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Abstract  

The GABAA receptor is the main mediator of inhibitory neurotransmission in the 

central nervous system. Its activity is regulated by various endogenous molecules 

that act either by directly modulating the receptor or by affecting the presynaptic 

release of GABA. Neurosteroids are an important class of endogenous 

modulators, and can either potentiate or inhibit GABAA receptor function. 

Whereas the binding site and physiological roles of the potentiating neurosteroids 

are well characterised, less is known about the role of inhibitory neurosteroids in 

modulating GABAA receptors.  

Using hippocampal cultures and recombinant GABAA receptors expressed in 

HEK cells, the binding and functional profile of the inhibitory neurosteroid 

pregnenolone sulphate (PS) were studied using whole-cell patch-clamp 

recordings. 

In HEK cells, PS inhibited steady-state GABA currents more than peak currents. 

Receptor subtype selectivity was minimal, except that the ρ1 receptor was largely 

insensitive. PS showed state-dependence but little voltage-sensitivity and did not 

compete with the open-channel blocker picrotoxinin for binding, suggesting that 

the channel pore is an unlikely binding site. By using ρ1-α1/β2/γ2L receptor 

chimeras and point mutations, the binding site for PS was probed. All chimeras 

and mutants remained sensitive to PS, raising the question as to whether 

modulation could be due to indirect interactions between PS and the cell 

membrane. In hippocampal neurones, the major postsynaptic effect of PS was to 

increase the IPSC decay rate. However, PS also increased GABA release by 

activating presynaptic TRPM3 receptors. Upon block of TRPM3, GABA release 

was reduced by PS due to potentiation of presynaptic Kir2 channel activity.   

In conclusion, PS directly modulates GABAA receptor kinetics by speeding up 

current decay at both neuronal and recombinant receptors. At inhibitory 

synapses, PS can enhance or inhibit GABA release by acting at TRPM3 or Kir2 

channels respectively.  
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Chapter 1: Introduction 

This introduction reviews the physiological role, structure, function and 

distribution of type A γ-aminobutyric acid receptors (GABAARs) in the brain, and 

discusses the roles different types of neurosteroids can have in modulating 

inhibitory neurotransmission, with an emphasis on the inhibitory neurosteroids.   

1.1. GABAA receptors 

γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, 

and exerts its actions via activation of two different classes of receptor: the 

pentameric ligand-gated ion channel (pLGIC) known as the GABAA receptor, and 

the G protein-coupled GABAB receptor (Olsen and Sieghart, 2008). The 

ionotropic GABAA receptor is the major inhibitory receptor in the central nervous 

system (CNS), and is a Cl-- (and HCO3
--) selective ion channel that generally 

allows the rapid influx of anions into the cell upon binding of and activation by 

GABA (Farrant and Kaila, 2007). The metabotropic GABAB receptor (GABABR) 

activates various effector systems depending on which G protein(s) it is coupled 

to, including inwardly-rectifying K+ channels, voltage-gated Ca2+ channels and 

adenylate cyclase (Bowery et al., 2002; Bettler et al., 2004). The GABAAR family 

forms the main topic of this thesis, and its structural, physiological and 

pharmacological characteristics will be explored further below.  

1.1.1. GABAA receptor structure and distribution 

The GABAAR is part of the pLGIC family along with other mammalian Cys-loop 

receptors, including the nicotinic acetylcholine receptors (nAChRs) (Corringer et 

al., 2000), glycine receptors (GlyRs) (Breitinger and Becker, 2002), type-3 5-

hydroxytryptamine receptors (5-HT3R) (Davies et al., 1999; Thompson and 

Lummis, 2006) and the Zn2+-activated cation channel (ZAC) (Davies et al., 2003). 

Cys-loop receptors are so termed because they contain a highly conserved 

structural motif in the extracellular domain (ECD) – a loop formed by a disulphide 

bridge (Smart and Paoletti, 2012). Invertebrate receptors activated by glutamate 
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and serotonin (anionic channels) or GABA (cationic channels) are also Cys-loop 

receptors, whilst the bacterial homologues, Gleobacter violaceus (GLIC) and 

Erwinia chrysanthemi (ELIC), lack the disulphide bridge and are therefore 

pLGICs but not Cys-loop receptors (Hilf and Dutzler, 2008; Bocquet et al., 2009).  

The structure of pLGICs has in the recent years been elucidated by high-

resolution structures from X-ray crystallography and electron microscopy of 

different members of the family. These include structures of the molluscan 

acetylcholine-binding protein (AChBP) (Brejc et al., 2001), the Torpedo nAChR 

transmembrane domain (TMD) and receptor (Miyazawa et al., 2003; Unwin, 

2005), the human nACh α4β2 receptor (Morales-Perez et al., 2016), the 

Caenorhabditis elegans (C. elegans) glutamate-activated Cl- channel α 

homopentamer (GluClα) (Hibbs and Gouaux, 2011; Althoff et al., 2014), the 

mouse 5-HT3R (Hassaine et al., 2014), GLIC (Bocquet et al., 2009; Nury et al., 

2011; Sauguet et al., 2014), ELIC (Pan et al., 2012; Ulens et al., 2014) and the 

human (α3) and zebrafish (α1) GlyRs (Du et al., 2015; Huang et al., 2015). The 

human GABAAR β3 subunit has also been crystallised as a homomer bound to 

the agonist benzamidine in a presumably desensitised state (Miller and Aricescu, 

2015). In addition to providing information about structure and topology, these 

crystal structures also provide insight into the molecular mechanisms of receptor 

activation, closure and desensitisation of the channels. Furthermore, some of 

these receptors have been co-crystallised with agonists, inhibitors and 

modulators, revealing the binding sites for these pharmacological agents. Crystal 

structures are also frequently used to form templates for receptor homology 

models, as explored in Chapter 4 (Fig. 4.2 and 4.10).  

The amino acid sequences of eukaryotic and prokaryotic pLGICs show a 

sequence homology of about 18-20%, reflecting their phylogenetic distance 

(Corringer et al., 2012). The pLGICs show a common transmembrane topology, 

and many residues and motifs are conserved between members, demonstrating 

their essential roles in structure and function. Within the eukaryotic Cys-loop 

receptor superfamily, sequence homology can be up to 30%, but the similarity is 

even greater at the level of secondary and tertiary structures (Olsen and Sieghart, 

2008). Each subunit contains a large hydrophilic amino (N)-terminal ECD, a TMD 

formed of four hydrophobic transmembrane α-helices (M1-M4) with a large 
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intracellular loop linking the M3 and M4 helices, and a relatively short extracellular 

carboxy (C)-terminus, as demonstrated for the GABAA receptor in Figure 1.1. The 

M2 helix of each subunit lines the channel pore, and the residues of this segment 

are named with prime numbers so that the residue at the N-terminal end is 

designated 0’, corresponding to arginine 254 in the GABAAR α1 subunit. 

There are 19 genes for GABAARs identified in the human genome, including α1-

6, β1-3, γ1-3, δ, ε, θ, π and ρ1-3 (the latter formerly known as the GABAC 

receptor) (Olsen and Tobin, 1990; Simon et al., 2004; Olsen and Sieghart, 2008). 

Additionally, some species, including birds, express β4 and γ4, but lack θ and ε 

subunits. These genes are probably orthologues, with the β4 subunit likely having 

evolved into the θ subunit in mammals, and the γ4 subunit having evolved into 

the ε subunit (Simon et al., 2004). Within a family of subunits (e.g. α1-6), there is 

about 70% sequence homology, and between members of different families, 20% 

sequence homology.  

Some GABAAR subunits are expressed in two forms following alternative splicing, 

allowing for further subunit diversity (Simon et al., 2004; Olsen and Sieghart, 

2008). Notably, the γ2 subunit can exist in a long (γ2L) and short (γ2S) version, 

the first containing an extra eight amino acid sequence in the M3-M4 intracellular 

loop with the consensus sequence for phosphorylation by protein kinase C (PKC) 

(Whiting et al., 1990). Thus, alternative RNA splicing allows for the generation of 

subunits that are differentially regulated in different types of tissue (Olsen and 

Sieghart, 2008). Alternative splice variants are also found for the α3-5, β2, ρ1, γ3 

and ε subunits, though the functional significance of these variants remains 

unclear.   
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Figure 1.1 – The structure of the GABAA receptor. 

A. The topology of a GABAAR subunit: each GABAA receptor subunit has a large amino (N)-

terminus, four transmembrane helices (M1-M4) forming the TMD, an intracellular M1-M2 linker, 

extracellular M2-M3 linker, large intracellular loop connecting the M3 and M4 helices and a short 

carboxy (C)-terminus. B. Transmembrane helices are arranged so that M2 lines the channel pore, 

with the more hydrophobic M1, M3 and M4 helices facing the lipid membrane. The channel can 

conduct Cl- and HCO3
- ions in either direction. C. The GABAA receptor is a pentameric assembly 

of subunits, the most common stoichiometry and arrangement likely being γ/δαβαβ in the 

clockwise direction viewed externally above the plane of the membrane. D. The arrangement of 

subunits and transmembrane helices within subunits, showing the M2 segment lining the central 

channel pore, and the γ/δαβαβ arrangement of the subunits.  
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Though some GABAA receptor subunits can express as homomeric functional 

receptors in vitro (e.g. β2/3) (Krishek et al., 1996b; Wooltorton et al., 1997), 

receptors are commonly comprised of more than one type of subunit under 

physiological conditions. The exception is ρ1-3, which expresses mostly as a 

homopentamer also in vivo (Enz and Cutting, 1999; Greka et al., 2000). The most 

likely subunit stoichiometry for heteromeric GABAA receptors is  (α)2(β)2(γ), with 

γ sometimes being replaced with δ, π or ε (Tretter et al., 1997; Olsen and 

Sieghart, 2008; Fritschy and Panzanelli, 2014; Patel et al., 2014). The existence 

of receptors containing other subunit stoichiometries, or binary constructs of α 

and β subunits only, is also likely (Mortensen and Smart, 2006; Wagoner and 

Czajkowski, 2010; Fritschy et al., 2012; Fritschy and Panzanelli, 2014). 

Although the availability of 19 different subunits could potentially allow for a huge 

diversity in GABAA receptor subunit combinations, a limited number of native 

subunit combinations appear to exist in the CNS, presumably as a result of rules 

for subunit assembly (Fritschy et al., 2012; Fritschy and Panzanelli, 2014). 

Studies using immunoprecipitation with extracts from specific brain regions, 

immunohistochemistry, immunocytochemistry and in situ hybridisation have 

shown that there are at least ~36 distinct GABAA receptor subtypes in CNS 

neurones. The distribution of subunits varies throughout development, between 

species, between brain regions and between neuronal compartments (Laurie et 

al., 1992a, 1992b; Wisden et al., 1992; Pirker et al., 2000; Hörtnagl et al., 2013). 

The α1-6 subunits largely participate in forming distinct receptor subtypes, each 

with distinct distribution patterns that only partially overlap with that of other α 

subunits. The majority of native GABAA receptors are composed of α1β2γ2 

subunits (40-60%), with the other common subunit combinations being α2β2γ2 

(15-20%), α4βδ/γ2 (<5%) and α6βδ/γ2 (<5%) (Fritschy and Mohler, 1995; 

McKernan and Whiting, 1996; Sieghart and Sperk, 2002). There is also evidence 

from co-immunoprecipitation studies that two α subunits can co-assemble to form 

a receptor, e.g. α1α6β2γ2L in adult rat cerebellum (Pollard et al., 1995) 

(Reviewed in Sieghart and Sperk 2002). The β2 and β3 subunits largely overlap 

with the α1 and α2 subunits, whereas the β1 subunit is expressed at much lower 

levels, but in multiple brain regions (Fritschy and Mohler, 1995; Hörtnagl et al., 

2013). The γ2 subunit also has an almost ubiquitous expression pattern, and can 
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co-assemble with the vast majority of GABAAR subtypes (Fritschy et al., 2012; 

Fritschy and Panzanelli, 2014). Receptors in which the γ2 subunit is replaced by 

γ1, γ3, δ, or indeed π or ε, are less common (Sieghart and Sperk, 2002; Farrant 

and Nusser, 2005). The π and θ subunits may co-assemble with αβγ receptors 

to form receptors containing subunits from four families (Bonnert et al., 1999; 

Neelands and Macdonald, 1999).  

The subunit combination of GABAARs largely dictates their regional and 

subcellular distribution. Immunofluorescence and electron microscopy (EM) 

using immunogold embedding methods have shown that αxβxγ2L receptors are 

enriched in the postsynaptic membrane of GABA-containing synapses in many 

brain regions, including the cerebellum, globus pallidus, hippocampus and 

neocortex (Craig et al., 1994; Nusser et al., 1995, 1999; Farrant and Nusser, 

2005). However, no receptors have been shown to have an exclusively synaptic 

location. Even the α1β2/3γ2L receptor, which is highly enriched at synapses, has 

a higher number outside than inside the synapse (Nusser et al., 1995).  

In contrast, some receptors do not appear to accumulate at the synapse (Fig. 

1.2). For instance, δ-containing receptors have been shown to exclusively exist 

in the extrasynaptic somatic and dendritic membranes of cerebellar granule cells 

(Nusser et al., 1998), and at extrasynaptic and perisynaptic sites in hippocampal 

CA1 pyramidal neurones and dentate gyrus granule cells (Wei et al., 2003; 

Scimemi et al., 2005). The δ subunit forms receptors with α6 and β2/3 in the 

cerebellum, and with α4 and βx in different forebrain structures, including the 

thalamus, neostriatum, CA1 and dentate gyrus of the hippocampus (Wei et al., 

2003; Scimemi et al., 2005; Hörtnagl et al., 2013; Fritschy and Panzanelli, 2014).  
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Figure 1.2 – Synaptic and extrasynaptic locations of GABAA receptors. 

When GABA-containing synaptic vesicles fuse with the presynaptic membrane of a nerve 

terminal, GABA is released into the synaptic cleft. Synaptic receptors (α1-3βγ) experience the 

highest concentration of GABA (~1-3 mM) and are activated immediately following release to 

produce phasic currents. These receptors cluster at the postsynaptic density due to interactions 

with gephyrin (Luscher et al., 2011; Mukherjee et al., 2011). Peri- (α5βγ) and extrasynaptic (αβδ) 

receptors are exposed to a lower concentration of GABA (~100 nM), and produce a smaller and 

more persistent tonic current. α5-containing receptors cluster outside the synapse by interacting 

with phosphorylated radixin (Hausrat et al., 2015). When radixin is dephosphorylated, the α5-

containing receptors can translocate to the postsynaptic density and contribute to synaptic 

currents.  

Although the γ2 subunit targets GABAARs to the postsynaptic density where the 

receptor is clustered and stabilised by the GABAAR-associated protein gephyrin 

(Tyagarajan and Fritschy, 2014), α5β3γ2L receptors are predominantly found in 

peri- and extrasynaptic locations in hippocampal pyramidal neurones, showing 

that the α5 subunit can override the tendency of γ2 to promote synaptic clustering 

(Brünig et al., 2002; Glykys et al., 2008). Gephyrin interacts directly with the α1-

3 subunits rather than the γ2 subunit (Mukherjee et al., 2011), which may in part 

explain why α5-containing receptors can cluster outside the synapse. Peri- and 

extrasynaptic clustering of α5-containing receptors is regulated by radixin, a 
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protein that interacts with the actin cytoskeleton (Luscher et al., 2011). In its 

phosphorylated state, radixin clusters these receptors in the extrasynaptic 

membrane, but if radixin is dephosphorylated, α5-containing receptors 

translocate to the postsynaptic density where they can contribute to synaptic 

currents (Hausrat et al., 2015). Furthermore, α3-containing receptors can also 

exist both synaptically and extrasynaptically (Brünig et al., 2002). α2-containing 

receptors are selectively enriched at the axon initial segment of hippocampal 

pyramidal neurones (Nusser et al., 1996; Panzanelli et al., 2011), but the 

composition of GABAARs at the axon initial segment is likely to differ between 

brain regions (Gao and Heldt, 2016). In conclusion, receptors containing the γ2 

subunit co-assembled with α1-3 and β2/3 predominantly exist at inhibitory 

synapses and mediate phasic inhibition, whereas receptors containing the α4-6 

subunits (α4βxδ, α5βxγ2, α6βxδ) are predominantly or exclusively peri- and 

extrasynaptic, mediating tonic inhibition. Phasic and tonic modes of inhibition are 

further discussed in section 1.1.3. 

GABAARs also exist in the presynaptic membrane on distal axons and terminals, 

and play a role in regulating neuronal synchronisation and mediation of 

presynaptic afferent depolarisation (Fritschy and Panzanelli, 2014), and in 

regulating neurotransmitter release in some cell types (Bowery and Smart, 2006). 

These receptors are hardly detectable by immunohistochemistry, and the subunit 

composition of these is therefore not fully characterised (Kullmann et al., 2005).  

1.1.2. Assembly and trafficking of GABAA receptors 

The assembly of GABAARs occurs in the endoplasmic reticulum (ER), and the 

specificity of this process limits the number of subunit combinations that become 

available in the plasma membrane (Luscher et al., 2011). This process is 

regulated by residues in the N-terminal domain in each subunit, and is aided by 

ER-associated chaperones such as calnexin. Regulating the cell surface 

expression of GABAARs is a complex and important process that ultimately 

determines cell surface receptor numbers and regulates the efficacy of 

GABAergic neurotransmission. This process depends on the interaction of α and 

β subunits with PLIC-1 (protein that links integrin-associated protein with the 
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cytoskeleton-1) and PLIC-2, proteins that interfere with ubiquitination of 

substrates at the ER and prevent ER-associated degradation of subunits, leading 

to enhanced cell surface expression (Bedford et al., 2001). Other proteins that 

facilitate the delivery of GABAARs to the plasma membrane include the 

HAP1/KIF5 (huntingtin-associated protein-1/kinesin motor protein 5) complex 

and GABARAP (GABAAR-associated protein). The KIF5/HAP1 complex is 

believed to be important for the fast delivery of GABAARs to synapses 

(Twelvetrees et al., 2010), along with GABARAP which also appears to promote 

the transport of GABAARs to the cell surface (Kittler et al., 2001; Leil et al., 2004).  

The level of GABAAR surface expression is also regulated by clathrin-mediated 

endocytosis and receptor recycling, and the dynamics of these processes 

underlie both physiological and pathological adaptations of neuronal excitability 

(Luscher et al., 2011; Vithlani et al., 2011). The process of endocytosis is 

complex, and involves various adaptor proteins, e.g. clathrin adaptor protein AP2, 

with interacts directly with GABAAR β and γ subunits. This interaction is further 

regulated by phosphorylation of the subunits by various kinases, including Akt, 

protein kinase A (PKA) and PKC. Thus, various physiological processes can 

regulate GABAAR endocytosis and expression levels by activating kinases via G 

protein-coupled receptor (GPCR)- or receptor tyrosine kinase-mediated 

signalling.  

Whether receptors get recycled or degraded following endocytosis, is, along with 

an array of other signalling molecules, regulated by interaction of the β subunit 

with HAP1, which interferes with the degradation of endocytosed GABAARs, 

thereby increasing recycling (reviewed in Luscher et al. 2011 and Vithlani et al. 

2011). As endocytosis and exocytosis do not form part of this project, this will not 

be discussed any further here.  

It is generally believed that GABAARs can only be removed from or inserted into 

the membrane at extrasynaptic sites, making lateral mobility of receptors 

essential for recruitment to the postsynaptic density (Thomas et al., 2005; 

Bogdanov et al., 2006). This allows receptors to move into and away from the 

synapse, and partly explains why a larger number of receptors that tend to cluster 

at the synapse (α1-3βxγ2) can exist outside than in the postsynaptic density. The 
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distribution of GABAARs at synaptic and extrasynaptic locations depends on both 

the subunit composition of the receptor, and the interaction of subunits with the 

postsynaptic scaffold, including gephyrin and radixin (Luscher et al., 2011; 

Mukherjee et al., 2011; Tyagarajan and Fritschy, 2014; Hausrat et al., 2015).  

1.1.3. Tonic and phasic inhibition mediated by GABAA receptors 

As already discussed, the subunit composition of GABAARs determines their 

localisation within a neurone, as well as between regions of the brain. Receptors 

that cluster in the postsynaptic density (α1-3βγ) take part in meditating a fast and 

transient form of inhibitory transmission known as phasic inhibition, and manifest 

as inhibitory postsynaptic currents (IPSCs). In contrast, receptors residing in the 

peri- and extrasynaptic membrane (α4βδ, α5βγ and α6βδ) mediate a less intense 

but more persistent form of tonic inhibition (Farrant and Nusser, 2005). Thus, 

GABAARs can generate two spatially and functionally distinct modes of neuronal 

inhibition.  

Receptors that typically mediate phasic currents have different biophysical 

properties compared to those involved in mediating tonic currents. In recombinant 

systems, changing the α subunit in an αβγ complex has the largest influence on 

the potency of GABA at the receptor, with α6 conferring the highest sensitivity to 

GABA and α3 conferring the lowest (Farrant and Nusser, 2005). Overall, the 

extrasynaptic-type receptors α6βδ and α4βδ have the lowest EC50 for GABA 

(~0.5 μM), whereas the α1-3βγ subtypes have EC50s that are an order of 

magnitude higher. Thus, the receptors residing in the peri- and extrasynaptic 

space are better suited to respond to the lower concentrations of ambient GABA 

that can be experienced outside the synapse.  

Receptors located in the postsynaptic density activate in response to action 

potential (AP)-induced and spontaneous quantal GABA release. Upon the arrival 

of an AP, the inflow of Ca2+ in the presynaptic membrane causes the membrane 

fusion of synaptic vesicles and release of tens of thousands of GABA molecules 

into the synaptic cleft, generating a peak GABA concentration in the millimolar 

range (Mody et al., 1994). Opposite the release site, a small number of receptors 
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(between ~10 and a few hundred) are located in the postsynaptic density 

(Edwards et al., 1990; Nusser et al., 1997). At a small synapse, the receptors will 

experience saturation upon neurotransmitter release even when only one vesicle 

of GABA is released. Hence, the amplitudes of IPSCs are more dependent on 

the number of receptors present for activation than the amount of GABA released 

following an AP. Whilst multiple vesicles are released in response to an AP to 

generate a spontaneous IPSC (sIPSC), single vesicles can be released 

spontaneously, generating a miniature IPSC (mIPSC). These are rapid GABA-

mediated currents with a rise time of a few hundred microseconds, demonstrating 

the proximity of the postsynaptic receptors to the site of vesicle release (Farrant 

and Nusser, 2005). The response of a synapse to the release of a 

neurotransmitter from a single vesicle is termed quantal size, whereas quantal 

content is the number of vesicles released in response to an action potential (Del 

Castillo and Katz, 1954; Augustine and Kasai, 2007).  

Although the high synaptic concentration of GABA following vesicle release 

rapidly drops due to diffusion, the most effective removal of GABA occurs through 

the uptake by active transporters into neurones and astrocytes (Glykys and Mody, 

2007a). These transporters belong to the SLC6 family, and are high-affinity 

Na+/Cl--dependent membrane translocators of GABA, and an array of other 

amino acids (Chen et al., 2004). Three members of the family are GABA 

transporters (GATs): GAT-1 (SLC6A1), GAT-2 (SLC6A13) and GAT-3 

(SLC6A11). Of these, GAT-1 is the most prevalent, and has a high density on the 

surface of neurones (Glykys and Mody, 2007a). Consequently, a large fraction of 

the released GABA will bind to a transporter, leading to its rapid removal from the 

synaptic cleft. The GAT transporters are also important regulators of the tonic 

conductance, being a highly effective regulator of ambient GABA concentrations.  

Following repeated AP firing or simultaneous activation of multiple synapses, the 

large increase in GABA release can lead to its diffusion to adjacent perisynaptic 

and extrasynaptic receptors, or to receptors at neighbouring synapses (Barbour 

and Häusser, 1997; Kullmann, 2000; Farrant and Nusser, 2005). This is known 

as neurotransmitter ‘spillover’, and can be considered as a ‘phasic event’, as the 

increased GABA concentration is temporally related to synaptic release. This 

process leads to cross-talk between synapses, and can also lead to an increase 
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in the ambient concentration of GABA, which contributes to generating a tonic 

GABA current.  

As GAT transporters are highly effective at removing GABA from the extracellular 

space following synaptic release (Chen et al., 2004), one might ask how a high 

enough concentration of GABA can be present for peri- and extrasynaptic 

receptors to generate a tonic current. Extracellular GABA concentrations have 

been estimated to be in the range of 100 nM - 2 μM (Lerma et al., 1986; Tossman 

et al., 1986). The source of extracellular GABA is uncertain, but could be due to 

spillover as described above, or it could be due to reversal of GATs. It has been 

shown that enhancing vesicular GABA release in hippocampal neurones in a slice 

preparation leads to an increase in both synaptic and tonic currents (Glykys and 

Mody, 2007b). Conversely, reducing GABA release by blocking APs or the 

vesicular GABA transporter (vGAT), leads to a decrease in phasic and tonic 

currents. Similarly, the tonic conductance of δ-containing GABAARs in thalamic 

relay neurons of the dorsal lateral geniculate nucleus (dLGN) is dependent on 

synaptic release of GABA, as blocking APs with tetrodotoxin or increasing the 

GABA release probability by elevating the extracellular concentration of Ca2+ led 

to a decrease or an increase in tonic conductance, respectively (Bright et al., 

2007). Tonic GABA conductance in cerebellar granule cells also correlates with 

phasic GABAAR activity, and appears to result from GABA spillover (Brickley et 

al., 1996).   

GABA release from astrocytes may also contribute to the ambient levels of the 

neurotransmitter: embryonic hippocampal neurones co-cultured with astrocytes 

exhibited a tonic GABAAR conductance that was absent in neurones cultured 

without astrocytes (Liu et al., 2000), and astrocytes have also been shown to 

release GABA in the rat olfactory bulb (Kozlov et al., 2006). Furthermore, there 

are conditions in which GABA transporters may reverse to cause release instead 

of uptake of extracellular GABA (Richerson and Wu, 2003). The reversal potential 

of GABA transporters is close to the resting potential of neurones under normal 

conditions, and the extracellular concentration of GABA is sufficiently high when 

the GABA transporter is at equilibrium to tonically activate high-affinity 

extrasynaptic GABAA receptors. As the transporter is driven by the 

electrochemical gradients of Na+ and Cl-, the direction of GABA transport will 
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depend on the membrane potential of the neurone. Therefore, as long as the 

membrane potential is more negative than the reversal potential, the transporter 

will operate in the inward direction and cells will take up GABA, and if the 

membrane potential is more positive than the reversal potential, the transporter 

will reverse and release GABA. Consequently, this can lead to an increased 

ambient GABA concentration, and an enhanced tonic conductance of peri- and 

extrasynaptic receptors. In cultured hippocampal neurones, GABAergic 

transmission has been shown to still occur when vesicular GABA release is 

blocked. This transmission was prevented when GAT-1 was blocked with 

tiagabine, and enhanced by agents that increased cytosolic GABA or Na+, which 

would increase GAT-1 reversal (Wu et al., 2007). Thus, reversal of GAT-1 can 

lead to increased extracellular levels of GABA sufficient to activate high-affinity 

extrasynaptic GABAARs.  

Although the GABAARs mostly mediate inhibitory signal transduction, this is not 

always the case (Fig. 1.3). The functional outcome of GABAAR activation largely 

depends on the electrochemical gradient of Cl- across the plasma membrane, as 

the receptor is about 5-fold more permeable to Cl- than HCO3
- (Bormann et al., 

1987; Kaila, 1994). In most mature neurones,  high expression of the K+/Cl- co-

transporter 2 (KCC2) leads to extrusion of Cl- to produce a Cl- equilibrium 

potential (ECl) that is usually more negative than the resting membrane potential 

of the cell (Farrant and Kaila, 2007; Ben-Ari et al., 2012). Upon activation, the 

GABAARs consequently produce a net influx of Cl- ions, leading to membrane 

hyperpolarisation away from AP threshold. However, high expression of the 

Na+/K+/Cl- co-transporter (NKCC1) can, under some conditions, cause greater 

influx of Cl-, leading to the generation of a depolarising Cl- electrochemical 

gradient. When activated, the GABAARs allow net Cl- flux out of the cell, leading 

to membrane depolarisation. This occurs in most immature neurones, as well as 

in some mature neurones, e.g. cerebellar interneurones (Chavas and Marty, 

2003; Ben-Ari et al., 2012).   
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Figure 1.3 – The electrochemical gradient for Cl- determines the direction 

of Cl- flux through the channel pore of GABAA receptors. 

In neurones expressing high levels of NKCC1 (e.g. immature neurones), the Cl- equilibrium 

potential is positive to the resting membrane potential. Upon activation, GABAARs will therefore 

allow a net Cl- flux out of the cell and have a depolarising effect (left). In most mature neurones, 

NKCC1 is downregulated and KCC2 upregulated, resulting in a Cl- equilibrium potential that is 

negative relative to the resting membrane potential. Consequently, activated GABAARs will pass 

Cl- into the cell resulting in hyperpolarisation of the neurone (right).  

Extrasynaptic-type receptors can mediate a form for inhibition known as shunting 

inhibition (Farrant and Nusser, 2005). Tonically active GABAARs increase the 

neurone’s input conductance, and affect the magnitude and duration of the 

voltage response to an injected current, increasing the decrement of voltage with 

distance. The size and duration of excitatory postsynaptic potentials are therefore 

reduced by tonic GABA currents, and the temporal and spatial window over which 

signal integration can occur is consequently narrowed, reducing the likelihood of 

AP firing. Notably, tonically active GABAARs can, even when the Cl- gradient is 

depolarising, cause an increase in the membrane conductance giving rise to 

shunting of excitatory potentials, depending on the level of the tonic current 

conductance (Pavlov et al., 2014).  
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1.1.4. GABAA receptor pharmacology and modulation by endogenous ligands 

The availability of 19 GABAAR subunits allows for the assembly of receptor 

subtypes with distinct biophysical and pharmacological profiles (Smart, 2015). 

This diversity in functional properties among different members of the GABAAR 

family is important for generating different physiological responses in different 

parts of the brain, cell types and between compartments of a neurone. 

Furthermore, different receptor subtypes are regulated by distinct endogenous 

modulators, including kinases, divalent cations and signalling molecules. This 

receptor diversity also allows for the targeting of specific receptor subtypes by 

pharmacological agents, and has implications for the use of drugs in research, 

health and disease.  

All GABAARs made up of αβγ/δ have a main conductance state of ~25-28 pS, 

though lower conductance states do also exist (Farrant and Nusser, 2005; 

Mortensen et al., 2010). Differences in the magnitude of the macroscopic 

response to GABA do, however, exist. GABA has a high affinity for δ-containing 

receptors, but its efficacy is lower than at the γ-containing receptors, meaning 

that it acts as a partial agonist at extrasynaptic δ-containing receptors (Brown et 

al., 2002; Mortensen et al., 2010). Consequently, δ-containing extrasynaptic 

receptors are capable of generating a low level of tonic inhibition at 

concentrations of GABA below those that would evoke IPSCs at synaptic 

receptors.  

GABAARs are modulated by various post-translational modifications that affect 

receptor function, number and localisation. Several phosphorylation sites have 

been identified in the M3-M4 intracellular loop of the α4, β1-3 and γ2 subunits 

(Kittler and Moss, 2003; Abramian et al., 2010; Luscher et al., 2011; Vithlani et 

al., 2011). Phosphorylation at these sites can differentially regulate the 

biophysical properties, pharmacology and trafficking of GABAARs. Various 

serine-threonine kinases (e.g. PKA and PKC) and tyrosine kinases (e.g. Src) can 

phosphorylate GABAARs at specific residues (Moss and Smart, 1996). For 

instance, recombinant GABAARs containing the β1 subunit are negatively 

modulated by phosphorylation of β1 serine residue 409 by PKA, whereas 
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phosphorylation of serines 408 and 409 in β3 potentiates GABA responses in 

HEK cells (McDonald et al., 1998). Similarly, Ca2+/calmodulin-dependent kinase 

II (CaMKII) induces potentiation of α1β3 or α1β3γ2 GABAARs expressed in a 

neuroblastoma (NG108-15) cell line, though this effect is not observed in HEK 

cells, suggesting post-translational modifications can be cell type specific 

(Houston and Smart, 2006; Houston et al., 2009).  

Furthermore, phosphorylation can affect the modulation of the GABAAR by other 

compounds. A good example of this is modulation by the endogenous 

potentiating neurosteroid tetrahydro-deoxycorticosterone (THDOC): enhancing 

the activity of PKC, and thus phosphorylation of β3S408/S409, increases potentiation 

of synaptic-type α1β3γ2L receptors and extrasynaptic-type α4β3δ receptors in 

HEK cells, whereas inhibition of PKC activity reduced the level of potentiation by 

THDOC (Adams et al., 2015). This demonstrates how GABAergic inhibitory 

transmission can be fine-tuned by the interaction of two endogenous 

neuromodulators. Conversely, phosphorylation by PKC of β2S410 in extrasynaptic 

δ-containing GABAARs in dentate gyrus granule cells in the hippocampus and 

dorsal lateral geniculate relay neurons in the thalamus, downregulates tonic 

inhibition in these parts of the brain, likely by downregulating receptor surface 

expression (Bright and Smart, 2013). This shows how the effect of 

phosphorylation can be cell type- and context-specific, generating diverse 

responses under different conditions. In addition to modulating receptor 

activation, phosphorylation can also increase, reduce or stabilise receptor cell 

surface expression (Wang et al., 2003; Kittler et al., 2005).  

Phosphorylation of GABAARs by protein kinases is an example of endogenous 

modulation via post-translational modification of the receptors. Other modulators 

include the endogenous neurosteroids (Baulieu and Robel, 1990), which will be 

discussed in section 1.2., and endocannabinoids (Sigel et al., 2011). These 

agents interact directly with the GABAARs to modulate their activity, as do a 

variety of other pharmacologically and clinically important drugs, including 

benzodiazepines, barbiturates, general anaesthetics and convulsants (Sieghart, 

2015). All of these compounds allosterically modulate the GABAARs via mostly 

distinct binding sites, resulting in a highly complex pharmacology for these 

receptors.  
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The GABAAR has two binding sites for GABA, located at the extracellular β+-α- 

interfaces (as indicated in Fig. 1.4) (Sigel et al., 1992; Smith and Olsen, 1994, 

1995). Here, the (+)-side refers to the principal subunit (β), and the (-)-side refers 

to the complementary subunit (α). The benzodiazepine (BDZ) binding site is 

located at the extracellular α+-γ- interface (Pritchett et al., 1989; Sigel and Buhr, 

1997; Sigel, 2002), although there is also some evidence that a BDZ binding site 

can exist in the α1-α1 interface of recombinant binary α1β3 receptors (assuming 

a subunit stoichiometry of (α1)3(β3)2 (Che Has et al., 2016). BDZ-like anxiolytic 

compounds (e.g. pyrazoloquinoline 2-p-methoxyphenylpyrazolo [4,3–c] quinolin-

3(5H)-one) may also bind at the α1+-β3- interface, a site that is homologous to 

the BDZ binding site at α1+-γ- interface (Ramerstorfer et al., 2011). BDZs are the 

most described class of pharmacological agents acting at the GABAARs, and can 

exist as ‘agonists’, ‘antagonists’ and inverse agonists (Rudolph and Knoflach, 

2011). In this case, ‘agonist’ refers to BDZs with positive allosteric modulatory 

activity at GABAAR, i.e. positive allosteric modulators (e.g. diazepam and 

flunitrazepam), whereas ‘antagonist’ (e.g., flumazenil) refers to BDZs that have 

no effect when applied on their own, but can block potentiation by positive 

allosteric modulators and inverse agonists (Fig. 1.5). These modulators are 

known as neutral allosteric ligands. Inverse agonists are proconvulsant and 

anxiogenic compounds that can reduce the channel opening frequency of 

GABAARs (e.g. methyl-β-carboline-3-carboxylate), and are also known as 

negative allosteric modulators. BDZ agonists represent the most widely 

prescribed class of drugs for the treatment of anxiety and insomnia disorders, 

and are used to treat seizures in epilepsy.  

BDZs are selective for receptors incorporating the α1, α2, α3 and α5 subunits, 

and selectively abolishing diazepam binding from these subunits by introducing 

a histidine-to-arginine point mutation (α1H101R, α2H101R, α3H126R or α5H105R) has 

contributed to elucidating the functions of individual GABAAR subtypes (Wieland 

et al., 1992; Rudolph and Knoflach, 2011). In α1 H101R knock-in (KI) mice, the 

sedative and anterograde amnesic actions of diazepam were absent and the 

anticonvulsant action reduced, whilst its anxiolytic actions were still present 

(Rudolph et al., 1999; McKernan et al., 2000). In α2 H101R KI mice, the anxiolytic 

action of diazepam was absent and the myorelaxant action was reduced, whilst 
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the sedative effect was still present (Löw et al., 2000; Crestani et al., 2001). For 

α3 H126R and α5 H105R KI mice, the animals still experienced the sedative and 

anxiolytic actions of diazepam, whereas the myorelaxant effect was reduced 

(Löw et al., 2000; Crestani et al., 2001, 2002). Taken together, these results show 

that the sedative, amnesic and some of the anticonvulsant actions of diazepam 

are mediated by α1-containing GABAARs, whilst the anxiolytic, and to a large 

extent, the myorelaxant actions are mediated by α2-containing receptors. The 

myorelaxant effect is also partly mediated by α3- and α5-containing receptors. 

Furthermore, the development of tolerance to the sedative effect of BDZs has 

been linked to α5-containing receptors (van Rijnsoever et al., 2004), whilst their 

addictive properties have been linked to α1-containing receptors (Tan et al., 

2010). α5 H105R KI mice also show improved trace fear conditioning, i.e. 

associative learning (Crestani et al., 2002; Yee et al., 2004), and α5-containing 

receptors may therefore be a target for memory-enhancing drugs, including 

selective BDZ inverse agonists (Rudolph and Knoflach, 2011).  

  



36 
 

 

 

Fig. 1.4 – Interfacial binding sites for GABA, general anaesthetics and 

benzodiazepines at the GABAA receptor. 

The orthosteric binding site for GABA is located in the ECD at the β+-α- subunit interfaces, and 

there are two sites in a heteromeric αβγ/δ receptor. GAs bind at the same interface, but in the 

TMD, located below the GABA binding sites. BDZs bind at the α+-γ- subunit interface, also in the 

ECD.  
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Figure 1.5 – Modulation of GABAA receptors by different types of 

benzodiazepines. 

Whereas BDZ agonists act as positive allosteric modulators and increase GABAAR activity, BDZ 

antagonists have no effect on their own and when co-applied with GABA, but can block 

potentiation by BDZ agonists. BDZ inverse agonists are negative allosteric modulators, and can 

reduce the channel opening frequency of GABAARs when co-applied with GABA.  

This knowledge has aided the development of BDZs with selective actions by 

targeting specific receptor subtypes, e.g. anxiolysis without sedation by targeting 

α2-containing receptors. However, no such selective compounds have yet 

progressed beyond clinical trials (Rudolph and Knoflach, 2011).  

Whereas BDZs represent a class of synthetic modulators of GABAARs, an array 

of endogenous modulators of these receptors also exists. There is evidence for 

an endogenous BDZ in the brain, an ‘endozepine’ known as diazepam binding 

inhibitor (DBI), that potentiates GABAAR currents (Christian et al., 2013). Other 

endogenous modulators include protons, which potentiate or inhibit the receptor 

depending on GABA concentration by binding to a residue in the M2 helix of β 
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subunits (Wilkins et al., 2002, 2005), and Zn2+, which acts as a negative allosteric 

modulator of dimeric αβ receptors (and with lower potency at αβδ and much lower 

potency at αβγ receptors) (Smart et al., 1994; Hosie et al., 2003). There is also 

some evidence that endogenous endocannabinoids (e.g. 2-arachidonoyl 

glycerol) may potentiate GABAARs at low concentrations of GABA (Sigel et al., 

2011).  

The GABAAR is an important clinical target for an array of drugs in addition to the 

BDZs, including general anaesthetics (GAs) and barbiturates. Although now 

mostly replaced by more modern agents, barbiturates are a class of anti-

convulsant, hypnotic and general anaesthetic that bind to GABAARs (Krasowski 

et al., 2001; Chiara et al., 2013). Unlike the BDZs, which increase GABAAR 

channel opening frequency, barbiturates (e.g. pentobarbitone) act by increasing 

the open time for GABAAR ion channels, and are thus highly toxic (Rudolph and 

Knoflach, 2011). Consequently, a newer generation of GAs have largely replaced 

barbiturates, including propofol, etomidate and volatile anaesthetics like 

isoflurane, all of which bind and act as positive allosteric modulators at the 

GABAAR (Olsen, 2015; Sieghart, 2015).  

Mutagenesis studies and subsequent photoaffinity labelling led to the 

identification of key residues (N265 in M2 and M286 in M3 of the β2/3 subunit 

and M236 in M1 of the α subunit) that are thought to be essential for the binding 

of propofol and etomidate (Belelli et al., 1997, 1999; Krasowski et al., 2001; Li et 

al., 2006; Olsen, 2015). The site for GA binding is formed at the same β+-α- 

subunit interface as that for GABA, which has its binding site in the ECD about 

50 Å above the GA site (Fig. 1.4). Thus, intersubunit binding pockets are likely to 

be common for both orthosteric and allosteric binding sites. Furthermore, the 

crystal structure of the Cys-loop receptor bacterial orthologue GLIC showed 

binding of the GAs propofol and desflurane to an intrasubunit binding pocket in a 

cavity accessible from the lipid bilayer (Nury et al., 2011). An intersubunit binding 

pocket was also identified when GluCl was crystallised bound to ivermectin, and 

is formed in the upper part of the TMD at each subunit interface, comprising 

residues contributed by M2 and M3 of one subunit, and of M1 from the adjacent 

subunit (Hibbs and Gouaux, 2011). A hydrogen bond is formed between 

ivermectin and serine 260 in M2, a residue that is homologous to a residue 
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thought to be important for binding of volatile anaesthetics (enflurane) and for 

ethanol action at glycine and GABAA receptors (M1 residues α1S270 and β1S265, 

though M3 residues α1A291W and β1M286W are also thought to be important) (Mihic 

et al., 1997). The same residue (S260 in GluCl) faces the intersubunit cavity in 

GLIC, which is bordered by the two residues that were thought to be important 

for etomidate binding at the GABAAR (M1 residue α1M236 and M3 residue β3M286) 

(Li et al., 2006; Nury et al., 2011; Corringer et al., 2012). Note that the β3M286 

residue was also found to be involved in the action of enflurane (and ethanol) 

(Mihic et al., 1997). Taken together, these findings suggest that these inter- and 

intrasubunit binding pockets in a cavity accessible from the lipid bilayer are 

accessible to multiple pLGIC modulators.  

Bicuculline (BIC) and picrotoxinin (PTX) are two commonly used GABAAR 

antagonists. Although widely accepted to be an open-channel blocker of 

GABAARs (and GlyRs), multiple binding sites have been suggested for PTX in 

past studies (Olsen, 2015; Sieghart, 2015). The crystal structure of GluCl bound 

to PTX at M2 residues -2’ to 2’ corroborates the hypothesis that PTX (at least in 

GluCl) blocks the channel pore (Hibbs and Gouaux, 2011). The binding site of 

PTX is further discussed in Chapter 3, section 3.2.4. BIC is a selective 

competitive antagonist at the GABAAR (Andrews and Johnston, 1979), and is 

therefore suitable for use in neuronal recordings where GABAergic transmission 

needs to be blocked (Chapter 5). It may also have some negative allosteric 

properties as it reduces currents evoked by pentobarbitone (Ueno et al., 1997). 

A wide array of experimental GABAAR partial, full and inverse agonists and 

antagonists also exist that are important pharmacological tools in GABAAR 

research, but are not discussed further here.   

1.2. Neurosteroids 

Neurosteroids are an important class of neuromodulators. The term 

‘neurosteroid’ was first coined to describe metabolites of sex and stress 

hormones that could modulate neuronal activity (Majewska et al., 1986; Baulieu 

and Robel, 1990; Lambert et al., 2003). Furthermore, neurosteroids are steroids 

that can be synthesised de novo within the nervous system, independent of the 
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activity of endocrine glands (Baulieu, 1981). Neurosteroids are synthesised in 

glial cells and neurones of the central and peripheral nervous systems, from 

cholesterol or steroid precursors imported from the periphery (Schumacher et al., 

2000, 2008). Their action is non-genomic and involves rapid and direct 

interactions with receptors in the membrane.  

Three classes of neurosteroids exist (Fig. 1.6): the 3α-hydroxypregnane steroids 

act as positive modulators of GABAARs (e.g. 5α-pregnan-3α-ol-20-one 

(allopregnanolone) and 5α-pregnan-3α,21-diol-20-one (THDOC)), whereas the 

naturally occurring diasteromers of these, the 3β-hydroxypregnane steroids (e.g. 

5β-pregnan-3β-ol-20-one) act as negative allosteric modulators of the receptors 

along with the sulphated neurosteroids (e.g. pregnenolone sulphate and 

dehydroepiandrosterone sulphate (DHEAS)) (Akk et al., 2007; Wang et al., 2007; 

Wang, 2011). The sulphated neurosteroids are, due to their negative modulatory 

activity at GABAARs, commonly referred to as inhibitory neurosteroids, as 

opposed to the potentiating neurosteroids like allopregnanolone. 

Dehydroepiandrosterone (DHEA) is also an inhibitory neurosteroid at the 

GABAARs, despite not being sulphated at C3 of the A-ring (Fig. 1.6C). DHEA is, 

however, somewhat less potent than the sulphated neurosteroids at GABAARs 

(Park-Chung et al., 1999). The sulphated neurosteroids are the main focus of this 

project, with an emphasis on pregnenolone sulphate (PS).  

1.2.1. Neurosteroid synthesis, metabolism and expression in the brain 

The observations that steroids, including pregnenolone, DHEA and their 

sulphated esters, were present at higher concentrations in tissues from brain and 

peripheral nerves than in plasma, and that these steroids remained in the nervous 

system long after gonadectomy or adrenalectomy, led to the idea that these 

compounds might be synthesised de novo in the nervous system (Compagnone 

and Mellon, 2000; Mellon and Griffin, 2002). It has later been confirmed that 

steroidogenic enzymes are found within the nervous system, and that steroids 

are synthesised there to both modulate gene expression and neurotransmission 

through direct interaction with neurotransmitter receptors following their paracrine 

release.  
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Cholesterol acts as the main precursor of neurosteroid synthesis, and via a series 

of enzymatic reactions mediated by cytochrome P450 and non-P450 enzymes, 

different classes of neurosteroids can be generated (Fig. 1.7) (Mellon and Griffin, 

2002). All enzymes required for the synthesis of potentiating neurosteroids have 

been identified in the CNS by mRNA and protein analysis in various species. In 

humans, hippocampal and temporal lobe expression and/or enzymatic activity 

have been demonstrated for cytochrome P450 mitochondrial cholesterol side-

chain cleavage (P450scc), microsomal 21-hydroxylase (P450c21), 5α-reductase 

and 3α-hydroxysteroid-dehydrogenase (3α-HSD) (Stoffel-Wagner, 2003).  

The concentration of potentiating neurosteroids in rodent brain has been 

estimated using radioimmunoassays and mass fragmentography, and is likely to 

be in a nanomolar range (<30 nM) in rodents (Uzunov et al., 1996; Bernardi et 

al., 1998). These nanomolar concentrations are sufficiently high to cause 

potentiation at GABAARs, and may, under some conditions, reach higher 

concentrations. For example, the concentrations of allopregnanolone and 

THDOC are increased by stress, fluctuate during the menstrual cycle, and 

increase during pregnancy and parturition (Concas et al., 1998; Mellon and 

Griffin, 2002; Reddy, 2003). 
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Figure 1.6 – Chemical structures for selected potentiating and inhibitory 

neurosteroids. 

Chemical structures for the sulphated neurosteroids pregnenolone sulphate (A) and DHEAS (B), 

the inhibitory neurosteroid DHEA (C) and potentiating neurosteroids allopregnanolone (D) and 

THDOC (E).  
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Figure 1.7 – Biosynthetic pathways for the neurosteroids. 

The chart shows the pathways and enzymes involved in the synthesis of the major potentiating 

(green) and inhibitory neurosteroids (purple). Other neuroactive steroids can also be generated 

from the intermediates (black) via various enzymatic steps. The initial conversion of cholesterol 

into pregnenolone occurs in the mitochondria, whereas subsequent steps require relevant 

enzymes to be present in the cytosol. Abbreviations: 3β-HSD = 3β-hydroxysteroid-

dehydrogenase, 3α-HSD = 3α-hydroxysteroid-dehydrogenase, P450scc = cytochrome P450 

mitochondrial cholesterol side-chain cleavage, P450c17 = microsomal 17-hydroxylase, P450c21 

= microsomal 21-hydroxylase. The diagram is modified from Mellon and Griffin (2002).  

Sulphation of steroids is catalysed by cytosolic sulphotransferases, SULT2A and 

SULT2B (Schumacher et al., 2008). These transferases belong to the SULT2 

family of 3β-hydroxy sulphotransferases. SULT2A mRNA has been documented 

in rat brain (Shimada et al., 2001), and SULT2B mRNA has been detected in rat 

and mouse brain (Schumacher et al., 2008). Immunohistochemistry confirmed 

the presence of hydroxysteroid sulphotransferases in pyramidal neurones and 

granule cells of the adult male rat hippocampus, whereas only weak staining was 

observed in astrocytes and oligodendrocytes (Kimoto et al., 2001). The presence 
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of sulphotransferases in hippocampal tissue was also confirmed with Western 

blotting. These findings suggest that sulphation of 3β-hydroxy steroids is likely to 

occur in neurones of the hippocampus.  

In contrast to the potentiating neurosteroids, the presence of sulphated 

neurosteroids in the brain has been more difficult to confirm (Schumacher et al., 

2008). The detection of pregnenolone sulphate was made difficult as only 

unconjugated steroids (non-sulphated) could be detected by radioimmunoassays 

and gas chromatography/mass spectrometry (Corpéchot et al., 1981, 1983; 

Schumacher et al., 2008). An improved protocol confirmed the presence of PS in 

the human brain (< 2 ng/g) and plasma (< 160 ng/g), but failed to detect its 

presence in rodent brains (Liere et al., 2004). Liquid chromatography-

electrospray tandem mass spectrometry has recently allowed the direct 

quantitative determination of PS without hydrolysis in brain areas of 6-8 week-old 

rats, and confirmed the presence of PS in the cortex and hippocampus 

(Rustichelli et al., 2013). In homogenised tissue, the concentration of PS in the 

hippocampus was 10.3 ± 1.4 ng/g tissue compared to 4.5 ± 0.4 ng/g tissue in the 

cortex. The concentration of allopregnanolone was higher, at 38.4 ± 10.2 ng/g in 

hippocampal tissue, and 28.6 ± 5.8 ng/g in the cortex. These findings suggest 

that the presence of PS in both rodent and human brains is quite likely.  

PS may exist at higher concentrations in local areas around neurones compared 

to those measured in tissue homogenates that effectively determine a mean 

value in a much larger volume. In fact, synaptic release via a retrograde 

mechanism has been described for a PS-like molecule following postsynaptic 

depolarisation in immature hippocampal neurones (P3-5), resulting in a synaptic 

concentration in the micromolar range (Mameli, 2005). Furthermore, blocking 

steroid sulphatases (Fig. 1.7) with a pharmacological agent (DU-14) in 

hippocampal slices from age-matched rats was shown to increase synaptic PS 

levels following exposure to ethanol, leading to an increase in presynaptic 

glutamate release (Mameli and Valenzuela, 2006). Inhibiting the P450scc 

enzyme, which converts cholesterol into pregnenolone (Fig. 1.7), with 

aminogluthetimide, prevented the ethanol-induced increase in PS release, as did 

an anti-PS antibody. These results provide strong evidence that synthesis of PS 

occurs in rodent brains. There is also immunohistochemical evidence that organic 
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solute transporters (OST α/β) for which PS and DHEAS have a high affinity are 

expressed in neurones of mouse and human cerebellum and hippocampus, and 

may be involved in clearing sulphated neurosteroids from the synapse (Fang et 

al., 2010). These are neurones that also express steroidogenic enzymes, and 

these findings further support a role for the inhibitory neurosteroids in modulating 

neurotransmission.  

There is also some evidence that sulphated steroids can cross the blood-brain 

barrier (BBB) via active transport processes (reviewed in Schumacher et al. 

2008). PS injected intravenously or intraperitoneally in rats can cross the BBB 

without being hydrolysed to pregnenolone (Wang et al., 1997; Higashi et al., 

2003), and sulphoconjugated steroids have been shown to cross the sheep foetal 

BBB (Wood et al., 2003). Organic anion transporting proteins (OATPs) may 

provide a means for transporting sulphated steroids, and high levels of mRNA for 

these transporters have been detected in human white and grey matter 

(Steckelbroeck et al., 2004; Schumacher et al., 2008). OATPs have also been 

documented in the endothelial cells of brain capillaries, and in the BBB, and may 

thus participate in the uptake of sulphated steroids from plasma.  

1.2.2. Molecular targets of inhibitory neurosteroids 

Neurosteroids can directly modulate various receptors. The inhibitory 

neurosteroids are active at GABAARs, other members of the Cys-loop family, 

other types of ligand-gated ion channels and voltage-gated ion channels (Gibbs 

et al., 2006; Smith et al., 2014). 

By contrast, the GABAAR is more sensitive to the potentiating neurosteroids (e.g. 

allopregnanolone and THDOC) than other members of the Cys-loop receptor 

family (Hosie et al., 2007). The homomeric ρ1 GABAAR is, however, less 

sensitive to the potentiating neurosteroids than heteromeric GABAARs (Morris et 

al., 1999), whereas the Drosophila Resistance to Dieldrin (RDL) GABAAR is 

insensitive and was successfully used to find their binding site at mammalian 

GABAARs (Hosie et al., 2006). GlyRs also show little or no sensitivity to 
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potentiating neurosteroids (Pistis et al., 1997; Belelli et al., 1999; Weir et al., 

2004).  

At the GABAAR, potentiating neurosteroids are active in the nanomolar 

concentration range, and although the potency is similar amongst the different 

receptor subtypes, the efficacy of these steroids is greater at extrasynaptic-type 

δ-containing receptors (Belelli et al., 2002). At δ-containing receptors, 

allopregnanolone can potentiate the response to GABA EC10 beyond that 

produced by a saturating concentration of GABA, and the maximum effect 

(macroscopic efficacy) is greater than at γ2-containing receptors. A larger effect 

is thus likely to be observed at low concentrations of neurosteroid at 

extrasynaptic-type receptors, and potentiating neurosteroids are therefore likely 

to have a more significant effect on GABA tonic than synaptic currents.  

Inhibitory neurosteroids (PS and DHEAS) are less selective than the potentiating 

neurosteroids. GlyRs are inhibited by PS and DHEAS in the low micromolar range 

(Maksay et al., 2001; Hong et al., 2013), whereas the GABA ρ1 receptor is only 

weakly sensitive to PS (IC50 > 300 μM) (Woodward et al., 1992; Li et al., 2007). 

There is also some evidence that PS inhibits nAChRs at micromolar 

concentrations in bovine adrenal chromaffin cells (Kudo et al., 2002), whilst it has 

been shown to activate homomeric α7 nAChRs (Chen and Sokabe, 2005; Yang 

et al., 2012). The C. elegans GABAAR homologue UNC-49B/C is antagonised by 

both PS and DHEAS at micromolar concentrations (Wardell et al., 2006; Twede 

et al., 2007). The activity of PS at GLIC, ELIC, GluCl and RDL are not reported 

in the literature, and will be discussed in Chapter 4, section 4.2.6.  

Other receptor families have also been shown to be sensitive to modulation by 

PS. Recombinant N-methyl-D-aspartate (NMDA) receptors expressed in 

Xenopus oocytes can be positively and negatively modulated by PS depending 

on subunit composition (EC50, IC50 > 10 μM):  receptors comprising the GluN1 

subunit expressed with GluN2A or GluN2B are potentiated by PS, whilst those 

comprising GluN1 with the GluN2C or GluN2D subunit are inhibited (Malayev et 

al., 2002; Jang et al., 2004; Kostakis et al., 2011). There is, however, some 

evidence that PS may increase glutamate release from presynaptic terminals via 

potentiation of receptors containing GluN2D subunits in hippocampal slices from 
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P3-4 rats (Mameli, 2005), suggesting the effect of PS on NMDA receptors may 

be dependent on various factors.  

PS also acts as a non-competitive antagonist at α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) and kainate receptors expressed in oocytes 

(IC50s > 10 μM) (Wu et al., 1991; Yaghoubi et al., 1998). The transient receptor 

potential melastatin 3 (TRPM3) receptor is an example of a receptor that is 

directly activated by PS (EC50 ~ 20 μM) (Wagner et al., 2008).  PS can also 

directly activate sigma1 (σ1) receptors in hippocampal neurones (Mtchedlishvili 

and Kapur, 2003). Morevoer, PS can potentiate currents through voltage-gated 

Ca2+ channels (Hige et al., 2006), and inwardly-rectifying K+ channels containing 

the Kir2.3 subunit (Kobayashi et al., 2009). By contrast, voltage-gated Na+ 

channels are inhibited by PS (Horishita et al., 2012). Thus, PS acts at multiple 

target proteins in the brain, though it has the highest potency at GABAARs.  

To complete this overview of PS target proteins, PS can act also at various 

receptors in the presynaptic terminal to increase or reduce neurotransmitter 

release, e.g. for acetylcholine (Darnaudéry et al., 2000, 2002), glutamate 

(Zamudio-Bulcock and Valenzuela, 2011; Zamudio-Bulcock et al., 2011), glycine 

(Hong et al., 2013) and GABA (Mtchedlishvili and Kapur, 2003; Zamudio-Bulcock 

and Valenzuela, 2011). The effects of PS on synaptic neurotransmitter release 

are discussed further in Chapter 5.  

1.2.3. Inhibitory neurosteroids and the GABAA receptors 

The molecular determinants necessary for the interaction with and inhibition by 

the inhibitory neurosteroids at the GABAARs are not fully determined. The 

inhibitory neurosteroids are less potent than the potentiating neurosteroids (Akk 

et al., 2007), and these two classes of neurosteroids do not compete for common 

binding sites at GABAA receptors (Park-Chung et al., 1999; Akk et al., 2008; 

Seljeset et al., 2015). The inhibitory steroids are also non-competitive inhibitors 

at the GABAARs with respect to GABA (Majewska et al., 1986, 1988), and exhibit 

state-dependent block with greater inhibition obtained with higher concentrations 

of agonist (Eisenman et al., 2003). Although the sulphated neurosteroids and the 
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3β-hydroxypregnane steroids show a similar profile of block at the GABAARs, 

including activation-dependence and sensitivity to a mutation in the M2 α-helix 

(α1V256S), these two classes of neurosteroid do not compete for a single binding 

site (Akk et al., 2001; Wang et al., 2006, 2007). Furthermore, inhibition by PS 

shows only weak voltage-dependence, suggesting that it is unlikely to be bound 

to a site (e.g. in the open channel) that experiences the membrane electric field 

(Majewska et al., 1988; Eisenman et al., 2003).  

Single-channel recordings have shown that PS reduces the mean cluster 

duration of GABA single-channel currents (the average length of time between 

the first opening and the last closing transition of a channel during bursts 

occurring between sustained periods of desensitisation) without affecting 

intracluster open or closed time distributions (Akk et al., 2001). The block by PS 

develops slowly and occurs at similar rates for open or closed GABA channels. 

Whole-cell recordings have shown that PS has little effect on GABA peak 

currents, but manifests as an increased block of steady-state currents similar to 

an apparent increase in the rate of desensitisation (Shen et al., 2000). To further 

explore the profile of PS inhibition and its possible role in modulating 

desensitisation, the effect of PS on GABA whole-cell currents in cells expressing 

wild-type and mutant heteromeric GABAARs is assessed in this thesis (Chapters 

3 and 4). 

Block by PS does not depend on the presence of a γ2 subunit (Wang et al., 2006), 

although PS is more potent at receptors containing the γ2 rather than the δ 

subunit (Brown et al., 2002). The GABAAR subtype selectivity of PS is not fully 

characterised. Previous studies suggest the potency of PS is similar at 

recombinant α1β2γ2L and α5β2γ2L receptors expressed in oocytes (Rahman et 

al., 2006), but varies between α1, α2 and α3 containing αβγ receptors, with PS 

being 10-fold more potent at receptors containing α3 than α1 and 2.5-fold more 

potent than at receptors containing α2 (Zaman et al., 1992). However, the 

potency of PS at GABAA receptors containing all of the α1-6 subunits has not 

been assessed in one study using the same recording conditions and expression 

system. Thus, a complete profiling of the activity of PS at different GABAAR 

subtypes is required, and will provide insight as to whether PS is likely to be more 

important in regulating GABAergic transmission in some areas of the brain than 
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others, or if it plays a role within specific cellular compartments. GABAAR subtype 

selectivity of PS will be explored in Chapter 3, section 3.2.6.  

Whereas potentiating neurosteroids can cross the membrane and access their 

binding site from within the cell (Akk et al., 2005, 2007), inhibitory neurosteroids 

carry a negatively charged sulphate group that render the molecules significantly 

less hydrophobic (Fig. 1.6). The inhibitory neurosteroids may therefore not be 

able to diffuse across lipid membranes. Whether PS can access its binding site 

at the GABAAR from within the cytosol is also not known, though work by others 

has shown that PS cannot access its binding site for TRPM3 (Wagner et al., 

2008) and Kir2.3 from inside the cell (Kobayashi et al., 2009). Knowing whether 

PS can inhibit GABAARs from the cytosolic face can help us determine where on 

the receptor PS is likely to bind, and is explored in Chapter 3, section 3.2.5.  

The potentiating neurosteroids are active at GABAARs at low nanomolar 

concentrations, and only cause direct activation at higher submicromolar to 

micromolar concentrations (Lambert et al., 2003; Hosie et al., 2006). The binding 

site for potentiation of GABAARs by neurosteroids is located at glutamine (Q) 241 

in the α subunit, and is conserved among the α1-6 subunits (Hosie et al., 2006, 

2009). Mutating Q241 does not affect PS binding, making it unlikely that 

potentiating and inhibitory neurosteroids share a common binding site (Akk et al., 

2008). Glutamine 241 is located at the base of a water-filled cavity between the 

M1-M4 interface, which is likely to increase in depth and volume following 

receptor activation, allowing the neurosteroid to bind and potentially keep the 

channel in an open state (Hosie et al., 2006). The binding site for the potentiating 

neurosteroids exists in the α subunits only, but moving M1 from α to β2 or γ2 

subunits introduces sensitivity to neurosteroids in receptors in which the binding 

site is mutated (and removed) in the α subunit (α1Q241L) (Bracamontes et al., 

2012). For inhibitory neurosteroids, it is not known whether the binding site is 

located on one or more subunits. To determine this, PS sensitivity will be studied 

using β3 homomers and GABAAR chimeras expressed in HEK cells (Chapter 3, 

section 3.2.8. and Chapter 4, section 4.2.7.).  
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1.2.4. Inhibitory neurosteroids in health and disease 

The potentiating neurosteroids exert anxiolytic, anaesthetic and anticonvulsant 

actions, and multiple synthetic derivatives have been developed for potential 

clinical use (Reddy and Estes, 2016). These synthetic derivatives have been 

considered as potential treatments for several conditions, including epilepsy 

(including catamenial epilepsy and status epilepticus), infantile spasms, fragile X 

syndrome, premenstrual mood disorder, chronic pain and alcohol dependence, 

Alzheimer’s disease, traumatic brain injury, bipolar disorder, smoking cessation 

and migraines (reviewed in Reddy & Estes 2016). Synthetic steroids have 

promising therapeutic aspects, as they are associated with few side effects with 

no development of tolerance, and appear to be well tolerated by patients. 

Metabolites of the synthetic steroids are also less likely to be active at intracellular 

steroid receptors than the naturally occurring counterparts, thereby reducing the 

likelihood of systemic side effects. To date, no synthetic neurosteroids have been 

approved for clinical use, but many clinical trials are ongoing. The exception is 

alphaxolone, which has been withdrawn from use in humans, but is still used in 

veterinary medicine. 

Inhibitory neurosteroids may play various roles in health and disease. Reduced 

levels of PS in the hippocampus of aged rats are associated with cognitive 

deficits, possibly due to reduced PS-mediated acetylcholine release (Vallée et 

al., 1997). Experiments with DHEA and DHEAS have found conflicting effects on 

cognitive function in humans, though this might be due to the methods used to 

measure concentrations of sulphated steroid, as discussed in section 1.2.1. 

(Vallée et al., 2001a). PS has been shown to be memory-enhancing, and 

reverses scopolamine-induced amnesia in rats (Vallée et al., 2001b). Following 

administration into the hippocampus or amygdala, PS potently promotes memory 

enhancement in mice after having been trained using a foot-shock active 

avoidance paradigm (Flood et al., 1995). Various other studies also suggest that 

PS can promote memory and learning in vivo, and enhance long-term 

potentiation in vitro (Mayo et al., 1993; Sliwinski et al., 2004; Smith et al., 2014).  
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Furthermore, levels of PS (and DHEAS, along with some potentiating 

neurosteroids) measured by gas chromatography-mass spectrometry are 

reduced in parts of the human brain in patients suffering from Alzheimer’s disease 

(Weill-Engerer et al., 2002). Interestingly, high levels of key proteins (β-amyloid 

and tau) implicated in the formation of plaques and neurofibrillary tangles are 

correlated with lower brain levels of PS and DHEAS, suggesting a possible 

neuroprotective role of these neurosteroids in Alzheimer’s disease. PS can also 

reduce the loss of hippocampal pyramidal neurones following 

intracerebroventricular injection of β-amyloid in mice, ameliorating cognitive 

deficits (Yang et al., 2012). Antagonists of the σ1 receptor and the α7 nAChR 

blocked these effects of PS, suggesting that the neuroprotective effects of PS are 

mediated by these receptors. Furthermore, there is some evidence that 

sulfotransferase (SULT1A) activity is downregulated in patients with Alzheimer’s 

disease (Vaňková et al., 2015), indicating that a loss of sulphated neurosteroids 

may play a role in disease progression. The complex effects of PS on memory 

and learning may implicate various neurotransmitter systems, and may involve 

modulation of neurotransmitter release as well as direct interaction with 

neurotransmitter receptors. Positive modulation of NMDA receptors may be 

involved, as well as negative modulation of GABAARs. The potential negative 

modulation of α5-containing GABAARs is interesting, as this subunit is abundant 

in the hippocampus (Pirker et al., 2000; Glykys et al., 2008; Hörtnagl et al., 2013), 

and inhibition of these receptors can promote memory and learning (Collinson et 

al., 2002).  

In animal models of anxiety, PS has been shown to be anxiolytic, whereas 

DHEAS is anxiogenic (Reddy and Kulkarni, 1997). The effect of PS may however 

be biphasic, as one study observed anxiolytic effects of PS at low doses, and 

anxiogenic effects at higher doses (Melchior and Ritzmann, 1994; Strous et al., 

2006). Both PS and DHEAS are proconvulsant following long-term subcutaneous 

administration in mice, though acute treatment has no such effect (Reddy and 

Kulkarni, 1998). Acute antidepressant effects of the inhibitory neurosteroids have 

also been observed on the Porsolt forced swim test of depression in mice, likely 

to occur via a σ1 or opioid δ receptor dependent mechanism (Reddy et al., 1998).  
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In a dopamine transporter knock-out mouse model of schizophrenia, PS 

normalised the schizophrenia-like behaviours, including the psychomotor 

agitation, stereotypy, prepulse inhibition deficits and cognitive impairments 

(Wong et al., 2015). These effects were shown to be NMDA receptor-dependent. 

Furthermore, the effects were mediated by PS rather than pregnenolone, as 

administration of the latter did not normalise the schizophrenia-like behaviours. 

This is important, as it shows that PS is not converted into pregnenolone following 

intraperitoneal injections. This also demonstrates that PS must be able to cross 

the BBB, and that it can reach the brain from the bloodstream. A separate study 

with schizophrenia patients did however show that pregnenolone can improve 

patients’ functional capacity, likely after conversion to allopregnanolone and 

pregnenolone sulphate, as serum levels of these were increased (Marx et al., 

2014). This indicates that modulation of GABAARs and NMDA receptors could be 

beneficial in schizophrenia. In an eight-week clinical trial, pregnenolone reduced 

cognitive deficits and negative symptoms when administered as an add-on 

treatment in patients with a recent onset of schizophrenia (Kreinin et al., 2014; 

Ritsner et al., 2014). A different study showed that pregnenolone decreased 

manic and depressive symptoms in patients with mono- or bipolar depression 

and a history of substance abuse  (Osuji et al., 2010). These animal and clinical 

studies suggest that pregnenolone and its metabolites, including PS, may be 

beneficial in various CNS disorders. Some of these clinical trials are limited by 

sample size, and larger trials would be needed to verify the efficacy of 

pregnenolone or PS in patients with depression or schizophrenia.  

Overall, these studies show that PS and DHEAS have multiple potentially 

therapeutic effects in vivo. As the inhibitory neurosteroids act at multiple 

receptors, it may be difficult to dissect out which receptors mediate which effects. 

Furthermore, effects may be occluded by systemic metabolism of the inhibitory 

neurosteroids, which can potentially convert them into a different class of 

neuroactive steroid. The study by Wong et al. (2015) shows that systemic 

metabolism of PS may not be a problem, though it is possible some conversion 

into other steroid molecules may still occur.  
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1.3. Project aims 

As discussed in section 1.2.3., the binding site for the potentiating neurosteroids 

has been described and has helped to elucidate the mechanism by which this 

class of neurosteroids modulate the GABAARs (Hosie et al., 2006, 2007). In 

contrast, the binding site for the inhibitory neurosteroids is unknown, though some 

previous efforts have located a residue (α1V256; 2’) in the M2 helix lining the 

channel pore (Akk et al., 2001) and various residues in the M1 helix and the M2-

M3 linker of the C. elegans GABA UNC-49B/C receptor (Wardell et al., 2006; 

Twede et al., 2007). Knowing the binding site for the inhibitory neurosteroid can 

be helpful to gain more insight into how this group of compounds modulate 

GABAARs. Therefore, the aim of chapter 4 of this thesis is to assess whether any 

of the residues identified in previous studies could potentially be involved in 

forming a binding site for PS by introducing point mutations into GABAAR subunits 

and studying their effect on the efficacy and potency of PS (Chapter 4, sections 

4.2.1-5.). Furthermore, finding a pLGIC that is insensitive to PS is useful in 

forming the basis for identifying subunit segments and residues important for PS 

binding. By introducing subunit segments from wild-type GABAAR subunits into 

an insensitive subunit to generate a chimera that is sensitive to PS, the residues 

necessary for binding may be identified. This chimera approach has successfully 

led to the identification of ligand binding sites in the past (Hosie et al., 2007), and 

is also used here to try and identify the binding site for the inhibitory neurosteroids 

(Chapter 4, section 4.2.6-7.).   

Understanding the mechanism by which a ligand modulates a receptor may also 

gain insight into where on the receptor the ligand is likely to bind. As discussed 

in Chapter 3, previous studies of GABAAR modulation by PS have involved the 

use of various expression systems, DNA constructs from different species and 

different methods to measure current inhibition. The receptor subtype selectivity 

of PS has only been studied to a limited extent (Zaman et al., 1992; Zhu et al., 

1996; Brown et al., 2002; Rahman et al., 2006), and a complete characterisation 

of modulation by PS of GABAARs incorporating each of the α1-6 subunits has not 

been carried out within the same heterologous expression system using 

consistent methods. As described in section 1.1.1., knowing whether a ligand is 
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receptor subtype selective can help us predict where in the brain and within which 

neuronal compartments the compound is likely to act. Therefore, one of the aims 

of Chapter 3 is to provide a full account of the GABAAR subtype selectivity of PS 

by studying inhibition at recombinant receptor subtypes incorporating each of the 

α1-6 subunits, and to determine whether the binding site for this steroid is likely 

to be present on one or more classes of subunit (sections 3.2.6-8.).  

Furthermore, as different receptor subtypes participate in mediating phasic and 

tonic currents (section 1.1.3.), knowing whether PS is receptor subtype selective 

my help to predict whether PS is more active at typical synaptic-type or 

extrasynaptic-type receptors. The functional profile of PS inhibition is also further 

characterised in Chapter 3 by determining whether block by PS is activation- or 

voltage-dependent and assessing whether pre-application of the steroid 

increases inhibition (sections 3.2.1-3.). Inhibition by DHEA and DHEAS is also 

assessed and compared to inhibition by PS (section 3.2.1.). Understanding the 

functional profile of PS inhibition can predict where it binds on the receptor and 

whether phasic or tonic currents are likely to be more susceptible to block. As PS 

carries a negatively charged sulphate group (Fig. 1.6A), it is unlikely that this 

steroid can cross the lipid bilayer to access its binding site. This is assessed by 

applying PS via the intracellular solution through the patch pipette (section 3.2.5.). 

Due to similarities in the block induced by PS and the open-channel blocker PTX 

(Majewska and Schwartz, 1987; Eisenman et al., 2003),  experiments are 

designed to determine whether these antagonists are likely to compete for a 

binding site, and if PS can block the GABAAR channel pore (section 3.2.4.). As 

PS is thought to act by increasing receptor desensitisation (Shen et al., 2000; Akk 

et al., 2001), inhibition by PS is also studied at mutated GABAARs that desensitise 

faster or slower than the wild-type receptor to determine how desensitisation 

kinetics affect modulation by PS (section 3.2.9.).  

The third results chapter, Chapter 5, aims to characterise modulation of fast 

GABAergic neurotransmission by PS in cultures of hippocampal neurones. 

Previous studies have shown that PS can reduce presynaptic GABA release, 

thereby reducing the frequency of IPSCs, but no direct modulatory effect on 

native GABAARs has been reported (Teschemacher et al., 1997; Mtchedlishvili 

and Kapur, 2003) except under conditions in which GABAARs are positively 
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modulated by allopregnanolone (Haage et al., 2005). As Mtchedlishvili and Kapur 

(2003) used nanomolar concentrations of PS, concentrations that do not inhibit 

whole-cell GABAAR currents (Chapter 3, section 3.2.1.), and Teschemacher et 

al. (1997) only observed delayed effects of PS, further experiments are needed 

to fully characterise the modulation of GABAergic transmission by PS. The aims 

of Chapter 5 are therefore to fully characterise the modulation of native 

postsynaptic GABAARs by low micromolar concentrations of PS, particularly 

investigating any effects on IPSC peak amplitude and rate of decay (sections 

5.2.1-3.). As discussed in section 1.2.2., PS is active at various neurotransmitter 

receptors. It is therefore not surprising that PS may act at more than one type of 

receptor in the synapse and regulate GABA release. By using pharmacological 

agents, two targets for PS are identified in the presynaptic membrane that serve 

to regulate GABA release (sections 5.2.3-8.).  
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Chapter 2: Methods 

2.1. HEK293 cell culture 

HEK293 cells (hereafter referred to as HEK cells) were cultured in 10 cm Petri 

dishes (Greiner Bio-One GmbH) using Dulbecco’s modified Eagle medium 

(DMEM) supplemented with 10% v/v foetal calf serum (FCS), 100 U/mL Penicillin-

G and 100 µg/mL streptomycin (Gibco by Life Technologies, Thermo Fisher 

Scientific). Cells were incubated at 37°C in humidified air with 5% CO2 (BOC 

Healthcare). When reaching approximately 80% confluency, cells were passaged 

for maintenance. For passaging, cells were washed with 10 mL Ca2+- and Mg2+-

free Hank’s balanced salt solution (HBSS; Gibco) and detached from the dish 

using 2.5 mL 0.05% w/v trypsin-ethylene-diamine-tetra-acetic acid (trypsin-

EDTA; Gibco). Cells were collected in 10 mL culture medium to inactivate the 

trypsin and centrifuged at 168 x g for 2 min (MSE Mistral 2000 centrifuge). The 

supernatant was aspirated, and the cell pellet was resuspended in 5 mL culture 

medium using a 1000P Gibson pipette. The cells were then plated at appropriate 

dilutions onto 10 cm Petri dishes. For electrophysiology, cells were plated onto 

22 mm glass coverslips (VWR international) pre-coated with 100 µg/mL poly-L-

lysine (Sigma).  

2.2. HEK cell transfection 

HEK cells plated onto coverslips for electrophysiology experiments were 

transfected with murine DNA (except GABA ρ1 subunit DNA which was human) 

following plating and allowed 16-40 h to express before each experiment. All 

subunits were expressed in a mammalian pRK5 vector to achieve high levels of 

expression. Using a calcium phosphate protocol, DNA encoding the individual 

receptor subunits (1 µg for each subunit) were mixed with 340 mM CaCl2 (20 

µL/coverslip) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-

buffered saline (HBS; 24 µL; 50 mM HEPES, 280 mM NaCl and 2.8 mM 

Na2HPO4, pH 7.2). Enhanced green fluorescent protein (pEGFP-C1) was used 
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as a marker for transfection. The total amount of DNA did not exceed 4 µg per 

coverslip. A transfection ratio of 1:1:1:1 was used for heteromeric receptors (e.g. 

α1β2γ2L with pEGFP-C1), whilst for homomeric receptors, a ratio of 2:1 (β3 or 

ρ1 with pEGFP-C1) provided improved expression.  
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2.3. Reagents 

 

Table 2.1 – A complete list of pharmacological agents used in this project. 

The table lists all pharmacological agents used, including supplier, stock concentration, solvent 

and final concentration used in experiments. 

2.4. Site-directed mutagenesis and DNA 

All mutations were made using DNA from our own stocks as a template for PCR 

reactions. Point-mutations were generated using either the QuickChange kit 

Compound Supplier Stock conc. Solvent Final conc.

Ba2+ VWR 1 M H2O 3 mM

BD-1063 

dihydrochloride

Tocris 10 mM H2O 0.3-10 µM

(+)-Bicuculline-

methiodide

Sigma 50 mM DMSO 20 µM

Cd2+ VWR 1 M H2O 200 µM

CNQX Abcam 10 mM H2O 10 µM

D-AP5 Tocris 20 mM H2O 20 µM

DHEA Sigma 2 mM Methanol ≤ 10 µM

DHEAS Sigma 2 mM Methanol ≤ 10 µM

Diazepam Roche 10 mM DMSO 500 nM

GABA Sigma 1 M H2O ≤ 3 mM

Haloperidol Sigma 25 mM DMSO 50 µM

Kynurenic acid Sigma n/a Krebs solution 1 mM

Mefenamic acid Sigma 100 mM DMSO 10 µM

ML133 Tocris 100 mM DMSO 100 µM

Ononetin Tocris 100 mM DMSO 10 µM

Picrotoxin Sigma 100 mM DMSO 10 µM

Pregnenolone 

sulphate

Sigma 20 mM DMSO ≤ 100 µM

Tetrodotoxin Abcam 0.5 mM H2O 500 nM
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(QuickChange® II XL Site-Directed Mutagenesis Kit, Stratagene) or the Phusion 

kit (Phusion™ Site-Directed Mutagenesis Kit, Thermo Fisher Scientific) following 

standard molecular biology protocols. Colony forming units (CFUs) were selected 

for culturing, and grown in LB broth overnight for subsequent elution using the 

Plasmid Miniprep kit (GenElute™ Plasmid Miniprep Kit, Sigma-Aldrich). All DNA 

was sequenced using the Sanger Sequencing Service (Source Bioscience, 

Cambridge, UK). Following successful mutagenesis, larger cultures were grown 

and constructs were eluted for storage in TE buffer (1 μg/μl) using the Plasmid 

Maxi kit (HiSpeed® Plasmid Maxi Kit (25), Qiagen). Constructs were kept at -20°C 

for long-term storage. A table with all primers used for the mutagenesis PCR 

reactions is shown below (Table 2.2).  

Other mutants that already existed in our laboratory and are not listed below 

include the 2’ mutant α1V256C (Thomas et al., 2005) and the desensitisation 

mutants, γ2LV262F and β2L296V (Gielen et al., 2015). All chimeras used in this study 

were prepared as described by Gielen et al. (2015).  

Other subunits used for Xenopus oocyte expression studies include the 

Drosophila RDL (Resistance to dieldrin) isoform C receptor kindly provided by 

David Sattelle (Wolfson Institute for Biomedical Research, UCL), the glutamate-

activated Cl- channel construct GluClcryst (Hibbs and Gouaux, 2011), the bacterial 

Cys-loop receptor homologs, Erwinia chrysanthemi GABA-gated ion channel 

(ELIC) and the Gleobacter violaceus proton-gated ion channel (GLIC), all 

provided by the Pasteur Institute, Paris.  
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Table 2.2 – Forward and reverse primer sequences used for point 

mutations.  

*These point mutations were made using the QuickChange kit. The rest were produced with the 

Phusion kit. Codons introducing a point mutation are shown in capital letters.   

2.5. Hippocampal cell culture 

Hippocampal cultures were prepared from E18 Sprague-Dawley rat embryos in 

accordance with the Animals (Scientific Procedures) Act, 1986. Dissections were 

performed by Laura Fedele. Hemisected brains were stored in HBSS (with Ca2+ 

and Mg2+; Gibco) on ice, and hippocampi were dissected out and cut in half. 

Working in a sterile hood, hippocampal tissue was transferred to a 35 mm Petri 

dish containing warmed (37 °C) trypsin solution (0.1% w/v; Gibco) for 10 min. The 

tissue was then transferred to a tube containing HBSS and washed over four 

cycles to remove any remaining trypsin. Dissociation of tissue into single cells 

was done in 2 mL plating medium (Minimum essential medium (MEM) 

supplemented with 2 mM L-glutamine, 10 U/mL Penicillin-G, 10 µg/mL 

streptomycin, 20 mM glucose, 5% (v/v) horse serum and 5% (v/v) heat-

inactivated FCS; all from Gibco), using fire-polished glass Pasteur pipettes of 

increasingly smaller bore to triturate the tissue. The cell suspension was 

centrifuged for 10 min at 168 x g, and the pellet was resuspended in fresh plating 

Construct
Forward primer sequence (5’ –

3’)
Reverse primer sequence (5’ – 3’)

ρ1P294S TCCttaggtatcacaacggtgctgacc gactctggcaggcacggc

ρ1P294V GTCttaggtatcacaacggtgctgacc gactctggcaggcacggc

α1V256S*
cagtaccagcaagaactTCCtttggagt

gacgactgttc

gaacagtcgtcactccaaaGGAagttcttgctggtac

tg

α1Q228N AACacatatctgccgtgcataatg aataacaaagtagccaatttttctc

α1Q228N,Y230V AACacaGTGctgccgtgcataatgacag aataacaaagtagccaatttttctc

α1Y230V caaacaGTGctgccgtgcataatgacag aataacaaagtagccaatttttctc

α1Y230F caaacaTTCctgccgtgcataatgacag aataacaaagtagccaatttttctc

β3A252S* ctgctgctcgagttTCCcttgggattaccac gtggtaatcccaagGGAaactcgagcagcag
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medium using a P1000 Gibson pipette. Per two hippocampi, 1 mL of plating 

medium was used. Cells (0.33 mL suspension per coverslip) were plated onto 22 

mm coverslips coated in 500 µg/mL poly-L-ornithine (Sigma) made up in Borate 

buffer (50 mM boric acid and 12.5 mM sodium tetraborate in filtered water, pH 

8.5; Sigma). The cells were left for at least one hour at 37 °C in humidified air with 

5% CO2 before the plating medium was replaced with maintenance medium 

(Neurobasal-A supplemented with 0.5% GlutaMAX, 50 U/mL Penicillin-G, 50 

µg/mL streptomycin, 1% v/v B-27 supplement and 35 mM glucose; all from 

Gibco). The coverslips were topped up with 0.5 mL fresh medium every week, 

and electrophysiological recordings were carried out 10 to 16 days after plating.  

2.6. Patch-clamp electrophysiology 

Coverslips containing transfected HEK cells or hippocampal neurones were 

mounted into a recording chamber on the stage of a Nikon Eclipse TE300 

microscope with differential interference contrast optics. Cells were continuously 

superfused with Krebs solution containing (in mM): 140 NaCl, 4.7 KCl, 1.2 MgCl2, 

2.52 CaCl2, 11 glucose and 5 HEPES, adjusted to pH 7.4 with 1 M NaOH. For 

neuronal recordings, the Krebs solution was supplemented with 1 mM kynurenic 

acid (Sigma) to block excitatory glutamatergic transmission. Patch pipettes had 

resistances of 2.5-4 M and were filled with one of two internal solutions. For 

HEK cell recordings, the internal solution was K+-based, containing (in mM): 1 

MgCl2, 120 KCl, 11 EGTA, 10 HEPES, 1 CaCl2 and 2 K2ATP, adjusted to pH 7.2 

with 1 M NaOH. For neurones, a Cs+-based internal solution was used, containing 

(in mM): 140 CsCl, 2 NaCl, 10 HEPES, 5 EGTA, 2 MgCl2, 0.5 CaCl2, 2 NaATP 

and 0.5 NaGTP. The osmolarity of the internal solutions was measured using a 

vapour pressure osmometer (Wescor Inc.), and was in the range 300 ± 10 

mOsm/L. All recordings were performed at room temperature.  

Whole-cell membrane currents were recorded with an Axopatch 200B amplifier 

(Molecular Devices). HEK cells were voltage-clamped between -20 and -40 mV, 

and neurones were voltage-clamped at -60 mV. Data acquisition was performed 

with Clampex 10.3 (pCLAMP 10 software, Molecular Devices). Currents were 

filtered at 2 kHz and digitised at 20 kHz via a Digidata 1440A (Molecular Devices). 
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The series resistance was monitored and calculated throughout all recordings by 

measuring the membrane current responses to 10 mV hyperpolarising voltage 

steps of 50 ms duration at a frequency of 10 Hz. Recorded cells for which the 

series resistance varied by more than 30% were discarded. The series resistance 

was typically in the range 4-10 MΩ.  

In HEK cells, a control response to ligand/agonist was obtained at regular 

intervals by applying GABA at a high concentration (EC80-100) to obtain an 

estimate of membrane seal stability and any GABA current run-down over time. 

These responses were used to normalise subsequent responses that would be 

used as data points for creating concentration-response curves (described in 

section 2.8.1.). A U-tube application system was used for drug applications, as 

described in Fig.2.1. A wash-off period of 2-3 min was allowed between each 

application of drug to allow the receptors to recover from desensitisation and to 

minimise the run-down of currents. 

In neuronal experiments, control responses or control recordings of synaptic 

currents were always obtained prior to drug application to optimise both cell 

holding current and series resistance stability. The wash-out of drug was also 

recorded to assess whether the effect of the drug washed out.  
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Figure 2.1 – Schematic diagram of the U-tube.  

Drug solutions were applied through a U-tube (dark blue), and Krebs solution was applied through 

a wash-tube (green) to rapidly remove the drug solution following each application. Between drug 

applications solenoids remain open, allowing the solution that goes through the U-tube to pass 

through to waste via a vacuum pump, and the bath to be perfused with Krebs solution coming 

from the wash-tube. During drug application, solenoids are closed, stopping the flow of solution 

from the wash-tube, and allowing the drug solution to exit via a hole in the apex of the U-tube and 

superfuse over the recorded cell.  
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2.7. Homology modelling  

Homology models of the mouse α1β2γ2L wild-type and 2’ mutant receptors were 

created using the glutamate-activated Cl- channel (GluClcryst) from C. elegans in 

complex with Fab and ivermectin (PDB 3rhw) as a template (Hibbs and Gouaux, 

2011).  A model of the C. elegans GABA-activated UNC-49B homomer was 

generated for both the wild-type and mutant receptor using the human GABA 

benzamidine-bound β3 homopentamer crystal structure as a template (PDB 4cof) 

(Miller and Aricescu, 2015). The amino acid sequences, with or without 

mutations, were aligned to the template sequences using the align2d.py script in 

Modeller 9.13  (Sali and Blundell, 1993). All five subunits of each receptor were 

aligned in the same file, and the final target-template alignment was used to build 

multiple 3D models using the automodel script in Modeller. The models with the 

lowest Discrete Optimised Protein Energy (DOPE) score were used, and optimal 

configurations of amino acid side-chains were determined with SCRWL4 (Krivov 

et al., 2009). All models were visualised in PyMOL version 1.3 (Schrödinger©).   

2.8. Data analysis and statistics 

2.8.1. Analysis of HEK cell recordings 

The amplitudes of peak and steady-state agonist-activated currents were 

measured relative to the baseline holding current prior to agonist application 

using Clampfit 10.3.1.5 software (pClamp 10, Molecular Devices). To generate 

GABA concentration-response curves, the peak of each GABA response was 

normalised to the peak response to a saturating concentration of GABA (1 mM, 

unless otherwise stated) and expressed as a percentage, 

𝑌𝑛 =
𝑌

𝑌𝑚𝑎𝑥
× 100, 

where Yn is the normalised response, Y is the response to any given 

concentration of GABA, and Ymax is the response to a saturating concentration 
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of GABA. Likewise, steady-state currents were expressed as a percentage of the 

steady-state current measured at a given time point during the application of 

GABA.  

For most experiments where inhibition of an agonist response was studied, the 

steady-state current was defined as the current measured at 10 s into drug 

application, i.e. at 10 s after the onset of the current. Agonists and antagonists 

were always co-applied, unless otherwise is stated. To study inhibition of a GABA 

response by PS, an EC80 concentration of GABA (the concentration at which 80% 

of maximal response is achieved) was co-applied with PS.  

Normalised GABA concentration-response curves were fitted using the Hill 

Equation (equation 1), 

𝑌𝑛 = 𝑌𝑚𝑎𝑥 [
[𝐴]𝑛

𝐸𝐶50
𝑛 +[𝐴]𝑛],……………………….(1) 

where Yn is the normalised response to GABA (percentage response), Ymax is 

the control maximal response to GABA (100%), A is the concentration of GABA 

applied, EC50 is the concentration of GABA producing 50% of maximal response, 

and n is the Hill coefficient.  

Inhibition curves were fitted using an inhibition model (equation 2), 

𝑌𝑛 = 𝑌𝑚𝑎𝑥(1 −  
[𝐵]𝑛

𝐼𝐶50
𝑛 + [𝐵]𝑛) ,…………………(2) 

where Yn is the normalised agonist response in the presence of antagonist, 

Ymax is the maximal response in the absence of antagonist, B is the 

concentration of antagonist, n is the Hill coefficient and the IC50 is the 

concentration of antagonist producing 50% inhibition of the agonist response. 

All curves were fitted using a non-linear least squares algorithm in Origin 6.0 

(Microcal™). 
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2.8.2. Analysis of hippocampal neurone recordings 

For the analysis of GABA-mediated inhibitory postsynaptic currents (IPSCs), 

event detection was performed using the programme WinEDR (Version 3.5.2, 

John Dempster, Strathclyde University) by deploying an amplitude-threshold 

crossing method. All detected events were manually checked before further 

analysis was carried out in WinWCP (Version 4.8.6, John Dempster) to calculate 

event amplitudes and the frequency of IPSCs under different recording 

conditions. All validated IPSC events were included for the analyses of event 

amplitude and frequency, and were normalised to control IPSCs recorded over a 

control period of 2-5 min. Events that showed monotonic rises and 

uncontaminated decay phases were used for kinetic analysis (> 50 events in each 

condition). These were aligned on their initial rising phases and averaged 

synaptic waveforms were constructed from which current decays could be 

calculated by fitting a biexponential curve to the decay phase of the averaged 

waveform. Weighted tau (τw) values were calculated using the equation (equation 

3), 

𝑤 =  
𝐴1.1+𝐴2.2

𝐴1 + 𝐴2
,………………………(3) 

where 1 and 2 represent the time constants for each exponential component of 

the decay phase, and A1 and A2 are the relative amplitude contributions of 1 and 

2 to the overall fit.  

To assess any relative changes in the spontaneous IPSC (sIPSC) amplitudes, 

distributions of all sIPSC amplitudes were generated before and during drug 

application (e.g. 3-10 μM PS). The sIPSC amplitude distributions were fitted using 

a sum of Gaussians based on the function described below (equation 4), 

𝑦 = 𝑦0 + ∑ 𝐴𝑒
−(𝑋−𝑋𝑐)2

2𝑤2𝑛
𝑖=1 ,………………….(4) 

where A is the peak amplitude of the distribution, Xc is the distribution mean 

amplitude, and w is the half-width of the distribution determined at A/2, and y0 is 
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the baseline amplitude of the distribution. Fits were determined using a non-linear 

least squares Marquardt routine.  

For the amplitude distributions of sIPSCs, equal numbers (200 per cell) of sIPSCs 

were sampled in each condition. In PS, sIPSCs were sampled 2 min after the 

onset of drug application to ensure the effect of the steroid had reached 

equilibrium.  

Averaged IPSC waveforms were plotted using Microsoft Excel. Values for the 

average charge transfer for IPSCs were calculated by multiplying the area under 

the averaged waveform (charge transfer) by the frequency of IPSCs in each 

recording condition.   

2.8.3. Statistics  

Non-transformed data were used for the statistical analyses of neuronal data 

throughout, unless stated otherwise. For HEK cell data, transformed data (e.g. 

EC50s and IC50s) were used for the statistical analyses. The Kolmogorov and 

Smirnov test was used to check if data were normally distributed. For parametric 

data, pairwise comparisons were made using a paired one-tailed or two-tailed 

Student’s t-test, as appropriate. The two-sample t-test (parametric) was used to 

compare data from different sets of experiments. Statistical comparisons 

between more than 2 groups were undertaken by one-way or repeated measures 

ANOVA (analysis of variance). ANOVA was followed by the Tukey post-hoc test. 

For non-parametric data, pairwise comparisons were made using the Wilcoxon 

matched pairs test. All statistical analyses were carried out in GraphPad InStat 3 

(GraphPad Software, Inc.). The threshold for statistical significance was set at p 

< 0.05 (5%). Data are reported as mean ± standard error of the mean (SEM).  
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Chapter 3: Modulation by pregnenolone sulphate of recombinant GABAA 

receptors expressed in HEK cells 

3.1. Introduction 

In this chapter, I will study the functional profile of PS at recombinant GABAA 

receptors expressed HEK cells. These cells are widely used as an expression 

system for the study of the pharmacological and biophysical properties of 

recombinant proteins (Thomas and Smart, 2005). As the cells are of epithelial 

rather than neuronal origin, the HEK cell is considered a suitable expression 

system for studying proteins of neuronal origin in isolation, including the GABAA 

receptor. There is some evidence that HEK cells express low endogenous levels 

of the GABAA receptor β3, γ3 and ε subunits, but the functional impact of these 

following transfections with other subunits that should co-assemble to form 

functional receptors has been found to be minimal. Some evidence for the 

presence of an endogenous β3 subunit has however been confirmed both in 

untransfected cells and in cells transfected with α and γ subunits (Ueno et al., 

1996; Davies et al., 2000; Thomas and Smart, 2005). Our laboratory has 

consistently been unable to detect GABA-activated currents in untransfected 

cells, and to detect β3 mRNA using reverse transcription (RT)-PCR (Thomas and 

Smart, 2005). As levels of these endogenous subunits appear to be below 

functional detection in our laboratory, the expression of GABAA receptor subunits 

in HEK cells can be controlled using cDNA transfection methods.  

Although modulation of GABAA receptors by PS has been studied by various 

research groups in the past, clear interpretation of the published data is 

confounded by the use of various expression systems and procedures for 

analysing the data. Whereas some studies have exclusively looked at inhibition 

of GABA peak currents by PS despite the slowly developing block by the steroid 

(Park-Chung et al., 1999), other studies have been carried out in less 

physiologically relevant Xenopus oocytes or in neuronal cultures where individual 

GABA receptor subtypes cannot be studied in isolation (Zaman et al., 1992; Park-

Chung et al., 1999; Shen et al., 2000; Eisenman et al., 2003).  
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The receptor subtype selectivity of PS has been studied to some extent (Zaman 

et al., 1992; Zhu et al., 1996; Rahman et al., 2006), but no complete profiling of 

inhibitory neurosteroid sensitivity at the most common GABAA receptor subtypes 

has yet been performed. Thus, a systematic study of the modulation of various 

GABAA receptor subtypes by PS using a single expression system (HEK cells), 

coupled to consistent methods and analytical techniques, is needed for a 

complete characterisation of PS inhibition. This allows for the acquisition of data 

that can be used for direct comparisons of the activity of PS at different receptor 

subtypes, and provides an indication as to whether modulation is likely to be more 

important in the synaptic or extrasynaptic membrane.  

There are many benefits of using HEK cells compared to Xenopus oocytes. 

Whereas the oocytes are amphibian, the HEK cell allows for expression of 

recombinant neuronal proteins in a mammalian system where post-translational 

processing and other biochemical processes (e.g. signalling and modulatory 

pathways) are similar to those found in the proteins’ native environment (Thomas 

and Smart, 2005; Goldin, 2006; Kvist et al., 2011). Furthermore, oocyte 

membranes have extensive invaginations and thus a large surface area, leading 

to lower apparent potencies and slower onsets of drug action compared to what 

would be observed in the native tissue of the protein. For these reasons, the 

modulation of GABAA receptors expressed in HEK cells are studied and 

discussed in detail in this chapter. Comparisons to findings in other expression 

systems and native tissue are made to build an extensive profile of inhibitory 

neurosteroid modulation of these receptors.  

Different GABAA receptor subtypes were heterologously expressed in HEK cells 

and studied using whole-cell electrophysiology. Improved knowledge of how PS 

modulates GABAA receptors can increase our understanding of its role in 

physiology and pathophysiology, and assist us in building a hypothesis as to 

where PS is likely to bind at the receptor. In this chapter, the mode of inhibition 

by PS is investigated in order to determine if the compound displays properties 

such as voltage-sensitivity and use-dependence. Inhibition of GABAA receptors 

by the structurally similar inhibitory neurosteroids DHEA and DHEAS is also 

assessed, and their activity is compared to that of PS. To determine whether 

modulation by PS is likely to play a greater role within or outside the synapse, the 
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receptor subtype selectivity of PS is determined by expressing different receptor 

subtypes in HEK cells and comparing the potency and efficacy of the steroid at 

each receptor subtype.  
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3.2. Results 

3.2.1. PS is a negative allosteric modulator of the α1β2γ2L receptor 

The allosteric modulation of GABAA receptors by inhibitory neurosteroids was 

studied by recording whole-cell currents from HEK cells. Due to its high 

prevalence in the CNS (McKernan and Whiting, 1996; Pirker et al., 2000; Glykys 

et al., 2008; Hörtnagl et al., 2013), α1β2γ2L was chosen as the main receptor to 

be used in these initial characterisation studies. As the α1 and β2 subunits can 

assemble to form functional α1β2 receptors in HEK cells (Mortensen et al., 2012), 

the incorporation of the γ2L subunit was confirmed by applying diazepam, a γ-

subunit selective benzodiazepine (Pritchett et al., 1989). At 500 nM, diazepam 

induced almost a doubling of the EC5 GABA-activated current, confirming the 

presence of the γ2L subunit in the receptor complex (results not shown).  

The inhibitory effect of PS at α1β2γ2L was confirmed by co-applying increasing 

concentrations of PS with GABA at an EC80 concentration (30 µM; Fig. 3.1A). 

Interestingly, co-applied PS was found to cause little reduction of GABA peak 

currents, but caused a more slowly developing block of steady-state currents that 

could be observed as an increased apparent rate of desensitisation (Fig. 3.1B 

and C). Current responses were measured 10 s after the start of drug application, 

i.e. 10 s from the onset of the GABA current. The current response measured at 

10 s is here referred to as a steady-state current. The IC50 value for PS inhibition 

of the steady-state current at the α1β2γ2L receptor was found to be 0.4 ± 0.1 μM 

(n = 7). At 100 µM PS, the steady-state current had returned to baseline before 

the 10 s time point, showing that steady-state currents were completely blocked 

at this concentration of PS. Peak currents were only inhibited by about 40% at 

100 μM PS, with little inhibition seen at lower PS concentrations (Fig. 3.1B). This 

indicates that PS more potently blocks steady-state than peak currents. 
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Figure 3.1 – GABA concentration-response curve and PS inhibition curve 

for the α1β2γ2L receptor. 

 A. Concentration-response curve for GABA at α1β2γ2L (n = 5). Current responses were 

normalised to the maximum response (Emax) evoked by 1 mM GABA. B. Inhibition curves for peak 

(black) and steady-state (red) currents in response to increasing concentrations of PS co-applied 

with GABA (EC80) at α1β2γ2L (n = 7). Current responses with PS were normalised to the response 

evoked by GABA. Data are expressed as mean ± SEM. C. Example whole-cell currents for GABA 

EC80 and the inhibition caused by PS at increasing concentrations (0.1-100 µM PS).  
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To assess if the structurally similar inhibitory neurosteroids DHEA and DHEAS 

are acting similarly to PS, these steroids were co-applied with GABA at EC80 to 

the α1β2γ2L receptor (Fig. 3.2A-C). Similarly to PS, both DHEA and DHEAS 

caused little or no inhibition of the GABA peak current at concentrations up to 10 

µM. Some inhibition of the steady-state current was observed, but only at 1 and 

10 µM DHEA and DHEAS, indicating that they are less potent antagonists than 

PS at this receptor. At 10 μM, DHEA and DHEAS inhibited the steady-state GABA 

current to 48.6 ± 5.2% and 52.2 ± 7.1% of control, respectively.  

Although both DHEA and DHEAS were found to be less potent than PS, some 

resemblance in their mechanism of action can be observed; all three compounds 

have little or no effect on peak currents, but cause a delayed inhibition of steady-

state currents measured at 10 s. To determine if this delayed effect is due to a 

slowly developing block, or if it is state- or use-dependent, more experiments 

were carried out to further explore inhibitory neurosteroid activity. As PS is the 

most potent antagonist of the three inhibitory neurosteroids, the next studies 

focused solely on its activity.  
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Figure 3.2 – Inhibition of GABA-evoked currents by DHEA and DHEAS at 

the α1β2γ2L receptor.  

A. Inhibition curves for peak (DHEA in black, DHEAS in green) and steady-state (DHEA in red, 

DHEAS in blue) currents for increasing concentrations of DHEA and DHEAS co-applied with 

GABA (EC80) at α1β2γ2L (n = 5). Current responses were normalised to the current response 

evoked by 30 µM GABA (EC80). Data are expressed as mean ± SEM. B, C. Example traces 

showing whole-cell GABA EC80 current responses and the inhibition caused by DHEA (B) and 

DHEAS (C) at 10 µM.  
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3.2.2. Pre-applying PS does not increase inhibition 

To determine if the delayed response to PS could be due to slow on-binding of 

the steroid to the receptor, i.e. that PS has a low association rate constant, PS 

was pre-applied to the recording chamber 20 s prior to co-application with GABA 

(Fig. 3.3A and B). If slow on-binding is causing the increased steady-state current 

inhibition, greater inhibition of the peak current would be expected following PS 

pre-application. Inhibition of steady-state currents was not increased by pre-

application of PS; the IC50 for PS at α1β2γ2L is 0.4 ± 0.1 μM without pre-

application, compared to 0.5 ± 0.1 µM with pre-application (n = 5; p = 0.3226). 

For peak current inhibition, the effect of PS was greater following pre-application. 

In co-application experiments without pre-application, the peak current in the 

presence of 100 µM PS was 60.1 ± 4.9% of the control response (GABA EC80), 

compared with 20.9 ± 9.6% following PS pre-application, representing a doubling 

in inhibition (p = 0.0150). Thus, pre-application of PS increased GABA peak 

current inhibition at a high concentration of PS without altering the effect on 

steady-state currents.  

A second experiment was designed to further clarify whether slow on-binding was 

causing the lag in PS inhibition. After achieving a stable response to successive 

applications of GABA EC80 at α1β2γ2L, 10 µM PS was pre-applied and kept in 

the recording chamber throughout three more subsequent co-applications of 

GABA and PS (Fig. 3.3C). The response to GABA and PS remained stable 

throughout the experiment, with only a small increase in the steady-state current 

at the third co-application (12.1 ± 3.5% for the first response compared with 15.1 

± 4.4% of GABA control for the third response; n = 5, p < 0.05). The peak current 

response remained stable throughout, and is similar to that achieved without pre-

application; with pre-application, the peak response to the third application of 

GABA and 10 µM PS was 80.5 ± 2.9%, whereas without pre-application the 

response was 85.9 ± 2.8% of control (n = 5, p = 0.2230; Figs. 3.1B and 3.3C).  
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Figure 3.3 – Pre-application of PS at the α1β2γ2L receptor does not greatly 

increase inhibition of GABA currents.  

A. Inhibition curves for peak (black) and steady-state (red) currents in response to co-applications 

of PS and GABA (EC80) following PS pre-application at α1β2γ2L (n = 5). PS was pre-applied at 

the same concentration as that used in the subsequent co-application with GABA. B. Example 

traces showing the response to GABA and PS following steroid pre-application at α1β2γ2L. C. A 

graph showing the peak (black) and steady-state (red) current response to GABA (EC80) before 

and after three repeated co-applications with 10 µM PS at α1β2γ2L (n = 5). PS was not washed 

out between the three co-applications to ensure PS remained bound to the receptor between 

GABA exposures. Data are expressed as mean ± SEM.  
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α1β2γ2L receptor makes little or no difference to the inhibition of GABA currents. 

3 s

3 nA

GABA EC80

PS (µM) 

A. B.

C.

30 M G
ABA

+ 10 M P
S (1

)

+ 10 M P
S (2

)

+ 10 M P
S (3

)

0

20

40

60

80

100

N
o

rm
a

lis
e

d
 c

u
rr

e
n

t 
(%

)

 Normalised peak current

 Normalised steady-state current

1 100

0.1 1 10 100

0

20

40

60

80

100

N
o
rm

a
lis

e
d
 c

u
rr

e
n
t 

(%
)

[PS] (M)

Normalised peak current
Normalised steady-state current 



77 
 

3.2.3. Antagonism by PS at α1β2γ2L is activation-dependent but only weakly 

voltage-sensitive 

As pre-applying the antagonist only increased inhibition at a high concentration 

of PS (100 µM), it was assessed whether inhibition is state- or activation-

dependent. By co-applying PS with different concentrations of GABA, it could be 

determined if modulation of the receptor is affected by factors like agonist 

occupancy and channel open probability. PS (1 µM) was co-applied with GABA 

at concentrations ranging between 1 µM (EC20) and 1 mM (EC100), and peak 

currents and steady-state currents were measured (Fig. 3.4A and B). Whereas 

inhibition of peak currents by PS was similar at all concentrations of GABA, a 

clear increase in steady-state current inhibition was observed at higher 

concentrations of GABA.     

Increasing the GABA concentration from 1 to 3 µM increased the level of PS 

inhibition, with the normalised GABA response decreasing from 73.8 ± 4.3% at 1 

μM to 61.8 ± 2.9% of control at 3 μM (n = 7, p < 0.01). Maximum inhibition was 

attained with 30 µM GABA, the normalised response being 33.6 ± 4.1% of control, 

which is significantly greater than at lower GABA concentrations (p < 0.001; Fig. 

3.4A). Increasing GABA from 30 µM to 300 µM or 1 mM (EC100) did not cause 

any further increase in PS block (p > 0.05). Accordingly, inhibition by PS has 

peaked when co-applied with GABA at its EC80 concentration (30 μM), making 

this the GABA concentration of choice to use in experiments regarding PS 

modulation of GABAA receptors.   
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Figure 3.4 – Inhibition of GABA currents by 1 µM PS at α1β2γ2L is greater 

at higher concentrations of GABA.  

A. Inhibition of GABA peak (black) and steady-state (red) currents in response to co-applications 

of 1 μM PS and increasing concentrations of GABA at α1β2γ2L (n = 7). Data are expressed as 

mean ± SEM. B. Example traces of GABA control currents (black) in the left-hand panel and after 

co-application with 1 µM PS in the right-hand panel (orange).  
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site is more accessible to PS. This observation could thus suggest that PS 

modulates the receptor by blocking the pore, its effect hence being use-

dependent. Second, at higher concentrations of GABA, a larger proportion of 

receptors are bound to agonist. The increase in inhibition observed could be due 

to higher agonist occupancy at the receptor, arguing for the agonist needing to 

be bound to the receptor for PS to act as a negative modulator. Third, the increase 

in inhibition observed at high GABA could suggest that block by PS is state-

dependent. In the presence of a high concentration of agonist, a larger proportion 

of receptors will be desensitised. It is possible that PS can only access its binding 

site and act as a negative modulator when the receptor is in a desensitised state. 

 

Figure 3.5 – Inhibition by PS is only weakly voltage-dependent. 

A. An I/V-plot of steady-state currents for GABA (EC80; black curve) and GABA co-applied with 1 

µM PS (red curve) at α1β2γ2L (n = 8). The I/V-protocol was run 30 s into drug application, and 

currents were expressed so that the GABA response at 40 mV equals 1. B. The inhibition of the 

steady-state GABA current by PS is expressed as a percentage of the GABA control response at 

holding potentials between -90 and 90 mV, representing the same data as shown in A.   
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current-voltage (I/V) protocol was used to determine if antagonism by PS is 

voltage-sensitive. If inhibition by PS is greater at a high concentration of GABA 

because the open probability of the channel is high, voltage-sensitivity of PS 
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12% was observed between hyperpolarised and depolarised membrane 

potentials, with the steady-state current in the presence of 1 µM PS being 50.7 ± 

2.9% of control at -90 mV, compared to 39.1 ± 5.3% at 90 mV (n = 8, p = 0.0087). 

The weak voltage-sensitivity of PS suggests that binding is not strongly affected 

by the membrane electric field, arguing for the binding site to be located outside 

the channel pore. The activation-dependence of PS modulation is therefore more 

likely to be due to either higher agonist occupancy or state-dependence of block. 

3.2.4. PS and PTX do not compete for binding at α1β2γ2L 

To further examine if binding of PS within the channel pore is likely, an experiment 

was carried out to determine if PS competes for binding with PTX, which is a well-

established open-channel blocker of GABAA receptors and other members of the 

pentameric ligand-gated ion channel family (Krishek et al., 1996a; Erkkila et al., 

2008; Hibbs and Gouaux, 2011). GABA was applied at an EC100 concentration (1 

mM) to obtain a stable control response prior to co-application with 10 µM PS at 

the α1β2γ2L receptor. PTX (10 µM) was then pre-applied to the recording 

chamber to expose the receptors to the blocker before it was co-applied with 

GABA.  Due to block by PTX being use-dependent (Yoon et al., 1993), it was 

applied twice with GABA to achieve a steady-state inhibition, before GABA, PTX 

and PS were co-applied to determine if inhibition by the two antagonists is 

additive (Fig. 3.6A). As can be discerned from Fig. 3.6A and B, PS has very little 

effect on the peak current (95.2 ± 2.0% of control) whilst the steady-state current 

is greatly reduced, to 8.7 ± 1.5% of the control response. In contrast, PTX has a 

smaller inhibitory effect on the steady-state current (73.4 ± 1.8% of control after 

two applications), but did greatly reduce the peak current, to 37.3 ± 8.1% of 

control. When PS and PTX were both applied, however, profound block of both 

peak and steady-state currents was present: whilst the peak current was reduced 

to 24.5 ± 6.4% of control, the steady-state current was reduced to 6.5 ± 2.2%.  
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Figure 3.6 – PS and PTX do not compete for binding at α1β2γ2L. 

A. Traces showing current responses of α1β2γ2L to GABA (EC100: 1 mM), GABA co-applied with 

10 µM PS, the response to GABA following pre-application of PTX in a second co-application 

(labelled (2)), the additive inhibitory effect of PS and PTX on the GABA current, and a control 

GABA response in the presence of PTX after PS wash-out (labelled (3)). PTX was continuously 

kept in the bath from the start of the PTX applications until the end of the experiment. B. The bar 

chart shows the responses of α1β2γ2L to GABA, PS and PTX as described in A. A third 

application of GABA with PTX only (PTX (3)) was applied as control for the added effect of PS in 

the presence of PTX, but this is not shown in the bar chart (n = 5). Data are expressed as mean 

± SEM. 

A control application of PTX following PS wash-out showed that this increased 

inhibition in the presence of PS was not due to greater block by PTX in its third 

application (Fig. 3.6B, trace labelled (3)). This observation shows that both PTX 

and PS are able to exert their inhibitory effect when co-applied, suggesting that 

there is unlikely to be an overlap in their binding sites. Put together with the low 
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voltage-sensitivity of PS, these two pieces of evidence argue for the binding site 

of the neurosteroid to be located outside the channel pore. 

3.2.5. PS shows no antagonist activity when applied internally via the patch 

pipette 

As PS has a lipophilic four-ring carbon backbone and is derived from cholesterol, 

it is possible that PS can partition into the membrane like other steroid molecules 

(Akk et al., 2009). Although potentiating neurosteroids can access their binding 

site from the cytoplasmic side of the membrane (Akk et al., 2005), this might not 

be the case for the inhibitory neurosteroids. The negatively charged sulphate 

group on the A ring of PS confers hydrophobicity to the molecule, which might 

render it incapable of crossing the membrane. PS may, however, still partition 

into the membrane.  

To determine if PS can modulate the GABAA receptor from within the cell, 100 

µM PS was applied internally through the solution in the patch pipette and the 

response to 1 mM GABA was recorded at 5 min intervals for 30 min. Control 

recordings were performed in cells with normal PS-free internal solution.  
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Figure 3.7 – PS does not inhibit GABA currents when applied through the 

patch pipette. 

The graph shows the response of α1β2γ2L receptors to 1 mM GABA applied at 5 min intervals 

with and without 100 µM PS applied internally though the patch pipette solution (n = 7-8). The 

black (peak current) and the red (steady-state current) data points show the response to GABA 

with 100 μM PS applied through the patch pipette, whereas data points from cells with no PS are 

shown in green (peak current) and blue (steady-state current). Data are expressed as mean ± 

SEM.  

As PS inhibits steady-state currents but has little effect on the peak current, a 

larger run-down of steady-state current is to be expected in cells containing PS 

in their internal solution if the steroid can still exert its action from within the cell. 

As demonstrated in Fig. 3.7, no greater run-down of the steady-state current was 

observed in cells with PS in the internal solution (63.6 ± 7.0% of initial GABA 

current) than in those with no steroid (61.0 ± 7.0% of initial GABA current) at the 

30 min time point (p = 0.8336, n = 7-8). Likewise, peak current run-down was 

similar in the two populations of cells, with the current in cells exposed to no PS 

having reached 74.7 ± 7.0% of control compared with 85.2 ± 7.1% of control in 

cells with 100 µM PS in the internal solution (p = 0.3244). This finding implies that 

PS is not able to negatively modulate GABAA receptors from the cytosolic side of 

the cell, and suggests that its binding site is more likely to exist on the extracellular 

side of the protein.  
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3.2.6. Does PS show any receptor subtype selectivity? 

As discussed in the introduction (Chapter 1), the GABAA receptor can form 

several receptor subtypes that comprise different subunit combinations. These 

receptor subtypes can display distinct pharmacological profiles, with varying 

sensitivities to pharmacologically active agents. Whereas only γ-containing 

receptors are modulated by the benzodiazepines (Pritchett et al., 1989), extra-

synaptic δ-containing receptors show a greater sensitivity to potentiating 

neurosteroids than synaptic receptors (Belelli et al., 2002; Akk et al., 2007). To 

determine if PS shows any receptor subtype selectivity like the potentiating 

neurosteroids, various GABAA receptor subtypes incorporating each of the α1-6 

subunits, β2/3 and γ2L/δ were expressed in HEK cells. The aim was to provide 

an indication as to whether PS is more likely to play a role in modulating synaptic 

or extrasynaptic receptors in a neuronal environment.    

GABA concentration-response curves were first constructed for each receptor 

subtype in order to find their respective EC80 values (Fig. 3.8A and B). As 

inhibition by PS is affected by the co-applied concentration of GABA (see section 

3.2.3), it is important to keep the ‘functional concentration’ of GABA the same 

between experiments (i.e. matched responses). Inhibition experiments were 

therefore conducted using an EC80 concentration of GABA, co-applied with PS 

(0.001-100 µM) without pre-application. A summary of GABA EC50 values, the 

Hill coefficients and approximate EC80 values for each receptor subtype is shown 

in Table 3.1.  
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Figure 3.8 – GABA concentration-response curves for GABAA receptor 

subtypes. 

A. GABA concentration-response curves for receptors typically present at the synapse, including 

α1β2γ2L (black), α1β3γ2L (red), α2β2γ2L (green) and α3β2γ2L (blue) (n = 5-8). Currents are 

expressed as a percentage of the maximal current in response to EC100 (1 mM, except for 

α3β2γ2L which peaks at 3 mM). B. GABA concentration-response curves for receptors that 

typically reside outside the synapse, including α1β2 (black), α4β2δ (red), α5β2γ2L (green), α6β2δ 

(blue) and ρ1 (cyan) (n = 5-8). Currents are expressed as a percentage of the maximal current in 

response to EC100 (300 µM - 1 mM). All data are expressed as mean ± SEM.  
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Table 3.1 – GABA concentration-response parameters for GABAA receptor 

subtypes. 

Data are derived from the GABA concentration-response curves shown in Figure 3.8 (n = 5-7). 

All values are mean ± SEM. 

As shown in Fig. 3.9A-D, PS exhibits a similar profile of block at each receptor 

subtype studied, except at the ρ1 receptor which was notably less sensitive. At 

this receptor, inhibition of both peak and steady-state currents was only present 

at 100 µM PS (see traces in Fig. 3.10C). For the heteromeric αβγ/δ receptors, PS 

inhibition of steady-state currents yielded IC50 values ranging between 0.4 and 

1.3 μM, as summarised in Table 3.2. All receptors containing β2 and γ2 

expressed with α1,2,3 or 5 had similar IC50 values (p > 0.05), whereas the α1β2 

heteromer was somewhat less sensitive to PS than the receptors containing γ2L 

(p < 0.001). Similarly, replacing β2 with β3 made the α1βγ2L receptor less 

sensitive to the effect of PS on steady-state current (p < 0.001). The δ-containing 

receptors, α4β2δ and α6β2δ, were also less sensitive to PS than the γ2L-

containing heteromers, but were not different from α1β2. Taken together, these 

results suggest that the β and γ/δ subunits are more important in determining the 

potency of PS than the α subunit isoform (α1-6). However, the observed 

Receptor GABA EC50

(µM)

nH GABA EC80

(µM)

α1β2γ2L 4.9  1.4 1.3  0.1 30

α1β3γ2L 7.5  1.2 1.1  0.1 30

α2β2γ2L 21.1  2.1 1.0  0.1 100

α3β2γ2L 64.6  14.3 0.8  0.1 300

α1β2 4.4  0.6 1.0  0.0 20

α4β2δ 0.5  0.1 1.0  0.1 3

α5β2γ2L 10.3  1.5 1.2  0.1 30

α6β2δ 0.2  0.0 1.1  0.1 1

p1 2.6  0.3 1.7  0.1 10
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differences in IC50 values between the receptor subtypes are relatively small 

(Table 3.2).  
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Figure 3.9 – Inhibition of GABA currents by PS at various GABAA receptor 

subtypes. 

A. Inhibition of GABA EC80 peak currents by PS at typical synaptic receptors, including α1β2γ2L 

(black), α1β3γ2L (red), α2β2γ2L (green) and α3β2γ2L (blue) (n = 5-7). B. Inhibition of GABA EC80 

steady-state currents by PS at typical synaptic receptors, including α1β2γ2L (colour-coded as in 

A.), α1β3γ2L, α2β2γ2L and α3β2γ2L (n = 5-7). C. Inhibition of GABA EC80 peak currents by PS 

at receptors that typically exist outside the synapse, including α1β2 (black), α4β2δ (red), α5β2γ2L 

(green), α6β2δ (blue) and ρ1 (cyan) (n = 5-6). D. Inhibition of GABA EC80 steady-state currents 

by PS at receptors that typically exist outside the synapse, including α1β2 (colour-coded as in 

C.), α4β2δ, α5β2γ2L, α6β2δ and ρ1 (n = 5-6). Data are expressed as mean ± SEM. E. Example 

traces for a GABA EC80 response and the effect of co-application with 1 and 100 µM PS at 

α1β2γ2L, a typical synaptic-type receptor. F. Example traces for the GABA EC80 and PS 

responses at a typical extrasynaptic-type receptor, α4β2δ. 

The differences observed in the block of peak currents by a high concentration of 

PS (100 μM) at the different receptor subtypes were larger than the differences 

in the block of steady-state current (Fig. 3.9A and C, example traces in E and F). 

Compared with inhibition of the α1β2γ2L GABA peak current (60.1   9.6% of 

GABA control current), inhibition by 100 μM PS was 43.3% greater at α6β2δ (16.7 

  3.4% of control; p < 0.001) and 29.1% greater at α4β2δ (31.0   5.4% of control; 

p < 0.01). The least inhibition of peak current by PS was observed at ρ1 (68.0 ± 

3.3% of GABA control current), but this block was not statistically different from 

that observed at the synaptic-type GABAA receptors (p > 0.05). 

As inhibition of the ρ1 receptor by PS was distinctly different from the rest of the 

GABAA receptor subtypes, a further set of experiments was undertaken to 

characterise the pharmacological profile of PS at this receptor. If it was found to 

be largely insensitive to modulation by PS, ρ1 could potentially be used to dissect 

the location of the binding site for PS by using site-directed mutagenesis and 

receptor chimeras. As inhibition of α1β2γ2L by PS was found to depend on the 

concentration of GABA, it was investigated whether this also applied to the ρ1 

receptor. As shown in Fig. 3.10A, 30 µM PS was co-applied with GABA at 

concentrations between 1 µM (EC20) and 300 µM (EC100). For both peak and 

steady-state currents, the normalised response to PS was 80-90% of the GABA 

control response at all concentrations of GABA, suggesting that there is no 

activation-dependent block at this receptor.  
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To determine whether PS caused greater inhibition of ρ1 receptor-mediated 

GABA currents if allowed more time to bind, PS was pre-applied at least 20 s 

prior to each co-application of GABA and PS. Inhibition was not greater following 

pre-application for peak or steady-state GABA currents at 100 µM PS (p > 0.05), 

indicating that allowing PS more time to bind to the receptor does not increase 

inhibition at the ρ1 receptor (Fig. 3.10B). Taken together, these results indicate 

that the ρ1 receptor is largely insensitive to modulation by PS at concentrations 

ranging between 0.001 and 10 µM, but some inhibition is evident at 100 µM (Fig. 

3.10C).  

 

Figure 3.10 – Characterisation of the activity of PS at the ρ1 receptor. 

A. Co-application of 30 µM PS with various concentrations of GABA to determine if inhibition of 

ρ1 by PS is activation-dependent (n = 7). B. The response of ρ1 to GABA EC80 (10 µM) and PS 

at various concentrations following PS pre-application (n = 3). PS was pre-applied at the same 

concentration as that used in the subsequent co-application. Data are expressed as mean ± SEM. 

C. Example traces for the response of the ρ1 receptor to GABA EC80 and PS (1-100 μM) co-

applications.    
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Table 3.2 – Functional parameters for PS derived from inhibition curves. 

Data are derived from the curves shown in Figure 3.9 for inhibition of GABA EC80 steady-state 

currents by PS (n = 5-7). All values are mean ± SEM. 

3.2.7. Does PS act as a negative allosteric modulator at receptors that typically 

exist outside the synapse? 

Due to the fact that extrasynaptic receptors residing outside the synapse are 

unlikely to experience concentrations of GABA as high as those used in the PS 

inhibition experiments described above (Farrant and Nusser, 2005; Glykys and 

Mody, 2007b), more experiments were carried out to see if PS can inhibit α4β2δ 

GABA currents when lower concentrations of ambient GABA are used to 

reproduce the conditions of tonic inhibition.  

To determine if PS acts as an activation- or state-dependent antagonist at α4β2δ, 

or if inhibition can occur at lower concentrations of agonist, the neurosteroid was 

co-applied with GABA at concentrations ranging between 0.1 µM (EC15) and 3 

µM (EC80). As with α1β2γ2L, 1 µM PS produced greater inhibition at the relatively 

higher (1-3 μM) concentrations of GABA at the α4β2δ receptor (Fig. 3.11A and 

Receptor PS IC50 (µM) nH

α1β2γ2L 0.4  0.05 0.8  0.1

α1β3γ2L 1.0  0.08 1.3  0.2

α2β2γ2L 0.4  0.05 1.3  0.2

α3β2γ2L 0.6  0.05 1.2  0.1

α1β2 1.3  0.07 0.9  0.1

α4β2δ 1.3  0.1 1.4  0.1

α5β2γ2L 0.7  0.1 1.3  0.1

α6β2δ 1.3  0.1 1.1  0.03

p1 > 300 -
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C), with maximal block being reached at 1 µM GABA or higher (> EC50). Whereas 

the peak current in the presence of PS was around 90% of the GABA control 

current at all agonist concentrations, the steady-state current was reduced to 

approximately 55% of control when GABA was applied at 1 µM (EC70) or higher 

concentrations. This shows that PS acts as a state-dependent antagonist also at 

α4β2δ receptors, which raises the question as to whether inhibition is likely to 

occur at receptors located outside the synapse where ambient GABA 

concentrations are likely to be lower.     

To investigate whether inhibition of a tonic GABA current is likely to occur, HEK 

cells were kept in a Krebs solution containing 100 nM GABA for a few minutes to 

let the ‘tonic’ GABA current reach steady state, before PS was applied at 

increasing concentrations to estimate the extent of inhibition of this emulated 

tonic current. As 100 nM is near the GABA EC15 concentration for the α4β2δ 

receptor (Fig. 3.8B), a small ‘tonic’ current (50-300 pA) was present. GABA is 

thought to exist at high nanomolar concentrations in the extracellular space of the 

CNS, making this a suitable concentration to use in this experiment (Lerma et al., 

1986; Tossman et al., 1986). The amplitude of the ‘tonic’ current was estimated 

by washing out GABA after the steroid applications, and inhibition was expressed 

as a percentage of this current. Inhibition was present at concentrations of PS 

higher than 0.1 µM (Fig. 3.11B and D), with full block reached at 100 µM. 

Interestingly, 100 µM PS caused an outward current that was greater than the 

GABA current, suggesting that the steroid might also be acting at a receptor that 

is endogenously expressed in HEK cells. As a control, 100 µM PTX was applied 

and was found to cause a smaller outward current than PS (traces in Fig. 3.11D). 

Whereas PTX seems to fully inhibit the ‘tonic’ current, PS produced an outward 

current that was larger than the GABA current. This can either be due to block of 

a small standing current present in HEK cells or activation of an endogenously 

expressed receptor by PS (see section 3.2.8).   
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Figure 3.11 – Characterisation of PS modulation of the α4β2δ receptor. 

A. PS (1 µM) was co-applied with GABA at various concentrations to determine if inhibition of 

α4β2δ GABA currents is activation-dependent (n = 6). B. To mimic a tonic GABA current at the 

α4β2δ receptor, 100 nM GABA was kept permanently present in the recording chamber. The 

plotted data illustrate the inhibition of this current caused by PS at increasing concentrations (n = 

7). Data are expressed as mean ± SEM. C. Example traces demonstrating the greater inhibition 

caused by PS at higher concentrations of GABA. D. Example traces showing inhibition of a 100 

nM GABA current by PS, mimicking the potential effect of PS on a tonic GABA current. Also 

illustrated is the greater outward current caused by application of 100 μM PS compared with 100 

μM PTX.  
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3.2.8. PS acts as an antagonist at β3 homomers 

As the α subunit seemed less important for determining the potency of PS at 

GABAA receptors, β3 was expressed as a homomer in HEK cells to determine 

whether this subunit carried a binding site for PS. All three β subunits can form 

homomeric receptors, but of these the one formed by the β3 subunit gives the 

largest current and is thus the most robust to study (Krishek et al., 1996b; 

Wooltorton et al., 1997). Although the β3 homomer is insensitive to GABA, it can 

be activated by pentobarbitone (PB), which creates a slowly activating current 

that is followed by a rebound current upon wash-off (Wooltorton et al., 1997). For 

the purpose of determining whether PS can bind to the β3 subunit, PB (500 μM) 

was used as an agonist, and was co-applied with PS (1 – 10 µM; Fig. 3.12A and 

B). The neurosteroid caused a concentration-dependent block of the PB-induced 

β3 homomer peak current measured at 5 s, and seemed to also reduce (though 

to a lesser extent) the magnitude of the rebound current upon wash-off.    

This observation argues that a binding site for PS must exist on the β3 subunit, 

raising the question as to whether the steroid binds to more than one type of 

subunit at the GABAA receptor.   

PB (500 µM) also activates the α1β2γ2L receptor, inducing a current that could 

be inhibited by PS in a concentration-dependent manner (1-100 µM; data not 

shown). Interestingly, the rate of onset of PS inhibition was faster at the PB-

activated β3 homomer and α1β2γ2L receptor compared with the GABA-activated 

α1β2γ2L receptor. This raised the question as to whether the binding site for PS 

is more accessible at a receptor complex activated by PB than by GABA, or 

whether PB makes the GABAA receptor enter a state that is preferable for PS 

inhibition. The IC50 values for PS-mediated inhibition of PB-activated currents 

both at the β3 homomer and α1β2γ2L receptor were, however, nearer 10 µM than 

1 µM, making PS a less potent antagonist at a receptor activated by PB than 

GABA.  
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Figure 3.12 – Pentobarbitone-activated β3 homomers are antagonised by 

PS. 

A. β3 homomers were activated by 500 µM PB and inhibition by PS (1-100 µM) was assessed 

following co-application. The bar chart shows how PS inhibits both the peak current (measured 

at 5 s) and the rebound current induced by PB (n = 8). Data are expressed as mean ± SEM. B. 

Example traces showing the β3 homomer response to 500 µM PB and inhibition by 100 µM PS.  

Due to the observation that 100 µM PS seemed to cause an outward current 

larger than the GABA-induced current at the α4β2δ receptor and the block 

produced by 100 µM PTX (section 3.2.7), PS was applied on its own in 

untransfected cells to see if the outward current could be due to the presence of 

spontaneously active β homomers formed from endogenously expressed 

subunits (Ueno et al., 1996; Geiger et al., 2012), or another type of endogenous 

ion channel. For this purpose, a CsCl-based internal solution was used to remove 

any possible currents from endogenously expressed K+ channels. In most 

untransfected cells, 100 µM PS induced a notable transient fast outward current 

(representative trace shown in Fig. 3.13) that could be as large as 100 pA. This 
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current quickly diminished and reached a plateau of 5 to 25 pA which was 

followed by a small rebound current upon wash-off. The transient peak differs 

from the current that was observed in the cells transfected with α4β2δ receptors, 

and is unlikely to be due to a transient block of β homomer currents. Furthermore, 

Krebs solution did not induce any current when applied through the U-tube, 

suggesting that the PS-mediated current is not an artefact. The cause of the 

current consequently remains unidentified. Nevertheless, its small amplitude and 

transient nature suggests it is unlikely to interfere with the inhibition caused by 

PS of extrasynaptic-type GABAA receptors. 

 

Figure 3.13 – A representative trace for the response of an untransfected 

HEK cell to 100 µM PS.  

The cell was held at -60 mV and PS applied for the duration indicated by the bar. 

3.2.9. Inhibition by PS at slower- and faster-desensitising GABAA receptor 

mutants 

As PS causes greater inhibition at higher concentrations of GABA but does not 

appear to act as a classical open-channel blocker, receptors might be more 

susceptible to block when they are in a desensitised state. To investigate if the 

desensitisation kinetics of a receptor affects its sensitivity to PS, two point 

mutations were introduced into α1β2γ2L: a valine to phenylalanine substitution 

was made at residue 262 at the -3’ position on the intracellular side of the M2 

helix of the γ2L subunit (γ2LV262F), making the heteromeric receptor desensitise 

faster, and a leucine to valine substitution at residue 296 in the M3 helix of the β2 

subunit (β2L296V) was made to slow down the rate of desensitisation of the 
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receptor (Gielen et al., 2015). These mutations minimally affected GABA potency 

compared to wild-type α1β2γ2L, and 1 mM GABA could still be used as the EC100.  

 

Figure 3.14 – PS antagonises GABA-mediated currents at the 

desensitisation mutants α1β2γ2LV262F and α1β2L296Vγ2L 

A. The graph shows inhibition of peak (black) and steady-state (red) currents caused by 1 µM 

and 100 µM PS during a co-application with 1 mM GABA at α1β2γ2LV262F (n = 5). B. The graph 

shows inhibition of peak (black) and steady-state (red) currents caused by 1 µM and 100 µM PS 

during a co-application with 1 mM GABA at α1β2L296Vγ2L (n = 4). Data are expressed as mean ± 

SEM. C, D. Example traces for PS inhibition of GABA-mediated currents at α1β2γ2LV262F (C), and 

α1β2L296Vγ2L (D). 
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There is a considerable difference in the desensitisation kinetics of these mutant 

receptors compared to wild-type. The faster-desensitising receptor mutant, 

α1β2γ2LV262F, exhibited a very small steady-state current 10 s into GABA (1 mM) 

application, having reached 4.8 ± 2.3% (n = 5) of the peak current, compared to 

20.1 ± 2.7% (n = 7) for the wild-type receptor (Fig. 3.14C). The steady-state 

current of the slower-desensitising receptor mutant, α1β2L296Vγ2L, reached 37.8 

± 4.1% (n = 4) of the peak current, meaning a smaller proportion of receptors 

were in a desensitised state compared to wild-type (Fig. 3.14D).  

Both receptor mutants were sensitive to PS. As with the wild-type receptor, peak 

currents were minimally inhibited by the steroid, whereas marked inhibition of the 

steady-state current was present. For 1 μM PS, the slower-desensitising mutant, 

α1β2L296Vγ2L, was similar in profile to wild-type, with the steady-state current 

having reached 40.2 ± 6.3% of control at 10 s (compared with 28.1 ± 8.6% at 

wild-type, p = 0.045), suggesting its IC50 value is below 1 µM and similar to the 

wild-type receptor. At 100 µM PS, virtually full block of the steady-state current 

was achieved. The faster-desensitising receptor mutant, α1β2γ2LV262F, was less 

sensitive to 1 μM PS than wild-type as steady-state currents reached only 70.3 ± 

3.8% of control at 10 s (p < 0.0001). At 100 µM PS, a full block was however 

achieved, as well as block of a small standing current caused by the constitutive 

channel activity for this mutant. Taken together, these findings show that PS is 

equally efficacious at the wild-type and mutant receptors, but is less potent at the 

mutant that desensitises faster. Whether this difference in potency is due to the 

decay kinetics of the mutant receptor being different from the wild-type, or if the 

mutation has affected the binding or signal transduction of PS, remains elusive. 

It is not unexpected that PS is less potent at the faster-desensitising receptor 

mutant. If PS acts to promote the desensitised state, either by speeding up entry 

into this state or by stabilising it, there will be less scope for inhibition by PS if the 

mutation itself has already promoted this state. Conversely, PS would be 

expected to have more of an effect at the slower-desensitising receptor mutant.  
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3.3. Discussion 

This chapter has examined the modulation by PS of recombinant GABAA 

receptors expressed in HEK cells. The steroid acts as a negative allosteric 

modulator of GABAA receptors and is significantly more potent than the 

structurally similar inhibitory neurosteroids DHEA and DHEAS. The onset of 

inhibition by PS appeared to be slow, with little effect on the peak current and a 

considerable effect on the steady-state current, leading to an increase in the 

apparent rate of desensitisation. Pre-applying PS before receptor activation did 

not increase inhibition of GABA currents, suggesting that slow on-binding was not 

the reason for the lack of peak current inhibition. The effect of PS was, however, 

greater at higher concentrations of GABA, which could be interpreted as 

activation- or state-dependence of block. Block by PS is only weakly voltage-

sensitive and the steroid does not compete with the open-channel blocker PTX 

for binding, suggesting that the channel pore is an unlikely binding site. When 

applied through the internal solution of the patch pipette, GABA currents were not 

inhibited by PS, which shows that the steroid can only access its binding site from 

the extracellular side of the receptor. PS only showed a low degree of receptor 

subtype selectivity, although the ρ1 receptor was notably less sensitive than the 

heteromeric αβγ and αβδ receptors. 

3.3.1. The mode of inhibition by PS of GABAA receptors  

 Understanding the mechanism by which inhibitory neurosteroids modulate the 

GABAA receptors is important for understanding the conditions under which the 

steroids modulate these receptors in the brain, and can also help us in building a 

profile of potential binding sites for the compounds. In this chapter, we have seen 

that PS is a significantly more potent inhibitor of the α1β2γ2L receptor than the 

structurally similar steroids DHEA and DHEAS, and PS was therefore chosen to 

be the main compound of interest. This was perhaps a bit surprising, as PS and 

DHEAS have previously been reported to have similar potency at the GABAA 

receptor, with DHEA being less potent than the other two (Park-Chung et al., 

1999). Such differences may arise due to different experimental conditions, 
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including that the study by Park-Chung et al. used chick primary spinal cord 

neurones and assessed inhibition of whole-cell GABA peak currents as opposed 

to steady-state currents.  

Inhibition by PS was greater at higher concentrations of GABA, which could 

suggest activation- or use-dependence of block. Inhibition appeared to develop 

slowly, leading to greater block of steady-state currents than peak currents. 

Furthermore, applying PS before GABA application and activation of the 

receptors did not increase inhibition, indicating that the slowly developing block 

is not due to slow association of PS to the receptors. Similar kinetics of PS block 

following pre-application compared to no pre-application have previously been 

reported for rat hippocampal neurones (Eisenman et al., 2003). These results are 

entirely consistent with the idea that receptors have to be activated before PS 

can modulate the response. However, contrary results have also been reported 

in Xenopus oocytes expressing bovine α1β2γ2L receptors, where greater 

inhibition of GABA currents was observed following PS pre-application (Zaman 

et al., 1992). This discrepancy may reflect the access of PS to the different cell 

membranes in HEK cells and oocytes, with molecules needing more time to 

access the receptors expressed in oocytes.   

If inhibition by PS is use-dependent, repeated applications of GABA with PS 

permanently present in the extracellular solution would lead to a gradual increase 

in inhibition upon each exposure to agonist. As no such increase was observed, 

the greater block gained at high GABA is likely to be due to state- rather than 

use-dependence of block, raising the question as to whether higher inhibition at 

high GABA is due to high receptor occupancy or to a conformation of the receptor 

caused by high activity, e.g. desensitisation. A previous study addressed this 

question by assessing PS potency in the presence of a saturating concentration 

of a partial agonist, piperidine-4-sulfonic acid (P4S), which only produces 30-40% 

of the maximal GABA current (Eisenman et al., 2003; Mortensen et al., 2004). At 

this concentration, the potency of PS was more than threefold lower compared 

with a maximal concentration of GABA. When comparing the fractional block by 

PS of currents produced by functionally equivalent concentrations of GABA and 

P4S, i.e. concentrations activating a similar proportion of receptors, the inhibition 

by PS of the α1β2γ2L receptor expressed in oocytes was similar. This shows that 
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level of receptor activity rather than agonist occupancy is likely to be a key 

determinant for PS potency.  

The concept of activation-dependent block can be indicative of the antagonist 

needing to access the channel pore to reach its binding site. For many 

pharmacological agents, this mode of block coincides with voltage-dependence 

(Newland and Cull-Candy, 1992; Cui et al., 2006). Despite its negatively charged 

sulphate moiety, PS (1 µM) was not found to exhibit much voltage-dependence, 

with block being only 12% greater at depolarised than hyperpolarised membrane 

potentials. Similar findings on the rate and extent of block have been reported by 

others in oocytes, HEK cells and rat cortical neurones (Majewska et al., 1988; 

Akk et al., 2001; Eisenman et al., 2003), and again strongly suggest that PS does 

not act as an open-channel blocker and that its binding site is likely to be located 

outside the channel pore. Also, the sulphate moiety of PS may not be essential 

for GABAA receptor inhibition (Seljeset et al., 2015). These findings suggest that 

the binding by PS is hardly influenced by the membrane electric field.  

The profile of block by PS has previously been shown to be similar to that of PTX 

at low GABA concentrations (Eisenman et al., 2003). In early studies, PTX was 

found to displace PS in rat brain membranes (Majewska et al., 1990), and PS 

was found to competitively inhibit the binding of the PTX-like blocker and 

convulsant, t-butylbicyclophosphorothionate (TBPS) in rat synaptosomes 

(Majewska and Schwartz, 1987). Radioligand displacement is often interpreted 

as competition by two compounds for binding to the same site, but for allosteric 

proteins like the GABAA receptor, this is not always the case. Furthermore, 

mutating the 2’ residue of the M2 helix of GABAA receptor α and/or β subunits led 

to the identification of a possible binding site for PTX in the channel pore (Zhang 

et al., 1994; Xu et al., 1995), which is supported by the crystal structure of GluCl 

bound to PTX at this site (Hibbs and Gouaux, 2011). Due to these similarities and 

possible overlap in binding sites for PS and PTX, an experiment was conducted 

to try and determine if the two antagonists compete for binding at α1β2γ2L. As 

shown in Fig. 3.6, PS and PTX did not appear to compete for binding as their 

inhibitory effect on GABA currents were shown to be almost additive. Moreover, 

the effects of PS and PTX have been described as distinctly different at high 

GABA concentrations by others, with PTX having little or no effect on steady-
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state currents (Eisenman et al., 2003). As PS markedly attenuates steady-state 

currents at high GABA concentrations, this result strengthens the hypothesis that 

the mechanism of block by PS and PTX are distinct and hence the compounds 

are likely to have separate binding sites.  

As potentiating neurosteroids have been found to partition into the plasma 

membrane and can exert their effect from the cytosol (Akk et al., 2007, 2009), it 

was important to determine if PS can also modulate the α1β2γ2L receptor from 

within the cytosol. As the response to extracellular GABA was no different in cells 

with 100 µM intracellular PS compared with no PS, it is likely that PS can only 

reach its binding site from the extracellular side of the membrane. This result also 

suggests PS has a defined binding site rather than affects the receptor protein in 

a non-specific manner. This is also supported by the finding that TRPM3 channels 

can be activated by extracellular but not intracellular PS (Wagner et al., 2008). 

3.3.2. PS exhibits little receptor subtype selectivity at recombinant GABAA 

receptors expressed in HEK cells 

Knowing whether an endogenous molecule exhibits any GABAA receptor subtype 

selectivity can help us predict in which regions of the brain and subcellular 

locations the compound is likely to have an effect. To determine whether PS is 

receptor subtype selective, its potency was determined at α1-3β2γ2L, α5β2γ2L, 

α4β2δ and α6β2δ receptors heterologously expressed in HEK cells. When co-

applied with GABA at an EC80 concentration at these receptor subtypes, PS IC50s 

for the block of steady-state current were in the range of 0.4 to 1.3 µM. Although 

the differences in potency at some of the subtypes are statistically different, the 

small difference observed suggests that not much subtype selectivity is likely to 

exist under physiological conditions. A somewhat higher efficacy of PS for block 

of peak current was, however, observed at the δ-containing receptors, and could 

imply a potential role for PS in modulating GABA-mediated tonic currents.  

The potency of PS has previously been shown to be similar at α1β2γ2L and 

α5β2γ2L receptors expressed in Xenopus oocytes when co-applied with GABA 

at an EC80 concentration (Rahman et al., 2006), which supports the findings 
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presented here. Furthermore, Rahman et al. found that the potency and efficacy 

of PS were increased in the presence of the potentiating neurosteroid THDOC, 

which corroborates the hypothesis that high receptor activation or increased 

channel open probability promotes inhibition by PS. Contrasting results have also 

been reported: a study of bovine α1/3β2γ2 receptors expressed in Xenopus 

oocytes showed that the α3-containing receptor was tenfold more sensitive to PS 

than the α1β2γ2 receptor when co-applied with GABA at an EC50 concentration. 

Another study showed that PS was more potent at α6β3γ2 than at α6β3δ 

expressed in HEK cells, suggesting that the potency of PS is reduced by the δ 

subunit (Zhu et al., 1996). It should be noted, however, that they also reported a 

lower potency and efficacy of THDOC at the δ-containing receptor, a finding that 

has later been disputed (Belelli et al., 2002). Furthermore, PS was found to be 

twofold more potent at the α4β3γ2 receptor than the α4β3δ receptor expressed 

in mouse L(-tk) fibroblast cells, suggesting that the γ2 subunit confers increased 

sensitivity to PS (Brown et al., 2002).  

Similarly to that noted for PS, the α subunit (1-6) does not influence the potency 

of potentiating neurosteroids to a great extent when co-expressed with the β1 

and γ2L subunits in oocytes, with EC50 values being in the range of 74 to 317 nM 

when co-applied with GABA EC10 (Belelli et al., 2002). The β subunit isoform did 

not influence the modulatory actions of allopregnanolone (Hadingham et al., 

1993; Belelli et al., 2002), which is different from what was observed for PS, as 

replacing β2 with β3 in the α1βγ2L complex reduced its potency. The efficacy of 

the potentiating neurosteroids does, however, vary greatly between receptor 

subtypes at physiological concentrations (3-100 nM) of the compounds, allowing 

for receptor selectivity under physiological conditions. At δ-containing receptors, 

allopregnanolone can potentiate the response to GABA EC10 beyond that 

produced by a saturating concentration of GABA (Belelli et al., 2002). This shows 

that for potentiating neurosteroids, δ-containing receptors are not necessarily 

sensitive to lower concentrations of the steroids, but the maximum effect 

(macroscopic efficacy) is greater than at γ2-containing receptors, and a larger 

effect is thus likely to be observed at low concentrations of steroid at these 

receptors (Belelli et al., 2002; Wohlfarth et al., 2002; Akk et al., 2007). The 

potentiating neurosteroids are therefore more likely to show selective receptor 
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modulation than PS as the inhibitory neurosteroid shows similar potency and 

efficacy at all receptor subtypes studied. To determine whether the lower potency 

of PS observed at α4/6β2δ compared with the α1-3β2γ2L receptors is due to the 

α4/6 subunit or the δ subunit, a control experiment replacing the δ subunit with 

γ2L is required. However, PS was found to be twofold more potent at the α4β3γ2 

receptor than the α4β3δ receptor expressed in mouse L(-tk) fibroblast cells, 

suggesting that the γ2 subunit confers increased sensitivity to PS (Brown et al., 

2002). 

The receptor subtype that did stand out from the crowd was the ρ1 receptor, 

which showed little or no sensitivity to PS at concentrations below 100 μM. This 

is different from the potentiating neurosteroids, which can act as positive and 

negative allosteric modulators of GABA currents at the ρ1 receptor, though the 

concentrations needed are higher than at heteromeric receptors (> 1 μM) (Morris 

et al., 1999). PS has also been shown to be a very weak blocker of the human 

ρ1 receptor expressed in oocytes (Li et al., 2007), which corroborates the present 

findings. As the ρ1 subunit forms a homomeric pentamer in HEK cells, the 

receptor is ideal for use in structure-function studies. Due to its low sensitivity to 

PS, chimeras of ρ1 and other GABAA receptor subunits, as well as point 

mutations, were used to further study and characterise the mechanism of 

inhibition by PS at these receptors. Using ρ1 as a ‘null’ receptor, the aim was to 

identify the binding site for PS (see Chapter 4).  

Whether the binding site for PS is present at one or more subunits, is not clear. 

As α1β2 heteromers were modulated by PS, the binding of the steroid does not 

depend on the presence of the γ2L subunit. As the β subunits can form 

homomeric complexes activated by PB (Krishek et al., 1996b; Wooltorton et al., 

1997), this was exploited to determine if PS can antagonise PB-induced currents 

at the β3 homomer in HEK cells. Inhibition of the PB-mediated currents confirmed 

the presence of a binding site for PS at the β3 subunit, but does not exclude the 

possibility that the steroid can also bind to the α1-6 and γ2L subunits.  
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3.3.3. PS can antagonise a ‘tonic’ GABA current at the α4β2δ receptor in HEK 

cells 

Due to the enhanced block of GABAA receptor-mediated steady-state current by 

PS, the steroid might play a more significant role in modulating the persistent low 

level of tonic currents that exist outside synapses than in antagonising the fast 

and transient currents occurring within the synapse. However, as modulation of 

the α4β2δ receptor by PS was also shown to be activation- or state-dependent, 

it is uncertain whether the steroid will be active at the low concentrations of GABA 

that are likely to exist outside the synapse. To investigate whether PS is likely to 

modulate tonic currents under physiological conditions, a tonic GABA current was 

mimicked by applying 100 nM GABA to α4β2δ receptors. The concentration of 

GABA that is likely to exist outside the synapse has been under considerable 

debate, and is likely to be below 1 µM (Glykys and Mody, 2007b; Wlodarczyk et 

al., 2013), making 100 nM a suitable concentration to use. At concentrations of 

0.1-100 µM, PS inhibited these GABA ‘tonic’ currents. This suggests that 

inhibition of tonic currents may occur despite the activation-dependent 

mechanism of block by PS, and this is explored further in hippocampal cultures 

(see Chapter 5). The inhibition by 100 µM PS was greater than that caused by 

100 µM PTX, a concentration that should cause full inhibition of a GABA current 

(Krishek et al., 1996a). As the outward current induced by 100 µM PS also 

appeared to be larger than the 100 nM GABA-induced current, PS might activate 

or inhibit receptors that are endogenously expressed in HEK cells. One possibility 

is that endogenously expressed β subunits form homomers in these cells and 

produce a spontaneous current that is antagonised by PS (Ueno et al., 1996; 

Thomas and Smart, 2005). Another possibility is that an endogenously expressed 

K+ channel is potentiated by PS, mediating an outward current. These aspects 

are discussed further in Chapter 5.  

3.3.4. The potency of PS may be affected by the kinetics of the GABAA receptor 

As PS is less potent at δ-containing receptors and is almost inactive at ρ1 

homopentamers compared with the γ2L-containing receptors, one factor that may 

be influential is the kinetics of the receptor. Whereas ρ1 desensitises very little, 
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δ-containing receptors that typically reside outside the synapse desensitise less 

than the γ-containing receptors that are found at the synapse (Saxena and 

Macdonald, 1994; Bianchi and Macdonald, 2002; Brown et al., 2002; Yang et al., 

2006). Previous studies have also suggested a role for PS in modulating 

desensitisation. PS increases the rate and extent of macroscopic GABA receptor 

desensitisation at hippocampal autapses and in nucleated patches, and appears 

to slow the rate of recovery from desensitisation (Shen et al., 2000). Thus, the 

apparent slow onset of inhibition and increased rate of decay of GABA whole-cell 

currents in HEK cells might be explained by PS promoting entry of the receptors 

into one or more desensitised states and stabilising these states. This was also 

supported by the observation that PS was less effective under conditions in which 

receptors desensitise less, as no effect on deactivation was observed when the 

low affinity and less desensitising agonists taurine and β-alanine were applied to 

nucleated patches (Shen et al., 2000). Only after longer applications of β-alanine, 

when some degree of desensitisation was present, did PS have an effect. These 

findings suggest that PS is most effective as an inhibitor under conditions in which 

the GABAA receptors desensitise.   

To investigate this, two GABAA receptor mutants with altered desensitisation 

kinetics were employed. A point-mutation in the γ2L subunit, γ2LV262F, makes the 

α1β2γ2L receptor desensitise faster, whereas a mutation in the β2 subunit, 

β2L296V, reduces the rate of desensitisation (Gielen et al., 2015). If PS acts to 

promote the desensitised state of receptors, increased levels of block would be 

expected at the slower-desensitising α1β2L296Vγ2L receptor than at the wild-type, 

whereas the opposite would be predicted for the faster desensitising 

α1β2γ2LV262F receptor. As predicted, lower levels of inhibition were achieved at 

the faster desensitising mutant in response to 1 mM GABA co-applied with 1 μM 

PS, whereas the slower desensitising mutant was similar to wild-type. The 

efficacy of PS was not affected by the mutations, as full block of the steady-state 

current was achieved by 100 μM PS at both receptors. The reduced potency of 

PS at the faster desensitising mutant may, however, be due to the mutation 

interfering with the signal transduction of PS, and does not in itself show that PS 

is less effective when desensitisation is increased. A simplified linear gating 

scheme for the modulation of GABAA receptors by PS is shown in Fig. 3.15.  
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Figure 3.15 – A gating scheme for PS modulation.  

This gating scheme shows that PS is likely to bind to one or more of three receptor states, which 

is supported by four observations. First, PS in unlikely to bind to the unbound state of the receptor 

(U), as pre-applying the steroid does not increase inhibition at most concentrations of PS. Second, 

PS might be able to bind to the occupied receptor (bound state; B), as inhibition is greater at high 

agonist concentrations. Third, PS probably binds to the open (O) and desensitised (D) states of 

the receptor since inhibition seems to be strongly dependent on receptor activation. Fourth, the 

overall effect of PS inhibition is to increase the proportion of receptors that enter a desensitised 

state, which is observed as an increase in steady-state current inhibition with increasing 

concentrations of PS.  
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3.4. Conclusion 

This chapter has discussed the mechanism of block by PS at different subtypes 

of the GABAA receptor expressed in HEK cells. It has been shown that PS is more 

potent than the other two inhibitory neurosteroids that are commonly found in the 

brain, namely DHEA and DHEAS. Furthermore, PS exhibits a slowly-developing 

block of GABA currents that is not increased by pre-application or repeated 

receptor activation, but is greater at higher concentrations of GABA. These 

findings suggest that block by PS is state-dependent, which is also supported by 

the observation that the steroid is less potent at wild-type receptors with slower 

desensitisation kinetics. The greater block of steady-state than peak currents 

argues for PS to have a role in modulating desensitisation, possibly by promoting 

entry into a desensitised state or by stabilising receptors in this state.  

In the pursuit of finding a binding site for PS, this chapter has shown that the 

steroid is unlikely to act as an open-channel blocker as it only exhibits weak 

voltage-dependence and does not appear to compete for binding with PTX. 

Furthermore, PS does not act from within the cytosol, suggesting that it needs to 

access the receptor from its exterior face to act as an antagonist.  

PS displays little receptor subtype selectivity, although the ρ1 receptor is 

distinctively different from the heteromeric αβγ/δ receptor and could potentially 

act as a ‘null’ receptor for further structure-function studies, an aspect that is 

discussed in Chapter 4. Due to the effect of PS on emulated tonic currents in 

α4β2δ expressing cells, the steroid might have a role in modulating tonic currents 

under physiological conditions. This will be further discussed in Chapter 5.   
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Chapter 4: Searching for the pregnenolone sulphate binding site: structure-

function studies on recombinant GABAA receptors 

4.1. Introduction  

This chapter considers the structural basis for PS inhibition of GABAA receptors 

through the use of the chimera approach and site-directed mutagenesis. Previous 

attempts have been made to find the binding site for PS. One study identified a 

residue located near the bottom of the second transmembrane segment (M2) of 

the GABAAR α1 subunit to be important for modulation by PS (Akk et al., 2001), 

whereas a separate group identified up to six residues in M1 and one at the top 

of M2 that were critical for PS and DHEAS inhibition at the C. elegans GABA 

receptor, UNC-49B/C (Wardell et al., 2006; Twede et al., 2007). To determine if 

the residues identified in these studies are important for modulation of murine 

GABAA receptors by PS, the homologous residues near the intracellular end of 

M2 (at 2’) and those identified in the UNC-49B/C are studied in murine GABAA 

receptors through the use of site-directed mutagenesis. The binding site is also 

further probed by using ρ1-α1/β2/γ2 chimeras in an attempt to find the residue(s) 

that makes the heteromeric GABAA receptors more sensitive to PS compared to 

the ρ1 receptor.  

The involvement of the GABAA receptor 2’ residue, which is near the cytoplasmic 

end of the M2 α-helix, was first discovered by Akk et al. (2001) when carrying out 

single-channel recordings in HEK cells expressing recombinant α1β2γ2L 

receptors. This residue was chosen because it had previously been shown to be 

involved in the block by PTX at the Drosophila GABA receptor RDL (Ffrench-

Constant et al., 1993), as well as the mammalian GABAA ρ1 receptor (Wang et 

al., 1995). Substituting the 2’ valine residue of α1 (V256) and homologous alanine 

residue of β2 (A252) for a serine residue, the apparent association rate for PS 

inhibition was reduced 30-fold in cells expressing α1V256Sβ2γ2L but not 

α1β2A252Sγ2L  (Akk et al., 2001). Single channel analysis showed that the cluster 

duration in the presence of PS was also increased compared to the wild-type 

receptor, suggesting that the mutation in the α1 subunit reduces the known ability 
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of PS to shorten cluster duration. Similar 2’ mutations in β2 and γ2L subunits had 

no such effect. Despite these findings, studies of whole-cell GABA currents have 

shown that the inhibitory effect of PS is reduced or abolished in Xenopus oocytes 

recombinantly expressing α1β2A252Sγ2L or α1V256Sβ2γ2L (Wang et al., 2006, 

2007), showing that the mutation in either the α1 or β2 subunit can affect PS 

sensitivity.  

To further explore whether the 2’ residue can be involved in PS binding, the 

α1V256S and β3A252S mutations were studied here in HEK cells by recording whole-

cell currents. The β3 subunit was chosen as this can also form a homomer to aid 

the investigation. Furthermore, the 2’ residue of the ρ1 subunit was also mutated 

to investigate whether this residue could affect (and increase) the ρ1 receptor’s 

sensitivity to PS.  

The C. elegans GABAA receptor UNC-49 is a close homologue of the mammalian 

GABAA receptor, and is encoded by one gene, unc-49, that generates three 

different splice variants containing a shared N-terminus and three different C-

termini: UNC-49A, UNC-49B and UNC-49C (Bamber et al., 1999, 2003). These 

are structurally and pharmacologically closely related to the mammalian GABAA 

receptor. Whereas UNC-49A is only expressed at low levels, high levels of UNC-

49B and UNC-49C are found at the neuromuscular junction of the nematode 

(Bamber et al., 1999, 2005). The UNC-49B subunit can form a pentameric 

homomer in vitro and in vivo, whereas the UNC-49C subunit can only co-

assemble with UNC-49B to form functional receptors (Bamber et al., 2005).  
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Figure 4.1 – UNC-49B/C chimera, linear transmembrane topology of a 

GABAA receptor subunit and sequence alignments for the mouse α1, β2 

and γ2 subunits, human ρ1 and C. elegans UNC-49B and C.  

A. Schematic diagram of the transmembrane topology of an UNC-49B/C chimera in which 

residues from UNC-49B are shown in orange and residues from UNC-49C are shown in purple. 

The M1 helix and the M2-M3 linker are from UNC-49C, whereas the rest of the chimera sequence 

is from UNC-49B. B. The linear transmembrane topology of a GABAAR subunit is shown, with 

amino acid sequence alignments for the mouse α1, β2 and γ2L subunits, human ρ1 and C. 

elegans UNC-49B and C. Residues discussed and mutated in this study are shown in colour: 2’ 

residues are shown in red, α1Q241 involved in potentiating neurosteroid binding is shown in green 

and residues identified as important for inhibitory neurosteroid binding in the UNC-49B/C studies 

are shown in purple. The figure is adapted from Seljeset et al. 2015.  

The finding that PS inhibits the UNC-49B/C heteromer more strongly than the 

UNC-49B homomer (with IC50s of 2.3 µM and estimated 191 µM, respectively), 

suggested that the UNC-49C subunit contains residues or sequences that are 

important for PS modulation (Wardell et al., 2006). By introducing amino acid 

sequences from UNC-49C to UNC-49B, residues were identified that could 

convert UNC-49B into a PS-sensitive receptor. A chimera formed between UNC-

49B and C, with the M1 segment and M2-M3 linker of UNC-49C and remaining 

N
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sequences from UNC-49B, showed that these two regions fully accounted for the 

sensitivity of UNC-49C to PS (Fig. 4.1A). Specifically, six specific residues in M1 

and one residue on the top of M2 were found to increase the sensitivity of UNC-

49B 57-fold, i.e. to the same level as the UNC-49B/C receptor complex. Mutating 

a neutral asparagine on top of M2 in UNC-49B to a positively charged arginine, 

N305R, increased the sensitivity of the receptor to PS to the same extent as the 

whole of the M2-M3 linker.  

Two residues in M1 were identified that are conserved among the mammalian 

PS-sensitive GABAA receptor subunits and UNC-49C, but are different in UNC-

49B (Wardell et al., 2006). These, residues 259 and 261, are a glutamine and an 

aromatic residue, respectively, in the PS-sensitive subunits, but are asparagine 

and valine in UNC-49B (Fig. 4.1B). The UNC-49B receptor with the N305R, 

N259Q and V261F mutations was still 6.7-fold less sensitive to PS than the 

chimera that contained the whole of M1, and twofold more sensitive than the 

UNC-49B receptor containing only the N305R mutation. Another five residues in 

M1 of UNC-49C were then identified, and when introduced into UNC-49B, 

increased the sensitivity to PS: T257F, M258L, I262F, S264A and I265S. An 

UNC-49B receptor with all these mutations was maximally inhibited by PS. 

However, reverting the V261F mutation by re-introducing the valine residue to 

UNC-49B did not reduce the potency of PS, suggesting that this residue was not 

necessary for inhibition. Consequently, a UNC-49B receptor with six M1 

mutations and one M2-M3 linker mutation was found to be 57-fold more sensitive 

to PS than wild-type, and only 1.4-fold less sensitive than the UNC-49B/C 

receptor complex. However, in a later study, the N259Q and V261F mutations 

were found to fully account for the ability of the UNC-49C M1 domain to confer 

DHEAS sensitivity to UNC-49B (Twede et al., 2007).  

As the N259Q and V261F mutations conferred PS sensitivity to UNC-49B and 

the glutamine and an aromatic residue (tyrosine) are conserved among the 

mammalian GABAA receptor subunits (Fig. 4.1B), these residues were explored 

as a potential binding site for PS in the GABAA receptor in this study. Although 

the UNC-49BN305R mutation was found to confer PS sensitivity (Wardell et al., 

2006), this residue was not explored further here as the murine α1 subunit shares 

the asparagine residue with UNC-49B at this position. A homology model of UNC-
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49B with the N259Q and V261F mutations in the M1 segment and the N305R 

mutation in the M2-M3 linker is shown in Fig. 4.10 (section 4.3.4).  

Finally, the chimera approach was used to probe for the binding site of PS. As 

the ρ1 receptor is largely insensitive to PS, chimeras between this subunit and 

other murine GABAA receptor subunits were used to determine if increased 

sensitivity to PS can be conferred by introducing amino acid sequences from 

other subunits to ρ1.  
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4.2. Results 

4.2.1. GABAA receptor α1 and β3 2’ mutations do not ablate inhibition by PS 

Although block by PS is only weakly voltage-sensitive, the ion channel pore has 

repeatedly been proposed as a potential binding site. A serine mutation at the 2’ 

position in the M2 transmembrane segment of the α1 subunit (α1V256S) was 

observed to cause a 30-fold decrease in the rate of block for PS (Akk et al., 2001), 

and subsequent whole-cell recordings in Xenopus oocytes also showed that 

inhibition by PS could be reduced or even ablated by this mutation (Wang et al., 

2006, 2007). To evaluate whether this residue near the intracellular side of the 

channel pore is involved in PS binding or if it is just necessary for signal 

transduction, 2’ mutations were introduced into the α1 and β3 subunit. Figure 4.2 

shows the position of the 2’ residues of the α and β subunits, and the amino acid 

side chain positions in a receptor with the α1V256S mutation. An αV256C mutation 

was also studied as the point mutant already existed in the lab, and due to the 

structural similarity of a serine and a cysteine residue.  

Three 2’ mutations were studied by recording GABA-evoked whole-cell currents 

in HEK cells expressing either α1V256S or α1V256C with β2 and γ2L, and β3A252S 

with α1 and γ2L. To assess whether these mutations affected GABA potency and 

the gating of the receptors, GABA concentration-response curves were derived 

for each mutant (Fig. 4.3). Whereas the β3A252S mutation minimally affected the 

EC50 of the α1β3A252Sγ2L receptor (6.1 ± 0.6 µM compared with 7.5 ± 1.2 µM for 

wild-type α1β3γ2L, p = 0.300, n = 5-6), the concentration-response curves for 

α1V256Sβ2γ2L and α1V256Cβ2γ2L were shifted to the left compared with the wild-

type α1β2γ2L receptor (Fig. 4.3, Table 4.1). The α1V256Sβ2γ2L receptor was 

about 6-fold more sensitive to GABA, with the EC50 reduced from 4.9 ± 1.4 µM 

for wild-type to 0.8 ± 0.2 µM for the mutant (p = 0.0104, n = 5-6). Similarly, the 

α1V256Cβ2γ2L receptor had an EC50 of 1.1 ± 0.2 µM, representing a 4.5-fold 

increase in GABA sensitivity compared with wild-type (p = 0.0145, n = 5). Thus, 

the α1 2’ mutations appear to increase GABA potency by 4-5 fold, whilst the β3 

2’ mutation had no effect.  
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Figure 4.2 – GABAA receptor homology models showing the position of the 

2’ residue in the wild-type and mutant receptor.  

A. The model shows a plan view of the wild-type murine α1β2γ2L receptor with the extracellular 

domain removed. The transmembrane domains and the ion channel lining formed by the M2 helix 

of each subunit are shown, as well as the wild-type 2’ residues, α1V256, β2A252 and γ2S266.  B. The 

model shows the same view as in A, but with α1V256 replaced with α1S256. C. Side view for the 

wild-type α1β2γ2L receptor at the 2’ position, depicting the residues for two α1 subunits and a β2 

subunit. D. A similar view to that in C, showing a mutant GABAA receptor with the 2’ mutation 

α1V256S. The figure is taken and modified from Seljeset et al. 2015. 
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Figure 4.3 – A 2’ mutation in the α1 subunit shifts the GABA concentration-

response curve to the left but has no effect in the β3 subunit.  

Concentration-response curves for α1β2γ2L (black), α1β3γ2L (red), α1V256Sβ2γ2L (green), 

α1V256Cβ2γ2L (blue) and α1β3A252Sγ2L (cyan) (n = 5-8). Current responses were normalised to the 

maximum response (Emax) evoked by 1 mM GABA. Data are expressed as mean ± SEM.  

 

Table 4.1 – GABA concentration-response parameters for wild-type GABAA 

receptors and 2’ mutants.  

Data were determined from the GABA concentration-response curves shown in Figure 4.3 (n = 

5-8). All values are mean ± SEM. 
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To assess the PS-sensitivity of the 2’ mutants, whole-cell currents in response to 

GABA EC80 with PS at increasing concentrations were recorded, as previously 

described for wild-type receptors (Chapter 3). Despite the previously reported 

reduction or ablation of PS sensitivity in these mutants, all three receptors were 

antagonised by PS at higher concentrations (Fig. 4.4 and 4.5). Whereas the 

inhibition curves for inhibition of steady-state currents were shifted to the right for 

all three mutants, greater inhibition of the GABA peak current was observed for 

the α1V256Sβ2γ2L and α1V256Cβ2γ2L receptor mutants. A rebound current was 

also present upon wash-out of 100 μM PS at all three mutants, meaning that 

channels re-entered an open state before closure.   

 

Figure 4.4 – Inhibition of GABA currents for α1V256Sβ2γ2L, α1V256Cβ2γ2L and 

α1β3A252Sγ2L receptor mutants.  

The current traces show the response of α1V256Sβ2γ2L (A), α1V256Cβ2γ2L (B) and α1β3A252Sγ2L 

(C) to GABA EC80 and 10-100 µM PS. PS was co-applied with GABA.  
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Figure 4.5 – PS inhibition curves for α1β2γ2L, α1β3γ2L, α1V256Sβ2γ2L, 

α1V256Cβ2γ2L and α1β3A252Sγ2L receptors.  

A. Inhibition of GABA EC80 peak current responses by PS at α1β2γ2L (black), α1β3γ2L (red), 

α1V256Sβ2γ2L (green), α1V256Cβ2γ2L (blue) and α1β3A252Sγ2L (cyan) (n = 7-8). B. Inhibition of 

GABA EC80 steady-state current responses by PS at α1β2γ2L, α1β3γ2L, α1V256Sβ2γ2L, 

α1V256Cβ2γ2L and α1β3A252Sγ2L (colour coded as in A; n = 7-8). Data are expressed as mean ± 

SEM.  

As demonstrated in Fig. 4.4 and 4.5, inhibition of GABA peak currents was 
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wild-type α1β2γ2L receptor at high PS concentrations (10 and 100 µM). At the 

wild-type receptor, 100 µM PS inhibited the GABA EC80-induced peak current to 

60.1   9.6% of control, which increased to 22.6   4.0% at α1V256Sβ2γ2L (p = 

0.0014, n = 6-7) and 28.0   5.3% at α1V256Cβ2γ2L (p = 0.0076, n = 6). In contrast, 

peak current inhibition was reduced by the β3A252S mutation: 100 µM PS inhibited 

the peak current to 46.2 ± 3.5% of control at the wild-type α1β3γ2L receptor, 

compared to 61.0 ± 3.4% at α1β3A252Sγ2L (p = 0.0109, n = 6-8). Thus, introducing 

a 2’ mutation to the α1 subunit increased GABA peak current inhibition, whereas 

the homologous mutation at the β3 subunit reduced inhibition.  

 

Table 4.2 – PS concentration-response parameters derived from inhibition 

curves for wild-type and 2’ mutant α1β2/3γ2L receptors. 

Data are derived from the curves shown in Figure 4.5 for inhibition of GABA EC80 peak and 

steady-state currents by PS (n = 7-8). IC50 and nH values derived for PS from curves of GABA 

peak currents are called Peak IC50 and Peak nH, whereas Steady-state IC50 and Steady-state nH 

refer to values derived from the inhibition curves for steady-state currents. All values are mean ± 

SEM. 

All three mutations made the receptors less susceptible to steady-state current 

inhibition by PS. As summarised in Table 4.2, the IC50 for PS was shifted from 

0.4 ± 0.1 µM for the wild-type α1β2γ2L receptor to 2.8   0.6 µM for the 

α1V256Cβ2γ2L receptor mutant (p = 0.0005, n = 5-7) and 35.5 ± 8.2 µM for the 

α1V256Sβ2γ2L receptor mutant (p = 0.0005, n = 7; Fig. 4.5B). The β3A252S mutation 

shifted the IC50 from 1.0 ± 0.1 µM for wild-type α1β3γ2L to 17.7   2.5 µM for 

α1β3A252Sγ2L (p < 0.0001, n = 7-8). Due to the increased peak current inhibition 

by PS of the α1V256Sβ2γ2L and α1V256Cβ2γ2L receptor mutants, IC50s for peak 

Receptor Peak IC50

(µM)

Peak nH Steady-state 

IC50 (µM)

Steady-state

nH

α1β2γ2L n/a n/a 0.4  0.1 0.8  0.1

α1β3γ2L n/a n/a 1.0  0.1 1.3  0.2

α1V256Sβ2γ2L 27.8  6.6 0.9  0.1 35.5  8.2 0.9  0.0

α1V256Cβ2γ2L 30.0  6.1 0.9  0.1 2.8  0.6 0.8  0.1

α1β3A252Sγ2L n/a n/a 17.7  2.5 1.1  0.1
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current inhibition were found to be 27.8 ± 6.6 µM and 30.0 ± 6.1 µM, respectively. 

The IC50s for peak current inhibition at the wild-type α1β2/3γ2L receptors were 

not found as inhibition was only present at 100 μM PS, but are likely to be in the 

range of 100-300 μM.     

In conclusion, all three 2’ mutations shifted the steady-state PS inhibition curves 

to the right. Substituting the 2’ Val of α1 for Ser caused the largest shift, but both 

α1 2’ mutants were more susceptible to peak current inhibition by PS. The β3A252S 

mutation, by contrast, reduced peak current inhibition by PS. This was an 

unexpected result, and as a consequence, PS was investigated on a ‘simpler’ 

homomeric receptor formed from β3 subunits. 

4.2.2. The β3A252S homomer is inhibited by PS 

As the binding site for PS might be present on more than one subunit, or indeed 

be interfacial with residues contributed from more than one subunit, the β3A252S 

subunit was expressed as a homomer and studied using PB as an agonist. This 

eliminates the possibility of PS being able to cause inhibition by binding to other 

wild-type subunits in the heteromeric receptors that were studied above (section 

4.2.1.). The β3A252S subunit formed a homomer that was slowly activated by 500 

µM PB (Fig. 4.6). Due to the slow kinetics of the homomer, the ‘peak’ current 

induced by PB was measured at 30 s. When co-applied with PS, inhibition of the 

peak current was obtained, and a rebound current was present upon wash-off, 

especially at 100 µM where the rebound current was similar in magnitude to the 

PB control current.  

Compared to the wild-type β3 homomer, PS was less potent at the 2’ mutant. At 

10 µM PS, the PB-induced peak current was inhibited to about 40% of control at 

the wild-type homomer, compared to about 80% of control at the mutant. 

Whereas full block was observed at 100 µM PS at the wild-type homomer 

(Chapter 3, Fig. 3.12), the current was still approximately 30% of control at the 

β3A252S homomer. Furthermore, the ability of PS to inhibit the rebound current at 

the β3 homomer was ablated by the 2’ mutation. In conclusion, PS is still able to 

bind to and inhibit PB-induced currents at the β3A252S homomer, suggesting that 
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the 2’ residue does not form the binding site for PS. Note that 500 µM PB was 

used to activate both the wild-type and mutant homomer, a concentration that 

might not produce the same open probability at the two complexes. This might 

also have affected the level of block attained at these homomers, due to the 

activation-dependence of inhibition by PS.   

 

Figure 4.6 – The β3A252S homomer is sensitive to PS. 

A. The bar chart shows the normalised peak current (blue) and rebound current (green) response 

of the β3A252S homomer to 500 µM PB and inhibition by 10 and 100 µM PS following co-

applications (n = 5). Data are expressed as mean ± SEM. B. Representative traces for the 

response of the β3A252S homomer to PB and inhibition of this current by 10-100 µM PS.  
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4.2.3. PTX blocks GABA-induced currents at α1V256Sβ2γ2L 

Previous studies have shown that PTX acts by blocking the GABAA receptor 

channel pore. In particular, the 2’ residue has been shown to be necessary for 

PTX block through mutation studies (Ffrench-Constant et al., 1993; Zhang et al., 

1994; Xu et al., 1995), and by the crystal structure of the Cys-loop receptor 

homologue GluCl bound to picrotoxin (Hibbs and Gouaux, 2011). The 

α1V256Sβ2γ2L receptor mutant would therefore be expected to be insensitive to 

block by PTX. 

To test this, receptors were activated by GABA EC80 (2 µM) and 10 µM PTX was 

pre-applied to the recording chamber for 20 s before GABA and PTX were co-

applied twice. PTX was an efficacious blocker of α1V256Sβ2γ2L (Fig. 4.7). The 

GABA peak current was 9.3 ± 2.3% of control at the second co-application with 

PTX, whereas the steady-state current was down to 24.9 ± 8.8% of control. This 

suggests that the 2’ mutant might be more sensitive to PTX than the wild-type 

α1β2γ2L receptor, as an EC100 GABA peak current was inhibited to 37.3 ± 8.1% 

of control at the second co-application with PTX, and the steady-state current 

was inhibited to 73.4   1.8% of control. This suggests that the 2’ residue may not 

form the binding site for PTX, or that mutating the α1 subunit only is insufficient 

to remove the binding site from a heteromeric αβγ receptor.  
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Figure 4.7 – The α1V256Sβ2γ2L receptor is sensitive to PTX. 

A. The bar chart shows the normalised GABA EC80 peak (purple) and steady-state (grey) current 

response in the presence of 10 µM PTX following two repeated co-applications (labelled (1) and 

(2)). PTX was applied to the recording chamber prior to receptor activation and kept in the 

chamber throughout the experiment (n = 4). Data are expressed as mean ± SEM. B. 

Representative traces showing the current responses of α1V256Sβ2γ2L to 2 µM GABA (EC80) and 

the inhibition caused by 10 µM PTX following two repeated co-applications preceded by a pre-

application.  
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4.2.4. The 2’ P294V mutation renders the ρ1 receptor sensitive to PS 

As inhibition by PS is only weakly voltage-sensitive and block does not increase 

after repeated receptor activation in the presence of PS, it is not likely that the 

steroid acts by blocking the open channel pore. As mutating the 2’ residue located 

near the intracellular side of the channel affects the modulation of GABAA 

receptors by PS, a plausible explanation is that this residue is essential in the 

coupling of PS binding to inhibition. As the ρ1 receptor is largely insensitive to PS 

(Chapter 3, Fig. 3.9-10), it is possible that this receptor lacks the machinery that 

is necessary to couple the binding of PS to inhibition. Whereas α1 has a valine 

residue at the 2’ position, ρ1 has a proline (Fig. 4.1). If the 2’ valine residue is 

essential for signal transduction, swapping the 2’ proline of ρ1 for a valine residue 

might confer increased PS sensitivity. To test this hypothesis, two different ρ1 2’ 

mutations were generated to see if the potency of PS at this receptor could be 

increased. If the α1V256 residue is necessary for PS signal transduction, mutating 

the 2’ proline residue of ρ1 to valine (ρ1P294V) would be expected to increase the 

potency of PS at the receptor. As a negative control, proline was also mutated to 

a serine (ρ1P294S), as this amino acid reduced PS potency at the α1β2γ2L 

receptor. This mutation was not expected to increase the potency of PS at ρ1.  

Both mutations shifted the GABA concentration-response curve to the right: the 

EC50 for wild-type ρ1 was 2.6   0.3 µM, compared with 24.2   1.1 µM for ρ1P294V 

(p < 0.0001, n = 4-8) and 9.7 ± 1.2 µM for ρ1P294S (p = 0.0009, n = 6-8; Fig. 4.8; 

Table 4.3). This shows that the 2’ mutation affects the potency of GABA and 

possibly the gating kinetics of ρ1.  

To assess the PS sensitivity of the mutants, GABA at EC80 was co-applied with 

PS at increasing concentrations (Fig. 4.9). The ρ1P294S behaved similarly to wild-

type ρ1, with no greater inhibition of the peak or steady-state currents observed. 

In contrast, the ρ1P294V receptor mutant was notably more sensitive to PS, with 

clear inhibition of the steady-state current being present at concentrations higher 

than 1 µM (Fig. 4.9B and D). The IC50 for steady-state current inhibition by PS at 

ρ1P294V was 6.0 ± 0.6 µM, about 6-fold higher than at wild-type heteromeric αβγ/δ 
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receptors. This result supports a role for 2’ valine in the signal transduction of PS 

at GABAA receptors.  

 

Figure 4.8 – GABA concentration-response curves for the wild-type ρ1 

receptor and the 2’ mutant receptors ρ1P294V and ρ1P294S.  

For the wild-type receptor, current responses were normalised to the 300 µM GABA (EC100) 

response. Mutant receptor currents were normalised to the 1 mM GABA response (n = 4-12). 

Data are expressed as mean ± SEM.   

 

Table 4.3 – GABA concentration-response parameters for the wild-type ρ1 

receptor and the 2’ mutants ρ1P294V and ρ1P294S.  

Values are derived from the data shown in Figure 4.8 and are expressed as mean ± SEM (n = 4-

12).  
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Figure 4.9 – PS inhibition curves for ρ1 wild-type and mutant receptors with 

representative traces. 

A. Inhibition by PS of GABA-mediated peak currents at wild-type ρ1 (black), ρ1P294V (red) and 

ρ1P294S receptors (green) (n = 6-12). B. Inhibition by PS of GABA-mediated steady-state currents 

at wild-type ρ1 (black), ρ1P294V (red) and ρ1P294S receptors (green) (n = 6-12). Data are expressed 

as mean ± SEM. C-E. Representative traces for wild-type ρ1 (C), ρ1P294V (D) and ρ1P294S (E) in 

response to GABA EC80 and co-applications with 1, 10 and 100 µM PS.  
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4.2.5. Residues identified in UNC-49B/C studies are not important for PS 

binding at the murine GABAA receptor  

Studies carried out using the C. elegans UNC-49 receptor identified an array of 

residues that were thought to be important in inhibitory neurosteroid binding. As 

PS is 80-fold more potent as an inhibitor at UNC-49B/C heteromers compared to 

UNC-49B homomers (with IC50s of 2.3 µM and 191 µM, respectively), residues 

found in UNC-49C, but not UNC-49B, may be involved in forming a binding site 

for PS (Wardell et al., 2006). Chimeras formed between UNC-49B and UNC-49C 

implied a key role for M1 and the extracellular M2-M3 linker of UNC-49C, as these 

regions fully accounted for the sensitivity to PS inhibition.  As described in the 

introduction, two residues were found to be conserved among UNC-49C and 

other PS-sensitive mammalian GABAA receptor subunits: where UNC-49C and 

other PS-sensitive subunits have a glutamine and an aromatic residue 

(phenylalanine in UNC-49C, tyrosine in other GABAA receptor subunits), UNC-

49B has an asparagine (N259) and valine (V261; Fig. 4.1 and 4.10). N259 in 

UNC-49B is homologous to Q228 in the α1 subunit, whereas V261 is homologous 

to Y230. My hypothesis was that substituting the residues at positions 228 and 

230 of the α1 subunit with the homologous residues in UNC-49B would make the 

mammalian GABAA receptor less sensitive to PS, whereas introducing a residue 

from UNC-49C would not affect, or possibly increase, the potency of PS. Thus, 

four different mutant α1 subunits were generated: α1Q228N to replace glutamine 

(in α1) with asparagine from UNC-49B, α1Y230F to replace tyrosine (in α1) with the 

structurally similar phenylalanine from UNC-49C, α1Y230V to introduce the 

hydrophobic valine of UNC-49B to α1, and a double mutant, α1Q228V/Y230V, 

introducing both residues of interest from UNC-49B into the α1 subunit. Whereas 

the α1Y230F mutant was expected to be approximately similar in PS sensitivity to 

wild-type α1, reduced sensitivities were expected for receptors containing the 

α1Q228N, α1Y230V and α1Q228V/Y230V mutations.  
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Figure 4.10 – UNC-49B homology models showing the position of the M1 

residues mutated in this study as well as a residue implicated in PS binding 

on the top of M2.  

A. A homology model of the wild-type (WT) UNC-49B receptor showing the M1 residues that are 

implicated in PS binding, N259 and V261, as well as N305 at the top of M2. B. A homology model 

of the mutant UNC-49B receptor, where the three residues highlighted in A have been substituted 

for Q259, F261 and R305, rendering the homomer more sensitive to PS. The extracellular 

domains are removed, showing the transmembrane domains and the channel lining formed by 

M2. The C. elegans UNC-49B models are based on the crystal structure of the GABAA receptor 

β3 subunit homomer (PDB 4cof). The figure is taken and modified from Seljeset et al. 2015. 

To determine if the mutations affected GABA activation of the receptor, each 

mutant α1 subunit was co-expressed with β2 and γ2L and the GABA 

concentration-response relationship studied (Fig. 4.11). As summarised in Table 

4.4, the mutations only caused small changes to the GABA EC50s (up to 3-fold), 

with all curves shifted to the right. Whereas GABA EC50 is 4.9 ± 1.4 µM for the 

wild-type receptor, the EC50 was increased to 11.2   1.3 µM for α1Q228Nβ2γ2L (p 

= 0.0055, n = 5), 15.1 ± 2.2 µM for α1Y230Fβ2γ2L (p = 0.0024, n = 5-6), 7.5 ± 2.0 

µM for α1Y230Vβ2γ2L (p = 0.1547, n = 5) and 9.1 ± 2.1 µM for α1Q228N/Y230Fβ2γ2L 

(p = 0.0649, n = 5). The effect of the mutations on GABA potency and potentially 

gating was therefore minimal.  
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Figure 4.11 – GABA concentration-response curves for α1β2γ2L and M1 

mutants.  

GABA concentration-response curves for α1β2γ2L (black), α1Q228Nβ2γ2L (red), α1Y230Fβ2γ2L 

(green), α1Y230Vβ2γ2L (blue) and α1Q228N/Y230Vβ2γ2L (cyan) (n = 5-6). Peak current responses 

were normalised to the 1 mM GABA response (EC100), except for α1Q228N/Y230Vβ2γ2L current 

responses which were normalised to the current evoked by 3 mM GABA. Data are expressed as 

mean ± SEM.  

 

Table 4.4 – GABA concentration-response parameters for the α1β2γ2L M1 

mutant receptors.  

Values are derived from the data shown in Figure 4.11 and are expressed as mean ± SEM (n = 

5-6).  
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The sensitivity of the mutant receptors to PS was assessed by measuring whole-

cell current responses to co-applications of GABA EC80 and increasing 

concentrations of PS. All mutants were sensitive to PS (Fig. 4.12 and 4.13, Table 

4.5), and current responses were similar in profile to the wild-type response. The 

PS IC50 for steady-state current inhibition at α1β2γ2L is 0.4   0.1 µM, compared 

to 0.4   0.1 µM at α1Q228Nβ2γ2L (p = 0.1812, n = 7-8), 0.8 ± 0.2 µM at 

α1Y230Fβ2γ2L (p = 0.0096, n = 6-7), 0.2 ± 0.0 µM at α1Y230Vβ2γ2L (p = 0.0010, n 

= 5-7) and 0.4 ± 0.0 µM at α1Q228N/Y230Fβ2γ2L (p = 0.2901, n = 7). Thus, for only 

two of the mutants was the PS IC50 different from that for wild-type: it was doubled 

for α1Y230Fβ2γ2L, where no change was expected, and it was halved for 

α1Y230Vβ2γ2L, which was expected to be less sensitive to PS. However, these 

are small changes, and as the mutations had little effect on PS sensitivity, the 

residues identified in the UNC-49B/C studies are unlikely to be essential for PS 

modulation of mammalian GABAA receptors. However, it should be noted that in 

the original UNC-49B/C chimera studies (Wardell et al., 2006; Twede et al., 

2007), the potency of PS was studied in a homomeric complex. This could be 

important because all subunits then carried the mutation, a situation that does not 

occur when only the α subunit is mutated in an αβγ heteromer.   



130 
 

 

Figure 4.12 – Representative traces for α1Q228Nβ2γ2L, α1Y230Fβ2γ2L, 

α1Y230Vβ2γ2L and α1Q228N/Y230Vβ2γ2L. 

A-D. Traces for the current response to GABA EC80 and GABA EC80 co-applied with 1, 10 and 

100 µM PS at α1Q228Nβ2γ2L (A), α1Y230Fβ2γ2L (B), α1Y230Vβ2γ2L (C) and α1Q228N/Y230Vβ2γ2L (D).  
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Figure 4.13 – PS inhibition curves for α1β2γ2L and M1 mutants. 

A. Inhibition of GABA EC80 peak currents by PS at α1β2γ2L (black), α1Q228Nβ2γ2L (red), 

α1Y230Fβ2γ2L (green), α1Y230Vβ2γ2L (blue) and α1Q228N/Y230Vβ2γ2L (cyan) (n = 5-7). B. Inhibition of 

GABA EC80 steady-state currents by PS for the same receptors as in A. The colour coding is the 

same in both panels. Data are expressed as mean ± SEM.  

At 100 µM PS, peak current inhibition was, however, greater at three of the 

mutants than at the wild-type receptor: whereas the peak current reached 60.1 ± 

9.6% of control at α1β2γ2L, it attained 36.1   4.9% at α1Q228Nβ2γ2L (p = 0.0250, 

n = 6), 25.8 ± 7.4% at α1Y230Vβ2γ2L (p = 0.0116, n = 5-6) and 33.0 ± 3.7% at 
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α1Q228N/Y230Fβ2γ2L (p = 0.0088, n = 6-7). Again, these are the mutations that were 

predicted to reduce the sensitivity of the α1β2γ2L receptor to PS. The residues 

identified in the UNC-49B/C studies are therefore more likely to be involved in 

signal transduction than the binding of PS.  

 

Table 4.5 – PS concentration-response parameters for the α1β2γ2L M1 

mutant receptors.  

Values are derived from the data shown in Figure 4.13B and are expressed as mean ± SEM. 

IC50s are for steady-state current inhibition by PS.  

4.2.6. Finding a ‘null’ receptor for PS 

As discussed in the main introduction (Chapter 1), a range of receptors are 

sensitive to PS, and can either be directly activated or negatively or positively 

modulated by the steroid. To further investigate the effects of PS and identify its 

binding site, a panel of pLGICs were screened for sensitivity to PS, aiming to find 

a receptor that is insensitive to PS for use in chimera studies with GABAARs. For 

screening, one concentration of the receptor agonist and of PS was applied to 

each construct (Fig. 4.14). Although sensitivity of the GlyR to PS has been 

confirmed in primary cultures (Wu et al., 1997; Hong et al., 2013), the GlyR α1 

subunit was expressed in HEK cells and was found to be inhibited by 100 µM PS 

(Fig. 4.14A). GLIC, GluClcryst, ELIC and RDL were expressed in Xenopus oocytes 

and studied using two-electrode voltage clamp (Fig. 4.14B-E). These recordings 

were performed by Dr Duncan Laverty.  

Receptor Steady-state

IC50 (µM)

nH

α1β2γ2L 0.4  0.1 0.8  0.1

α1Q228Nβ2γ2L 0.4  0.0 1.0  0.0

α1Y230Fβ2γ2L 0.8  0.2 0.9  0.1

α1Y230Vβ2γ2L 0.2  0.0 1.2  0.2

α1Q228N/Y230Vβ2γ2L 0.4  0.0 1.1  0.1
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Figure 4.14 – The inhibitory effect of PS at a selection of ionotropic 

homomeric receptors.  

The traces show the responses of a selection of potential ‘null’ receptors to agonist as indicated 

with and without PS. The GlyR α1 subunit (A) was expressed in HEK cells and whole-cell currents 

recorded using patch clamping. GLIC (B), GluClcryst (C), ELIC (D) and RDL (E) were expressed 

in Xenopus oocytes and whole-cell currents were recorded using two-electrode voltage clamp. 

Currents were measured in response to co-applications of agonist and PS at GlyR α1, GLIC and 

RDL. For ELIC, PS was pre-applied, and GluClcryst was activated by ivermectin prior to PS 

application.  
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As can be observed from the traces, all receptors were antagonised by PS, 

though GLIC and RDL were notably less sensitive than the other receptors. The 

mammalian GABAAR ρ1 subunit was concluded to be the best option for chimera 

studies as it is closely related to the other GABAARs and displays low sensitivity 

to PS, as discussed below. 

4.2.7. Probing the binding site for PS using ρ1-α1/β2/γ2 chimeras 

The chimera approach has frequently been used in the past to locate domains 

involved in forming the binding sites for pharmacological agents (Corringer et al., 

1998; Quiram and Sine, 1998; Wardell et al., 2006; Hosie et al., 2007, 2009). 

Using a receptor that is insensitive to modulation by the compound of interest, 

ligand-sensitivity can be introduced by creating chimeras between the ‘null’ 

receptor and the receptor subunit that is ligand-sensitive. By determining which 

receptor segments confer sensitivity on the ‘null’ receptor, the residues involved 

in the binding of the compound can eventually be determined by site-directed 

mutagenesis. 

Due to the low sensitivity of the GABAA ρ1 subunit to PS, this subunit could 

potentially be used as a ‘null’ receptor. By studying the activity of PS at chimeras 

formed of ρ1 and α1, β2 or γ2, the aim was to find the residues that render the 

heteromeric αβγ receptor more sensitive to PS than the homomeric ρ1 receptor.  

The chimeras used were previously created (Gielen et al., 2015), and are named 

such that the N-terminal end of the chimera appears first in the name, followed 

by a number which cites the position in the mature protein at which the residues 

from the second subunit starts to form part of the chimera. For example, for the 

first chimera studied, ρ1-260-α1, all residues from the N-terminus up to residue 

260 are from ρ1, and the residues after position 260 are from α1. Chimeras were 

expressed in HEK cells, and whole-cell currents in response to GABA and GABA 

EC80 co-applied with PS were recorded. 

The chimera ρ1-260-α1 contains the ECD of ρ1 and the TMD of α1 (Fig. 4.15A). 

TMD is here defined as all four transmembrane segments with intracellular and 
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extracellular linkers. This chimera was designed to determine whether PS is likely 

to bind to the ECD or TMD of α1. If the chimera was found to be sensitive, this 

would suggest that PS is likely to bind in the TMD of α1. A lack of sensitivity would 

argue for the ECD of α1 to be important in PS binding.   

 

Figure 4.15 – Profiling the ρ1-260-α1 chimera.  

A. Schematic diagram of the transmembrane topology of a ρ1-260-α1 chimera in which the ECD 

is from ρ1 (blue) and the TMD is from α1 (orange). B. GABA concentration-response curve for 

the ρ1-260-α1 chimera (n = 6). Peak current responses were normalised to the 1 mM GABA 

(EC100) response. C. Inhibition of GABA EC80 (30 μM) peak and steady-state currents (measured 

at 10 s) by PS at the ρ1-260-α1 chimera (n = 5). Current responses were normalised to the GABA 

EC80 response. Data are expressed as mean ± SEM. D. Representative traces showing the 

response of ρ1-260-α1 to GABA EC80 and co-applications with 1, 10 and 100 µM PS.  
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PS inhibited the GABA EC80 currents at ρ1-260-α1 (Fig. 4.15C and D). The 

potency of PS was lower than at heteromeric wild-type receptors (0.4-1.3 µM), 

but prominent inhibition of both peak and steady-state GABA currents was still 

observed. Peak and steady-state currents were antagonised to a similar extent, 

with IC50s of 9.5 ± 1.1 µM and 7.9 ± 1.7 µM, respectively. As shown in the graph 

and traces (Fig. 4.15C and D), virtually full inhibition of the GABA peak and 

steady-state current was obtained at 100 µM PS. These results show that PS can 

antagonise a chimera where the ECD is from the largely PS-insensitive ρ1 

subunit, and suggested that the steroid is more likely to bind to the TMD of α1. 

Another possibility is that PS can bind in the ECD of ρ1, but that residues found 

in the TMD of α1 are necessary for signal transduction.  

A similar chimera was studied, substituting α1 for γ2S. The ρ1-260-γ2S chimera 

constituted the ECD of ρ1 and the TMD of γ2S (Fig. 4.16A). GABA-induced 

currents for this chimera tended to escalate throughout the recording (Fig. 4.16E), 

and responses were therefore harder to interpret. Clear inhibition was however 

observed at concentrations of PS higher than 1 µM, and full inhibition of the 

steady-state current was attained at 100 µM PS (Fig. 4.16C and D). A rebound 

current was present on wash-out of 100 μM PS, showing that the chimera re-

opened before closure. The peak current was also inhibited by PS, and reached 

39.2 ± 5.1% of control at 100 µM PS. At concentrations below 1 µM, inhibition by 

PS might have been masked by the increase in GABA current observed 

throughout the recording. These results suggested that PS might also have a 

binding site in the TMD of the γ2S subunit. As for the ρ1-260-α1 chimera, an 

alternative explanation is that PS binds in the ECD of ρ1, and that residues in the 

TMD of γ2S are sufficient and necessary for signal transduction. PS appears to 

be somewhat less potent at this chimera compared to the ρ1-260-α1 chimera as 

less than 50% inhibition is reached at 10 μM PS, but this reduced potency might 

be due to the escalating GABA-induced current throughout the recording.  
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Figure 4.16 – Profiling the ρ1-260-γ2S chimera.  

A. Schematic diagram of the transmembrane topology of the ρ1-260-γ2S chimera in which the 

ECD is from ρ1 (blue) and the TMD is from γ2S (green). B. GABA concentration-response curve 

for ρ1-260-γ2S (n = 6). C. Inhibition of GABA EC80 (200 μM) peak (black) and steady-state (red) 

currents by PS at ρ1-260-γ2S (n = 5). D. Representative traces for the current responses of ρ1-

260-γ2S to GABA EC80 with and without 1-100 µM PS. Note the rebound current visible at 100 

μM PS. E. Traces showing the increased current response of ρ1-260-γ2S to GABA (1 mM) 

throughout the experiment. 
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A heteromeric chimera was also studied where three chimeric subunits were 

used. Each subunit constituted the TMD of ρ1 and the ECD of α1 (α1-222-ρ1), 

β2 (β2-218-ρ1) and γ2 (γ2-235-ρ1; Fig. 4.17A). As PS was hypothesised to bind 

in the TMD of α1, β2 and γ2, inhibition by PS was not expected with this chimera. 

Surprisingly, PS appeared to inhibit the GABA-induced current, as well as a 

standing current that was caused by constitutive channel activity of the 

heteromeric chimera. Clear inhibition was only present at 10 µM and 100 µM PS, 

steady-state current having reached 39.0 ± 5.1% and -258.4 ± 35.7% of the 

control GABA EC80 current, respectively. Similarly, the peak current had reached 

63.1 ± 3.6% and -227.4 ± 33.8% at 10 µM and 100 µM PS, respectively. The 

negative percentage inhibition describes inhibition by 100 μM PS of constitutive 

channel activity. This constitutive current had an amplitude that could be more 

than three times that of the GABA control current, and was susceptible to 

inhibition by PS also when it was applied without GABA (Fig. 4.18). These results 

show that PS can bind and induce inhibition also in a complex where the TMD is 

solely from ρ1. Whether the ECDs from α1, β2 and γ2 conferred increased 

potency of PS at a chimera where the whole of the TMD is from ρ1 (compared to 

ρ1 wild-type) is uncertain.  

As the concentration-response plots for PS in Fig. 4.17 and 4.18 show, PS 

showed a similar profile of block of both GABA-mediated and spontaneous 

currents. Whereas no inhibition was observed at 1 μM PS, 10 and 100 μM PS 

caused inhibition of the current both when co-applied with GABA and when 

applied on its own. It cannot be excluded that PS only mediated block of the 

spontaneous current rather than the GABA-mediated current, especially as the 

outward current was greater when 100 μM PS was applied in the absence of 

GABA. If this is the case, these results would argue for residues in the TMD of 

α1, β2 and γ2 to be essential for PS inhibition of GABA-induced currents.  



139 
 

 

Figure 4.17 – Profiling the α1-222-ρ1 + β2-218-ρ1 + γ2-235-ρ1 chimera. 

A. Schematic diagram of the transmembrane topology of the heteromeric α1-222-ρ1 + β2-218-

ρ1 + γ2-235-ρ1 chimeric receptor. ECDs are from α1 (orange), β2 (purple) and γ2 (green), and 

the TMD is from ρ1 (blue). B. GABA concentration-response curve for the α1-222-ρ1 + β2-218-

ρ1 + γ2-235-ρ1 chimera (n = 7). C. Inhibition of GABA EC80 (1 μM) peak (black) and steady-state 

(red) currents by PS at the α1-222-ρ1 + β2-218-ρ1 + γ2-235-ρ1 chimera (n = 9). Data are 

expressed as mean ± SEM. D. Representative traces for activation of α1-222-ρ1 + β2-218-ρ1 + 

γ2-235-ρ1 by GABA (EC80) and inhibition by PS (1-100 µM) following co-application. Note the 

large constitutive current evident with 100 μM PS. 
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Figure 4.18 – Inhibition of constitutive α1-222-ρ1 + β2-218-ρ1 + γ2-235-ρ1 

chimera channel activity by PS. 

A. The graph shows the concentration-response relationship of PS (1-100 μM) for inhibition of the 

constitutive current of the α1-222-ρ1 + β2-218-ρ1 + γ2-235-ρ1 chimera. The current is normalised 

to the GABA EC80 (1 μM) current. Data are expressed as mean ± SEM (n = 6). B. Representative 

traces showing the outward current induced by PS (10-100 μM) when it is applied in the absence 

of GABA. This shows that PS can block a constitutively active channel.  
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As a next step, another chimera was used comprising ρ1 from the N-terminal up 

until the start of M4: ρ1-433-α1 (Fig. 4.19). This chimera showed that PS can 

cause inhibition of GABA currents at a chimera that is mostly ρ1: at this chimera, 

where only M4 and the C-terminal are from α1, PS inhibited both the peak and 

steady-state GABA EC80 currents at concentrations higher than 1 µM. At 10 μM 

PS, peak and steady-state currents were inhibited to 64.9 ± 2.4% and 61.8 ± 

4.4% of control, respectively, whereas at 100 µM PS, currents reached 5.5 ± 1.5% 

and 0.6 ± 9.2% of control, respectively. Large rebound currents were also present 

upon the wash-out of GABA and PS.  

These findings suggest that ρ1 is probably not an ideal ‘null’ receptor for PS, and 

that the binding site for the steroid is likely to exist at this subunit. It is possible 

that PS binds to the wild-type ρ1 receptor, but causes little inhibition of GABA 

currents due to a missing signal transduction ‘machinery’. Introducing residues 

from α1, β2 or γ2 appears to be sufficient to provide the improved coupling of PS 

binding to inhibition at the ρ1 chimera complexes.  

Another four chimera complexes were also screened for sensitivity to PS, using 

a simpler experimental design. ρ1-284-α1 (Fig. 4.20A; ρ1 up to the end of M1), 

ρ1-352-α1 (Fig. 4.20B; ρ1 up to start of the M3-M4 linker), α1-285-ρ1 with β1-

281-ρ1 (Fig. 4.20C; α1 or β2 up to start of M3) and α1-308-ρ1 with β2-304-ρ1 

(Fig. 4.20D; α1 or β2 up to start of the M3-M4 linker) were all inhibited by 100 µM 

PS co-applied with 1 mM GABA (Fig. 4.21). Large rebound currents were 

observed on wash-out of GABA and PS, suggesting the receptor chimeras were 

re-entering an open state before closure.   
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Figure 4.19 – Profiling the ρ1-433-α1 chimera.  

A. Schematic diagram of the transmembrane topology of the ρ1-433-α1 chimera. The ECD, M1-

M3 and the intracellular M1-M2 and M3-M4 linkers are from ρ1 (blue), whereas M4 and the C-

terminal are from the α1 subunit (orange). B. GABA concentration-response curve for ρ1-433-α1 

(n = 5). C. Inhibition of GABA EC80 (10 μM) peak (black) and steady-state (red) currents by PS at 

the ρ1-433-α1 chimera (n = 7). D. Representative traces for GABA (EC80) activation and PS (1-

100µM) inhibition at the ρ1-433-α1 chimera. 
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Figure 4.20 – Inhibition of 1 mM GABA currents by 100 µM PS at four 

chimeras.  

A. A schematic of the transmembrane topology of ρ1-284-α1 chimera with representative traces 

for 100 µM PS inhibition of a 1 mM GABA current. The ECD, M1 and the M1-M2 linker are from 

ρ1 (blue), whilst the rest of the chimera is from α1 (orange). B. A schematic of the transmembrane 

topology of ρ1-352-α1 chimera with representative traces showing 100 µM PS inhibition of a 1 

mM GABA current. The ECD and all residues up until the end of M3 are from ρ1 (blue), whereas 

the rest of the chimera is from α1. C. A schematic of the transmembrane topology of α1-285-ρ1 
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+ β2-281-ρ1 chimera with representative traces for 100 µM PS inhibition of a 1 mM GABA current. 

The N-terminus and all residues up until the start of M3 are from α1 (orange) or β2 (purple), with 

the rest of the chimera being formed from ρ1 residues (blue). D. A schematic of the 

transmembrane topology of α1-308-ρ1 + β2-304-ρ1 chimera with representative traces for 100 

µM PS inhibition of a 1 mM GABA current. The N-terminus and all residues up until the end of M3 

are from α1 (orange) or β2 (purple), with the rest of the chimera being formed from ρ1 residues 

(blue). 

 

Figure 4.21 – Inhibition of 1 mM GABA currents by 100 µM PS at four 

chimeras. 

A. Inhibition by 100 µM PS of a 1 mM GABA peak current at ρ1-284-α1, ρ1-352-α1, α1-285-ρ1 + 

β2-281-ρ1 and α1-308-ρ1 + β2-304-ρ1 (n = 3). B. Inhibition by 100 µM PS of a 1 mM GABA 

current measured at 3 s at ρ1-284-α1, ρ1-352-α1, α1-285-ρ1 + β2-281-ρ1 and α1-308-ρ1 + β2-

304-ρ1 (n = 3). Data are expressed as mean ± SEM.  

As can be discerned from the traces in Fig. 4.20 and the bar charts in Fig. 4.21, 
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means it is difficult to envisage using the ρ1 subunit as a background ‘null’ 

receptor to find the binding site for PS.  

4.3. Discussion 

This chapter aimed to bring us closer to finding the binding site for PS at 

mammalian GABAA receptors. It has been shown that the 2’ mutants 

α1V256S/Cβ2γ2L and α1β3A252Sγ2L remain sensitive to PS, though curves for 

inhibition of the steady-state current were shifted to the right and, surprisingly, 

peak current inhibition was increased at the α1 2’ mutants. The receptors also 

remained sensitive to PTX, despite the 2’ residue’s likely involvement in forming 

a binding site for this GABAAR channel blocker. Introducing the 2’ valine of α1 to 

ρ1, ρ1P294V, did however increase the sensitivity of the homomeric receptor to PS 

which supports a role for this residue in the signal transduction pathway of PS.  

The UNC-49B/C residues that were identified as important for PS and DHEAS 

modulation are unlikely to be important for the inhibition of murine GABAA 

receptors. When a homologous residue in the α1 subunit was mutated to an UNC-

49B residue that was predicted to reduce PS inhibition (α1Y230V), the IC50 for 

steady-state current inhibition was halved. Conversely, introducing a UNC-49C 

residue into the α1 subunit that was predicted to promote inhibition (α1Y230F), 

actually increased the IC50. Peak current inhibition was also increased at all the 

mutants that were predicted to reduce PS sensitivity. These findings suggest that 

these residues are also involved in the signal transduction rather than the binding 

of PS.  

The ρ1 chimera studies showed that all the combinations of subunit sequences 

yielded receptors that were sensitive to PS. These findings argue for the binding 

site of PS being present on the wild-type ρ1 subunit, but that an efficient 

transduction machinery is absent.  
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4.3.1. The 2’ residue is unlikely to form a binding site for PS at ρ1 and 

α1β2/3γ2L receptors 

Early work suggested an essential role for the 2’ residue in PTX block of the RDL 

(Ffrench-Constant et al., 1993) and ρ receptors (Wang et al., 1995), and mutating 

either the α and/or β subunit at this position removed PTX block from GABAA 

receptors (Xu et al., 1995). This finding was later supported by the crystal 

structure of GluCl bound to PTX in the ion channel at 2’ (Hibbs and Gouaux, 

2011). Due to similarities in the block produced by PS and PTX, Akk et al. (2001) 

set out to determine if this residue was also essential for inhibition by PS. Single 

channel recordings showed that the α1 2’ mutation, α1V256S, reduced the apparent 

association rate of PS 30-fold and the cluster duration in the presence of PS was 

no longer reduced. The homologous mutations in the β2 and γ2L subunits had 

no such effect.  

The present study has shown that for macroscopic GABA currents, the inhibition 

curve for PS is shifted to the right also when the β3 subunit is mutated at 2’. 

Replacing the 2’ residue with serine did, however, have a greater effect on PS 

sensitivity at the α1 than the β3 subunit. Compared to the wild-type receptors, the 

IC50s for steady-state current inhibition for α1V256Sβ2γ2L and α1β3A252Sγ2L were 

increased 89-fold and 18-fold, respectively. In contrast to the findings of Akk et 

al. (2001), other studies have shown that the inhibitory effect of PS on whole-cell 

currents is reduced or abolished in Xenopus oocytes expressing either 

α1V256Sβ2γ2L or α1β2A252Sγ2L (Wang et al., 2006, 2007). This supports the notion 

that by mutating either the α1 or β2/3 subunits, the potency and efficacy of PS is 

reduced. However, taken together with the low voltage-dependence of PS, it is 

likely that the 2’ mutation alters an allosteric mechanism and interferes with the 

signal transduction rather than directly affecting the binding of PS. It should be 

noted that in the studies by Wang et al. (2006, 2007), PS was only used at 

concentrations up to 2 μM, which could explain why they reported a complete 

loss of PS sensitivity at the 2’ mutants. 

Interestingly, the α1V256S, but not the β2A252S mutation, eliminates GABAA receptor 

antagonism by the 3β-hydroxypregnane steroids (Wang et al., 2002, 2007; 
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Seljeset et al., 2015). These are diastereomers of the potentiating 3α-

hydroxypregnane steroids, but are similar to the sulphated neurosteroids in that 

they non-competitively inhibit the GABAA receptor in an activity- or state-

dependent manner. In the study by Wang et al. (2007), desensitisation kinetics 

were characterised by finding the ratio between the peak current and the steady-

state current at 20 seconds (P/SS ratio). In wild-type receptors, PS increases the 

P/SS ratio in a concentration-dependent manner, but the ratio remains 

unchanged at increasing concentrations of PS when the 2’ mutation is introduced 

to the α1 or β2 subunit. This suggests that PS promotes desensitisation of wild-

type receptors, or keeps them in a desensitised state, whereas this effect is 

removed in the mutant receptors. An alternative explanation is that as the 

mutation increases the susceptibility to peak current inhibition by PS (or rather, 

that it makes the peak and steady-state currents equally susceptible to inhibition), 

as shown in section 4.2.1, the P/SS ratio remains unchanged at increasing 

concentrations of PS. Block by the 3β-hydroxypregnane steroid did not cause a 

concentration-dependent increase in the P/SS ratio in wild-type or mutant 

receptors, suggesting that the mechanism of block by sulphated steroids and 3β-

hydroxypregnane steroid is not shared (Wang et al., 2007). It also implies that 

the 2’ residue is unlikely to be the common binding site for either group of steroids, 

and corroborates the hypothesis that this is likely to be a residue important for an 

allosteric mechanism (Seljeset et al., 2015). The increased sensitivity of the ρ1 

receptor to PS upon the introduction of the α1 2’ residue (ρ1P294V) also agrees 

with this hypothesis, and suggests that the binding site for PS is already present 

at the ρ1 subunit.  

As the 2’ residue has been shown to be a likely binding site for PTX in mutational 

studies (Wang et al., 1995; Xu et al., 1995; Ueno et al., 2000), and the crystal 

structure of GluCl shows the molecule interacting with the 2’ threonine and -2’ 

proline at the cytosolic end on the M2 helix (Hibbs and Gouaux, 2011), it was 

surprising to find that the α1V256Sβ2γ2L receptor was at least as sensitive to PTX 

as the wild-type receptor. However, other studies have also shown that the 

α1V256Sβ2γ2L and α1β2A252Sγ2L remain sensitive to PTX (Wang et al., 2002, 

2006; Chisari et al., 2011). Replacing the 2’ valine of the α2 subunit with 

tryptophan (α2V257W) does however remove the PTX sensitivity of α2β2 receptors 
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expressed in Xenopus oocytes (Ueno et al., 2000). This could be because the 

PTX binding site is removed or because tryptophan sterically blocks access to 

the binding site. Thus, the serine residue might not be disruptive enough to 

prevent block by PTX.  

Taken together, the effect of the 2’ mutations in ρ1 and α1β2/3γ2L on PS 

sensitivity suggest that this residue is involved in the allosteric mechanism or 

signal transduction that occurs following binding. This is corroborated by the 

observation that PS block is only weakly voltage-sensitive, and the finding that 

the 3β-hydroxypregnane steroids, which likely inhibit the receptor via a different 

mechanism, are also affected by the 2’ mutation.  

4.3.2. Residues identified in UNC-49B/C studies are unlikely to form a binding 

site for PS 

Introducing residues from the M1 segment of UNC-49B, which are thought not to 

define the binding site for PS (Wardell et al., 2006), were found to either increase 

(α1Y230V) or have no effect (α1Q228N) on the inhibition by PS at the α1β2γ2L 

receptor. By contrast, introducing a residue from UNC-49C which was predicted 

to promote inhibition or have no effect (α1Y230F), reduced inhibition at the α1β2γ2L 

receptor. These findings suggest that the residues identified are, like the 2’ 

residue, likely to be involved in the allosteric signalling mechanism that occurs 

following PS binding rather than forming a binding site for PS per se. This finding 

is corroborated by another study where the M1 segment of UNC-49B was 

swapped into mammalian α1, β2, and γ2 subunits to determine if this could 

remove PS sensitivity (Baker et al., 2010). None of the chimaeras containing M1 

of UNC-49B showed any (predicted) loss of sensitivity to PS, suggesting that the 

residues identified in UNC-49C, although important for modulation by sulphated 

neurosteroids, cannot form a binding site that is conserved among different 

species. These studies show that individual point mutations can often disrupt the 

activity of a pharmacological agent by interfering with receptor behaviour rather 

than ligand binding. Thus, single point mutations do not, by themselves, identify 

ligand binding sites, and corroborating evidence is always necessary 

(Colquhoun, 1998).  
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4.3.3. Probing the binding site for PS using ρ1 chimeras 

Various chimeras between ρ1 and α1, β2 or γ2 subunits were studied to try and 

determine which residues are important for the binding of PS. Surprisingly, all 

sequences from α1, β2 or γ2 that were swapped into ρ1 increased the potency 

of PS at the receptor. Even the chimeric receptor complex containing the TMD of 

ρ1 and ECD of α1, β2 and γ2 (α1-222-ρ1 + β2-218-ρ1 + γ2-235-ρ1) was sensitive 

to PS, which shows that the 2’ ρ1P294V mutation may not be essential for PS 

inhibition of ρ1 receptor currents. However, it might be that only the constitutive 

current, rather than the GABA-mediated current, was inhibited by PS at the α1-

222-ρ1 + β2-218-ρ1 + γ2-235-ρ1 chimera. This would imply that residues in the 

TMDs of the α1, β2 and γ2 subunits are necessary for the ability of PS to block 

GABA-mediated currents. Moreover, chimeras containing the ECD of ρ1 and the 

TMDs of α1 or γ2 (ρ1-260-α1/γ2) were sensitive to PS. Taken together, these 

results suggest that PS is likely to bind to all of the subunits included in this study, 

as the chimera studies showed that inhibition occurs in chimeras containing 

sequences from ρ1 and α1 or γ2, and experiments with the β3 homomer showed 

that PS can inhibit PB-induced currents. The homomeric wild-type ρ1 receptor 

likely fails to respond efficiently to the binding of PS because of an absent 

signalling mechanism. The residues necessary for this allosteric mechanism are 

likely to be present in α1, β2 and γ2 subunits, and absent in the wild-type ρ1 

receptor.  

4.3.4. Is inhibition by PS due to effects on lipids in the plasma membrane?  

The question that arises is where is PS binding? The lack of enantioselectivity of 

a pharmacological agent at a receptor is sometimes used as evidence that no 

specific binding site is present, and that modulation occurs through indirect 

interaction between the modulator and the receptor (Twede et al., 2007; Seljeset 

et al., 2015). This could be through the partitioning of the ligand into the 

membrane, leading to a change in the properties of the lipid bilayer around the 

receptor. Whereas the potency of DHEAS and its enantiomer differs 7-fold in 

inhibiting GABAA receptor currents, PS was found to show no enantioselectivity 

for inhibition of GABA whole-cell currents in rat hippocampal neurones (Nilsson 
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et al., 1998). However, the opposite result was obtained in a study using the UNC-

49B/C receptor: the natural enantiomer of PS was three times more potent than 

its enantiomeric counterpart, whilst DHEAS showed no enantioselectivity (Twede 

et al., 2007). The selectivity of various GABAA receptors for neurosteroid 

enantiomers may, however, depend on the specific way that the molecule 

contacts its binding site at the receptor, and the absence of enantioselectivity 

does not unequivocally distinguish direct ligand-receptor interactions from 

indirect membrane interactions. However, some specificity in engaging with a 

binding site is suggested from the structure-activity studies of PS at native GABAA 

receptors (Park-Chung et al., 1999; Seljeset et al., 2015).  

Previous studies have investigated whether PS may act by indirectly modulating 

GABAA receptors through partitioning into the lipid layer of the plasma membrane 

(Mennerick et al., 2008; Akk et al., 2009; Chisari et al., 2010, 2011). PS increases 

membrane capacitance, whereas potentiating neurosteroids do not, and this 

increased capacitance has been suggested to mediate the inhibitory effect of PS 

on the GABAA receptor (Mennerick et al., 2008). The level of inhibition caused by 

PS and structurally similar sulphated steroids also correlates with the degree of 

capacitance change the steroids produce. It has also been shown that structurally 

diverse detergents and amphiphiles, e.g. triton X-100 and docosahexaenoic acid, 

perturb the lipid membrane and antagonise GABAA receptors in a manner that is 

similar to PS, with antagonism that is promoted by receptor activation and 

manifests as an apparent increase in desensitisation (Søgaard et al., 2006; 

Chisari et al., 2010). Interestingly, negative modulation by these amphiphiles was 

also almost abolished by the α1V256S mutation. The same characteristics apply to 

the hydrophobic anions, e.g. dipicrylamine (DPA) and tetraphenylborate (TPB), 

both of which antagonise GABAA receptors in a manner similar to PS and are 

affected by the 2’ mutation (Chisari et al., 2011). However, one important factor 

not in accord with a membrane perturbation effect is that I have shown that PS 

cannot inhibit GABAA receptors from within the cell (Chapter 3, section 3.2.5.). If 

disruption of the membrane is enough to cause inhibition, without any specific 

ligand-receptor interaction, some inhibition would also be expected when PS is 

applied inside the plasma membrane. However, as all GABAA receptor subunits, 
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including ρ1, appear to have a binding site for PS, it is possible that the 

interactions are not very specific. 

4.4. Conclusion 

This chapter has shown that PS can inhibit GABA-induced currents at 

α1V256S/Cβ2γ2L and α1β3A252Sγ2L receptors as well as the receptors with residues 

introduced from UNC-49B. These results suggest that the residues identified 

previously by Akk et al. (2001), Wardell et al. (2006) and Twede et al. (2007) are 

unlikely to be involved in forming a binding site in the mammalian GABAA 

receptor. Furthermore, the ρ1 chimera work suggested that this subunit is likely 

to also contain a binding site for PS, but the transduction machinery necessary 

for allosteric modulation is most probably absent.  
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Chapter 5: Modulation of GABAergic transmission in hippocampal 

neurones by PS 

5.1. Introduction 

The two previous results chapters have discussed the mechanism by which PS 

modulates recombinant GABAA receptors in HEK cells, and explored potential 

binding sites for the inhibitory neurosteroid at these receptors. To investigate the 

effect of PS on GABAergic transmission under physiological conditions, 

dissociated hippocampal neurones from E18 rats were used in 

electrophysiological experiments after 10 to 16 days in culture. As PS was found 

to have a greater inhibitory effect on GABA steady-state than peak currents in 

HEK cells, the study was designed to explore whether PS might have a role in 

modulating the decay phase of synaptic GABA currents, and if current amplitudes 

can be affected. Previously, PS was observed to inhibit an emulated tonic GABA 

current in HEK cells (see section 3.2.7.), and it would therefore be interesting to 

determine if inhibition of a tonic GABA current can occur in the more physiological 

environment of a hippocampal neurone where ambient GABA exists, primarily 

due to synaptic release.  

Modulation of GABAergic IPSCs by PS has been studied previously. PS has been 

reported to have no direct modulatory effect on GABAA receptors in dissociated 

hippocampal neurones, as the amplitude of IPSCs was not diminished 

(Teschemacher et al., 1997; Mtchedlishvili and Kapur, 2003). A presynaptic effect 

of PS was however observed, as the steroid appeared to reduce the frequency 

of GABA-mediated IPSCs.  

In hippocampal neurones from P1 rats that had been in culture for 3 to 9 weeks, 

PS was shown to reduce the frequency of miniature IPSCs (mIPSCs) 

(Teschemacher et al., 1997). PS was applied at concentrations ranging between 

1 and 50 μM, at which 1 μM had the greatest effect on the mIPSC frequency. 

Furthermore, PS did not directly modulate postsynaptic GABAA receptors, as no 

reduction in IPSC amplitude was observed until after wash-out of the steroid. The 
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reduction in mIPSC frequency induced by 1 μM PS (to 70% of control) was 

observed after 10 to 15 min of exposure to PS, and was irreversible as the 

frequency did not recover following wash-out.  

A later study using hippocampal neurones from E18 rats after 2-3 weeks in 

culture reported a decrease in the frequency of mIPSCs and spontaneous IPSCs 

(sIPSCs) of 40-60% (Mtchedlishvili and Kapur, 2003). This effect was observed 

at a much lower concentration of PS (30 nM), was more immediate in onset and 

reversible. The effect of PS could also be mimicked by a σ1 receptor agonist and 

blocked by σ1 receptor antagonists, implicating a role of this receptor in regulating 

GABA release in the presynaptic membrane.  Unsurprisingly for such a low 

concentration, 30 nM PS did not appear to modulate postsynaptic GABAA 

receptors, as no effect was observed on peak amplitudes or decay time 

constants.  

Whereas the study by Teschemacher et al. (1997) only studied mIPSCs and 

observed a rather delayed effect of PS, the study by Mtchedlishvili and Kapur 

(2003) only used concentrations of PS too low to have a direct effect on GABAA 

receptors. Therefore, I decided to study the effect of PS on IPSCs in rat 

hippocampal neurones (embryonic day (E) 18 + 10-16 days in vitro (DIV)) using 

micromolar concentrations of PS to increase the likelihood of observing a direct 

effect on postsynaptic GABAA receptors, as observed in HEK cell recordings. As 

PS affects the decay phase of whole-cell GABA currents in HEK cells, I was 

interested to find out if PS might also affect the rate of decay of IPSCs. As 

described below, PS was found to have both presynaptic and postsynaptic 

effects, most likely caused by acting at multiple receptors that exist in or close to 

the inhibitory synapse.  
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5.2. Results  

5.2.1. PS inhibits GABA whole-cell currents in hippocampal neurones 

For electrophysiological recordings in hippocampal neurones, fast glutamatergic 

transmission was blocked with 1 mM kynurenic acid. The addition of 20 μM 

bicuculline (BIC) abolished all synaptic currents, demonstrating that all IPSCs 

were mediated by GABAA receptors (Johnston, 2013).  

To demonstrate that PS can antagonise GABA-mediated whole-cell currents in 

hippocampal neurones, like in HEK cells, GABA at EC80 (30 µM) was co-applied 

with PS at increasing concentrations. As neurones express various subtypes of 

the GABAA receptor, the IC50 will be influenced by the composition of receptors 

present in the cells and might be different from the values derived from HEK cell 

recordings. 

Similarly to the inhibition produced at recombinant GABAA receptors, GABA peak 

currents were weakly inhibited in neurones, to 71.4 ± 5.3% of control at 100 µM 

PS (Fig. 5.1B and C). The steady-state current was inhibited in a concentration-

dependent manner by PS, with an IC50 of 3.3 ± 0.5 µM (Fig. 5.1C). This value is 

somewhat higher than the IC50s for the individual subtypes of the recombinant 

receptors, which ranged between 0.4 and 1.3 µM PS in HEK cells (see section 

3.2.6.). These results show that native GABAA receptor-mediated whole-cell 

currents are inhibited by PS in hippocampal neurones.  
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Figure 5.1 – PS inhibits whole-cell GABA currents in hippocampal 

neurones.  

A. GABA concentration-response curve for whole-cell currents in hippocampal neurones (n = 5). 

Currents were normalised to the GABA EC100 (1 mM) response. B. Representative traces for 

inhibition of GABA EC80 currents by PS (1-100 μM) in hippocampal neurones. C. Inhibition curves 

for the inhibition of GABA EC80 peak (black) and steady-state (red) currents by PS in hippocampal 

neurones (n = 8). Data are expressed as mean ± SEM.  
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5.2.2. PS increases presynaptic GABA release in hippocampal neurones 

To determine if PS can also inhibit synaptic GABAA receptor currents (IPSCs), 

neurones were exposed to PS with no exogenously applied GABA. IPSCs are 

kinetically very different from GABA whole-cell currents; whereas whole-cell 

currents are slow in onset and can last for seconds, IPSCs are very fast and 

transient events lasting milliseconds. Due to the slow onset of inhibition by PS, 

which in HEK cells was measured 10 s into drug application, it is not certain 

whether PS can inhibit the peak amplitude of IPSCs. The delayed inhibition that 

was measured at 10 s in HEK cells is more likely to manifest as an effect on the 

decay phase of an IPSC.  

As shown for 3 µM PS in Fig. 5.2, the frequency of IPSCs went up dramatically 

when neurones were exposed to PS. The effect on frequency was concentration-

dependent (Fig. 5.4 and 5.5A), and reversible, as washing out PS brought the 

frequency back to baseline level (Fig. 5.2 and 5.3B).  

 

Figure 5.2 – Representative traces demonstrating the increase in IPSC 

frequency induced by PS. 

The traces show recorded IPSCs under control conditions (left), in the presence of 3 µM PS 

(middle) and upon wash-out of PS (right). The zoomed in trace in the box shows 1 s of recording, 

increasing the resolution of individual IPSCs.  
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Figure 5.3 – Time courses for the effects of PS on IPSCs in hippocampal 

neurones. 

A. Plot of peak amplitude of IPSCs before, during and after PS, with mean amplitudes in control 

(black), 3 µM PS (red) and wash-out (green) shown. All events within each minute of recording 

were averaged (n = 8). B. Plot of mean frequency of IPSCs over time in control (black), 3 µM PS 

(red) and wash-out (green) (n = 8). Data are plotted as mean ± SEM.  

The increase in presynaptic GABA release was gradual in onset, and peaked 

within ~2 min of exposure to PS (for 3 µM PS, see Fig. 5.3B). The inhibitory effect 

of PS on IPSC amplitude was faster in onset and showed little time-dependence 

(Fig. 5.3A).  
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The presynaptic effect of PS on GABA release was concentration-dependent 

(Fig. 5.4 and 5.5). Compared to control, the fold increase in frequency was 1.78 

± 0.97 at 30 nM PS (p = 0.249, n = 6), 2.53 ± 1.08 at 1 µM (p = 0.0741, n = 6), 

8.72 ± 2.30 at 3 µM (p = 0.0039, n = 8) and 12.93 ± 4.11 at 10 µM PS (p = 0.0005, 

n = 8). Although all values are normalised for presentation, statistical analyses 

were undertaken by comparing non-normalised data in control and PS in paired 

datasets, both for frequency and amplitude. All statistical analyses of PS 

modulation in neurones were performed comparing raw data from paired 

datasets, unless otherwise is stated.    

A postsynaptic effect of PS may have been masked by the PS-induced increase 

in presynaptic GABA release. However, as demonstrated by the time plot in Fig. 

5.3, the amplitude of the IPSCs was reduced slightly by 3 µM PS. This effect did 

not appear to be strongly concentration-dependent, as the average amplitude 

reached 0.91 ± 0.13 of control at 30 nM PS (p = 0.127, n = 6), 0.62 ± 0.14 at 1 

µM (p = 0.0252, n = 6), 0.69 ± 0.10 at 3 µM (p = 0.0113, n = 8) and 0.65 ± 0.10 

at 10 µM PS (p = 0.0125, n = 8) (Fig. 5.5B). The lack of concentration-dependent 

inhibition of IPSC peak amplitudes may be due to a large increase in small events 

caused by the surge in GABA release in the presence of PS, potentially combined 

with direct postsynaptic inhibition of IPSC peak amplitudes.   
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Figure 5.4 – Effect of 30 nM - 10 µM PS on IPSC frequency.  

The current traces show a control recording (left) and the effect of PS on IPSC frequency (right) 

in one individual cell for several concentrations of PS as indicated in A-D.  

To further investigate whether PS affects the amplitude of IPSCs, or if the 

decrease in the average peak amplitude in PS is due to an increased frequency 

of smaller IPSCs, amplitude distributions were generated (Fig. 5.6). In neurones 

treated with 3 μM PS, the distribution of IPSC amplitudes was similar in control 

and PS as two Gaussian fits best described the populations of events in each 

condition; whereas the bell curves had means (± standard deviation) of -26.9 ± 

0.2 pA and -54.3 ± 3.1 pA in control, the means were -24.3 ± 0.5 pA and -52.6 ± 

7.2 pA in 3 μM PS (Fig. 5.6A and B). This suggests that there is little effect of PS 
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on the peak amplitude of the IPSCs, though more small events (< -30 pA) are 

present in 3 μM PS than in control.  

When neurones were treated with 10 μM PS, only one population of amplitudes 

was present as the data were best described by a single Gaussian fit (Fig. 5.6C 

and D). This had a mean of -29.5 ± 0.4 pA, whereas the two populations in control 

had means of -30.0 ± 0.2 pA and -62.6 ± 5.0 pA. This shows that the population 

of events of larger amplitudes (> -50 pA) had mostly been ablated in 10 μM PS. 

These histograms show that the distribution of events according to peak 

amplitude is changed by PS, as larger events are mostly absent and the number 

of smaller events has increased. This reduction or absence of large events may 

be due to direct inhibition of postsynaptic GABAA receptors by PS.  

 

Figure 5.5 – The effect of PS on IPSC frequency and amplitude. 

A. Normalised frequency of IPSCs in control conditions and in the presence of 30 nM - 10 µM PS. 

The cells had been exposed to PS for at least 1 min before the frequency was calculated over a 

time period of at least 2 mins (n = 6-8). Frequencies are normalised to the frequency measured 

in control in each cell. B. Normalised peak amplitudes of IPSCs in control conditions and in the 

presence of 30 nM - 10 µM PS (n = 6-8). The mean peak amplitude was calculated over a time 

period of at least 2 min for each condition. Peak amplitudes are normalised to the mean peak 

amplitude in control in each cell. Data are expressed as mean ± SEM. ns denotes not statistically 

significant, * p < 0.05, ** p < 0.01 and *** p < 0.001 (compared to control).  
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Figure 5.6 – IPSC amplitude distributions in control and at 3 and 10 µM PS.  

A-D. The histograms with Gaussian fits show the distribution of events according to IPSC 

amplitude in control (on the left) and PS (right). 200 events from each recording were chosen in 

the control and after 2 min in 3 μM PS (A and B; n = 8) and 10 μM PS (C and D; n = 7). The 

curves in green and yellow show the two different distributions in each condition, and the curve 

in blue shows the sum of the two.  

As PS appears to promote desensitisation of recombinant GABAA receptors in 

HEK cells, it is plausible that PS has a similar effect on the decay phase of IPSCs 

through modulating native GABAA receptors in the postsynaptic membrane. To 

determine if this is the case, a minimum of 50 ‘clean’, non-overlapping events 

were selected in control, 1 µM and 3 µM PS. Events were averaged and the 

weighted tau (τw) was determined by fitting a biexponential curve to the mean 

waveform (Fig. 5.7). At 10 µM PS the frequency was too high to find enough clean 

events. Weighted τw was 26.9 ± 3.2 ms in 1 µM PS, compared to 32.0 ± 3.3 ms 

in control (p = 0.00194, n = 5). At 3 µM PS, weighted τw was 21.6 ± 1.2 ms, 

compared to 34.7 ± 2.0 ms in control (p < 0.0001, n = 8). This means that 1 µM 
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and 3 µM PS reduced the τw by 16.3 ± 2.6% and 37.5 ± 2.6%, respectively, 

indicating that PS increases the rate of IPSC decay in hippocampal neurones.   

 

Figure 5.7 – Mean IPSC waveforms with and without 1 and 3 µM PS. 

A. Mean IPSC waveforms for control (blue) and 1 µM PS (red) from a single cell. B. Mean IPSC 

waveforms for control (blue) and 3 µM PS (red) from one cell. Mean waveforms were calculated 

from at least 50 clean, non-overlapping events in each condition, and are normalised to the peak 

value in the mean waveform. C. The bar chart shows the percentage reduction in τw caused by 1 

μM and 3 μM PS compared to control (n = 5-8). Data are expressed as mean ± SEM.  

As PS is an inhibitory neurosteroid at GABAA receptors, and negatively 

modulates the receptors, one would expect PS to be excitatory at the synapse by 

diminishing inhibition. However, as PS also acts presynaptically and increases 

GABA release, the increased frequency of IPSCs could lead to an increased 

influx of Cl- ions across the postsynaptic membrane, meaning the net effect of PS 

could be to reduce excitability of the postsynaptic cell. To determine if this is the 

case, charge transfer in control, 1 μM and 3 µM PS was calculated by multiplying 

the area under the mean IPSC waveform by the frequency of IPSCs in each 

condition (Fig. 5.8). In 1 μM PS, the average charge transfer was -3.8 ± 1.2 pC/s, 
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which was not different from -4.7 ± 1.2 pC/s in control (p = 0.2410, n = 8; Fig. 

5.8A). When the concentration of PS was increased to 3 µM, the charge transfer 

was -3.4 ± 0.9 pC/s, which was higher than in control (1.2 ± 0.1 pC/s, p = 0.0233, 

n = 7; Fig. 5.8B). This represents a 2.8-fold increase in the influx of Cl- ions across 

the postsynaptic membrane in the presence of 3 µM PS, suggesting that PS at 3 

µM is likely to reduce rather than increase the excitability of the hippocampal 

neurone.  

 

Figure 5.8 – Charge transfer is increased in neurones at 3 µM but not 1 μM 

PS. 

The bar chart shows the charge transfer in control and in 1 μM PS (A; n = 8) and 3 μM PS (B; n 

= 7). Charge transfer was calculated by multiplying the frequency of IPSCs by the area under the 

mean IPSC waveform in each recording condition. The mean waveform was found by averaging 

at least 50 clean events in each condition. Data are expressed as mean ± SEM. ns denotes not 

statistically significant, * p < 0.05.  
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5.2.3. PS increases presynaptic GABA release in TTX and increases the rate of 

IPSC decay 

Various ion channels and receptors are potential presynaptic targets of PS. To 

increase GABA release, PS must be acting to either increase the excitability of 

the presynaptic neurone or to locally increase the Ca2+ concentration in the 

synaptic terminal. Alternatively, it might also interfere directly with the machinery 

involved in vesicular neurotransmitter release, increasing the probability of 

vesicle release.  

It is unclear whether PS acts to increase GABA release by increasing action 

potential (APs) firing in the presynaptic neurone, or if release is increased via an 

AP-independent mechanism. To assess whether PS increases presynaptic 

GABA release via a mechanisms that makes the presynaptic neurone more likely 

to fire APs, neurones were kept in 500 nM TTX before and after exposure to 1-

10 µM PS. PS has, however, previously been described to inhibit voltage-gated 

Na+ channels (Navs) (Horishita et al., 2012), which would reduce excitability and 

GABA release. Nevertheless, blocking Navs removes AP-dependent sIPSCs, 

allowing us to study the effect of PS on mIPSCs. If the frequency of IPSCs still 

goes up when APs are blocked, this suggests that PS acts on a presynaptic target 

to increase GABA release rather than increasing presynaptic interneurone 

excitability. The postsynaptic effect of PS may also be easier to study when the 

baseline frequency of IPSCs is lower. 

Similar to the results obtained in the absence of TTX, PS evoked a concentration-

dependent increase in mIPSC frequency (Fig. 5.9A-D), showing that the increase 

in GABA release is not due to PS stimulating AP firing in presynaptic 

interneurones. At 1 µM PS the frequency did not go up (1.1 ± 0.1 of control, p = 

0.406, n = 8), but at 3 µM, the fold increase in frequency was 3.0 ± 0.6 (n = 

0.0071, n = 8), and 20.6 ± 5.3 at 10 µM PS (p = 0.0013, n = 6).  

PS did not reduce mIPSC peak amplitudes in TTX. At 1 µM PS the peak 

amplitude was 0.95 ± 0.47 of control (p = 0.2750, n = 8), at 3 µM it was 0.89 ± 

0.62 (p = 0.05, n = 8) of control, and at 10 µM PS, the peak amplitude was 0.98 
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± 0.12 of control (p = 0.2757, n = 6; Fig. 5.9E). This indicates that PS does not 

modulate the amplitude of mIPSCs.  

 

Figure 5.9 – PS increases IPSCs frequency in the presence of TTX. 

A-C. Representative traces for the effect of 500 nM TTX (left) and TTX with PS (right) at 1 μM 

(A), 3 μM (B) and 10 µM PS (C).  D. A bar chart demonstrating the effect of PS (1 – 10 µM) on 

IPSC frequency. E. A bar chart showing the effect of PS on IPSC peak amplitude. Data are 

normalised to control (TTX only) and expressed as mean ± SEM (n = 6-8). ns denotes not 

statistically significant, ** p < 0.01 (compared to control). 
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least 50 clean, non-overlapping events in each condition. τw was determined by 

fitting a biexponential curve to the decay phase of each waveform (Fig. 5.10).  

 

Figure 5.10 – Mean mIPSC waveforms with and without 1, 3 and 10 µM PS 

in TTX. 

A-C. Mean mIPSC waveforms from one cell for control (blue) and PS (red) at 1 µM (A), 3 µM (B) 

and 10 µM (C). Mean waveforms were calculated from at least 50 clean, non-overlapping events 

in each condition, and are normalised to the peak value in the mean waveform.  

At 1 µM PS, τw was 26.4 ± 2.8 ms, compared to 28.4 ± 3.2 ms in control, 

representing a change in τw of 3.8 ± 10.1% (p = 0.2727, n = 8; Fig. 5.11). The 

reduction in τw was greater at 3 µM PS, having reached 24.6 ± 1.3 ms compared 

to 32.6 ± 1.7 ms in control (p < 0.0005, n = 7), representing a change of 24.4 ± 

2.3%. At 10 µM PS, τw was reduced by 50.5 ± 8.0%, being 16.6 ± 1.3 ms in PS, 

compared to 37.0 ± 5.0 ms in control (p = 0.0041, n = 6). Thus, PS had a 

concentration-dependent effect on the rate of decay. TTX did not itself have any 
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effect on decay; comparing τw in 13 cells with and without 500 nM TTX, showed 

that τw is 33.2 ± 1.7 ms in control and 34.6 ± 2.4 ms in TTX (n = 13, p = 0.6337).    

 

Figure 5.11 – PS has a concentration-dependent effect on mIPSC decay. 

τw was calculated by fitting a biexponential curve to the mean waveform of the mIPSCs in 1 μM 

(black; n = 8), 3 μM (red; n = 7) and 10 µM PS (green; n = 6). Recordings were carried out in the 

presence of 500 nM TTX. The mean waveform was based on at least 50 clean events in each 

condition. Data are shown as a percentage reduction in τw compared to control in each recording 

and are expressed as mean ± SEM.  

To determine if charge transfer is increased by PS also in the presence of TTX, 

charge transfer in control and 1-10 µM PS was calculated by multiplying the area 

under the mean waveform by the frequency of mIPSCs in each condition (Fig. 

5.12). At 1 µM, PS did not increase the charge transfer across the membrane, 

being -1.35 ± 0.60 pC/s in control and -1.29 ± 0.56 pC/s in PS (p = 0.6975, n = 

8). Charge transfer was almost doubled in 3 µM PS, as it went from -2.23 ± 0.38 

pC/s in control to -4.35 ± 1.09 pC/s in PS (p = 0.0222, n = 8). The effect was even 

larger at 10 µM PS, as the average charge transfer went from -1.23 ± 0.93 pC/s 

in control to -4.16 ± 1.28 pC/s in PS (p = 0.0009, n = 6), representing a 3.4-fold 

increase. Thus, the effect of PS on increasing charge transfer was concentration-

dependent in 500 nM TTX.  
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Figure 5.12 – Charge transfer in 1-10 µM PS in the presence of TTX. 

A-C. The bar charts show the average charge transfer (pC/s) in control and 1 µM (A), 3 µM (B) 

and 10 µM (C) PS (n = 6-8). Charge transfer was calculated by multiplying the frequency of IPSCs 

by the area under the mean mIPSC waveform in each recording condition. The mean waveform 

was found by averaging at least 50 clean events in each condition. Data are expressed as mean 

± SEM. ns denotes not statistically significant, * p < 0.05, *** p < 0.001. 
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5.2.4. Cd2+ does not block the presynaptic effect of PS 

Another potential cause of the increase in GABA release could be increased flux 

of Ca2+ through voltage-gated Ca2+ channels (Cavs) in the presynaptic 

membrane. PS has previously been shown to enhance glutamatergic 

transmission, most likely via direct modulation of Cavs (Hige et al., 2006). To 

examine this possibility, Cavs were blocked by 200 µM Cd2+, which should 

produce a full block of the channels (Lansman et al., 1986). As can be discerned 

from the traces in Fig. 5.13, Cd2+ caused a large reduction in the frequency of 

IPSCs, showing that the block of the Cavs significantly reduced GABA release. 

Furthermore, Cd2+ has also been shown to be an antagonist of GABAA receptors 

with an IC50 >100 μM (Kumamoto and Murata, 1995). It may also inhibit 

extrasynaptic GABAARs (Fisher and Macdonald, 1998), and in accord with this 

produced a prominent block of the GABA-mediated tonic current. This went back 

to baseline upon wash-out of Cd2+ (Fig. 5.13B).  
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Figure 5.13 – The effect of Cd2+ and PS on IPSC frequency and amplitude. 

A. Representative traces showing control (no drug; trace on the left), the effect of 200 µM Cd2+ 

(middle trace) and the effect of 10 µM PS on IPSCs in the presence of Cd2+. The trace in the box 

gives a closer view of the effect of PS on the baseline. B. The trace demonstrates the increase in 

IPSC amplitude upon Cd2+ and PS wash-out, and the inhibitory effect of Cd2+ on the tonic GABA 

current.  

PS (10 µM) caused a pronounced increase in the normalised frequency of IPSCs 

also in the presence of Cd2+, which went up from 0.39 ± 0.09 of control in Cd2+ to 

13.15 ± 6.29 in Cd2+ and PS, an almost 33-fold increase in frequency (p = 0.0156, 

n = 6; Fig. 5.14A). This suggests that presynaptic Cavs are not a target for PS.  
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Figure 5.14 – The effect of Cd2+ and PS on IPSC frequency and amplitude. 

The bar charts show the effect of 200 µM Cd2+ with and without 10 µM PS on IPSC frequency (A) 

and peak amplitude (B). Data are normalised to control and expressed as mean ± SEM (n = 6). 

ns denotes not statistically significant, * p < 0.05.  

The peak amplitude of the IPSCs was reduced by about 60% in the presence of 

200 µM Cd2+ (Fig. 5.14B), to 0.41 ± 0.08 of control (p = 0.0150, n = 6). 

Furthermore, 10 µM PS did not add to this inhibition (0.39 ± 0.09 of control; p = 

0.2159, n = 6).  

5.2.5. TRPM3 channel blockers mefenamic acid and ononetin block PS-

mediated presynaptic GABA release 

The TRPM3 receptor is a well-documented target of PS (Wagner et al., 2008; 

Vriens et al., 2011), and is widely expressed in the human and rodent brain (Lee 

et al., 2003; Fonfria et al., 2006; Kunert-Keil et al., 2006; Zamudio-Bulcock and 

Valenzuela, 2011; Held et al., 2015). Acting as an agonist, PS increases the flux 

of cations through the TRMP3 channel, increasing the excitability of the cell. 

Furthermore, the TRPM3 channel shows up to 10 times higher permeability for 

Ca2+ than monovalent cations (Held et al., 2015). 

Mefenamic acid (MFA) is a blocker of the TRPM3 receptor (Klose et al., 2011), 

but can also inhibit, potentiate and directly activate GABAA receptors in vitro 
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(Halliwell et al., 1999; Coyne et al., 2007). Whereas the IC50 of MFA is below 10 

µM at TRPM3, the IC50 for other studied TRP channels is over 300 μM, making 

MFA a selective TRPM3 blocker relative to the other members of the receptor 

family (Klose et al., 2011). If PS increases GABA release by activating 

presynaptic TRPM3 receptors, a reduced or even zero increase in IPSC 

frequency would be expected when PS and MFA are co-applied.  

At 10 µM, which is just above its IC50 (7 µM) (Klose et al., 2011), MFA caused a 

large increase in the tonic GABA conductance of hippocampal neurones, and this 

was inhibited to some extent by 10 µM PS (Fig. 5.15A). The normalised IPSC 

frequency was 0.81 ± 0.17 of control in the presence of 10 µM MFA (p = 0.1603, 

n = 7). When 10 µM PS was applied with MFA, the normalised frequency went 

down to 0.30 ± 0.11 of control, which was significantly lower than in MFA alone 

(p = 0.0093, n = 7; Fig. 5.13B and C). Thus, PS reduced rather than increased 

the frequency of IPSCs in the presence of MFA. Blocking presynaptic TRPM3 

receptors with MFA was expected to prevent the increase in GABA release upon 

PS application. The finding that the effect of PS is reversed, and that it actually 

acted to reduce GABA release, could indicate that an additional presynaptic 

receptor or ion channel is targeted by PS. Blocking TRPM3 might have prevented 

PS-induced GABA release, and unmasked the ability of PS to also reduce GABA 

release.  

In contrast to the results seen with Cd2+, IPSC peak amplitudes were reduced by 

PS in the presence of MFA (Fig. 5.15D). IPSC amplitudes were also reduced in 

MFA alone compared to control (to 0.71 ± 0.10 of control; p = 0.0131, n = 7). 

Upon application of 10 μM PS with MFA, the average peak amplitude went down 

to 0.38 ± 0.03 of control, which was significantly lower than in MFA only (p = 

0.0060, n = 7). This could either mean that PS directly modulates postsynaptic 

GABAA receptors and inhibits their activity, or that because the frequency is so 

low (0.30 ± 0.11 of control), and larger IPSCs are absent (see traces in Fig. 

5.15B), the average peak amplitude is lowered.    
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Figure 5.15 – Blocking the presynaptic effect of PS with MFA. 

A. A trace showing the effect of both MFA and PS (both 10 µM) on the tonic GABA current in a 

hippocampal neurone. B. Representative traces for control (left), the effect of MFA only (middle) 

and MFA with PS (right) on IPSCs. C-D. Bar charts showing the effect of MFA with and without 

PS on IPSC frequency (C) and peak amplitude (D). Data are normalised to control and expressed 

as mean ± SEM (n = 7), ** p < 0.01. 

Ononetin is a more selective antagonist at the TRPM3 receptor (IC50 = 0.3 µM) 

(Straub et al., 2013; Held et al., 2015) and does not show any activity at GABAA 

receptors (Fig. 5.24). To corroborate my findings that PS can increase GABA 

release by acting as an agonist at presynaptic TRPM3 receptors, ononetin was 
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used at 10 µM, a concentration that should produce a complete block of the 

TRPM3 receptor (Straub et al., 2013).  

The results were similar to those obtained using MFA, except ononetin caused 

no increase in tonic GABA current and did not reduce the IPSC peak amplitude 

(Fig. 5.16A, B and D). The average peak amplitude was 1.19 ± 0.21 of control in 

10 µM ononetin, which was not different from control (p = 0.3647, n = 7). When 

10 µM PS was applied, the peak amplitude went down to 0.67 ± 0.10 of control, 

which was significantly lower than in the presence of ononetin only (p = 0.0064, 

n = 7).  

Ononetin did not by itself affect the frequency of IPSCs (0.81 ± 0.20 of control; p 

= 0.1010, n = 8; Fig. 5.16B and C). When co-applied with 10 µM PS, the 

normalised frequency went down to 0.40 ± 0.12, which was significantly lower 

than in ononetin only (p = 0.0243, n = 8). Together with the MFA data, these 

results suggest that blocking TRPM3 with MFA or ononetin prevents the PS-

induced increase in GABA release, and that PS must also act at an additional 

presynaptic target to reduce GABA release, an effect that can only be observed 

when TRPM3 is blocked. This also strongly supports that TRPM3 is a target of 

PS, and that PS acts as an agonist to increase cation influx across the 

presynaptic membrane. The additional presynaptic target of PS involved in 

reducing GABA release will be explored further in the next part of this chapter. 
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Figure 5.16 – Blocking the presynaptic effect of PS with ononetin.  

A. A trace showing the effect of ononetin and PS (both 10 µM) on the GABA tonic current in a 

hippocampal neurone. B. Representative traces for control, the effect of ononetin and ononetin 

with PS in a hippocampal neurone. C-D. Bar charts showing the effect of ononetin and ononetin 

with PS on IPSC frequency (C) and peak amplitude (D). Data were normalised to control and 

expressed as mean ± SEM (n = 8), * p < 0.05, ** p < 0.01.   
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5.2.6. PS does not reduce presynaptic GABA release via presynaptic σ1 

receptors in hippocampal neurones 

PS has previously been reported to reduce GABA release in hippocampal 

neurones (Teschemacher et al., 1997; Mtchedlishvili and Kapur, 2003). This was 

thought to occur through the agonism of the σ1 receptor that exists in the 

presynaptic membrane. To determine whether this can be a mechanism by which 

PS reduces GABA release when TRPM3 receptors are blocked, haloperidol (50 

µM) was used to antagonise σ1 receptors. Haloperidol has previously been used 

at this concentration to block the presynaptic effect of PS at the σ1 receptor 

(Mtchedlishvili and Kapur, 2003), and is a potent blocker of the receptor (Walker 

et al., 1990). By applying PS in the presence of haloperidol and ononetin, it can 

be discerned whether PS can reduce the frequency of IPSCs when the TPRM3 

and σ1 receptors are blocked. 

The effect of haloperidol was ambiguous, with the IPSC frequency going up in 

some cells (3/7) and down (2/7) in others (Fig. 5.17A and B). Haloperidol is active 

at an array of different receptor types, including dopamine D1-4 receptors, σ 

receptors, muscarinic, histamine H1, serotonin 5-HT1A and 5-HT2 receptors and 

α1 adrenoceptors (Tam and Cook, 1984; Borda et al., 1999; Kroeze et al., 2003), 

which may explain this inconsistency. The normalised frequency was 1.60 ± 0.62 

in 50 µM haloperidol, which was not different from the baseline frequency due to 

the high variability (p = 0.8392, n = 7; Fig. 5.17C). When 10 µM PS was applied 

in the presence of haloperidol and 10 µM ononetin, the normalised frequency was 

1.66 ± 0.7, which was not different from the frequency in haloperidol only (p = 

0.8200, n = 7). The frequency did not recover upon wash-out of the drugs, and 

went down to 0.43 ± 0.12 of control.  

This could mean that blocking presynaptic TRPM3 receptors with ononetin and 

σ1 receptors with haloperidol ablates the effect of PS on IPSC frequency. The 

variability in the cellular response is however somewhat confounding, and made 

it necessary to use a more selective blocker of the σ1 receptor. 
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Figure 5.17 – Blocking the presynaptic effect of PS with haloperidol and 

ononetin. 

A. Representative traces showing how haloperidol (50 µM; second trace from the left) can reduce 

the frequency of IPSCs compared to control (trace on the left), and the effect of PS (10 µM) in the 

presence of both haloperidol and ononetin (10 µM; second trace from the right). The frequency 

does not recover upon wash-out (trace on the right). B. Representative traces as in A, showing 

how the frequency of IPSCs went up in the presence of haloperidol in some cells. C. The bar 

chart shows the effect of haloperidol and haloperidol co-applied with PS and ononetin on the 

frequency of IPSCs. D. The bar chart shows the effect of haloperidol and haloperidol co-applied 

with PS and ononetin on IPSC amplitudes. Data are normalised to control and expressed as mean 

± SEM (n = 7). ns denotes not statistically significant, * p < 0.05.  

Haloperidol greatly reduced the IPSC amplitude (Fig. 5.17D). The normalised 
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n = 7). In the presence of haloperidol, ononetin and PS, the peak amplitude was 

reduced to 0.49 ± 0.05 of control, which is lower than in haloperidol only (p = 

0.0237, n = 7). The effect of haloperidol on peak amplitude did not wash out (0.62 

± 0.05 of control, p = 0.0037, n = 7). This suggests that haloperidol also inhibits 

GABAA receptors, although no effect was observed on the recombinant α1β2γ2L 

receptor in HEK cells (Fig. 5.24).  

As haloperidol produced disparate effects in different cells, BD-1063 was also 

used as this is a more selective blocker of σ1 receptors. The Ki (affinity) of BD-

1063 at the rat σ1 receptor is below 10 nM (Matsumoto et al., 1995), and it has a 

50-fold greater affinity for σ1 than for σ2 receptors. BD-1063 was first used at 300 

nM, as described previously (Mtchedlishvili and Kapur, 2003). It was also used at 

10 µM to ensure full block of the σ1 receptor is achieved. At the higher 

concentration, block of σ2 receptor and other neurotransmitter receptors is 

however more likely to occur, as the compound has a 100-fold or higher affinity 

for σ receptors compared to other neurotransmitter receptors (opioid, NMDA, 

muscarinic and dopamine receptors, α- and β-adrenoceptors and 5-HT1/2 

receptors) (Matsumoto et al., 1995; McCracken et al., 1999). 

At 300 nM BD-1063, the fold frequency of IPSCs was not changed from baseline 

as it was 1.17 ± 0.26 relative to control (p = 0.6694, n = 8; Fig. 5.18A and C). In 

the presence of 300 nM BD-1063, 10 µM ononetin and 10 µM PS, the normalised 

frequency went down to 0.45 ± 0.07, which is lower than in 300 nM BD-1063 only 

(p = 0.0125, n = 8). This would suggest that blocking σ1 receptors with BD-1063 

does not prevent the PS-mediated reduction in GABA release when TRPM3 

receptors are blocked with ononetin. The reduction in normalised IPSC frequency 

in the presence of 300 nM BD-1063, ononetin and PS was similar to that achieved 

by PS and ononetin only (0.40 ± 0.12 relative to control), which can mean one of 

two things: the concentration of BD-1063 may be too low to block σ1 receptors in 

the presynaptic membrane, or the receptors are blocked but PS modulates a 

different receptor to reduce GABA release.  
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 Figure 5.18 – BD-1063 does not block the presynaptic effect of PS. 

A-B. Representative traces showing the effect of low (300 nM; A) and high (10 µM; B) 

concentrations of BD-1063 on IPSC frequency and amplitude (second trace from the left) and 

BD-1063 co-applied with PS (10 µM) and ononetin (10 µM) (second trace from the right). C-D. 

The bar charts show the effect of 300 nM (blue) and 10 µM (orange) BD-1063 on the frequency 

(C) and peak amplitude (D) of IPSCs with and without PS and ononetin. Data are normalised to 

control and expressed as mean ± SEM (n = 6-8). ns denotes not statistically significant, * p < 

0.05. 

Consequently, BD-1063 was applied at 10 µM to examine if this would prevent 

the PS-induced reduction in GABA release in the presence of ononetin. The 

frequency of IPSCs did not go down significantly relative to baseline in the 
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frequency was reduced to 0.17 ± 0.03, which was significantly lower than in 10 

µM BD-1063 only (p = 0.0271, n = 6). This reduction in IPSC frequency suggests 

it is unlikely that PS reduces GABA release by acting as an agonist at presynaptic 

σ1 receptors.  

BD-1063 caused some inhibition of IPSC amplitudes at 10 µM (0.70 ± 0.12 of 

control, p = 0.0361, n = 6) but not at 300 nM (0.83 ± 0.08 of control; p = 0.0622, 

n = 8), which confirms that BD-1063 is less selective at higher concentrations 

(Fig. 5.18D). Compared to IPSC amplitudes measured in 300 nM BD-1063, IPSC 

amplitudes were lower when ononetin and PS were also applied (0.52 ± 0.05 of 

control; p = 0.0174, n = 8). PS did not add to the inhibition by 10 µM BD-1063, as 

amplitudes were 0.64 ± 0.13 of control in PS, ononetin and BD-1063 (p = 0.7014, 

n = 6).  

5.2.7. PS does not reduce GABA release by negatively modulating Nav 

channels 

A plausible explanation for the inhibitory effect of PS on GABA release when 

TRPM3 channels are blocked, could be that PS inhibits voltage-gated sodium 

channels in the presynaptic membrane. PS has previously been shown to act as 

an inhibitor at Navs at concentrations between 3 and 100 µM (Horishita et al., 

2012). To test this hypothesis, neurones were kept in 500 nM TTX and 10 µM 

ononetin, the latter of which had already been shown not to have an effect on the 

baseline frequency of IPSCs (Fig. 5.16C). PS (10 µM) was then applied to 

determine if the frequency was still reduced when Navs and TRPM3 are blocked 

(Fig. 5.19).  

The mIPSC frequency went down to 0.65 ± 0.11 of control (TTX and ononetin) 

when PS was applied (p = 0.0314, n = 7), indicative of PS reducing GABA release 

and thus mIPSC frequency when Navs were blocked (Fig. 5.19A and B). This 

demonstrates that PS does not reduce GABA release by causing less presynaptic 

AP firing. The mIPSC amplitude was also diminished in 10 µM PS, the fractional 

response being 0.68 ± 0.04 of the average amplitude in TTX and ononetin (p = 

0.0012, n = 7). This is surprising, as 10 µM PS did not reduce the mIPSC 
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amplitude in TTX only (Fig. 5.9E). However, this may also show that the direct 

modulatory effect of PS on postsynaptic GABAARs is only visible when TRPM3 

receptors are blocked, i.e. when the frequency of IPSCs is not increased by PS.  

 

Figure 5.19 – TTX does not block the presynaptic effect of PS. 

A. Representative traces showing that applying PS (10 µM; middle trace) leads to a reduction in 

the frequency of IPSCs when TTX (500 nM) and ononetin (10 µM) are present. B-C. The bar 

charts show the effects of PS on mIPSC frequency (B) and amplitude (C) in the presence of TTX 

and ononetin. Data are normalised to control (TTX + ononetin) and expressed as mean ± SEM 

(n = 7), * p < 0.05, ** p < 0.01. 
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5.2.8. PS reduces GABA release from the presynaptic membrane by 

potentiating Kir2 channels 

It has previously been described that PS can potentiate inwardly-rectifying K+ 

channels. In particular, the homomeric Kir2.3 channel and Kir2.3-containing 

heteromeric channels are greatly potentiated by PS in the micromolar range 

(Kobayashi et al., 2009). Although inwardly-rectifying K+ channels pass more 

current in the inward than the outward direction, inward movement does not occur 

physiologically. Nevertheless, application of PS at potentials positive to the Kir2.3 

channel’s equilibrium potential could potentiate an outward K+ current, which 

would lead to hyperpolarisation of presynaptic terminals. Indeed, activation of the 

Kir2.3 channel has previously been shown to produce membrane 

hyperpolarisation (Liu et al., 2002).  

Ba2+ is an effective blocker of Kir channels (Dascal et al., 1993; Tanemoto et al., 

2002; Kobayashi et al., 2009), and produces a full block of Kir2.3 currents at 3 

mM (Kobayashi et al., 2009). To determine if PS potentiates Kir2.3 channels (or 

another Kir channel not previously found to be modulated by PS) to reduce 

synaptic GABA release, PS was applied with 3 mM Ba2+ and 10 µM ononetin. If 

the observed reduction in IPSC frequency upon TRPM3 block is removed when 

Ba2+ is present, this would imply that PS modulates an inwardly-rectifying K+ 

channel in the presynaptic membrane.  

To test this hypothesis, neurones were first exposed to 3 mM Ba2+ to determine 

the effect of this blocker on baseline activity, then Ba2+ was co-applied with 10 

µM ononetin and 10 µM PS. Applying Ba2+ alone produced a large increase in 

the frequency of IPSCs compared to baseline activity (14.29 ± 3.72-fold; p = 

0.0078, n = 7; Fig. 5.20A and B). Interestingly, the IPSC frequency did not change 

greatly when Ba2+ was co-applied with ononetin and PS, the fold increase being 

20.84 ± 6.26 (p = 0.1801, n = 7). This finding supports a role for Kir2.3 currents 

in mediating the PS-induced decrease in GABA release.  

IPSC amplitudes decreased to 0.62 ± 0.08 of control in Ba2+ (p = 0.0104, n = 7). 

When PS and ononetin were applied, this was further reduced to 0.34 ± 0.05, 
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which is significantly lower than in Ba2+ only (p = 0.0022, n = 7). This again 

suggests that PS directly modulates postsynaptic GABAA receptors to decrease 

IPSC amplitudes when the presynaptic effect of PS is absent.  

 

Figure 5.20 – Presynaptic effects of PS are blocked by ononetin and Ba2+. 

A. Representative traces showing the effect of 3 mM Ba2+ (second from the left) and Ba2+ co-

applied with ononetin and PS (both 10 µM; second from the right) on IPSC frequency and peak 

amplitude. B-C. The bar charts demonstrate the effects of Ba2+ and Ba2+ with PS and ononetin on 

the frequency (B) and peak amplitude (C) of IPSCs in hippocampal neurones. Data are 

normalised to control and expressed as mean ± SEM (n = 6). ns denotes not statistically 

significant, ** p < 0.01. 
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Ba2+ could be reproduced using ML133 as a Kir2 channel blocker, neurones were 

kept in 10 µM ononetin throughout the experiment, and 100 µM ML133 was 

applied to assess whether it affected the baseline activity. ML133 was then co-

applied with 10 µM ononetin and 10 µM PS to determine if the frequency of IPSCs 

is reduced by PS in the presence of ML133.  

ML133 produced a large increase in the frequency of IPSCs (12.74 ± 1.79-fold) 

compared to the ononetin control (p = 0.0013, n = 8; Fig. 5.21A and B). When 

ononetin, ML133 and PS were co-applied, the fold increase in IPSC frequency 

was 11.88 ± 1.92, which was only slightly lower than the frequency in the 

presence of ononetin and ML133 (p = 0.0161, p = 8). A much larger reduction in 

IPSC frequency would have been expected if ML133 did not block the presynaptic 

target of PS that mediates the decrease in GABA release. Therefore, these 

results suggest that PS is likely to decrease GABA release from the presynaptic 

terminal by potentiating Kir2 channels, most probably the Kir2.3 channel. This 

effect is only visible when the TRPM3 receptor is blocked.  

IPSC amplitudes in the presence of ML133 were 0.81 ± 0.14 compared to the 

ononetin control (p = 0.1151, n = 8; Fig. 5.21C). The peak amplitude was reduced 

further by PS, as the mean IPSC amplitude in the presence of PS, ML133 and 

ononetin was 0.68 ± 0.12 (p = 0.0003, n = 8), again suggesting that the 

postsynaptic effect of PS might be more clear when its presynaptic targets are 

blocked.  

To determine if PS increases the rate of IPSC decay when TRPM3 and Kir2.3 

channels are blocked (and the effect of PS on IPSC frequency removed), τw was 

calculated in the presence of ML133 and ononetin with and without PS. In ML133 

and ononetin, τw was 19.4 ± 1.7 ms. When PS was added, this went down to 16.1 

± 0.9 ms, representing a reduction of 19.3 ± 1.6% in the presence of PS (p = 

0.0069, n = 7; data not shown). 
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Figure 5.21 – Ononetin and ML133 block the presynaptic effects of PS. 

A. Representative traces showing the effect of ML133 (100 µM; second trace from the left) and 

ML133 co-applied with PS (10 µM; second trace from the right) on the frequency and peak 

amplitude of IPSCs in the presence of ononetin (10 µM). B-C. The bar charts show the effects of 

ML133 and ML133 with PS on the frequency (C) and peak amplitude (D) of IPSCs in the presence 

of ononetin. Data are normalised to control (ononetin only) and expressed as mean ± SEM, * p < 

0.05, *** p < 0.001. 
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5.2.9. PS increases presynaptic GABA release also in CNQX and AP5 

Other studies have reported that PS acts to reduce GABA release in hippocampal 

neurones (Teschemacher et al., 1997; Mtchedlishvili and Kapur, 2003), whereas 

this work shows that PS increases GABA release by activating presynaptic 

TRPM3 receptors. Only when TRPM3 receptors are blocked, does PS reduce 

GABA release by potentiating Kir2 channels. Similar to the present study, 

Mtchedlishvili and Kapur (2003) used E18 hippocampal neurones after 2-3 weeks 

in culture. However, they used PS at concentrations between 10 and 30 nM, far 

lower than the concentration of PS used here for studying the presynaptic effect 

of PS. At lower concentrations, 30 nM PS was found to have no effect on 

presynaptic GABA release as the frequency of IPSCs did not change from 

baseline (Fig. 5.5A). By contrast, Teschemacher et al. (1997) used older animals 

(postnatal day 1 + 3-9 weeks in culture) and higher concentrations of PS (1-50 

µM), but still reported a reduction in GABA release. What these two studies have 

in common, is that instead of using kynurenic acid to block glutamatergic 

transmission, they used 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and (2R)-

amino-5-phosphonovaleric acid (AP5). Consequently, whether these compounds 

can influence whether PS increases or decreases GABA release from the 

synaptic terminal was investigated. CNQX is considered a less suitable blocker 

of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors due 

to its partial agonist activity at AMPA receptors co-expressed with 

transmembrane AMPA receptor regulatory proteins (TARPs) (Menuz et al., 

2007). This partial agonist activity of CNQX is associated with increased GABA 

release (Brickley et al., 2001).  

CNQX (5 µM) and AP5 (10 µM) were added to the Krebs solution instead of 

kynurenic acid, and PS (10 µM) was applied to assess its effect on the frequency 

of IPSCs (Fig. 5.22A and B). The frequency of IPSCs was still increased by PS, 

and the increase relative to control was up to 27.18 ± 14.19-fold (p = 0.0250, n = 

6). This confirms that the glutamatergic blockers do not interact with the 

presynaptic targets of PS. The fold increase in IPSC frequency in the presence 

of 10 µM PS in 1 mM kynurenic acid was 12.93 ± 4.11, which was not significantly 

different from the frequency in CNQX and AP5 (p = 0.4259, n = 6-8; Fig. 5.22C). 
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In conclusion, the choice of glutamate receptor blocker does not affect the 

outcome of the experiments investigating the effect of PS on GABAergic 

transmission in hippocampal neurones.  

 

Figure 5.22 – PS increases the frequency of IPSCs in CNQX and AP5. 

A. Representative traces showing how the frequency of IPSCs is increased by 10 µM PS when 

glutamatergic transmission is blocked by 5 µM CNQX and 10 µM AP5. B. The bar chart shows 

the increase in IPSC frequency caused by PS in the presence of CNQX and AP5 (n = 6). C. The 

bar chart shows the increase in IPSC frequency caused by 10 µM PS in 1 mM kynurenic acid or 

CNQX with AP5. Data are normalised to control and expressed as mean ± SEM (n = 6-8). ns 

denotes not statistically significant, * p < 0.05. 
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5.2.10. Can PS inhibit tonic GABAA receptor currents? 

As discussed in Chapter 3, PS can inhibit receptors containing the GABAAR δ 

subunit in HEK cells when GABA is present at a low concentration (100 nM). 

These are receptors that typically reside outside the synapse in neurones, and 

generate a tonic GABA current (Farrant and Nusser, 2005). The ability of PS to 

inhibit 100 nM GABA currents in HEK cells suggests that the steroid should also 

be able to inhibit neuronal tonic GABA currents. However, the increase in GABA 

release that is induced by the presynaptic action of PS at TRPM3 receptors might 

confound this by increasing tonic current instead.  

To investigate whether PS can inhibit tonic GABA currents, hippocampal 

neurones were exposed to PS for up to 30 s at concentrations ranging between 

0.01 and 100 μM. Bicuculline (50 μM; BIC) was used to block the tonic current 

and enable its amplitude to be determined.  

PS did not have any effect at 1 μM or lower concentrations (results not shown). 

At 10-100 μM, the effects of PS were mixed. In some cells (n = 4/8), the frequency 

of IPSCs went up immediately, which also led to an increase in tonic current (Fig. 

5.23B). In other cells (n = 4/8), PS depressed the tonic current, but upon wash-

out, presynaptic GABA release went up, causing an increase in the tonic current 

(Fig. 5.23A). Surprisingly, 100 μM PS was found to add to the block induced by 

50 μM BIC when the two antagonists were co-applied. This suggests that PS acts 

at a postsynaptic target that is not a GABAA receptor, as all GABAA receptor 

currents should be blocked by 50 μM BIC (Krishek et al., 1996a). This also fits 

with the observations that PS can cause a greater block (or outward current) than 

PTX (see section 3.2.7.) and produce an outward current in untransfected HEK 

cells (section 3.2.8.). Although 100 μM PS appears capable of blocking the tonic 

GABA current and ablating IPSCs, it is likely that PS will mainly cause increased 

GABA release and hence an increase in the tonic current at lower concentrations. 

It is therefore unlikely to inhibit tonic GABA currents under physiological 

conditions.  
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Figure 5.23 – The effect of PS on tonic GABA currents. 

A. Traces showing the inhibitory response of a hippocampal neurone tonic GABA current to 10 

and 100 μM PS, inhibition by 50 μM BIC and the additive inhibition caused by PS and BIC. B. 

Traces showing the increase in GABA release and tonic current in response to 10 μM PS and 

upon wash-out of 100 μM PS, and inhibition of the tonic GABA current by 50 μM BIC.   
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5.2.11. The presynaptic channel blockers used in this study do not modulate 

GABAA receptors in HEK cells 

Not all of the blockers used in these experiments to determine how PS affects 

GABA release have been fully characterised and screened for activity at GABAA 

receptors. Therefore, whole-cell electrophysiology was carried out in HEK cells 

to determine if these compounds modulated the GABA EC50 (10 µM) response 

of recombinant α1β2γ2L receptors (Fig. 5.24). GABA was applied at EC50 so that 

the compounds may cause both potentiation and inhibition of the currents. Both 

peak and steady-state state currents at 10 s were measured. For the peak 

currents, all measured responses were within 100 ± 10% of the control GABA 

response (Fig. 5.24A). Steady-state current responses were also similar to the 

control response (100 ± 10%), except in the presence of 10 µM MFA which was 

122.2 ± 11.3% of the control response (Fig. 5.24B). This suggests that MFA 

modulates the decay phase of the whole-cell GABA current, possibly by affecting 

the desensitisation kinetics of the receptor.  
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Figure 5.24 – The effect of the pharmacological agents on GABA whole-cell 

currents in HEK cells. 

ML133, ononetin, BD-1063, haloperidol and MFA at the concentrations shown (and used 

previously in this study) have no effect on peak (A) and steady-state currents (B) in HEK cells. 

Data were normalised to the GABA EC50 response and are expressed as mean ± SEM (n = 4).  
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5.3. Discussion 

This chapter has explored the modulation of GABAergic transmission by PS in 

hippocampal neurones in culture. PS inhibited whole-cell GABA currents in a 

concentration-dependent manner, with the concentration-response curve shifted 

to the right compared to inhibition of recombinant αβγ/δ receptors expressed in 

HEK cells. At synaptic level, PS had a concentration-dependent effect on GABA 

release, with the frequency of IPSCs increasing at 1 μM and higher 

concentrations of PS. Inhibition of IPSC amplitudes was not concentration-

dependent, the mean amplitudes being reduced by 30-40% at 1-10 μM PS, an 

effect that might be due to an increased frequency of IPSCs of smaller amplitude. 

PS did however seem to directly modulate postsynaptic GABAA receptors, as the 

rate of IPSC decay was increased in a concentration-dependent manner, an 

effect that was also present in TTX.  

The increase in GABA release was also apparent when PS was applied in the 

presence of TTX, showing that the effect was AP-independent and unlikely to 

depend on neural network activity. The presynaptic mechanism by which PS 

increases GABA release is likely to be via the activation of cationic TRPM3 

receptors located in the presynaptic membrane. Interestingly, blocking this 

receptor reversed the action of PS with the IPSC frequency now reduced below 

baseline activity. The use of Kir channel blockers implicated the role of Kir2 

channels in downregulating GABA release, an effect that was only evident when 

TRPM3 receptors were blocked. Although PS is considered an antagonist of 

GABAA receptors, this study has shown that the steroid might potentiate 

GABAergic transmission under physiological conditions, as PS increased the 

inhibitory charge transfer in hippocampal neurones in a concentration-dependent 

manner.  

5.3.1. PS increases neurotransmitter release in hippocampal neurones 

The most prominent effect of PS in hippocampal neurones was to increase GABA 

release. Despite previous studies having reported a decrease in GABA release 
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mediated by PS in hippocampal neurones (Teschemacher et al., 1997; 

Mtchedlishvili and Kapur, 2003), PS has also been reported to increase 

neurotransmitter release via different mechanisms in the hippocampus and other 

regions of the brain. In hippocampal slices from rats, PS has been shown to 

increase glutamate release by potentiating presynaptic GluN2D-containing 

NMDA receptors (Mameli, 2005). This effect could not be observed in rats older 

than postnatal day 5, and it was thought to be involved in long-term enhancement 

of AMPA receptor function and synaptic strengthening in development. 

Interestingly, this study showed that PS or a PS-like compound can be released 

from the postsynaptic membrane upon depolarisation, and that the effect of this 

depolarisation could be blocked by an anti-PS antibody scavenger. This was the 

first study to suggest that PS can act like a retrograde messenger that is released 

in an activity-dependent manner. Moreover, the effect of postsynaptic neurone 

depolarisation could be mimicked by applying 17 μM PS exogenously. This 

finding indicates that ambient levels of PS can exist at micromolar concentrations, 

sufficient for direct modulation of GABAA receptors.  

In a later study, PS (25 μM) was found to induce a 30-fold increase in the 

frequency of AMPA receptor-mediated miniature excitatory postsynaptic currents 

(mEPSCs) in cerebellar Purkinje cells in acute cerebellar slices from neonatal 

rats (Zamudio-Bulcock and Valenzuela, 2011). The frequency of GABA-mediated 

mIPSCs was also increased in cerebellar Purkinje cells, but to a lesser extent (< 

2-fold) than the mEPSCs. The increase in glutamate release onto neonatal 

Purkinje cells was later shown to be mediated by presynaptic TRPM3 receptors, 

as the effect was mimicked by TRPM3 receptor agonists nifedipine and 

epipregnanolone sulphate, and blocked by MFA (GABA release was not 

investigated further) (Zamudio-Bulcock et al. 2011). PS has also been found to 

increase glutamate release onto acutely isolated dentate gyrus hilar neurones via 

a Ca2+-induced Ca2+ release mechanism involving a presynaptic TRP channel 

and intracellular ryanodine receptors (Lee et al., 2010). These three studies 

demonstrate that TRPM3 channels, and possibly other members of the TRP 

family, are likely to have a role in modulating neurotransmitter release in various 

parts of the brain, and corroborates the hypothesis that PS can act to increase 

GABA release via these receptors in hippocampal neurones. High expression 
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levels of TRPM3 mRNA has been shown with in situ hybridisation and 

quantitative PCR studies in mouse  and human brain, including the basal ganglia, 

cerebellum, forebrain and hippocampus (Fonfria et al., 2006; Kunert-Keil et al., 

2006; Hawrylycz et al., 2012), and may thus exist in inhibitory terminals. It would 

be interesting to further establish the role of TRPM3 in regulating GABA release 

by chelating intracellular Ca2+ with BAPTA-AM to determine if Ca2+-induced Ca2+ 

release is also involved. Immunocytochemistry can also be used to co-localise 

TRPM3 receptors with synaptic markers like glutamate decarboxylase 65 

(GAD65). However, the lack of commercially available high-quality anti-TRPM3 

antibodies has made this difficult. It would also be interesting to investigate 

whether the frequency of GABA-mediated IPSCs can be increased in response 

to CA1 pyramidal cell depolarisation-induced PS release in hippocampal slices, 

as described for EPSCs (Mameli, 2005).   

It is uncertain why studies by others have found that PS reduces GABA release 

from hippocampal neurones (Teschemacher et al., 1997; Mtchedlishvili and 

Kapur, 2003). The IPSC frequency went up almost 30-fold when CNQX and AP5 

were used as blockers of glutamatergic transmission instead of kynurenic acid, 

showing that the use of particular glutamate receptor blockers did not affect the 

action of PS, despite this being the clearest difference between the experimental 

protocols used in the present study and that by Mtchedlishvili and Kapur (2003) 

and Teschemacher at al. 1997. The reason for this discrepancy therefore remains 

unclear. 

A surprising result was that IPSC frequency was reduced by 50% by 10 μM PS 

when TRPM3 receptors were blocked by ononetin. Although PS has been shown 

to potentiate Kir2.3 channel currents in Xenopus oocytes (Kobayashi et al., 2009), 

the channel has not previously been shown to be involved in regulating 

neurotransmitter release. The blockers used in the present study are not specific 

for Kir2.3: Ba2+ shows antagonist activity at an array of inwardly-rectifying K+ 

channels (for extensive list, see http://www.guidetopharmacology.org/GRAC), 

whereas ML133 is also active at other members of the Kir2 family (Wang et al. 

2011; Wu et al. 2010).  However, this evidence for modulation of a Kir2 channel 

together with the previously described role of PS in modulating Kir2.3 channels 

(Kobayashi et al., 2009), a new role for Kir2.3-containing channels in regulating 
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neurotransmitter release in response to PS may therefore have been identified. 

Kir2 channels are widely expressed in neurones but not in glia, and are expressed 

throughout the brain (Prüss et al., 2005). Immunohistochemical studies have 

demonstrated that Kir2.3 shows high levels of expression in the olfactory bulb, 

basal ganglia, cortex, cerebellar Purkinje cells and the dentate gyrus, and shows 

moderate levels of expression in CA1 and CA2 neurones of the hippocampus. In 

situ hybridisation also confirms the presence of Kir2.3 mRNA in the hippocampus 

(Hawrylycz et al., 2012). To further explore the potential role of Kir2.3 in regulating 

GABA release at inhibitory terminals, immunocytochemical staining needs to be 

performed to confirm the channel’s presence in the presynaptic membrane.    

5.3.2. Evidence for direct modulation of native GABAA receptors by PS 

Whereas PS mediated clear concentration-dependent inhibition of whole-cell 

steady-state GABA currents in HEK cells and neurones, no concentration-

dependent inhibition of GABA-mediated IPSC amplitudes was observed. The 

average IPSC amplitude was reduced by 30-40% at 1, 3 and 10 μM PS, which 

suggests that the reduction in amplitude may not be due to direct modulation of 

postsynaptic GABAA receptors. Previous studies have also suggested that PS 

does not affect the peak amplitude of GABA-induced IPSCs (Teschemacher et 

al., 1997; Mtchedlishvili and Kapur, 2003; Haage et al., 2005). The large increase 

in the frequency of IPSCs in the presence of PS also makes it difficult to interpret 

effects of PS on amplitude. The histograms show that a larger number of IPSCs 

of smaller peak amplitudes are present in PS than in control, and that larger 

events are absent at a high concentration (10 μM) of PS as the data are best 

described by one rather than two Gaussian fits. Whether the presence of many 

smaller events and the absence of larger events demonstrate that PS is directly 

inhibiting the postsynaptic GABAA receptors, or if IPSCs of smaller amplitude 

reflect the large increase in GABA release, is uncertain.  Alternatively, the larger 

amplitude IPSCs may provide an increased opportunity for block by PS by virtue 

of their increased number of open channels/activated receptors. Direct inhibition 

of postsynaptic GABAARs may also have been revealed in the conditions where 

the presynaptic effects of PS were blocked, as inhibition of IPSC amplitudes by 
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PS was present when co-applied with ononetin and ML133 as well as Ba2+ and 

ononetin.  

PS reduced the decay time constant (τw) in a concentration-dependent manner, 

both for mIPSCs and sIPSCs. The decay time constant of mIPSCs was reduced 

by as much as 50% at 10 μM PS, which suggests that PS had a profound effect 

on the desensitisation/deactivation kinetics of the postsynaptic GABAA receptors. 

Given the activation-dependence and slow onset of PS inhibition of GABA whole-

cell currents in HEK cells, the condition of increased GABA release and spillover 

caused by the presynaptic action of PS might promote this type of inhibition by 

causing prolonged and repeated receptor activation. Although some studies have 

reported no effect of PS on the decay kinetics of IPSCs (Mtchedlishvili and Kapur, 

2003; Haage et al., 2005), PS can reduce the prolongation of decay induced by 

allopregnanolone in a concentration-dependent manner in neurones of the 

medial preoptic nucleus (Haage et al., 2005).  

At autaptic synapses formed by hippocampal neurones in culture, PS had a 

greater effect on both the peak amplitude and the decay of IPSCs when GABA 

release was elevated by using a high external concentration of Ca2+ (4 mM 

compared to 1 mM) (Eisenman et al., 2003). However, under conditions of 

elevated GABA release (4 mM external Ca2+), IPSCs were also found to decay 

55 ± 38% slower than in conditions of lower GABA release (1 mM external Ca2+), 

possibly due to the increased lifetime of GABA in the synaptic cleft when synaptic 

release is increased. This idea is consistent with the activity and open probability 

of GABAA receptors needing to be high for inhibition to occur. In the present 

study, PS did however also increase the rate of decay when the presynaptic 

effects of PS were blocked.  

5.3.3. Can PS inhibit tonic GABA currents? 

Although PS could inhibit simulated tonic GABA currents in HEK cells, it is less 

certain whether this will occur under physiological conditions in which PS 

increases synaptic GABA release. As elevated GABA release is likely to lead to 

increased spillover, PS may indirectly cause increased activation of extrasynaptic 
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GABAA receptors and thus potentiate rather than inhibit the tonic GABA current. 

In neurones from the medial preoptic nucleus, PS (10 μM) inhibited a baseline 

current evoked by 1 μM allopregnanolone, but did not cause a shift in the baseline 

when applied on its own (Haage et al., 2005). It should be noted that no 

appropriate control was made to check if a tonic GABA current was present.  

5.4. Conclusion 

This chapter has investigated the pharmacological action of PS on dissociated 

hippocampal neurones. It has been shown that although PS can inhibit GABA 

whole-cell currents in these neurones in a concentration-dependent manner, the 

level of inhibition of IPSC amplitudes was similar at 1,3 and 10 μM PS. On the 

other hand, PS caused a concentration-dependent increase in the presynaptic 

release of GABA, and hence IPSC frequency. This led to a high frequency of 

IPSCs of small amplitude, mediated by activation of the presynaptic TRPM3 

receptor. Upon block of the TRPM3 receptor, PS supressed GABA release, most 

likely by potentiating presynaptic Kir2.3-containing channels. Under conditions of 

increased synaptic activity, PS also increased the rate of IPSC decay, as the 

decay time constant τw was reduced for both mIPSCs and sIPSCs. This effect on 

the rate of decay was also present when the presynaptic effects of PS were 

blocked. Under these conditions, some inhibition of IPSC amplitudes by PS was 

also present. Furthermore, PS increased inhibitory charge transfer in 

hippocampal neurones in a concentration-dependent manner.  

  

Chapter 6: General discussion 

6.1. Discussion 

The main aims of this thesis were to characterise the mode of inhibition by PS at 

the GABAARs, determine whether PS exhibits GABAAR subtype selectivity in 
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recombinant expression systems and hippocampal neurones, probe potential 

binding sites for the inhibitory neurosteroid and establish its effects on fast 

GABAergic neurotransmission in hippocampal neurones.  

As discussed in Chapter 3, PS is a state-dependent negative allosteric modulator 

at GABAARs incorporating any of the α1-6 subunits, with the potency differing 

only marginally between different receptor subtypes. Although PS is a more 

potent inhibitor at higher agonist concentrations when the channel open 

probability is high (Eisenman et al., 2003), the block elicited by PS developed 

only slowly, suggesting it could be more effective at blocking tonically-active 

extrasynaptic receptors. Pre-applying PS prior to GABAAR activation in HEK cells 

did not increase GABA peak current inhibition by the steroid, indicating that 

inhibition occurs after the binding of and activation by GABA, a finding that is 

consistent with the block being state-dependent.  

In hippocampal pyramidal neurones, the most prominent effect of PS was on 

presynaptic GABA release (Fig. 6.1). PS caused an increase in GABA release by 

activating presynaptic TRPM3 channels, leading to increased influx of cations at 

the nerve terminal and subsequently, increased GABA release. Surprisingly, 

when TRPM3 was blocked with ononetin, the effect of PS on GABA release was 

reversed; the frequency of IPSCs fell below baseline, suggesting that PS acted 

at a different channel or receptor to reduce GABA release. This later effect was 

blocked by Kir2 channel blockers, Ba2+ and ML133, indicating that PS acts as a 

positive modulator at this channel, leading to increased K+ efflux and less GABA 

release. This Kir2 channel is most likely to be Kir2.3, as PS is known to be more 

potent at this channel than other members of the Kir2 subfamily (Kobayashi et 

al., 2009).  
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Figure 6.1 – Suggested effects of PS in a GABAergic synapse. 

The figure depicts how PS activates TRPM3 receptors to increase the flux of cations (Ca2+ and 

Na+) across the membrane of the presynaptic neurone, leading to membrane depolarisation and 

vesicular GABA release. PS also acts at a Kir2.x channel (most likely Kir2.3), letting K+ out of the 

cell. This effect is masked by TRPM3 activation; only upon block of TRPM3 does the efflux of K+ 

reduce GABA release to levels below baseline.  

Although the most prominent effect of PS at inhibitory synapses in cultured 

hippocampal neurones was to increase GABA release, evidence was also 

presented demonstrating that PS directly modulates postsynaptic GABAARs. In 

HEK cells expressing recombinant GABAARs, PS produced a slowly developing 

block that manifested as an increased apparent rate of desensitisation. Thus, it 

was not surprising to find that PS also increased the rate of IPSC decay in 

hippocampal neurones, both for mIPSCs and sIPSCs. However, although PS 

increased IPSC decay rates, the average inhibitory charge transfer was actually 

increased by PS due to its prominent presynaptic effect on increasing GABA 

release and thus IPSC frequency. Although the large increase in IPSC frequency 
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made it difficult to establish whether PS directly negatively modulated 

postsynaptic GABAARs, IPSC peak amplitudes were reduced when the 

presynaptic targets of PS were blocked with ononetin and ML133, suggesting 

that direct GABAAR inhibition was present. 

As removal of released GABA from the synapse is fast, the decay phase of IPSCs 

is dominated by ion channel closure (deactivation) that follows agonist 

dissociation from the receptor (Farrant and Nusser, 2005). This phase is also 

determined by the entry into and exit from agonist-bound desensitised states of 

the receptor. Furthermore, the decay kinetics also differ between different 

receptor subtypes, and differences in IPSC decay kinetics can be observed at 

different stages of development and in different cell types (Okada et al., 2000; 

Bacci et al., 2003; Ramadan et al., 2003). Assuming the receptor subtypes stay 

constant during the recordings, the rate of IPSC decay is likely to be influenced 

only by rates of deactivation and desensitisation in these hippocampal neurones. 

Although individual rate constants were not determined, the increase in the rate 

of IPSC decay that is observed when PS is applied is more likely to reflect an 

increase in the rate of desensitisation rather than deactivation, which is in accord 

with the increased apparent rate of desensitisation of GABA whole-cell currents 

that was observed in HEK cells. Furthermore, when the potency of PS was 

assessed in HEK cells expressing GABAARs that desensitised faster 

(α1β2γ2LV262F) or slower (α1β2L296Vγ2L) than wild-type α1β2γ2L, lower levels of 

inhibition were observed for the faster-desensitising mutant. This is interpreted 

as faster-desensitising receptors limiting the scope for inhibition by PS if it acts to 

promote entry of receptors into a desensitised state. Taken together, these 

findings suggest that PS may act by promoting entry of receptors into a 

desensitised state, or prevent exit from this state to the open state, thereby 

reducing the open probability for GABA channels.  

Due to the observation that inhibition by PS develops slowly and manifests as an 

increase in the apparent rate of GABAAR desensitisation in HEK cells, the 

possibility that PS might be more potent as an inhibitor of tonic GABA currents 

was considered. PS did inhibit a simulated tonic current using low GABA 

concentrations (100 nM; EC10) in HEK cells expressing α4β2δ, but was less 

potent than at higher GABA concentrations. In hippocampal neurones, the effect 
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of PS on the tonic current was mixed. Due to the increase in GABA release 

mediated by PS, the tonic current increased in most cells during PS exposure 

rather than decreased, possibly due to GABA overspill. In neurones where the 

tonic current was potentiated (e.g. by MFA; see Chapter 5, Fig. 5.15A), PS did 

however produce inhibition of the tonic current, demonstrating that there are 

conditions in which this may occur. Similarly, PS has been shown to abolish the 

increased tonic GABA current produced by allopregnanolone in neurones of the 

rat medial preoptic nucleus (Haage et al., 2005).  

Investigating the mode of inhibition by PS of recombinant GABAAR has provided 

an indication as to where this inhibitory neurosteroid might bind. Experiments with 

PTX showed that PS does not compete with the open-channel blocker for binding, 

making the ion channel an unlikely binding site for PS. Furthermore, inhibition by 

PS is only weakly voltage-dependent, a finding that has also been made by others 

(Majewska et al., 1988; Eisenman et al., 2003). As PS carries a negatively 

charged sulphate group, greater block would be expected at depolarised 

membrane potentials if the neurosteroid binds in the channel pore. The α1 

subunit 2’ residue (α1V256) situated near the intracellular end of the M2 helix is 

also, for these reasons, unlikely to be involved in the binding of PS, but appears 

to be an important signal transduction residue. The lack of GABAAR inhibition 

following application of PS through the intracellular solution demonstrates that 

the binding site can only be accessed from the extracellular side of the receptor. 

Taken together, the binding site for PS is likely to exist around the extracellular 

face of the receptor, and is largely unaffected by the membrane electric field.  

Experiments with recombinant β3 homomers and ρ1 chimeras showed that the 

binding site for PS is likely to exist on multiple subunits, including α1, β2, γ2 and 

ρ1. As PS is active at all recombinant αβγ/δ receptors studied in this project, 

incorporating any of the α1-6 subunits, it is likely that one or more binding site(s) 

for PS exist at all of the GABAAR subunits. This also corroborates the hypothesis 

that PS does not share a binding site with the potentiating neurosteroids, which 

only exists on the α subunits (Hosie et al., 2006, 2009).  

PS exhibits no appreciable diasteroselectivity in chick spinal cord and rat 

hippocampal neurones, as the steroid is almost equally active when the sulphate 
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group is in the 3α or 3β configuration (Park-Chung et al., 1999). The sulphate 

group is also not essential for inhibition, but does confer increased potency. In rat 

hippocampal neurones, PS shows little enantioselectivity (Nilsson et al., 1998). 

Enantioselectivity is often used as evidence for a specific ligand binding site at a 

receptor, and lack thereof can be indicative of indirect interactions between the 

ligand and the membrane (Akk et al., 2009; Seljeset et al., 2015). Sulphated 

steroids, including PS, increase the membrane capacitance of cells at a 

concentration range similar to that causing inhibition of GABAAR currents 

(Mennerick et al., 2008). In contrast, the potentiating neurosteroids, e.g. 

allopregnanolone, produce no change in membrane capacitance. Capacitive 

currents caused by PS do not show voltage-dependence, suggesting that PS 

alters the membrane capacitance without physical movement of the molecule 

through the electric field. Thus, sulphated steroids are likely to partition into the 

membrane without translocating across the lipid bilayer, likely with the sulphate 

group pointing outwards to the extracellular environment, possibly interacting with 

the polar head groups of lipid molecules.  

Lipid modulation of GABAARs is not a new concept. Docosahexaenoic acid (DHA) 

and other polyunsaturated fatty acids (PUFAs) have been shown to promote [3H]-

muscimol binding at GABAARs and increase the rate of desensitisation (Søgaard 

et al., 2006). Cholesterol depletion, which reduces lipid bilayer stiffness, was also 

shown to promote [3H]-muscimol binding at GABAARs (Søgaard et al., 2006), and 

enhanced the effect of PS, pregnenolone and alphaxalone in hippocampal 

neurones (Sooksawate and Simmonds, 2001). Cholesterol enrichment 

diminished the effect of these steroids on GABAAR function and might argue for 

cholesterol competing with neurosteroids at their binding sites. For other non-

steroidal potentiators, e.g. propofol and flunitrazepam, cholesterol depletion had 

no effect on their potency whilst enrichment increased it. Furthermore, 

hydrophobic anions and structurally diverse amphiphiles can act as non-

competitive antagonists at GABAARs, most probably by partitioning into the lipid 

membrane, and are, like PS, sensitive to the 2’ mutation α1V256S (Chisari et al., 

2010, 2011). Notably, these molecules also appear to increase the apparent rate 

of desensitisation in a manner similar to that by PS. The mechanisms behind this 

type of modulation of GABAAR function are not completely understood, but 
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changes in lipid bilayer elasticity have been implicated. Changes in membrane 

elasticity have however been shown to have no effect on GABAAR function, and 

were also originally hypothesised (erroneously) to underlie the anaesthetic action 

of GAs like pentobarbitone (Franks and Lieb, 1982). There is, however, still some 

uncertainty as to whether PS interacts with a chiral binding site at GABAARs, or 

if modulation occurs through non-specific interactions due to PS partitioning into 

the membrane.  

There is evidence to suggest that PS does interact with a binding site on 

GABAARs and other receptors. PS does not exclusively act as a negative 

modulator, as it negatively modulates NMDA receptors comprised of GluN1 with 

GluN2C or GluN2D subunits and conversely acts as a potentiator at those 

comprising GluN1 with GluN2A or GluN2B subunits (Malayev et al., 2002; Jang 

et al., 2004; Kostakis et al., 2011). Furthermore, potentiation of NMDA receptors 

by PS depends on their phosphorylation state, as it is reduced by kinase inhibitors 

and recovered by a PKA activator, arguing for direct interaction between the 

steroid and the receptor subunits (Petrovic et al., 2009). Some specificity in 

engaging with a binding site is also suggested from the structure-activity studies 

of PS at native GABAARs (Park-Chung et al., 1999; Seljeset et al., 2015). One 

could also argue that if membrane perturbation by PS is sufficient to cause 

inhibition of GABAARs, then some inhibition would also be present when PS is 

applied inside the cell, a feature that was not observed in this project. It is possible 

that PS-receptor interactions are not very specific, and PS could potentially 

access an intra-subunit binding site from within the lipid membrane.  

It is also conceivable that other lipid molecules might compete with PS for such 

a position in the lipid bilayer that could be adjacent to, or part of, the GABAA 

receptor. In this regard, the structural determination of the apo state of the GluCl 

channel in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) reveals close packing of several molecules of POPC around the 

transmembrane domain, particularly M1 and M3 (Althoff et al., 2014). POPC can 

compete with the partial agonist at GluCl, ivermectin. This therefore demonstrates 

that a lipophilic molecule (POPC) can partition into the plasma membrane, and 

act as an antagonist of a pLGIC (GluCl). A similar type of interaction may exist 

between PS and the mammalian GABAARs.  
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6.2. Remaining questions and future work 

6.2.1. Do TRPM3 and Kir2.3 exist in the terminals of hippocampal 

interneurones? 

In the present study, PS was found to increase GABA release by acting at TRPM3 

receptors located at the terminals of hippocampal interneurones. Upon block of 

TRPM3, PS reduced the frequency of IPSCs, most likely by acting as a positive 

modulator at Kir2.3-containing channels in the presynaptic membrane, causing a 

reduction in GABA release. To confirm that these receptors and channels exist in 

the presynaptic membrane of GABAergic neurones, immunocytochemistry would 

be helpful. To localise their presence to inhibitory synapses, antibodies for 

synaptic markers like the vesicular GABA transporter (vGAT) or the enzyme for 

synaptic synthesis of GABA, glutamic acid decarboxylase 65 (GAD65) (Kaufman 

et al., 1991), can be used. If the staining for these markers co-localised with 

similar staining for TRPM3 and Kir2.3, this would confirm their presence at 

presynaptic terminals. Alternatively, in situ hybridisation can also be performed 

to confirm the presence of TRPM3 and Kir2.3 mRNA, though this would only 

confirm that the respective cDNAs are transcribed, and not that the proteins are 

expressed in the presynaptic terminals. 

6.2.2. Determining the effect of PS on excitability in hippocampal neurones and 

other brain regions at different stages of development 

As demonstrated in Chapter 5, PS increased the rate of IPSC decay in cultured 

hippocampal neurones, demonstrating direct modulation of postsynaptic 

GABAARs. PS also caused a large increase in GABA release and IPSC 

frequency. As a result, charge transfer was increased, raising the question as to 

whether PS might act to reduce the excitability of hippocampal neurones rather 

than increase it, despite being considered a negative modulator of GABAARs. 

However, to unequivocally identify IPSCs, fast glutamatergic transmission was 

blocked by kynurenic acid. Knowing that PS can also positively modulate NMDA 

receptors (Kostakis et al., 2011), and increase glutamate release from 
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presynaptic terminals (Lee et al., 2010; Zamudio-Bulcock and Valenzuela, 2011; 

Zamudio-Bulcock et al., 2011), PS will under physiological conditions also 

increase excitatory glutamatergic transmission. In neonatal cerebellar Purkinje 

cells, 25 μM PS increased the frequency of AMPA receptor-mediated mEPSCs 

by ~30-fold, whereas the increase in GABAAR-mediated mIPSCs was less than 

2-fold (Zamudio-Bulcock and Valenzuela, 2011). This suggests that the overall 

effect of PS might be to increase the excitability of cerebellar Purkinje cells in 

neonatal rats. However, as Purkinje cells are GABAergic neurones (Najac and 

Raman, 2015), they will in turn release GABA, leading to inhibition.  

Whether PS acts to increase or decrease neuronal excitability will depend on the 

receptors present in the presynaptic terminal and the type of transmitter released, 

something that may differ between types of neurones, brain regions and stages 

of development. Previous studies suggest that PS is synthesised and released 

from postsynaptic membranes up until postnatal day 5 in hippocampal slice 

preparations, as anti-PS antibodies prevented the NMDA receptor-mediated 

increase in glutamate release during this period (Mameli, 2005; Mameli and 

Valenzuela, 2006). It may also be that the GluN2D-containing receptors in the 

presynaptic membrane that mediated the PS-induced increase in glutamate 

release are only expressed until postnatal day 5. As the gestation period for rats 

is about three weeks, the neurones used in the present study are older than those 

used by the Valenzuela group. In the present study, increased GABA release was 

mediated by TRPM3 channels, which have also been found to mediate PS-

induced GABA and glutamate release in the developing cerebellum (Zamudio-

Bulcock and Valenzuela, 2011; Zamudio-Bulcock et al., 2011).  

To further characterise differences between the effect of PS in different regions 

of the brain and stages of development, recordings could target different parts of 

the brain from animals of various ages. Furthermore, to determine if the overall 

effect of PS is to increase the excitability of the postsynaptic neurone, current 

clamp recordings can be performed under physiological conditions when neither 

fast GABAergic nor glutamatergic blockers are present to assess how PS affects 

the input-output relationship of the neurone. Although PS increased the mean 

inhibitory charge transfer in hippocampal neurones in the present study, the effect 
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of PS on glutamate release might result in a net increase in postsynaptic 

excitability in the absence of kynurenic acid.  

As TRPM3 is heat-sensitive, and increasing the temperature from room 

temperature to 37 °C has been shown to sensitise the channel to PS (Held et al., 

2015), it would be interesting to determine if increasing the ambient temperature 

during recordings can shift the concentration-response relationship of PS at 

TRPM3 to the left. If this is the case, a lower concentration of PS may induce 

GABA release in hippocampal neurones under physiological conditions, and an 

ever larger increase in IPSC frequency in response to 10 µM PS may be 

observed.  

6.2.3. Is PS synthesised and released from hippocampal neurones? 

Postsynaptic depolarisation can cause the retrograde release of PS in 

hippocampal slices from neonatal rats to increase AMPA receptor-mediated 

mEPSCs in CA1 pyramidal neurones during a restricted developmental period 

(Mameli, 2005). The increase in glutamate release was thought to be mediated 

by GluN2D-containing NMDA receptors in presynaptic terminals. In a later study, 

the frequency of EPSCs was shown to be increased in hippocampal slices 

following 5 min exposure to the sulphatase blocker DU-14 (Mameli and 

Valenzuela, 2006). This increase in EPSCs was prevented by an anti-PS 

antibody, and by blocking PS synthesis using aminogluthetimide to block the 

conversion of cholesterol into pregnenolone. It would be interesting to determine 

if pyramidal neurone depolarisation can also cause retrograde PS release that 

evokes GABA release via a TRPM3-dependent mechanism from hippocampal 

interneurones in slices, and whether this occurs during the same developmental 

time period (postnatal days 3-5).  

6.2.4. Determining whether PS-GABAAR interaction is specific and localising the 

PS binding site(s) 

One of the aims of this project was to localise the binding site for PS and the other 

inhibitory neurosteroids at GABAARs. The chimera approach using the ρ1 subunit 
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and other GABAAR subunits suggests that the potential binding site for PS is likely 

to exist in the transmembrane domain, but that ρ1 also contains this binding site. 

These chimera studies therefore do not exclude the possibility that PS interacts 

with the receptor via a binding site that is not very specific after partitioning into 

the membrane, as discussed in section 6.1.  

If insertion of PS into the lipid membrane is necessary for inhibition of GABAARs, 

it might be possible to manipulate this using surface charge screening. The 

rationale here is to prevent PS from binding to the membrane by increasing the 

screening of surface charge using increased extracellular concentrations of 

divalent cations (Hille, 1992). This may prevent PS from partitioning into the 

membrane, leaving relatively unaffected any effects caused by direct binding of 

PS to the receptor. It might then be possible to determine whether insertion into 

the membrane by PS is a necessary pre-requisite for it to inhibit GABAAR.  

As mentioned in section 6.1, POPC can partition into the membrane around the 

GluCl receptor and compete with the partial agonist ivermectin (Althoff et al., 

2014). Another line of enquiry would be to examine if POPC and related 

phosphocholines can prevent or reduce the inhibition of PS at GABAARs. 

As the enantioselectivity of PS at GABAARs has only been studied at native 

receptors in hippocampal neurones and the C. elegans UNC-49B/C receptor 

(Nilsson et al., 1998; Twede et al., 2007), the activity of the PS enantiomer should 

also be assessed at recombinant GABAARs in HEK cells. If PS is found to be 

enantioselective, this would increase the likelihood of PS interacting with a chiral 

binding site at GABAARs.   

Another line of enquiry to consider is whether PS binds to any binding sites that 

have been identified for other modulators with known pharmacological activity at 

the GABAA receptor. Binding sites of interest include intra- and an intersubunit 

modulatory sites for general anaesthetics (Nury et al., 2011; Corringer et al., 

2012; Sauguet et al., 2014), as described in Chapter 1, section 1.1.4. The 

intrasubunit binding pocket, first described in the Cys-loop receptor bacterial 

ortholog, GLIC (Nury et al., 2011), is found in the upper half of the transmembrane 

domain, forming a cavity that is accessible from the lipid bilayer. The intersubunit 
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binding cavity was identified when GluCl was crystallised in complex with 

ivermectin (Hibbs and Gouaux, 2011). This pocket is formed in the upper part of 

the transmembrane domain at each subunit interface, comprising residues from 

M2 and M3 of one subunit, and M1 from the adjacent subunit. These inter- and 

intrasubunit binding pockets may accommodate various ligands and modulators 

at pLGICs, including general anaesthetics and ivermectin (Mihic et al., 1997; Li 

et al., 2006; Nury et al., 2011). Some of the residues identified in the GLIC and 

the GluCl crystal structures could potentially contribute to accommodate PS in an 

inter- or intrasubunit binding site. This can be explored by performing docking 

studies with PS at the GABAA receptor at these cavities. This could tentatively 

identify residues that could be involved in the binding of PS. Their potential 

involvement can further be explored by site-directed mutagenesis of the identified 

residues. 

Another more challenging method that can be used to directly identify the binding 

site(s) for PS, is X-ray crystallography. If PS is co-crystallised with a GABAAR or 

another pLGIC, this could provide insight into which residue(s) contribute to the 

binding site(s) for the neurosteroid. This can then be further explored by using 

molecular biology and electrophysiological techniques.  

  



209 
 

References 

Abramian, A.M., Comenencia-Ortiz, E., Vithlani, M., Tretter, E.V., Sieghart, W., 

Davies, P.A., et al. (2010). Protein kinase C phosphorylation regulates membrane 

insertion of GABAA receptor subtypes that mediate tonic inhibition. J. Biol. Chem. 

285: 41795–805. 

Adams, J.M., Thomas, P., and Smart, T.G. (2015). Modulation of neurosteroid 

potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA 

receptors. Neuropharmacology 88: 63–73. 

Akk, G., Bracamontes, J., and Steinbach, J.H. (2001). Pregnenolone sulfate 

block of GABAA receptors: Mechanism and involvement of a residue in the M2 

region of the α subunit. J. Physiol. 532: 673–684. 

Akk, G., Covey, D.F., Evers, A.S., Steinbach, J.H., Zorumski, C.F., and 

Mennerick, S. (2007). Mechanisms of neurosteroid interactions with GABAA 

receptors. Pharmacol. Ther. 116: 35–57. 

Akk, G., Covey, D.F., Evers, A.S., Steinbach, J.H., Zorumski, C.F., and 

Mennerick, S. (2009). The influence of the membrane on neurosteroid actions at 

GABAA receptors. Psychoneuroendocrinology 34: S59–S66. 

Akk, G., Li, P., Bracamontes, J., Reichert, D.E., Covey, D.F., and Steinbach, J.H. 

(2008). Mutations of the GABAA receptor α1 subunit M1 domain reveal 

unexpected complexity for modulation by neuroactive steroids. Mol. Pharmacol. 

74: 614–627. 

Akk, G., Shu, H., Wang, C., Steinbach, J.H., Zorumski, C.F., Covey, D.F., et al. 

(2005). Neurosteroid access to the GABAA receptor. J. Neurosci. 25: 11605–

11613. 

Althoff, T., Hibbs, R.E., Banerjee, S., and Gouaux, E. (2014). X-ray structures of 

GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 



210 
 

512: 333–337. 

Andrews, P.R., and Johnston, G.A. (1979). GABA agonists and antagonists. 

Biochem. Pharmacol. 28: 2697–2702. 

Augustine, G.J., and Kasai, H. (2007). Bernard Katz, quantal transmitter release 

and the foundations of presynaptic physiology. J. Physiol. 578: 623–5. 

Bacci, A., Rudolph, U., Huguenard, J.R., and Prince, D.A. (2003). Major 

differences in inhibitory synaptic transmission onto two neocortical interneuron 

subclasses. J. Neurosci. 23: 9664–9674. 

Baker, C., Sturt, B.L., and Bamber, B.A. (2010). Multiple roles for the first 

transmembrane domain of GABAA receptor subunits in neurosteroid modulation 

and spontaneous channel activity. Neurosci. Lett. 473: 242–247. 

Bamber, B.A., Beg, A.A., Twyman, R.E., and Jorgensen, E.M. (1999). The 

Caenorhabditis elegans UNC-49 locus encodes multiple subunits of a 

heteromultimeric GABA receptor. J. Neurosci. 19: 5348–5359. 

Bamber, B.A., Richmond, J.E., Otto, J.F., and Jorgensen, E.M. (2005). The 

composition of the GABA receptor at the Caenorhabditis elegans neuromuscular 

junction. Br. J. Pharmacol. 144: 502–509. 

Bamber, B.A., Twyman, R.E., and Jorgensen, E.M. (2003). Pharmacological 

characterization of the homomeric and heteromeric UNC-49 GABA receptors in 

C. elegans. Br. J. Pharmacol. 138: 883–893. 

Barbour, B., and Häusser, M. (1997). Intersynaptic diffusion of neurotransmitter. 

Trends Neurosci. 20: 377–84. 

Baulieu, E.E. (1981). Steroid hormones in the brain: several mechanisms? In 

Steroid Hormone Regulation of the Brain, Elsevier, pp 3–14. 

Baulieu, E.E., and Robel, P. (1990). Neurosteroids: a new brain function? J. 

Steroid Biochem. Mol. Biol. 37: 395–403. 



211 
 

Bedford, F.K., Kittler, J.T., Muller, E., Thomas, P., Uren, J.M., Merlo, D., et al. 

(2001). GABAA receptor cell surface number and subunit stability are regulated 

by the ubiquitin-like protein Plic-1. Nat. Neurosci. 4: 908–916. 

Belelli, D., Casula, A., Ling, A., and Lambert, J.J. (2002). The influence of subunit 

composition on the interaction of neurosteroids with GABAA receptors. 

Neuropharmacology 43: 651–661. 

Belelli, D., Lambert, J.J., Peters, J.A., Wafford, K., and Whiting, P.J. (1997). The 

interaction of the general anesthetic etomidate with the γ-aminobutyric acid type 

A receptor is influenced by a single amino acid. Proc. Natl. Acad. Sci. U. S. A. 

94: 11031–11036. 

Belelli, D., Pistis, M., Peters, J.A., and Lambert, J.J. (1999). The interaction of 

general anaesthetics and neurosteroids with GABAA and glycine receptors. 

Neurochem. Int. 34: 447–452. 

Ben-Ari, Y., Khalilov, I., Kahle, K.T., and Cherubini, E. (2012). The GABA 

excitatory/inhibitory shift in brain maturation and neurological disorders. 

Neuroscientist 18: 467–486. 

Bernardi, F., Salvestroni, C., Casarosa, E., Nappi, R.E., Lanzone, A., Luisi, S., et 

al. (1998). Aging is associated with changes in allopregnanolone concentrations 

in brain, endocrine glands and serum in male rats. Eur. J. Endocrinol. 138: 316–

321. 

Bettler, B., Kaupmann, K., Mosbacher, J., and Gassmann, M. (2004). Molecular 

Structure and Physiological Functions of GABAB Receptors. Physiol. Rev. 84: 

835–867. 

Bianchi, M.T., and Macdonald, R.L. (2002). Slow phases of GABAA receptor 

desensitization: structural determinants and possible relevance for synaptic 

function. J. Physiol. 544: 3–18. 

Bocquet, N., Nury, H., Baaden, M., Poupon, C. Le, Changeux, J.-P., Delarue, M., 



212 
 

et al. (2009). X-ray structure of a pentameric ligand-gated ion channel in an 

apparently open conformation. Nature 457: 111–114. 

Bogdanov, Y., Michels, G., Armstrong-Gold, C., Haydon, P.G., Lindstrom, J., 

Pangalos, M., et al. (2006). Synaptic GABAA receptors are directly recruited from 

their extrasynaptic counterparts. EMBO J. 25: 4381–9. 

Bonnert, T.P., McKernan, R.M., Farrar, S., Bourdellès, B. le, Heavens, R.P., 

Smith, D.W., et al. (1999). θ, a novel gamma-aminobutyric acid type A receptor 

subunit. Proc. Natl. Acad. Sci. U. S. A. 96: 9891–6. 

Borda, T., Genaro, A.M., and Cremaschi, G. (1999). Haloperidol Effect on 

Intracellular Signals System Coupled to α1-Adrenergic Receptor in Rat Cerebral 

Frontal Cortex. Cell. Signal. 11: 293–300. 

Bormann, J., Hamill, O.P., and Sakmann, B. (1987). Mechanism of anion 

permeation through channels gated by glycine and γ-aminobutyric acid in mouse 

cultured spinal neurones. J. Physiol. 385: 243–286. 

Bowery, N.G., Bettler, B., Froestl, W., Gallagher, J.P., Marshall, F., Raiteri, M., et 

al. (2002). International Union of Pharmacology. XXXIII. Mammalian γ-

aminobutyric acidB receptors: structure and function. Pharmacol. Rev. 54: 247–

264. 

Bowery, N.G., and Smart, T.G. (2006). GABA and glycine as neurotransmitters: 

a brief history. Br. J. Pharmacol. 147: S109–S119. 

Bracamontes, J.R., Li, P., Akk, G., and Steinbach, J.H. (2012). A neurosteroid 

potentiation site can be moved among GABAA receptor subunits. J. Physiol. 590: 

5739–5747. 

Breitinger, H.-G., and Becker, C.-M. (2002). The inhibitory glycine receptor - 

simple views of a complicated channel. ChemBioChem 3: 1042–1052. 

Brejc, K., Dijk, W.J. van, Klaassen, R. V, Schuurmans, M., Oost, J. van Der, Smit, 



213 
 

A.B., et al. (2001). Crystal structure of an ACh-binding protein reveals the ligand-

binding domain of nicotinic receptors. Nature 411: 269–276. 

Brickley, S.G., Cull-Candy, S.G., and Farrant, M. (1996). Development of a tonic 

form of synaptic inhibition in rat cerebellar granule cells resulting from persistent 

activation of GABAA receptors. J. Physiol. 753–759. 

Brickley, S.G., Farrant, M., Swanson, G.T., and Cull-Candy, S.G. (2001). CNQX 

increases GABA-mediated synaptic transmission in the cerebellum by an 

AMPA/kainate receptor-independent mechanism. Neuropharmacology 41: 730–

736. 

Bright, D.P., Aller, M.I., and Brickley, S.G. (2007). Synaptic release generates a 

tonic GABAA receptor-mediated conductance that modulates burst precision in 

thalamic relay neurons. J. Neurosci. 27: 2560–2569. 

Bright, D.P., and Smart, T.G. (2013). Protein kinase C regulates tonic GABAA 

receptor-mediated inhibition in the hippocampus and thalamus. Eur. J. Neurosci. 

38: 3408–3423. 

Brown, N., Kerby, J., Bonnert, T.P., Whiting, P.J., and Wafford, K.A. (2002). 

Pharmacological characterization of a novel cell line expressing human α4β3δ 

GABAA receptors. Br. J. Pharmacol. 136: 965–974. 

Brünig, I., Scotti, E., Sidler, C., and Fritschy, J.-M. (2002). Intact sorting, targeting, 

and clustering of γ-aminobutyric acid A receptor subtypes in hippocampal 

neurons in vitro. J. Comp. Neurol. 443: 43–55. 

Castillo, J. Del, and Katz, B. (1954). Quantal components of the end-plate 

potential. J. Physiol. 124: 560–73. 

Chavas, J., and Marty, A. (2003). Coexistence of excitatory and inhibitory GABA 

synapses in the cerebellar interneuron network. J. Neurosci. 23: 2019–2031. 

Che Has, A.T., Absalom, N., Nieuwenhuijzen, P.S. van, Clarkson, A.N., Ahring, 



214 
 

P.K., and Chebib, M. (2016). Zolpidem is a potent stoichiometry-selective 

modulator of α1β3 GABAA receptors: evidence of a novel benzodiazepine site in 

the α1-α1 interface. Sci. Rep. 6: 1–12. 

Chen, L., and Sokabe, M. (2005). Presynaptic Modulation of Synaptic 

Transmission by Pregnenolone Sulfate as Studied by Optical Recordings. J. 

Neurophysiol. 94: 4131–4144. 

Chen, N.H., Reith, M.E.A., and Quick, M.W. (2004). Synaptic uptake and beyond: 

the sodium- and chloride-dependent neurotransmitter transporter family SLC6. 
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