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Abstract

Background: We set out to describe the fine-scale population structure across the Eastern region of Nepal. To date
there is relatively little known about the genetic structure of the Sherpa residing in Nepal and their genetic
relationship with the Nepalese. We assembled dense genotype data from a total of 1245 individuals representing
Nepal and a variety of different populations resident across the greater Himalayan region including Tibet, China,
India, Pakistan, Kazakhstan, Uzbekistan, Tajikistan and Kirghizstan. We performed analysis of principal components,

admixture and homozygosity.

Results: We identified clear substructure across populations resident in the Himalayan arc, with genetic structure
broadly mirroring geographical features of the region. Ethnic subgroups within Nepal show distinct genetic
structure, on both admixture and principal component analysis. We detected differential proportions of ancestry
from northern Himalayan populations across Nepalese subgroups, with the Nepalese Rai, Magar and Tamang

carrying the greatest proportions of Tibetan ancestry.

Conclusions: We show that populations dwelling on the Himalayan plateau have had a clear impact on the
Northern Indian gene pool. We illustrate how the Sherpa are a remarkably isolated population, with little gene flow

from surrounding Nepalese populations.
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Background

The Himalaya was first colonised by modern humans
approximately 25,000 years ago [1, 2]. Spanning Tibet,
Nepal, India, Pakistan and Bhutan, the region is home to
a vast number of ethnic groups residing at altitudes
between 3,000 and 5,000 m above sea level.

Nepal is a “multi-ethnic” country, with 125 ethnic groups
recorded in the 2011 Nepalese census [3, 4]. Reflecting this
diversity, Nepal has a complex demographic history and
has long served as a region of asylum due to its landlocked
position between Asia and India. The first documented
tribe in Nepal was the Kirats, a Tibeto-Burmese group that
arrived in the region approximately 2,500 years ago [5].

* Correspondence: gcavalleri@rcsi.ie

'Department of Molecular and Cellular Therapeutics, The Royal College of
Surgeons in Ireland, Dublin, Ireland

Full list of author information is available at the end of the article

( BioMed Central

Evidence suggest the Kirats first resided in Kathmandu but
were forced to migrate to the high altitude terrain of the
Khumbu valley, Eastern Nepal, around the 4th century fol-
lowing invasion by an Indian clan, the Licchavais [5, 6].
The Khumbu valley at the Tibet-Nepal border presents a
challenging physical landscape and harsh environmental
stresses to its residents. Despite this, it remains a well-
populated region of Nepal and is native to the physiologic-
ally adapted ethnic group, the Sherpa. It is thought that the
Sherpa migrated from the Salmo-Gang district of Kham,
Eastern Tibet, to the Solu-Khumbu region of Eastern
Nepal approximately 400—600 years ago due to political
tension between Kham and their Northern neighbours- in
Mongolia [7-9].

Previous studies have applied mitochondrial DNA
(mtDNA) and Y-chromosome genetic systems as tools
to reconstruct historic demographic events in Nepal.
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These studies have pointed to significant genetic struc-
ture across populations dwelling in Nepal. For example,
a South-Central European origin has been attributed to
Y chromosome haplotypes prevalent in the Nepalese
Newar population, interpreted as suggesting gene flow
from India into Nepal. In contrast, haplotypes observed
in the Nepalese Tamang population are commonly ob-
served in Tibetan populations, suggesting ancestry from
the North of the Himalaya [10-12]. These distinct pat-
terns have also been reproduced using mtDNA-based
systems [13] and imply differing ancestral contributions
from Tibet, India and bordering regions to contempor-
ary Nepalese populations. Collectively, these results sug-
gest considerable admixture in the Nepalese population.

The study of autosomal genetic variation appears to
support the theory of admixture in Nepalese popula-
tions. A recent survey of multiple Nepalese and Burmese
populations pointed to significant genetic differentiation
between populations residing within the Himalaya. This
differentiation appeared to be structured according to
the principal linguistic phyla in the region-Tibeto-
Burman and Indo-European, suggesting that both lan-
guage and geography were influencing gene flow in the
region [14]. However, the number of autosomal loci
studied by the authors was limited relative to current
approaches. Further, the origin of gene flow from south
of the Himalaya to Nepal has not been described.

A recent study, using dense autosomal genotype data,
explored the genetic history of Tibetans and Sherpa res-
iding at high altitude [15]. The study identified a com-
mon ancestral component shared between these two
high altitude populations, which was absent from low-
land South or Central Asian populations. The propor-
tion of this ‘high altitude’ ancestral component was
highly enriched in the Sherpa while the Tibetans exhib-
ited admixture of this, and an East Asian component
enriched in the contemporary Han Chinese. A recent
study using mtDNA and Y-chromosome markers also
revealed strong affinities between the Sherpa and
Tibetans [16]. The authors alluded to homogeneity of
particular haplogroups within the Sherpa suggesting a
founder effect from a small number of migrants from a
Tibeto-Burman source population [16]. Despite in depth
analysis of the genetic origins of the Sherpa, there has
been no investigation into the genetic structure of the
Sherpa in the context of their current residence in Nepal.

We set out to describe fine-scale population structure
and admixture of the Sherpa and their neighbouring
Nepalese populations using dense genomic datasets. We
performed a detailed investigation of the genetic archi-
tecture of seven Sherpa villages located in the Khumbu
region of Eastern Nepal and five Nepalese ethnic
groups, which collectively represent the majority of
the Nepalese population.
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Results

Population substructure reflects geographical boundaries
of the Himalaya

We performed principal component analysis (PCA)
(see methods), to provide a broad overview of popula-
tion structure across the Himalaya (see Fig. 1). Four
broad population clusters were apparent; 1) a ‘northern
Himalayan’ cluster consisting of Han Chinese, Tibetans
and the Sherpa, 2) A ‘northwestern’ cluster consisting
of populations of the Pamir mountain range, 3) a
‘southwestern’ cluster consisting of Pakistani and Indian
populations and 4) a ‘central Himalayan’ cluster consisting
of the Nepalese.

The Nepalese as a whole appear as a potentially
admixed population on the PCA, lying between the
‘southern’ (Indian) and ‘northern Himalayan’ (Tibetan)
clusters. Interestingly, the distinct Nepalese ethnic sub-
groups (see Additional file 1: Table S2 for cohort details)
would appear from PCA to have different proportions of
gene flow from the ‘northern’ and ‘southern’ Himalayan
regions. It is noteworthy from the PCA, that the Sherpa
show, virtually zero genetic influence from southern
populations, clustering with the Tibetans and the Han
(see supp Fig. 1). These results are consistent with previ-
ous reports of gene flow in a north to south direction
over the Himalayan barrier into Nepal, with limited gene
flow in the opposite direction [12].

To investigate the extent of population substructure
between the seven Nepalese Sherpa villages in the
Khumbu valley, PCA was performed on Sherpa individuals
only. Genetic substructure was evident across the Sherpa
villages, with individuals from the village of Thame separ-
ating on PCA from members of other villages. The pat-
terns observed from the PCA map well to the geography
of the region (Additional file 2: Figure S2).

Genetic distance and admixture proportions of Himalayan
populations reflect the demographic history of the region
To further our understanding of potential admixture
events in the Nepalese subpopulations, we next con-
ducted a model-based qualitative assessment of ancestry
using the software ADMIXTURE [17]. Based on infor-
mation provided by the PCA analysis, we restricted the
ADMIXTURE analysis to the Sherpa, Nepalese, Tibetans,
Han Chinese and Indians. Results indicate the Sherpa are
a homogenous population, relative to the Nepalese who
appear admixed for ‘northern’ and ‘southern’ Himalayan
ancestry. At k = 6, the best fit of the data, we observed two
ancestral components (red and cyan components in Fig. 2)
specific to individuals from Tibet and Nepal, including the
Sherpa. One of these components is enriched in the
Sherpa (red) and found to be at higher proportions in
Tibetans from Lhasa and the Tuo Tuo River. The second
is enriched in Tibetans, but is also present in the Nepalese
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Fig. 1 Genes mirror the geography of the greater Himalayan region. Legend Fig. 1. PC1 and PC2 explain genetic distance between populations
as directions of variance. This was performed on a thinned dataset of 34,253 SNPs. Each dot represents an individual in the dataset. Each population
is represented by a shape, Tibetans (X), Sherpa (%), Han (O), Nepalese (), Indian (+), Pakistan (A) and the Pamir populations (o). Each of the Indian
ancestral groups as described in Basu et al, 2016, are indicated as follows; [] ANI, + ASI, * AAA, ** ATB. The Nepalese appear as an admixed population
between the northern Himalayan cluster (Tibet, Sherpa and Han) and the southern Himalayan cluster (India and Pakistan), with clear genetic variance
between ethnic subgroups

ANI ASI AAA ATB Nepal Sherpa Tibet Han
e 1 _ 1 1
2
o |
o
§
£ 9o |
o o
Q
<]
o
2
? <
3 o 7
c
<
~
o
o | “
o T T T T T T 1T T 17T 17T T T TTT T 1T T T T T T
D g o xoEY z ox g 30002 X ¥z 322332 T s ¢ s
e EEIE§YigeE e EETIE e BEE %I OF OE 5 8 %
: 3

& E&]

Fig. 2 Fine scale analysis of the Nepalese and Sherpa. Legend Fig. 2. Admixture results for k=6 were plotted for the best fit of the data. The x-axis
labels each ethnic group or village (see Additional file 2: Table S2 for IDs). The labels above the plot indicate the main population groups; The Indian
ancestral groups are defined as in Basu et al, 2016, ANI (ancestral north India), ASI (ancestral south India), AAA (ancestral Austro-Asiatic), ATB (ancestral
Tibeto-Burman). The red component reflects the ‘ancestral high altitude component’ previously reported by Jeong, Alkorta-Aranburu (14). Our Nepalese
cohort shows similar ancestral components to Indians of Tibeto-Burman ancestry (17). (36,330 SNPs)
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and Sherpa (cyan). We believe these two components
broadly reflect the ‘ancestral high altitude component’
previously reported by C Jeong et al, [15]. We also note
the Sherpa from Thame as being enriched for the red
component, while the Sherpa from the remaining
Nepalese villages show admixture of the two ancestral
components specific to highlanders.

A recent study of Indian population structure described
four ancestral components associated with contemporary
mainland Indian populations [18]. Given the apparent
Indian ancestry in the Nepalese populations studied here,
we asked which of these four Indian ancestral components
were most prevalent in the Nepalese populations. We
began by identifying the four Indian ancestral components
in the ADMIXTURE analysis, using the same dataset as
the original report [18]. The vast majority of the Nepalese
populations we studied associated most closely (on both
PCA and ADMIXTURE) with the Tibeto-Burman Indians
(ATB) located in Northeast India. The exceptions are the
Sherpa (who have no significant Indian ancestry) and the
Indo-Aryan, who show affinity with the Ancestral North
India (ANI) group. We note that the ‘ancestral high alti-
tude component’ is present within ATB ancestry (cyan in
Fig. 2), indicating a significant influence on the Northern
Indian genepool from ancestral populations dwelling on
the Himalayan plateau.

We next calculated a 3-population Fg (F3) to quantify
population differentiation across the Himalaya observed
by PCA and admixture (Additional file 1: Table S3).
Increased F3 values indicate recent shared ancestry
between a pair of populations. F3 results correlate well
with the patterns observed via PCA. The largest F3 values
were observed between the Han and Tibetans, and the
Sherpa and Tibetans, reflecting the recent common ances-
try of these pairs of populations [15]. We performed a
fine-scaled 3-population F; between Indian and Nepalese
ethnic groups (Additional file 1: Table S4). Interestingly
the Nepalese in general appear closer genetically to the
Tibetans than to Indian populations, suggesting strong
Tibetan origins of at least some of the indigenous Nepalese
ethnic groups. Weir and Cockerhams pairwise F; was then
calculated on a micro scale to measure genetic variance
between the five Nepalese ethnicities and the Sherpa of the
Khumbu valley. This identified the Rai, followed by the
Magar and Tamang as the genetically closest Nepalese
ethnic groups to the Sherpa (Additional file 1: Table S5). It
is noteworthy that the Magar are believed to have
originally migrated from the same region of Tibet as
the Sherpa [19].

Subpopulations of Nepal show various degrees of
admixture

To determine which Indian ethnic subgroup was the
strongest contributor to the ‘Southern’ component
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observed in the Nepalese population as a whole (the
subgroups included in the ‘Nepalese’ population are
defined in the methods, cohort section on Nepal), we
performed a 3-population test using two source popula-
tions, Tibetans (representing Northern-Himalaya) and
each of the four ancestral Indian ethnic groups (ANI,
ASI, AAA and ATB) (representing ‘Southern Himalaya’).
We identified significant signals of admixture (Z < -5) in
the Nepalese for northern and southern Himalayan
ancestry, the most significant admixture event being
between the ANI and Tibetans (Additional file 1:
Table S6). We did not detect a significant signal of
admixture in the Sherpa, but we did confirm the
well-established Han admixture in Tibetans.

To confirm this proposed admixture event in the
broad Nepalese population we modeled a maximum
likelihood tree between our populations of interest using
the software tool Treemix. Results show the Nepalese,
Sherpa and Tibetans to be closely related populations,
with gene flow from ANI into the Nepalese popula-
tion (Fig. 3).

We then applied the d-statistic test to inform on
whether Tibetan ancestry in Nepalese populations was
the result of gene flow from Tibet in to Nepal, or rather
Nepal into Tibet. Results suggested much stronger gene
flow from Tibet in to Nepal, rather than from Nepal in
to Tibet (Additional file 1: Table S7).

Next, we quantified the proportions of admixture in the
Nepalese ethnic groups using the F4-ratio estimation. We
assigned the Tibetans and the ANI as ancestral source
populations for the Nepalese, based on 3-population test
results. The Newar appeared as the most admixed
Nepalese ethnic group, with similar proportions of
Tibetan and ANI ancestry (Table 1). The Rai, Magar
and Tamang showed 92%, 82% and 79% Tibetan an-
cestry, respectively. The Indo-Aryan showed 93% ANI
ancestry. These ancestral proportions are consistent
with results from our PCA and Admixture analysis.
These admixture proportions reported here across
Nepalese subpopulations also concur with demographic lit-
erature of Nepal and previous mtDNA and Y-STR studies
(see supp cohort description for Additional file 3) [10, 14].

The (Tibetan-ANI) admixture events were then dated
in the admixed Nepalese subgroups (Newar, Magar and
Tamang) using Rolloff [20]. Results correlate well with
the documented arrival dates of these ethnic groups to
Nepal [6, 21]. Assuming a generation time of 30 years,
our analysis dated an admixture event to have occurred
in the Newar 1,504 YBP (years before present, 50.13
generations), which correlates well with historical
records that have suggested the Newar have resided in
Nepal since the early 4th century [21, 22]. We dated
admixture events for the Tamang and Magar as 1233
YBP (41.09 generations) and 866 YBP (28.87 generations)
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respectively. These dates correlate well will historical
records that suggest the Tamang’s arrival in Nepal around
the 8th century, and the Magar’s in Nepal in the 12th
century [5, 23].

Patterns of homozygosity suggest recent consanguineous
unions in a number of Sherpa and Nepalese subgroups
We investigated the extent of homozygosity in popula-
tions across the Himalaya to shed further light on the
demographic history of the region. Elevated levels of
runs of homozygosity (ROH) can be used to inform on
isolation and consanguinity within a population [24, 25].
We measured ROH for a number of threshold lengths
which can be used to infer the degree of shared parental
ancestry, including ROH > 1mb which are suggestive of
ancient relatedness and > 16mb (ROH16), which are sug-
gestive of recent inbreeding [24].

Notably elevated levels of ROH16 were also observed
in the Sherpa and Nepal cohorts (see Additional file 2:
Figure S4), despite the fact that consangiunous kinships
are traditionally not permitted in these populations [26].
We next measured ROH for each of the Sherpa and
Nepelase subpopulations independently to determine if
particular groups were driving the elevated ROH signal
(see Fig. 4). We observed considerable variability in

Table 1 F4-ratio quantifying admixture in Nepalese ethnic groups

homozygosity levels across subpopulations of the Sherpa
and Nepalese. The Nepalese Indo-Aryan stand out as
having the longest ROH detected across all thresholds
tested. Elevated levels of ROH were also detected in all
the other Nepalese groups (Magar, Rai, Newar and
Tamang), and Sherpa from the villages of Thame, Lukla,
Namche, Forte and Solukhumbu, suggesting both an-
cient and recent shared ancestry as a cause of elevated
homozygosity in these subgroups. The observed patterns
of homozygosity across the ROH thresholds for the
Sherpa from Khumjung and Kunde indicates ancient
shared parental ancestry, most likely due to isolation
and small N, with little recent consanguinity (indicated
by negligible ROH16).

To test for consanguinity within the Nepalese and the
Sherpa subgroups that showed elevated ROH16, we
compared identity by descent (IBD) segments between
pairs of individuals within a population, to ROH within
individuals from the population. Where recent consan-
guinity is present, one would expect a significant
increase in ROH within, compared to IBD between,
members of that population. We set an IBD segment
threshold of 16 Mb as indicative of a recent common
shared ancestor between a pair of individuals. Results
are illustrated in Additional file 2: Figure S5. We found

A O X C A O B C alpha std.err Z

Sherpa Yoruba Indo-Aryan ANI Sherpa Yoruba Tibet ANI 0.073 0.009 7.839
Sherpa Yoruba Rai ANI Sherpa Yoruba Tibet ANI 0.937 0.009 102.944
Sherpa Yoruba Tamang ANI Sherpa Yoruba Tibet ANI 0.792 0.008 97579
Sherpa Yoruba Magar ANI Sherpa Yoruba Tibet ANI 0.872 0011 82.170
Sherpa Yoruba Newar ANI Sherpa Yoruba Tibet ANI 0.521 0.008 65.542

Legend Table 1. We used the F4 ratio to quantify the proportion of admixture in each of our Nepalese populations. Population X is being tested for admixture.
Alpha is the proportion of population B ancestry in population X, while 1 - alpha is the proportion of population C ancestry in population X. See Additional file 2:

Figure S3, a phylogeny, for further explanation
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ROH16 to be significantly greater than IBD16 for the
Nepalese Indo-Aryan supporting consanguinity as an
explanation for observed ROH patterns in that popula-
tion, despite unions between biological kin being prohib-
ited [27]. Although ROH16 was also greater than the
IBD16 for all other Nepalese ethnic groups tested, the
results were not significant. Despite the high levels of
homozygosity previously detected in a number of the
Sherpa subgroups, significant differences between IBD16
and ROH16 suggest this is an artifact of population isola-
tion rather than the practice of consanguineous unions.

Discussion
Our findings reveal that geography has influenced the
shaping of genetic structure in the Himalaya at both a
macro and micro level. The observation from PCA of
four broad population clusters across the Himalaya is
consistent with recent reports [13, 14, 28]. The micro-
level influence of geography is apparent from the PCA
results at the Sherpa village level. We confirm significant
admixture in the Nepalese population as a whole, result-
ing from the mixing of populations from north and
south of the Himalaya. We observed differential pro-
portions of ancestry across the Nepalese subgroups
we studied. We noted the Sherpa as remarkable in
the Nepalese context, in that they have experienced
little or no admixture with other Nepalese populations.
We have illustrated the presence of a Himalayan
ancestry component in contemporary Indian populations,
specifically those defined as Ancestral Tibeto-Burman
(ATB) by Basu et al. [18]. It is interesting to note the large
‘East-Asian’ component in the ATB population, relative to
the Himalayan component (blue vs. cyan in Fig. 2), sug-
gesting the origin of the Himalayan component in ATB is
via a more easterly route (Burma) rather than from Tibet.

In any case it is clear that ancestral populations dwelling
on the Himalayan plateau have had a clear impact on the
Northern Indian gene pool.

Large mountainous regions can be expected to influ-
ence favourable directional gene flow between frontiers.
Physiological stress imposed by high altitude may
restrict gene flow from areas of low altitude to high alti-
tude [12]. However, directional migration may also be an
effect of economic factors or political instability. Results
presented here would suggest a greater penetration of
Himalayan ancestry into the North Indian gene pool
rather than vice-versa. We confirmed high levels of gene
flow into Nepal from north of the Himalayan watershed
by D-statistic analysis, but not in the opposite direction.

Although it is well established that the Nepalese are a
highly admixed population, the extensive structuring of
admixture across subpopulations has not previously
been described. We identified the Rai, Magar and
Tamang to carry the greatest proportions of Tibetan
ancestry, respectively. These three Nepalese ethnici-
ties have been recognized to have Tibetan origins,
and all speak Tibeto-Burman languages [8, 19, 29].
The Indo-Aryan, an Indo-European Nepalese ethnic
group, strongly resemble the ANI populations given their
large component of north Indian ancestry identified by
admixture and the F4-ratio.

Despite the Sherpa’s residence in Nepal for the past
400-600 years, the Sherpa remain as an isolated
homogenous population with little or no gene flow from
their immediate Nepalese neighbours or any populations
south of the Himalaya. The Sherpa genome is enriched
for the previously reported ‘high altitude ancestral com-
ponent’ [15] (Fig. 2), reflecting common ancestry with
Tibetans and migration from Tibetan before the more
recent movement of northern populations in to Tibet.
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As an isolated and relatively small community, drift will
play a major role in shaping the Sherpa genome.

We detected considerable levels of autozygosity within
the Sherpa and their neighboring Nepalese populations.
The patterns of ROH we observed across the majority of
Sherpa and Nepalese subpopulations indicate both
ancient and recent parental relatedness. IBD analysis
confirmed that the Nepalese Indo-Aryan appear to be
the only significant consanguineous subgroup. We be-
lieve the elevated IBD16 in the Sherpa reflects a history
of population isolation due to the remote location of
high altitude villages in eastern Nepal and is also sug-
gestive of founder effect [30]. This can be supported by
recent findings identifying internal homogeneity for par-
ticular mtDNA and Y chromosome haplogroups during
the origin of the Sherpa [16, 31, 32].

We note an important limitation of our study: that of
the 125 recognized ethnic groups in Nepal [4], we only
considered a subset. Thus, whilst our results inform on
ethnic groups to which the majority of the population
are members, we have studied a minority of the ethnic
groups present in Nepal.

Conclusion

In summary, analysis presented here illustrates the im-
pact of broad Himalayan geography on genetic structure
in the region. Significant gene flow from north of the
Himalaya to Nepal is clearly evident, with relatively little
gene flow in the opposite direction. Ethnic subgroups
within Nepal show distinct genetic structure, reflecting
differing histories of admixture and isolation. The
Sherpa appear as a remarkably isolated population, with
little gene flow from surrounding Nepalese populations.

Methods

Cohorts

Nepal

The 2011 Nepalese census recorded 125 distinct ethnic
groups [4]. Using this census data and descriptors of the
“Nepal Federation of Indigenous Nationalities”, we
selected the most common indigenous Nepalese ethnic
groups that collectively represent approximately 50% of
the population of the Eastern Mountain and Hill Region
of Nepal (Additional file 1: Table S1) [4, 33]. The four
Nepalese populations selected based on census data
were as follows; Rai (n=20), Magar (n=10), Tamang
(n=18) and Newar (n=17). We also included the
Indo-Aryan (n=11) considering their close ethnic
relation to the Newar [34]. For the purpose of down-
stream genetic analysis these Nepalese ethnic groups
were merged to form the “Nepal” cohort. Nepalese
ethnic groups were recruited from regions in close
proximity to the Sherpa including Lukla, Solukhumbu
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and Kunde. For additional information on the Nepalese
cohort see Additional file 3 [35-40].

Sherpa
We established a cohort of 118 Sherpa from three
distinct recruitment efforts, including 49 previously
genotyped individuals [15]. The Sherpa were sampled
from seven high altitude villages in the Khumbu
region of Eastern Nepal, namely Thame (n=43),
Khumjung (n=30), Namche (n=19), Lukla (n=9),
Khunde (n =7), Forte (n=3) and Solukhumbu (n =7).
Details of two of these recruitment efforts have been
described previously [15, 41]. We will refer to these
samples collectively as the “Sherpa” cohort.

For fine scale population analysis we have catagorised
the Sherpa by village and the Nepalese by their ethnic
group (see Additional file 1: Table S2).

Tibetans

We extended our cohort to include other populations
representing the greater Himalayan region. We included
formerly genotyped Tibetans from Lhasa (n=29),
Yunnan (# =35), Tuo Tuo river (n=46), Maduo (31),
and Tibetans resident in the UK (n = 27) [42—-45].

Pamir

Previously genotyped individuals representing popula-
tions along the Silk Road were also included, considering
their cultural and economic ties with populations of
Central Asia [46]. These consisted of individuals from
Alga and Almaty in Kazakhstan (#=59), Bukhara,
Karshi, and Tashent in Uzbekistan (n=283), Shing,
Zeravshan, Kalaikhum, Khorog, and Rushan in Tajikistan
(n =83) and Krakoi and Kara-koo in Kirghizstan (n = 184).
We refer to these populations collectively as the
“Pamir” cohort.

Other Asian cohorts

We also included genotype data for 331 individuals from
18 mainland Indian populations kindly provided to us by
Basu et al. [18] and individuals from the Human Gen-
ome Diversity Project to include the Han (Beijing China,
n =44), and individuals from Lahore (Pakistan, 7 = 168).
See Additional file 1: Table S2 for detailed information
of recruitment sites for all individuals included in the
analysis.

Isolation of white blood cells and DNA purification from
buffy coat

DNA isolation and purification was completed for 36
Nepalese and 21 Sherpa (from Lukla, Solukhumbu and
Kunde). Venous blood was collected from each subject
in 2 ml EDTA vacuettes. White blood cells were isolated
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following a standard lysis protocol and DNA was puri-
fied using the QIAamp DNA mini kit, Qiagen.

Genotyping

Genotyping was performed on 82 Nepalese, and 69 Sherpa
individuals at the Wellcome Trust clinical research facility,
Edinburgh. The Illumina OmniExpressExome BeadChip
8v1-2 system captured 964,193 SNPs.

Genotype quality control

Quality control (QC) was performed in PLINK V1.07
[47] on each population individually before merging. In-
dividuals and SNPs with genotype call rate of <95% were
excluded. SNPs with a minor allele frequency <2% or
with a Hardy-Weinberg p <0.001 were excluded. Indi-
viduals in each population were checked for cryptic
relatedness and where identity by descent (IBD) scores
of >0.125 (3rd degree relative) were identified one from
each such pair was removed. An exception to this IBD
filter was made for the Sherpa where an IBD score
<0.180 was accepted since the Sherpa seemed in general
to have a higher degree of cryptic relatedness, possibly
due to the isolation of the villages and small population
numbers [48, 49]. Individual populations were then
merged for analysis using only a common subset of
SNPs, and QC was repeated using the same criteria.

For downstream analysis we refer here to ‘full’ or
‘thinned’ datasets. The ‘full’ dataset is that where all
SNPs that passed standard QC were used, including the
SNPs that are in high linkage disequilibrium. The
‘thinned’ dataset was prepared in PLINK, on the merged
population datasets. Linkage disequilibrium was calcu-
lated (r*) between each pair of SNPs in a 1000 SNP
window, and one of a pair of variants dropped from the
dataset where LD (r*) between that pair was >0.8. The
sliding window was then shifted 50 SNPs and the
process repeated throughout the entire dataset.

The final, post-QC dataset consisted of 1245 individ-
uals comprising of 103 Sherpa, 76 Nepalese (across five
ethnicities; 17 Rai, 10 Magar, 18 Tamang, 17 Newar and
10 Indo-Aryan), 137 Tibetans, 44 Han, 168 Pakistan, 326
Indians (across 18 mainland Indian ethnic groups as
described in Basu et al, [18], 59 Kazakhstani, 83
Uzbekistani, 83 Tajikistani and 184 Kirghizistani.

Principal component analysis

Principal component analysis (PCA) was performed on
the ‘thinned’ dataset using routines available via
Genome-wide Complex Trait Analysis (GCTA) [50].
Results were plotted using Matlab R2011a.

Admixture
Maximum likelihood estimation of individual ancestries
was run using the software package ADMIXTURE [17].
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Using our thinned dataset, values of K = 2—-9 were run in
replicates of 100, using different random seeds. K repre-
sents the number of ancestral components to be
inferred. Cross-validation (CV) errors and log likelihood
values were recorded for each replicate. The top ten log
likelihood values do not differ >1 and the lowest CV
error was chosen, for each K value and plotted, as the
best estimation of ancestral fit.

AdmixTools

To quantify admixture events between populations we
applied the 3-population test, d-statistic, F4 ratio estima-
tion and Rolloff following standard protocols as imple-
mented in the software package AdmixTools (V. 3.0)
[20]. All these analysis were performed on the ‘full’ data-
set. We used the 3-population test (a generalisation of a
3-population F-statistic) to measure genetic variance
between pairs of populations across the Himalaya, the
Yoruba were used as an outgroup [51]. We also used
this test to identify admixture within a target population,
from two ancestral source populations [52]. For Nepalese
subgroups that we identified to be admixed, we used the
d-statistic to identify the direction of gene flow [53]. The
HGDP Yoruba Africans were used as an outgroup popula-
tion and the Tibetans and Indians were assigned as the
ancestral source populations to investigate gene flow from
north and south of the Himalaya. To then quantify admix-
ture proportions the F4 ratio estimation was implemented
[20, 52]. We used the HGDP Africans as the population
outgroup. This method is similar to the d-statistic but
assumes the correct historical phylogeny for the given
populations [20, 52]. To support our proposed historical
population model we used treemix to verify the historical
population relationships. Finally we dated the time since
the admixture event in our admixed populations using the
rate of exponential decay of admixture LD computed by
the package Rolloff, again using Tibetans and ANI Indians
as reference populations for admixture, we used a
generation time of 25 years [54, 55].

Treemix

To model gene flow patterns between populations north
and south of the Himalaya into Nepal we used the soft-
ware tool Treemix (V 1.12) [56]. This was performed on
our full dataset of (53,522 SNPs) using populations from
Tibet, China and India and our Nepalese populations
including the Sherpa. We used a standard protocol as
outlined in the software tool. We found the best fit to
represent the data was to allow three migration events.

The fixation index

Weir and Cockerham’s pairwise Fy was used to measure
population differentiation [57]. F calculations were
performed on the “thinned” datasets.
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Runs of homozygosity

We performed ‘runs of homozygosity’ (ROH) analysis in
PLINK, applying the following parameters: a cross-
genome sliding window of 5 Mb, allowing 1 heterozygous
and 5 missing calls through a ROH. A density of SNP
coverage within the ROH was set as no more than 1 SNP
per 50 kb. Thresholds for accepting ROH, were set to
runs of at least 100 consecutive homozygous SNPs
spanning lengths of 1, 5, 10 and 16 Mb of the
genome. The total mean ROH length across the
genome was then calculated per population and plotted
using Matlab. All ROH analysis was performed on the
“full” datasets, 201,573 SNPs and 637,670 SNPs for
the Sherpa and Nepalese.

Testing for consanguineous unions

We tested for consanguineous unions by comparing
identity-by-descent (IBD) runs between pairs of individ-
uals within a population, to IBD runs within individuals
(i.e., ROH) of the same population. Where consanguineous
unions are common in a population, one expects longer
ROH within, compared to IBD between individuals of that
population. We used default parameters in PLINK (v1.07)
to calculate IBD segments between individuals on a “full”
dataset, and ROH within an individual was calculated as
described above. We specified a segment-length threshold
of >16 Mb for both ROH and IBD, as recent consanguinity
would generate runs above this threshold. Where pairs of
individuals did not share segments of IBD satisfying the
threshold we assigned a value of zero. IBD segment values
were summed for all autosomes between each pair of indi-
viduals. The summed IBD segments between pairs were
compared to the ROH within individuals using a two-
tailed unequal variance T-test.

Additional files

Additional file 1: Tables.doc. This contains seven supplemental tables.
(DOC 261 kb)

Additional file 2: Figures.doc. This contains four supplemental figures.
(DOC 382 kb)

Additional file 3: Cohort Description.doc. Supplemental cohort
description includes cohort description of Nepalese ethnic groups.
(DOC 34 kb)
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