being increasingly used 

by departments other than mathematics for subjects like Computer Studies. Prima-

ry schools might have a single machine in each classroom, but with only a small 

monitor for use by individuals or pairs. Other than in unusual projects like our 

own, there was no handheld technology in schools apart from calculators; mobile 

phones were a distant dream (or nightmare for some of us). The internet was just 

beginning to emerge. It was not in use in homes or schools but university depart-

ments would have individual machines that could access ‘JANET’, the joint aca-

demic network. 

This background context is very important as it would be easy to imagine that 

technological development since then has been so fundamental that little that was 

said about computers in probability education in 1991 could possibly be relevant 

today. Such a view would be far from the truth. As we will see, there remains a 

strong resonance between Biehler’s analysis and the current situation, though our 

re-analysis perhaps also serves to emphasise where progress has been made. 

Our approach to this re-analysis will not be exhaustive. We do not intend to 

work systematically through the many aspects of the original text, space would not 

allow such a method, but we do invite the reader to re-visit for themselves the 

original chapter. Instead, we plan to consider three themes, which emerged for us 

in our reading of the text. First, we will focus more explicitly on design by dis-

cussing the concept-tool gap, a construct that pervades the original Biehler chap-

ter. Second, we will debate the extent to which technology hides or exposes un-

derpinning statistical ideas by considering how design directs levels of access. It 

will be evident that the nature of the tools and indeed the tasks to which those 

tools are deployed provides a running theme throughout this chapter. Finally we 

will consider how demonstration, explanation and proof are played out when tech-

nology is used to support probabilistic learning. Inevitably such a discussion must 

be nuanced by considerations of design. 

Design and the concept-tool gap 

Biehler refers to the ‘concept-tool’ gap to articulate a concern that the meanings 

for uncertainty held by students are not well integrated with the performance de-

mands made in curricula and examination syllabi. For young students, probabilis-

tic algebra is still most often learned as a set of rules to be followed in order to get 
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the right answer, leaving the concepts themselves distant and meaningless. The 

gap to which Biehler refers is, in this instance, between the concepts, such as in-

dependence, sample space and the Law of Large Numbers, and their use as tools 

to solve set problems. Later, students learn about hypothesis testing and confi-

dence intervals but in most cases the learning is restricted to the application of lit-

tle understood algorithms. Biehler raised this issue in 1991 but unfortunately the 

concept-tool gap continues, live and kicking, today. Although it is certainly not an 

issue only for probability education (consider, for example, the teaching and learn-

ing of algebra), Biehler was correct to identify this as a problem with particular 

relevance to probability education, when so often students and teachers conspire to 

answer examination questions in probability using methods that are understood 

only in instrumental ways. 

Even in those early days, when computers were scarcely evident in schools, 

Biehler saw the special affordances that might mean the new technology could of-

fer the potential to close the concept-tool gap. In particular, he listed three (p. 

188): 

1. the number of repetitions is easily increased so that uncertainty and variation in 

the results can be reduced; new kinds of patterns become detectable, 

2. an extensive exploration is possible by changing the assumptions of the model, 

making further experiments, changing the way generated data are analysed etc., 

3. new and more flexible representations are available to express models and sto-

chastic processes and display data with graphical facilities. 

This list stands up to criticism even today. We might, for example, evaluate this 

list against the design of perhaps the most recent and innovative of computer ap-

plications in the field of probability education, Tinkerplots 2. In the earlier version 

of this toolkit, students were able to organize and graph data in largely intuitive 

ways. Tinkerplots 2 allows students additionally to model uncertain phenomena 

using probabilities represented as samplers, which can range from simple urn 

models to histograms and even to hand-drawn probability density functions. When 

a model has been created by the student, it can be used to generate data and ana-

lysed using the original Tinkerplots tools. 

The example in Figure 13.1, taken from Konold, Harradine and Kazak (2007), 

uses urns and spinners to create a machine that could generate the varied attributes 

of cats. The likelihood of the two genders is set to be equal as are the probabilities 

of the three eye colours envisaged by the children. The various lengths of cats 

were represented as balls in an urn so that more common lengths could easily be 

modelled by the addition of extra balls with that length; older students might have 

used a sampler that would allow a continuous variable. Once the model has been 

created, the children are able to generate many cats with varying attributes. 

The toolkit makes full use of affordance (1) above, in that it is very easy for 

students to generate as much data from their model as they like. Thus, small and 

large data sets can be compared. As imagined by Biehler, students can compensate 

for the lack of experience in the material world by generating extensive data in the 

virtual world of Tinkerplots 2. Furthermore, the use of different samplers whose 
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parameters can easily be changed and methods of analysis whether based on col-

lections of individual cases or grouped data exploits affordance (2) above. In re-

sponse to affordance (3), Cliff Konold who leads the Tinkerplots development 

team not only allows students to use conventional representations of data, such as 

box, dot and scatter plots but also introduced novel representations in the light of 

research which suggests younger students might need transitional tools for organ-

ising and representing data prior to being able to intuitively manage the conven-

tional approaches. 

 

Fig. 13.1 A machine designed for making cats with various attributes 

Biehler imagined that simulations of this type might enable students to close 

the concept-tool gap by making theoretical objects experiential. In a recent inau-

gural lecture, Pratt (2012) referred to ‘making mathematics phenomenal’ through 

the creation of on-screen objects and tools that can be explored and manipulated, 

showing the currency even now of Biehler’s early insight. Indeed, both Biehler’s 

and Pratt’s ideas resonate with the constructionist movement (Harel and Papert 

1991), which advocates the building of public entities by students to facilitate 

mathematizing. Papert’s power principle (1996) argues that such an approach al-

lows students to learn mathematics in a more natural way since they are able to 

draw on experience to construct mathematical meaning, which he sees as a paral-

lel process to how humans most often learn outside of school mathematics. The 

constructionist vision is seen by Pratt (2012) as a challenge to design environ-

ments that facilitate making mathematics phenomenal and many of his examples 

come from probability education. For example, in building ChanceMaker, a do-

main of stochastic abstraction designed to research young children’s meanings for 

chance, distribution and the Law of Large Numbers (Pratt and Noss 2002; 2010), 

he challenged 10-11 year olds to identify which of a range of virtual random gen-

erators were ‘working properly’. The students were able to mend any so-called 
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gadget, which in their view was not working properly, in particular by editing its 

workings box, an unconventional urn-type representation of the probability distri-

bution. By editing the gadget, and reviewing the feedback in the form of the ani-

mation of the gadget, lists of previous results and charts aggregating those results, 

the students were able to learn through use about the nature of short-term and 

long-term randomness and come to situated understandings of the Law of Large 

Numbers and distribution. 

Although, perhaps surprisingly, there is no mention of Papert’s ideas in the 

1991 text, there is direct reference to diSessa’s (1986) work in mechanics. Biehler 

points out diSessa’s defence against criticism that his Dynaturtle was not provid-

ing a ‘real’ experience of Newton’s Laws. diSessa’s counter-argument was that 

Newton’s Laws are themselves a human construction; physics is not a direct per-

ception but an intellectual abstraction, achieved over prolonged periods. The Dy-

naturtle offered an opportunity to construct Newton’s Laws exactly because of its 

difference from the material world. It is often argued as criticism against virtual 

environments such as ChanceMaker that randomness on a computer is not the 

same as randomness as experienced through material objects like coins, spinners 

and dice. This is true but, because of the affordances identified by Biehler, virtual 

environments can offer experiences that facilitate the construction of powerful 

ideas like randomness more effectively than experience in the material world 

alone can afford. 

In more recent years, Biehler and co-workers have designed integrated pro-

grammes of learning, built around simulation, in an attempt to bridge the gap (Ba-

tanero et al. 2005; Biehler and Hoffman 2011). Ainley, Pratt and Hansen (2006) 

have also looked at the concept-tool gap from the point of view of task design. In 

a sense, computer environments are only as good as the tasks to which they are 

deployed and so many of the design arguments that apply to the provision of tools 

also apply to how teachers and researchers choose and design tasks. They place 

some emphasis on the importance of designing the task so that it is seen as pur-

poseful by the students. Many of the examples above would fit this design criteri-

on but sadly many other tasks to which computer tools are deployed are no more 

engaging than their equivalents in traditional textbooks.  

Ainley et al. would see the consideration of purpose as only part of the task de-

sign: the task must be directed towards the learning of mathematical or statistical 

concepts. Tasks that are purposeful may misdirect attention and can easily distract 

students from mathematics. They coined the term utility to describe the important 

element of task design that aims to focus the students’ attention on the power of 

mathematical ideas to get stuff done. This type of learning is importantly different 

from tasks that focus on techniques, such as the instrumental learning of the Laws 

of Probability. It is also different from the type of relational understanding that en-

ables students to appreciate the logic of why the mathematics works. To use a 

metaphor about car engines, utility would not relate to knowing precisely which 

controls to use, and in which order, to start the engine; neither would utility relate 

to understanding the engineering science of how an engine works. Utility would 
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consist in an appreciation how useful an engine is in moving a car, which has ob-

vious value in living one’s everyday and professional life.  

In some respects this example from everyday life appears ridiculous. The utility 

of an engine and the car it powers seems patently obvious: no one would embark 

on learning to drive without appreciating this utility. Ainley et al. argue that it is 

precisely the contrast between a real life example and the situation in mathematics 

and statistics classrooms, where students are generally required to learn to operate 

new tools before having any sense of their utility, which makes utility such an im-

portant idea. If mathematical and statistical ideas were experienced through pur-

poseful tasks that made the utility transparent, their power might become rather 

more evident to students than is currently the case, and the concept-tool gap, if not 

closed, might be bridged in a different way. 

However, this leads us in our re-analysis to a point of departure from the origi-

nal text. Biehler imagined that simulation could lead to a closing of the concept-

tool gap. We would now argue that this is over-simplistic. Simulations can provide 

purposeful tasks but students using tools such as Konold’s Tinkerplots, diSessa’s 

Dynaturtle or Pratt’s ChanceMaker will learn about the scope and power of the 

statistical, mechanical or probabilistic concepts. Such knowledge is very important 

but is fundamentally different from the demands made by curricula and syllabi, 

which, we might argue, tend to heighten the concept-tool gap. It is a research 

question whether students with an appreciation of the power of probability will be 

better prepared to learn the formal knowledge and then grapple more effectively 

with the problems set in examination based on these curricula and syllabi. We 

would conjecture that this would indeed be the case but meanwhile the concept-

tool gap remains largely inviolate. 

Levels of access 

Biehler (1991) in fact suggested that simulations could address the concept-tool 

gap by conceptualizing the simulation as a black box; “It may be possible that a 

metaphorical understanding of a ‘black box’ can guide a reasonable application” 

(p. 180). He made this argument in response to common criticism that concealing 

the computational algorithms relies on students accepting the outputs without 

knowing the underlying formulas, particularly common when people use statistical 

packages without understanding. 

Indeed, the tendency for technology to hide the underlying mechanism is now 

common practice outside the classroom. Noss (1997) used his inaugural lecture to 

emphasise that technology often makes the mathematics that drives so much of 

everyday culture invisible, and that this trend demands the invention of new nu-

meracies. A simple example takes place every minute of the day in the supermar-

ket, when the customer goes through the checkout without either the shopper or 

the assistant needing to do any calculation. Not only does the computer total the 

cost of the goods purchased (and keep a stock check) but also the shopper hands 
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over a credit card and no material exchange of notes or coins occurs. It is common 

for mathematics teachers to claim enthusiastically that mathematics is everywhere 

but, although more and more mathematics underpins the functions of everyday 

technology such as intelligent tills, never has this been less obvious to younger 

students, and indeed to the general public. 

It is therefore an argument worthy of consideration that students cannot possi-

bly come to appreciate the power of mathematics if the mathematics classroom 

mirrors the tendency to hide the algorithms, first through the use of calculators and 

second by wrapping the mathematics up in impenetrable black boxes. Neverthe-

less, in 1991, Biehler envisaged that through the use of, for example, a program 

that calculates Binomial probabilities, students might come to apply a metaphori-

cal understanding without detailed knowledge of the formula. 

What did Biehler mean by a ‘metaphorical understanding’? This is not clear but 

we would argue that students who were using the imagined Binomial program in 

this way might gain a sense of the scope and limitations of the Binomial Distribu-

tion. By playing with the program, they might never learn the formula, since that 

is concealed within the black box, but they might come to appreciate when the Bi-

nomial distribution is a useful tool and when it is not. We see a parallel here with 

the ideas of Meira (1998) who uses the idea of transparency (developed from the 

work of Lave and Wenger, 1991) as ‘an index of access to knowledge and activi-

ties’. Meira contrasts a view of transparency, or lack of transparency, being inher-

ent in a tool or device, with one of transparency emerging through use: 

“… the transparency of devices follows from the very process of using them. That is, the 

transparency of the device emerges anew in every specific context and is created during 

the activity through specific forms of using the device.” (Meira 1998, p. 138) 

Biehler’s ‘metaphorical understanding’ seems to be close to this notion of 

transparency. This is precisely the sort of knowledge and learning that Ainley et 

al. (2006) intended when they referred to utility-based understanding. Utility-

based understanding will not emerge automatically and a good deal of careful de-

sign is needed to ensure that the tools and tasks lead to such an appreciation. Bieh-

ler of course referred to the Binomial program as an instance of a set of black box-

es and indeed we also are not making a specific claim about the Binomial 

Distribution; on the contrary, we make a quite generic connection with utility-

based understanding. 

When considering the design of tools, one might ask what design decisions 

might be taken to avoid concealing the algorithms and instead foster utility-based 

understanding of probability? This question brings the reader explicitly to the is-

sue of levels of access, headlining this subsection. We identify four elements of 

design, though implementation of any one in isolation is unlikely to be effective: 

1. The use of evocative imagery that iconically carries a key aspect of the proba-

bilistic concept; 

2. The possibility of manipulating parameters of the simulation and receiving 

feedback that facilitates understanding of the behaviour of the probabilistic 

concept as instantiated on-screen; 
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3. Semantic layers that can be opened by the student who wishes to dig out a 

deeper meaning; 

4. A blurring of control and representation. 

 An example of (1) above can be found in the innovative developments by 

Chris Wild’s team to support the understanding of core concepts in statistical in-

ference (http://www.stat.auckland.ac.nz/~wild/VIT/index.html). Their visual in-

ference tools focus on how animation can be deployed to give a sense of variation. 

For example, a statistic such as sample mean can be plotted as a short vertical 

segment on a horizontal axis during continuous re-sampling. When the trace of the 

sample mean is captured, the effect is that gradually a box appears as the sample 

mean varies to the left and right, taking smaller and larger values. Some values of 

the sample mean occur more often and so there is increased intensity towards the 

centre. The vibrations of the box give an ongoing sense of the variation and yet the 

signal and noise apparent in the sampling distribution of the sample mean is visi-

ble. 

In fact one can imagine a student altering the size of the samples being taken 

and re-taken and beginning to notice a relationship between the sample size and 

the width of the animated box that emerges. This is an example of (2) above. The 

facility to be able to manipulate the parameters in the black box is a minimal re-

quirement if the level of access to the utility of the probabilistic concept is not to 

remain superficial. Above, Pratt’s work with the ChanceMaker tool demonstrated 

how the students could change parameters such as the number of throws of the 

gadget and begin to appreciate from the graphical feedback that ‘the more times 

you throw the die, the more even is its pie chart’ (assuming of course that the 

probabilities of each outcome are in fact equal). 

ChanceMaker allows the student to open up the gadget and change the work-

ings (in other words the probability distribution). In one sense this is an extended 

version of (2) since it is possible to think of the workings box as a parameter. 

However, editing the workings box is a significantly more substantial act than 

simply changing a parameter. In that sense, deeper meanings may become appar-

ent and so perhaps this is a simple example of (3) above. The design challenge 

here is to balance access with expressability. Wild’s work with VIT is easy to use 

(though the underpinning ideas are far from simple) but students may be hindered 

as they have few opportunities to express their own ideas, a key design feature 

from the Constructionist perspective. ChanceMaker perhaps offers more oppor-

tunity for expressing personal conjectures about how the gadget should work 

through the challenge to mend the gadget, in particular by editing the working 

box. 

A far more ambitious project to make available access to layer upon layer of 

meaning was diSessa’s Boxer project (http://soe.berkeley.edu/boxer/). Boxer is a 

programming language, related to Logo but as part of a project aimed at develop-

ing an all-inclusive medium for computational literacy. The relevant feature here 

is how Boxer provides closets that by default are closed. Within these closets can 

be objects or pieces of code that may be best hidden from the naïve learner at the 
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outset but may be of interest later. Since closets can themselves contain closets, 

there is potential for digging more and more deeply into the semantic layers of the 

concept. Although Boxer is not used widely, it is perhaps the tool which has taken 

most seriously the notion that the black box could be opened at the discretion of 

the user to uncover new layers of meaning. Biehler originally hinted that black 

boxes could, despite hiding underlying algorithms, prove useful to students who 

need to capture a metaphorical understanding. In trying to unpick that metaphor, 

we posit as one of the four design elements the notion that black boxes do not 

need to be so black but, aside from Boxer, few developments in this direction have 

yet materialised. 

In fact, the Boxer closets could be opened to reveal the underpinning algo-

rithms, offering a possibility of closing the concept-tool gap by, not only support-

ing utility-based understanding but beginning to appreciate the formulas them-

selves. Often principles in the design of tools can also inform task design. For 

example, a teacher might design a task involving measuring the time of flight of a 

sycamore seed dropped from different heights as part of an exploratory investiga-

tion. Several measurements of time might be taken for the same height and insert-

ed into a spreadsheet. It would then be natural perhaps for the teacher to introduce 

the child to the ‘average’ function as a black box so that a better estimate could be 

calculated from a number of measurements. Inquisitive children might ask the 

teacher what the function does. A well-prepared teacher may have anticipated 

such a scenario and may have materials on hand that explain the mean average, 

and so open up the black box, either by exploring more systematically how aver-

age behaves for different number sets or by introducing methods of calculation. 

When diSessa (1988) refers to integrating the formal and the informal, he has 

in mind, for example, that, in a computational medium such as Boxer, it is possi-

ble to execute mathematical formalisms within a generally expressive and creative 

environment. Two limited examples are: (i) the word processor, where it is possi-

ble to click a url embedded in the text and gain immediate on-line access to the in-

ternet; (ii) in Mathematica (http://www.wolfram.com/mathematica/), algebraic 

text can be executed to create simplifications and computations of that text. More 

generally, expressive environments that allow textual and graphical creation can 

also integrate mathematical and statistical formalisms so that the informal creative 

process, expressed through text and graphics, can be supported by the execution of 

formal algorithms. When such expressive environments contain tools and struc-

tures that behave in ways that reflect underlying mathematical or statistical princi-

ples, the tools are described by Noss and Hoyles (1996) as autoexpressive. 

In (4) above, we take the notion of autoexpressive tools one stage further by 

operationalising this with the designer in mind. We suggest that a particularly fe-

licitous way of integrating the formal and the informal is to blur control and repre-

sentation. For example, in Logo, the young child controls the turtle by issuing 

commands such as fd 50. The command is both a means of control and a repre-

sentation of how the turtle will move. In ChanceMaker, the workings box controls 

the behaviour of the gadget but, insofar as students learn to predict what will hap-

pen by inspecting the workings box, it becomes an unconventional representation 
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of probability distribution. In both these examples, a key mathematical idea (linear 

distance; probability distribution) is placed exactly at the point of control so that 

the student can scarcely avoid engaging with the representation and gradually be-

come aware of its meaning through use. These tools are indeed autoexpressive but 

to implement that the designer can privilege key representations by making them 

points of control. 

By bridging the formal and informal in this way, the black box becomes rather 

more meaningful, especially in relation to utility-based understanding of the con-

cept. These four design elements, especially if designed to work together, might 

begin to describe how the design of tools can create black boxes whose use could 

support metaphorical, or utility-based understanding, of probabilistic (and other) 

concepts. 

Demonstration, explanation and proof 

Biehler describes computers as supporting a new type of scientific method, which 

is characterised by an experimental style of working with models and data, and 

suggests that in such a method proofs may be valued to the extent that they offer 

explanations (p. 172). We understand this to mean that just as formulae may be-

come black boxes when used instrumentally, so too may proofs, however rigorous, 

which do not support ways of understanding phenomena. In statistics, proof is ev-

idence-based in contrast to mathematics where theorems are established logically 

from previously proven theorems. Nevertheless, a hypothesis test might be taken 

as a proof in its everyday sense but the test scarcely explains when the notion of a 

hypothesis test is obscure, the mathematical basis for the specific test used is not 

understood and when the procedure has been applied instrumentally. On the other 

hand, EDA techniques might enable re-presentation of the data that explains the 

basis of an inference. 

We see Biehler’s claim about an experimental style of working as closely 

linked to the ways in which computers support working with graphs and other vis-

ual images. Biehler himself provides a beautiful example of a visual simulation to 

solve the ‘Abel and Kain’ problem, which not only offers a way to calculate the 

relative probabilities of the two outcomes (1111, 0011) but also an explanation of 

why one is more likely than the other (p. 184). 

The importance of explaining phenomena, rather than relying of the application 

of ‘black box’ formulae or proofs, is particularly pertinent in probability where in-

tuitions play a significant role in thinking. Indeed ‘Abel and Kain’ only works as a 

problem because intuition might suggest that the two outcomes are, in fact, equal-

ly likely. An approach based on the application of formulae may produce an an-

swer, but unless this solution explains the situation, intuitions are likely to be left 

untouched. 

In the real world, the consequences of relying on intuitive understanding of 

probabilities may be problematic. Unfortunately Biehler’s idea that computers 
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may support an increased focus on subjectivist aspects of probability has not been 

widely realised, and school curricula still focus largely on coins and dice. An ex-

ception is the work of Pratt et al. (2011) on the design of computer environments 

to support learning and teaching about risk. They developed a tool to research 

mathematics and science teachers’ knowledge about risk. They propose a scenario 

in which a fictitious young woman, Deborah, has a back condition, which might 

be cured through an operation. Deborah’s dilemma lies in the fact that the opera-

tion could result in side-effects, some of which are severe. She needs to balance in 

some way the positive and negative outcomes with their likelihoods. The probabil-

ities need to be estimated subjectively because the data that are provided give 

some indication of the likelihoods of the various outcomes but there are contradic-

tions and discrepancies in the information. The teachers are encouraged to model 

what might happen if Deborah were to have the operation and what might happen 

if she did not. By running the model, the teachers are able to witness her possible 

futures and hence gain feedback on their subjective estimates and evidence about 

how the dilemma might be resolved. 

In the years since Biehler’s chapter was written, EDA has become a much more 

widespread pedagogical approach, supported by the substantial development in 

appropriate software, such as Tinkerplots and Fathom. The EDA approach fore-

grounds the use of visual methods to explore and identify patterns in data, though 

it is less clear the extent to which this encourages a search for explanation, rather 

than focussing on observing relationships. An issue that is becoming more widely 

recognised in statistics education (Pratt et al. 2008) is the potential for confusion 

between exploration of a set of data, which is the whole population, and explora-

tion of a set of data, which is a sample from which information about the popula-

tion can be inferred. Whilst it may be clear to the teacher that a task involves the 

second of these situations, careful design is required to produce tasks in which it is 

very clear to pupils that this is the case. The nature of what might count as proof, 

or convincing explanation will differ considerably in the two situations: if I am 

exploring the whole population I can make claims with a level of certainty which 

is inappropriate if I am working with a sample. Since the tools, both conceptual 

and technical, that are available can be applied in the same way to either situation, 

task design is crucial to enabling students to understand the importance of infer-

ence. 

Conclusion 

In re-visiting this chapter we have been struck many times by Rolf Biehler’s vi-

sion in anticipating future possibilities offered by technology in the field of proba-

bility, and indeed in statistics and mathematics education more generally. For ex-

ample, Biehler’s list of affordances that position technology as being especially 

felicitous in closing the concept-tool gap is identifiable even in the most recent of 

statistics educational software developments. In particular, the notions that tech-
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nology can make theoretical objects experiential and that virtual experience can 

enhance everyday experience still seem very current. Progress has been made on 

these notions so that the constructs of purpose and utility describe how such an 

emphasis generates a different sort of understanding from that typically demanded 

by curricula and syllabi. As a result the gap remains apparent and it may need fur-

ther work on how to design levels of access, perhaps making use of how to blur 

control and representation, before those demands can be met in a pedagogically 

sound way. Some areas anticipated in Biehler’s original text have not yet been de-

veloped so that, for example, there remains little evidence of the subjective use of 

probabilities being taught in schools. 

There is also a realisation of how uneven and inconsistent the exploitation of 

that potential has been. In parallel to the development of flexible and creative ap-

plications such as Tinkerplots, much of the commercially produced software 

available to schools embodies approaches that prioritise technique and right an-

swers above deep understanding. Technology which is hugely more sophisticated 

than that available in 1991 is often used for display and demonstration, rather than 

for developing the experimental style of working that Biehler envisaged. We 

would argue that in this context issues of design, of both environments and tasks, 

are as important as ever. 
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