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ABSTRACT  

Enteroviruses (EVs) are among the most frequent infectious agents in humans worldwide 

and represent the leading cause of upper respiratory tract infections. No drugs for the 

treatment of EV infections are currently available. Recent studies have also linked 

enterovirus infection with pulmonary exacerbations, especially in cystic fibrosis (CF) 

patients, and the importance of this link is probably underestimated. The aim of this work 

was to develop a new class of multi-target agents active both as broad-spectrum antivirals 

and as correctors of the F508del-CFTR folding defect responsible for >90% of CF cases. We 

report herein the discovery of the first small-molecules able to simultaneously act as 

correctors of the F508del-CFTR folding defect and as broad-spectrum antivirals against a 

panel of enteroviruses representative of all major species. 

 

INTRODUCTION 

Enteroviruses (EVs) are positive-sense single stranded RNA viruses, classified into 12 

species, including four human enterovirus species (EV-A to EV-D), three species of human 

rhinoviruses (RV-A to RV-C) and five enterovirus species that only infect animals.1 EVs are 

responsible for a great variety of clinical manifestations, especially in young children, which 

may result in life-threatening neurological complications (e.g. encephalitis, meningitis and 

poliomyelitis-like paralysis).2-4 Furthermore, RV infections are now considered one of the 

major causes of acute exacerbations in chronic pulmonary diseases like asthma, chronic 
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obstructive pulmonary disorder (COPD) and cystic fibrosis (CF) in children and adults.5 

Physicians pay particular attention to patients that already suffer from respiratory diseases, 

such as CF or asthma, as they could be particularly affected by an additional enterovirus 

infection.6 An increasing number of studies also suggest that respiratory viruses, in particular 

enterovirus and rhinovirus, contribute significantly to CF pulmonary exacerbations, 

hospitalization, decreased lung function and predisposition to bacterial colonization.7 The 

mechanistic link between viral infections and deterioration of CF lung function is not fully 

understood and their impact is probably underestimated, especially in young children.8 

Despite their high clinical and socioeconomic impact, to date there is no approved antiviral 

therapy for the prophylaxis and/or the treatment of enterovirus infections, and the 

management of patients is currently limited to symptomatic treatment and supportive care. 

Therefore, there is an unmet need for broad-spectrum antiviral drugs as a rapid defense 

strategy against enterovirus infections and virus-related exacerbations.  

Nowadays, host factors are considered as very attractive targets for the development of 

antiviral drugs because they are unlikely to mutate and develop resistance in response to 

therapy.9 Moreover, since viruses belonging to the same genus or family usually share the 

same cellular pathways for replication, targeting a host factor may allow the development of 

effective broad-spectrum antiviral compounds.10 Although some toxicity risks may be 

expected from inhibiting a host factor, it should be kept in mind that most drugs currently 

used in therapy target host proteins with excellent therapeutic outcomes and acceptable safety 

profiles. In particular, it has been well documented that the host lipid kinase 

phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) is critical for RNA replication of several 

enteroviruses.11-14 PI4KIIIβ belongs to the phosphatidylinositol 4-kinases (PI4Ks) that 

synthesize phosphatidylinositol 4-phosphate (PI4P) from phosphatidylinositol (PI). PI4P is 

involved in signaling and cellular trafficking mainly at the Golgi and trans-Golgi network 
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(TGN), it contributes to defining the characteristics of plasma membranes and it activates a 

variety of ion channels, including CFTR.15-18 Four PI4K isoforms have been identified in 

mammals, classified as type II (PI4KIIα and PI4KIIβ) or type III (PI4KIIIα and PI4KIIIβ) 

based on their primary sequences and catalytic properties.19 Type III PI4Ks are hijacked by 

several ss(+)RNA viruses (especially from Flaviviridae, Picornaviridae and Coronaviridae 

families) to remodel cellular membranes and generate PI4P lipid-enriched organelles 

specialized for viral replication.20 

A few PI4KIIIβ inhibitors with antiviral activity against a panel of picornaviruses have been 

reported recently (Figure 1).21-23 Generally, chemical inhibition of PI4KIIIβ does not 

influence cell viability.24 One possible explanation might be that while the small amounts of 

PI4P produced by other PI4K isoforms could be enough to support cell trafficking and 

signaling, it would not be sufficient to sustain viral RNA synthesis.20 A major aim in the 

development of PI4KIIIs inhibitors is to achieve selective inhibition of the α or β isoforms. 

Among known PI4KIIIs inhibitors, compound 1 (PIK93) is about 100-fold more potent 

against the PI4KIIIβ isoform, although it also has detectable activity towards PI3-kinases.25,26 

 

Figure 1. Representative PI4KIIIβ inhibitors. 
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Considering the growing need for novel broad-spectrum antivirals to fight emerging 

epidemics and the link between respiratory viruses and pulmonary exacerbation in cystic 

fibrosis patients, our aim was the development of a new class of multi-target agents active 

both as broad-spectrum antivirals (by targeting PI4KIIIβ) and as correctors of the F508del-

CFTR folding defect responsible for >90% of CF cases. We here report the discovery of the 

first small-molecule compounds able to simultaneously act as moderately efficacious 

correctors of the F508del-CFTR folding defect and broad-spectrum antivirals against a panel 

of enteroviruses (linked to CF pulmonary exacerbations). 

 

RESULTS AND DISCUSSION 

Drug repurposing and polypharmacology are two very attractive approaches in modern 

drug discovery. The first offers the possibility of recycling known drugs or advanced drug 

candidates developed for a different disease. The second results in simultaneous action on 

different targets/diseases with a single, rationally designed drug.27,28 In particular, 

polypharmacology aims at producing multi-target agents whose interference with multiple 

biochemical pathways offers an advantage - in terms of drug load, efficacy and safety - over 

combination therapy. This approach is well suited to complex diseases that generally require 

the simultaneous administration of many different drugs. Considering the increasing number 

of reports on the connection between enterovirus infections and pulmonary exacerbations in 

CF patients, we reasoned that an ideal drug candidate for such closely related diseases might 

be a multi-target agent able to act, at the same time, on proteins/pathways implicated in 

enterovirus replication (PI4KIIIβ) and on F508del-CFTR biogenesis. At the beginning of this 

work, the X-ray structures of the above targets were not available for a structure-based study. 

We therefore developed a PI4KIIIβ homology model to be used for the design of PI4KIIIβ 

inhibitors, selecting those whose chemical scaffolds resemble known CFTR 
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 6

correctors/potentiators. The structure of the complex of PI3Kγ with compound 1 (PDB ID: 

2CHZ)26 has been used to build the homology model of PI4KIIIβ by using Prime software 

(see methods): this structure shows an identity of 30%, a positive of 52% and a score of 322. 

The presence of 1 in the structure of PI3Kγ allowed us to identify its likely binding site in 

PI4KIIIβ and hypothesize its binding mode. A 10 ns molecular dynamics simulation on the 

modeled PI4KIIIβ protein containing compound 1 was performed using the software 

Desmond.29 In the latter (equilibrated) part of the trajectory (last 2 ns) 100 frames were 

extracted and clusterized on the basis of RMSD. Five clusters were obtained. All PI4Kβ 

inhibitors available in Pubchem30 were docked in the compound 1 binding site of each cluster 

and the frame with the best correlation between docking score and enzymatic activity was 

selected for virtual screening. A high-throughput docking (HTD) approach was then applied 

to the compound 1 binding site in our PI4KIIIβ model to identify high affinity hits within the 

Asinex database collection.31 Compound selection was based on the ranking score and visual 

inspection of the PI4KIIIβ catalytic site, but also took into account the 2D similarity to 

known CFTR correctors/potentiators. Thirteen commercially available compounds (5-17, 

Figure 2), four of which (6, 11, 16, 17) resemble known CFTR correctors,32,33 were selected 

for biological investigation. These computational results were confirmed on the recently 

released crystal structure of PI4KIIIβ co-crystallized with compound 1, and this structure 

(PDB ID: 4D0L) was used for all the following simulations.34  

These commercially available compounds were then tested both against the PI4KIIIβ 

enzyme and in a virus-cell-based replication assay. In particular these compounds were 

evaluated for antiviral activity against a panel of enteroviruses that are representative of all 

major species: enterovirus group A (EV71), group B (coxsackievirus B3, CVB3, and 

echovirus 11, ECHO11), group C (poliovirus 1, PV1), group D (enterovirus 68, EV68), 

rhinovirus group A (RV02) and rhinovirus group B (RV14). Among the selected compounds, 
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 7

only the bithiazole 17 showed activity in cell-free and cell-based assays and possesses a 

chemical scaffold (the bithiazole) of a known family of CFTR correctors (Figure 2).33,35 

Compound 17 was therefore selected as a promising starting point for further structure-based 

optimization.  

 

Figure 2. Chemical structure of compounds selected by virtual screening and activity profile 

of the hit compound 17. 

Chemistry 

Compound 17 was initially resynthesized to validate the biological activity of the 

commercial sample and to set up a synthetic protocol for its chemical diversification starting 

from cheap and commercially available building blocks (Scheme 1). 
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 8

  

Scheme 1.
. Reagents and conditions: (a) EtOH, reflux, 12 h, 95%; (b) 48% aqueous HBr, Br2, 

1,4-dioxane, 60 °C, 3 h, 90%; (c) (i) benzoyl isothiocyanate, DCM, rt, 12 h, (ii) NaOH 1N, 

THF, reflux, 3 h, 72%; (d) EtOH, reflux, 1 h, 84%; (e) acetyl chloride, Et3N, DCM, rt, 15 h, 

77%. 

 

Thiourea 18 was condensed with 3-chloro-2,4-pentadione 19 in refluxing ethanol to afford 

1-(2-amino-4-methylthiazol-5-yl)ethanone 20 in nearly quantitative yield,36 followed by 

bromination α to the carbonyl to give compound 21. The subsequent condensation of 

intermediate 21 with 1-(3-acetylphenyl)thiourea 23 gave bithiazole 24 that was finally N-

acetylated to obtain the desired compound 17. Thiourea 23 was synthesized by reaction of 3’-

aminoacetophenone 22 with benzoyl isothiocyanate, followed by a basic hydrolysis to 

remove the benzoyl group.37 

Docking studies on compound 17 (see Molecular modeling and SAR section) showed a 

pattern of interactions within the ATP-binding pocket of PI4KIIIβ very similar to that of the 

reference compound 1. The proposed binding mode of 17 suggested that two main portions of 

this molecule could be functionalized to explore the biologically relevant chemical space: i) 
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 9

the 2-amino group on the 4-methylthiazole ring (left part) and, ii) the phenyl ring (right part). 

We first explored the chemical space around the left part of compound 17, introducing 

bulkier groups and urea/thiourea functions in place of the acetamide moiety. The intermediate 

24 represents in fact an advanced intermediate that could be easily functionalized on the 2-

amino group to give a series of functionalized derivatives (25a-g and 26a-d) (Scheme 2). 

 

Scheme 2. Reagents and conditions: (a) method A (for 25a-c), R1COCl (for 25a,b) or 

(R1CO)2O (for 25c), Et3N, DCM, rt, 12-15 h, 65-80%; method B (for 25d-f) R1COCl, Et3N, 

DCM, reflux, 15 h, 65-75%; method C (for 25g), (R1CO)2O, Et3N, DMF, 50 °C, 12 h, 63%; 

(b) R2NCX, pyridine, reflux, 12-18 h, 52-69%. 

 

Compound 24 was first reacted with different acyl chlorides or anhydrides to obtain 

compounds 25a-g, while the urea/thiourea derivatives 26a-d were synthesized by reacting 24 

with the appropriate isocyanates/isothiocyanates. We also decided to replace the acetamide 

moiety of compound 17 with chain-extended ureidic groups for the SAR development. 

Unfortunately, the synthesis of compounds 30a,b following the approach described above 

would have required very expensive isocyanates. Thus, an alternative synthetic approach was 

used for the synthesis of 30a,b (Scheme 3): starting from 1-(2-amino-4-methylthiazol-5-

yl)ethanone 20, reaction with diphenyl carbonate gave good yields of the desired phenyl 
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 10

carbamate 27 that reacted readily with the appropriate amines to give the urea intermediates 

28a,b.38 Similar to the synthesis of compound 17, the bromination α to the carbonyl and the 

subsequent condensation of intermediates 29a,b with the 1-(3-acetylphenyl)thiourea 23, gave 

the desired compounds 30a,b. 

 

Scheme 3. Reagents and conditions: (a) diphenyl carbonate, NaH, DMF, rt, 30 min, 67%; (b) 

4-chlorobenzylamine (for 28a) or 1-adamantylamine (for 28b), THF, 50 °C, 5-6 h, 61-93%; 

(c) 48% aqueous HBr, Br2, 1,4-dioxane, 60 °C, 3 h, 88-92%; (d) EtOH, reflux, 1 h, 78-83%. 

 

We next explored the right part of compound 17, keeping the 2-acetamido group on the left 

part of the molecule unchanged and modifying the substitution pattern of the phenyl ring on 

the right part. Since the acetamide moiety on the left part of the molecule was conserved, 

intermediate 20 was conveniently acetylated before the bromination α to the carbonyl 

(Scheme 4). Final compounds 35a-d were quickly obtained in good yields by reacting 32 

with substituted thioureas 34a-d, previously synthesized from the corresponding amines 33a-

d. 
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 11

 

Scheme 4. Reagents and conditions: (a) acetyl chloride, pyridine, THF/DCM, 0 °C, 3 h, 

87%; (b) Br2, 1,4-dioxane, 50 °C, 22 h, 84%; (c) (i) benzoyl isothiocyanate, DCM, rt, 12 h, 

(ii) NaOH 1N, THF, reflux, 2 h, 72-78%; (d) EtOH, reflux, 1h, 71-85%. 

 

Then we decided to modify the central bithiazole scaffold of the hit compound 17, to get 

additional SAR information. As described in Scheme 5, we first introduced an imidazole ring 

by reacting intermediate 21with the 1-(3-acetylphenyl)guanidine 36, obtained by treating 3’-

aminoacetophenone 22 with cyanamide.39 Compound 38 was thus synthesized by acylation of 

the intermediate 37 with acetyl chloride.  

A scaffold hopping approach (FAF-drugs2 server)40 was also employed to identify 

alternatives to the bithiazole scaffold: among the molecules proposed by the software, the 

asymmetrical N,N’-diarylthiourea scaffold was considered the most promising on the basis of 

its synthetic accessibility and the antiviral activity of some closely related analogues reported 

in the literature.41 Intermediate 41 was easily obtained by addition of 3’-aminoacetophenone 

22 to 3-nitrophenyl isothiocyanate 39, followed by reduction of the nitro group with iron 

powder in acidic ethanol (Scheme 6). The subsequent acylation of the amino group led to 

final compounds 42a,b.  
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 12

 

 

Scheme 5. Reagents and conditions: (a) cyanamide, HNO3, EtOH/H2O, reflux, 24 h, 73%; (b) 

Et3N, EtOH, reflux, 12 h, 82%; (c) acetyl chloride, Et3N, DCM, rt, 8 h, 47%. 

 

 

Scheme 6. Reagents and conditions: (a) DCM, rt, 18 h, 88%; (b) Fe, HCl, EtOH, reflux, 2 h, 

75%; (c) acetyl chloride (for 42a) or trimethylacetyl chloride (for 42b), pyridine, THF, rt, 2 

h, 67-69%. 
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 13

 

Moreover we noted high chemical similarity between compound 17 and compound 46, a 

known inhibitor of DC-SIGN (dendritic cell (DC)-specific intercellular adhesion molecule-3 

grabbing nonintegrin).42 The role of DC-SIGN in the binding and transmission of different 

pathogens, including enteroviruses, has been well investigated.43 So we decided to evaluate 

the antiviral effect of compound 46 in a virus-cell-based assay and its activity on PI4KIIIβ. 

As described in Scheme 7, compound 46 was synthesized following the procedure previously 

reported for compound 17. 

 

Scheme 7.
 Reagents and conditions: (a) (i) benzoyl isothiocyanate, DCM, rt, 12 h, (ii) NaOH 

1N, THF, reflux, 3 h, 80%; (b) EtOH, reflux, 30 min, 77%; (c) propionyl chloride, Et3N, 

DCM, rt, 8 h, 68%. 

Finally, we decided to prepare two compounds (related to the hit 17) known in the CFTR 

field to evaluate the potential role of the CFTR channel in viral replication: i) compound 47a, 

which is active in correcting the F508del-CFTR defect and, ii) compound 47b, which is 

inactive in correcting the F508del-CFTR defect (Figure 3). Compound 47a,b were 

synthesized following the procedure reported in literature.44  
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Figure 3. Chemical structures of compounds 47a,b. 

 

Biology 

All the synthesized compounds were initially evaluated for their inhibitory potency against 

PI4KIIIβ kinase in vitro and for their cell-based antiviral activity: EV71 was used as the 

primary target for SAR exploration since compound 17 revealed the best and most 

reproducible antiviral activity against this virus. In particular, the antiviral activity against 

EV71 was evaluated in EV71-induced CPE-reduction assay in rhabdosarcoma (RD) cells. 

Both the EC50 values and the CC50 values were measured. Uninfected, treated cells were also 

inspected under the microscope to evaluate whether the compounds altered normal cell 

morphology. The EC50 and CC50 values allowed us to calculate the selectivity index (SI), 

defined as CC50/EC50. Compound 3 was used as a positive control. Results are summarized in 

Table 1.  

A close correlation between the antiviral activity measured in the cell-based assay and the 

inhibitory potency of the PI4KIIIβ kinase was observed, with only a few exceptions. The best 

results were obtained via modifying the left part of the molecule. In particular compounds 

25a,b, bearing respectively a propanamide and a pivalamide moiety instead of the acetamide 

function of compound 17, showed a very promising antiviral activity. 
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Table 1. Activity of synthesized derivatives in PI4KIIIβ inhibition assay and in virus-cell-

based EV71 assay.  

Compd PI4K IIIβ 

IC50 

(µM)a 

EV71 

EC50 

(µM) 

EV71 

CC50 

(µM)b 

EV71 

CC50 (µM)c 

SId SId 

17 0.48 0.92±2.75 16.5±9.04 9.73±0.87 17.9 10.6 

25a 0.27 0.38±0.10 10.1±4.82 6.37±2.46 26.6 23.6 

25b 0.32 0.27±0.05 7.94±1.24 8.83±0.89 29.4 32.7 

25c 21.89 2.0±0.95 25.8±5.06 30.1±9.93 12.9 15.0 

25d 18.85 0.51±0.14 5.75±2.12 11.8±4.56 11.3 23.1 

25e >50 >44.6 NDe ND ND ND 

25f >50 >55.7 ND ND ND ND 

25g 4.67 1.42±0.04 42.3±4.94 101.0±15.8 29.7 71.1 

26a 7.69 NAf ND ND ND ND 

26b >50 NA ND ND ND ND 

26c 1.82 2±0.04 8.87±3.85 ND 4.4 ND 

26d >50 NA ND ND ND ND 

30a 3.95 4.77±0.28 20.9±6.97 ND 4.4 ND 

30b 12.40 NA ND ND ND ND 

35a 2.48 1.93±0.81 18.6±6.01 ND 9.64 ND 

35b 2.63 NA ND ND ND ND 

35c 1.55 1.2±0.16 9.17±0.85 ND 5.9 ND 

35d 3.71 0.68±0.04 5.59±0.32 ND 8.2 ND 

38 >50 >90.2 85.7 64.2 ND ND 

42a NA NA ND ND ND ND 

42b NA NA ND ND ND ND 

46 50.00 8.58±0.77 51.6±27.1 142.0±62.8 6 ND 

47a NA NA ND ND ND ND 

47b NA NA ND ND ND ND 

3
g
 0.06 0.73 >125 - - - 
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aValues are the mean of at least three independent experiments. bCC50 values were assessed by MTS method. 
cCC50 values were determined by microscopically detectable alteration of cell morphology. dSelectivity index 
(SI = CC50/EC50). 

eND = not determined. fNA = not active. gReference 13 

 

Compounds 25a,b inhibited PI4KIIIβ and exhibited a significant antiviral effect at sub-

micromolar concentrations, demonstrating a better activity than compound 17. Compound 

25g, characterized by the Boc amino group, proved to be the most interesting compound of 

the entire series showing the highest selectivity index in the EV71 cell-based assay. Also 

changing the right portion of hit compound 17 gave interesting results (compounds 35a,c,d). 

The central bithiazole scaffold proved to be essential for antiviral activity, as changing it gave 

inactive compounds (compounds 38, 42a,b). Finally, the reported compounds 46, 47a,b were 

devoid of antiviral activity and PI4KIIIβ inhibition activity.  

Based on these activity data, and considering that the SI of a promising antiviral candidate 

should be at least greater than 10, compounds 17, 25a-d, 25g were selected for further 

studies. The broad-spectrum activity of the six selected compounds was evaluated against a 

panel of enteroviruses representative of all major groups: enterovirus group B 

(coxsackievirus B3 and echovirus11, ECHO11), group C (poliovirus 1), group D (enterovirus 

68), rhinovirus group A (RV02) and rhinovirus group B (RV14) (see the Experimental 

Section for details). Results are reported in Table 2. The selected compounds showed 

micromolar and sub-micromolar activity against different enteroviruses within the tested 

panel. In addition, the antiviral activity of the less toxic compound 25g was confirmed 

against a representative panel of EV71 clinical isolates. As shown in Table 3, we could 

confirm the activity of compounds 25g against the clinically relevant EV71 specimens. Only 

the (sub)genogroup B5 appeared to be less sensitive. Furthermore we evaluated the lipid 

kinase isoform selectivity of our best PI4KIIIβ inhibitors by testing them in an in vitro 

inhibition assay on the related enzyme PI4KIIIα and PI3K-α/p85α (Table 4). 
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Table 2. Evaluation of the broad-spectrum antiviral activity of the most potent derivatives 

against a representative panel of enteroviruses. 

Compd CVB3 ECHO11 PV1 EV68 RV14 RV02 

EC50
 

(µM) 

CC50
 

(µM)  

EC50 

(µM) 

CC50 

(µM) 

EC50 

(µM) 

CC50 

(µM) 

EC50 

(µM) 

CC50 

(µM) 

EC50 

(µM) 

CC50 

(µM) 

EC50 

(µM) 

CC50 

(µM) 

17 2.17  101±

33.6 

1.57±

0.23 

>268 3.09 >269 NAa
 NDb

 >268 ND NAb ND 

25a 2.16 89.1±

16.2 

0.97 12±4.

07 

<1.52 5.49±

1.42 

NA ND NA ND >259 ND 

25b ND 20.9±

3.83 

0.72±

0.05 

5.07±

1.24 

<1.41 5.07±

1.3 

1.38 3.09 4.85±

1.09 

ND 2.01±

0.05 

ND 

25c 3.87±

0.23 

58.8±

7.14 

3.51 29.3±

1.78 

2.86±

0.36 

30.3±

3.66 

ND ND 10.6±

0.7 

ND 10.6±

0.2 

ND 

25d 2.19±

0.23 

45.1±

4.44 

1.77±

0.13 

145±2

7.6 

2.23±

0.4 

145±2

7.6 

NA ND >230 ND 2.05±

0.36 

ND 

25g 2.74±

0.17 

80.1±

6.97 

2.93 124±7

.94 

13.3±

1.9 

124±7

.94 

ND ND >232 ND ND ND 

aNA = not active. bND = not determined 

 

Results showed a higher specificity of the tested bithiazole derivatives for the PI4KIIIβ 

isoform with poor inhibition of both PI4KIIIα and PI3K-α/p85α at 100 µM concentration of 

each compound. The specificity of compound 25g was also tested on a small panel of 

unrelated kinases: it shows only a low inhibitory effect on Src and CDK6. Despite the latter 

enzymes being involved in cell cycle regulation and representing common targets of 

antitumor compounds, 25g did not show any toxicity or morphology alteration at antiviral 

concentration in the tested cell lines. In addition, recent studies indicated that Src inhibitors 

have no effect on EV71 replication45 while CDK6 seems to be down-regulated in response to 

EV71  infection.46 Finally, compounds  reported in  Table 4 were  evaluated for  their  CFTR  
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Table 3. Evaluation of the antiviral activity of compound 25g against EV71 clinical isolates.  

Genogroup Strain Genbank 
EC50 (µM)a 

Compd 25g 

B2 11316 AB575927 <1.39 

B5 TW/96016/08 

TW/70902/08 

GQ231942 

GQ231936 

21.00 

3.58 

C2 H08300 461#812 - 0.97 

C4 TW/1956/05 

TW/2429/04 

GQ231926 

GQ231927 

<1.39 

1.17 

aAll values are based on at least three independent dose-response curves. 

 

Table 4. Inhibitory effect of selected compounds against members of PIK family and 

profiling of compound 25g against a small panel of unrelated kinases. 

Compd 

PI4KIIIβ PI4KIIIα 
PI3K-

α/p85α 
Compd kinase 

% Residual activity 

at 100 µMa IC50(µM)a % Residual activity 

at 100 µMa 

17 0.48 52 37 25g Src FL 32 

25a 0.27 72 40 GSK3β 79 

25b 0.32 71 93 Hck FL 100 

25c 21.89 73 85 FAK 82 

25d 18.85 81 54 DYRK1A 88 

25g 4.67 69 64 ABL FL 53 

35a 2.48 58 81 FLT3 59 

35c 1.55 71 51 CDK2/cA2 62 

35d 3.71 73 100 CDK9/cT1 57 

 CDK9/cK 49 

CDK6/cD1 25 

Pim1 70 
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aValues are the mean of two independent replicates 

 

corrector/potentiator activity, to identify molecules that may be endowed with dual 

antiviral/CFTR modulator activity. As shown in Figure 4A, some of the compounds (25a, 

25d, 25g) acted as CFTR correctors, increasing steady-state levels of F508del-CFTR at the 

plasma membrane after chronic (24 hour) incubation. Compound 48 (Lumacaftor), the 

leading corrector drug,47 was used as a benchmark. This increased CFTR plasma membrane 

density was measured with a recently developed assay exploiting a CFTR fusion to a pH-

sensitive protein.48 The improvement in biogenesis also lead to increased anion permeability, 

estimated from fluorescence quenching of a CFTR-fused YFP probe following extracellular I- 

addition (Figure 4B). None of the compounds acted as "potentiators" rapidly increasing anion 

permeability, when added only immediately prior to I- addition (Figure 4C). The approved 

potentiator drug 49 (Ivacaftor) was used as a comparison.49 Overall, the drug-induced 

changes in the iodide entry rate and in membrane density followed similar patterns, 

suggesting that the chemically corrected molecules of F508del-CFTR that reached the plasma 

membrane displayed an ion-channel function similar to those corrected by treatment with 48. 

However, compound 25d appears to increase CFTR membrane density more than expected 

from its effect on anion permeability (Figure 4D). Further studies will be required to 

understand the underlying mechanism. Overall, the collected biological data indicates that a 

fine chemical tuning of the bithiazole substituents is needed to generate compounds able to 

specifically inhibit the PI4KIIIβ kinase and block the replication of different enteroviruses 

while also correcting the F508del-CFTR folding defect. It is interesting to note that the most 

promising CFTR correctors (25a, 25d, 25g) are also the most active broad-spectrum 

antivirals and represent the first example of multi-target agents for tightly associated 

pulmonary diseases like enterovirus infection and cystic fibrosis. 

Page 19 of 62

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 20

 

Figure 4. Effects of selected compounds on CFTR biogenesis and function. All treatments 

were carried out alongside low temperature incubation, known to improve F508del-CFTR 

membrane-localization and used to increase the fluorescence signal. A) F508del-CFTR-
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pHTomato present at the plasma membrane was quantified following 24 h incubation in 10 

µM of each drug. Incubation with 48 (Lumacaftor) was assessed in parallel, as a positive 

control. B) Anion permeability quantified using a YFP-F508del-CFTR probe following 24 h 

treatment as in A). C) Compounds (10 µM) do not cause an immediate change in anion 

permeability. Potentiator compound 49 (Ivacaftor) was used as a positive control. D) For 

most compounds, there is a similar ratio describing increase in membrane density over anion 

permeability as caused by 48 (Lumacaftor). 

 

Molecular modelling and SAR 

The hit compound 17 was docked with the Glide software50 (SP) in the ATP binding site of 

the PI4KIIIβ crystal structure (PDB ID: 4D0L)34 centering the grid on compound 1. The 

predicted binding mode and interaction profile of compound 17 is very similar to that of 

compound 1 (Figure 5). The NH-acetamide moiety of 17 is hydrogen bonded to VAL598, 

which also interact with the thiazole nitrogen. The thiazole ring is involved in a Pi-Pi 

stacking with TYR583, while the phenyl ring is involved in a Pi-cation interaction with 

LYS549. The O carbonyl moiety is hydrogen bonded to LYS377. Moreover, the binding 

mode is completed by a series of hydrophobic interactions involving LEU383, ALA602, 

VAL599, VAL602, LEU663, ILE595, TYR583, ILE671, ILE673, PRO381 and LEU374. 

The first series of derivatives of the hit compound 17 encompasses different substitution on 

the left part of the molecule (right part as per Figure 5-7 representation) by replacing the 

methyl group of the acetamide moiety with different groups. Changing the methyl of the 

acetamide with an ethyl or tert-butyl group (25a,b) caused a 2-fold increase of potency, but 

the substitution with more hydrophobic and therefore more sterically bulky groups first 

reduced the potency (25d) and then led to a complete loss of activity (25e,f). The limit seems 
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to be a tert-butoxycarbonyl group (25g) which still maintains low micromolar activity 

(Figure 6). 

 

Figure 5. a) Predicted binding mode of the hit 17 (magenta sticks) superimposed to 

compound 1 (green sticks) into the binding site of PI4KIIIβ. b) 2D ligand interaction diagram 

of 17. 

 

The substitution of the acetamide methyl with a CF3 (25c) weakened the inhibition (45-fold 

decrease) not due to steric reasons, but probably because of the electron withdrawing 

properties of the CF3 group. Changing the acetamide moiety with a ureidic moiety caused a 

slight decrease in potency (26a,c and 30a,b). The ureidic portion seems to interact with a 

double hydrogen bond to VAL598 but at the same time, the hydrophobic NH substituent 

moves away from the protein resulting in a solvation penalty (Figure 6). Finally, modifying a 

ureidic group with a thioureidic moiety caused a complete loss of activity (26b,d). 
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Figure 6. a) Superimposed binding modes of compounds 17 (purple sticks), 25a (orange 

sticks), 25b (green sticks) and 25g (pink sticks) into the binding site of PI4KIIIβ. b) 

Superimposed binding modes of compounds 26a (orange sticks), 26c (green sticks) and 30a 

(pink sticks) into the binding site of PI4KIIIβ. c) 2D ligand interaction diagram of 25b. d) 2D 

ligand interaction diagram of 30a. 

 

The second series of derivatives of the hit compound 17 comprises different substitutions on 

the right part of the molecule (left part as per Figure 5-7 representation) by changing the 

substitution pattern of the phenyl ring. A change in the position of the acetyl group reduces 

the potency by about 10-fold (35d), and the same happens by introducing hydroxy and 
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methoxy groups in the meta position (35b,c). The precise positioning of the hydrogen-bond 

acceptor on the phenyl ring seems therefore important in improving the affinity for the 

enzyme. Surprisingly, the deletion of the ketonic group reduces but does not abolish activity 

(35a). The lack of the substituent on the phenyl ring deletes a hydrogen bond, but allows 

optimization of the other interactions, in particular the Pi-cation with lysine 549. 

The last series of derivatives of the hit compound 17 encompasses modifications of the 

bithiazole scaffold and closely related analogues reported as DC-SIGN inhibitors and CFTR 

correctors. Replacement of the thiazole group of compound 17 with an imidazole (38) or 

conversion of the bithiazole scaffold into a N,N’-diarylthiourea (42a,b) changes the binding 

mode and abolishes the activity. Finally, also the DC-SIGN inhibitor 46 and CFTR correctors 

47a,b presented a suboptimal interaction profile with PI4KIIIβ and resulted in a complete 

loss of activity. As reported by Warrem et al.51, docking programs and scoring functions 

present a few limitations in correlating subtle structural differences of active ligands with 

their enzymatic activity. This error is quite limited within homologous series of compounds 

but it can be very important for structurally unrelated compounds.52 Our docking studies were 

in fact able to distinguish between active and inactive compounds but it is no coincidence that 

the reference compound 3, whose scaffold is very different from those of our series, showed a 

docking score that is not in line with its enzymatic potency (Table 5). The most active 

compounds 17, 25a and 25b also showed the best specificity for PI4KIIIβ over PI4KIIIα, 

which seems to depend on the steric hindrance of the acetamide substitution. In fact, 

considering compounds 17, 25a, 25b, 25g and 25d that differ only for the bulkiness of the 

amide substituents in position C2 of the thiazole (methyl, ethyl, tert-butyl, tert-butoxy and 

phenyl, respectively), the affinity for PI4KIIIα decreases going from 17 to 25d (see Table 4).  
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Table 5. Correlation between IC50 and docking score for the synthesized compounds.  

Compd PI4K IIIβ 

IC50 

(µM)a 

Docking 
scoreb 

Compd PI4K IIIβ 

IC50 (µM)a 

Docking 
scoreb 

35d 3.71 -8,297 25e >50 -7,431 

30b 12.40 -8,222 26d >50 -7,4 

26a 7.69 -8,172 25f >50 -7,356 

26c 1.82 -8,108 38 >50 -7,355 

17 0.48 -8,035 42a >50 -7,251 

25a 0.27 -8,012 26b >50 -7,144 

25d 18.85 -7,983 42b >50 -7,052 

30a 3.95 -7,97 25c 21.90 -6,678 

35b 2.63 -7,726 3
c
 0.06 -6,553 

46 50.00 -7,644 47b >50 -6,424 

25g 4.67 -7,63 47a >50 -6,148 

35c 1.55 -7,605 25e >50 -7,431 

35a 2.48 -7,6    

25b 0.32 -7,484    

aValues are the mean of at least three independent experiments. bDocking score was calculated by the software 

Gold and expressed as Kcal/mol. cReference 13 

The higher the bulkiness in C2 of the thiazole, the lower the affinity for PI4KIIIα over 

PI4KIIIβ with the phenyl substituent (25d) representing the highest tolerated hindrance after 

which the inhibition of PI4KIIIβ is also compromised. The reason for the specificity of these 

compounds towards PI4KIIIβ seems to depend on the different opening (compared to the α 

isoform) of a specific loop that in the β isoform goes from ILE595 to ILE604 (Figure 7). In 

fact in this portion of protein, the sequence of PI4KIIIβ resembles more the sequence of PI3K 

(α, γ end δ) than the sequence of PI4KIIIα. In particular, the presence of a cysteine residue in 

position 30 of PI4KIIIα (corresponding to proline 597 in PI4KIIIβ) could change the fold of 

this “selectivity loop”.  
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Figure 7. Observed binding mode of 25a (yellow sticks) superimposed to compound 1 

(magenta sticks) into the binding site of PI4KIIIβ (green ribbons). The orange ribbons 

represent the modelled structure of PI4KIIIα. 

 

CONCLUSIONS 

An increasing number of reports suggest a causal link between enterovirus infections and 

pulmonary exacerbations in CF patients. We report the discovery of a new class of multi-

target agents active as broad-spectrum antivirals and correctors of the F508del-CFTR folding 

defect. To identify these drug candidates, we first carried out a virtual screening on the 

PI4KIIIβ (a host protein involved in enterovirus replication) catalytic site to select 

commercially available compounds: our choice was based on the best-predicted affinity for 

the target kinase and 2D similarity (in a few cases) to known CFTR correctors/potentiators. 

Among the selected compounds, hit 17 showed activity in cell-free PI4KIIIβ inhibition assay 

and cell-based enterovirus replication assays and was therefore considered a promising 

starting point for further structure-based optimization. A small collection of analogues of 

compound 17 was then designed, synthesized and biologically evaluated for their i) activity 

against panel of enteroviruses representative of all major groups; ii) inhibition of lipid kinases 

PI4KIIIβ, PI4KIIIα and PI3K-α/p85α; iii) corrector/potentiator activity on F508del-CFTR. 
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Three compounds (25a, 25d, 25g) were finally identified as novel multi-target agents able to 

act as broad-spectrum-antivirals (enterovirus family) and as correctors of F508del-CFTR 

folding defect. These compounds represent a valuable starting point to develop a novel 

polypharmacological approach for the treatment of closely-related pulmonary diseases such 

as cystic fibrosis and enterovirus infections with a single pill. 

 

EXPERIMENTAL SECTION 

Molecular modeling 

Homology modeling 

The structure of PI4KIIIβ was built with the Prime53 38013 software on the basis of the 

crystal structure 2CHZ using ClustalW for sequence alignment and knowledge-based as 

building method. The structure of PI4KIIIα was built with the online server 3D-JIGSAW54 on 

the basis of the crystal structure 4D0L. 

Molecular dynamics 

The structure of modelled PI4KIIIβ was aligned to the 2CHZ structure. Compound 1 was 

extracted from 2CHZ and was manually introduced in the structure of PI4KIIIβ. A molecular 

dynamics simulation of the resulting complex was performed using Desmond v40013. The 

complex was neutralized using sodium counter ions. The complex and the counter ions were 

immersed in a orthorhombic periodic SPC water bath that extended about 10 Å in each 

direction. After an initial default relaxation protocol, a MD production run was performed for 

10 ns with a time step of 2 fs. 

Virtual screening 

From the last 2 ns of the dynamics simulation 100 frames were extracted and clustered on 

the basis of RMSD. Five clusters were generated. The protein representative of each cluster 

was processed with the Schrödinger Suite 2014-355 Protein Preparation Wizard tool. On each 
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structure a grid was generated with the software Glide 65013 centering the grid on compound 

1, then all PI4KIIIβ ligands available from the Pubchem database were docked with the SP 

protocol. Structures were selected for virtual screening on the basis of their enrichment 

factor. The Mid Asinex database was extracted from the ZINC database56 and docked in the 

binding site of compound 1 using compound 1 as the center of the grid. The software Glide 

65013 with the SP protocol was used for High throughput docking. The best 1000 

compounds in terms of the docking score were selected and submitted to one more docking 

cycle of docking with the XP protocol. On the basis of the docking score and a visual 

inspection 25 compounds were selected and 13 compounds were purchased. 

Ligand preparation 

Ligands were prepared with the LigPrep57 tool available in the Schrödinger Suite 2015-4. 

Ionization states were generated at pH 7.0 ± 2.0 with Epik. 

Ligand docking 

The X-ray coordinates of PI4KIIIβ in complex with compound 1 were extracted from the 

Protein Data Bank (PDB code 4D0L). The structure was then processed with the Schrödinger 

Suite 2015-4 Protein Preparation Wizard tool.58 The A Chain was selected, water molecules 

were removed, and an exhaustive sampling of the orientations of groups, whose hydrogen 

bonding network needs to be optimized, was performed. Finally, the protein structure was 

refined to relieve steric clashes with a restrained minimization with the OPLS3 force field59 

until a final RMSD of 0.30 Å with respect to the input protein coordinates. 

Docking studies were performed using Glide60 69017 with the SP protocol. The protein 

structure, prepared as described above, was used to build the energy grid. The enclosing box 

was centered on the cocrystallized ligand. All parameters were set to their default value. The 

docking protocol was validated by redocking the cocrystallized ligand (compound 1). 
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Chemistry 

General. All commercially available chemicals were purchased from both Sigma- Aldrich 

and Alfa Aesar and, unless otherwise noted, used without any previous purification. Solvents 

used for work-up and purification procedures were of technical grade. Dry solvents used in 

the reactions were obtained by distillation of technical grade materials over appropriate 

dehydrating agents. Reactions were monitored by thin layer chromatography on silica gel-

coated aluminium foils (silica gel on Al foils, SUPELCO Analytical, Sigma-Aldrich) at 254 

and 365 nm. Where indicated, products were purified by silica gel flash chromatography on 

columns packed with Merck Geduran Si 60 (40-63 µm). 1H and 13C NMR spectra were 

recorded on BRUKER AVANCE 300 MHz and BRUKER AVANCE 400 MHz 

spectrometers. Chemical shifts (δ scale) are reported in parts per million relative to TMS. 1H-

NMR spectra are reported in this order: multiplicity and number of protons; signals were 

characterized as: s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet), bs (broad 

signal). ESI-mass spectra were recorded on an API 150EX apparatus and are reported in the 

form of (m/z). Elemental analyses were performed on a Perkin-Elmer PE 2004 elemental 

analyzer. Melting points were taken using a Gallenkamp melting point apparatus and were 

uncorrected. All final compounds showed chemical purity ≥95% as determined by elemental 

analysis data for C, H, and N (within 0.4% of the theoretical values). 

 

Synthesis of N-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)acetamide (17). 

Et3N (84 µL, 0.60 mmol) was added to a stirred suspension of intermediate 24 (100 mg, 0.30 

mmol) in dry DCM (4 mL) at 0 °C. After 15 minutes acetyl chloride (32 µL, 0.45 mmol), 

diluted in dry DCM (0.5 mL), was added dropwise. The resulting solution was warmed to 

room temperature and stirred for 15 h. Next, H2O and DCM were added and the aqueous 

phase was extracted twice with DCM. The combined organic phases were washed with brine, 
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dried over Na2SO4 and evaporated. The crude was purified by flash chromatography using 

DCM/MeOH (98/2) as eluent to afford compound 17 as a yellow solid. Yield 77%; mp 244-

246 °C. MS (ESI) [M + H]+: 373.3 m/z. 1H NMR (DMSO-d6 300 MHz): δ 2.14 (s, 3H), 2.51 

(s, 3H), 2.63 (s, 3H), 6.95 (s, 1H), 7.48 (t, 1H, J = 7.9 Hz), 7.56 (d, 1H, J = 7.9 Hz), 7.77 (d, 

1H, J = 7.9 Hz), 8.51 (s, 1H), 10.56 (s, 1H), 12.06 (s, 1H). 13C NMR (DMSO-d6 100.6 MHz): 

δ 17.56, 22.92, 27.42, 103.25, 116.75, 120.52, 121.44, 121.65, 129.79, 138.11, 141.81, 

143.21, 143.29, 155.58, 162.92, 168.73, 198.28. Anal. (C17H16N4O2S2) C, H, N. 

Synthesis of 1-(2-amino-4-methylthiazol-5-yl)ethanone (20). A solution of thiourea 18 (283 

mg, 3.72 mmol) and 3-chloro-2,4-pentanedione 19 (419 µL, 3.72 mmol) in ethanol (20 mL) 

was heated at reflux for 12 h, and then the reaction mixture was cooled down to 0 °C. The 

precipitate was separated by filtration over a Buchner funnel and washed with cold ethanol 

and ether to afford the product 20 as a white solid. Yield 95%. MS (ESI) [M + H]+: 157.2 

m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.44 (s, 3H), 2.52 (s, 3H), 9.49 (bs, 2H).  

Synthesis of 1-(2-amino-4-methylthiazol-5-yl)-2-bromoethanone (21). A suspension of 

intermediate 20 (500 mg, 3.20 mmol) in 48% HBr solution in water (10 mL) was warmed to 

60 °C. A solution of Br2 (148 µL, 2.88 mmol) in 1,4-dioxane (10 mL) was added dropwise 

and the reaction mixture was heated at 60 °C for 3 h. After cooling down to room 

temperature, saturated aqueous NaHCO3 solution and ethyl acetate were added and the 

aqueous phase was extracted three times with ethyl acetate. The combined organic phases 

were washed with brine, dried over Na2SO4 and concentrated under vacuum to obtain 

compound 21, used in the next step without any further purification. Yield 90%. MS (ESI) 

[M + H]+: 235.0 m/z, [M + 2 + H]+: 237.1 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.46 (s, 

3H), 4.48 (s, 2H), 9.18 (bs, 2H).  

Synthesis of 1-(3-acetylphenyl)thiourea (23). Benzoyl isothiocyanate (547 µL, 4.07 mmol) 

was added dropwise to a solution of 3’-aminoacetophenone 22 (500 mg, 3.70 mmol) in dry 
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DCM (12 mL) and the mixture was stirred at room temperature for 12 h. The solvent of 

reaction was evaporated, the residue was dissolved in THF/NaOH 1N (1/1, 15 mL) and the 

mixture was refluxed for 3 h. After cooling to room temperature, H2O and ethyl acetate were 

added and the aqueous phase was extracted twice with ethyl acetate. The combined organic 

phases were dried over Na2SO4 and evaporated. The resulting solid was crystallized from 

ether. Yield 72%. MS (ESI) [M + H]+: 195.1 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.57 (s, 

3H), 7.46 (t, 1H, J = 7.9 Hz), 7.55 (bs, 2H), 7.70-7.73 (m, 2H), 8.03 (s, 1H), 9.89 (s, 1H).  

Synthesis of 1-(3-((2'-amino-4'-methyl-[4,5'-bithiazol]-2-yl)amino)phenyl)ethanone (24). 

Intermediates 21 (200 mg, 0.85 mmol) and 23 (165 mg, 0.85 mmol) were suspended in 

ethanol (5 mL) and the mixture was heated at reflux for 1 h. Then saturated aqueous NaHCO3 

solution and ethyl acetate were added to the mixture and the aqueous phase was extracted 

three times with ethyl acetate. The combined organic phases were washed with brine, dried 

over Na2SO4 and concentrated under vacuum. Ether was added to the crude and the solid 

obtained was filtered over a Buchner funnel, washed with ether and used in the following 

step without any further purification. Yield 84%. MS (ESI) [M + H]+: 331.3 m/z. 1H NMR 

(DMSO-d6 300 MHz): δ 2.35 (s, 3H), 2.60 (s, 3H), 6.67 (s, 1H), 7.09 (bs, 2H), 7.46 (t, 1H, J 

= 7.9 Hz), 7.55 (d, 1H, J = 7.9 Hz), 7.75 (d, 1H, J = 7.9 Hz), 8.40 (s, 1H), 10.55 (s, 1H). 

General Procedure for the Synthesis of Compounds 25a-g.  

Method A (for 25a-c). Et3N (84 µL, 0.60 mmol) was added to a stirred suspension of 

intermediate 24 (100 mg, 0.30 mmol) in dry DCM (4 mL) at 0 °C. After 15 minutes the 

proper acyl chlorides or anhydride (0.45 mmol), diluted in dry DCM (0.5 mL), were added 

dropwise. The resulting solution was warmed to room temperature and stirred for 12-15 h. 

Next, H2O and DCM were added and the aqueous phase was extracted twice with DCM. The 

combined organic phases were washed with brine, dried over Na2SO4 and evaporated. The 

crude was purified by flash chromatography using DCM/MeOH (98/2) as eluent. 
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N-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)propionamide (25a). Yield 

75%; mp 244-246 °C. MS (ESI) [M + H]+: 387.1 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.11 

(t, 3H, J = 7.5 Hz), 2.45 (q, 2H, J = 7.5 Hz), 2.52 (s, 3H), 2.64 (s, 3H), 6.95 (s, 1H), 7.50 (t, 

1H, J = 7.9 Hz), 7.57 (d, 1H, J = 7.9 Hz), 7.82 (d, 1H, J = 7.9 Hz), 8.47 (s, 1H), 10.56 (s, 

1H), 12.03 (s, 1H). 13C NMR (DMSO-d6 100.6 MHz): δ 9.63, 17.56, 27.43, 28.69, 103.25, 

116.72, 120.47, 121.49, 121.63, 129.82, 138.11, 141.82, 143.24, 143.33, 155.62, 162.94, 

172.36, 198.28. Anal. (C18H18N4O2S2) C, H, N. 

N-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)pivalamide (25b). Yield 80%; 

mp 232-234 °C. MS (ESI) [M + H]+: 415.4 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.25 (s, 

9H), 2.53 (s, 3H), 2.63 (s, 3H), 6.95 (s, 1H), 7.50 (t, 1H, J = 7.9 Hz), 7.57 (d, 1H, J = 7.9 Hz), 

7.85 (d, 1H, J = 7.9 Hz), 8.43 (s, 1H), 10.57 (s, 1H), 11.79 (s, 1H). 13C NMR (DMSO-d6 

100.6 MHz): δ 16.45, 26.90, 27.05 (3x), 39.24, 102.80, 117.29, 120.96, 122.25, 122.46, 

129.67, 138.02, 140.79, 142.33, 143.58, 156.98, 163.28, 176.67, 198.36. Anal. 

(C20H22N4O2S2) C, H, N. 

N-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)-2,2,2-trifluoroacetamide 

(25c). Yield 65%; mp 254-256 °C. MS (ESI) [M + H]+: 427.1 m/z. 1H NMR (DMSO-d6 400 

MHz): δ 2.54 (s, 3H), 2.63 (s, 3H), 7.14 (s, 1H), 7.50 (t, 1H, J = 7.9 Hz), 7.58 (d, 1H, J = 7.9 

Hz), 7.75 (d, 1H, J = 7.9 Hz), 8.47 (s, 1H), 10.64 (s, 1H), 14.05 (s, 1H). 13C NMR (DMSO-d6 

100.6 MHz): δ 15.84, 27.41, 105.27, 115.80, 116.68, 120.50, 121.44, 121.79, 129.86, 138.12, 

141.59, 143.31, 143.48, 155.43, 163.45, 168.73, 198.21. Anal. (C17H13F3N4O2S2) C, H, N. 

Method B (for 25d-f). Et3N (84 µL, 0.60 mmol) was added to a stirred suspension of 

intermediate 24 (100 mg, 0.30 mmol) in dry DCM (4 mL) at 0 °C. After 15 minutes the 

proper acyl chlorides (0.45 mmol), diluted in dry DCM (0.5 mL), were added dropwise. The 

resulting solution was warmed to room temperature and heated at reflux for 15 h. Next, H2O 

and DCM were added and the aqueous phase was extracted twice with DCM. The combined 
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organic phases were washed with brine, dried over Na2SO4 and evaporated. The crude was 

purified by flash chromatography using DCM/MeOH (99/1) as eluent. 

N-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)benzamide (25d). Yield 75%; 

mp 199-200 °C. MS (ESI) [M + H]+: 435.3 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.58 (s, 

3H), 2.66 (s, 3H), 7.02 (s, 1H), 7.49-7.66 (m, 5H), 7.83 (d, 1H, J = 7.9 Hz), 8.12 (d, 2H, J = 

7.8 Hz), 8.50 (s, 1H), 10.59 (s, 1H), 12.62 (s, 1H). 13C NMR (DMSO-d6 100.6 MHz): δ 

17.42, 27.44, 103.60, 116.76, 121.52, 121.66, 128.61, 129.02, 129.06 (2x), 129.83 (2x), 

132.59, 133.31, 138.12, 141.82, 143.23, 143.29, 155.72, 163.02, 167.79, 198.30. Anal. 

(C22H18N4O2S2) C, H, N. 

N-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)-4-iodobenzamide (25e). 

Yield 65%; mp 220-223 °C. MS (ESI) [M + H]+: 561.3 m/z. 1H NMR (DMSO-d6 400 MHz): 

δ 2.58 (s, 3H), 2.66 (s, 3H), 7.01 (s, 1H), 7.50 (t, 1H, J = 7.9 Hz), 7.58 (d, 1H, J = 7.9 Hz), 

7.81 (d, 1H, J = 7.9 Hz), 7.88 (d, 2H, J = 8.5 Hz), 7.94 (d, 2H, J = 8.5 Hz), 8.50 (s, 1H), 

10.58 (s, 1H), 12.70 (s, 1H). 13C NMR (DMSO-d6 100.6 MHz): δ 17.33, 27.45, 101.14, 

103.65, 116.77, 121.03, 121.51, 121.67, 129.82, 130.44 (2x), 132.34, 137.95 (2x), 138.12, 

141.81, 143.16, 143.29, 154.99, 163.02, 165.15, 198.30. Anal. (C22H17IN4O2S2) C, H, N. 

N-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)-4-methylbenzamide (25f). 

Yield 72%; mp 243-244 °C. MS (ESI) [M + H]+: 449.2 m/z. 1H NMR (DMSO-d6 400 MHz): 

δ 2.40 (s, 3H), 2.58 (s, 3H), 2.66 (s, 3H), 7.01 (s, 1H), 7.36 (d, 2H, J = 8.0 Hz), 7.50 (t, 1H, J 

= 7.9 Hz), 7.57 (d, 1H, J = 7.9 Hz), 7.82 (d, 1H, J = 7.9 Hz), 8.02 (d, 2H, J = 8.0 Hz), 8.50 (s, 

1H), 10.58 (s, 1H), 12.55 (s, 1H). 13C NMR (DMSO-d6 100.6 MHz): δ 17.76, 21.55, 27.44, 

103.55, 116.75, 120.52, 121.51, 121.66, 128.63 (2x), 129.62 (2x), 129.83, 131.51, 138.13, 

141.42, 141.83, 143.26, 143.39, 155.78, 163.00, 168.09, 198.31. Anal. (C23H20N4O2S2) C, H, 

N. 
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Method C (for 25g). Et3N (84 µL, 0.60 mmol) was added to a stirred suspension of 

intermediate 24 (100 mg, 0.30 mmol) in dry DMF (4 mL) at 0 °C. After 15 minutes Boc 

anhydride (0.60 mmol), diluted in dry DMF (0.5 mL), was added dropwise under vigorous 

stirring. The resulting solution was warmed to room temperature and heated at 50 °C for 12 

h. Next, H2O and ethyl acetate were added and the aqueous phase was extracted twice with 

ethyl acetate. The combined organic phases were washed with brine, dried over Na2SO4 and 

evaporated. The crude was purified by flash chromatography using DCM/MeOH (98/2) as 

eluent. 

Tert-butyl (2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)carbamate (25g). 

Yield 63%; mp 235-236 °C. MS (ESI) [M + H]+: 431.5 m/z. 1H NMR (DMSO-d6 400 MHz): 

δ 1.50 (s, 9H), 2.47 (s, 3H), 2.63 (s, 3H), 6.92 (s, 1H), 7.49 (t, 1H, J = 7.9 Hz), 7.56 (d, 1H, J 

= 7.9 Hz), 7.80 (d, 1H, J = 7.9 Hz), 8.50 (s, 1H), 10.54 (s, 1H), 11.39 (s, 1H). 13C NMR 

(DMSO-d6 100.6 MHz): δ 17.51, 27.42, 28.37 (3x), 79.61, 103.15, 116.70, 120.03, 121.24, 

121.65, 128.34, 138.55, 141.83, 143.41, 143.62, 155.67, 157.03, 168.39, 198.32. Anal. 

(C20H22N4O3S2) C, H, N. 

General Procedure for the Synthesis of Compounds 26a-d. A solution of intermediate 24 

(100 mg, 0.30 mmol) and the proper isocyanate or isothiocyanate (0.45 mmol) in pyridine (2 

mL) was heated at reflux for 12-18 h. The mixture was cooled to room temperature and 

diluted with ethyl acetate. The organic phase was washed with saturated aqueous NH4Cl 

solution and brine, dried over Na2SO4, and concentrated under vacuum. The crude was 

purified by flash chromatography using DCM/MeOH (98/2) as eluent.  

1-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)-3-phenylurea (26a). Yield 

59%; mp 236-239 °C. MS (ESI) [M + H]+: 450.3 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.51 

(s, 3H), 2.64 (s, 3H), 6.92 (s, 1H), 7.05 (t, 1H, J = 7.4 Hz), 7.33 (t, 2H, J = 7.4 Hz), 7.48-7.52 

(m, 3H), 7.57 (d, 1H, J = 7.8 Hz), 7.80 (d, 1H, J = 7.8 Hz), 8.47 (s, 1H), 8.99 (s, 1H), 10.52 

Page 34 of 62

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 35

(s, 1H), 10.55 (s, 1H). 13C NMR (DMSO-d6 100.6 MHz): δ 17.29, 27.43, 102.86, 116.73, 

119.02 (2x), 121.46, 121.62, 123.17, 128.20, 129.39 (2x), 129.83, 138.10, 139.17, 139.43, 

141.83, 143.36, 151.90, 155.68, 162.92, 198.35. Anal. (C22H19N5O2S2) C, H, N. 

1-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)-3-phenylthiourea (26b). 

Yield 65%; mp 217-218 °C. MS (ESI) [M + H]+: 466.4 m/z. 1H NMR (DMSO-d6 400 MHz): 

δ 2.54 (s, 3H), 2.64 (s, 3H), 6.99 (s, 1H), 7.07 (t, 1H, J = 7.4 Hz), 7.32 (t, 2H, J = 7.4 Hz), 

7.48 (t, 1H, J = 7.8 Hz), 7.57 (d, 1H, J = 7.8 Hz), 7.69 (d, 1H, J = 7.8 Hz), 7.73 (d, 2H, J = 

7.4 Hz), 8.57 (s, 1H), 10.20 (s, 1H), 10.59 (s, 1H), 12.68 (s, 1H). 13C NMR (DMSO-d6 100.6 

MHz): δ 17.30, 27.60, 103.92, 116.74, 121.50, 121.77, 122.48, 127.80, 128.20 (2x), 128.84 

(2x), 129.81, 138.12, 138.30, 139.89, 141.73, 142.96, 155.60, 163.20, 176.12, 198.28. Anal. 

(C22H19N5OS3) C, H, N. 

1-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)-3-cyclohexylurea (26c). 

Yield 69%; mp 197-198 °C. MS (ESI) [M + H]+: 456.4 m/z. 1H NMR (DMSO-d6 400 MHz): 

δ 1.14-1.38 (m, 6H), 1.52-1.56 (m, 1H), 1.64-1.68 (m, 2H), 1.80-1.83 (m, 2H), 2.45 (s, 3H), 

2.61 (s, 3H), 6.53 (d, 1H, J = 7.8 Hz), 6.84 (s, 1H), 7.48 (t, 1H, J = 7.8 Hz), 7.56 (d, 1H, J = 

7.8 Hz), 7.85 (d, 1H, J = 7.8 Hz), 8.41 (s, 1H), 10.09 (s, 1H), 10.52 (s, 1H). 13C NMR 

(DMSO-d6 100.6 MHz): δ 17.53, 24.67, 25.58, 27.41 (2x), 33.12 (2x), 48.44, 102.47, 116.67, 

120.57, 121.45, 121.57, 129.81, 138.07, 141.85, 143.61, 147.01, 155.38, 157.13, 162.82, 

198.29. Anal. (C22H25N5O2S2) C, H, N. 

1-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)-3-cyclohexylthiourea (26d). 

Yield 52%; mp 234-236 °C. MS (ESI) [M + H]+: 472.3 m/z. 1H NMR (DMSO-d6 400 MHz): 

δ 1.24-1.37 (m, 6H), 1.52-1.56 (m, 1H), 1.63-1.67 (m, 2H), 1.85-1.93 (m, 2H), 2.49 (s, 3H), 

2.63 (s, 3H), 6.96 (s, 1H), 7.47 (t, 1H, J = 7.8 Hz), 7.56 (d, 1H, J = 7.8 Hz), 7.85 (d, 1H, J = 

7.8 Hz), 8.41 (s, 1H), 9.55 (s, 1H), 10.57 (s, 1H), 11.41 (s, 1H). 13C NMR (DMSO-d6 100.6 

MHz): δ 17.84, 24.38, 25.56, 27.50 (2x), 31.80 (2x), 52.62, 103.47, 116.67, 121.45, 121.58, 
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121.74, 129.79, 137.20, 138.11, 141.65, 142.93, 146.01, 163.00, 171.90, 198.11. Anal. 

(C22H25N5OS3) C, H, N. 

Synthesis of phenyl (5-acetyl-4-methylthiazol-2-yl)carbamate (27). 1-(2-amino-4-

methylthiazol-5-yl)ethanone 20 (1000 mg, 6.40 mmol) was added to a suspension of NaH 

60% dispersion in mineral oil (768 mg, 19.20 mmol) in DMF (15 mL) at 0 °C. Diphenyl 

carbonate (3428 mg, 16.0 mmol) was added while cooling and the reaction mixture was 

stirred for additional 30 minutes at room temperature. H2O and ethyl acetate were added and 

the aqueous phase was extracted three times with ethyl acetate. The combined organic phases 

were washed twice with an aqueous solution of LiCl (5% w/w) and brine, dried over Na2SO4 

and concentrated under vacuum. Ether was added to the crude and the white solid obtained 

was filtered over a Buchner funnel, washed with ether and used in the following step without 

any further purification. Yield: 67%. MS (ESI) [M + H]+: 277.2 m/z. 1H NMR (DMSO-d6 400 

MHz): δ 2.52 (s, 3H), 2.57 (s, 3H), 7.27-7.34 (m, 3H), 7.44-7.48 (m, 2H), 12.71 (s, 1H).  

General Procedure for the Synthesis of Compounds 28a,b. The proper amine (1.09 mmol) 

was added to a solution of intermediate 27 (300 mg, 1.09 mmol) in dry THF (15 mL). The 

mixture was heated at 50 °C for 5-6 h, after which H2O and ethyl acetate were added and the 

reaction mixture was cooled down to room temperature. The aqueous phase was extracted 

twice with ethyl acetate, the combined organic phases were washed with brine, dried over 

Na2SO4 and concentrated under vacuum. The crude was purified by flash chromatography 

using DCM/MeOH (97/3) as eluent.  

1-(5-acetyl-4-methylthiazol-2-yl)-3-(4-chlorobenzyl)urea (28a). Yield: 61%. MS (ESI) [M 

+ H]+: 324.2 m/z. 1H NMR (DMSO-d6 300 MHz): δ 2.49 (s, 3H), 2.62 (s, 3H), 4.34 (d, 2H, J 

= 5.7 Hz), 7.18 (bs, 1H), 7.33 (d, 2H, J = 8.2 Hz), 7.40 (d, 2H, J = 8.2 Hz), 11.02 (s, 1H).  

Page 36 of 62

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 37

1-(5-acetyl-4-methylthiazol-2-yl)-3-(adamantan-1-yl)urea (28b). Yield: 93%. MS (ESI) [M 

+ H]+: 334.5 m/z. 1H NMR (DMSO-d6 300 MHz): δ 1.64-1.65 (m, 6H), 1.93-1.95 (m, 6H), 

2.05-2.06 (m, 3H), 2.49 (s, 3H), 2.63 (s, 3H), 6.42 (s, 1H), 10.21 (s, 1H).  

General Procedure for the Synthesis of Compounds 29a,b. A suspension of the proper 

intermediate 28a,b (0.62 mmol) in 48% HBr solution in water (2 mL) was warmed to 60 °C. 

A solution of Br2 (42 µL, 0.81 mmol) in 1,4-dioxane (2 mL) was added dropwise and the 

reaction mixture was heated at 60 °C for 3 h. After cooling down to room temperature, 

saturated aqueous NaHCO3 solution and ethyl acetate were added and the aqueous phase was 

extracted three times with ethyl acetate. The combined organic phases were washed with 

brine, dried over Na2SO4 and concentrated under vacuum. Intermediates 29a,b were used in 

the next step without any further purification.  

1-(5-(2-bromoacetyl)-4-methylthiazol-2-yl)-3-(4-chlorobenzyl)urea (29a). Yield: 88%. MS 

(ESI) [M + H]+: 402.4 m/z, [M + 2 + H]+: 404.3 m/z, [M + 4 + H]+: 406.3 m/z. 1H NMR 

(DMSO-d6 300 MHz): δ 2.49 (s, 3H), 4.34 (d, 2H, J = 5.7 Hz), 4.46 (bs, 2H), 7.18 (bs, 1H), 

7.36 (d, 2H, J = 8.2 Hz), 7.43 (d, 2H, J = 8.2 Hz), 11.23 (s, 1H). 

1-(adamantan-1-yl)-3-(5-(2-bromoacetyl)-4-methylthiazol-2-yl)urea (29b). Yield: 92%.  

MS (ESI) [M + H]+: 412.3 m/z, [M + 2 + H]+: 414.3 m/z. 1H NMR (DMSO-d6 300 MHz): δ 

1.65-1.67 (m, 6H), 1.93-1.95 (m, 6H), 2.06-2.08 (m, 3H), 2.49 (s, 3H), 4.49 (bs, 2H), 6.43 (s, 

1H), 10.31 (s, 1H).  

General Procedure for the Synthesis of Compounds 30a,b. A suspension of intermediate 23 

(100 mg, 0.51 mmol) and the proper compound 29a,b (0.51 mmol) in ethanol (6 mL) was 

heated at reflux for 1 h. After cooling down to room temperature, saturated aqueous NaHCO3 

solution, H2O and ethyl acetate were added and the aqueous phase was extracted three times 

with ethyl acetate. The combined organic phases were washed with brine, dried over Na2SO4 
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and concentrated under vacuum. The crude was purified by flash chromatography using 

DCM/MeOH (97/3) as eluent.  

1-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)-3-(4-chlorobenzyl)urea 

(30a). Yield 78%; mp 240-241 °C. MS (ESI) [M + H]+: 498.2 m/z. 1H NMR (DMSO-d6 400 

MHz): δ 2.47 (s, 3H), 2.61 (s, 3H), 4.34 (d, 2H, J = 5.7 Hz), 6.86 (s, 1H), 7.09 (bs, 1H), 7.33 

(d, 2H, J = 8.2 Hz), 7.40 (d, 2H, J = 8.2 Hz), 7.48 (t, 1H, J = 7.8 Hz), 7.55 (d, 1H, J = 7.8 

Hz), 7.83 (d, 1H, J = 7.8 Hz), 8.42 (s, 1H), 10.51 (s, 1H), 10.53 (s, 1H). 13C NMR (DMSO-d6 

100.6 MHz): δ 17.50, 27.41, 42.73, 102.57, 116.67, 120.01, 121.45, 121.58, 128.78 (2x), 

129.54 (2x), 129.82, 131.89, 138.08, 139.25, 141.84, 143.21, 143.55, 154.41, 157.67, 162.84, 

198.30. Anal. (C23H20ClN5O2S2) C, H, N. 

1-(2-((3-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)-3-(adamantan-1-yl)urea 

(30b). Yield 83%; mp 227-230 °C. MS (ESI) [M + H]+: 508.5 m/z. 1H NMR (DMSO-d6 400 

MHz): δ 1.65-1.67 (m, 6H), 1.93-1.95 (m, 6H), 2.05-2.06 (m, 3H), 2.49 (s, 3H), 2.63 (s, 3H), 

6.78 (s, 1H), 6.97 (s, 1H), 7.49 (t, 1H, J = 7.8 Hz), 7.56 (d, 1H, J = 7.8 Hz), 7.81 (d, 1H, J = 

7.8 Hz), 8.46 (s, 1H), 10.21 (bs, 1H), 10.59 (s, 1H). 13C NMR (DMSO-d6 100.6 MHz): δ 

16.39, 27.47, 29.29 (3x), 36.32 (3x), 41.73 (3x), 51.16, 103.55, 116.76, 119.09, 121.49, 

121.63, 129.83, 138.08, 139.61, 141.76, 142.58, 152.13, 158.27, 163.05, 198.32. Anal. 

(C26H29N5O2S2) C, H, N. 

Synthesis of N-(5-acetyl-4-methylthiazol-2-yl)acetamide (31). Intermediate 20 (1000 mg, 

6.40 mmol) was suspended in THF/DCM (3/2, 12 mL) and the mixture was cooled down to 0 

°C. Pyridine (1.3 mL) was added, followed by the dropwise addition of acetyl chloride (683 

µL, 9.60 mmol). The reaction mixture was stirred at 0 °C for 3 h. Next, H2O and ethyl acetate 

were added and the aqueous phase was extracted three times with ethyl acetate. The 

combined organic phases were washed three times with saturated aqueous NH4Cl solution 

and brine, dried over Na2SO4 and concentrated under vacuum. Intermediate 31 was used in 
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the next step without any further purification. Yield: 87%. MS (ESI) [M + H]+: 199.3 m/z. 1H 

NMR (DMSO-d6 400 MHz): δ 2.17 (s, 3H), 2.46 (s, 3H), 2.56 (s, 3H), 12.44 (s, 1H).  

Synthesis of N-(5-(2-bromoacetyl)-4-methylthiazol-2-yl)acetamide (32). A solution of Br2 

(388 µL, 7.6 mmol) in 1,4-dioxane (8.6 mL) was added dropwise to a stirred solution of 

intermediate 31 (1200 mg, 6.05 mmol) in 1,4-dioxane (23 mL). The mixture was heated at 50 

°C for 22 h. After cooling down to room temperature, saturated aqueous NaHCO3 solution 

and ethyl acetate were added and the aqueous phase was extracted three times with ethyl 

acetate. The combined organic phases were washed with brine, dried over Na2SO4 and 

concentrated under vacuum. The crude was purified by flash chromatography using 

DCM/acetone (95/5) as eluent. Yield 84%. MS (ESI) [M + H]+: 277.3 m/z, [M + 2 + H]+: 

279.4 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.11 (s, 3H), 2.46 (s, 3H), 4.52 (bs, 2H), 12.44 

(s, 1H).  

General Procedure for the Synthesis of Intermediates 34a-d. Benzoyl isothiocyanate (547 

µL, 4.07 mmol) was added dropwise to a solution of the appropriate aniline 33a-d (3.70 

mmol) in dry DCM (12 mL) and the mixture was stirred at room temperature for 12 h. The 

solvent of reaction was evaporated, the solid was dissolved in THF/NaOH 1N (1/1, 15 mL) 

and the mixture was refluxed for 2 h. Next, H2O and ethyl acetate were added and the 

aqueous phase was extracted three times with ethyl acetate. The combined organic phases 

were dried over Na2SO4 and evaporated. Crystallization from ether afforded intermediates 

34a-d. 

1-phenylthiourea (34a). Yield 72%. MS (ESI) [M + H]+: 153.1 m/z. 1H NMR (DMSO-d6 

300 MHz): δ 7.09-7.14 (m, 1H), 7.30-7.42 (m, 6H), 9.67 (s, 1H).  

1-(3-hydroxyphenyl)thiourea (34b). Yield 74%. MS (ESI) [M + H]+: 169.2 m/z. 1H NMR 

(DMSO-d6 300 MHz): δ 6.50-6.54 (m, 1H), 6.74-6.77 (m, 1H), 6.87-6.88 (m, 1H), 7.09 (t, 

1H, J = 8.0 Hz), 7.32-7.36 (bs, 2H), 9.45 (s, 1H), 9.58 (s, 1H).  
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1-(3-methoxyphenyl)thiourea (34c). Yield 75%. MS (ESI) [M + H]+: 183.3 m/z. 1H NMR 

(DMSO-d6 300 MHz): δ 3.74 (s, 3H), 6.67-6.70 (m, 1H), 6.90-6.94 (m, 1H), 7.11-7.13 (m, 

1H), 7.22 (t, 1H, J = 8.1 Hz), 7.46-7.49 (bs, 2H), 9.73 (s, 1H).  

1-(4-acetylphenyl)thiourea (34d). Yield 78%. MS (ESI) [M + H]+: 195.4 m/z. 1H NMR 

(DMSO-d6 300 MHz): δ 2.49 (s, 3H), 7.79-7.83 (m, 2H), 7.87-8.03 (m, 4H), 10.69 (s, 1H).  

General Procedure for the Synthesis of Compounds 35a-d. A solution of intermediate 32 

(50 mg, 0.18 mmol) and the proper thiourea 34a-d (0.18 mmol) in ethanol (2.5 mL) was 

heated at reflux for 1 h. After cooling down to room temperature, saturated aqueous NaHCO3 

solution, H2O and ethyl acetate were added and the aqueous phase was extracted three times 

with ethyl acetate. The combined organic phases were washed with brine, dried over Na2SO4 

and concentrated under vacuum. The crude was purified by flash chromatography using 

DCM/MeOH (97/3) as eluent.  

N-(4'-methyl-2-(phenylamino)-[4,5'-bithiazol]-2'-yl)acetamide (35a). Yield 85%; mp 187-

189 °C. MS (ESI) [M + H]+: 331.1 m/z. 1H NMR (CDCl3 400 MHz): δ 2.19 (s, 3H), 2.57 (s, 

3H), 6.58 (s, 1H), 7.10-7.12 (m, 1H), 7.36-7.42 (m, 4H), 8.18 (s, 1H), 11.94 (s, 1H). 13C 

NMR (CDCl3 100.6 MHz): δ 17.00, 23.07, 102.63, 118.50 (2x), 121.29, 123.32, 129.54 (2x), 

140.15, 142.70, 143.31, 156.66, 164.76, 167.92. Anal. (C15H14N4OS2) C, H, N. 

N-(2-((3-hydroxyphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)acetamide (35b). Yield 

71%; mp 148-149 °C. MS (ESI) [M + H]+: 347.2 m/z. 1H NMR (acetone- d6 400 MHz): δ 

2.26 (s, 3H), 2.51 (s, 3H), 6.52-6.54 (m, 1H), 6.78 (s, 1H), 7.15-7.18 (m, 2H), 7.27 (s, 1H), 

8.45 (s, 1H), 9.30 (s, 1H), 10.85 (s, 1H). 13C NMR (acetone- d6 100.6 MHz): δ 16.51, 21.90, 

101.85, 104.58, 108.75, 109.12, 120.91, 129.81, 142.39, 143.14, 143.95, 155.28, 158.21, 

163.25, 167.72. Anal. (C15H14N4O2S2) C, H, N. 

N-(2-((3-methoxyphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)acetamide (35c). Yield 

74%; mp 118-119 °C. MS (ESI) [M + H]+: 361.2 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.14 
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(s, 3H), 2.48 (s, 3H), 3.82 (s, 3H), 6.53 (d, 1H, J = 8.2 Hz), 6.90 (s, 1H), 6.98 (s, 1H, J = 8.2 

Hz), 7.20 (t, 1H, J = 8.2 Hz), 7.71 (s, 1H), 10.42 (s, 1H), 12.06 (s, 1H). 13C NMR (DMSO-d6 

100.6 MHz): δ 17.53, 22.93, 55.52, 102.71, 105.60, 107.78, 109.65, 120.81, 130.02, 142.77, 

142.90, 143.12, 155.59, 160.40, 162.96, 168.75. Anal. (C16H16N4O2S2) C, H, N. 

N-(2-((4-acetylphenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)acetamide (35d). Yield 79%; 

mp 233-235 °C. MS (ESI) [M + H]+: 373.2 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.15 (s, 

3H), 2.51 (s, 3H), 2.54 (s, 3H), 7.07 (s, 1H), 7.77 (d, 2H, J = 8.7 Hz), 7.97 (d, 2H, J = 8.7 

Hz), 10.79 (s, 1H), 12.11 (s, 1H). 13C NMR (DMSO-d6 100.6 MHz): δ 17.49, 22.93, 26.82, 

104.38, 116.33 (2x), 120.33, 130.34, 130.42 (2x), 143.41, 145.48, 152.60, 155.63, 162.37, 

168.83, 196.63. Anal. (C17H16N4O2S2) C, H, N. 

Synthesis of 1-(3-acetylphenyl)guanidine (36). Nitric acid (164 µL, 3.70 mmol) was added 

to a solution of 3’-aminoacetophenone 22 (500 mg, 3.70 mmol) in ethanol (10 mL), followed 

by addition of a solution of cyanamide (778 mg, 18.5 mmol) in a minimal amount of water. 

The mixture was heated at reflux for 24 h and concentrated in vacuum. After cooling to 0 °C, 

ether was added and the precipitate was separated by filtration over a Buchner funnel. Then 

saturated aqueous NaHCO3 solution and ethyl acetate were added to the solid and the 

aqueous phase was extracted three times with ethyl acetate. The combined organic phases 

were washed with brine, dried over Na2SO4 and concentrated under vacuum to obtain 

compound 36, used in the next step without any further purification. Yield 73%. MS (ESI) 

[M + H]+: 178.2 m/z. 1H NMR (DMSO-d6 300 MHz): δ 2.57 (s, 3H), 7.49 (bs, 3H), 7.58-7.60 

(m, 2H), 7.76-7.78 (m, 1H), 7.88 (s, 1H), 9.67 (bs, 1H). 

Synthesis of 1-(3-((4-(2-amino-4-methylthiazol-5-yl)-1H-imidazol-2-

yl)amino)phenyl)ethanone (37). A solution of intermediate 36 (150 mg, 0.85 mmol) in 

ethanol (5 mL) was added dropwise to a solution of compound 21 (200 mg, 0.85 mmol) and 

Et3N (118 µL, 0.85 mmol) in ethanol (10 mL). The mixture was heated at reflux for 12 h, 
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after which H2O and ethyl acetate were added. The organic phase was washed with saturated 

aqueous NH4Cl solution and brine, dried over Na2SO4 and concentrated under vacuum to 

obtain compound 37, used in the next step without any further purification. Yield 82%. MS 

(ESI) [M + H]+: 314.3 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.37 (s, 3H), 2.64 (s, 3 H), 7.09 

(s, 1 H), 7.65 (t, 1H, J = 7.9 Hz), 7.79 (d, 1H, J = 7.9 Hz), 7.94 (d, 1H, J = 7.9 Hz), 8.04 (s, 

1H), 9.50 (bs, 2H), 10.56 (s, 1H), 12.01 (s, 1H).  

Synthesis of N-(5-(2-((3-acetylphenyl)amino)-1H-imidazol-4-yl)-4-methylthiazol-2-

yl)acetamide (38). Et3N (89 µL, 0.64 mmol) was added to a stirred suspension of 

intermediate 37 (100 mg, 0.32 mmol) in dry DCM (4.5 mL) at 0 °C. After 15 minutes acetyl 

chloride (34 µL, 0.48 mmol), diluted in dry DCM (0.5 mL), was added dropwise. The 

resulting solution was warmed to room temperature and stirred for 8 h. Next, H2O and DCM 

were added and the aqueous phase was extracted three times with DCM. The combined 

organic phases were washed with brine, dried over Na2SO4 and evaporated. The crude was 

purified by flash chromatography using DCM/MeOH (97/3) as eluent. Yield 47%; mp 222-

225 °C. MS (ESI) [M + H]+: 356.2 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.14 (s, 3H), 2.37 

(s, 3H), 2.65 (s, 3H), 7.11 (s, 1H), 7.66 (t, 1H, J = 7.9 Hz), 7.79 (d, 1H, J = 7.9 Hz), 7.94 (d, 

1H, J = 7.9 Hz), 8.05 (s, 1H), 10.56 (s, 1H), 11.84 (s, 1H), 12.06 (s, 1H). 13C NMR (DMSO-

d6 100.6 MHz): δ 17.56, 22.56, 27.42, 116.75, 119.9, 120.51, 121.65, 127.71, 129.79, 138.10, 

140.81, 143.21, 143.28, 154.98, 162.89, 168.63, 198.32. Anal. (C17H17N5O2S) C, H, N. 

Synthesis of 1-(3-acetylphenyl)-3-(3-nitrophenyl)thiourea (40). 3’-aminoacetophenone 22 

(300 mg, 2.22 mmol) was added to a solution of 3-nitrophenyl isothiocyanate (400 mg, 2.22 

mmol) in dry DCM (6.50 mL). The solution was stirred at room temperature for 18 h. The 

precipitate was separated by filtration over a Buchner funnel and washed with ether, 

affording compound 40 as a white solid. Yield 88%. MS (ESI) [M + H]+: 316.2 m/z. 1H NMR 

(DMSO-d6 400 MHz): δ 2.58 (s, 3H), 7.52 (t, 1H, J = 7.9 Hz), 7.63 (t, 1H, J = 8.1 Hz), 7.76-
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7.78 (m, 2H), 7.92 (d, 1H, J = 7.9 Hz), 7.98 (d, 1H, J = 8.1 Hz), 8.07 (s, 1H), 8.56 (s, 1H), 

10.31 (bs, 1H), 10.33 (bs, 1H). 

Synthesis of 1-(3-acetylphenyl)-3-(3-aminophenyl)thiourea (41). Iron powder (1490 mg, 

26.67 mmol), water (7 mL) and concentrated HCl (4 drops) were added to a solution of 

compound 40 (400 mg, 1.27 mmol) in ethanol (35 mL). After heating at reflux for 2 h, the 

mixture was filtrated hot, washed with ethanol and concentrated in vacuum. The crude was 

purified by flash chromatography using DCM/MeOH (98/2) as eluent. Yield 75%. MS (ESI) 

[M + H]+: 286.1 m/z. 1H NMR (CDCl3 400 MHz): δ 2.58 (s, 3H), 3.20-3.51 (bs, 2H), 6.59-

6.62 (m, 2H), 6.68 (d, 1H, J = 7.7 Hz), 7.18 (t, 1H, J = 7.8 Hz), 7.45 (t, 1H, J = 7.8 Hz), 

7.74-7.79 (m, 2H), 7.95 (s, 1H), 8.05 (s, 1H), 8.38 (s, 1H).  

General Procedure for the Synthesis of Compounds 42a,b. The proper acyl chloride (0.53 

mmol) was added to a stirred solution of intermediate 41 (100 mg, 0.35 mmol) and pyridine 

(56 µL, 0.70 mmol) in dry THF (4 mL). The resulting solution was stirred at room 

temperature for 2 h, after which H2O and ethyl acetate were added and the aqueous phase was 

extracted three times with ethyl acetate. The combined organic phases were washed with 

brine, dried over Na2SO4 and concentrated under vacuum. The crude was purified by flash 

chromatography using DCM/MeOH (99/1) as eluent.  

N-(3-(3-(3-acetylphenyl)thioureido)phenyl)acetamide (42a). Yield 67%; mp 171-173 °C. 

MS (ESI) [M + H]+: 328.1 m/z. 1H NMR (DMSO-d6 400 MHz): δ 2.04 (s, 3H), 2.57 (s, 3H), 

7.16-7.19 (m, 1H), 7.25 (t, 1H, J = 7.9 Hz), 7.35-7.37 (m, 1H), 7.47 (t, 1H, J = 7.9 Hz), 7.71-

7.79 (m, 3H), 8.07 (bs, 1H), 9.89 (s, 1H), 9.96 (s, 1H), 9.98 (s, 1H). 13C NMR (DMSO-d6 

100.6 MHz): 23.43, 27.23, 116.20, 117.10, 119.38, 123.64, 124.55, 128.90, 128.98, 129.04, 

136.97, 139.64, 140.17, 140.52, 168.56, 180.27, 197.97. Anal. (C17H17N3O2S) C, H, N. 

N-(3-(3-(3-acetylphenyl)thioureido)phenyl)pivalamide (42b). Yield 69%; mp 157-159 °C. 

MS (ESI) [M + H]+: 370.3 m/z. 1H NMR (DMSO-d6 300 MHz): δ 1.22 (s, 9H), 2.57 (s, 3H), 
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7.14 (d, 1H, J = 7.9 Hz), 7.25 (t, 1H, J = 7.9 Hz), 7.42-7.50 (m, 2H), 7.71-7.80 (m, 3H), 8.06 

(bs, 1H), 9.25 (s, 1H), 9.89 (s, 1H), 9.94 (s, 1H). 13C NMR (DMSO-d6 100.6 MHz): δ 27.23, 

27.65 (3x), 30.90, 116.29, 117.14, 119.35, 123.68, 124.71, 128.88, 128.92, 129.10, 137.43, 

139.65, 140.20, 140.52, 176.96, 180.27, 197.97. Anal. (C20H23N3O2S) C, H, N. 

Synthesis of 1-(4-(dimethylamino)phenyl)thiourea (44). Benzoyl isothiocyanate (543 µL, 

4.04 mmol) was added dropwise to a solution of N,N-Dimethyl-p-phenylenediamine 43 (500 

mg, 3.67 mmol) in dry DCM (12 mL) and the mixture was stirred at room temperature for 12 

h. The solvent of reaction was evaporated, the solid was dissolved in THF/NaOH 1N (1/1, 15 

mL) and the mixture was refluxed for 3 h. Next, H2O and ethyl acetate were added and the 

aqueous phase was extracted three times with ethyl acetate. The combined organic phases 

were dried over Na2SO4 and evaporated. The resulting solid was crystallized from ether. 

Yield 80%. MS (ESI) [M + H]+: 196.4 m/z. 1H NMR (DMSO-d6 300 MHz): δ 2.88 (s, 6H), 

6.69 (d, 2H, J = 8.7 Hz), 7.08 (d, 2H, J = 8.7 Hz), 7.55 (bs, 2H), 9.58 (s, 1H).  

Synthesis of N
2
-(4-(dimethylamino)phenyl)-4'-methyl-[4,5'-bithiazole]-2,2'-diamine (45). 

Intermediates 21 (150 mg, 0.64 mmol) and 44 (125 mg, 0.64 mmol) were suspended in 

ethanol (6 mL) and the mixture was heated at reflux for 30 minutes. Then saturated aqueous 

NaHCO3 solution and ethyl acetate were added to the mixture and the aqueous phase was 

extracted three times with ethyl acetate. The combined organic phases were washed with 

brine, dried over Na2SO4 and concentrated under vacuum. Ether was added to the crude and 

the solid obtained was filtered over a Buchner funnel, washed with ether and used in the 

following step without any further purification. Yield 77%. MS (ESI) [M + H]+: 332.2 m/z. 

1H NMR (DMSO-d6 400 MHz): δ 2.47 (s, 3H), 2.86 (s, 6H), 6.72 (s, 1H), 6.76 (d, 2H, J = 8.8 

Hz), 7.43 (d, 2H, J = 8.8 Hz), 9.21 (bs, 2H), 10.58 (s, 1H). 

N-(2-((4-(dimethylamino)phenyl)amino)-4'-methyl-[4,5'-bithiazol]-2'-yl)propionamide 

(46). Et3N (84 µL, 0.60 mmol) was added to a stirred suspension of intermediate 45 (100 mg, 
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0.30 mmol) in dry DCM (4 mL) at 0 °C. After 15 minutes propionyl chloride (39 µL, 0.45 

mmol), diluted in dry DCM (0.5 mL), was added dropwise. The resulting solution was 

warmed to room temperature and stirred for 8 h. Next, H2O and DCM were added and the 

aqueous phase was extracted twice with DCM. The combined organic phases were washed 

with brine, dried over Na2SO4 and evaporated. The crude was purified by flash 

chromatography using DCM/MeOH (98/2) as eluent. Yield 68%; mp 222-224 °C. MS (ESI) 

[M + H]+: 388.3 m/z. 1H NMR (DMSO-d6 400 MHz): δ 1.10 (t, 3H, J = 7.6 Hz), 2.43 (q, 2H, 

J = 7.6 Hz), 2.47 (s, 3H), 2.86 (s, 6H), 6.73 (s, 1H), 6.76 (d, 2H, J = 8.8 Hz), 7.43 (d, 2H, J = 

8.8 Hz), 9.90 (s, 1H), 11.98 (s, 1H). 13C NMR (DMSO-d6 100.6 MHz): δ 8.78, 16.88, 30.43, 

40.46 (2x), 101.02, 113.74 (2x), 120.67 (2x), 121.44, 131.54, 143.10, 144.02, 147.72, 155.12, 

165.29, 171.76. Anal. (C18H21N5OS2) C, H, N. 

 

Biology 

Antiviral assays – materials and methods Assay preparation 

Enterovirus (EV): 

Rhabdosarcoma (RD) cells, Vero cells and Hela-Rh cells, subcultured in cell growth medium 

[MEM Rega3 (Cat. N°19993013; Invitrogen) supplemented with 10% FCS (Integro), 5 ml 

200 mM L-glutamine (25030024) and 5 mL 7.5% sodium bicarbonate (25080060)] at a ratio 

of 1:4 and grown for 7 days in 150 cm2 tissue culture flasks (Techno Plastic Products), were 

harvested and seeded in a 96-well plate at a cell density of 20 000 cells/well in assay medium 

(MEM Rega3, 2% FCS, 5 ml L-glutamine and 5 ml sodium bicarbonate) to perform 

standardized antiviral assay against EV71 and EVD68, CV and PV, RV02 and RV14, 

respectively. 

Antiviral activity and cytotoxicity determinations 
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Compounds were prepared as DMSO stock solution with a final compound concentration of 

10mM. The compound profiling setup was performed employing a Freedom EVO200 liquid 

handling platform (Tecan). The evaluation of the cytostatic/cytotoxic as well as the antiviral 

effect of each compound was performed in parallel within one run. Three 8-step 1-to-5 

dilution series were prepared (starting from 100 µM) in assay medium added to empty wells 

(picornaviruses: 96-well microtiter plates, Falcon, BD) or in the medium present on top of 

pre-seeded cells. Subsequently, 50 µL of a 4x virus dilution in assay medium (assay medium 

supplemented with 15 ml MgCl2 1M (Sigma, M1028) in case of RV) was added followed by 

50 µL of cell suspension. The assay plates were returned to the incubator for 2-3 

(picornavirus, 35°C for RV) days, a time at which maximal cytopathic effect (CPE) for 

picornaviruses is observed. 

For the evaluation of cytostatic/cytotoxic effects and for the evaluation of the antiviral effect 

in case of PV, CV, RV, the assay medium was replaced with 75 µL of a 5% MTS (Promega) 

solution in phenol red-free medium and incubated for 1.5 hours (37°C, 5% CO2, 95-99% 

relative humidity). Absorbance was measured at a wavelength of 498 nm (Safire2, Tecan) 

and optical densities (OD values) were converted to percentage of untreated controls. 

Analysis of the raw data, quality control of each individual dose-response curve and 

calculation, if possible, of the EC50, EC90 and CC50 values was performed employing 

ViroDM, a custom-made data processing software package. The EC50 and EC90 (values 

derived from the dose-response curve) represent the concentrations at which respectively 

50% and 90% inhibition of viral replication would be observed. The CC50 (value derived 

from the dose-response curve) represents the concentration at which the metabolic activity of 

the cells would be reduced to 50 % of the metabolic activity of untreated cells. 
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The EC50, EC90 and CC50 ± SD were, whenever possible, calculated respectively as the 

median of all the EC50, EC90 or CC50 values derived from the 3 individual dose-response 

curves. The selectivity index (SI), indicative of the therapeutic window of the compound, was 

calculated as CC50/EC50. No further statistical analysis was performed. 

 

CFTR assays 

The effects of compounds on CFTR biogenesis and function were measured using 

newly developed assays exploiting CFTR fusion probes with anion-sensitive YFP61 and pH-

sensitive pHTomato.62 Lipofectamine transfection was used for transient transfection of 

HEK293 cells. Cells plated in 96-well plates were incubated with the YFP-CFTR- or CFTR-

pHTomato- encoding plasmid48 using Lipofectamine 2000 (Life Technologies), according to 

manufacturer’s instructions. Following transfection, cell plates were returned to the 37°C 

incubator for 24 h. Plates were further incubated at 30°C for 24 h prior to imaging, with or 

without additional drug treatment.  

All imaging was carried out using ImageXpress (ImageXpress Micro XLS, Molecular 

Devices); an image-acquisition system equipped with wide-field inverted fluorescence 

microscope and fluidics robotics. Images were obtained with a 20X objective, using 

excitation/emission filters 472 ± 30 nm and 520 ± 35 nm, for YFP-CFTR and 531 ± 20 nm 

and 592 ± 20 nm for CFTR-pHTomato. In the latter assay, eGFP and Hoechst nuclear stain 

images were also acquired for each well, using excitation/emission filters 472 ± 30 nm and 

520 ± 35 nm, and 377 ± 25 nm and 447 ± 30 nm, respectively. For each plate, the laser 

intensity and exposure were optimized to achieve the highest possible fluorescence whilst 

avoiding both photobleaching and saturation (illumination intensity 100-150/225 cd, and 

exposure 0.1 – 0.2 s) 
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For the YFP-CFTR assays, before imaging, cells were washed twice with 100 µl standard 

buffer (140 mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2, 5 mM HEPES, 2.5 mM CaCl2, 1 mM 

Glucose, pH 7.4). Images were taken for 150 s at a frequency of 0.5 Hz. 50 µL extracellular 

I¯ (as standard buffer with 140 mM NaCl replaced with 300 mM NaI; resulting in 100 mM 

final [I¯]) was added at 20 s, and activating compounds (50 µM Forskolin alone or together 

with 10 µM compounds for acute treatment) were added at 60 s. 

For the CFTR-pHTomato assay, before imaging, cells were washed twice with 100 µL 

standard buffer (as above). During imaging, extracellular pH was changed using addition of 

50 µL pH 6 buffer (as standard buffer, with 5 mM HEPES replaced with 10 mM MES: final 

[MES] 3.3 mM, ~ pH 6.5), and 50 µL pH 9 buffer (as standard buffer, with 5 mM HEPES 

replaced with 100 mM Tris: final [Tris] 25 mM, ~ pH 8.8). Two pHTomato images 

(acquisition frequency 0.5 Hz) were taken in each condition. To account for variation in 

transfection efficiency the pHTomato fluorescence was normalized using average 

fluorescence intensity of a soluble eGFP, co-expressed in the cytosol. Because the rise in 

pHTomato fluorescence falls largely within the 6.5 to 8.8 pH range,63 the change in 

fluorescence obtained upon increasing extracellular pH (∆Fmembrane) was used as an estimate 

of membrane-exposed CFTR. 

 

In vitro kinase inhibition assays 

Recombinant full length, HIS6-tagged PI4KIIIβ was purchased from ProQinase (Germany); 

recombinant full length, GST tagged PI4KIIIα was from Life Technologies. Recombinant 

full length, HIS6-tagged (PI3K-α) and full length, myc-tagged (p85α) PI3K-α/p85α was 

purchased from ProQinase (Germany). 

Assay conditions: 
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PI4KIIIβ, PI4KIIIα and PI3K- α/p85α reactions were performed in 10 µL using 20 mM Tris-

HCl pH 7.5, 0.125 mM EGTA, 2 mM DTT, 0.04% Triton, 3 mM MgCl2, 3 mM MnCl2, 20 

µM ATP, 0.01 µCi γ-P33 ATP, 200 µM Pi:3PS, 10% DMSO, 0.4 ng/µL of PI4KIIIβ, 16 

ng/µL of PI4KIIIα and 7.6 ng/µL of PI3K- α/p85α.  All reactions were performed at 30 °C for 

10 min. Reactions were stopped by adding 5µL of phosphoric acid 0.8%. Aliquots (10 µL) 

were then transferred into a P30 Filtermat (PerkinElmer), washed five times with 0.5 % 

phosphoric acid and four times with water for 5 min. The filter was dried and transferred to a 

sealable plastic bag, and scintillation cocktail (4 mL) was added. Spotted reactions were read 

in a scintillation counter (Trilux, Perkinelmer). IC50 values were obtained according to 

Equation (1), where v is the measured reaction velocity, V is the apparent maximal velocity 

in the absence of inhibitor, I is the inhibitor concentration, and IC50 is the 50% inhibitory 

concentration. 

v = V/{1+(I/IC50)}          (1) 

Lipidic substrate preparation: 

PI: phosphatidylinositol (Sigma); PS: 2-Oleoyl-1-palmitoyl-sn-glycero-3-phospho-L-serine 

(Sigma). PI and PS were dissolved in chloroform/methanol 9:1 and mixed at a 1:3 ratio. After 

chloroform/methanol evaporation, water was added to 1:62.5 w/v and the mixture sonicated 

to clarity. 

Kinase Panel:  

All Tyrosine- and Serine/Threonine kinase reactions were performed according to 

manufacturer’s instructions, using 10-50 ng of enzyme. Details on the nature of the substrates 

and their concentration are reported elsewhere.63 For some kinases, NP-40 or BSA was 

added. All reactions were performed in 10 µL at 30 °C for 10 min using protein low-binding 
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tubes. Reactions were stopped, transferred to filter and counted as reported in Ref. 59. 

PI4KIIIβ was purchased from Proqinase. Reactions were performed according to the 

manufacturer’s instructions and detected using ADP-Glo™ Lipid Kinase Assay (Promega). 

Supporting Information. 3D coordinates of the PI4KIIIβ and PI4KIIIα homology models. 

Molecular formula strings. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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