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Abstract 

This thesis investigates human probabilistic judgment in complex real-world 

settings to identify processes underpinning biases across groups which relate to 

numerical frames and formats.  

Experiments are conducted replicating real-world environments and data to test 

judgment performance based on framing and format. Regardless of background skills 

and experience, people in professional and consumer contexts show a strong tendency 

to perceive the world from a linear perspective, interpreting information in concrete, 

absolute terms and making judgments based on seeking and applying linear functions. 

Whether predicting sales, selecting between financial products, or forecasting refugee 

camp data, people use minimal cues and systematically apply additive methods amidst 

non-linear trends and percentage points to yield linear estimates in both rich and sparse 

informational contexts. Depending on data variability and temporality, human 

rationality and choice may be significantly helped or hindered by informational framing 

and format.  

The findings deliver both theoretical and practical contributions. Across groups 

and individual differences, the effects of informational format and the tendency to 

linearly extrapolate are connected by the bias to perceive values in concrete terms and 

make sense of data by seeking simple referent points. People compare and combine 

referents using additive methods when inappropriate and adhere strongly to defaults 

when applied in complex numeric environments.   

The practical contribution involves a framing manipulation which shows that 

format biases (i.e., additive processing) and optimism (i.e., associated with 

intertemporal effects) can be counteracted in judgments involving percentages and 

exponential growth rates by using absolute formats and positioning defaults in future 

event context information. This framing manipulation was highly effective in improving 

loan choice and repayment judgments compared to information in standard finance 

industry formats. There is a strong potential to increase rationality using this data format 

manipulation in other financial settings and domains such as health behaviour change in 

which peoples’ erroneous interpretation of percentages and non-linear relations 

negatively impact choice and behaviours in both the short and long-term.   
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Chapter 1  

Introduction 

This chapter presents an overview of the thesis. Firstly, the main topic is 
introduced with a brief discussion of the motivation and rationale for the 
research. The key research interests and objectives are then explained alongside 
the scientific contributions and the outline of the scope of the thesis. This is 
followed by a description of the whole thesis structure, detailing the experiments 
undertaken within each chapter and an overview of the main findings.  

1.1   Research Motivation  

Throughout everyday life, we frequently form judgments based on numerical data 

which guide our behaviour in different contexts. These judgments range from simple 

selections with low trade-offs between choice alternatives, to critical decisions which 

can significantly impact future events. The effectiveness of such decisions depends on 

our ability to comprehend, interpret and act upon the numerical information made 

available to us at the point of judgment formation. Many judgments in non-expert 

contexts are fast and frugal with relatively low consequences. For example, deciding 

whether to make an impulse purchase based on a price promotion, choosing between 

scratch cards based on quick computation of the odds, or selecting a restaurant based on 

the best fish price per ounce. Biases and errors in numerical judgments such as these 

may not have particularly detrimental effects on future events. However, when people 

apply the same computational processes and numerical assumptions in more important 

choice situations involving future finance or health for example, the biases in 

computation of numeric information in the present can lead to estimates of future events 

which can have particularly deleterious effects.   

In consumer contexts, the effectiveness of numerical judgments depends on our 

interpretation of numerical and statistical information in a given situation and point in 

time which leads to payoffs that are realized in the near future. Depending on the 

context, various factors may interact with decision making capabilities to shape 

peoples’ judgments and use of numerical data which are independent of numerical skills 

or rationality in the mathematical sense. The underlying motives, interests, hopes, prior 

knowledge and beliefs of individual decision makers are thus important to how people 
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incorporate numerical data into judgments. Factors such as these may therefore be more 

influential to judgment and choice than the ability to accurately interpret information in 

a given data environment at any single point in time, or in isolation from wider factors.  

For example, the choice to use a high interest rate credit card to buy a holiday is 

likely to be driven by factors such as impulsivity and desirability which override 

rational financial judgment in the consumer context. Commercial and marketing sectors 

are effective in applying informational frames and manipulations which utilise human 

emotional responses such as trust and confidence. When activated in the decision 

making context, these factors are frequently shown to offset rational choice and 

behaviours. Decisions regarding personal finances and health rely upon peoples’ 

unaided judgment of the information made available to consumers by professional 

organisations and governing bodies. Therefore, depending on the motives of 

organisations and how individuals interpret and act upon the data made available, the 

favourability of future outcomes for individuals and groups can significantly vary. For 

example, signing a long-term financial agreement without fully understanding interest 

rates, or interpreting risk statistics as indicative of no need to pay into insurance 

schemes or visit a doctor are decisions which can significantly impact future health and 

wealth.  

Long-term probabilistic judgments such as these involve accurately interpreting 

initial values and comparatively evaluating data in the context of choice alternatives to 

‘cognitively model’ the likelihoods of different outcomes. In this sense, people are 

required to accurately extrapolate values into the future. The ability to accurately model 

temporal effects is therefore important to understanding how values change over time 

depending on the functional relations between different variables or the nature of cause 

and effect in a particular context. Long-term decisions involve the actualization of 

payoffs far into the future, or possibly never. Thus, the feedback which is more readily 

available on frequent, short term judgments and choices is less likely to be available for 

long-term decision making. Combined with the problems of interpreting and applying 

numerical information (in particular percentage and rate data), the absence of feedback 

on long-term probabilistic judgment is likely to contribute to the difficulty experienced 

in deciphering the most optimal choice and course of action. This is particularly 

relevant in contexts such as financial planning and health related judgment and 

behaviour.    
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In this sense, the lack of available feedback compounds the inability to 

‘cognitively model’ probable outcomes by weighting and extrapolating variables into 

the future. This effect may also interact with how values are discounted over time. For 

example, individuals who are less able to accurately extrapolate current states into 

future states may also be more inclined to discount at a higher rate, leading to more 

‘impulsive’ decision making. Conversely, individuals more capable or attuned to 

extrapolating current values into the future with greater accuracy may express lower 

discounting rates which could translate into more adaptive financial and health related 

choices and behaviours.  

The robustness of particular numerical biases in human probabilistic judgment is 

evident in the parallels between the judgmental tendencies of novice and expert decision 

makers. Trained professionals frequently make fast, heuristic judgments based on 

varied, complex numerical information which can have critical consequences and far 

reaching effects. Moreover, expert judgments are often formed under difficult 

conditions involving limited time and informational constraints. In contexts such as 

humanitarian aid, emergency services, military, finance, or natural disaster forecasting 

for example, professionals are depended upon to make highly accurate assessments of 

current events and forecasts of future outcomes. The findings in this thesis show 

however, that despite specialist domain knowledge and experience, there are judgmental 

biases and erroneous numerical processing strategies which characterise peoples’ 

judgments. The findings indicate the potentiality of hazardous outcomes in professional 

judgment domains, making it important to further examine the characteristics and 

strengths of expert decision processes to identify how best to apply specialist 

knowledge, and combine statistical model data with human intuition and insight.  

1.2   Research Objectives 

In sum, this thesis investigates the effects of numerical data on peoples’ ability to 

formulate effective judgments and choice when data is presented in different frames and 

formats. The key objectives are to investigate expert and non-expert judgment and 

choice in real-world decision domains to examine the robustness of biases and 

understand how levels of numerical skill and domain knowledge may impact judgment 

performance in different environments. Performance is tested under conditions of 

differing complexity and informational formats to identify parameters which effect 

rationality and facilitate or hinder human judgment.   
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The experiments conducted in this thesis seek to identify biases and limitations in 

probabilistic inference based on numerical information which effect human judgments 

across contexts and informational environments. To delineate the scope of this thesis, 

the objective is to examine the differential effects of numerical information on 

probabilistic estimates across data contexts and expertise levels. The professional 

contexts investigated in this thesis, namely the fields of retail and humanitarian aid, are 

domains also commonly analysed in traditional forecasting research. However, unlike 

traditional forecasting studies which often focus on the fitting of statistical models to 

data and human estimates, the experiments undertaken in this thesis are aimed at 

furthering the understanding of probabilistic judgment based on how people interact 

with data frames and formats in different contexts. The overall goal is thus one of 

practical application, involving ultimately how insights may be applied to systems and 

data formats to aid judgment and choice in both consumer and professional domains.  

Rather than comparing experts with novices per se, that aim is to examine 

performance among both groups to assess the robustness of biases involved in 

numerical probabilistic inference. As expected, the judgmental biases identified are so 

strong that experts are shown to exhibit them too. The commonalities in the judgmental 

processes observed among novice and professional populations is thus illustrative of the 

overarching biases and propensities which characterize human judgment processes and 

shape rationality where numeric computations are involved. The parallels in biases are 

indicative of inherent features in the formation of inferences which hold despite 

numerical skills, specialist training and domain knowledge. The findings contribute to 

our understanding of the underlying nature of human rationality and how cognitive 

processes interact with informational frames and formats in present-day digital and 

physical decision environments. The evidence provides implications for how we may 

optimise data environments for effective judgment and choice by manipulating frames 

and formats to promote effective cognitive adaptation to data for decision making in 

professional and novice contexts. 

Across many judgment environments involving statistical data, human decision 

processes are characterised by biases and cognitive limitations which yield judgments 

incongruent with probabilistic models of rationality. Although people are often shown 

to be ‘irrational’ in the mathematical sense, the ecological perspective suggests that 

peoples’ judgmental processes are in fact adapted to environmental demands, based on 

the development of effective and cognitively efficient heuristic strategies and ‘intuitive’ 
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judgment processes (e.g., Gigerenzer, 2008). However, an array of findings from 

various fields suggest that judgmental processes may not be adapted to particular tasks 

or environments. There are situations in which human judgments are shown to be 

particularly ineffective, even when specialist training and domain knowledge are 

involved. For example, in the context of financial forecasting (Önkal & Muradoǧlu, 

1994; Wilkie-Thomson, Onkal-Atay, & Pollock, 1997) and investment decision making 

(Newall & Love, 2015), experts are shown to make poor decisions based on inaccurate 

numerical estimates. In such cases, many experts’ judgments are shown to be no more 

accurate than those of inexperienced novices (Armstrong, 1980, 1991; Lawrence & 

O’Connor, 1993). 

 This suggests that there is a necessity to develop methods and formats of 

communicating information which are suited to the propensities and characteristics of 

human decision processes and the way in which numeric data is cognitive encoded of 

numerical data. Such an approach could be more beneficial than training people to form 

judgments in accordance with probability theory and statistical forecasting models. 

Throughout the following chapters, the findings from the domains of professional retail 

forecasting and humanitarian aid are applied to consumer judgment in an online 

financial choice environment. The results of the application to financial decision 

making successfully demonstrate the potential for using data frames and formats to 

improve judgment and choice based on enhancing the fit between data displays and 

peoples’ cognitive propensities in complex numeric judgment situations.   

1.3   Thesis Structure and Summary  

Chapter 2 delivers a review of the relevant background literature followed by the 

first of five experiments in chapter 3 in which forecasting performance is examined 

among professional retailers employed by a major UK Supermarket. Conducted in the 

forecasters’ every-day environment at the Supermarket’s headquarters, employees are 

assessed in their ability to forecast product sales following linear versus exponential 

trends when observed in absolute values versus percentage points. Findings delivered 

insights into peoples’ interpretation of non-linear growth functions and the formation of 

inferences based on applying additive versus multiplicative methods to different number 

formats. Employees showed a robust propensity to predict future sales by linearly 

extrapolating the trends based on the last two data points observed per trial. This 
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resulted in systematic under-forecasting (trend-damping) of increasing sales trends and 

over-forecasting (anti-damping) of decreasing trends.  

 In chapter 4 the analysis of probabilistic judgment in complex real-world 

environments is further explored. Experiment 2 assesses the forecasting performance of 

novices and professional humanitarian aid workers when forecasting refugee camp data. 

Despite domain knowledge and familiarity with the informational cues, aid workers’ 

predictions were no more accurate than those of novices, and both groups formed 

judgments by extracting and projecting trends linearly. Noise was shown to increase the 

tendency to linearly extrapolate and was predictive of forecasting error, particularly so 

among the aid workers. This suggests that professionals were more likely than novices 

to seek meaning in complexity, leading them to erroneously extract linear trends. 

Analysis of the effects of noise showed that when all observable cues trended in the 

same direction, both groups were more inclined to linearly project the target data 

congruently with the ‘common trend’. The tendency to seek and linearly extend the 

direction of congruous trends was associated with increased forecasting error, 

suggesting that regardless of causality, context information was incorporated to help 

guide judgment formation, thus acting to amplify the linear bias.  

In chapter 5, the effects of financial information frames and formats are examined 

using a randomized controlled trial. Experiment 3a compares traditional industry 

mortgage price comparison data formats with total mortgage costs presented in absolute 

values and framed over current versus future interest rates. The simultaneous 

presentation of the rate alternatives with a future rates default setting is shown to 

significantly increase the optimality of mortgage choices compared to traditional 

formats and the sequential disclosure of rata data with a current rates default.  

Experiment 3b furthers the examination of the framing effect identified in 

experiment 3a with the addition of a behavioural disclaimer designed to increase 

judgment effectiveness by raising the saliency of rate data and the financial implications 

of future rate variability. The disclaimer was shown have no additive impact on overall 

judgment effectiveness in either the control or the experimental conditions which 

suggested judgment performance could not be improved by simply prompting people to 

apply greater cognitive effort and attentional resources in the context of rate and 

percentage information. However, there was evidence that the disclaimer increased the 

propensity to make comparisons between rate frames based on changes in choice scores 

and proportions of choices made in the current and future rate frames. Behavioural 
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prompts may therefore be useful in judgment contexts in which cues or attributes are 

weighted more subjectively. For example, evaluative judgments involving choices 

between houses or cars could be improved by increasing the comparative analysis of 

certain attributes.  

In chapter 6, experiment 4 further explores the current versus future rate framing 

effect identified in experiment 3a and 3b in the context of monthly mortgage repayment 

judgments. The components of the effect are examined in two individual data 

disclosures to test the impact of a default manipulation on loan repayment decisions 

separately from the effect of a default with the addition of future rate context data. In 

condition 1 and 2, loan costs for repayment over the loan full term in current rates are 

disclosed alongside a default figure for the cost at a reduced loan term. In condition 2, 

the same information is presented, except with additional future rate context data. The 

added future rate information acts to heighten the saliency of the default figure and 

greatly increase the range between the minimum and maximum suggested repayment 

amounts.  

The manipulation in condition 1 was shown to significantly increase the monthly 

amount people chose to repay above the minimum suggested figure to clear the balance 

over the full term in current rates. In condition 2 however, the addition of the future rate 

data was shown to be more effective in generating higher repayment judgments. 

Combined with the tendency to arithmetically combine the minimum and maximum 

suggested amounts, the positioning of the default in highly salient future rate context 

information acted to increase the anchoring effect which resulted in more optimal 

(higher) monthly repayment judgments. Higher temporal preference and lower financial 

literacy scores were associated with the tendency to make smaller (less optimal) 

monthly repayment decisions and educational level interacted with the framing 

manipulations in both conditions. This suggests that utilising defaults and future event 

context disclosures may be useful in communicating intertemporal effects to reduce the 

harmful impact of format biases and optimistic tendencies in financial judgments among 

lower educational groups. 

The final chapter 7 provides a summary of the main results and contributions 

followed by an overall review and evaluation of the findings, including alternative 

perspectives and study limitations. This is proceeded by further research requirements 

and suggestions for practical applications and design, followed by final concluding 

comments.   
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Chapter 2  

Conceptual Background 

This chapter summarises findings relating to the theoretical underpinnings of 
human probabilistic judgment relevant to the biases identified within this thesis. 
Firstly, various themes and possible explanations are discussed for the biases and 
propensities in human probabilistic inference. This is followed by the main review 
which addresses the themes by discussing theory and findings relating to human 
biases associated with the framing and formatting of numerical information. In 
the first section of the review, perspectives on the tendency to assume linear 
relations and the importance of data format to probabilistic judgment are 
discussed. Bounded rationality vs. mathematical (optimization) models of human 
judgment are then explained, assessing the frequency hypothesis as an alternative 
rationale for linear prediction biases. Lastly, perspectives on reasoning in 
accordance with probability theory are evaluated, citing effects of noise as the 
source of irrationality.  

 

When forming decisions based on numerical information, the format and 

presentation of the data across settings and contexts can be very important to how it is 

interpreted and used in decision making. The framing and format of numerical data is 

shown to have a strong impact on how people evaluate options, judge risk and make 

choices across an array of professional and consumer judgment domains. The 

differences in interpretation can depend on peoples’ individual motives and 

expectations from a given judgment situation, combined with the computational 

methods employed to process numerical data. Thus, depending on the setting, the snap-

shot judgments and heuristic strategies we apply to on-the-spot choices can significantly 

impact our predictions, shaping future outcomes for better or worse.  

The area in which the quality of peoples’ choices and probabilistic decisions 

particularly suffer is where percentage and rate information is involved. This 

phenomenon is likely to stem from the tendency to assume that percentages can be 

treated in the same way as absolute values and thus added and subtracted arithmetically. 

This intuitive, ‘additive’ method of data processing is a plausible bias in human 

cognition because it short-cuts the time and effort necessary for more complex 

geometric operations. The tendency to process percentages and rates as absolute 

numbers also results in linear probabilistic estimates when on-the-spot numerical 
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computations are extrapolated into future values. Therefore, the propensity to interpret 

and predict events in the world around us in a linear fashion can shape both perceptions 

of the environment as well as determine actual outcomes. It also follows that a linear 

interpretation and prediction bias will increase peoples’ sensitivity to linear relations, 

heightening the inclination to seek and extract linear trends in noisier, more complex 

environments. For example, in the context of financial information, assuming linearity 

can lead to overly optimistic cost estimates by underestimating the exponential growth 

of compound interest. 

There are various possible explanations for why people are predisposed to assume 

liner relations in the world around them and to quantify event occurrences in absolute 

values. For example, applying a linear line of best fit in a complex, noisy environment 

provides an effective means of generating an estimate or choice when time, information 

or knowledge is limited or absent. Based on ecological perspectives, it is plausible to 

assume that the human mind is better equipped to rationalise in concrete terms using 

whole numbers rather than single point percentages with normalized base rates. This is 

because, pre-probability theory, people would have monitored and predicted events by 

observing them as and when they occurred, accruing data about the environment in 

frequency format through natural sampling.  

From an evolutionary perspective, people are considered to have evolved to 

rationalise using information in absolute terms. This suggests that the ability to 

physically compare and contrast information or choice alternatives is likely to be 

important to gaining the perspective necessary to derive meaning and value from data 

when making an estimate or selection. Hence, people find it easier to evaluate a 

potential option or data point when the context or surrounding information is richer, but 

also simplified and framed in absolute terms using concrete examples which correspond 

directly to the real world.  

The tendency to think and predict linearly is also likely to impact the way in 

which people interpret changes and variations in quantities of groups, objects and 

events. For example, people may be primed to seek and detect changes in event 

frequencies or populations by counting sample sizes rather than inferring proportional 

differences between subsets in the environment. This again is likely to stem from the 

propensity to monitor, collate and interpret data in absolute terms, based on counting 

and comparing frequencies using additive processing methods.  
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The downside of this bias means that people may be overly sensitive to random 

fluctuations in quantities and occurrences of events and interpret temporary fluctuations 

as being true changes in the environment. This possibility suggests that judgments 

based on concrete frequency counts and comparison of observable samples may restrict 

people’ ability to rationalise beyond the data in the immediate environment, or limit 

judgment abilities to low variance data, or non-complex domains. The ability to 

determine actual changes by detecting proportional differences would thus involve 

understanding and processing base rate information which is often shown to be a barrier 

to judgment performance. From this perspective, the tendency to think and predict 

linearly may also act to hinder judgmental processes by limiting the ability to integrate 

and interpret broader, more complex data. The linear bias could therefore contribute to 

problems in processing base rate information which is necessary for distinguishing 

between minor frequency fluctuations and actual large scale proportional shifts in the 

environment.  

The strength of the tendency for linearity and arithmetic operations suggests 

people may be inherently incapable of using percentage information or estimating 

probability in accordance with mathematical models. However, it is possible that 

peoples’ cognitive capacity for frequency data and concrete values does not preclude 

probabilistic rationality in the mathematical sense. Rather than assuming that statistical 

rationality can only be achieved through accurately interpreting data in probability 

formats, it is possible that judgments based on frequency data can translate into 

mathematically accurate probability estimates when judgment variance is taken into 

consideration. In this view, the natural variation in events as they are encoded in 

memory create noise which can present as prediction inaccuracy when judgments are 

examined in isolation. However, when considering a set of estimates for a category of 

events, it is reasonable to assume that averaging the estimates will cancel out the noise 

associated with natural sampling to yield inferences which correspond with the 

predictions made by probability models.  

This suggests that people may not be inherently ‘irrational’ in the mathematical 

sense, rather that the measurement of human probabilistic inference and the format in 

which information is communicated is key to ascertaining peoples’ judgment 

rationality. As the wealth of evidence relating to the effectiveness of frequency formats 

on statistical inference indicate, peoples’ judgmental processes and cognitive 

propensities may not be inherent blockers of statistical rationality. Instead, they 
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represent an alternative methodology for collating, interpreting and applying 

information. When the data format is fit to the cognitive methods, people are 

consistently capable of yielding mathematically accurate inferences in Bayesian 

probability tasks. It is therefore plausible that by taking the mean of peoples’ on-the-

spot probability estimates for real-world events, the variance associated with peoples’ 

sampling methods will cancel out and judgments will correspond with statistical 

models. 

In answer to these possibilities, the following review discusses the anomalies and 

biases in human probabilistic judgment relating to the framing and formatting of 

numerical information. Each subsection provides an overview of findings and theories 

which relate to the ideas and themes outlined above.  

2.1   Simultaneous Versus Sequential Information Processing  

It is well recognised in the field of finance and economics that investment returns 

must be processed sequentially using geometric operations to determine values, rather 

than simultaneously, using arithmetic operations, which can lead to gross 

overestimation of return values (Bodie, Kane & Marcus, 2001). For example, if a stock 

were to increase by 20% one year, and then decrease by 20% in the next year, the 

intuitive reaction to this gain and loss is to assume that the stock’s final value is equal to 

its initial value by adding and subtracting, (i.e., simultaneously processing) the two 

values; +20% (-20%) = 0. However, the final value of the stock would in fact be less 

than its initial value, computed by multiplying the values geometrically; 20% x (-20%) 

= -0.4%. The reason for this becomes apparent when drawing attention to the effect of 

the percentage changes on the base value of the stock in each year. For example, if an 

initial investment of £100 were to rise by 20% in one year, its value would be £120. If it 

then fell by 20% the next year, the final value is correctly calculated by applying the 

second percentage change to the initial value and the results of the first percentage 

change, thus yielding a final value of £96 (0.4% less than the stock’s initial value). 

Changes in percentages therefore require increases and decreases to be processed 

multiplicatively in sequence, taking into account the effects of previous percentage 

changes on base values at each time point.  

The misunderstanding of geometric mathematical operations, combined with the 

added cognitive load of sequentially processing (instead of just additively summing 

points), can lead people to treat percentages as absolute values in many contexts. This 
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results in the tendency to add and subtract percentages in the same way absolute values 

are additively combined using the arithmetic mean. Unsurprisingly, this bias is 

considered responsible for an array of judgmental errors in different settings (Juslin, 

Karlsson, & Olsson, 2008; Juslin, 2015; Juslin, Lindskog, & Mayerhofer, 2015).  

2.2   Processing Percentages and Judging Investment Returns   

The effect of percentage information on real-world decision performance is 

clearly demonstrated throughout the domain of financial decision making. When 

choosing between financial product options, or making investment decisions based on 

fees and returns, the tendency to treat percentages as absolutes can lead people to 

significantly misjudge future gains and losses. This is derived from the assumption of 

linear relations between input and output variables occurring from simultaneously 

processing percentages. Evidence of this exists in investment fields, where reframing 

percentage fees in absolute value formats is shown to increase peoples’ attention to the 

costs (Choi, Laibson & Madrian, 2010; Hastings & Tejeda-Ashton, 2008).  

The bias is also observed in experts, for example Newall and Love (2015) found 

that among 1,973 online investors, 45.7% were unable to determine that the yield from a 

stock which increased by 10% one year and decreased by 10% the next year, and did 

not pay any dividends, would be less than its initial value; with 33.9% judging it to be 

equal to its initial value. These results provide strong evidence of the propensity to 

interpret returns based on arithmetically summing the gains and losses to yield a final 

return of zero. Worryingly, error magnitude in this context is therefore dependent on the 

size of the return. For small changes such as 10%, underestimating losses may not be 

too detrimental. However, for larger returns, the underestimation of losses can be 

catastrophic.  

Newall (2016a) demonstrated that even in the face of increasing return 

magnitudes, the tendency to take the arithmetic average of the past returns remained 

robust. Again, posing the question of final stock value following equal returns of either 

+/-10% or +/-50%, Newall found that 50.8% of 981 online respondents incorrectly 

predicted the final return value of the stock for both the 10% and 50% return 

magnitudes. The modal response of “equal to its initial value” again indicated 

simultaneous processing in action. Moreover, the ability to correctly judge downside 

financial risk was shown to positively correlate with financial literacy (Fernandes, 

Lynch, & Netemeyer, 2014) and numeracy (Cokely, Galesic, Schulz, Ghazal, & Garcia-
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Retamero, 2012), the levels of which were moderate and low for literacy (8.6 out of 13) 

and numeracy (1.6 out of 4), respectively.  

Increasing the +/-50% return to +/-100% (to create a final value of zero) showed 

that, although more people made correct judgments in the +/-100% conditions (53.2%) 

compared to the +/-10% condition (34.0%), the proportions of incorrect “equal to its 

initial value” responses reflecting simultaneous processing were virtually the same per 

condition (43.1% and 40.6% in the +/-10% and +/-100% conditions, respectively). 

Simultaneous processing was also found to be resistant to financial incentives, with a 

$0.10 bonus for a correct answer making no difference to rates of error (40.6% without 

incentives and 48.5% with incentives) or simultaneous processing (35.7% without 

incentives, and 37.3% with incentives).  

The only manipulation found to increase the rate of correct answers based on 

sequential processing of the returns, was the following behavioural prompt: “When 

answering, try to imagine what would happen to a $100 initial investment over the two 

years. Think about the investment's value after year one, and then its value after year 

two”. The prompt shifted the modal response from “equal to its initial value” (in the 

non-prompt condition) to “less than its initial value” in the prompt condition, and this 

was found to be equally effective regardless of return sizes.  

In sum, these findings suggest that biases associated with percentage data are 

highly robust and difficult to counteract. However, there might be advantages to 

delivering financial information relating to interest rates in multiple framings or modes. 

For example, providing rate data in absolute values or frequency formats (e.g., 

Gigerenzer & Hoffrage, 1995) in combination with a text description of the data and/or 

task, may be effective in ‘nudging’ decision makers towards applying the correct 

methods of processing to improve judgment effectiveness.  

2.3   The Linear Prediction Heuristic in Financial Judgment  

Increases in judgment error with sizes of investment returns is critical not only for 

investors, but for the financial well-being of the general population. Consumer financial 

decision making is a clear example of how quick, cognitively easy computations are 

performed using the data currently available, which govern our interpretation of 

likelihood. In this respect, the tendency to simultaneously process percentage and rate 

information translates into the tendency to linearly extrapolate values into the future. 
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This linear prediction heurist is highly robust and shown to characterise human 

probabilistic inference across many judgment domains.  

For example, taking out a credit agreement based on one’s predicted ability to 

make the repayments is dependent on how compound interest rates are interpreted. Akin 

to computing investment returns, failure to process interest payments sequentially can 

result in dramatic underestimation of repayment costs. Imagine for example, a £100 

payment made on a credit card at a typical APR of 34.9%, repaid over 12 years. Figure 

2.1 shows how a quick summation of the interest costs prior to making a purchase can 

lead to a drastic misinterpretation of the final credit fee. Exacerbated by opaque and 

misleading financial information, people frequently make decisions such as these which 

can have highly adverse long term effects.  

 

 

Figure 2.1 Simultaneous Vs Sequential Processing of Interest Rates 

The effects of applying arithmetic (simultaneous) processing to interest costs on a 

£100 loan at an APR of 34.9% over a 12-year period. The purple line shows how the 

total repayment cost is judged as £540 when the compound interest payments are 

simultaneously added to the new balance each month. Calculating the interest costs in 

this way results in a linear prediction of the total interest costs over the term of the 

agreement. However, the true cost of the credit (based on sequentially processing the 

interest per month) follows a non-linear curve. The red line shows the true loan costs 

(£2,692), illustrating the size of the potential judgment error.  
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Stango and Zinman (2009) formalized the notion of the linear prediction heuristic 

in an analysis of biases related to decisions to borrow and save. People showed a future 

value bias associated with saving, and a payment/interest bias associated with 

borrowing, causing borrowing costs and saving rewards to be underestimated. In each 

case, biases stemmed from what the authors refer to as the general propensity to 

linearize functions containing exponential terms, leading to the systematic 

underestimation of exponential growth, or the exponential growth bias.  

McKenzie and Liersch (2011) demonstrated similar effects when assessing 

peoples’ ability to compute savings over 10, 20, 30, or 40 years if $200 or $400 were 

paid in monthly at a fixed annual interest rate of 5% or 10%. Participants systematically 

underestimated the amount saved at each point in time, based on linear extrapolation of 

the interest. These findings highlight the widespread misconception of compound 

interest, and how simultaneously processing percentages and rates can lead to gross 

underestimations of costs.  

2.4   Function Learning Theories  

 The question of why people exhibit such a strong propensity for linear 

judgments is addressed by the study of function learning which delivers empirical 

evidence relating to how people learn predictive relationships between continuous 

stimulus and response variables.  

The theories and models of function learning are useful in explaining how people 

develop awareness of causal relations between known factors in the environment, and 

are able to make predictions about future events in new situations (Busemeyer, 

McDaniel & Byun, 1997). Such theories posit that learners do not explicitly compute 

the functional forms of causal relationships, but instead learn functional relations 

through cognitive mechanisms that give rise to a formal system of function awareness 

(Kalish, 2013). Researchers consider there to be one of two formal systems which 

perform different kinds of computations that generate the learning of functions. The first 

system is considered to hypothesize one of a small number of explicit functions in new 

scenarios and then adjust the function parameters to fit the data (e.g., McDaniel & 

Busemeyer, 2005). The second system is thought to learn through generalizing from 

training examples to novel data, based on the degree of similarity between training and 

novel stimuli (e.g., DeLosh, Busemeyer & McDaniel, 1997). 
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The extrapolation-association model (EXAM) of function learning (DeLosh, et 

al., 1997) fuses together a system of associative learning with a rule based response to 

create predictions that accurately reflect human responses in tests of extrapolation. The 

EXAM model was derived from a series of studies evaluating rule-based and 

associative-learning model fits to human extrapolation test results. One-hundred and 

eight participants were assigned to one of nine conditions which varied by function 

(linear, quadratic and exponential) and density (the number of unique stimulus 

magnitudes/inputs presented during training). The training phase consisted of 200 

correct response (output) feedback trials which were immediately followed by a transfer 

phase consisting of 45 trials of novel stimulus magnitudes presented without feedback. 

Training performance was measured as the absolute deviation of participants’ 

predictions from the correct function value (linear, quadratic, or exponential) for each 

training trial. Findings showed that learning was best for linear functions at the 

beginning of training, followed by exponential and worst for quadratic. However, as 

trials progressed, the learning for all three functions converged. In terms of transfer, 

participants deviated more significantly from the correct function in the extrapolation 

regions compared to the interpolation regions and showed underestimation in the linear 

condition and overestimation in the exponential and quadratic conditions.  

EXAM was then evaluated against two rule-learning models: the polynomial 

hypothesis-testing model (Carroll, 1963; Brehmer, 1974) and the log-polynomial 

hypothesis-testing model (Koh & Meyer, 1991); and the associative-learning model 

(ALM) (Busemeyer, Byun, DeLosh & McDaniel, 1997). DeLosh et al. (1997) 

concluded that EXAM’s extrapolations most accurately corresponded with the pattern 

of over and underestimation empirically observed in the first experiment. The accuracy 

of EXAM is due to it combining associative learning of stimulus-response pairs with a 

response generation process that is based on linear interpolation and extrapolation. It is 

a network model involving a set of input nodes and associated criterion (response) 

nodes. When a stimulus is presented, a corresponding input node is maximally 

activated, along with related input nodes which also become activated in accordance 

with a generalization gradient. The activated input nodes then activate the associated 

criterion nodes, which sets up the response.  

During training, connection weights between input and output nodes become 

modified by the associative learning process which acts to increase the association 

between particular input and output nodes. Thus, function learning develops as a 



 

 

27 

process of gradually increasing the associations between input values and output values 

that represent the correct response for a given input stimulus.  

When a novel input value is encountered (in the extrapolation region of the 

transfer phase of an experiment), a response mechanism is activated which is comprised 

of two components: the first being the retrieved output which is based on the associative 

learning process; the second being the activation of a linear response rule. The linear 

response rule is evoked as a means of deciphering the best response from the multiples 

of maximally activated input nodes (training stimuli) in a new situation. The output 

values associated with the multiples of activated input nodes are retrieved and a linear 

estimate is then made on the basis of these output values. In essence, a response to a 

novel stimulus occurs as the result of a linear regression performed on the retrieval of 

the multiple input-output pairs that become activated when people encounter unknown 

values in new environments.   

An alternative model to EXAM is the population of linear experts (POLE) model 

(Kalish, Lewandowsky & Kruschke, 2004) in which learners associate ‘linear experts’ 

with training stimuli and use the ‘experts’ associated with input stimuli to generate 

output values. Like EXAM, POLE is based on an associative-learning mechanism and 

assumes extrapolation is based on a linear rule. The difference lies in POLE assuming 

that input values are associated with multiple linear rules, each differing in their slopes 

and intercepts. This assumption is based on the premise that speed and efficiency are the 

most important characteristics of function learning and the most expedient method for 

learning input-output pairings, is a positive linear relation. POLE involves a total of six 

parameters which must be fitted to the data and dictates that complex functions are 

learnt through a process of deconstructing the functions into small sections which can 

be estimated using different linear functions. Linear rules are therefore used for both 

training and extrapolation stimuli in POLE, whereas in EXAM, training stimuli is not 

assumed to be confound to linear rules only.    

In a comparison of the EXAM and POLE model ability to predict (as opposed to 

fit) transfer performance, McDaniel, Dimperio, Griego and Busemeyer (2009) tested 

learning and extrapolation in undergraduate students exposed to dense versus sparsely 

sampled sets of cue values presented in concave and convex functions (experiment 1); 

and two linear segments of equal cue density presented without tick marks and 

separated by a wide gap of untrained cue values (experiment 2). The results of the 

transfer phase showed that extrapolations were flatter than the function in the untrained, 
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upper segments, but remained accurate between the linear segments in experiment 1. In 

experiment 2, transfer was consistently flatter for the untrained region between the 

linear segments. McDaniel et al. concluded that EXAM could deliver the best predictors 

of human extrapolation with an additional small modification to the initial response bias 

to set it to a positive linear function which would more accurately reflect peoples’ 

positive linear bias in function learning. EXAM’s assumptions captured human 

tendencies notably well in experiment 2 where it reconstructed a flat line in the transfer 

region between the two linear segments (as opposed to extending and intersecting the 

linear segments in the transfer region).  

Although the EXAM and POLE models posit different mechanisms by which 

functions are learned, both models support the theory that people learn functions based 

on a propensity to apply positive linear relations to stimulus-response pairings. This 

reflects and affirms the empirical findings discussed throughout the review relating to 

peoples’ tendencies to interpret numbers, compute values and predict outcomes in 

accordance with linear functions and arithmetic operations.  

In sum, EXAM incorporates an associative-learning processes (akin to exemplar-

based models of categorization) and a response process based on a linear extrapolation 

rule that operates on the retrieved associations. Although training values are retrieved 

that most closely match the novel stimulus, the slope of the retrieved training values 

forms a basis from which people then linearly extrapolate to generate predictions of 

future outcomes. Phenomena such as the exponential growth bias (Stango & Zinman, 

2009; McKenzie & Liersch, 2011), problems comprehending fuel economy based on 

MPG (Larrick & Soll, 2008), and biases in interpretation of percentage price changes 

(Chen, Marmorstein, Tsiros & Rao, 2012) are examples of everyday decisions which 

occur in accordance with these learned mechanisms, shaped by the processes 

underpinning our understanding of environmental cause and effect.  

2.5   Informational Frames in Consumer Choice Domains 

The strong tendency to assume linear functions when computing values and 

judging likelihood is also widely exhibited throughout consumer decision making. In 

this context, the tendency make choices in accordance with linear functions is based on 

peoples’ interpretation of information when presented in different numerical formats. 

As described in the studies exploring the effects of percentage information biases on 

investment decisions and financial judgments, misinterpretation of pricing and 
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promotional disclosures can also significantly impact peoples’ choices in everyday 

consumer settings.  

For example, the framing of price promotions is shown to significantly influence 

how consumers process the information and perceive value (Chen & Rao, 2007; Chen, 

Marmorstein, Tsiros, & Rao, 2012; Kruger & Vargas, 2008). Chen and Rao (2007) 

showed that people make erroneous price calculations by additively processing values 

when successive percentage discounts or surcharges are applied to consumer products. 

Numerical framing has also been shown to significantly influence consumer choices for 

economically equivalent offers. For example, choices differ depending on whether a 

particular product is framed as 50% more expensive than an alternative product, or 33% 

less expensive (Kruger & Vargas, 2008). Similarly, Chen, et al., (2012) also found that 

shoppers prefer price offers which deliver 50% more for free as opposed to a 33% 

reduction in price.  

Values framed as fractions can also pose problems for the rationality of value 

judgments. As exemplified in the case of the US food chain, A&W for example, the 

retailer was forced to discontinue their new 1/3 pounder shortly after its release, later 

learning that consumers perceived the ‘4’ in the McDonalds 1/4 pounder rival burger as 

larger than the ‘3’ in the ‘1/3’ pounder. Thus, less meat was perceived to be in the 

A&W option, creating the belief that they were being short changed by A&W (Green, 

2014).  

Systematic errors are also shown when evaluating fuel economy framed in miles 

per gallon (MPG). Larrick and Soll (2008) found people showed a strong tendency to 

assume a linear relation between fuel consumption and MPG when evaluating the 

efficiency of different vehicles, when in fact there is an exponential relation. For 

example, making a small trade by replacing a 12 MPG with a 14 MPG vehicle 

represents better value compared to a larger trade of a 28 MPG for a 40 MPG vehicle. 

Thus, the non-linear increase in fuel consumption with MPG means the saving in the 

case of the larger 28 to 40 MPG trade is only 107 gallons over 10,000 miles, whereas 

the difference between the smaller 12 to 14 MPG trade is 120 gallons (10,000/12=833 

gallons; 10,000/14=714 gallons).  

Further experiments assessing rankings of pairs of ‘old and new’ vehicles and 

willingness to pay (WTP) for more fuel-efficient vehicles based on highest fuel 

consumption reductions showed a clear linear function in participants’ choices, causing 
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them to undervalue the impact of small MPG improvements on trades for inefficient 

vehicles. However, reframing MPG as gallons per mile (GPM) was shown to be 

effective in reducing the so called MPG Illusion. Under this framing condition, 64% of 

respondents chose the most fuel efficient option which have a smaller MPG 

improvement but a larger fuel saving. Thus, by removing the computational hurdles 

associated with exponential relations and rate data, making information comparable in a 

linear format, consumer choice may be greatly improved.  

2.6   Frequency Formats and Cognitive Algorithms 

The difficulties people experience in interpreting percentage formats and non-

linear functions are likely to stem from the underlying cognitive structures which 

developed in humans in pre-mathematical environments. There is evidence to suggest 

that these cognitive structures are designed to make fast, heuristic judgments based on 

absolute counts or frequencies of events sampled naturally from the environment. As a 

consequence, people are redisposed to encode events in absolute numbers and form 

predictions by adding and subtracting numerical values which leads to the tendency to 

perceive and predict linearly.  

There is a wealth of evidence suggesting that cognitive algorithms are 

programmed to function using absolute values and frequency data. The cognitive 

anomalies associated with percentages and non-linear functions are consistently shown 

to disappear when information is presented in frequency formats using (concrete) 

absolute values (Gigerenzer & Hoffrage, 1995, 1999; Sloman, Over, Slovak, & Stibel, 

2003). With the advent of probability theory, human reasoning has been considered 

analogous with mathematical optimizing models (Daston, 1988). However, the more 

recent concept of human rationality as bounded, governed by limited computational 

capacities, information and time (Simon, 1955), recognises cognitive algorithms as 

incompatible with mathematical models. Rather than optimizing, humans seek to 

satisfice via fast and frugal heuristic strategies adapted to meet environmental demands 

(Simon, 1955).  

The effectiveness of natural frequency formats is based on the concept that 

cognitive algorithms are evolved to make probabilistic inferences based on simple 

frequency counts, accrued in absolute values. Thus, the mathematical expression of 

probability is not equivalent to the psychological interpretation of probability (Fiedler, 

1988; Gigerenzer, 1991, 1994). The effectiveness of frequencies is associated with the 
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fact that they retain the original numerators and denominators, displaying the base rate 

information. Conversely, relative or normalized frequencies (single point percentages) 

are bounded by zero and one, making the base rate information difficult to access. In 

probabilistic inference tasks, presenting non-normalized frequencies of events sampled 

from a single population is shown to significantly increase performance in term of 

Bayes Rule compared to when data is presented in percentages. Using Bayes Theorem, 

the posterior probability of an event (i.e., the hypothesis) can be estimated in light of 

new information, according to the following mathematical equation:  

p(H|D) = p(D&H) / p(D&H) + p(D&−H) 

where p(H|D) represents the posterior probability that the hypothesis (H) and its 

complement (-H) is true given the observed data (D). 

For example, when predicting whether a person with a positive test result actually 

has a disease, the natural frequencies representation of the problem is as follows: In 

1000 people, 40 are infected and 30 test positive, and of the 960 uninfected, 120 also 

test positive. The probability, p(H|D) is therefore A / A + B where A represents the 30 

infected people that test positive and B represented the 120 uninfected people that test 

positive = 30 / (30 + 12) = 0.2 (20%). The base rates for both the hit rate (40/1000) and 

for the false positive (960/1000) are thus clearly communicated.  

However, when considering the problem presented in normalized probabilities, 

Bayesian reasoning becomes significantly more difficult. For example, out of 1000 

people, 40 will be infected, out of 1000 infected, 750 will test positive, and out of 1000 

uninfected, 125 will also test positive. In this format, the base rates must be multiplied 

by the conditional probabilities to determine the probability of infection p(H|D). Figure 

2.2 shows an example of a Bayesian probability task presented in a natural frequency 

format versus single event probabilities.  
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Figure 2.2 Natural Frequecy Vs Probability Formats 

An example of a Bayesian probabilistic inference task presented in natural 

frequencies (right) versus single event probabilities (left). By presenting the problem in 

the natural frequency format, Bayesian rationality is significantly improved by the 

exposure of the base rate information which facilitates prediction, p(H|D) of disease (H) 

given the presence of the symptom (D).  

The facilitative effects of frequency formats on Bayesian reasoning were first 

demonstrated among physicians in the domain of diagnostic decision making 

(Gigerenzer & Hoffrage, 1995, 1999; Gigerenzer, 1996; Hoffrage & Gigerenzer, 1998; 

Hoffrage, Lindsey, Hertwig & Gigerenzer, 2000). A wealth of studies have 

subsequently followed which confirm the effects of frequencies in numerous 

experimental settings (e.g., Cosmides and Tooby, 1996; Brase, 2002, 2008) and applied 

contexts such as screening for Down syndrome (Bramwell, West & Salmon, 2006), 

juror verdicts based on DNA evidence (Hoffrage et al., 2000; Koehler, 1996, Lindsey et 

al., 2003) and HIV test result interpretations among AIDS counsellors (Gigerenzer, 

2002). Teaching people frequency representations shows robust long-term learning 

effects, including the ability to teach others (Sedlmeier & Gigerenzer, 2001; 

Kurzenhauser & Hoffrage, 2002), and frequencies enable children to perform Bayesian 

reasoning as accurately as adults (Zhu & Gigerenzer, 2006). Moreover, frequencies can 

also support Bayesian reasoning in more complex environments involving multiple cues 

and cue values (Krauss et al., 2002; Hoffrage et al., 2015). 
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2.7   Icon Arrays and Denominator Neglect  

Findings relating to graph literacy and judgments of medial risk show that 

dynamic icon arrays (i.e., the use of symbols to convey sample frequencies) are 

particularly effective in increasing probabilistic inference and the accuracy of risk 

judgments, specifically among individuals with higher graph literacy (Okan, Garcia-

Retamero, Cokely, Maldonado, 2011). In the context of medical screening, findings 

show that statistical data is widely misinterpreted by both expert physicians and patients 

(Garcia-Retamero, Wicki, Cokely & Hanson, 2014; Schwartz, Woloshin & Black, 1997; 

Wegwarth, Schwartz, Woloshin, Gaissmaier & Gigerenzer, 2012).  

Inaccurate judgments of statistical information in this context are related to 

incomprehension of probability formats, associated with lower levels of numeracy and 

risk literacy (Cokely, Galesic, Schulz, Ghazal & Garcia-Retamero, 2012; Galesic & 

Garcia-Retamero, 2010; Gardner, McMillan, Raynor, Woolf & Knapp, 2011; Keller & 

Siegrist, 2009; Lipkus, Samsa & Rimer, 2001; Peters, 2012). Converting probability 

information into graphical frequency formats (icon arrays) however, is shown to 

significantly facilitate risk judgment across high and low numeracy groups (Garcia-

Retamero & Cokely, 2013; Galesic, Garcia-Retamero & Gigerenzer, 2009; Zikmund-

Fisher et al., 2008; Gaissmaier, Wegwarth, Skopec, Muller, Broschinski & Politi, 2012; 

Zikmund-Fisher, Witteman, et al., 2014; Okan, et al., 2012; Garcia-Retamero & 

Galesic, 2010). Figures 2.3 and 2.4 give examples of how icons arrays are used to 

increase risk judgment accuracy in medical decision making contexts.  

Visual frequencies also facilitate inference in cancer screening decision making. 

In a comparison of icon arrays with frequencies in numerical formats combined with 

text information, Petrova, Garcia-Retamero and Cokely (2015) confirmed previous 

findings, showing the de-biasing effect of the format even in complex highly emotive 

situations involving counterintuitive information. Cancer screening risk comprehension 

was significantly higher where icon arrays were presented, even among participants 

with a low belief in the severity of the consequences of cancer.  
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Figure 2.3 Cancer Risk Conveyed Via Frequency Format 

An example of the frequency format used to convey a lifetime risk of breast 

cancer for a 50-year-old woman. The lifetime risk of 9% is portrayed in a frequency 

format with a denominator of 10 (Schapira, Nattinger, Colleen & McHorney, 2001). 

 

 

Figure 2.4 NHS National Prescribing Centre Frequecy Communication 

NHS National Prescribing Centre: Reduction in Cardiovascular Risk from Taking 

Statins (Should I be taking statins?). This is an example of a frequency representation 

used to by the NHS to communicate the probability of cardiovascular disease in the 

general population when statins are taken (right) versus when they are not (left). As can 

be seen, the total number of smiley faces represent the sample population (100 people). 

The green faces represent the frequency of those without cardiovascular disease (80 out 

of 100), in relation to those with cardiovascular disease (20 out of 100). The yellow 

smiley faces on the right represented the reduction in the frequency of cardiovascular 

disease when statins are taken (5 out of 80, thus indicating a 5% reduction in the risk of 

cardiovascular disease).  
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The process underpinning the effectiveness of icon arrays is the increase in 

attention to base rate information. This acts to eliminate denominator neglect, 

recognised as the tendency to focus on numerators and ignore denominators in ratio 

information. For example, people judge the risk of cancer as a greater when described 

as “killing 1,286 out of 10,000 people” compared to “24.14 of 100 people” because the 

numerator (1,286 versus 24.14) is weighted, irrespective of the size of the denominator 

(10,000 versus 100) (Reyna & Brainerd, 2008; Yamagishi, 1997). Similarly, Denes-Raj 

and Epstein (1994) showed that when tasked with selecting a winning red bean from a 

bowl of white beans, people opt for a bowl containing seven red and 100 white beans, 

rather than a bowl containing one red and 10 white beans. Again, this exemplifies the 

strong tendency to ignore denominators when estimating event probabilities.     

By making the focal and non-focal feature frequencies easily comparable, icon 

arrays give context and meaning to the data which increases statistical rationality in 

individuals with low numeracy and ability for statistical inference (Garcia-Retamero & 

Galesic, 2009; Okan et al., 2012).  Specifically, icon arrays convey spatial features and 

conceptual relations between data which are shown to be important to visual encoding 

of the focal feature (Cleveland & McGill, 1984, 1986; Simkin & Hastie, 1987; Newman 

& Scholl, 2012; Okan et al., 2012), and the preservation of natural correspondences to 

the physical environment (Lakoff & Johnson, 1980; Tversky, 2001, 2009; Tversky, 

Kugelmass, & Winter, 1991; Fischer, 2012). These factors promote active elaborate 

processing of numerical information, which combined with text prompts, can enhance 

statistical inference (Okan, Garcia-Retamero, Cokely & Maldonado, 2015).  

The effectiveness of frequencies in supporting elaborate processing was 

demonstrated in an analysis of psychiatrists’ judgments of the likelihood of psychiatric 

patients reoffending six months after discharge. Slovic, Monahan and MacGregor 

(2000) found that, when framed in frequencies (i.e., “20 out of every 100 mental 

patients typically commit a violent act after their release”), 41% refused discharge. 

However, when framed in percentages (i.e., “a 20% chance that patients will commit a 

violent act after their release”), 21% refused. The researchers concluded that frequency 

framings evoked a clearer perception of an individual patient, which in turn increased 

their risk perception, whereas percentage information was more ‘benign’ in that it did 

not create the same imagery and was therefore not as meaningful.      
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2.8   The Importance of Comparison to Statistical Inference 

When considering user experience and interface design, it is recognised that 

people derive value from numerical information by ascribing meaning through a process 

of comparing attributes and choice alternatives (Roller, 2011). Judgement performance 

is shown to differ considerable depending on whether numerical information is 

presented and evaluated simultaneously or independently. Based on an analysis of 

presentation mode, Hsee, Loewenstein, Blount and Bazerman (1999) posit the 

evaluability hypothesis, in which all judgments are described as made in either a joint 

evaluation mode (JE), in which multiple attributes associated with a particular value are 

viewed simultaneously and evaluated comparatively, or a separate evaluation mode 

(SE), in which attributes are presented and evaluated in isolation. Attributes differ in the 

extent to which they may be evaluated, with difficult-to-evaluate attributes exerting 

more influence on judgments when presented in joint evaluation mode, which can lead 

to preference reversals between values presented in JE versus SE.  

In the extended general evaluability theory, Hsee and Zhang (2010) clarify 

evaluability as the extent to which a person has relevant reference information 

necessary to assess the utility of a particular value. Evaluability is thus considered key 

to judgment performance, and is heightened in situations when decision makers possess 

knowledge about the domain and the attributes are either presented in joint mode, or 

they are inherently evaluable (i.e., they are assessable without learning/knowledge or 

social comparison, such as when assessing ambient temperature for example).  

In the context of probabilistic inference, it is therefore important to consider not 

only the informational format, but also the nature of the surrounding context or 

reference information. Additional context information has the potential to create noise 

which can limit judgment performance in more complex prediction environments 

(Harvey, Bolger & McClelland, 1994). However, strongly correlated causal data which 

is specified to the judgment task is shown to facilitate prediction performance (Becker, 

Leitner & Leopold-Wildburger, 2007, 2008). For example, highly reliable trend change 

information is shown to positively impact judgment accuracy (Remus, O’Connor & 

Griggs, 1995) and increases in the reliability of temperature reference data was found to 

improve the accuracy of soft drink sales forecasts (Lim & O’Connor, 1996). This 

suggests that the type, format and specificity of surrounding contextual data is important 
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to peoples’ ability to interpret and apply reference information when forming judgments 

and determining preferences.  

 Findings suggest that the ability to contextualize data through comparison against 

a reference point of some sort is shown to facilitate statistical inference in many 

different contexts. For example, participants rated a gamble involving a 7/36 chance of 

winning $9 as less attractive compared to a gamble involving a 7/36 chance of winning 

$9 in joint mode with the added potential for a small loss – a 29/36 chance of losing 5c 

(Bateman, Dent, Peters, Slovic & Starmer, 2007). Researchers suggested that people 

preferred the latter gamble because in the first case, it was possible to evaluate the 

probability as it has known upper and lower bounds, however there was no means of 

contextualizing the monetary gain as ‘good’ or ‘bad’. Therefore, a relatively low 

probability (7 out of 36 chances) was deemed unattractive. In the joint evaluation mode 

however, the addition of the 5c loss created a reference point, giving the $9 gain 

meaning which made the win/lose ratio attractive, i.e., the relatively small chance of 

loss seemed worth the gamble for the comparatively high value gain.  

Slovic, Finucane, Peters and MacGregor (2002) demonstrated the how percentage 

and frequency formats presented in joint mode can influence decisions by mediating the 

affect heuristic (the tendency to make ‘good’ or ‘bad’ judgments). When informed that 

new airport safety equipment would “save 98% of 150 lives”, participants were 

significantly more in favour of the expenditure compared to when they were informed 

that it would “save 150 lives”. In isolation, “150” has no meaning and is difficult to 

evaluate as being positive or negative. However, when put into the context of “98%”, 

participants were able to assign meaning to the data, and evaluated “150” as highly 

positive, indicated by “98%” being so near the upper bound of the percentage scale. 

 Similar effects are also found when assessing peoples’ sensitivity to the scope 

(i.e., the size, frequency or duration) of an outcome. For example, when choices are 

presented in isolation, people are willing to pay the same amount to save 2,000 birds 

from oil spills as they would 200,000 birds (Desvousges, Johnson, Dunford, Boyle & 

Wilson, 1993), and donate the same amount to help one victim as they would to help 

multiple victims (Kogut & Ritov, 2005). When framed in the context of other 

information, these biases are eliminated. Joint evaluation mode is also shown to impact 

forecasting judgments, particularly when causally correlated information cues are 

provided (Becker, Leitner & Leopold-Wildburger, 2007, 2008).  
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Preference reversals between joint and separate evaluation mode are also apparent 

in decisions where attributes differ categorically and incrementally. For example, Hsee 

(1998) showed that in SE, people were willing to pay more for a 24-piece intact 

dinnerware set than for a 40-piece set containing some broken pieces, however in JE, 

preferences reversed. Similarly, people in SE paid more for a 7-oz ice cream served in a 

5-oz cup (overfilled) than for an 8-oz ice cream served in a 10-oz cup (under-filled), yet 

their preference reversed in JE. When presented with a choice between a set of 13 mint 

condition baseball cards, or a set containing 10 mint and three poor condition cards, in 

SE, the latter choice received higher bids, whereas in JE the 13 mint condition cards 

were more popular (List, 2002). This demonstrates that when no reference point was 

provided, the incremental difference of whether the card set contained 10 or 13 was 

irrelevant to perceived utility. However, when evaluated in the context of the other 

choice, the categorical difference of the number of mint cards provided a measure of 

value.  

Further analysis of frames and presentation modes is necessary to understand how 

to utilise evaluative judgment processes to improve judgments involving categorical, or 

‘real’ change perception. Hsee and Zhang (2010) thus postulate that in JE, probability 

estimates will be less linear than in SE. This is due to the incremental differences in 

probability estimates that a person will express when comparing multiple attributes in 

JE (i.e., on a continuum), versus the categorical (0/1) probability estimate which will be 

made when evaluating an attribute in isolation (SE).  

2.9   Data Formats and Proportion Change Judgments   

 The framing of numerical data is also shown to influence peoples’ ability to 

detect actual changes in the environment distinct from random fluctuations in sample 

sizes. Fiedler, Kareev, Avrahami, Beier, Kutzner, Hütteret (2016) tested participants’ 

detection of genuine change by comparing responses to pairs of stimuli which varied 

either in sample size, n (a random fluctuation), proportion, p (a genuine environmental 

change) or both n and p.  

In 49 trials, participants were shown 24 pairs of stimuli which each involved 

different frequencies of shaded and dotted rectangles representing the focal and non-

focal features, respectively. Each symbol appeared in a 1 second interval and all 

symbols remained onscreen for 3,000 milliseconds per trial.  In half of the pairings, 

large and small increases and decreases in p (the focal feature) occurred across different 
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sample sizes (n = 8 and n = 16), and in the other half, n changed but p did not. 

Participants then indicated per trial whether the sample was drawn from the same set as 

the previous, or whether it was drawn from a different set based on whether p had 

changed between each pairing (i.e., the frequency of shaded rectangles).  

Fiedler et al., (2016) found that peoples’ detection of change was influenced by 

actual p changes, with p increase judgments occurring most frequently followed by no-

change, then decrease judgments. However, p change judgments were consistently 

higher for cases where n increased (8 to 16) and lower where n decreased (16 to 8). 

Moreover, judgment accuracy was highest when n changes occurred in the same 

direction as p changes, indicating a strong bias to detect real-world changes based on 

superficial fluctuations in samples.  

Difficulties in distinguishing changes in sample frequencies from true population 

changes can have important consequences in real-world contexts, for example when 

judging student performance, public opinion votes or disease rates. To test the effects of 

n on p in a more realistic setting, Fiedler et al., (2016) examined the effects of format by 

comparing the symbols (control), to a probability-plus-n format in which participants 

observed normalize percentages of the focal feature plus the relevant n per trial (e.g., 

“Drawn were 8 (16) symbols, 75% shaded and 25% dotted”), a probability-only format 

which omitted n, and a descriptive natural frequency format in which the frequencies 

were presented in absolute values (e.g., “Drawn were 12 shaded and 4 dotted symbols”). 

A robust replication of the findings occurred for the control condition, with 

increasing n supporting p increase detection but hindering decrease detection, and vice 

versa for decreasing n. Surprisingly, the same was found in the frequency condition, 

with main effects for both p and n changes indicating that p change judgments scores 

were subject to the same biases as those shown in the control condition. However, 

presenting focal and non-focal feature frequencies as normalized percentages 

(probability-plus-n condition) showed a strong main effect for p change judgments 

(with no n changes effect or interaction), indicating the elimination of the bias. The 

probability-only format yielded the same results, suggesting that the sample size was 

ignored when percentage was presented.  

Communicating the task using the symbols may have been unduly abstract or 

confusing, particularly when pairings were presented sequentially with the focal feature 

positioned randomly making comparison more difficult. To investigate whether the bias 
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held when inductively experienced frequencies were presented in a more salient 

context, the rectangles were replaced with smiling and frowning faces and participants 

imagined themselves as politicians. They then had to judge the popularity of different 

campaign speeches based on public reactions (i.e., frequencies of smiling audience 

faces). This time the trial pairings were presented simultaneously on the right and left of 

the screen across four n combinations (i.e., n left = 8 vs. n right = 16 and vice versa, and 

n right = 8 vs. n left = 8, and n right = 16 vs. n left = 16). The smiling and frowning 

faces were positioned randomly and shown onscreen for 2,500 milliseconds. Despite the 

fact that visual-spatial changes in proportions (from left to right) were involved, as 

opposed to temporal changes (as with the rectangles), the findings were the same. 

Again, p change judgments were effected not only by p changes from left to right, but 

also by n changes from left to right. Both n left and n right samples contributed to the 

effect of n change on p change judgments.  

Therefore, whether meaningless geometric symbols were presented sequentially, 

or smiling human faces in a socially meaningful context were presented simultaneously, 

proportion change judgments were biased by n changes in exactly the same pattern (i.e., 

n increases facilitated p increase detection but hindered p decrease detection, and vice 

versa for n decreases). Moreover, n changes were strong enough to influence p 

judgments even when no p change occurred, and in some cases n changes fully overrode 

the influence of p changes on participants change judgments.  

On first inspection, these findings are surprising given the body of evidence 

relating to the effectiveness of frequency formats, and in particular icon arrays, in aiding 

inductive reasoning (e.g., Garcia-Retamero & Cokely, 2013; Gigerenzer & Hoffrage, 

1995). No advantages were found from icon array formats although it seemed likely that 

semantically meaningful face icons combined with simultaneous sample presentation 

would have facilitated deeper level processing and increased judgment accuracy. Spatial 

comparison of the focal feature frequencies (i.e., via simultaneous presentation), should 

have been more effective in conveying spatial features and conceptual relations, thus 

yielding higher performance compared to when the proportional changes were assessed 

temporally (i.e., when the symbols were presented in sequence).  

Anomalies in p judgments occurred when proportional changes were inductively 

learned from an experienced sample (i.e., observing frequencies of symbols or smiley 

faces). However, confusions between sample and proportional changes were eliminated 

when normalized percentage formats were presented. It is therefore possible that the 
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data formats tested were inappropriately applied or measured in this particular judgment 

task, or that design oversights contributed to the findings in this particular context. For 

example, the 3,000 millisecond viewing time combined with the non-consecutive 

display of the focal feature (i.e., symbols and smiley faces) may have reduced peoples’ 

ability to inductively learn proportional changes. Schapira, Nattinger & McAuliffe 

(2006) demonstrated a similar effect when comparing frequency displays 

communicating lifetime risk of breast cancer. When the focal feature was consecutively 

highlighted versus randomly highlighted within the population sample (see figure 2.5), 

risk was judged as lower by both numerate and innumerate participants.  

In the case of Fiedler et al’s., (2016) numerical frequencies condition, the 3 

second observation time might have also hindered responses. For example, to determine 

whether a proportional difference actually occurred, the frequencies had to be summed 

per trial to compute n before comparing per pairing. Again, the sequential presentation 

of each pairing might have made the comparison more difficult under the time 

restriction.  

 

Figure 2.5 Consecutive Vs Random Highlighting of Focal Features 

The left panel shows an example of consecutive highlighting of the frequency of 

the focal feature versus random highlighting (on the right) as used by Schapira, 

Nattinger & McAuliffe (2006) when comparing the effectiveness of icon arrays in 

communicating the 9% lifetime risk of breast cancer in 50-year-old women.   
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2.10   Reasoning in Accordance with Probability Theory 

Contrary to Fiedler et al’s., (2016) findings, the effectiveness of normalized 

percentage formats over and above natural frequency representations are not widely 

supported. Standard normalized percentage formats are consistently shown to yield 

biased probability estimates, suggesting that rather than reasoning in accordance with 

probability theory, people employ various heuristic strategies (Cesana-Arlotti, Téglás & 

Bonatti, 2012; Gigerenzer & Gaissmaier, 2011; Shafir & Leboeuf, 2002; Ariely, 2009; 

Kahneman, 2011). The systematic biases associated with probability formats support 

the notion of human judgment as incompatible with mathematical models of 

probability. This is indicative of the view that rationality has evolved to function based 

on environmentally adapted heuristic strategies which facilitate human survival 

(Gigerenzer & Todd, 1999).  

However, using a simple model based on probability theory’s addition law 

(equivalent to the equation for disjunction), P(AvB) = P(A) + P(B) - P(A^B), Costello 

and Watts (2014) showed that people do possess the ability to make unconditional 

probability estimates in accordance with the laws of probability. From this perspective, 

judgmental biases such as conservatism, subadditivity and the conjunction and 

disjunction fallacies (Hilbert, 2012; Tversky & Koehler, 1994; Tversky & 

Kahneman,1983) are the result of random variation or noise in the judgment process 

which disappear when predictions for everyday repeated events (i.e., weather events) 

are averaged. The following simple probability model for events A and B was used to 

test the assumptions of the heuristic perspective of probabilistic reasoning by creating 

conjunctive (“and”) and disjunctive (“or”) probabilities, P(A^B) and P(AvB), as well as 

the individual probabilities P(A) and P(B).: 

XE (A,B) = PE (A) + PE (B) - PE (A^B) - PE (AvB)    

where PE (A) represents a person’s estimate for P (A) and PE (B) represents the 

person’s estimate for P (B), etc. There are there are an equal number of positive and 

negative terms in the expression which mean that the d, or noise terms are cancelled out. 

The rationale therefore, is that when averaged across predictions, the various biases on 

the individual expressions will cancel out, resulting in XE (A,B) = 0, in accordance with 

probability theory’s law of addition:  

X(A, B) = P(A) + P(B) - P(A^B) - P(AvB) = 0. 
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Participants made predictions, PE (A), PE (B), PE (A^B) and PE (AvB) for 12 pairs 

of A, B weather events from two sets (cloudy, windy, sunny, thundery and cold, frosty, 

sleety) which created pairings of low, medium and high probability events. Participants 

were asked what the probability of a given weather event would be on a randomly 

selected day in Ireland, for either a single (cloudy), conjunctive (cloudy and cold), or 

disjunctive event (cloudy or cold) (probability format), or on how many days they 

thought the weather event would occur from a 100 randomly selected days (frequency 

format).  

There was no effect of question format on predictions, and XE (A, B) values for 

each participants’ predictions across the 12 pairs of A, B events were symmetrically 

distributed around zero with an average XE value of 0.66 (SD = 27.1) which is very 

close to that predicted by probability theory (the predicted mean of 0 lay within the 99% 

confidence interval of the observed mean). Conjunctions and disjunctions were recorded 

at rates of 49% and 51% respectively, however even participants with high conjunction 

and disjunction fallacy rates still yielded values of XE close to zero.  

In a repeat experiment, the results held for estimates of event probabilities for 

conjunctions with negations, A ^ ¬B (A and not B), and B ^ ¬A (B and not A) where 

the derived sum equalled zero, and also for non-symmetric expressions involving an 

unequal number of positive and negative terms which generated left over noise terms 

(d). Averaging across the symmetrical models yielded a mean of -0.01 (SD = 29.2) 

(predicted mean = 0), and when one/two noise terms were left after cancellation, the 

same units of bias were observed in participants’ judgments. The mean probability 

estimates for the biased models showed values closely clustered around the predicted 

values, with a mean less than 0.001 SD from the predicted values.   

In this view, systematic biases in probabilistic judgments are therefore the result 

of noisy retrieval from memory and that by taking the mean of people’s estimates across 

repeated events, biases vanish to yield judgments in agreement with probability theory. 

This presents an interesting perspective on how we might approach probabilistic 

decision making in many situations. However, the importance of informational format 

to decision processes and performance are still opaque. It is likely that different 

probabilistic decision situations activate different judgment processes which are better 

supported by some frames and formats and not others – sometimes percentages and 

single point probabilities may be appropriate. The interplay between reasoning and data 

format is likely to be more complex than the frequency hypothesis suggests, particularly 
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as the type and variety of data we regularly interact with is rapidly increasing in all 

domains. The probabilistic revolution is thus ensuing at an increased rate and it is 

plausible that the human capacity for reasoning in accordance with probabilistic models 

is strengthening as our scientific and technological focus is being increasingly 

underpinned by machine learning approaches and mathematical modelling.  

Like Fiedler et al., (2016), Costello and Watts (2014) found no difference in 

probability estimates between framing questions in a numerical frequency formats 

compared to a probability or percentage data formats. Although on face value this is 

counterintuitive to the widely supported frequencies hypothesis, it does not rule out the 

possibility that in a broad sense, people do in fact reason in accordance with the laws of 

probability (as these laws are conceived by human minds), however, the cognitive 

processes behind the estimations are still based on recall of raw frequencies drawn from 

experience. The would account for why biases are cancelled out when judgments are 

averaged across successive estimates for repeated events. When sampling from memory 

this would be expected because of the noise in recall which would correspond to natural 

variation in the environment, including the degree to which events co-vary and interact 

with one other.  

It is likely therefore that the recall of frequency data is likely to be the default 

method of human statistical inference based on the automatic encoding and storage of 

event frequencies in memory (Hasher & Zacks, 1984). Evidence of probability 

estimates among children and animals using frequency data which align with optimizing 

models further support this perspective (Cesana-Arlotti et al., 2012; Kheifets & 

Gallistel, 2012).  

It is therefore likely that no one information format may be ‘good’ or ‘bad’. 

Instead, it is probable there is an interplay between how a particular data format is 

interpreted in a particular situation, the cognitive strategies activated by the task, and the 

measure used to determine judgment rationality. Thus, rather than perceiving 

inaccuracies in inferences as a sign of cognitive flaws and biases, it is more likely that 

such discrepancies represent the variations in event occurrences as they were encoded in 

memory (i.e., noise associated with the different co-dependencies and co-occurrences of 

events). As Costello and Watts suggest, averaging over a sample of a persons’ 

probability judgments for a given set of events over time may counteract biases 

observed when considering individual judgments in isolation. This method may be 

effective in yielding an overall probability estimate which aligns with probability 
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theory. However, judgment ‘rationality’ may differ considerably to rationality in the 

mathematical sense when considering specific real-world contexts and the measures of 

performance unique to those contexts.  

In sum, the findings discussed in the above review suggest that people possess a 

strong tendency to additively process numbers and assume linearity in the environment 

based on the ease and efficiency associated with learning and applying linear functions. 

These tendencies suggest that cognitive algorithms have developed to process 

information in concrete, absolute formats, based on event frequencies naturally sampled 

from the environment. The result of being predisposed to ‘think linearly’ and predict 

events based on linear relations, means that people are better able to interpret and use 

absolute values which require arithmetic operations and tend to make errors where 

percentages are concerned. Percentage format biases involve mishandling base rate 

information (i.e., failure to apply geometric operations) which translates into problems 

interpreting non-linear data and predicting future outcomes which following exponential 

trends.  

Although the propensity for additive processing and linear predictions is highly 

robust through human decision making, it is not necessarily the case that people cannot 

reason in accordance with statistical models based on probability theory. By altering the 

informational format from single point probabilities into frequencies using graphical 

frames and creating context in numerical judgment situations for comparative analysis 

of the data, people are shown to make mathematically accurate probabilistic inferences. 

Aside from incomprehensible probability formats, random noise involved in the 

encoding and recalling of events (i.e., potentially associated with event co-dependencies 

and co-occurrences) may also account for peoples’ judgment irrationality in the 

mathematical sense. As demonstrated when taking the average of a set of human 

judgments, mean predictions align with those of probability models.  

These results suggest that peoples’ probabilistic judgement processes may not be 

inherently ‘flawed’. Instead, the biases that exist result from the developmental 

processes of human cognition, yielding a propensity for handling data in absolute terms 

and anticipating the world in a linear fashion. Modern day probability theory thus 

presents a barrier to peoples’ interpretation of information, but not necessarily the 

human ability to rationalise. Depending on the situation, informational format and 

surrounding context, people can be facilitated to form effective judgments which are 

both statistically and environmentally ‘rational’. The onus is thus on matching data 
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formats and frames to fit with task demands and the motivational factors and cognitive 

strategies activated in certain environments to best support the characteristics of human 

judgment processes.  

In the following three chapters, five experiments are discussed which aim to 

address the questions raised throughout the review relating to how human rationality is 

differentially effected by numerical data framings and formats. To examine the 

robustness of biases across different judgment domains and levels of expertise, the 

probabilistic inferences of professionals and laypersons are assessed in noisy, real-world 

environments and consumer choice scenarios. Experiment 1 assesses the judgment 

performance of professional retail forecasters employed by a major UK Supermarket. 

Employees are tested in their ability to forecast product sales following linear and 

exponential trends when observed in absolute and percentage formats. This design thus 

assesses prediction performance based on interpreting matches versus mismatches 

between numerical functions and formats. Despite experience, employees displayed a 

robust tendency to additively process percentages and predict sales by linearly 

extrapolating trends based on the last two observed data points. This bias resulted in 

systematic under-forecasting (trend-damping) of increases and over-forecasting (anti-

damping) of decreases.  

Experiment 2 furthers the analysis of expert probabilistic judgment in the complex 

domain of humanitarian aid forecasting. Aid professionals are compared to non-experts 

in their ability to forecast real-world refugee camp data. The effects of noise on 

judgment performance is tested by presenting target time series data in sparse (i.e., 

single time series) versus rich (i.e., additional non-causal time series) contexts. Experts’ 

predictions were no more accurate than novices’ and both groups formed judgments by 

linearly extrapolating the data in both contexts. The tendency to linearly extrapolate 

increased in noise, particularly so among experts and correlated with forecasting error. 

One way in which noise impacted judgments was by influencing the trend direction of 

extrapolation. When all cues trended in the same direction, experts and novices tended 

to linearly project the ‘common trend’ and this tendency was predictive of forecasting 

error.  

Experiment 3a applies insights drawn from the previous chapters to the domain of 

consumer financial decision making. Using a randomized controlled trial design, 

mortgage choices are compared between three disclosure conditions involving a control 

(standard industry price comparison format) versus total mortgage costs disclosed in 
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current versus future interest rates with either a ‘current rates’ default (condition 2) or 

‘future rates’ default (condition 3). Combined with simultaneous onscreen presentation, 

the future rates default was significantly more effective in optimizing loan choices 

compared to the control or sequential presentation with a current rates default. 

Experiment 3b tests the framing effect identified in experiment 3a in conjunction 

with a behavioural disclaimer. The disclaimer is added to each condition to promote 

consideration of risk associated with BoE rate rises by increasing rate comparisons and 

depth of evaluative analysis of choice alternatives. The robustness of the framing effect 

was verified by finding no effect of the disclaimer on the proportion of fully optimized 

choices per condition. However, there were changes in proportions of choices made per 

rate frame and the degree of decision optimality (i.e., choice scores) alternated between 

rate frames with the addition of the disclaimer manipulation.  

Experiment 4 extends the rate framing effect to monthly mortgage repayment 

decisions. In condition 1, total loan costs and interest charges are framed over the full 

term (20 years) versus a reduced term (10 years) combined with monthly repayment 

amounts necessary to clear the balance over each term option. In condition 2, the same 

disclosure is used except with the addition of current versus future rates for the 20 

versus 10-year term costs. The combined disclosures of terms and rates in condition 2 

significantly increased repayment amounts above the least effective choice (i.e., most 

optimistic and unrealistic) scenario of the minimum necessary to clear the balance over 

20 years in current rates. The combined disclosures were thus more effective in 

counteracting riskier financial decision making associated optimistic perceptions of rate 

variability. As expected, higher temporal preference and lower levels of financial 

literacy were predictive of the tendency to make smaller (less optimal) monthly 

repayment decisions. Educational level interacted with the framing manipulations in 

both conditions, indicating the potential advantages of the combined disclosure in 

counteracting poor financial judgment associated with lower educational levels. 
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Chapter 3 

The Linear Prediction Heuristic in Expert Retail 

Forecasting 

This chapter seeks to address the theoretical question of whether people are 
prone to treat percentage points as whole numbers and make predictions by 
linearly extrapolating numerical data. Based on these possibilities, we predict a 
specific pattern of results among professional retail forecasters employed by a 
major UK Supermarket when assessed in their ability to forecast product sales 
trending linearly vs. exponentially and observed in absolute vs. percentage 
formats. Performance was worst when observed formats ‘mismatched’ functions 
and best when formats and functions ‘matched’. A robust tendency to linearly 
extrapolate based on the last two observed data points was shown, leading to 
systematic under-forecasting of increases and over-forecasting of decreases. 

3.1   Background and Rationale 

As discussed in the background literature review in chapter 2, the evidence 

relating to the tendency to make erroneous judgments where percentage and rate 

information is concerned is numerous and widespread. Both consumers and experts 

alike are shown to engage in cognitive short-cuts by arithmetically processing 

percentages when geometric operations are necessary.  

In professional settings there is a high demand on experts to make fast, accurate 

forecasting decisions, often based on highly variable data collated across multiple 

sources. In retail contexts for example, experts forecast future sales and make stock 

ordering decisions for thousands of individual products as well as whole product 

categories.  

Effective forecasting decisions in this context involve the application of rich tacit 

knowledge based on individual experience in the field combined with interpretation of 

statistical model data. For example, seasonal variability, individual product lead times, 

promotions and pricing variation, competitor activities, product trends and supplier 

negotiations are all important ‘un-modelled’ data points which shape forecasting 

decisions. Although a proportion of experts’ judgment is based on knowledge which 

exists outside of statistical models, individual stock and sales forecasting accuracy still 



 

 

49 

depends however, on peoples’ interpretation and application of the data generated by 

statistical models. Thus, when it comes to utilizing numeric information in the 

formation of a forecasting estimate, the ‘rationality’ of judgments in this particular is 

context is dependent on the ability to correctly interpret trends in data in different 

numeric formats which are generated by different statistical models and forecasting 

systems. The forecasters are then required to synthesize the various data points to make 

judgments which are informed by the multiple data sources.  

To mirror the real-world demands of the forecasting task, experiment 1 involves 

the retailers making point forecasts for three-monthly sequences of sales data presented 

in absolute or percentage formats. Akin to the differences in the trends and formats of 

the model outputs, the sequences in both formats trend either linearly or exponentially. 

The rationality of judgments is thus dependent on the forecasters statistical 

understanding of the effects of formats and functions. Specifically, the experiment tests 

the ability to correctly distinguish the effects of linear versus exponential functions and 

to correctly project the trends in situations when the observed numeric format differs to 

the trend function.  

Working with different statistical systems to forecast thousands of products across 

numerous different categories effectuates the propensity for costly errors. For example, 

interpreting a 10 percent decreases as a 10-point decrease in stock or sales in one 

display or data set, or summing a +10%, -10% rise and fall to predict no change from 

base can result in significantly inaccurate predictions of available stock or future sales. 

Such errors can have dramatic financial impact, especially when dealing with large 

orders or products involving high manufacturing costs and long lead times. Figure 3.1 

shows an example of a commercial forecasting tool in the retail domain, demonstrating 

the complexity of the prediction environment. The tool encompassed a vast array of 

data for all general merchandise product categories stocked by the retailer. Forecasters 

are required to synthesize multiple cues across graphical and tabulated data frames and 

in percentage and absolute formats to formulate forecasting estimates for stocks and 

sales levels.   

 



 

 

50 

 

Figure 3.1 Professional Retail Statistical Forecasting Tool 

Example of a statistical forecasting tool used by professional retail forecasters to 

formulate sales predictions and make stock ordering decisions. The forecasting 

environment for these retailers was complex and varied, involving multiple data cues 

framed in percentage and absolute values. Judgments were formed based on the 

synthesis of domain knowledge, time-series and tabulated data points which heightened 

the propensity to err, based on the process of data comparison across numerical formats 

and visual representations covering different time horizons.  

 Given the high task demands involved in professional retail forecasting, and that 

forecasters deal with multiple data sources daily, it is intuitive to assume that experts 

will accurately process sequential percentage changes and correctly interpret the effects 

of non-linear functions. However, the robustness of the tendency to additively rather 

multiplicatively process percentage information suggests that the human propensity to 

form predictions based on linear extrapolation will persist, despite experts’ specialist 

forecasting training and experience. To test the hypothesis that experts will exhibit the 

same interpretational errors and prediction biases observed in consumer and non-expert 

settings, experiment 1 examines expert merchandise forecasters’ ability to forecast sales 

trending in linear versus exponential functions when viewed in percentage versus 

absolute number formats.  

By alternating linear versus exponential growth functions with the numerical 

format of the sales figures, comprehension of the effects of numerical functions is 

revealed through the correct/incorrect use of additive versus multiplicative processing 
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when forming predictions. For example, figure 3.2 shows an exponentially increasing 

sales trend over four months and what the deleterious effects of additively instead of 

multiplicatively processing the percentage points can be when forming an estimate for 

the fourth month of sales.  

 

Figure 3.2 Arithmetically Processing Exponential Trends 

An example of an exponential sales trend increasing in +50% increments at each 

time point (blue line) with the sales figures displayed in absolute values and the effects 

of a sales forecast for the fourth month based on additive processing of the sales figures 

(the red point). The correct prediction for the fourth month is 337.5 units, which is 

computed multiplicatively by following the exponential trend (100x0.5, 150x0.5, 

225x0.5). However, if month four is computed arithmetically by adding +50 points to 

the base value at each time point (100+50, 150+50, 200+50=250), a significant under-

forecast results. In a retail context, linearly extrapolating an exponential trend in this 

way can have severe financial impacts which increase in accordance with the magnitude 

of the base measure. For example, one product unit may represent several 

hundred/thousand individual products, thus compounding the costliness of the 

prediction error in terms of the stock deficit.  
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3.2   Experiment 1  

Professional retail forecasters are trained and experienced in monitoring stock and 

sales levels and making ordering decisions based on predicted sales for thousands of 

products spanning different categories. The demand on professionals in commercial 

settings to make effective judgments is thus high, as the financial consequences for poor 

judgment can have highly detrimental business impacts.  

The patterns and biases in professional forecasting judgments can create effects 

over time which significantly shape business outcomes and impact financial 

performance. To examine experts’ propensity for linear biases (based on additively 

processing percentage data and linearly extrapolating non-linear trends), the prediction 

performance of professional retail forecasters employed by a major UK supermarket is 

assessed for exponential and linear sales trends which alternate between percentage and 

absolute number formats. It is expected that experts will treat the percentage points as 

absolute numbers and additively process the onscreen figures (i.e., add or subtract the 

values) even when inappropriate. It is predicted that this will lead to the formation of 

linear forecasts based on the arithmetic difference between the last two observations in 

each sequence. Findings are discussed in relation to the robustness of the linear 

prediction heuristic which is shown to characterize judgments in this expert domain.  

3.2.1   Method  

Participants  

One hundred and thirty-seven professional retail forecasters employed by a major 

UK supermarket (42.7% female, Mage 34.1 years, SDage 9.3 years) were recruited via a 

random sampling technique using a mailshot sent to their company email accounts. 

Each employee possessed an average of three years professional forecasting experience 

and their full-time duties involved forecasting and ordering all non-food items sold by 

the supermarket. To compensate for participation, a coffee voucher was emailed to 

participants on completion of the experiment.   

Design 

In a repeated measures 2 x 2 design, participants underwent four trials in a 

percentage format condition and four trials in an absolute number format condition. In 

the percentage condition, all the observed trial stimuli were shown in percentage format, 

whereas in the absolute condition, all the observed stimuli were presented in absolute 
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values. In both conditions, two trials increased and decreased in exponential functions 

and two trials increased and decreased in linear functions. Thus, each condition 

involved a match between the observed numerical format and sequence function in two 

trials and a mismatch between the observed format and sequence function in the other 

two trials. Trials were repeated (4 x 2) and randomized per condition and conditions 

were counterbalanced per participant.    

Materials  

Observed Trial Stimuli 

Table 3.1 shows the stimuli presented onscreen in each of the four trials per 

condition. Each trial involved a sequence of three numbers which related to the changes 

in product sales over three consecutive weeks. Trials 1 and 2 show the matched increase 

and decrease sequences for the absolute condition (i.e., linear trends observed in 

absolute values) and trials 3 and 4 show the mismatched sequences (i.e., exponential 

trends observed in absolute values). In the percentage condition, the opposite is shown, 

with trials 1 and 2 displaying the mismatched trial sequences (i.e., linear trends 

observed in percentages) and trials 3 and 4 displaying the matched sequences (i.e., 

exponential trends observed in percentages).  

Table 3.1 Observed Stimuli Per Trial and Condition in Exp 1  
The observed stimuli per trial relating to product sales for three consecutive weeks 

in the absolute and percentage format condition. 
 

Trial 1 Trial 2 Trial 3 Trial 4 

Linear increase Linear decrease Exponential increase Exponential decrease 

Absolute condition 

+203.125 units -203.125 units +100 units -337.5 units 

+203.125 units -203.125 units +150 units -225 units 

+203.125 units -203.125 units +225 units -150 units 

Percentage condition 

+101.56% -20.06% +50% -33.3% 

+50.39% -25.01% +50% -33.3% 

+33.51% -33.51% +50% -33.3% 
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Figure 3.3 shows the onscreen display of the trial stimuli. Each trial involved each 

three number sequence presented on a black background with each individual number 

displayed one at a time, transitioning down the screen from top to bottom for a period of 

three seconds per individual number. After the three second transition period, each 

individual stimuli value was removed from view and replaced by the next number in the 

sequence which then transitioned from top to bottom in the same mannor, until all three 

numbers had been viewed. After the three stimuli had been observed, a response box 

was displayed at the bottom of the screen and participants were prompted to enter their 

sales forecast for the fourth week to the nearest whole number (decimal points, minus 

values, zero’s and non-numeric values were not permitted) and press then ‘return’ when 

satisfied with their response.  
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Figure 3.3 The Trial Stimuli in Exp 1 

The visual presentation of the trial stimuli in both conditions showing an example 

of a mismatched exponential increase trial in the absolute format condition. In the 

absolute condition the individual stimuli (sales figures) were followed by the term 

‘units’ and in the percentage condition the stimuli were followed by a ‘%’ sign. All 

increasing sequences were presented in green with a preceding plus sign and all 

decreasing sequences were presented in red with a preceding minus sign.  
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Generation of the Trial Stimuli  

The trial stimuli in each condition were generated using a ‘design function’ 

(shown in figure 3.4) created specifically for the purpose of testing the hypotheses 

relating to the processing of numeric data in accordance with arithmetic versus 

geometric operations. The design function had a start value of 200.00 and an end value 

of 1012.50. In both conditions, the increasing trials were generated by moving across 

the function from left to right, and the decreasing trials were generated by moving from 

right to left. The italicized values relate to the linear and exponential changes in base 

rates between the start and finish points, each of which remained hidden throughout all 

trials. Table 3.3 displays all the values shown per trial and condition which were 

generated by the design function, including the unobserved base rate values as both an 

absolute value and percentage point.  

The correct predictions for the matched trials in the absolute condition were 

generated using the arithmetic mean of the three observed stimuli points (e.g., 

203.125+203.125+203.125 / 3 = 203.125 for linear increases), whereas the correct 

predictions for the mismatched trials in the absolute condition were computed using the 

geometric mean (e.g., 100*1.5*1.5*1.5 = 337.5 for exponential increases). In the 

percentage condition, the correct predictions for matched trials were produced using the 

geometric mean of the three observed values (e.g., 200*0.5*0.5 = 50 for exponential 

increases), whereas the correct predictions for the mismatched trials were computed by 

applying the arithmetic mean to absolute value changes from base (e.g., 203.125+ 

203.125+203.125 / 3 = 203.125 for linear increases). The arithmetic means for 

percentage condition mismatched trials were then converted back into percentages of 

the target value base rates to attain the correct predictions in the same format in which 

the observed trial stimuli was presented. 
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Figure 3.4 The Design Function used to Generate Stimuli in Exp 1 

The design function which was developed by the researchers to generate the trial 

stimuli used to test the hypothesis. The solid line shows the linear trials and the dotted 

line shows the exponential trials. Moving from left to right across the design function 

generated the increasing trials in both conditions, and moving from right to left 

generated the decreasing trials. The italicized values are the linear and exponential 

changes in base rate between the start value of 200.00 and end value of 1012.50. The 

base values remained hidden from participants in all trials. The values labelled as ‘units’ 

were the trial stimuli observed onscreen in the absolute condition, and the values 

labelled with ‘%’ signs were the trial stimuli observed onscreen in the percentage 

condition. All the observed and hidden stimuli values generated by the design function 

per trial and condition are shown in table 3.2. In the percentage condition, the far right-

hand column shows the conversion of the onscreen percentages into absolute values. 

The method used to convert the observed stimuli in the percentage condition into 

absolutes can be viewed in appendix 1. Participants responses to the percentage 

condition trials were also converted into absolute values using the same method to 

simplify the analysis by having all values in the same format as the design function.  
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Table 3.2 All Values Generated by the Design Function in Exp 1 
All observed trial stimuli and hidden base rate values generated by the design 

function per trial and condition. 
 

Absolute condition 

 Trial stimuli 
(Observed) 

Target forecast 
(4th point) 
(Hidden) 

Base rate 
changes in 

absolute values 
(Hidden) 

Base rate changes in 
percentages 

(Hidden) 

Linear 
increase 

203.125 
203.125 
203.125 

203.125 

200 
403.125 
606.25 

809.375 

2.015625 % 
1.503876 % 
1.335052 % 
1.250965 % 

Exponential 
increase 

100 
150 
225 

337.5 

200 
300 
450 
675 

1.5 % 
1.5 % 
1.5 % 
1.5 % 

Linear 
decease 

-203.125 
-203.125 
-203.125 

-203.125 

1012.5 
809.375 
606.25 

403.125 

0.799383 % 
0.749035 % 
0.664948 % 
0.496124 % 

Exponential 
decrease 

-337.5 
-225 
-150 

-100 

1012.5 
675 
450 
300 

0.666667 % 
0.666667 % 
0.666667 % 
0.666667 % 

Percentage condition 

 
Onscreen 

percentages 
(Observed) 

Target forecast 
(4thpoint) 
(Hidden) 

Base rate 
changes 

in absolute 
values 

(Hidden) 

Conversions of 
onscreen 

percentages into 
absolutes values 

(Hidden) 

Linear 
increase 

101.56 % 
50.39 % 
33.51 % 

25.01 % 

200 
403.125 
606.25 

809.375 

203.125 
203.125 
203.125 
203.125 

Exponential 
increase 

50 % 
50 % 
50 % 

50 % 

200 
300 
450 
675 

100 
150 
225 

337.5 

Linear 
decrease 

-20.06 % 
-25.01 % 
-33.51 % 

-50.39 % 

1012.5 
809.375 
606.25 

403.125 

-203.125 
-203.125 
-203.125 
-203.125 

Exponential 
decrease 

-33.3 % 
-33.3 % 
-33.3 % 

-33.3 % 

1012.5 
675 
450 
300 

-337.5 
-225 
-150 
-100 
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Procedure  

The experiment was conducted at the supermarket’s head-quarters on the 

employee’s personal computers during an ordinary working day. An invitation to 

participate was sent via mailshot to the employees work email addresses which 

contained a link to the online experiment. After clicking on the link, participants were 

provided with the following information on the landing page of the experiment before 

giving informed consent:  

“In this brief experiment you will observe eight trials involving sales of general 

merchandise products over a three-week period. Green numbers indicate that the sales 

increased that week whereas red values indicate that they decreased. After observing the 

changes for each of the three weeks, you will be asked to predict how much the sales 

will increase or decrease in the fourth week.”  

After proving details of age, gender and years of professional forecasting 

experience, participants were then instructed to “press return when ready to observe the 

sales changes by week” which took them to the first trial.  

As shown in figure 3.3, each trial involved the three sales figures for each week 

transitioning in isolation from the top to the bottom of the screen in a three-second 

timed interval. After the third sales figure had been observed, a response box was 

immediately provided at the bottom of the screen and participants were asked to make 

their prediction for the fourth week by typing in a whole number. No time restriction 

was applied to responses and participants were free to amend their predictions before 

submitting the response and moving to the next trial. At the half way point between the 

trials, a blank partition screen was presented informing respondents that the format 

would change for the remainder of the trials (e.g., if they had just completed trials in the 

percentage condition, they would now observe trials in the absolute condition and vice 

versa). The partition screen delivered the following instruction: 

“So far you have seen sales changes in absolute units [percentages]. Weekly sales 

changes will now be shown in percentages [absolute units], as will the response. Please 

press RETURN to continue.” 

On completion of all eight trials, employees were thanked for their participation 

and provided with a remuneration code for a free drink.  
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3.2.2   Results  

Outlier Removal  

To simplify the analysis, participants’ responses in the percentage condition were 

converted into absolute numbers to produce values which were all in the same format as 

the design function. The method used to convert the percentage condition trial stimuli 

and responses is shown in appendix 1. Next, outliers were removed by fitting human 

responses to the design function using absolute squared error per trial. Error per trial 

was then averaged per participant to give one data point each and the points were 

plotted. Six data points which fell over 1.5 standard deviations above the mean were 

removed, leaving 131 respondents in the dataset. 

Human Performance in Relation to the Design Function  

To determine an initial measure of performance in relation to the design function, 

participants mean predictions were compared to the design function fourth points 

represented by the broken lines. Figure 3.5 shows the mean human forecasts per trial 

and condition.  

 

 

Figure 3.5 Human Performance in Relation to the Design Function in Exp 1 

Mean participant forecasts per trial and condition in relation to the design function 

fourth points (represented by the dotted lines) with 95% within-participant confidence 

intervals. Each of the four colours of the dotted lines representing the design function 
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correspond with the colours for the four different trial types. Overall, the largest 

differences in relation to the design function tended to occur for the mismatched trial 

types in both conditions (i.e., the trials in which observed absolutes increased and 

decreased exponentially, and observed percentages increased and decreased linearly). In 

both conditions, the pattern of responses indicated the general tendency to 

underestimate the increases and overestimate the decreases. This was particularly 

pronounced for the mismatched trial types. This suggested that prediction error was 

heightened when trend functions differed to the numerical format in which the points 

were observed.    

To statistically examine performance in relation to the design function, a repeated 

measures ANOVA was conducted on the absolute forecasting error by trial type and 

condition. To test for the effects of condition order on prediction performance, 

percentage versus absolute condition stimuli order was also included as a predictor in 

the model. Figure 3.6 shows the absolute error per trial and condition. A significant 

main effect was found for trial type, F(3,1032) = 5.77, p<.001 and condition, F(1, 1032) 

= 8.39, p<.01 which indicated that increases were forecast with less accuracy compared 

to decreases (M=28.4 vs. M=16.8) and observed percentages were forecast with less 

accuracy compared to observed absolutes (M=19.2 vs. M=26.0). There was also a 

significant interaction between trial type and condition, F(3, 1032) = 46.50, p<.001 

which showed that performance was heightened when the observed formats matched the 

trend functions and reduced when observed formats mismatched the trend functions 

(M=9.3 vs. M=35.9). There was no effect of condition order on absolute forecasting 

error, F(1,1032) = 0.14, p=0.70, nor an interaction between condition order and trial 

type, F(3, 1032) = 0.31, p=0.81. It was therefore assumed that condition order had no 

effect on forecasting performance. Thus for simplicity, the analysis proceeds from this 

point excluding condition order as a factor.       

Post hoc pairwise comparisons with Bonferroni corrected p values confirmed that 

across conditions, exponential decreases (M=10.40) were forecast with significantly 

greater accuracy compared to exponential increases (M=27.99), p<.001, linear increases 

(M=28.91), p<.001, and linear decreases (M=23.20), p<.05. Overall, absolute condition 

trials were forecast with greater accuracy (M=19.24) compared to percentage condition 

trials (M=26.01), p<.05. The significant interaction indicated that forecasting error was 

significantly higher for trials when they were observed in mismatched functions.   
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Figure 3.6 Absolute Error in Relation to the Design Function in Exp 1 

Absolute forecasting error in relation to the design function per trial with 95% 

within-participant confidence intervals. The higher bars in each condition confirm the 

results of the plots in figure 3.5, showing that performance was worst on the 

mismatched trials which supports the significant interaction between trial type and 

condition (i.e., accuracy depended on the observed formats being matched to the sales 

trend functions in both conditions). 

Performance in the Mismatched Trials   

Figure 3.7 shows the mean forecasting error for matched versus mismatched trial 

types. Paired t-tests indicated that there was significantly higher forecasting error in 

relation to the design function in the mismatched compared to the matched trial versions 

for the linear increases, t(130) = 7.21, p<.001, linear decreases, t(130) = 7.95, p<.001, 

exponential increases, t(130) = 5.48, p<.001, and exponential decreases, t(130) = 5.74, 

p<.001. In terms of directionality, error was negative in relation to the design function 

target point for the increasing trials (indicating an ‘under-forecast’ effect), and positive 

for the decreasing trials (indicating an ‘over-forecast’ effect). In accordance with the 

hypothesis, this pattern of human forecasting error indicates the propensity to form 

linear predictions when processing percentage information based on the tendency to 

forecast towards the mean. This results in estimates which act to under-forecast 

increasing and over-forecast decreasing trends.      
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Figure 3.7 Error in the Matched Vs Mismatched Trials in Exp 1 

Mean forecasting error for mismatched versus matched trial types in relation to 

the design function fourth points with 95% within-participant confidence intervals. The 

degree of error per trial relates to the extent of under-forecasting in the case of the 

increasing trials and over-forecasting in the case of the decreasing trials. Thus as shown, 

the greatest extent of underestimation occurred for the mismatched linear and 

exponential increase sequences. The higher overall error for all the mismatched trials 

compared to the matched, indicated that participants were less effective at predicting 

numerical outcomes when the necessary method of processing (i.e., additive or 

multiplicative) was incongruent with the expression of the observed units (i.e., 

percentage points or absolute units).  

Model-based Analysis of Forecasting Error    

In reference to the hypothesis, it is predicted that the linear extrapolation bias is 

robust to the extent that even trained and experienced expert retail forecasters will show 

a strong tendency to form predictions by projecting trends linearly. Regardless of 

whether percentage points or absolute numbers are observed, it is expected that experts 

will treat all numerical stimuli as absolute values which will lead to predictions which 

follow linear trends, irrespective of whether the actual growth functions are linear or 

exponential. In this view, the linear prediction bias is expected to be so pronounced that 

it will influence peoples’ interpretation of growth functions and override the ability to 

accurately distinguish between linear and non-linear trends (and thus make effective 

estimates of sales and stock values).  
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To test the propensity to project trends linearly, experts’ predictions were 

examined in relation to three formal models; two different linear models and one 

averaging model. This was done by fitting participants’ estimates to each model per trial 

and condition using absolute error. The first of the linear models was a ‘2-regression’ 

model, based on the last two observable data points per trial. This was generated by 

applying linear regression to the second and third onscreen points in each trial. The 

second linear model was a ‘3-regression’ model which incorporated all three observable 

stimuli and was generated by regressing on all three onscreen points per trial. The third 

model was a ‘3-mean’ model which was included as a measure of potential non-

linearity of forecasts. This was created by averaging all three observed stimuli per trial. 

Both the 3-regression and 3-mean models use all of the information disclosed per trial 

to formulate their predictions. They were therefore included in the analysis for 

completeness and to provide comparison to the hypothesised method of human 

forecasting which involved use of only the last two observed data points per trial. (Full 

details of how the models were generated can be viewed in appendix 2).  

The degree to which participants’ predictions fit the 2 and 3-regression models 

thus indicates the degree of forecast linearity as dependent on the use of either all three 

data points, or only the last two observable points per trial. Predictions which are 

reflective of the 3-mean model suggest people are forming judgments by linearly 

extrapolating using all the available data. However, predictions which are best fit to the 

2-regression model indicate that people are applying a more streamlined version of the 

linear heuristic strategy, based on use of minimum data points (i.e., only the last two 

observations of the three stimuli points per trial). 

Performance which aligns with the 3-mean model on the other hand, indicates the 

tendency to apply non-linear extrapolation, derived from averaging the three observed 

data points per trial. It may be appropriate to apply this strategy in noisy environments 

or where cyclical trends exist such as in seasonally varying data. In the context of the 

experimental trials, it may therefore be less rationale to adopt an averaging forecasting 

strategy, as the presentation of a short three-point sequence in the absence of additional 

cues does not indicate high variance or the presence of a cyclical trend. Thus, the 

likelihood is that people will be most inclined to make errors in processing the 

percentage data, leading them to extract and project linear trends. This will hinder the 

capability to correctly identify and project exponential growth.  
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It is therefore expected that participants will employ minimal cues and make 

predictions which will be best fit to the 2-regression model based on the fast, frugal 

arithmetic processing of the last two data points observed onscreen per trial. Treating 

percentage points as absolute numbers will lead to adding or subtracting values even 

when inappropriate which will promote the propensity to forecast linearly based on the 

arithmetic difference between the last two observations in each sequence. This method 

is more likely to occur that a 3-regression forecasting method which increases the 

cognitive demands associated with processing more data points, thus making for a less 

efficient strategy. The results of the model fits are shown in figure 3.8 which display 

participants’ forecasts in relation to each model prediction in the absolute condition 

trials (panels A - D), and in the percentage condition trials (panels E - H).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

66 

Figure 3.8 (A – D) The four panels below show the human and model predictions 
for absolute condition mismatched exponential increase (A) and exponential decrease 

trial (B), the matched linear increase (C) and linear decrease trial (D). 

       
A (Exponential increase)   B (Exponential decrease) 

      
C (Linear increase)    D (Linear decrease) 
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Figure 3.8 (E – H) The four panels below show the human and model predictions 
for the percentage condition mismatched linear increase (E) and linear decrease trial 

(F) and the matched exponential increase (G) and exponential decrease trial (H). 

        
E (Linear increase)    F (Linear decrease) 

             
 

G (Exponential increase)   H (Exponential decrease)                      
Figure 3.8 Human Performance in Relation to Formal Models in Exp 1 
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Participants’ forecasts in relation to the 2-regression, 3-regression, 3-mean model 

and design function fourth point predictions per trial in the absolute condition (A) and 

percentage condition (B) with 95% within-participant confidence intervals. The first 

three data points marked on the design function in each plot are the stimuli points 

observed by participants in each trial. The data point marked on the dashed line in each 

plot is the participants mean fourth point forecast for that trial. In the mismatched trials 

in the absolute condition (i.e., the exponential increase and decrease trials) and the 

mismatched trials in the percentage condition (i.e., the linear increase and decrease 

trials), the design function reflects the actual stimuli observed in the trials. Whereas in 

the matched trials in both conditions, the design function reflects the hidden base rate 

changes in absolute values, and the values marked on the design function in these trials 

are the observed stimuli per trial. (Only the design function is shown in the matched 

trials because each observed stimuli value was the same per sequence which meant that 

each of the model fourth point predictions were also the same as the design function).  

As shown in figure 3.8, human accuracy in the matched trials was fairly high in 

both conditions, based on very similar predictions to the design function (and model) 

predictions in each case. In the mismatched trials however, human judgments were most 

similar to the 2-regression model in both conditions. This suggests that participants 

forecast trials across absolute and percentage format conditions using a method akin to 

linearly extrapolating based on the last two observed data points per trial.  

To determine whether the 2-regression model could account for participants’ 

method of prediction formation across all the trial types (i.e., in both matched and 

mismatched trials), the 2-regression, 3-regression and 3-mean model predictions were 

fit to human forecasts using absolute error per participant, per trial and condition. This 

yielded 24 individual error values per participant (i.e., 8 trials x 3 models). The errors 

were then averaged per participant, per condition to give 131 error values for each 

model per condition. Figure 3.9 shows the mean absolute error for all trials per model 

and condition.  

A two-way repeated measures ANOVA conducted on the mean absolute 

forecasting error per model showed a significant main effect for condition, F(1,774) = 

66.89, p<.001, a main effect for model F(2,774) = 168.92, p<.001, and a significant 

interaction between condition and model F(2,774) = 14.91, p<.001 yielded by the 

significantly heightened mean error for the 3-regression and 3-mean models in the 

percentage condition. Pairwise comparisons with Bonferroni corrections confirmed that 
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mean error was higher across all models in the percentage condition (M=63.52) 

compared to the absolute condition (M=41.70), p<.001, and across both conditions, 

mean error for the 2-regression model was significantly smaller (M=21.46) compared to 

the 3-regression (M=46.78) and 3-mean models (M=89.63), p<.001. Thus, based on 

least absolute error, the 2-regression model was shown to best describe participants’ 

predictions across each trial type.     

 

Figure 3.9 Mean Absolute Error in Relation to Formal Models in Exp 1 

Mean absolute forecasting error per participant per trial and condition for the 2-

regression, 3-regression and 3-mean model with 95% within-participant confidence 

intervals of the mean. Across trials in each condition, the smallest error occurred for the 

2-regression model which indicated that participants forecast in a way most akin to 

linearly extrapolating using the last two observed data points regardless of the 

numerical format or trend function.  

Further statistical verification of the best model fit across trials and conditions 

was provided by calculating the frequencies of least error counts for participants’ 

forecasts across trials for each model. (The results of the frequency counts are shown in 

figure 3.10). A chi-square analysis conducted on the frequencies per model indicated 

that the 2-regression model achieved the highest frequency of least error counts across 

conditions X2(2, 262) = 6.67, p<.05, confirming the expectation that estimates were 

formed in accordance with the tendency to predict linearly based on additively 

processing the last two data points observed onscreen in each trial.  
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Figure 3.10 Least Absolute Error Counts Per Model in Exp 1 

Least absolute error counts per participant, trial and condition for the 2-regression, 

3-regression and 3-mean model. As shown, the 2-regression model achieved a 

significantly higher frequency of east error counts across trials in both conditions, 

supporting the hypothesis that experts would display the propensity to form linear 

forecasts when making judgments based on data presented in numeric formats, 

regardless of whether the data are trending linearly or exponentially.  

Supplementary Analysis of Linearity 

Although the 2-regression model was shown to be the best characterization of 

human forecasting estimates in terms of formal models, it was also possible that 

peoples’ estimates may have followed a curve which was not completely linear, but 

involved a degree of non-linearity which was not undetected by the formal model fitting 

procedure. To explore this possibility, Shapiro-Wilks tests were conducted on the 

distribution of error in relation to the design function fourth point. The tests yielded 

significant results (p<.05) for each trial type which as suspected, indicated a degree of 

non-linearity in estimates across trials.  

It is thus concluded that people exhibit a strong linear tendency in forecasting 

estimates which is best explained in terms of a 2-regression based on the last two points 

observed per trial. However, on examination of performance in terms of the distribution 

or error in relation to the target fourth point, it is apparent that judgments may not be 

strictly linear in nature and that people are likely to show some sensitivity to the 

acceleration of the trend, even though it is underused. Follow up studies are thus 
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necessary to further explore the nature of the non-linearity in peoples’ estimates and the 

factors contributing to subtle differences in the degrees of judgment linearity which may 

not be accurately captured with formal prediction models. 

3.2.3   Discussion 

The findings confirmed expectations, showing that despite expert domain 

knowledge, professional retail forecasters were insensitive to differences in functions 

and exhibited a consistent tendency to form linear predictions when presented with 

percentage information and non-linear growth trends. The results support the robustness 

of the linear prediction heuristic based on the propensity to process numeric values 

simultaneously, using arithmetic operations to form estimates of future events whether 

appropriate or not. Retail forecasters were shown to predict future outcomes for 

numbers in both linear and exponential trends by using the absolute difference between 

the last two observations per trial. This suggests that the bias occurred in the 

interpretation of the numeric format. The observed values in each trial were processed 

as absolute numbers, hence the same 2-regression method was applied even when a 

percentage sign was shown.  

These results dovetail with wider literature relating to percentage format biases in 

which both experts and novices are shown to display a robust tendency to additively 

process percentage points where multiplicative operations are required. As outlined in 

review in chapter 2, this strong bias for arithmetic processing and linear trends is 

associated with inaccurate numerical estimates and predictions across many 

professional and consumer choice domains (e.g., Larrick & Soll, 2008; Stango & 

Zinman, 2009; Newall & Love, 2015). The results of experiment 1 therefore support the 

notion that the tendency to assume linearity in the environment is derived from the 

underlying bias to count and compute values in concrete terms, assuming absolute 

numbers with non-normalized base rates.  

Compared to multiplicative computations, adding and subtracting numbers 

arithmetically provides a quicker and easier method of processing and is thus favoured 

as a more efficient heuristic strategy, particularly in complex domains. In this view, on-

the-spot arithmetic calculations provide the premise for predictions which follow linear 

patterns when extrapolated into the future. The ability to perceive non-linear curves and 

accurately project exponential trends conversely, is dependent on comprehending 

sequential numerical processing. Thus, it is likely that people are primed to seek and 
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project linear trends in the environment because they are congruent with underlying 

cognitive propensities to apply heuristic strategies which align with intuitive cognitive 

processing methods.  

The reliance on a 2-point linear extrapolation strategy created a trend-damping 

and anti-damping effect in which increases were underestimated and decreases were 

overestimated. These effects were amplified in the trials in which the observed number 

format mismatched the trend function. This resulted in the judgments in the matched 

trials being significantly more accurate than those in the mismatched trials, because 

relying on the absolute difference between the last two observations when the values are 

the same will yield an accurate prediction of the fourth point. Conversely, applying this 

method to observed values which differ will lead to inaccurate judgments. Thus, it is 

apparent that the understanding of numerical functions in forecasting contexts of this 

kind is likely to be distinct or secondary to the interpretation of the numerical format. It 

is the biased interpretation of the format which is thus likely to be the key determinant 

of peoples’ judgment performance.  

This study highlights the importance of numerical format in forecasting judgment, 

indicating the problems which arise from the incongruence between the human 

propensity to additively process data and identify linear relations, and single point 

percentage data and non-linear extrapolations of statistical forecasting models in 

complex forecasting environments. These findings are salient in that they have been 

demonstrated among experts possessing specialist training, knowledge and experience 

in their field. It is therefore likely that the same tendencies and numerical format biases 

will also characterise the judgment processes of novices and consumers who do not 

possess any background knowledge or forecasting skill and experience.      

Although the task demands and level of complexity involved in the experiment 

were representative of the experts’ professional forecasting role, it is possible that the 

absence of additional contextual information impacted their judgmental performance. 

This possibility suggests that forecasting decision making in certain domains may be 

associated less with statistical rationality and ability to accurately interpret trends based 

on statistical models, and more with the application of tacit domain knowledge and un-

modelled data sources.  
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Due to economic and practical constrains associated with conducting research in 

the real-world commercial setting of the Supermarket headquarters, it was not possible 

to continue experimentation with this particular group of retail forecasters. Ideally, the 

study would have been extended with the examination of other factors relevant to expert 

performance in addition to the interpretation formats and functions. For example, 

assessing other aspects of knowledge and factors important to performance such as 

promotional and seasonal effects and supplier relations would increase our 

understanding of ‘expertise’ and how it develops in such settings. Furthering the 

analysis of how retailers synthesize these ‘unmodelled’ domain specific features with 

statistical model output would thus provide a more comprehensive understanding of 

‘expertise’ in human forecasting which would be relevant to other modern complex 

statistical environments.     

To continue with the investigation of expert judgment in complex real-world 

settings, chapter 4 extends exploration to the field of humanitarian aid by focusing on 

the importance of contextual information and the effects of additional cues on judgment 

performance. In experiment 2, experts in the aid field and novices without forecasting 

experience are assessed in their forecasting performance for real-world refugee camp 

data. The emphasis is on the effects of varied informational cues in rich data 

environments and how different levels of complexity influence patterns in peoples’ 

predictions and the propensity to extract linear trends in noise.  
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Chapter 4 

Rich Data Contexts & Phantom Trend 

Forecasting in Humanitarian Aid Experts  

In this chapter, humanitarian aid experts are compared to non-experts in their 
ability to forecast real-world refugee camp data. The effect of noise is tested by 
presenting target time series data in sparse versus rich contexts. Experts’ 
predictions are no more accurate than novices and both groups formed judgments 
by linearly extrapolating the data in both contexts. The tendency to linearly 
extrapolate increased in noise, particularly so among experts and correlated with 
forecasting error. Error in noise was found to be associated with projecting 
’common’ trends (i.e., when all cues trended in the same direction). This suggests 
that the linear prediction bias is reinforced in more varied conditions, based on 
visual heuristic strategies employed to identify trend congruencies. 

4.1   Background and Rationale 

In the previous chapter, the examination of expert judgment involved assessing 

professional retailers’ ability to interpret numeric data and compute estimates based on 

values presented in alternating frames and growth functions. From this perspective, 

performance was assessed in terms of participants’ numerical skill and ability to 

interpret the data made immediately available within the experimental setting. It could 

therefore be argued that the trial stimuli and design may have influenced participants’ 

responses, or yielded estimates which may not have accurately reflected the retailers’ 

true forecasting abilities or propensities.  

However, the nature of the data presented in the trials closely resembled that of 

the numeric information used by the retailers on a daily basis. Specifically, the task 

involved forming stock and sales forecasts by combining percentage points and absolute 

figures across multiple forecasting tools and systems. The trial stimuli therefore 

presented the same judgment task demands involved in the retailers’ every-day 

forecasting role, thus generating an accurate assessment of what characterized expertise 

in this particular environment.  
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To explore the characteristics and importance of ‘expertise’ in other professional 

contexts, experiment 2 examines the more ‘intuitive’ and naturalistic judgment 

processes involved in the field of humanitarian aid. The forecasting performance of 

expert aid workers and novices is assessed when presented with sparse context data 

versus rich context trials which involve additional non-causal morbidity indicators to 

test how experts react and what that may indicate regarding the application of domain 

knowledge and intuitive judgment processes. Judgement ‘rationality’ in the aid setting 

is thus assessed in terms of the aid workers’ ability to accurately interpret the cyclical 

nature of the widely recognized target data trend and to project the trend independently 

of the rich context cues which are known among aid workers to be non-causally related 

to the target series.  

In contrast to the professional retail domain in which the accurate interpretation of 

the effects of functions and formats is important to judgment performance, expertise in 

the aid setting is dependent on the ability to combine rich knowledge of unmodelled 

variables with statistical models of morbidity rates to formulate supply and demand 

estimates. Such tacit knowledge involves understanding how different indicators impact 

upon on one-another in refugee camp situations for example, and how seasonal factors 

can influence morbidity rates in specific regions.  

Thus, where the professional retailers’ judgment is dependent more on the 

numeric data in the immediate task environment, expert performance in the 

humanitarian aid environment is shaped to a larger extent by their application of 

knowledge and experience of wider factors beyond the data frame. The experiment 

examines how non-causality related morbidity cues are handled in ‘noisy’ context trials 

in contrast with sparse data trials to investigate how experts apply knowledge of cues 

and seasonal variability to data presented in particular formats and frames. For example, 

‘intuitive’ judgment processes or even optimistic tendencies may come into play which 

lead experts to make conservative estimates of morbidity rates or to assume that 

additional cues presented in the data environment are important to the target data in 

some way, despite the knowledge that they are unrelated in the real-world.  

In situations of uncertainty, experts are often relied upon to make critical 

judgments. For example, expert aid workers forecast refugee counts in order to match 

camp supplies with needs. In highly variable environments, one danger is that people 

may detect trends when in reality the fluctuations arise from noise. Forecasting based on 

these phantom trends (e.g., linearly extrapolating when noise governs the system), leads 
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to greater error than baseline models which forecast using the mean of past observations 

or the previous point. We evaluate whether aid workers show this pattern of linear bias 

within their expert domain. Expert aid workers’ forecasts were no better than novices, 

and experts showed stronger linear extrapolation biases in richer (i.e., more realistic) 

contexts. Findings suggest that the harmful tendency to find meaning in noise may be 

accentuated by expert domain knowledge.  

We rely on experts to accurately assess the status of real-world events and make 

consequential forecasts using rich, domain specific knowledge (Philips, Klein & Sieck, 

2004). Within their field, experts’ breadth and depth of knowledge and appreciation of 

contextual information can increase forecasting performance (Armstrong, 1985; 

Lawrence et al., 2006), facilitate integration of data cues (Einhorn & Hogarth, 1975; 

Hoch & Schkade, 1996), and assist in understanding relationships among predictor 

variables (Seifert & Hadida, 2013). In a retail environment for example, the more 

familiar experts are with products and contextual factors (such as seasonal differences 

in demand), the better their forecasting accuracy (Edmundson, Lawrence & O’Connor, 

1988; Seifert et al., 2015) and adjustments to statistical forecasts (Goodwin & Fildes, 

1999; Sanders & Ritzman, 2001).  

Despite domain knowledge, there are however a number of settings in which 

experts’ judgmental forecasts are found to be no more accurate than novices 

(Armstrong, 1980, 1991; Lawrence & O’Connor, 1993). Indeed, those with greater 

expertise have been shown to perform worse in the financial sector (Önkal & 

Muradoǧlu, 1994; Wilkie-Thomson, Onkal-Atay, & Pollock, 1997). The high volatility 

of this domain is considered to make forecasting particularly difficult (Kasa, 1992; 

Makridakis & Taleb, 2009), potentially leading experts to chase trends which may 

simply be noise. 

What explains these contrasting results, wherein experts surpass novices in some 

situations but in others are no better?  There are likely multiple complementary 

explanations. Here, we test one hypothesis, namely that experts in noisy domains feel 

licensed by their rich contextual knowledge to extract patterns from time series that in 

reality are nothing more than noise. This possibility is consistent with prior work and 

makes an additional prediction: The richer the context, the stronger experts’ propensity 

to infer trends. To foreshadow, we test this hypothesis with expert aid workers 

forecasting morbidity indicators commonly encountered in refugee camps throughout 

the world. In this complex, highly variable domain, we found that experts’ forecasts 
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were no better than novices and their tendency to extract misleading trends was 

heightened by richer contexts (i.e., when they were provided with more information 

about the camp situation).  

Findings relating to how people learn predictive relationships between stimulus 

and response variables show that people possess a strong tendency to apply linear 

functions when forming judgments under uncertainty (DeLosh, Busemeyer, & 

McDaniel, 1997). For example, linear relations are assumed between everyday variables 

such as body weight and height, price and quantity, drinks consumed and blood alcohol 

level, etc. The tendency to extract linear patterns also commonly extends to domains 

where it is inappropriate such as retail forecasting (Love & Parker, in preparation), and 

in financial transactions where costs and benefits compound over time (McKenzie & 

Liersch, 2011).  

Another example of the strong human propensity to form linear inferences is 

shown by Hohle and Teigen (2015) who identify a ‘trend effect’ in which novices are 

shown to linearly project experts’ forecasts for natural events by extending the trend 

direction of past predictions based on two historical data points. The propensity to 

linearly extend current trends is shown to create significant over and underestimates of 

the risk of natural events compared to experts’ prognosis. Overall, the most successful 

models of how people learn and generalize functional relations have a strong bias to 

extract linear patterns from observations (DeLosh et al., 1997; Kalish, Lewandowsky & 

Kruschke, 2004). On this basis, we expect to see a tendency among experts and novices 

to detect and project linear trends in richer contexts (i.e., where camp data variability is 

increased).  

Finding linear trends in observations that arise from noise will lead to greater 

forecasting error. This conclusion readily follows from basic concepts in statistics and 

machine learning, such as overfitting and the bias-variance trade-off (e.g., Gemen, 

Bienenstock & Doursat, 1992). Consider a time series that is pure noise (i.e., 

observations are generated by a normal distribution). The best guess for the next 

observation is simply the mean of the past observations. If instead a linear trend model 

were fit to the time series, the idiosyncratic nature of the past observations (i.e., the 

training sample variance) would lead to poor prediction for the next observation 

because the inferred trend would diverge from the mean of the observed items (which is 

the best estimate of the next observation). 
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People’s tendency to treat randomness as signal and extract phantom trends from 

noise (Harvey, 1995; Harvey, Ewart & West, 1997; Lopes & Oden, 1987) leads to 

judgment inaccuracy in noisy environments (Brehmer, 1978; Kahneman & Tversky, 

1973) which increases with complexity (Lee & Yates, 1992). Our contention is that 

providing additional context (evoking a complex real-world scenario) will increase 

experts’ tendency to find trends in observations. In support of this notion, providing 

people with additional cues (akin to context) in complex prediction tasks reduces 

performance (Harvey, Bolger & McClelland, 1994). These observations dovetail with 

the view that unadjusted expert forecasts are least useful in domains that are rich, 

complex, and uncertain (Green & Armstrong, 2007a, 2007b; Tetlock, 2005). 

In sum, forecasting morbidities in a humanitarian crisis is a rich, complex, and 

uncertain domain. In this study, experts and novices forecasted rates of refugee camp 

morbidities after viewing a time series of real-world observations from refugee camps. 

It is necessary to note that traditional forecasting research tends to refer to ‘noise’ as 

random error around an observation in a time series. However, in the following 

experiment, we make reference to noise as additional time series cues which are non-

causally related to the target time series (i.e., added data points which act to increase the 

amount of data observed, but have no impact on the target series). We manipulated how 

much real-world context was supplied on each trial and predicted that rich (‘noisy’) 

contexts with additional non-causal cues (as opposed to sparse contexts) would increase 

experts’ tendency to infer linear trends, leading to forecasts no better than those of 

novices. 
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4.2   Experiment 2 

4.2.1   Method 

Participants 

Participants consisted of 30 expert humanitarian aid workers (mean age = 32.42 

years, SD = 8.53; 17 males, 13 females) and 36 novices (mean age = 27.31 years, SD = 

4.8; 25 males and 11 females) recruited using a random sampling technique via 

LinkedIn (an online networking site for professionals, groups and organizations to 

liaise, seek jobs and share content). The sample size was determined by the time frame 

available for data collection. A three-week period was set and within this window as 

much data as possible was collected. The expert humanitarian aid workers all possessed 

varying degrees of professional experience in monitoring and forecasting morbidity 

trends (mean = 6.8 years, SD = 7.5), and 18 of them had direct experience of working in 

refugee camps. The novices each possessed an undergraduate or postgraduate degree in 

fields unrelated to forecasting or humanitarian aid work. For compensation, participants 

chose between the chance to win a 25 Euro Amazon voucher, to make a 30 Euro 

donation to charity, or to select neither.  

Design 

Participants completed two blocks of 15 trials each involving an individual time 

series of three data points. Each data point related to the total number of refugee 

morbidities for one month, and the points were for three consecutive months. One block 

contained 15 trials in a sparse context and the other block contained 15 trials in a rich 

context and participants were tasked with forecasting the fourth month in every trial. 

The individual trials in each block were repeated across the sparse and rich context 

conditions, such that the same 15 individual time series of morbidity counts for three 

consecutive months were shown in both blocks. The order of blocks was 

counterbalanced across participants and the order of trials within each block was 

randomized for each participant.  

The three-month time series stimuli used in each of the 15 trial sequences, as well 

as the surrounding context time series for the rich context trials (see Procedure for 

details), were randomly drawn from a sample of Health Information Systems (HIS) 

Detailed Indicator Reports downloaded from the United Nations High Commissioner 

for Refugees (UNHCR) Twine Project website. The downloaded pdf reports and 
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exacted time series used in the study are included in the online repository of materials 

for this contribution, osf.io/dn3xy. 

Materials and Procedure 

On each trial, an individual time series consisting of three data points which 

represented total rates of ‘acute watery diarrhoea’ (AWD) per month for three 

consecutive months was shown. Participants forecast the value for the fourth month 

(i.e., the next data point) by entering an integer into a response box (see Figure 4.1). In 

the rich context condition, participants were also shown surrounding contextual 

information about other common camp indicators, namely ‘lower respiratory tract 

infection’ (LRTI) and ‘bloody diarrhoea’ (BD) (see Figure 4.1B). Each trial was 

response terminated and participants were given a brief break at the midway point in 

between the two trial blocks. 

 

Figure 4.1 (A) An example of the sparse context trial in which participants 
observed a single time series cue 
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Figure 4.1 (B) An example of a rich context trial in which the same time series 
observed in the sparse trial was shown but with the addition of two non-causal time 

series cues 

Figure 4.1 The Sparse and Rich Context Trials in Exp 2 

An example of a sparse context trial (A) and a rich context trial (B). Participants 

were shown a time series consisting of three points and predicted the fourth point. On 

rich context trials, additional surrounding context was provided, modelled on reports 

expert aid workers receive on refugee public health in camp situations.  

4.2.2   Results 

On each trial, participants observed a time series consisting of three points and 

made a forecast for the fourth point. The main dependent measure was scaled error, 

which was calculated per participant per condition as follows in Equation (1): 

𝑌" −	
  𝐹"&
"'(

𝑌" −	
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(1) 

    where  𝑌" is the true value for the fourth point, 𝑌") is the third point, 𝐹"	
  is the 

participant’s forecast for the fourth point, and 𝑛 is the number of trials, which was 15.   

The numerator in Equation (1) is the sum of absolute forecasting error across 

trials, which is normalized by the denominator that is the sum of absolute forecasting 
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error for a naïve model which uses the third point as the forecast for the fourth point. 

Scaled error is used because it is scale independent and easy to interpret (Hyndman & 

Koehler, 2006). In particular, a scaled error of less than 1 indicates that forecasts are 

more accurate than the naive model, whereas those greater than 1 are worse than the 

naive model’s forecasts. 

Analysis of Decision Environment 

To evaluate our characterization of the task environment, we applied two models 

to the AWD time series. A linear trend model, which uses the best linear fit to the first 

three points to forecast the fourth point, and an aggregation model, which uses the mean 

of the first three points to forecast the fourth, were applied to the AWD time series. We 

hypothesized that the environment is noisy, and therefore the linear trend model would 

perform worst. As predicted, the linear trend model had significantly more error 

(M=1.23) than the aggregation model (M=0.96), t(57.76) = 2.82, p<.01, Cohen’s 

d=0.73. Many trends detected by the linear trend model were likely phantom trends, 

whereas the aggregation model can average over noise.  

Human Forecasting Error 

The scaled forecasting error for novices and experts by trial type is shown in 

Figure 4.2 Forecasting error across groups was larger on rich context trials (M=1.30) 

compared to on sparse context trials (M=1.21), F(1, 64) = 5.68, p<.05, η2=0.85. There 

was no significant effect of group, F(1, 64) = 0.05, p=0.819, η2=0.03, nor a significant 

interaction between group and condition, F(1, 64) = 0.79, p=0.376, η2=0.12. Planned t-

tests indicated a significant difference in the forecasting error between the rich 

(M=1.33) and sparse contexts (M=1.20) for the experts, t(29) = 2.10, p<.05, d =0.4. 

However, for novices, no significant difference in error between rich and sparse 

contexts was found (M=1.28 vs. M=1.22), t(35) = 1.24, p=0.221, d =0.17.  
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Figure 4.2 Mean Forecasting Error Per Condition in Exp 2 

Forecasting error for the two populations and trial types are shown. As predicted, 

participants performed worse in rich contexts. Error bars are 95% within-participant 

confidence intervals of the mean. 

Model-Based Analyses 

The preceding analyses indicate that participants’ performance levels were more 

akin to the linear trend model than to the aggregation model. To evaluate whether 

participants’ forecasts were more congruent with the linear trend model than the 

aggregation model, we calculated the proportion of trials in which a participant’s 

forecasts were closer to that of the linear trend model than the aggregation model. As 

shown in Figure 4.3, the proportions of match were above 0.5 in both contexts. As this 

finding indicates, both experts’ and novices’ forecasts were significantly more akin to 

the linear trend model than the aggregation model in the sparse context (M=0.57), t(65) 

= 3.89, p<.001, d=0.95 and also the rich context (M =0.60), t(65) = 5.94, p<.001, 

d=1.46. No statistically significant differences were found in expert versus novice 

compliance with the linear trend model, F(1, 64) = 0.09, p=0.766, η2=0.07, nor a 

significant difference between sparse and rich contexts, F(1, 64) = 2.81, p=0.09, 

η2=0.69, nor a significant interaction between group and context, F(1, 64) = 0.99, 

p=0.32, η2=0.24.  
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Figure 4.3 Judgments Fit by the Linear and Aggregation Model in Exp 2 

Proportion of judgments which were better fit by the linear trend model compared 

to the aggregation model per group and trial type with 95% within-participant 

confidence intervals of the mean. 

One interesting possibility was that the tendency to chase linear trends led to 

increased forecasting error. Consistent with this notion, a regression model showed that 

the proportion of judgments best fit by the linear trend model was predictive of scaled 

forecasting error across conditions when condition and participant group were included 

as factors in the model, R2 = .06, F(3,128) = 3.03, p=.031, B = 0.54, t(128) = 2.58, 

p<0.05. 

Human Tendency to Trend-Damp 

In addition to the model-based analysis, participants’ tendency to trend-damp the 

real-world AWD trend (i.e., draw towards the series mean) was examined per group and 

condition by comparing forecasts to the AWD fourth point per trial and condition. 

Experts were shown to trend-damped the AWD sequences in 57% of trials. A one-

sampled t-test indicated that the proportion of experts’ underestimates was significantly 

greater than 0.5 across conditions, t(899) = 4.30, p<.001. Novices trend-damped the 

AWD sequence in 56% of all trials which was also shown to significantly differ to 0.5 

across conditions, t(1079), = 3.92, p<.001. Moreover, experts were found to trend-damp 

in a significantly larger proportion of trials in the sparse (59%) compared to the rich 

context (56%) t(407.68) = -21.57, p<.001. A higher rate of trend-damping in the sparse 

(57%) compared to the rich context (55%) was also shown for the novices t(501.42) = -
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28.44, p<.001. A repeated measures ANOVA indicated that there was no overall 

difference between experts and novices in the tendency to trend-damp, F(1,64) = 0.14, 

p=0.70, or between either group in either condition, F(1,65) = 3.54, p=0.06.  

It is important to note that the propensity to forecast towards the mean in this 

particular setting may have reflected an optimism bias whereby people tended to make 

more ‘hopeful’, and therefore more conservative estimates of morbidity rates.    

Rich Context Trend Directions   

Following completion of the above analysis, a potential limitation in the 

experimental design was identified which may have influenced the results. It was noted 

that the presentation of the data on different scales in each condition created a 

difference in the shapes of the curves of each stimuli sequence pairing between the 

sparse and rich context. For example, as shown in figure 4.1, the AWD sequence data 

presented on a scale of 0-700 in the rich context condition (B) generated a far flatter 

curve compared to that in the sparse context (A) in which the same data was presented 

on a scale of 0-180. Although the numerical data values for each month were shown on 

the time series in each trial, it was possible that this discrepancy in curve shape led 

people to make larger adjustments from the third point in the sparse context compared 

to the rich context.  

Therefore, due to these scale differences, a follow-up analysis was conducted on 

the predictions in the rich context condition separately to those in the sparse context 

condition. The aim was to determine whether the trend direction of the additional cues 

in the rich context impacted forecast judgments and error. Participants’ forecasts which 

increased from point 3 to 4 were coded as 1 and all else as 0 and entered into a logistic 

regression as the dependent variable. The predictor variables were entered as the 

number of cases in which all three additional cues (i.e., AWD, LRTI and BD) increased 

from point 2 to 3 (coded as 1 and 0 respectively), and participant type (humanitarian 

versus novice). 

The cases in which all additional cues were increasing was shown to be predictive 

of participants’ tendency to forecast an increase (B = 0.74, z = 2.96, p<.01, 95% CI 

[0.25, 1.24]), with no difference in the propensity between experts and novices (B = -

0.02, z = -0.15, p=0.87, 95% CI [-0.29, 0.25]). A second logistic regression with 

participants’ decreasing forecasts coded as 1 and all else as 0 also showed that the 

instances in which all three additional cues decreased from point 2 to 3 significantly 
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predicted both humanitarians and novices’ tendency to forecast decreases (B = 0.93, z = 

3.48, p<.000, 95% CI [0.41, 1.47]). Again, there was no difference in the effect between 

participant groups (B = -0.14, z = -1.02, p=0.30, 95% CI [-0.42, 0.13]).  

The propensity to project trends when all three were in alignment was then 

examined in relation to participants forecasting error. Absolute scaled error in the rich 

context trials was regressed on cases where all cues increased, all cues decreased, and 

participant type. The result showed that all cues increasing was significantly predictive 

of participants forecast error across rich context trials, R2 = .008, F(2,987) = 5.23, 

p<.01, B = 0.44, t(987) = 3.20, p<.01, with no difference in the effect between experts 

and novices (B = -0.05, t(987) = -0.46, p=0.63). This suggests that the linearly of 

participants’ forecasts may have been even more pronounced in the trials in which all 

cues were increasing, hence the significant effect on forecast error.  

In sum, the results from the sparse context condition showed a linear ‘trend’ 

extrapolation effect which, congruent with the findings of Hohle and Teigen (2015), 

indicated that people interpret data as trended when given absolutely minimal evidence 

of existent trends (i.e., they projected linearly based on only a single three-point time 

series). However, when considering the effect of the rich context shown in the above 

secondary analysis, a new finding is delivered. Congruity between the trend direction of 

the target time series and that of the two additional series (noise) is shown to reinforce 

the propensity to linearly project the target series by continuing the trend in the same 

direction as the other cues. Moreover, the propensity to extend congruous trends is 

associated with increased forecasting error. 

It is possible therefore, that rather than people over or under adjusting from point 

3 to 4 in the rich context trials (due to the size of the data scale), the error in the rich 

context is associated with people complying with the trends of the different series. This 

suggests that visual analysis of trend directions in multi cues contexts may be more 

important to forecasting performance than cue causality. Thus to conclude, despite 

domain expertise, the bias to extend trends linearly is shown to be reinforced in 

complex varied data, based on the ‘consensus’ between trend directionalities of the cues 

observed.  
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4.2.3   Discussion 

We trust in experts to deliver effective judgments under uncertainty using rich 

domain knowledge (Lawrence et al., 2006). In some situations, for example supply 

chain forecasting, experts’ contextual knowledge increases judgmental performance 

(Armstrong, 1985; Edmundson, Lawrence & O’Connor, 1988; Seifert et al., 2015). 

However, in other situations, expertise is not shown to enhance forecasting accuracy, 

indeed sometimes leading to a reversal in performance (Önkal & Muradoǧlu, 1994; 

Wilkie-Thomson, Önkal-Atay, & Pollock, 1997). Given the comprehensiveness of 

experts’ knowledge, why do such disparities exist in the effectiveness of experts across 

different environments? The present study sought to answer this question by assessing 

the effects of sparse versus rich context on expert forecasting accuracy in the complex 

arena of humanitarian aid.  

We predicted that experts would perform worse in rich contexts, which they did, 

mirroring novices. Similar to the results of Hohle and Teigen (2015), we found that 

participants showed a strong tendency to linearly extrapolate from past observations, 

which should lead to increased error in domains where there is a great deal of noise or 

there is no linear trend. As predicted, the strength of the tendency to linearly extrapolate 

positively predicted forecasting error across sparse and rich contexts among both 

experts and novices. The tendency to chase noise and linearly extrapolate was 

particularly strong among experts in richer contexts that are more akin to real-world 

environments. This tendency to linear extrapolate in noisy domains may partially 

explain why experts sometimes perform no better than novices. When examining the 

tendency to trend-damp, experts were significantly shown to underestimate increases in 

the target data fourth point (i.e., dampen the real-world trend). The proportion of the 

trials in which trend damping occurred was greater compared to those in which it did 

not and the tendency to trend-damp occurred to a significantly greater extent among 

experts compared to novices. 

Based on a follow-up analysis of the effect of the rich context series on prediction 

performance, we present a new finding which shows that people linearly extend the 

trend of cues when all three are pointing in the same direction. Moreover, the propensity 

for error is greater when all three series are increasing. This suggests error in the rich 

context was associated with the propensity to seek trend alignment in noise and linearly 

extend the aligned trends, particularly when all cues are increasing, rather than simply 

linearly extrapolating the target series regardless of the directions of the other cues. It is 
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likely therefore, that participants’ judgments of increase were more linear than 

predictions of decrease, which is why error was shown to be associated with cases when 

the trends of all observed series were increasing.        

There are several reasons for why experts showed a tendency to chase phantom 

trends despite domain knowledge. One hypothesis is that the linear prediction bias 

arises from experts’ attempting to make sense of more complex, variable environments 

by assimilating cues and seeking patters which don't exist. Why we find experts more 

effective in some settings compared to others, could therefore depend on the degree of 

contextual complexity and uncertainty of the forecasting environment. Further 

examination of experts’ judgmental processes in complex environments is necessary to 

determine the robustness of the linear prediction bias and how it may interact with 

domain knowledge. Future repetition of the study in a naturalistic camp setting would 

also further insights into experts’ processing of data in rich contexts, and allay issues of 

validity associated with artificially replicating field environments (Lipshitz, 1993; 

Lipshitz, Klein, Orasanu & Salas, 2001).  

One practical recommendation based on our findings, is to use experts to identify 

key factors and variables in complex prediction domains which are then used to build 

statistical forecasting models and systems, as opposed to relying on experts to form 

unaided judgments. For example, experts have proven effective system builders and 

data interpreters in a new approach to forecasting humanitarian aid demands ahead of 

climate-related disasters. Based on experts’ interpretation of hazard data from previous 

aid responses, the approach is predicted to reduce response costs by up to 50% by 

releasing funds pre-event (Cousin, 2015).  

Experts are also shown to be good at identifying important variables in weather 

simulations (e.g., barometric pressure) which are weighted by models to make actual 

predictions. Experts increase the predictive accuracy of weather simulations based on 

models of climatology by 10 to 25% (Lynch, 2006, 2008). Moreover, the judgmental 

improvements are shown to hold, despite decades of statistical model enhancements. 

The heightened model performance is attributed to experts’ ability to better perform 

sanity checks than machine learning tools, and integrate historical experience and 

‘common sense’ factors into the forecasts (Silver, 2013). Using experts in the appraisal 

of model forecasts may therefore be effective in minimizing the harmful tendency to 

follow false trends, whilst retaining some of the advantages of their detailed tacit 

knowledge. 
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In sum, our findings show a robust linear prediction bias in expert humanitarian 

aid workers in rich informational contexts akin to noisy real-word settings which 

predicts a decline in forecasting performance. Our results suggest that the tendency to 

find signal or meaning in noise is a robust phenomenon that is impervious to expert 

knowledge. Indeed, richer contexts which should elicit knowledge appear to make 

experts more vulnerable to finding patterns in noise, not less.  
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Chapter 5 

Data Disclosures to De-Bias Optimistic Time-

Cost Evaluations in Financial Decision Making   

In this chapter, two experiments are conducted based on findings from chapters 
three and four to investigate the effects of financial information disclosures on 
loan product choices. Experiment 3a tests the effects of lessening informational 
cues and framing percentage data in absolute currency values in current versus 
future rates on judgment performance in an online price comparison environment. 
In chapter 3 the concept of framing data in absolute values was shown to lead to 
judgment improvements and is thus expected to increase financial choice in this 
setting. The Finding show that simultaneously displaying rate alternatives using a 
future rate default to anchor people on ‘realistic’ options increased the propensity 
to opt for more effective, high future rate choices (as opposed to low, ‘optimistic’ 
current rate choices).  

Experiment 3b is conducted to verify the robustness of this framing effect by 
adding a disclaimer (akin to a real-world financial industry disclaimer) to each 
condition to test whether choice performance can be improved when attention and 
effort applied in the task of comparative analysis is increased by making the risk 
of rate variability more salient. Applying the disclaimer in the context of the 
standard industry disclosure thus tests whether people are capable of effectively 
using percentage and rate information when encouraged to increase attention and 
cognitive effort.  

Results show that the framing manipulation identified in experiment 3a remains 
highly robust in 3b and that no difference was found in choice performance with 
the addition of the disclaimer in either the standard industry or framing 
manipulation conditions. These results held even when individual differences in 
optimism, financial literacy and numeracy were included as covariates. The fact 
that performance remained constant across conditions between experiments 3a 
and 3b indicates that the reframing of rates in absolute terms is key to judgment 
rationality, and that percentage format biases in complex environments cannot be 
overcome by increasing cognitive effort in comparative analysis tasks. 

5.1   Background and Rationale 

The findings from chapters 3 and 4 have shown that people are more capable of 

making accurate judgments when data is provided in concrete values with non-

normalized base rates. In chapter 3, experiment 1, retail forecasters were shown to 

exhibit strong format biases which led them to additively process percentage points as if 
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they were absolute values. The retailers’ decision making strategy involved them 

employing minimal data, using only two values when shown three data points with 

which to predict weekly product sales. This strategy involved additively combining the 

last two observations in each sequence, using the absolute difference between the two 

points to generate predictions which were akin to a two-point linear regression model. 

The inclination to use only two numbers and combine them using an arithmetic 

operation therefore gave rise to estimates which were consistently linear in nature. In 

the case of non-linear increasing and decreasing trends, this resulted in forecasts which 

systematically underestimated increases and overestimated decreases in sales for the 

fourth week. 

The same strong theme of a linear prediction heuristic was found to continue 

throughout chapter 4, in which humanitarian aid workers were shown to linearly extend 

trends in the context of real-world cyclical trends in refugee camp data. This robust 

linear prediction bias was evident in sparse data contexts (where no additional cues 

existed) and was shown to intensify in noisier data with additional cues akin to the real-

world environment. Thus, the more complex the situation, the more people tended to 

project trends linearly which also correlated with an increase in judgment error. The 

directionalities of the trends in noise were specifically found to influence the direction 

of peoples’ judgments. Although the contextual information had no relation to the target 

forecast data, the predisposition to seek linear patterns and extend trends linearly was 

shown to be influenced by a directional bias whereby people linearly extended the target 

data in accordance with the trends of other cues in noise when a consensus was detected 

between the directions of all observable data points.  

These results suggest that where numerical information is more complex or 

varied, people employ fast heuristic judgment strategies which involve applying linear 

functions regardless of the context or causality of the data, or whether the trend of the 

target data is linear or not. The fact that this tendency is more pronounced in richer 

contexts where there are multiple cues and greater variability suggests that people are 

particularly prone to use any added information in a way that reinforces linear judgment 

tendencies. Thus, rather than using additional data in a sematic capacity (i.e., to help 

contextualize the target data based on the meaning of the surrounding cues), people 

tended to incorporate context information by applying a form of a visual heuristic 

strategy, based on seeking commonalities between the trends in noise and the target 
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data. This leads to the detection of false relations and ‘meanings’ within the data 

environment.     

In sum, fast, frugal heuristic judgment strategies based on linear functions and 

additive processing were applied by the decision makers in both the professional 

domains investigated. Where data was presented in numerical values (as opposed to 

time series) with no additional context cues available, retail forecasters were shown to 

‘make sense’ of the information by applying a cognitively efficient arithmetic strategy 

to two cues to yield linear judgments akin to a 2-point regression model. Where context 

information was provided and data was presented in time series format, humanitarian 

aid workers employed a strategy which employed all available data in their judgments 

based on similarities in trend directions. Having visually identified congruence between 

trends, they then projected the target data linearly in the same direction. Thus, using the 

non-causally related cues to inform judgments combined with the strong propensity to 

apply a linear function in the context of cyclical data meant that prediction inaccuracy 

was high, and greater in the context of noise.  

When considering the domain of financial judgment, the ability to form an 

optimal decision is recognised as a notoriously complex and cognitively demanding 

task which involves marshalling and computing multiple sources of information 

conveyed to consumers predominantly in percentage and rate formats. Judgment 

‘rationality’ in the financial choice context is complex as it can be dependent on 

individual circumstances which may lead to unintuitive results. For example, an 

individual may opt to put off larger payments into the future in the knowledge that they 

are due some inheritance or an increase in income later on. In this circumstance, 

showing a propensity for delay discounting would not be considered ‘irrational’ in the 

context of the individuals’ wider life factors.  

 Due to the complexities involved in measuring individual life circumstances in 

the context of financial decision choice and behaviour, the ‘rationality’ of peoples’ 

judgments in experiments 3a and 3b was measured from the economic perspective. 

From this standpoint, choices which act to minimize total repayment costs over the full 

loan term are categorized as ‘rational’ or fully ‘optimal’ judgments, whereas other 

choices are classified as ‘irrational’ or ‘suboptimal’. An interval scale of measurement 

of choice optimality is also included in the analysis which provides further data relating 

to the degree of rationality of peoples’ judgments, as oppose to a strict correct/incorrect 

indicator.     
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Based on the robustness of judgment biases shown among the retail forecasters, 

there is a premise for assessing the tendency to additively processes percentages in 

financial decision making. It is possible that data manipulations designed to mitigate 

such biases in product choice situations will improve the effectiveness of consumer 

judgment. There are several mechanisms via which percentage format biases and the 

linear prediction heuristic could impact the rationality of peoples’ financial judgment. 

As previously discussed, the tendency to additively processes rate information leads to 

people underestimating the increasing costs associated with rising interest rates. This 

simple bias alone can have grave consequences when selecting between credit product 

options which are subject to base rate and individual lender rate hikes. The potential for 

erroneous financial choices is further increased when considering additional factors 

such as peoples’ limited attentional capacity, the nature of contextual cues and the 

complexity of the decision environment.  

It is likely that the type of context data and how people use additional information 

in the process of making comparisons and evaluating choice alternatives will be 

important to decision performance. For example, framing choice alternatives in terms of 

absolute costs and displaying them simultaneously in a joint presentation mode could 

help to communicate the effects of compound interest growth without depending on 

peoples’ ability to correctly extrapolate non-linear functions. This format could 

facilitate comprehension of the effects of rate changes over time and support the 

evaluative analysis of different cost options.  

Individual difference factors such financial literacy and levels of numeracy are 

also likely to influence the effectiveness of peoples’ financial judgments and 

behaviours. Both financial literacy and numeracy are associated with the accuracy of 

financial and medical risk assessments and thus warrant assessment. Interactions 

between framing manipulations and these individual difference factors could indicate 

for example that the framings are successful in mitigating negative effects of individual 

differences. Individual differences in trait optimism is also potentially relevant to 

financial judgment rationality.  

In comparison to intertemporal effects like delay discounting or a more general 

present bias, trait optimism it potentially more important to financial judgment and 

behaviour because it encompasses a broad range of behaviours and characteristics 

which are shown to be related to the effectiveness of peoples’ financial actions and 

judgments via indirect mechanisms. For example, at extreme levels, optimism is 
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associated with saving less, planning over shorter horizons, working fewer hours, and 

holding more individual stock (Puri & Robinson, 2007). Conversely, moderate levels of 

optimism are associated with more optimal financial behaviour via the mechanism of 

increases in self-control.  

Findings from the Competition and Markets Authority 2015 investigation into the 

Payday lending market provide further support for optimism as a key factor 

underpinning consumers’ suboptimal financial choices and behaviours. In the ‘shopping 

around’ working paper (https://www.gov.uk/cma-cases/payday-lending-market-

investigation#working-papers), the CMA cites ‘over-optimism’ as the reason for people 

significantly underestimating the likelihood of not repaying a loan, or of needing to take 

out further loans to cover repayment costs. The findings were based on qualitative 

responses combined with the high frequencies of late loan repayments, and loans which 

were either rolled over or never repaid in full. This led the CMA to conclude that 

“Customers would pay greater attention to the fees and charges associated with 

repaying a loan late (or with future loans), if their expectations about their ability to 

repay were more accurate”.  

It is possible therefore, that in the context of financial choice, a high temporal 

preference (i.e., the propensity to opt for low current costs and delay repayments into 

the future) is reflective of an optimistic bias which leads people to underestimate future 

costs and downplay the risk of future rate hikes. The negative effects of such a bias may 

be further compounded by people overestimating their ability to make higher 

repayments in the future. Although delay discounting or general present bias measures 

may be used to elicit temporal preference, such measures commonly involve a one-shot 

response to an individual delay discounting question which cannot account for 

individual circumstances or other factors mediating intertemporal effects. Measures of 

trait optimism on the other hand, assess more stable propensities and characteristics 

such as impulsivity which in turn are shown to impact financial judgment. From this 

perspective, optimism is potentially a more comprehensive and reliable assessment of 

intertemporal effects in this particular context, capable of accounting for the 

complexities in the mediating effects involved in financial judgments.  

Anchoring is another mechanism which has the potential to significantly influence 

peoples’ financial rationality. The anchoring and adjustment heuristic typically involves 

the presentation of an initial value or piece of information, commonly a numeric value 

on a dimension, which influences peoples’ subsequent estimates and choices in a given 
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judgment domain (Tversky & Kahneman, 1974). The anchor creates an initial basis for 

an estimates and people then make adjustments away from the anchor in the context of 

additional information. The anchor therefore sets the premise for a decision or choice 

which is altered according to peoples’ interpretation and processing of the surrounding 

contextual data. In this sense, a numeric anchoring effect may be created by the 

presentation of default value in a numeric judgment environment such as online 

financial choice.  

When presented with a set of choice alternatives, the default option is often 

considered as the choice that is accepted if no action is taken (i.e., it is the option a 

decision maker will obtain without engaging in further informational processing). 

However, a default setting may be used which involves a particular informational 

content being disclosed to the decision maker on first viewing of a data environment.     

A decision maker is then free to incorporate the default information in the judgment 

process as opposed to forming a choice based on taking no action. In this sense, a 

default setting still requires the decision maker to process the information to create a 

choice by comparing to other data points in the environment, however, based on the 

saliency of the default information, is likely that it will influence judgments to yield 

estimates and choices which align with the default data.  

Default settings are commonly shown throughout behavioural science research to 

have a powerful effect on the decisions people subsequently make, increasing the 

likelihood that a particular selection is made. A default is commonly considered distinct 

from an anchor in that it provides an instantaneous choice in the absence of the 

comparative analysis of choice alternatives, whereas an anchor creates a bias in peoples’ 

judgment processing which leads them to make choices which are more congruent with 

the anchor than the other values or options in the data environment. Although they are 

not always considered synonymous with anchors, it may be possible however, to apply 

a numeric default to elicit an anchoring and adjustment effect in the context of relevant 

additional information.  

This is the case in the current experiment in which a default setting is used to 

create an anchoring and adjustment mechanism in the context of an online mortgage 

price comparison choice. It is expected that mortgage costs which are disclosed in rank 

order with a default view set to future interest rates will lead people to make more 

effective loan product choices compared to the disclosure of choices when the default 

view is set to current interest rates. Moreover, the effect of the future rate default is 
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predicted to be enhanced by the subsequent disclosure of the current versus future rate 

choice alternatives side-by-side. By anchoring people on the most optimal loan choice 

(in the future rate frame) followed by simultaneously presentation of the current and 

future rate cost alternatives, it may be possible to encourage the direction of peoples’ 

choices by facilitating the process of comparative analysis.  

It is possible therefore, that the size of the values in the default view in relation to 

the values in the non-default view (i.e., the extent of the range between the upper and 

lower bound), might influence the amount of adjustment people make away from the 

default (or ‘anchor’) information which could result in more optimal loan choices (i.e., a 

lesser downward adjustment from the default) where a larger absolute difference 

between the upper and lower range is perceived.  

In sum, the ideas postulated above suggest that removing percentage information 

and framing financial interest rates in absolute currency costs in easily comparable, 

simultaneous choice alternatives with a strategic default value could be effective in 

increasing mortgage choice optimality compared to data disclosed in standard industry 

formats. It is expected that current versus future rates framed in total cost alternatives 

will improve peoples’ mortgage choices by heightening awareness of the potential for 

future rates rises (i.e., financial risk) and the financial effects of those rate increases 

(i.e., how compound interest amounts over time). This framing manipulation is 

predicted to mitigate optimistic biases associated with opting for variable rate loans 

which have low rate costs in the present compared to fixed rate loans which have higher 

initial rates but are not subject to the same rate variability and therefore represent 

optimal choice over the full term.  

In the following review, each of these themes are discussed in turn, focusing on 

how each factor relates to financial rationality and how data frames utilizing these 

factors and mechanisms may by employed to enhance the effectiveness of financial 

judgment in an online price comparison context.  

Understanding APR’s and the effect of compound interest are key to making good 

financial decisions. Whether deciding to make a purchase on credit, how to manage 

savings, or judging which mortgage will work best in the long-term, the ability to 

correctly apply rate information is key to financial risk assessment and financial well-

being. Confusion and error in consumer financial choice is frequently associated with 

the overall opaqueness of financial data communications. Based primarily on APR and 
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percentage information, industry disclosures are shown to persistently create barriers to 

consumer decision making. Various findings point to how the reframing of finance 

industry data communications can be effective in reducing investor biases (Bateman, 

Dobrescu, Newell, Ortmann & Thorp, 2016; Beshears, Choi, Laibson, & Madrian, 

2009; Choi et al., 2010; Fisch & Wilkinson-Ryan, 2014; Hung, Heinberg, & Yoong, 

2010; Koehler & Mercer, 2009; Mercer, Palmiter & Taha, 2010; Newall & Love, 2015). 

There is also a lack of evidence to support the effectiveness of standard finance 

industry disclaimer information on improving financial judgment and choice. For 

example, Newall (2016b) showed that adding a disclaimer manipulation in the form a 

social comparison ‘nudge’ (“Some people invest based on past performance, but funds 

with low fees have the highest future results”) significantly increased investor fee 

sensitivity compared to the standard industry disclaimer (“Past performance does not 

guarantee future results”). When considering the negative effects that financial advisers 

can have on client biases’ (Mullainathan, Noeth, & Schoar, 2012), these findings 

suggest that behaviourally-informed financial data frames and communications could be 

the most effective means of improving consumer financial judgment (Erta, Hunt, 

Iscenko, & Brambley, 2013).    

With reference to the effects of interest rate variability, interest on savings and 

mortgages costs are subject to fluctuations in the Bank of England base rate. Previous 

rate forecasts suggested an increase from the static 0.5%, observed since 2009, to 2.0% 

by 2019. However, slowing global economy and negative inflation in 2015 has meant 

that the first rate rise to 0.75% is now predicted for 2019, increasing to 3% by 2025. 

This is not without the possibility however, of two rate hikes to 1.25% by the end of 

2017 (Oxlade, 2016). Although the forecasts vary, it is indisputable that when the rate 

does incline, even the slightest of increases will dramatically effect credit repayments, 

translating into unmanageable monthly mortgage repayments for millions of UK 

homeowners (Wearden, 2015). Raising the saliency of compound interest and the 

impact of rate fluctuations on loan repayments is therefore highly important to the next 

generation of mortgage seekers.  

As discussed in chapter 2, the errors and irrationalities in judgments involving 

percentage and rate information are numerous and widespread, stemming from the 

propensity to additively process numerical information. It is commonly assumed for 

example, that +10%, -10% = 0, based on adding and subtracting values, whereas 

multiplicative computation is necessary to derive the correct answer (-1%) (Newall, 
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2016a). In the context of financial decisions, it is well recognised that consumers have 

difficulty understanding the cost of credit (e.g., Lee & Hogarth 1999) and interest 

compounding (Eisenstein & Hoch 2007; Stango & Zinman 2009). The tendency to 

linearly processes compound interest rates can thus lead to harmful underestimates of 

the cost of borrowing (Stango & Zinman, 2009; McKenzie & Liersch, 2011) and slow 

debt repayment, as well as the miscalculation of investment fees and downside financial 

risk (Newall & Love, 2015; Newall, 2016a).  

The tendency to additively process numbers and form linear predictions is likely 

to be associated with the cognitive ease and efficiency in relation to the demands of 

multiplicative processing and non-linear judgment (DeLosh, Busemeyer & McDaniel, 

1997). The propensity to reason more effectively using concrete (absolute) values, 

suggests that simplifying financial product data by removing rates and percentages 

could significantly increase decision effectiveness. Figure 5.1 below shows an example 

of the standard informational format adopted by the finance industry to convey loan 

product information to consumers. Price comparison tools such as this are designed for 

people to make judgments regarding the most cost effective loan option based on 

comparing the interest rates and individual product attributes across loan providers, 

amounts and borrowing terms. As displayed in figure 5.1, standard price comparison 

tools disclose the representative APR which is the overall cost for comparison (4.4% in 

this particular example), the interest rate for the initial fixed period (1.39%) and the 

remainder of the term (4.74%), a max loan to value (70%), and a monthly repayment 

cost based on the initial fixed period only (£355.31). This data is delivered in 

combination with the industry disclaimer; “Your home may be repossessed if you do 

not keep up repayments on your mortgage” which appears at the bottom of the 

calculator shown in figure 5.1.   
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Figure 5.1 Example of a Standard Industry Mortgage Price Comparison Site 

As figure 5.1 demonstrates, this format creates a highly complex decision 

environment, making it difficult for decision makers to synthesize the data points in the 

process of forming judgments of future costs. This format assumes an understanding of 

representative APR and compounding and requires decision makers to compute rate 

changes over the full term. The addition of the disclaimer does little to draw consumers’ 

attention to the risks of base rate increases, added fees and lender rate rises. Thus, 

online price comparison websites represent a complex task environment, in which the 

synthesis of multiple data points and comparison of choice alternatives is particularly 

difficult to achieving optimal choice. In addition to future rate hikes, the compounding 

of arrangement fees, mortgage alteration charges, or an increase in the term by taking a 

repayment holiday for example, could result in greater monthly and final repayment 

costs than estimated based on the data provided.  

One way to simplify the choice environment and de-bias judgments would be to 

present the total repayment cost of a mortgage over the full term in currency format in 

the current interest rates and future base rate increases. This would eliminate the need 

for multiplicative computation of interest rates over fixed and non-fixed horizons, and 

highlight the monthly and total cost differences between current and future rates. For 

example, a standard variable rate with a small initial fixed rate may seem like a more 

attractive choice at current rates compared to a fixed rate mortgage with a much higher 

rate for the initial period and full term. However, when factoring in base rate increases 

(separate from lender increases), the standard variable rate cost far exceeds that of the 

fixed rate over the full term, thus making it a far riskier option.  

 

 



 

 

100 

Reducing the quantity of loan attributes presented in the decision task is also 

likely to help alleviate the computational challenge associated with synthesizing 

multiple cues. The limitations in the amount of data that people are able to attain to at 

any one time are well recognised throughout Psychological literature (e.g., Broadbent, 

1958), associated with heuristic judgments, often excluding important information 

(Simon, 1955). Recent research into peoples’ limited attentional capacities have shown 

a neural basis for restrictions in the ability to prioritize information (e.g., Mecklinger et 

al., 2003), encode data into working memory (e.g., Todd & Marois, 2004; Scalf et al., 

2007, 2011b), and respond to task-relevant material (e.g., Dux et al., 2006; Erickson et 

al., 2007).  

The investigation of attentional capacity for multiple data points has thus focused 

on the limitations in cognitive resources (e.g., Intriligator & Cavanagh, 2001; Lavie & 

Robertson, 2001; Mitchell & Cusack, 2008; Xu & Chun, 2009), giving rise to  models 

from a ‘resource-limited’ perspective (e.g., Alvarez and Franconeri, 2007) based on 

evidence of peoples’ ability to individuate and identify single items, but failure to 

simultaneously perform these operations on multiple group members or individual 

items. Bounded attentional capacity in the context of financial choices means that 

peoples’ quick, heuristic judgments about how to allocate it can lead to the exclusion of 

important information from the decision process. Rich, complex decision environments 

with multiple cues are therefore likely to hinder judgments by using up attentional 

resources and distracting people from the important points.  

From the perspective of behavioural economics, increasing complexity by adding 

more choice alternatives has shown to reduce judgment performance in investment 

decision making (Benartzi & Thaler, 2002) and increasing the number of pension plan 

alternatives can lead to a decrease in the number of enrollers (Sethi-Iyengar, Huberman 

& Jiang, 2004). In general, probabilistic judgments are shown to be negatively affected 

by increases in informational cues (e.g., Harvey, Bolger & McClelland, 1994). 

Forecasting studies show that accuracy deteriorates as the environment becomes noisier 

because people tend to interpret the noise as signal, leading to erroneous predictions 

(Harvey, 1995; Harvey, Ewart & West, 1997; Lopes & Oden, 1987; Brehmer, 1978; 

Kahneman & Tversky, 1973; Lee & Yates, 1992). 

In consumer domains, ‘choice overload’ created by increasing choice alternatives 

is shown to demotivate decision makers, leading to choice dissatisfaction and regret 

(Iyengar & Lepper, 2000). The increased difficulty of evaluating multiple attributes in 
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richer choice domains is likely to create greater uncertainty and burden of responsibility 

for making an ‘optimal’ choice. In terms of mortgage choices, price comparison 

calculators represent noisy domains, as not all product attributes are necessary or useful 

to computation of total or monthly repayment costs. The removal therefore of redundant 

product attributes is likely to decrease the opaqueness of the data and increase consumer 

data comprehension, sense if control and judgment confidence. 

In addition to removing data cues to simplify the environment, presenting the rate 

alternatives simultaneously is also likely to increase the evaluability of attributes. 

Numerical decisions are shown to be more effective when data is presented and 

processed in joint rather than in separate evaluation mode (Hsee, Loewenstein, Blount 

& Bazerman, 1999). Insights from user design indicate that people ascribe meaning and 

derive value from numerical data through making comparisons against a reference 

point, or within the context of defined upper and lower bounds (Roller, 2011). 

Judgments in many contexts are shown to vary significantly between data evaluated 

simultaneously versus independently, with preference reversal commonly occurring 

between the two formats (Hsee, 1998; Hsee et al., 1999). 

The ability to evaluate and contextualize data through comparison against 

reference information is shown to be important to statistical inference in many 

situations (Hsee & Zhang, 2010). For example, judgments of risk, sensitivity to scope, 

and the stability of preferences are all shown to be differentially effected by data framed 

and evaluated in joint decision mode (simultaneously) verses information framed and 

processed separately (e.g., Bateman, Dent, Peters, Slovic & Starmer, 2007; Slovic, 

Finucane, Peters & MacGregor, 2002; Desvousges, Johnson, Dunford, Boyle & Wilson, 

1993; Hsee, 1998). In the context of financial judgment, the ability to easily compare 

choice alternatives is therefore very important to optimising choice. This suggests that 

side-by-side presentation of the current and future rate costs for each loan choice could 

be more effective in creating a comparative context and promoting evaluative 

processing than framing current versus future rates in isolation.  

Independent of framing manipulations however, the effectiveness of financial 

judgment and choice may be related to individual differences in financial literacy 

(Mitchell & Lusardi, 2011). For example, judgments of downside financial risk have 

been found to positively correlate with both financial literacy and numeracy (Newall, 

2016a), and lower levels of numeracy and risk literacy are shown to relate to poor 
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statistical inference and incomprehension of probability data in judgments of medical 

risk (e.g., Cokely, Galesic, Schulz, Ghazal & Garcia-Retamero, 2012).  

In general, however, findings relating to the effects of financial literacy on 

financial behaviours are mixed. Evidence suggests that interventions to increase 

financial literacy have not led to improvements in financial behaviour, and that 

associations between literacy and behaviour may reflect other factors such as numeracy 

(Fernandes, Lynch & Netemeyer, 2014). In the context of credit card repayments for 

example, high numeracy is associated with the tendency to overestimate the repayment 

amount required to pay off a loan in three years, and vice versa for low numeracy 

consumers (Soll, Keeney & Larrick, 2013). Interestingly, a reverse effect of financial 

literacy has been found in investment decision making, with people higher in financial 

shown to be more prone to select mutual funds with higher fees rather than opting for 

more effective low fee alternatives (Newall, 2016a). Although the relation between 

financial literacy, numeracy and behaviour is unclear, it makes sense to include such 

measures when examining financial judgments as all result are useful in further 

distinguishing the mediators and moderators of financial behaviour in different financial 

decision contexts.  

Other potentially relevant individual difference variables shown to influence 

financial judgment and behaviour are optimism and temporal preference. From the 

dispositional perspective, optimism is regarded as generalized positive expectations 

about future events which remains constant across context (Scheier & Carver, 1985; 

Scheier, Carver & Bridges, 1994). Optimistic bias, conversely, can vary from one 

situation to another and involves overestimates of the probability of a favourable 

outcome or underestimates of a negative outcome (Weinstein, 1980). Over-optimism is 

thus shown to have negative effects, specifically with respect to personal risk 

miscalibrations for illness and mishap which can lead to neglect of precautionary 

measures (Weinstein, 1980; Weinstein & Klein, 1996). From an economic perspective, 

it is possible that optimism biases align with overconfidence in the likelihood of future 

financial events which can thus lead to suboptimal decisions based on decreases in the 

overall utility associated with a particular financial choice.  

Higher levels of unrealistic optimism measured in terms of ‘underestimated future 

borrowing behaviour and generalized wishful thinking’ (Vitaliano, Carr, Maiuro & 

Becker, 1985) are shown to associate with decreased sensitivity to APR’s and increased 

sensitivity to annual fees. In the context of consumer credit behaviours, these findings 
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suggested that higher unrealistic optimism may be predictive of selecting credit cards 

which are suboptimal in terms of an individual’s usage behaviours (Yang, Markoczy & 

Qi, 2007). Higher levels of optimism have also been found to relate to generally 

suboptimal financial behaviours when examined in a wider context of financial and 

demographic characteristics.  

Puri and Robinson (2007) developed a measure of optimism based on the 

miscalibration of life expectancy using data from the Survey of Consumer Finances 

(SCF) which collects data on subjective and actual life expectancy among many other 

demographic and financial features. The measure was validated based on strong 

correlations with the revised version of the Life Orientation Test (LOT-R; Scheier, 

Carver & Bridges, 1994), and generalized positive expectations about the economy and 

future income growth. Puri and Robinson (2007) found that moderate optimism was 

predictive of optimal financial habits and choices such as paying credit card balances on 

time, planning over longer horizons and saving more. However, extreme optimism was 

related to saving less, shorter planning horizons, fewer working hours, and holding 

more individual stock.   

The authors explain the apparent dichotomy between extreme and moderate 

optimism in terms of important differences in self-control. For example, extreme 

optimists were found to be more likely to smoke, work fewer hours and hold less liquid 

assets compared to moderate optimists who were more likely to work harder and less 

likely to be day traders. These results indicate that the link between optimism and 

financial temporal preference may be related to behavioural differences in self-control. 

For example, moderate levels of optimism are related to a better ability to plan long-

term and execute those plans which are both skills which correspond with higher levels 

of self-control. It is therefore possible that higher self-control instantiates a preference 

for higher future rewards based on the ability to delay gratification and forgo short-term 

rewards which do not ultimately maximise utility. In turn, these propensities create 

more prudent financial choices and behaviours. The increased self-control of moderate 

optimists also means that they have less need to rectify financial problems compared to 

extreme optimists who are more likely to overcome self-control problems by locking 

their money into illiquid assets (e.g., Laibson, 1997; Strotz, 1955).  

Optimism has also been explored in the context of credit card repayment 

behaviours, testing the effects of minimum required payment information. Navarro-

martinez, Salisbury, Lemon, Stewart, Matthews & Harris (2011) showed that presenting 
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minimum repayment information had a detrimental effect on decisions to pay, leading 

to lower monthly payments (Steward, 2009; Navarro-martinez et al., 2011). Disclosing 

future interest costs in addition to minimum repayment amount was found to increase 

consumers’ likelihood of paying the minimum. However, this improvement did not hold 

when time to pay off the balance was added. The only manipulation found to increase 

the likelihood of paying the minimum amount was increasing it from 2% to 5% of the 

balance. However, this was only effective among borrowers with a moderate to high 

propensity to pay minimum amounts in general.  

These results suggest that cost sensitivity, based on temporal preference (i.e., 

individual differences in the propensity to pay now versus in the future), is likely to 

interact with informational framings to generate differential financial behaviours. A low 

propensity to make minimum payments may therefore be viewed as a present-focus or 

optimistic bias regarding future ability to repay, characterized by people seeking to 

minimise losses in the short term by delaying payments into the future. Other studies 

have also shown that optimistic biases in the propensity to consider immediate concerns 

versus future concerns influence credit card debt (Joireman, Kees & Sprott 2010) and 

fiscal responsibility (Joireman, Sprott & Spangenberg 2005).  

As Stewart (2009) observed, presenting a minimum repayment requirement on a 

credit card statement is likely to create an anchor from which adjustments are made to 

form subsequent repayment decisions (Tversky & Kahneman, 1974). Numerous 

findings in behavioural economics research show that default values can have a 

powerful anchoring effect which impacts subsequent decisions (Johnson & Goldstein, 

2003). Analysis of retirement planning decision making for example, showed that 

consumers interpreted a default set by the employer of 401k as an implicit 

recommendation, and were subsequently more likely to select it (McKenzie, Liersch & 

Finkelstein, 2006). Thus, it is likely that the propensity to focus on an initially observed 

value will vary with optimistic biases or differences in temporal preference to 

differentially influence financial choice and behaviour. For example, Haws, Bearden & 

Nenkov (2012) found that repayment amounts among consumers who were low in 

spending self-control were increased when supplemental information relating to 

minimum repayment amount was disclosed.  

Anchoring can also work adversely however, particularly where data is presented 

in isolation without a reference point for evaluation. Mussweiler, Strack & Pfeiffer 

(2000) demonstrated the importance of making an alternative repayment amount salient 
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as an alternative anchoring point. For example, in Navarro-martinez et al’s (2011) 

study, it is likely that the repayment value ($38.74) was interpreted as a loss and 

without another amount for comparison, participants subsequently adjusted down from 

the anchor when deciding how much to repay. As the minimum amount was increased 

from 2% to 5% of the balance, the increase in the propensity to pay the minimum thus 

reflected the downward adjustment from the 5% minimum towards the 2% minimum. 

The fact that this occurred in those more prone to make minimum payments suggests 

that the effects of anchoring may be stronger for those with a stronger optimistic bias, or 

who are less future-focused.  

A possible solution to the negative effects of minimum payment requirements on 

repayment decisions may be to consider the effects of percentage versus currency 

frames. For example, findings show that investors sensitivity to product fees is 

increased when costs are framed in currency rather than percentage, due to the tendency 

to down weight the smaller percentage values (Newall & Love, 2015). This so called 

‘peanuts effect’, in which people tend to discount smaller costs and rewards (Weber & 

Chapman, 2005), is found throughout many behaviours which involve incurring either a 

small loss or gain. When considering health behaviours, this bias explains the 

detrimental effects in repeat behaviours such as smoking (Loewenstein, Asch, 

Friedman, Melichar & Volpp, 2012) and other diet or exercise behaviours where small 

effects of repeated actions may be downplayed.  

Based on the general misinterpretation of percentage formats, reframing the 

minimum repayment cost ($38.74) in percentage may therefore be effective in leading 

consumers to perceive costs as ‘small’ in the context of the ‘large’ balance framed in 

currency (e.g., 2% of $1,937.28). The fee may now be evaluated differently in relation 

to the balance, thus increasing willingness to pay. Conversely, people may be more 

likely to avoid making payments when costs are framed in current (i.e., seemly large 

values in relation to the balance) compared to a percentage (i.e., seemingly ‘small’ 

values compared to the balance).  

The simultaneously display of the balance in currency costs and percentage 

formats could therefore be particularly effective in improving financial decisions by 

countering optimistic biases among those who are more prone to delay repayment or 

pay less than the minimum requirement. Other means of mitigating the negative effects 

of disclosing minimum repayment requirements may be to frame them in the context of 

alternative repayment options. For example, Salisbury (2014) showed that proving costs 
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and loan repayment duration information for an additional higher amount in conjunction 

with the minimum costs, proved successful in increasing monthly credit card 

repayments above the minimum required.  

Levering the psychological process involved in financial judgments is key to 

delivering disclosures which target the biases underpinning suboptimal choice 

(Loewenstein, Sunstein, & Golman, 2014). Behavioural “nudges” (Thaler & Sunstein, 

2008) in the form of disclaimer manipulations are also shown to be effective in altering 

perceptions of cost in financial judgements. For example, Newall (2016b) compared the 

effects of three different disclaimers on choice optimality when selecting between 

mutual funds offering monotonic trade-offs between maximising past returns and 

minimizing fees. The three disclaimers were designed to increase sensitivity to fees 

utilizing mental accounting (Thaler, 1985), sensitivity to costs by evoking loss aversion 

(Kahneman & Tversky, 1979), and evaluation of own behaviours relative to others 

using social comparison (Buunk & Gibbons, 2007). When compared to the industry 

disclaimer, “Past performance does not guarantee future results”, the social comparison 

disclaimer, “Some people invest based on past performance, but funds with low fees 

have the highest future results”, was found to significantly increase sensitivity to 

investment fees, thus reducing the tendency to maximise past returns when selecting 

mutual funds.  

Standard financial industry disclaimers are found largely to be ineffective in 

improving financial judgment and behaviour. When assessing the optimality of 

investment decisions for example, Mercer, Palmiter and Taha (2010) found that “Past 

performance does not guarantee future results” was no more helpful in guiding 

investment decisions than providing no disclaimer at all. Among those which have 

shown to be effective, emphasizing the importance of fees is the key feature facilitating 

the improvements in investment decisions (Mercer et al., 2010; Fisch & Wilkinson-

Ryan, 2014). In the case of mortgage products, the industry disclaimer, “Your home 

may be repossessed if you do not keep up repayments on your mortgage” is also likely 

to little to draw attention to the risks associated with variable interest rates, or increase 

consumers’ consideration of the need for careful financial planning when entering a 

long-term credit agreement.  

Among other factors, several experimental manipulations show the importance of 

simplification when designing effective disclosure information. For example, uptake of 

Earned Income Tax Credit, retirement plans, and a reduction in interest payments, late 
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fees and over-limit fees have been attributed to simplification of mandatory disclosures 

(Bhargava & Manoli, 2013; Clark, Maki & Morrill, 2014; Agarwal, Chomsisengphet, 

Mahoney & Stroebel, 2013). As demonstrated by Salisbury (2011), the provision of 

comparison data is also fundamental to the effectiveness of disclosures. Being able to 

accurately assesses the cost trade-offs associated with different interest rates when 

selecting between different financial products can significantly enhance decision 

making. Standardized information formats (e.g., absolute currency costs) create a 

meaningful context and reduce the cognitive workload associated with comparing rates 

and costs over different time horizons independently (e.g., Hsee et al., 1999).  

Financial costs presented in currency as opposed to percentages are also made 

more salient when presented comparatively, as is the case for energy savings when 

framed in monetary values (Newell & Siikamäki, 2013). With respect to payday loans, 

presenting prospective borrowers with the monetary cost of loans across varying terms 

compared to the relatively lower costs of credit card debt, was shown to be effective in 

reducing loan amounts and decisions to take-up loans (Bertrand & Morse, 2011). This 

format was more effective than disclosures involving comparisons between the APR’s 

of payday and other loan types, thus exemplifying the importance of concrete (non-rate) 

formats to evaluative judgment processes. Choices of investment funds with fee 

alternatives framed in dollars is also shown to impact fund choice to a greater extent 

than with fee alternatives presented in percentage points (Hastings & Tejeda-Ashton, 

2008).        

In sum, financial judgments involving long-term credit agreements such as 

mortgage product choices are subject to cognitive and behavioural biases which limit 

judgment effectiveness. Strong evidence for the effects of numerical format biases 

based on additive processing, and the tendency to seek and apply linear trends in 

complex multi-cue environments were shown in experiments 1 and 2 in chapters 3 and 

4. Experiment 3a involves an application of these findings to a real world environment 

by testing the effects of framing manipulations designed to overcome percentage format 

biases and the linear prediction heuristic in the context of financial judgment. In 

experiment 3a, a comparison is made between data disclosed in a standard industry 

financial disclosure with a manipulation involving interest rates reframed in concrete 

currency costs over the full mortgage term. The rates disclosed in currency format are 

then shown in current versus future rate alternatives.  
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Compared to standard industry formats, it is predicted that mortgage choices will 

be most effective when current and future rates frames are displayed simultaneously 

with a default set view to future rates. It is expected that moderate improvement in 

choice effectiveness will be shown when rates are displayed sequentially (on separate 

screens) with a default set to current rates. These effects are based on mitigating the 

tendency to underestimate costs by arithmetically processing percentages and linearly 

extrapolating non-linear growth which is shown to lead to erroneous financial judgment.  

To test the robustness of the framing effect examined in 3a, experiment 3b is 

conducted as a replication study to assess the effect of a disclaimer manipulation, akin 

to a real-world financial industry disclaimer which is designed to increase attention and 

cognitive effort applied in the task of comparatively analysing the choice alternatives in 

each condition. The disclaimer aims to achieve increased attention and effort by making 

salient the effects of rate variability and the financial risks associated with selecting low 

current rate options. The purpose of experiment 3b therefore, is to identify whether 

simply prompting people to attend more carefully to financial data and apply greater 

cognitive effort when comparatively analysing multiple cues and attributes is sufficient 

to improve judgment performance when viewing data in standard industry rate and 

percentage formats. For example, if this were to be the case, we would expect to see 

greater choice effectiveness in the control condition in experiment 3b compared to 

experiment 3a, thus indicating that people possess the cognitive capacity to rationalise 

effectively using rate and percentage formats and that more complex judgment 

processes can be activated by sufficiently prompting or motivating people to do so.  

Based on the robustness of the linear prediction heuristic and the saliency of 

percentage format biases shown in chapter 3 and 4 it is expected however, that choice 

performance in experiment 3b (with the addition of the disclaimer) will not significantly 

differ to performance in experiment 3a. It is predicted that the positive effects of 

reframing current versus future rate data in absolute (concrete) currency costs on 

financial judgment will hold, showing that framing methods to overcome format biases 

and attentional limitations are necessary to human rationality and that people do not 

possess the cognitive capabilities to synthesize percentage data in complex probabilistic 

domains. Thus, warning people about the risks of rate variability to prompt engagement 

in deeper comparative analysis of rate data will not be sufficient to yield judgment 

improvements.  
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As explained in the above review, measures of financial literacy, numeracy and 

trait optimism are also included in experiment 3b to assess possible interactions 

between relevant individual difference variables and the framing manipulations. The 

findings relating to the influence of individual differences on financial rationality and 

behaviour are somewhat mixed. Therefore, no specific predictions are made regarding 

the direction of the effect of financial literacy and numeracy on judgment performance 

and the measures are included for investigative purposes to further examine the possible 

mechanisms underpinning the effectiveness of the framing manipulation in the context 

of online financial choice.  

With regard to the effects of trait optimism, it is expected, based on Puri and 

Robinson’s (2007) findings, that higher trait optimism will be predictive of lower 

choice effectiveness and interact with frame preference within the two framing 

manipulation conditions (i.e., the rate frame in which people choose to make a 

selection). This prediction is derived from the view that lower temporal preference (or 

greater ‘self-control’ from Puri and Robinson’s perspective) will instantiate a preference 

for higher future rewards (at the expense of lower costs in the present) which is shown 

to be associated with more prudent financial choices and behaviours that act to increase 

utility. In this sense, lower trait optimism may be associated with a tendency to delay 

gratification and forgo short-term rewards (in the form of lower present loan costs) and 

opt for higher cost, fixed rate loans based on future rates options which yield higher 

overall utility when considered over the full loan term in the context of increasing 

interest rates. 
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5.2   Experiment 3a Current Vs Future Interest Rate 

Disclosure Effects on Financial Choice 

In this initial experiment, a mortgage price comparison calculator was built which 

resembled a standard industry mortgage price comparison tool displaying real-world 

loan product data (see figure 5.1 below for a screenshot of the tool). Just as in real-

world comparison websites, the tool presented key information to the consumer relating 

to APR, initial and subsequent interest rates, and estimated monthly costs based on 

initial fixed rate periods. Each row corresponded to a lender and the columns provided 

the different attributes which could be used to ranked and order the product alternatives. 

Although this standard disclosure provides all the necessary information to make a 

mortgage decision based on a given term and borrowing amount, the ability to make an 

effective choice is dependent on correctly processing percentages, understanding 

compounding and synthesizing multiple data points whilst controlling for risk 

associated with additional charges and future rate variability.  

Decision making performance in the standard disclosure condition is thus 

compared to choice effectiveness when data is framed in an interactive/optimistic and 

an interactive/realistic framing condition in which currency costs are framed in current 

versus future interest rates with differential default views.  

It is important at this point to delineate the use of the term ‘framing’ to describe 

the data manipulations tested in experiments 3a and 3b, and how the test of framing is 

distinct from the examination of informational presentation undertaken in experiment 4, 

chapter 6. Specifically, a framing effect typically refers to the impact a piece of 

information has on peoples’ preferences, judgments and choices when the same 

information is presented in different ways. For example, when given the same data, 

creating a positive informational frame is shown to increase peoples’ propensity to 

avoid risk, whereas a negative frame is associated with an inclination to seek risk 

(Tversky & Kahneman, 1981). The data presented in each condition in experiment 3a 

and 3b is exactly the same - i.e., the loan attributes used to populate each trial were 

extracted from the same set of mortgage products selected from those available on the 

market in 2015. Thus, the examination of the alternative informational formats in the 

three conditions in experiments 3a and 3b are tests of framing effects in the traditional 

sense.  
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In experiment 4, chapter 6 however, the data presented in condition 2 differs to 

that show in condition 1 with respect to the future rate information. Both conditions 1 

and 2 disclose full and reduced term repayment information in current interest rates, 

whereas only condition 2 involves the full and reduced term repayment information in 

future rates. In this sense, experiment 4 involves the examination of the impact of two 

different data manipulations on repayment judgments as opposed to a ‘framing effect’ 

based on the alternative presentation of the same information in each condition.  

The current rates are those set by the mortgage lenders during April 2015 (at the 

time of writing) and the future rates are set at a +1.5% increase applied in 0.5% 

increments over three consecutive years from the second year of the loan term. This 

+1.5% rate increase was designed to reflect the Bank of England base rate increase 

forecast in early 2015 to rise to 2% by 2016. Thus, simulating a rise of +1.5% between 

2016 and 2018 represented a realistic and conservative estimate of future repayment 

costs at the time of study design. 

Combined with the disclosure of current versus future rate costs, the optimistic 

and realistic framing conditions also greatly simplified the decision environment by 

making APR and rate information viewable only on demand, thus reducing 

computational barriers and helping to counteract attentional limitations. To recap, the 

findings reviewed in the above section indicate that people tend to treat percentages as 

absolute values and compute future outcomes by adding and subtracting percentage 

points as if they were whole numbers. When extrapolated into the future, computations 

based on arithmetic numerical processing thus lead to the linear projection of growth, 

which in the case of exponentially increasing compound interest rates can lead to 

significant underestimations of future repayment costs. When considered in the context 

of financial judgment therefore, the tendency to linearly extrapolate translates into a 

form of optimistic bias, leading people to assume lower future costs and thus less risk 

associated with potential rate increases.  

It is possible that judgments based on arithmetic processing are a key factor 

underpinning peoples’ optimistic (‘unrealistic’) financial estimates. Applying additive 

methods to rate and percentage information will lead people to make underestimates of 

costs, and thus predict ‘manageable’ future repayments. This is likely to result in people 

discounting higher future costs and opting for the most favourable choice in the present 

(i.e., lowest current costs). An alternative view is that people approach financial 

decision making with a pre-existing optimistic bias, leading them to assume that rates 
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are unlikely to rise and that if they do, they will somehow be able to meet the increased 

financial demands in the future. From this perspective, the way optimism may impact 

financial judgment could be multifaceted. However, based on the strength of evidence 

for processing inaccuracies stemming from format biases, it is probable that the former 

viewpoint is the main precursor to peoples’ optimistically biased financial judgments 

and choices. 

The use of rate and percentage data in a complex decision domain involving 

multiple cues and data points such as financial price comparison, therefore places 

demand on attentional resources which exceeds peoples’ cognitive capacities. Hence, it 

is predicted that the important manipulations of reducing the quantity of data points 

necessary for decision making and replacing rate formats with absolute currency costs 

framed in current and future rates will significantly increase the effectiveness of 

financial choices compared to the standard format condition. Specifically, the 

simultaneous display of rate alternatives combined with a default set to future rates in 

the realistic framing condition is expected to be the most effective overall by overriding 

the optimistic tendency to discount higher future costs (or unfavourable outcomes) in 

preference for smaller (more favourable) present costs.  

5.2.1   Method  

Participants 

One-hundred and seventy-nine participants aged over 18 years were recruited via 

Amazon Mechanical Turk and paid $2.00. The average age was 36.8 years (SD = 10.02, 

range = 21 to 67 years), 40.40% were female and 40% were educated to a minimum 

level of a college degree. The sample size was determined by a power calculation which 

showed 159 participants necessary for 80% power based on a one-way ANOVA (α = 

0.05, d = 0.25, 1-β = 0.8). The budget was set accordingly and data collection 

proceeded until the budget was reached.  

Design  

The experiment was conducted as a randomized controlled trial using an 

independent groups single factor design. Participants were randomly assigned to one of 

three conditions: 1) standard disclosure (control); 2) interactive/optimistic framing; and 

3) interactive/realistic framing. In each condition, participants underwent eight trials 

(two of which were attention checkers) in which they selected what they believed to be 
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the best mortgage from five alternatives for a given loan amount and term. Trials were 

randomized per participant in each condition.  

Materials  

There were eight unique trials per condition in which five mortgage choices for 

different term and amount combinations were presented. All trial stimuli were extracted 

from real-world mortgages available on the UK mortgage market at the time the 

experiment was designed during April 2015.  

Each trial in all three conditions involved a choice between one or more standard 

variable rate (SVR), discounted variable rate (DVR), and fixed rate mortgages. Each 

condition differed in the presentation and framing of the mortgage data across all eight 

trials. Figure 5.2a shows a screenshot of the control condition 1 (standard industry 

disclosure) in which the five loan options were presented in an interactive price 

comparison tool resembling a traditional, real-world mortgage price comparison 

website. The tool design, user interface and the specific product attributes presented 

were exactly the same as the attributes provided on commercial websites available in 

2015. 

 

Figure 5.2a The Standard Industry Disclosure Cond 1 (Control) in Exp 3a 

The standard industry disclosure condition (control) in which all the loan product 

attributes and the design and layout of the information directly matched real-world 

mortgage price comparison websites. As in the real-world context, loans could be 

ordered by the individual attributes using toggle keys in the header. Although all the 

product attributes are made available, making an optimal decision depends on 

synthesizing multiple variable rate data and is thus particularly difficult.   
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The optimistic framing condition 2 in current rate frame (default view) 

 

The optimistic framing condition 2 in future rate frame (non-default view) 

Figure 5.2b The Optimisic Framing Condition 2 in Exp 3a 

The optimistic framing condition 2 showing the default frame set to total 

repayment costs in current rates (the default view) and the alternative frame showing 

total repayment costs in future rates (the non-default view). Participants were free to 

click backwards and forwards between the rate frames in the two separate screens 

before making a mortgage choice in either screen. Loans in both frames were rank 

ordered by total loan cost over the full term, thus dramatically simplifying the 

comparison problem compared to the standard disclosure. Participants could click to see 

individual loan interest rates and APR’s if desired (otherwise, all rate and APR data was 

removed to simplify the decision process). The default set to current rates is predicted to 

exacerbate the optimism bias, anchoring participants on best option in current rates, thus 

making it moderately more effective compared to the control. 
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The realistic framing condition 3 in future rate frame (default view) 

 

The realistic framing condition 3 in current rate frame (non-default view) 

Figure 5.2c The Realistic Framing Condition 3 In Exp 3a 

The realistic framing condition in which the default was set to total repayment 

costs in future rates (the default view). When participants clicked to see costs in current 

rates (the non-default view), the two repayment alternatives were displayed onscreen 

side-by-side as opposed to on separate screens (as in the optimistic framing condition). 

This was designed to facilitate evaluative judgment processes by increasing sensitivity 

to the effects of rate changes over the loan term, and how these variances differentially 

effected costs depending on mortgage type. This framing is predicted to be the most 

effective by anchoring participants on the most realistic cost scenario, and facilitating 

the comparative analysis of the different mortgage types and in the context of the rate 

alternatives to a greater extent than the sequential disclosure in the optimistic framing 

condition.    
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In the optimistic framing condition 2 shown in figure 5.2b, participants viewed an 

interactive and simplified version of the traditional loan price comparison tool in the 

control condition. Unlike the traditional disclosure, the optimistic framing condition had 

all rate information removed and total loan repayment costs over the full term (in UK 

currency) were displayed in price rank order. The default screen (i.e., the view that 

participants viewed first in each trial) was set to the rank ordered prices in current rates 

(the first screenshot), hence the ‘optimistic’ framing. In the header, a tab labelled ‘show 

future rates’ enabled participants to click to a new screen where they viewed loans rank 

ordered in future rates (the second screenshot). They could then alternate between the 

two screens to view the current and future rates separately by clicking on the tab in the 

header.  

The same as in control condition, the loans could also be ordered by individual 

attributes using toggle keys in the header. However, in contrast to the control condition, 

computation of APR information was not necessary for decision making and was 

therefore not displayed in either rate frame. To replicate the legal data disclosure 

requirements of standard websites, the interest rate and APR data for each loan was 

viewable if desired, made accessible by clicking on the ‘?’ icon next to each mortgage 

choice. The message “click to see individual rates and APR’s” displayed at the bottom 

of the tool was provided to prompt this action. Figure 5.2b default and non-default 

views show examples of what happened when the ‘?’ icon was clicked. In this instance, 

the green bar at the bottom of the tool displayed the individual data for the selected 

loan.  

In the realistic framing condition 3 shown in figure 5.2c, the informational 

framing in the optimistic framing condition 2 was repeated, except that the default view 

was set to total loan costs in future rates (hence the ‘realistic’ framing) and the 

alternative rate frames were disclosed simultaneously (i.e., side-by-side on the same 

screen), as opposed to sequentially on separate screens. 

Generation of the Trial Stimuli  

All trial stimuli were constructed using data from real-world mortgages available 

on the UK mortgage market during April 2015. Across eight trials involving different 

duration and amount combinations, participants selected what they believed to be the 

best loan from five mortgage options with various current rate terms (see table 5.1 for 

the trial stimuli details).  
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Table 5.1 Loan Term, Amount and Rate Combinations Per Trial in Exp 3a 
The mortgage term, borrowing amount and current interest rate combinations 

presented per trial in each condition. 
 

Trial 1 and 2 Trial 3 and 4 Trial 5 and 6 Trial 7 and 8 

10 year term 15 year term 20 year term 25 year term 

£110,000 £150,000 £220,000 £400,000 £95,000 £275,000 £185,000 £375,000 

1.89% for 
lifetime 

4.45% for 
lifetime 

1.50% for 
2 yrs then 

4.99% 

3.69% for 
lifetime 

1.99% for 
2 yrs then 

4.75% 

2.22% for 
2 yrs then 

4.99% 

1.99% for 
2 yrs then 

3.94% 

3.65% for 
3 yrs then 

4.95% 

1.79% for 
2 yrs then 

3.99% 

3.95% for 
3 yrs then 

4.99% 

1.69% for 
2 yrs then 

4.75% 

1.69% for 
2 yrs then 

3.99% 

1.85% for 
2 yrs the 
4.99% 

2.69% for 
2 yrs then 

4.99% 

1.79% for 
2 yrs then 

3.99% 

2.95% for 
3 yrs then 

4.99% 

1.89% for 
2 yrs then 

4.49% 

3.49% for 
2 yrs then 

5.64% 

1.15% for 
2 yrs then 

5.54% 

3.14% for 
5 yrs then 

4.99% 

1.69% for 
2 yrs then 

5.95% 

1.95% for 
2 yrs then 

5.69% 

3.65% for 
5 yrs then 

4.15% 

2.29% for 
2 yrs then 

4.99% 

1.70% for 
2 yrs then 

4.99% 

4.99% for 
2 yrs then 

5.49% 

1.84% for 
2 yrs then 

5.79% 

5.04% for 
2 yrs then 

4.74% 

5.58% for 
5 yrs then 

5.73% 

4.99% for 
5 yrs then 

5.95% 

4.29% for 
5 yrs then 

5.79% 

5.99% for 
3 yrs then 

5.73% 

5.59% for 
2 yrs then 

5.69% 

5.69% for 
5 yrs then 

4.99% 

4.99% for 
2 yrs then 

5.49% 

5.45% for 
4 yrs then 

4.49% 

6.09% for 
2 yrs then 

5.73% 

5.25% for 
5 yrs then 

5.99% 

6.09% for 
5 yrs then 

5.73% 

5.24% for 
5 yrs then 

5.79% 

 

The interest rates presented per trial shown in table 5.1 were exactly as advertised 

by the individual mortgage lenders. When these rates were applied to the borrowing 

amounts and loan terms selected for each trial, the fixed rate options consistently 

yielded higher total repayment costs over the full term compared to the standard 

variable (SV) and discounted variable (DV) rate options. Thus, in current rate frames, 

the SVR/DVR options always yielded the most favourable choice (i.e., the lowest total 

costs). However, the optimality of the SVR/DVR choices only remained so if there was 

no variability in the fixed and subsequent rates of the mortgages over the full term.  

Typically, fixed rate mortgages offered a higher initial rate period and subsequent 

term rate comparted to SVR and DVR alternatives. This creates the perception that 

fixed rate mortgage represented the worst choice (i.e., was the most expensive in the 

long-term). Most lenders offered an initial fixed period in which the interest rate would 

not alter. However, following the fixed period, the SVR/DVR options were subject to 

rate increases at the individual lenders discretion increases in rates in addition to 

predicted base rate rises. The fixed rate options conversely, were not subject to future 
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rate fluctuations following the initial period because the subsequent rate was fixed for 

the remainder of the term. Thus, when computing the effects of projected base rate 

increases combined with the probability of lender rate increases, fixed rate options can 

represent the most optimal choice over the full term. The effects of compound interest 

rates mean that even slight increases can result in significantly greater monthly and total 

costs over longer horizons.     

Thus, to facilitate optimal choice by creating realistic repayment scenarios, 

projected base rate growth was built into the future cost framings in condition 2 and 3. 

This was achieved by increasing the SVR/DVR options by +1.5% in 0.5% increments 

over three consecutive years beginning in the second year of the mortgage term. The 

experiment was designed in 2015, which meant that the simulated rate increase took 

effect from 2016 (hypothetically year two of the loan) through to 2018 (year four) 

which was in accordance with predicted increases at the time of writing. It is relevant to 

note that the following future cost estimates were particularly conservative as they were 

based on the smallest predicted base rate rises in 2015 and did not include any 

additional rate increases applied by lenders. 

For example, figure 5.3 shows that in current rates (with no rate manipulations), a 

SVR mortgage for £220,00 over 15 years at a fixed rate of 1.69% for 2 years then 

4.75% yielded a total repayment cost of £301,951. In future rates however, the total cost 

increased to £332,219. Following the lenders fixed period of two years at 1.69%, this 

was generated by adding 1.0% (0.5% + 0.5%) to the subsequent rate of 4.75% in year 

three of the loan to generate a rate of 5.75% for one year, followed by another increase 

of 0.5% in year 4 to generate a rate of 6.25% for the remainder of the term. In contrast, 

a fixed rate mortgage alternative at 1.84% for 2 years, then 5.79% yielded a total cost of 

£323,973 regardless of rate fluctuations. As this example shows therefore, when 

considered over the short term, a fixed rate loan with a higher initial monthly cost is 

suboptimal compared to a SVR with a lower initial fixed rate period. However, when 

framed over the full term the reverse is shown, with the higher initial rate fixed version 

being the most effective long-term choice.  
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Figure 5.3 Costs for Different Mortgages in Current Vs Future Rates 

This example shows the yearly repayment costs for a £220,000 mortgage over a 

15-year term at current versus future interest rates for a standard variable (SVR) versus 

fixed rate mortgage option. In current rates, the SVR option represents the best choice 

(lowest total repayment cost). However, when accounting for the most realistic future 

scenario of a minimum base rate increase of +1.5%, the fixed rate options represents the 

optimal decision, coming in at a lower total repayment cost compared to the SVR.  

Two of the trials were designed as ‘attention checkers’ to measure participants 

level of focus on the task. In these trials, the total loan costs for each of the five 

mortgage choices remained the same across the current and future rate frames in 

condition 2 and 3. I.e., the SVR and DVR options were the cheapest, and the fixed rate 

options were the most expensive in both the current and future rate frames. Thus, the 

best loan choice did not change making it very easy to detect. Any participant who 

failed to answer these trials correctly were removed from the dataset.  

Procedure  

After providing demographic information for age, education and gender, 

participants were randomly assigned to one of the three conditions in which they 

underwent the eight unique trials (two of which were attention checkers designed to 

filter out non-attentive respondents). On the landing page of the experiment participants 

were given the following instruction: 
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“In this experiment you will be asked to select the best mortgage you can for a 

given property price and loan term. There are 8 trials in total and some brief 

questionnaires at the end. In each trial you will be shown a mortgage price comparison 

tool with different loan choices. You can toggle the mortgages by different features and 

screens to help you choose.” 

In each trial, the following instruction was provided at the top of the screen with 

the relevant loan amount and term information inserted: 

“Imagine you want to buy a house that costs £340,000. You need to get a 

mortgage for £220,000 over 15 years. Please use the loan calculator below to find the 

best mortgage you can. To help you make your choice, you can use the toggle keys in 

the header to switch the order of the mortgages according to each attribute.  

You can click on ‘current rates’ and ‘future rates’ to compare the repayment costs 

over time. By clicking on the ‘?’ you can see the APR and interest rate information for 

each individual mortgage. When you are ready, click on your chosen mortgage in the 

‘SELECT MORTGAGE’ column on the right-hand side to submit your choice.” 

The instruction remained at the top of the screen for the full duration of each trial 

with the price comparison tool positioned in the lower half of the screen and no time 

limit was applied to participants’ responses. After submitting a choice, participants were 

asked to cancel or confirm their choice in order to move to the next trial. Each new trial 

followed exactly the same format, with the loan amount and term differing in the 

instruction section at the top of the screen and the information changing within the tool.  

After completing all eight trials, a new screen was shown asking participants to 

indicate which information they used to make their loan choices. Using drop-down 

menus, participants then indicated whether they used “current rates only”, “future rates 

only” or “both current and future rates” to make their loan choices, and whether “total 

repayment cost” or “monthly cost” was more important to their choice. After submitting 

responses to each question, participants were thanked for their participation and 

provided with instructions for remuneration.   

5.2.2   Results 

 Analysis of Choice Effectiveness Per Condition 

Thirteen participants who did not complete all eight trials were removed from the 

data set, leaving 166 remaining (54, 57 and 55 in condition 1, 2 and 3 respectively). Of 
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the remaining 166 participants, each correctly answered both of the attention checker 

trials. For the purposes of the experiment, judgments were categorized as either 

‘correct’ or ‘incorrect’ based on the minimization of total repayment costs over the full 

loan term. Participants choices in each condition were coded as ‘correct’ (1) if the target 

loan was selected in each trial (i.e., the choice which yielded the minimum total 

repayment cost over the full term) and ‘incorrect’ (0) if any other choice was made. 

Performance was thus measured from the standpoint of economic ‘rationality’, 

whereby choices which acted to maximize utility based on the minimization of total 

repayment costs, were considered ‘correct’. Judgments which yielded repayment costs 

anywhere above the minimum failed to maximise utility are were thus regarded as 

‘incorrect’ in this context. However, an additional, less stringent measure of judgment 

performance was also computed to account for the fact that a binary ‘correct/incorrect’ 

classification may not be entirely relevant in the context of the real-world factors which 

impact peoples’ financial judgment and behaviour.   

To gain an indication of the degree of choice optimality (as opposed to correct vs. 

incorrect), an interval scale was formed by individually scoring the best choice per trial 

as 1.0 and the worst was as 0.2 according to the rank order in the future rate frame. This 

created a monotonic scale of choice effectiveness ranging from 0.2 to 1.0 across both 

frames. Figure 5.4 shows both the proportions of correct choices and the mean choice 

scores per condition. This interval scale of judgment performance showed differences in 

the degrees of choice optimization per condition. For the purposes of analysis, this 

provided more information regarding the effectiveness of the information manipulations 

in relation to the control.  

It is necessary to note however, that ‘rationality’ in the context of financial 

choices and behaviour are likely to be influenced by individual circumstance factors 

which were unaccounted for in the experiment. For example, it may be considered a 

‘rational’ judgment for a person to avoid higher costs in the present (and choose to pay 

more over the long term) in the knowledge that (although currently unable to meet the 

higher financial demands), they would be financially better off in the future. Thus, in 

situations such as this, delay discounting may not always be irrational. This may be the 

case for someone due to acquire income through future inheritance, or a pending job 

contract or career move, etc. In this sense, more complex mechanisms are likely to 

underpin the relation between intertemporal choice and the ‘rationality’ of real-life 

financial decisions than factors related to informational format alone.  
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Figure 5.4 Correct Choices and Choice Scores Per Condition in Exp 3a 

Proportions of correct choices and choice scores per condition with standard error 

bars. As expected, the proportions of correct (best) choices and the mean choice scores 

were significantly greater in the realistic framing condition 3 compared to the control 

condition 1 and the optimistic framing condition 2. The similarities in the mean choice 

scores and the proportion of 100% correct choices in condition 2 and 3, and the degree 

of difference between these two measures indicated that condition 2 and 3 were 

similarly effective in yielding both fully optimized choices and increasing choice 

effectiveness in relation to the traditional disclosure condition.  

A logistic regression analysis was conducted to predict the proportions of correct 

choices (1/0) per condition. As expected, condition level (1 to 3) significantly predicted 

the proportion of correct choices made, (B = 0.94, z = 12.28, p<.001, 95% CI [0.78, 

1.08]). Post hoc analyses with Bonferroni adjusted p values showed an increase in the 

proportions of correct responses from condition 1 through condition 3. Proportions of 

correct responses in condition 1 (M=0.17) were significantly lower than those in 

condition and 2 (M=0.52), p<.001, which were significantly lower than those in 

condition 3 (M=0.6), p<.05.  

A one-way ANOVA conducted on the choice scores per condition reflected the 

results of the logistic regression, showing a significant main effect for condition, 

F(1,1325) = 179.9, p<.001; 95% CI = [.0948, 0.1273].  Post hoc analysis confirmed that 

choice scores in the realistic framing condition (M=0.83) were significantly higher than 

those in the optimistic framing condition (M=0.79), p<.05., which were significantly 

greater than those in the control condition (M=0.61), p<.001. Figure 5.5 shows the 
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proportion of choice scores per condition to illustrate the distribution of total choice 

effectiveness across the range from 0.2 (worst) to 1.0 (best). In addition to the 

proportion of correct choices, the choice score dependent variable is useful in showing 

the dissemination or distribution of choice effectiveness per condition compared to the 

binary correct/incorrect outcome. This measure of performance is important because it 

shows the degree of choice effectiveness which is not indicated when responses are 

assessed in terms of ‘correct’ (fully optimized) versus ‘incorrect’ (i.e., all other options). 

Assessing choice performance on a continuum in this way therefore reveals more 

information regarding the effects of each manipulation.  

  

 

Figure 5.5 Proportion of Choices Per Score and Condition in Exp 3a 

The proportions of choices displayed per score in each condition with standard 

error bars. The majority of choices in the control condition achieved a score of 0.6. This 

indicates that when presented with the standard industry data format, participants tended 

to make choices which were at a 50% level of effectiveness. However, when presented 

with rate frames in the optimistic framing condition 2 and the realistic framing 

condition 3, the majority of choices were made at a 100% level of effectiveness, 

reflected by a choice score of 1.0. Overall, the realistic framing condition (3) yielded the 

highest proportion of fully effective choices within and between conditions. 

The significantly higher choice scores in condition 2 and 3 therefore suggest that 

the framing manipulation positively impacted choice optimality. To explore the 

difference in choice effectiveness between the current and future rate frames in 
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condition 2 and 3, a logistic regression was conducted firstly on the proportions of 

choices made per frame per condition (results are shown in figure 5.6). 

Current Vs Future Frame Choice Proportions  

 

Figure 5.6 Proportion of Choices in Current Vs Future Frame in Exp 3a 

The proportion of choices made in the current and future frame in the optimistic 

framing condition 2 and the realistic framing condition 3 with standard error bars. 

Significantly more choices were made in the opposite frame to the default in both 

conditions, indicating that participants in each condition tended to click through to the 

alternative frame before making a choice. In condition 2, 30% more choices were made 

in the future frame compared to the default current frame, and in condition 3, 22% more 

choices were made in the current frame compared to the default future frame.  

Results of a logistic regression to predict proportions of choices made in the 

current (0) and future frame (1) per condition showed that the proportion of choices 

made in the future frame significantly differed between conditions, (B = -1.06, z = -

7.71, p<.001, 95% CI [-1.34, -0.79]). Post hoc analysis confirmed that a significantly 

higher proportion of choices were made in the future frame in the optimistic framing 

condition (2) (M=0.65) compared to in the future frame in the realistic framing 

condition (3) (M=0.39), t(891.11) = 8.07, p<.001, and a significantly higher proportion 

of choices were made in the current frame in condition 3 (M=0.61) compared to in the 

current frame in condition 2 (M=0.35), t(891.75) = -4.63, p<.001.   
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Choice Scores Per Rate Frame 

Figure 5.7 shows the mean choice scores per frame and condition. A linear 

regression model with choice score as the dependent variable and condition and the 

frame in which the choice was made as factors in the model showed that choice scores 

were significantly higher in the realistic framing condition 3, R2 = .05, F(3,892) = 16.47, 

p<.001, B = -0.061, t(892) = -2.58, p<.01; 95% CI = [-0.10, -0.01] and significantly 

differed between the chosen frame per condition, with higher scores yielded in the 

current frame across conditions, B = -0.461, t(892) = -5.52, p<.001; 95% CI = [-0.6254, 

-0.2973]. The interaction term was found to be significant due to an overall higher mean 

choice score in the current rate frame in the optimistic framing condition 2, B = 0.15, 

t(892) = 4.71, p<.001. 

Planned t-tests showed that mean choice scores were significantly higher in the 

realistic framing condition 3 (M=0.83 vs M=0.79), t(891.94) = -2.40, p<.05. Between 

conditions, future frame choice scores were significantly higher in condition 3 

(M=0.83) compared to the optimistic framing condition 2 (M=0.74), t(366.44) = -

3.8375, p<.001, whereas current frame choice scores were significantly higher in 

condition 2 (M=0.90) compared to condition 3 (M=0.83), t(355.53) = 2.9194, p<.01. 

Within conditions, choice scores were significantly greater in the current frame in 

condition 2 (M=0.89 vs M=0.74), t(396.93) = 6.94, p<.001, in condition 3 however, no 

difference in choice scores was found between the future (M=0.83) and current frame 

(M=0.83), t(328.53) = -0.06, p=0.95. This indicated that despite there being more 

choices made in the non-default frame in condition 3, there was no significant 

difference in the effectiveness of the choices made in either frame. In contrast, condition 

2 yielded a higher proportion of more effective choices in the non-default frame, 

underpinning the significant interaction term in the regression model. 
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Figure 5.7 Mean Choice Score Per Frame in Exp 3a 

The mean choice score per frame for each condition with standard error bars. 

Although there was a larger proportion of choices made in the alternative frame to the 

default in both conditions (figure 5.6), the effectiveness of the choices in the optimistic 

framing condition 2 was greater in the default (current) frame. This suggests that when 

two comparisons of the rate frames were made (i.e., by clicking to view rates in the non-

default frame, then back again), the resulting choices were more effective compared to 

when only one comparison between the current and future rates was made (i.e., clicking 

to view the non-default then making a choice). In the realistic framing condition 3, 

choice scores were significantly higher than those in the optimistic framing condition 2, 

however, within condition 3, there was no significant difference between choice scores 

in either frame. This indicates that the number of comparisons made in condition 3 

might have been less important to choice effectiveness than in condition 2.  

Correct Choices Per Rate Frame 

A logistic regression was conducted to predict the proportions of correct (1) and 

incorrect (0) choices made per chosen frame in each condition. Results (displayed in 

figure 5.9) showed a significant effect of condition (B = -0.64, z = -2.99, p<.01, 95% CI 

[-1.07, -0.22]) and frame (B = -4.39, z = -5.82, p<.001, 95% CI [-5.88, -2.92]) on the 

proportion of correct choices made, and a significant interaction term, (B = 1.51, z = 

5.19, p<.001, 95% CI [0.95, 2.09]). As expected, these results reflect the pattern of 

choice scores shown in figure 5.7, with post hoc analysis indicating that a significantly 

higher proportion of correct choices were made in condition 3 (M=0.60) compared to 

condition 2 (M=0.52), t(893.72) = -2.35, p<.05, with more correct choices made in the 
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current frame (M=0.63) compared to the future frame (M=0.48) across conditions, 

t(891.9) = 4.57, p<.001. 

Between conditions, there were significantly more correct choices made in the 

future frame in the realistic framing condition 3 (M=0.62) compared to the optimistic 

framing condition 2 (M=0.41), t(357.85) = -4.57, p<.001, and significantly more correct 

choices in the current frame in condition 2 (M=0.73) compared to condition 3 

(M=0.58), t(360.64) = 3.12, p<.01. Moreover, current frame correct choice proportions 

in condition 2 (M=0.73) significantly exceed future frame proportions in condition 3 

(M=0.62), t(328.91) = 2.05, p<.05, and vice versa for condition 3 current frame 

proportions (M=0.58) versus condition 2 future frame (M=0.41), t(557.28) = 4.20, 

p<.001. Within conditions, correct choice proportions were significantly higher in the 

current frame in condition 2 (M=0.73 vs. M=0.41), t(352.96) = 7.0, p<.001, however, 

no difference was found in the proportions of correct choices between the current 

(M=0.58) and future frame (M=0.62) in condition 3, t(366.19) = -0.83, p=.40.  

          

 

Figure 5.8 Proportion of Correct Choices Per Frame in Exp 3a 

The proportion of correct choices made per chosen frame in each condition with 

standard error bars. Overall, a higher proportion of correct choices were made in the 

realistic framing condition 3 and there was no difference in choice effectiveness 

between the frames in which the choices were made in condition 3. In the optimistic 

framing condition 2, a higher proportion of 100% optimal choices were made in the 

default frame, suggesting that making two (or more) comparisons of the data by 

clicking back to the default frame again before making a decision (i.e., current-future-
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current viewings), increased the propensity to make 100% optimal choices. The 

difference between the proportions of 100% optimal choices in the default and non-

default frame in condition 2 was also greater than the difference in choice scores 

between the frames. This indicated that making more than one comparison of rates 

increased the propensity to make a choice that was 100% optimal compared to a choice 

which was more effective only to some extent. In condition 3, the lack of difference in 

proportions of correct choices between frames indicated that both frames were equally 

effective, thus choice optimality was less dependent on making multiple alternations 

between screen rate frames.    

Analysis of Rate Frame and Repayment Data Usages  

Analysis of the information participants provided at the end of the trials indicated 

that there was no difference between their use of “total repayment cost” or “monthly 

cost” when making loan choices in the optimistic framing condition 2, t(57) = 0.52, 

p=.60, or in the realistic framing condition 3, t(55) = 0.79, p=.43. Moreover, the use of 

“both current and future rates” was significantly greater compared to use of “current 

rates only” in condition 2, t(57) = 10.30, p<.001 and 3, t(55) = 13.70, p<.001, and use of 

“future rates only” in condition 2, t(57) = 6.55, p<.001 and 3, t(55) = 9.89, p<.001. 

 These results indicated that the majority of participants in both conditions 

viewed the loan information in both the current and future frame before making a 

choice. Combined with the above results, this supports the view that the most effective 

choices per condition were made when participants made two or more comparisons of 

the data before making a selection. I.e., after clicking to view the alternative frame to 

the default view in each condition, they then clicked back to the default frame before 

making a decision.  

This process of comparison between data frames might have occurred multiple 

times (the data relating to the number of screen transitions was not collected). However, 

consistent with the responses to the final questions, it seems likely that an increase in 

the number of screen transitions (i.e., multiple data comparisons) was associated with 

increased choice effectiveness. If it were the case that the higher proportion of correct 

choices in the default frames resulted from participants making a choice based on 

viewing the data in that frame only without clicking to view the alternative frame, we 

would expect to have found higher proportions of “current rates only” and “future rates 

only” responses compared to “both current and future rates” when prompted to indicate 

which data frames people used to form their decisions.  
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5.2.3   Discussion 

As expected, mortgage rates framed in concrete currency costs presented in 

current versus future rates over the full term significantly increased choice effectiveness 

compared to mortgage data presented in a standard industry price comparison format. 

The framing manipulations in both the optimistic framing condition 2 and the realistic 

framing condition 3 yielded a higher proportion of correct choices and higher choice 

scores compared to the standard industry disclosure which involved the information 

presented in APR and rate format.   

Overall, choice scores were highest in condition 3 and a larger proportion of fully 

optimal choices were yielded compared to condition 2. This result supports the 

predicted effectiveness of condition 3 based on the simultaneous presentation of the rate 

alternatives combined with the future rate frame default view. In both conditions, a 

higher proportion of choices were made in the non-default frames which suggests that 

the data formats encouraged participants to view the alternative frames once or multiple 

times before making a choice. In condition 3, there was no difference between the 

current and future rate frame in either choice scores or the proportions of correct 

choices, whereas in condition 2, choice scores and proportions of correct choices were 

greater in the default (current rate) frame.  

Whilst the number of transitions participants made between screens was not 

recorded, the results suggest that, rather than simply selecting the first (lowest) total cost 

viewed when clicking to see the future rates (in the non-default view) in condition 2, the 

best choices were made by people when they returned to the current rate frame (the 

default view) before making a selection. Although it is likely that the best decisions 

were based on multiple current versus future rate comparisons, it is clear that returning 

to the default frame was important to choice effectiveness in the optimistic framing 

condition 2. It is likely that the sequential presentation of the rate alternatives (i.e., the 

separate screen views) is what underpinned the increase in rate frame comparisons, 

leading to higher rate of optimal decisions being made in the default view.  

The sequential presentation of the data frames in condition 2 meant that less 

information was provided per screen which potentially simplified the process of data 

synthesis. However, it also required successive alternations between screens to perform 

the comparative analysis of the choice alternatives. When using the toggles to rank 

loans by different attributes and in different frames, it may have been more difficult to 
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identify how the costs changed in relation to the rate frames in the sequential display in 

condition 2 compared to in condition 3 where the cost and rate changes were viewed 

simultaneously. Thus, despite less data being shown per frame in condition 2, the effort 

necessary to place the data in context and effectively evaluate the alternatives (i.e., the 

necessity to switch screens multiple times) is likely to have increased task demands, 

leading to increased attentional load and resulting in a reduction in judgment 

performance.  

The increased effectiveness of condition 3 indicated that the ability to view and 

compare the rate alternatives side-by-side (i.e., in the simultaneous presentation format) 

was likely to have facilitated evaluative judgment to a greater extent than in condition 2 

where the alternatives could only be compared by clicking to access the current and 

future rates on separate screens. It is also possible that the future rate default set in 

condition 3 was effective in anchoring participants on the best choice prior to them 

making any comparisons between rates and product types. In this respect, the default 

would have acted to enhance the facilitative effect of displaying the rates and product 

information simultaneous. Within the context of the less effective (current rate) options, 

presenting people with the highest ranking (most optimal selections) first is likely to 

have effectively communicated how the costs for fixed versus variable rate product 

types altered and re-ordered within each rate frame and how this impacted the rank 

order of product effectiveness. Disclosing the re-ordering of the loans based on rate 

differences side-by-side is thus likely to have facilitated comprehension of how and 

why different product types significantly altered in their level of optimality when 

considered over the full loan term.  

In addition to the use of defaults to create anchors, simultaneous data 

presentations and disclosing percentages and rates in absolute terms, there is also 

evident to suggest that disclaimers can be effective in improving peoples’ choice of 

investment options in percentage formats by increasing peoples’ sensitivity to fees 

(Newall, 2016b). This suggests that a disclaimer could also be effective in improving 

mortgage product choices when the data is presented in standard industry APR and rate 

formats. In particular, disclosure manipulations are shown to be more effective in aiding 

consumer financial judgment when they are delivered in short, simplified formats (e.g., 

Bhargava & Manoli, 2013), and are aimed specifically at encouraging people to 

compare different options and individual attributes (e.g., Salisbury, 2011).  
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From this perspective, it is possible that simply heightening peoples’ awareness of 

rate variability using a disclaimer may be sufficient to improve judgment performance 

by motivating greater cognitive effort and attentional resources. Increasing peoples’ 

sensitivity to financial risk may therefore activate more complex judgment processing 

involving a higher cognitive load and the application of attentional resources which 

could leading to more comprehensive and effective comparative analysis of individual 

cues and attributes. One possible explanation for the results shown in the standard 

industry format condition therefore, is that when presented with complex data in 

percentage formats, people tend to default to frugal judgment strategies which minimize 

cognitive effort and resources to yield quick decisions. These strategies thus result in 

format biases, additive processing techniques and the tendency to assume linear relation 

which can result in poor judgments and choices. However, when provided with a 

stimulus to evoke increased effort and attentional resources, such as being explicitly 

warned about the implications of future rate increases, peoples’ judgment may improve 

in complex environments, even where information is framed in percentages.    

It may be the case therefore, that format biases and the tendency to arithmetically 

compute values are not the primary factor underpinning poor financial judgment in all 

contexts. For example, people may possess sufficient attentional capacities and may be 

capable of accurately processing and comparing percentage data in complex 

environments if there is a strong motivating factor for increasing the cognitive effort 

and time people invest in the judgment process. It is therefore necessary to test whether 

prompting people to consider future rate costs using a short, informational disclaimer 

can be effective in increasing judgment performance when data is disclosed in both 

absolute currency costs (i.e., using the same data framing manipulations tested in the 

current experiment) and in standard industry formats. This would provide evidence for 

whether format biases and inherent limitations in attentional capacities underpin poor 

performance, or whether it may be possible in some contexts to improve judgment 

effectiveness based on increasing attention and cognitive effort, despite percentage and 

rate information.  

For example, if it is the case that judgment performance is not characterized 

entirely by format biases, we may see an increase in judgment performance in the 

standard industry format condition with the addition of a disclaimer which warns people 

to carefully consider their choices based on the financial implications of future rate 

increases. Thus, despite percentage and rate formats, drawing peoples’ attention to the 
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risks associated with low rate choices may be successful in motivating them to apply 

more cognitive effort and manage a greater attentional load leading to a more optimal 

decision than in the absence of a motivational prompt. People may therefore be capable 

of undertaking a higher cognitive load, but are predisposed to engage in low effort 

cognitive processes to increase judgment speed and efficiency in complex environments 

where there are multiple attributes and it is difficult to weight the importance of 

individual cues in the judgment task.  

Before discussing other factors which may shape peoples’ financial choice and 

behaviour, it is important to identify potential limitations in design which could have 

impacted results. The purpose of the experiment was to examine the impact of different 

informational manipulations on peoples’ propensity to make economically rational 

financial choices (i.e., those which act to maximize utility over the long-term), based on 

the particular data and scenario presented. From this perspective, it is probable that 

people would have processed the data in accordance with the aim of minimizing total 

repayment costs. However, with respect to real-world interest rate variability, peoples’ 

decisions may have been influenced by the knowledge that (although predicted to rise) 

the base rate has historically remained low and predictions for increases have not 

actualized to date. It is therefore possible that people will base financial decisions on the 

belief that interest rates are unlikely to rise, or to an extent great enough to create 

negative financial impacts. Although this perspective does reflect an optimism bias, it 

may represent an adaptive response to historical trends in interest rates.  

Similarly, people may have processed the information in accordance with the 

knowledge that it is possible to switch between mortgages following initial fixed rate 

periods. This could enable the extension of a lower borrowing rate and would thus lead 

people to opt for the lowest cost option in current rates (which would represent the least 

effective choice in the experiment) in the belief that they could change products or 

providers once the low rate period ceased. This strategy may therefore be perceived as a 

‘rational’ strategy for some individuals in a real-world setting. However, it is still the 

case that many borrowers do still take out long-term mortgages and are subject to the 

rate increases following the fixed rate periods.  

As emphasized above, the aim of the experiment was to elicit the effects of data 

manipulations on the economic rationality of choices (i.e., those which act to maximize 

utility over the long-term), based on the hypothetical base rate increases applied to the 

lenders rates following the fixed periods. Although there was the potential to yield 
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ineffective choices in the context of the experiment which may be otherwise be 

considered ‘rational’ in the context of individual circumstances, knowledge and beliefs 

etc., it was not possible within the confines of the experiment to capture the impact of 

individual knowledge etc. Future work focusing on these variables would thus provide 

useful insights into how such factors influence financial behaviour and how financial 

‘rationality’ may be determined and defined from an individual perspective within a 

given context or real-life setting.   

Other factors which could impact financial choice performance are individual 

differences in abilities such as financial literacy and numeracy which could interact with 

the framing manipulations tested in experiment 3a in particular ways. Findings show for 

example, that downside financial risk judgments positively correlate with financial 

literacy and numeracy (Newall, 2016a). Numeracy and risk literacy are found to relate 

to poor statistical inference and incomprehension of probability formats in tasks 

assessing peoples’ judgments of medical risk (e.g., Cokely, Galesic, Schulz, Ghazal & 

Garcia-Retamero, 2012). High and low numeracy is also associated with over and 

underestimates of loan repayment amounts (Soll, Keeney & Larrick, 2013) and people 

higher in financial literacy are shown to be more likely to select less optimal, high fee 

mutual funds (Newall, 2016a). It is apparent therefore that the findings relating to the 

effects of financial literacy and numeracy are somewhat mixed. Some evidence suggests 

that increasing financial literacy is not effective in improving financial behaviour as it is 

likely that factors such as numeracy mediate the relation between literacy and behaviour 

(Fernandes, Lynch & Netemeyer, 2014). In light of these findings, it is thus important to 

include these individual difference measures when examining the possible mechanisms 

involved in how the framing effect identified in experiment 3a is effective in promoting 

judgment performance.  

Another potentially relevant individual difference variable is temporal preference 

in the form of optimism. At extreme levels, trait optimism is associated with suboptimal 

financial judgment and behaviour, however, moderate levels are positively associated 

with more optimal financial behaviours, mediated by increases in self-control (Puri & 

Robinson, 2007). It is therefore possible that in this particular financial choice context, a 

high temporal preference (or lower ‘self-control’), exhibited as the propensity to opt for 

low current costs and thus favor the present based on delaying higher costs into the 

future, reflects a harmful optimism bias.  
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In this view, higher optimism may correlate with lower choice performance based 

not only on the tendency to opt for low current costs, but also on percentage format 

biases and the tendency to linearly extrapolate rates, leading people to underestimate 

future costs. Thus, combined with format biases leading to linear judgments, optimism 

could be a strong factor involved in suboptimal financial choice, underpinning peoples’ 

propensity to downplay the risks associated with future rate increases, and overestimate 

their ability to meet increased financial demands in the future. It is therefore a 

possibility that an interaction between the framing effect in experiment 3a and optimism 

exists. For example, if a significant relation between optimism and choice performance 

exists in the realistic framing condition 3 whilst the framing effect remains robust (i.e., 

choice performance remains high in condition 3 compared to the control), this may 

suggest that the framing manipulation is effective in counteracting harmful optimistic 

tendencies. 

To test possible interactions between the framing manipulations and individual 

difference factors, and whether choice performance is related to inherent format biases 

(as opposed to attention and cognitive effort) in this particular context, experiment 3b is 

conducted as a replication study to test the robustness of the framing effect identified in 

experiment 3a. Alongside measures of financial literacy, numeracy and trait optimism, 

experiment 3b involves the repetition of conditions 1, 2 and 3 with the addition of a 

disclaimer akin to a real-world disclaimer. The financial services industry provides 

disclaimers on product websites to warn consumers of potential financial risks, 

presumable with the purpose of guiding people towards more optimal choices. The 

manipulation in experiment 3b is designed to replicate such disclaimers, warning about 

the effects of future rate variability and to carefully consider choice alternatives.  

As described above, the mechanisms by which the disclaimer may promote more 

optimal choice could be based on evoking more effective comparative analysis of the 

individual product rates for the fixed versus variable rate alternatives. If sufficiently 

motivated to expend more cognitive effort and attentional resources, people may be 

capable of synthesizing data effectively, even in percentage and rate formats. From this 

perspective, percentage format biases and the inability to extrapolate compound interest 

rates might not underpin poor financial judgment in all contexts, or to the extent that the 

results of experiment 3a indicate. (I.e., it is possible that effort as opposed to format 

biases underpin poor choice in some domains). Adding the disclaimer to all three 

conditions in experiment 3b examines this possibility by enabling the assessment of 
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changes in choice effectiveness in the control (standard industry format) compared to 

the optimistic framing condition 2 and the realistic framing condition 3. Improvements 

in decision making in the control would thus indicate that increasing the propensity to 

evaluate choice alternatives by simply reminding people of the risk associated with 

overly optimistic choices (i.e., those based on the lowest rate options in the present), 

could be enough to improve financial decision making in online price comparison 

environments.  

5.3   Experiment 3b Behavioural Disclaimer Vs Interest Rate 

Framing Effects on Financial Choice  

Experiment 3b is conducted as a replication study to test the robustness of the 

framing effect identified in experiment 3a in the context of a disclaimer and measures of 

relevant individual difference factors. Although experiment 3a showed that the framing 

manipulation was effective in improving peoples’ financial judgment compared to 

information disclosed in standard industry APR and rate formats, it was unclear what 

the mechanisms were that underpinned the effectiveness of the framing manipulation. 

The premise for reframing rate data in concrete (currency) values and displaying them 

in current versus future rate alternatives was based on the body of evidence relating to 

percentage formats biases and the strength of the linear judgment heuristic shown to be 

particularly prevalent throughout financial judgment and choice domains.  

This rationale assumes that limited attentional capacity coupled with the tendency 

to additively process percentages, apply linear functions and possess and an implicit and 

explicit optimistic bias, are what lead people to form ineffective judgments in financial 

contexts. It is important however, to determine that these biases and processing 

strategies are accurately describing peoples’ cognitive characteristics and that 

manipulations designed to mitigate these tendencies are thus promoting human 

rationality via the most relevant and effective mechanisms. It is possible for example, 

that other judgment strategies, or decision making motives and drivers may be involved 

in complex financial judgment contexts which were not explored in experiment 3a. To 

address these shortcomings, experiment 3b investigates the potential that people may in 

fact possess the necessary computational and attentional capacities to form effective 

judgments in complex numerical data settings, if provided with a stimuli sufficient to 

motivate increased cognitive effort and activation of more comprehensive processing 

strategies.  
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From this perspective, it is possible that the nature of informational framings and 

communications are important to judgment performance by providing the motivational 

factors necessary to evoke activation of more complex and resource heavy cognitive 

processing. In this respect, suboptimal judgments which are shown to stem from fast 

frugal heuristic strategies (e.g., the tendency to assume linear relations) may be 

associated with limitations in effort based on low motivation as opposed to strict 

cognitive limitations and computational problems related to numerical formats. 

Furthering our understanding of the cognitive biases in numerical judgment is thus 

necessary to determine the mechanisms underpinning human rationality in different 

groups and settings where different motivational and behavioural factors are involved.    

To examine this possibility, experiment 3b repeats the trials from experiment 3a 

with the addition of a disclaimer designed to increase the attention and effort people 

apply to the selection task by warning them about the risk of future rate variability and 

the significant impact that rate increases will have on their repayments. If peoples’ 

judgment effectiveness increases in the standard industry format condition (involving 

data framed in percentages and rates) when presented with the disclaimer, this would 

provide evidence that peoples’ judgmental abilities may not limited entirely in the way 

that findings suggest, i.e., shaped by format biases, over-optimism and restricted 

attentional capacities.  

One possibility for example, is that people apply default processing strategies in 

everyday choice situations which are perceived as having non-critical outcomes. Such 

default strategies are likely to be based on cognitively frugal heuristics involving 

arithmetic processing and the application of linear functions as an efficient means of 

yielding fast, ‘satisfactory’ judgments. However, behavioural or social comparison 

prompts (e.g., Newall, 2016b) could be effective in improving judgment performance in 

contexts involving percentage and rate information. When rationale for deeper level 

processing is provided (e.g., by heightening peoples’ sensitivity to financial risk), the 

motivation to avoid losses may stimulate engagement in more detailed comparative 

analysis of the available data, requiring greater activation of attentional resources in an 

effort to increase choice optimality. 

If, on the other hand, no difference in choice performance is identified with the 

presence of the disclaimer in the standard industry format condition, this would support 

the rationale for the framing manipulation, indicating that format biases and limited 

computational and attentional capacities are likely to be the key factors underpinning 
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poor performance in financial choice. The aim is therefore to examine whether choice 

performance remains constant between experiment 3a and 3b, thus indicating whether 

judgment effectiveness is related specifically to the framing effect and thus percentage 

format biases. Finding no difference in choice effectiveness between experiment 3a and 

3b would demonstrate the robustness of the framing effect in targeting and mitigating 

biases which impact human probabilistic inference in complex numerical data fields.    

The standard industry disclaimer, “Your home may be repossessed if you do not 

keep up repayments on your mortgage” found on all mortgage lender websites is 

presumably designed to draw borrowers attention to the importance of being able to 

meet monthly repayment costs. The ability to meet future costs is dependent however, 

on effectively controlling for risk by forming rational financial judgments and choices 

in the present which account for future eventualities. Findings suggest however, that 

such disclaimers are no more effective in improving financial judgment than excluding 

disclaimer information altogether.  

In the cases where behavioural disclaimers have proven effective, psychologically 

informed disclosures conveyed in short, simplified informational formats are shown to 

facilitate improved judgment and behaviour (Loewenstein, Cass, Sunstein & Golman, 

2014). Based on this effect, the following disclaimer information was added to each 

condition in experiment 3b with the aim of increasing choice effectiveness through 

promoting the propensity to consider the potential impact of future rate hikes: 

“When choosing a mortgage, bear in mind that rates can rise considerably, fall, or 

remain the same as today. Fluctuations can significantly affect your repayments”. 

Comparing the effect of the disclaimer on choice performance in each condition 

with the results of experiment 3a tests the robustness of the framing effect by examining 

whether it is necessary for performance enhancement, or if choice effectiveness can be 

increased behaviourally using a disclaimer to increase consideration of the risk 

associated with low rate choices. This is of specific interest in the control condition 

where the data is disclosed in percentage and rate formats. Encouraging more detailed 

comparative analysis of rates and product types in standard formats could mitigate the 

optimistic tendency to heuristically select loans based on the lowest current rate, 

disregarding rate variability over the long term and the costs differences between 

product types.   
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Like the framing effect identified in experiment 3a, it is likely that any positive 

effect of the disclaimer on judgment performance will be associated with minimizing 

optimistic biases in peoples’ financial choice. For example, the framing manipulation in 

experiment 3a was designed to impact percentage format biases and the inability to 

extrapolate compound interest rates which leads people to make optimistic (suboptimal) 

financial choices based underestimation of future repayment costs. The tendency to 

linearly project rates, therefore indicates an insensitivity to rate variability and the 

financial consequences of future rate rises. Although the mechanism used by the 

disclaimer to impact choice performance differs to the framing effect, it is still designed 

to improve choice by decreasing optimism based on drawing attention to the potential 

for high future costs, specifically for product options which have the lowest costs in 

current rates.  

Experiment 3b therefore addresses the research question of whether the disclaimer 

manipulation can also be effective in improving financial choice via mitigating 

optimistic biases which lead people to downplay the risk of future rate variability and 

overestimate their capability to make higher repayments in the future. If the disclaimer 

is found to be effective in increasing choice performance in the control condition for 

example, this would suggest that poor financial judgment may be related more to 

optimistic biases in judgments of rate variability, rather than to format biases and the 

tendency to linearly extrapolate rates. The alternative view therefore, (based on the 

results from experiment 3a), is that optimism in this particular context is associated with 

percentage format biases which are successfully mitigated by the framing effect, shown 

to be robust when compared to the effects of the disclaimer.  

Based on the saliency of percentage format biases and the strength of the tendency 

to linearly extrapolate non-linear trends identified in chapters 3 and 4, it is predicted that 

the results from experiment 3a will hold. Specifically, there is expected to be no 

difference in choice effectiveness in the standard industry format condition in 

experiment 3b with the addition of the disclaimer compared to experiment 3a, and 

choice performance is predicted to remain the least effective in the standard industry 

format and the most effective in the realistic framing condition 3 with the addition of 

the disclaimer.  

With respect to individual difference factors, it is expected that there will be a 

significant association between trait optimism and choice performance, with higher 

optimism relating to lower performance in accordance with Puri and Robinson’s (2007) 
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findings relating to the effects of optimism on financial habits and choice. Optimism is 

also predicted to interact with frame preference in the framing manipulation conditions. 

This prediction is derived from the view that higher self-control instantiates a 

preference for higher future rewards (or a lower temporal preference) which is 

associated with more prudent financial choices and behaviours leading to increases in 

financial utility. In this sense, lower optimism may be associated with a tendency to 

delay gratification and forgo short-term rewards in the form of lower loan costs in the 

present and opt for higher cost choices based on future rates which represent the most 

effective options in the long term.  

To assess trait optimism in experiment 3b, the Life Orientation Test - Revised 

(LOT-R) (Scheier, Carver & Bridges, 1994) is used as a means of differentiating 

between an optimistic bias which can vary from one setting to the next (Weinstein, 

1980) and dispositional optimism which characterizes an individual’s general 

propensity to assume positive outcomes. When applied to financial risk judgment, 

optimism is viewed as an indicator of temporal preference, indicative of the propensity 

to assume positive future outcomes and discount future costs based on individual 

differences in self-control (Puri & Robinson, 2007). Temporal preference in financial 

decision making has also been examined using measures such as the CFC 

(Consideration of Future Consequences; Strathman, Gleicher, Boninger & Edwards, 

1994) designed to assess predisposition toward consideration of future consequences. 

However, the CFC scale has not been shown to significantly correlate with financial 

behaviours in studies assessing credit repayment decisions (e.g., Navarro-martinez et 

al., 2011; Salisbury, 2014). In accordance with Puri and Robinson (2007), the LOT-R 

was therefore applied in experiment 3b to address the question of whether higher levels 

of optimism relate to lower choice performance and how optimism may interact with 

the disclaimer and framing manipulations.  

To consolidate the rationale for experiment 3b, it is useful to recap the findings 

thus far. The previous chapters have shown that the linear prediction bias underpins 

poor financial decision making (e.g., misjudgement of borrowing costs) based on 

underestimating (i.e., arithmetically processing) non-linear compound interest rates 

(Stango & Zinman, 2009). The human propensity to apply fast, efficient heuristic 

strategies when forming numerical decisions results in the simultaneous (additive) 

mental processing of percentage and rate information. This generates the bias to treat all 

numerical data as absolute values and to assume linear relations in the world around us 
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which can lead to probabilistic judgments based on linearly projecting trends. In the 

case of compound interest rates and other behavioural outcomes which follow non-

linear functions (e.g., smoking cessation or exercise behaviour), the propensity to form 

linear judgments and predictions is therefore likely to limit rationality, creating a 

negative impact on choices and behaviours based on people making erroneous 

underestimations of future costs and rewards.   

In the case of financial judgement, this tendency to process additively and assume 

linearity is expressed as a bias to make optimistic choices which underestimate interest 

costs and do not effectively account for the risk associated with future rate rises and 

variable rate loan product choices. It is therefore important to assess optimistic 

tendencies in this context because it will indicate whether the biases in financial 

judgment are associated with explicit, general optimistic biases, or whether erroneous 

financial judgments are implicitly optimistic, i.e., stemming from numerical format 

processing errors as opposed to formal trait optimistic biases. Whether optimism effects 

judgment directly as a behavioural propensity, or whether it impacts choice 

performance indirectly via percentage format biases, the influence on financial 

behaviour is likely to be negative. Thus, in both cases, the framing of rates in concrete 

values, disclosed in current versus future alternatives is likely to remain a robust 

corrective measure, benefitting judgement rationality.   

In sum, experiment 3b is conducted to evaluate the replicability of the framing 

effect identified in experiment 3b to assess the judgmental mechanisms underpinning 

performance in financial choice domains. By adding a stimulus in the form of a 

disclaimer to motivate cognitive effort and increase attentional resources, experiment 3b 

assesses whether limitations in performance where percentages and rates are concerned 

are associated directly with format biases, or whether people do possess the necessary 

computational abilities to formulate effective judgments where rates are concerned, if 

sufficiently motivated. It is expected that the framing effect will remain robust based on 

no difference in choice performance with the disclaimer, thus supporting the rationale 

for format biases, judgment linearity and the inability to synthesize multiple cues as the 

key mechanisms underpinning poor performance in complex financial choice contexts. 
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5.3.1   Method  

Participants and Design 

One-hundred and eighty-three participants aged over 18 years were recruited 

again via Amazon Mechanical Turk and paid $2.00. All participants were unique in 

each experiment, no respondent from experiment 3a repeated the trials in experiment 

3b. The average age was 36.05 years (SD = 10.36, range = 2 to 62 years), 46.4% were 

female and 34% were educated to a minimum level of a Bachelor’s degree. The same 

randomized controlled trial design was employed as in experiment 3a, with participants 

randomly assigned to either the standard disclosure condition (control), 

interactive/optimistic framing (condition 2), or interactive/realistic framing (condition 

3) and trials were randomized per participant in each condition.  

Materials and Procedure 

After providing demographic information for age, gender and education, 

participants were then directed to the eight mortgage choice trials. In each trial in all 

three conditions, the instructions remained the same as they were in experiment 3a, 

except with the addition of the following behavioural disclaimer manipulation to 

encourage closer consideration of rate changes over time. As shown in figure 5.15, the 

following disclaimer information was shown in red, bolded 12- point font and 

positioned onscreen just below the trial instruction and just above the mortgage 

calculator tool in every trial:  

“When choosing mortgages, bear in mind that rates can rise considerably, fall or 

remain the same as today. These fluctuations can significantly affect your future 

repayments.” 
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Figure 5.9 The Behavioural Disclaimer Manipulation in Exp 3b 

An example of the disclaimer manipulation, demonstrated in condition 2. The 

same disclaimer information was applied to all three conditions, and the positioning 

onscreen remained constant and visible for the full duration of each trial. There was no 

time restriction applied to responses so participnats were free to analyse the loan data 

points in as much depth as desired by toggling individual attributues and comparing 

current and future rate frames in conditions 2 and 3.   

Following completion of all eight trials, participants were then directed to the 

individual difference measures. Firstly, they answered the 10-item Life Orientation Test 

- Revised (LOT-R) (Scheier, Carver & Bridges, 1994) which is a robust and valid 

psychometric indictor of optimism, used extensively throughout psychology literature1 

(e.g., Puri & Robinson, 2007). This was followed by a 13-part financial literacy scale 

(Fernandes, Lynch, & Netemeyer, 2014) and the multiple-choice format of the Berlin 

numeracy test (Cokely,Galesic, Schulz, Ghazal & Garcia-Retamero, 2012), each of 

which have robust psychometric features. The final experiment questions relating to use 

of repayment and rate information were then answered using the drop-down menus as 

displayed previously in experiment 3a. Participants were then provided with the 

reimbursement information.    

 

1 For a list of references to articles in which the LOT-R has been used, see 
http://www.psy.miami.edu/faculty/ccarver/sclLOT-R.html 
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5.3.2   Results 

Analysis of Choice Effectiveness Per Condition 

Choice scores and the proportions of correct choices made per condition with the 

addition of the disclaimer were almost identical to those found in experiment 3a with 

the framing manipulations only (see figure 5.11). Table 5.2 displays the differences in 

the mean choice scores, proportions of correct choices, and choice frames between the 

experiment 3a (non-disclaimer) trials and those with the addition of the disclaimer 

(experiment 3b). 

 

Figure 5.10 Choice Scores and Correct Choices Per Condition in Exp 3b 

Mean choice scores and proportions of correct choices per condition with the 

addition of the disclaimer manipulation (experiment 3b) with standard error bars. As 

shown in table 5.4, these values did not significantly differ to the results in experiment 

3a, indicating that the disclaimer had no additive impact on judgmental performance in 

any condition. The ineffectiveness of the disclaimer in the control condition thus 

indicates that the higher performance in condition 2 and 3 is associated with the framing 

manipulations and not simply encouraging people to more carefully consider their 

decision based on future rate variability.  
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Experiment 3a and 3b Comparison of Choice Performance  

Table 5.2 Mean Choice Scores and Correct Choices in Exp 3a Vs Exp 3b 
Mean differences in choice scores and proportions of correct choices made per 

condition with the addition of the disclaimer manipulation (experiment 3b) and without 
the disclaimer (experiment 3a). 

 

 Framing manipulation only 
(exp 3a) 

Framing manipulation with 
disclaimer added (exp 3b) 

Choice score 
Cond 1   0.61 
Cond 2   0.79 
Cond 3   0.83 

Cond 1   0.61 
Cond 2   0.78 
Cond 3   0.82 

Proportion of correct choices 
Cond 1   17% 
Cond 2   52% 
Cond 3   60% 

Cond 1   16% 
Cond 2   50% 
Cond 3   58% 

Proportion of choices in 
current frame 

Cond 2   35% 
Cond 3   61% 

Cond 2   63% 
Cond 3   38% 

Proportion of choices in 
future frame 

Cond 2   65% 
Cond 3   39% 

Cond 2   37% 
Cond 3   62% 

Choice score in current frame Cond 2   0.89 
Cond 3   0.83 

Cond 2   0.73 
Cond 3   0.88 

Choice score in future frame Cond 2   0.74 
Cond 3   0.83 

Cond 2   0.87 
Cond 3   0.78 

Proportion of correct choices 
in current frame 

Cond 2   73% 
Cond 3   58% 

Cond 2   40% 
Cond 3   65% 

Proportion of correct choices 
in future frame 

Cond 2   41% 
Cond 3   62% 

Cond 2   66% 
Cond 3   53% 

 

The results displayed in table 5.2 show a reversal in the pattern of responses found 

in experiment 3a for the proportion of choices made per frame. In experiment 3a, a 

higher proportion of choices were made in the non-default frame in both the optimistic 

framing condition 2 and the realistic framing condition 3. With the addition of the 

disclaimer manipulation however, a significantly higher proportion of choices were 

made in the current (default) frame in condition 2 compared to with the framing 

manipulation only (M=0.63 vs M=0.35), t(892.19) = 8.83, p<.001 and in the future 

(default) frame in condition 3 (M=0.62 vs M=0.39), t(830.87) = 6.80, p<.001. 

The distribution of choice scores and proportions of correct choices also altered 

by frame with the disclaimer information. While the overall means across frames per 

condition were almost identical between experiments, choice scores in condition 2 were 

significantly higher with the disclaimer in the future frame compared to without the 

disclaimer (M=0.87 vs M=0.74), t(400.8) = 6.15, p<.001 and lower in the current frame 



 

 

145 

(M=0.73) compared to without (M=0.89), t(395.57) = -7.17, p<.001. The same pattern 

was observed in condition 3 with significantly higher choice scores in the current frame 

with the disclaimer (M=0.88 vs M=0.83), t(344.43) = 2.31, p<.001, however, the choice 

scores in the future frame were not significantly lower than those with the framing 

manipulation only (M=0.78 vs M=0.83), t(380.65) = -1.83, p=.07. Previously, no 

difference was found between choice scores per frame in condition 3, however, the 

disclaimer yielded a significant increase in choice scores in the current frame compared 

to the future frame in condition 3 (M=0.88 vs M=78), t(385.27) = 4.01, p<.001  

Congruent with the results of experiment 3a, experiment 3b also yielded an 

overall higher proportion of correct choices in the realistic framing condition 3 

compared to the optimistic framing condition 2 (M=0.58 vs M=0.50), t(832.09) = 2.31, 

p<.05. Moreover, the proportions of correct choices per frame reflected the pattern 

shown with the choice scores, with significantly larger proportions in the non-default 

compared to the default frame in condition 2 (M=0.66 vs M=0.40), t(343.51) = 5.62, 

p<.001 and in condition 3 (M=0.65 vs M=0.53), t(332.57) = 2.33, p<.05. Again, this 

was the reverse to what was found in experiment 3a without the disclaimer 

manipulation. In condition 2 and 3, 80% and 84% of participants reported using both 

current and future rates to make their choices indicating that choices were made by 

making one or more comparisons between rate frames in both conditions (as opposed to 

using current or future rate information). This suggests that choice performance was 

influenced by the comparisons being made between the different rate frames (i.e., the 

degree of comparative evaluation of choice alternatives undertaken) and not simply 

selections based on the default frame with no comparisons made. 

Analysis of Individual Differences and Choice Performance  

With regard to the measures of individual differences, the original results were 

shown to hold when these variables were factored in which supports the robustness of 

the framing effect in facilitating financial judgment across individual differences. 

Participants on average possessed moderate levels of optimism, financial literacy and 

numeracy. Table 5.3 displays the mean individual difference scores for each condition. 

A significant positive correlation between choice scores across current and future 

frames and financial literacy was found in condition 2, R2 = .11, F(1,53) = 7.66, p<.01, 

B = .043, t(53) = 2.77, p<.001. Aside from this result, no other significant relation was 

identified between the individual difference variables in any of the conditions. The 

inclusion of optimism, financial literacy, numeracy, education and gender as covariates 
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in regression models to predict choices scores and proportions of correct choices across 

and between conditions showed no significant main effects or interactions terms. 

Regressing each of the individual difference variables on choice scores and proportions 

of correct choices made in current versus future frames in the optimistic framing 

condition 2 and the realistic framing condition 3 also showed no significant impact of 

these factors on choice effectiveness. 

Table 5.3 Mean Individual Difference Scores Per Condition in Exp 3b 
Mean individual difference scores per condition. 

 

Condition Optimism 
Max score 24 

Financial literacy 
Max score 13 

Numeracy 
Max score 4 

1 (control) 14.05 9.59 1.69 

2 16.45 8.85 1.71 

3 15.52 8.74 1.62 

 

The variation in the individual difference scores between conditions is not 

specifically of interest because participants were randomly assigned to each condition in 

an independent groups design. However, table 5.3 is given for illustrative purposes to 

show that participants in the control condition possessed the same financial decision 

making capabilities based on financial literacy and numeracy scores as those in the 

experimental conditions and were thus able to achieve the same levels of choice 

performance. The fact that the individual difference scores across conditions are almost 

identical therefore indicates that the differences in choice effectiveness between 

conditions (see figure 5.10) were associated with the effects of the framing 

manipulations.  

In accordance with Puri and Robinson (2007), moderate optimism scores indicate 

more optimal financial judgment and behaviour based on heightened levels of self-

control and better long-term financial planning capabilities. These behavioural 

tendencies suggest a ‘future’ temporal preference where delaying gratification to 

achieve long-term rewards which maximize utility is favoured over short-term payoffs 

which minimize costs in the present but act to reduce overall utility. The mean scores in 

table 5.3 show no difference in levels of optimism between the conditions, which 

suggests that the framing manipulations were effective in increasing judgmental 

performance when trait optimism (‘temporal preference’ or self-control in this context) 

was included as a covariate in a model to predict choice performance. However, the 
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lack of significance of optimism prevents any conclusion regarding the importance of 

optimism to financial choice behaviour in this particular context. Other measures may 

be more relevance to assessing temporal preference (i.e., the tendency to focus on long-

term rewards/maximize utility versus immediate gains/delayed costs) in online financial 

decision making situations.   

5.3.3   Discussion  

As expected, the effects of the framing manipulations in the optimistic framing 

condition 2 and the realistic framing condition 3 were shown to be robust, with 

experiment 3b yielding almost identical choice scores and proportions of correct choices 

to those in experiment 3a. The effectiveness of the framing was consistent when the 

individual difference measures of financial literacy, numeracy and trait optimism were 

included as covariates in the model to predict choice performance. Although this result 

is unexpected with regard to the measure of trait optimism, the effect of the other 

individual factors is congruent with previous research which shows that financial 

decision making performance is likely to be independent of the impact of individual 

differences in numeracy and financial literacy (Fernandes et al., 2014).  

It is therefore concluded that the manipulation applied in the realistic framing 

condition 3 (i.e., current versus future rates framed simultaneously in absolute currency 

costs with a default set to future rates) is more effective in optimizing financial choice 

compared to both standard industry formats and a sequential display of rate alternatives 

with a default set to current rates.  

To summarise the details of the format manipulation in experiment 3b, a 

disclaimer was added to increase sensitivity to rate variability in an attempt to stimulate 

increased attentional resources in the process of comparing product type alternatives. As 

expected, this manipulation was shown to have no impact on overall choice 

effectiveness in either the control or the framing manipulation conditions. The lack of 

difference in choice effectiveness in the control condition indicated that even when 

provided with a stimulus to evoke more comprehensive decision making strategies, it 

was not possible to improve peoples’ judgment processes when data was presented in 

standard industry disclosures (i.e., in percentage and rate formats). These results suggest 

that the judgment irrationalities in complex numerical environments are likely to stem 

from the tendency to erroneously process and interpret percentages and non-linear 

relations between variables. 
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In this respect, the findings support the robustness of the framing effect in 

mitigating the biases impacting rationality, which in turn provides support for format 

biases as one of the primary mechanism underpinning poor judgment in complex non-

linear environments. It is possible that in some contexts and among some groups, 

people may possess the attentional capacities, or be capable of applying the 

computations necessary to produce rationale inferences based on extrapolating and 

comparing percentage information. It is also possible that particular informational 

framings and communications may be effective in eliciting better judgments by 

providing the stimuli necessary to motivate decision makers to invest the time and 

cognitive resources required for optimal choice. In this scenario for example, the 

problems associated with numerical format may be overcome if the context or potential 

consequences of the judgment are perceived as important enough to warrant the time 

and effort. Based on the current findings however, it is likely that in the majority of 

contexts and groups, peoples’ judgmental processes will be hindered by the inability to 

interpret and synthesize multiple cues when disclosed in percentage and rate formats.  

As with investigations of other measures of temporal preference in financial 

judgment, we too found no association between choice effectiveness and trait optimism 

in this particular context. Despite this, it is possible that optimism is important to 

financial choice in other situations which involve shorter term judgments and choices. It 

is possible for example, that budgeting behaviour or consumer purchase decision 

making is impacted more by optimistic biases where impulsivity or impatience play a 

stronger role, motivated by other factors such as marketing, digital and social media. 

Whether or not the disclaimer was useful in decreasing optimistic biases in peoples’ 

judgment processes by drawing attention to the financial risks associated with current 

low rate choices, the lack of change in choice performance in the control condition in 

experiment 3b clearly suggests that even when prompted to carefully evaluate choices 

based on rate differences, people are still unable to effectively perform the necessary 

numerical computations.  

Despite all the information being present for effective choice in the standard 

industry disclosure, the data format and cue complexity of the decision making domain 

created a strong barrier to judgment rationality. This finding supports the limited 

attentional capacity perspective, indicating that peoples’ cognitive capabilities are not 

geared for data synthesis in complex non-linear environments which involve comparing 

and computing rates and percentages. There were however, changes in the proportions 
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of choices made per frame in experiment 3b which suggest that the disclaimer was 

effective in increasing the propensity to evaluate the choice alternatives more 

thoroughly by repeatedly comparing rate frames.  

Depending on the task objective, promoting comparative analysis in situations 

where choice effectiveness and satisfaction is based on subjective measures could be 

beneficial. For example, choosing between houses, cars or restaurants are possible 

situations in which an effective choice is based on computing data in accordance with 

individual goals and requirements rather than objective performance parameters.  

With respect to the study limitations, the inability to track the screen alternations 

and time spent viewing each screen per participant and condition are important 

shortcomings in both experiments 3a and 3b. Replication as eye-tracking experiments 

would address this problem and provide richer data relating to the effects of the framing 

manipulations. As opposed to relying on the measure of numeracy employed, it could 

also be beneficial to devise a bespoke metric for assessing the propensity to additively 

process percentages, leading to judgments and choices based on linear projections, 

which would be more applicable to determining the impact of percentage biases and 

how they relate to ‘optimistic’ financial judgment in this particular context. Moreover, 

recruitment of participants specifically seeking mortgages would also provide richer 

data relating to the motivations and decision making processes of people evaluating 

financial product attributes in complex, real-world online settings.        

The results of experiment 3a and 3b therefore demonstrate the validity of framing 

data to influence choice behaviour using clearly defined, easily comparable concrete 

values rather than expecting people to perform more cognitively demanding 

comparative analysis of rate data. This suggests that regardless of individual 

differences, lessening the cognitive load in complex decision environments will yield 

better results compared to encouraging more cognitively involved evaluative analysis of 

individual attributes and alternatives. The ability to make quick comparisons of the 

effects of rate changes over time in concrete values (currency costs) is cognitively 

efficient and ‘intuitive’. From the perspectives of bounded rationality and adaptive 

heuristics, the conversion of numerical data into absolutes values (particularly in 

complex, multi-cue environments) is logical, because concrete values with non-

normalized base rates are congruous with cognitive methods of sampling, hence the 

effectiveness of frequency data formats in facilitating statistical reasoning.  
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In sum, the replication experiment 3b verifies the robustness of the framing effect 

identified in experiment 3a by showing that with the addition of the disclaimer and 

inclusion of individual difference factors as covariates, the effects of the original 

framing manipulation on choice performance remained constant. The results thus 

indicate the potential for numerical data frames which facilitate human decision making 

based on minimizing the biases associated with percentage and rate formats. An 

approached focused on delivering numerical values in concrete, absolute terms 

presented within a contextual framework of minimal data points involving the use of 

default values to create anchoring effects is likely to improve judgment rationality to a 

greater extent than focusing on behavioural manipulations aimed at motivating people 

to engage in more complex cognitive processing strategies. The results therefore 

suggest that the affective and behavioural factors motivating people in real-world 

numerical choice contexts may be less important to judgmental performance than 

peoples’ interpretation of the numerical values within the data environment itself. I.e., 

the semantics of the situation and how the data assimilates within the wider context may 

be outweighed by the focus on the data in a minimal capacity, assessing a limited 

number of points in relation to one another rather than synthesizing the data with other 

cues and knowledge to construct meaning and deduce the wider implications.  

It is likely that in most cases, the tendency to use numerical information in this 

way to form probabilistic judgments stems from limited attentional capacities and biases 

in the computation of percentage points and extrapolation of and non-linear trends, as 

opposed to a lack of motivation to apply greater cognitive effort and resources. In this 

sense, peoples’ judgmental strategies reflect their processing and computational 

constraints which cannot be overcome, even when the judgement context is made more 

salient to motivate greater effort in achieving optimal choice. Although the judgment 

context may be particularly important or meaningful, and the perceived choice 

consequences are great, the findings suggest that applying behavioural manipulations to 

motivate people to make better choices (e.g., by evoking loss aversion in a financial 

setting) cannot offset the biases generated by the underlying cognitive mechanisms 

which shape peoples’ interpretation of numerical information, and consequently the 

rationality of human judgment. These results are contrary to previous studies which 

have shown behaviourally informed disclaimers designed to increase sensitivity to 

mutual funds investment fees by utilizing social comparison are effective in improving 

choice when information is disclosed to investors in percentage formats (Newall, 

2016b).  
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Although the robustness of the framing manipulation across experiments 3a and 

3b establishes the importance of delivering data in concrete (absolute) terms using 

minimal cues, is it not clear whether effectiveness was related specifically to the 

framing of rates in absolute terms or to the use of the future rate default in the realistic 

framing condition 3 which acted to anchor people on the most optimal choice prior to 

assessing the rate frame alternatives. Further examination is therefore necessary to 

distinguish the effects of simultaneously displaying rate alternatives in absolute values 

to encourage comparative analytic processes from the effects of using a default setting 

to influence judgment by anchoring people on a specific value within a contextual 

framework constructed within the data environment. 

To address this question, chapter 6 extends the investigation of the framing effect 

in experiments 3a and 3b by testing the components of the effect in two individual data 

disclosures. Experiment 4 explores the impact of a default manipulation separately from 

the effect of a default with the addition of future rate context data on monthly loan 

repayment judgments. In conditions 1 and 2, a minimum suggested repayment amount 

for the full loan term in current rates is disclosed with a default repayment figure in the 

form of a higher monthly repayment option for the loan at a 50% term reduction. In the 

second condition, the same default is presented, except that repayment information for 

future rates are presented simultaneously with the current rate information. The addition 

of the future rates context data thus acts to increase the value of the default and widen 

the range between the minimum (full term) and the default repayment figures. The aim 

is to identify whether the saliency of the added context data combined with the 

increased range between the repayment figures in condition 2 is more effective in 

heightening peoples’ monthly repayment choices above the minimum compared to 

when viewing the default in the absence of future rate context data. 
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Chapter 6 

Framing Interest Rates and Loan Term 

Information to Influence Repayment Behaviour  

In this chapter, the effectiveness of a default setting is explored in relation to the 
framing effect which was established in chapter 5 as robust in improving financial 
judgment based on mitigating percentage data format biases. Experiment 4 tests 
the additive effects of the framing manipulation in conjunction with an anchoring 
effect created by providing a higher repayment option in relation to a minimum 
suggested amount. The default is generated by disclosing the costs to repay a loan 
over a 20-year vs. a 10-year term. By creating an upper bound in the context of 
the minimum amount over the 20-year term, the default was shown to increase the 
inclination to make a monthly loan repayment significantly greater than the 
minimum suggested amount. This effect was amplified when costs were disclosed 
simultaneously in current vs. future rate frames based on a larger absolute 
difference between the upper and lower bound generated by the data for future 
rates.  

Akin to the findings from the retail setting, people were shown to combine the 
data points additively, forming a judgment based on the arithmetic mean of the 
highest and lowest observed values per condition. Repayment judgments were 
slightly greater than the mean of the upper and lower bound in the combination 
condition, indicating an anchoring effect based on the size of the absolute 
difference between the minimum and maximum options. Findings indicate that 
judgments are formed by additively combining higher and lower values in 
multiple cue environments, and that the larger the upper bound in relation to the 
lower bound, the greater the tendency to anchor on the higher figure, thus 
creating a lesser adjustment towards to mean.      

6.1   Background and Rationale 

In terms of the findings across all chapters thus far, experiment 1, chapter 3 has 

shown that when predicting product sales based on individual numeric values, retail 

forecasters employed only two data points to form probabilistic judgments. The 

judgment strategy involved treating all numbers as absolute values and applying 

arithmetic operations to yield the absolute difference between the last two data points 

per trial. They then added or subtracted the absolute difference from the last observation 

to predict sales for the fourth week. This method acted to yield judgments which 
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linearly project the trends, even though some data were percentages, displayed with ‘%’ 

signs, and trended exponentially rather than linearly.  

The same strong tendency to form predictions by linearly extending trends was 

shown again among humanitarian aid workers in experiment 2, chapter 4. When 

presented with data in time series formats, the tendency to seek and apply linear 

functions increased in noise and correlated with performance decline. Noisier data (i.e., 

increases in the number of cues) was shown to impact judgments by promoting the 

inclination to extend the direction of the trends when congruity was observed. This 

‘trend effect’ occurred regardless of the non-causality of the additional cues or the fact 

that the real-world data trended cyclically and not linearly. Thus, whether data was 

framed in numeric or time series formats, both retailers and humanitarians applied 

methods which consistently yielded linear judgments. Moreover, the linear tendency 

persisted with the addition of context data in the time series format, with people 

showing a strong bias to visually incorporate the cues in a process of guiding judgment 

formation based on the same additive/linear methods.  

Examining the tendency to interpret numeric data in concrete terms and apply 

additive methods in the context of financial choice in experiment 3a and 3b in chapter 5 

confirmed the robustness of the format bias, suggesting these tendencies characterize 

decision processes across contexts, levels of expertise and environmental complexity. 

Whether making a formal probabilistic judgment (i.e., in a retail or humanitarian aid 

forecasting context), or implicitly forming probabilistic inferences when choosing 

between financial product alternatives, people are shown consistently to utilize minimal 

data and arithmetically process numbers resulting in linear inferences. Reframing 

interest rates in current versus future alternatives in absolute costs, combined with a 

future rate default demonstrated the robustness of the framing effect in facilitating 

performance by removing the barriers created by these biases in percentage information 

domains.  

The framing effect was shown to hold when individual difference covariates were 

included in models to predict judgment performance, and when the framing 

manipulation was tested in relation to a behavioural disclaimer to increase activation of 

attentional resources in standard percentage formats. It is a possibility that the saliency 

of the context was not sufficiently heightened by the disclaimer to motivate people to 

increase cognitive effort. However, based on the widespread evidence of percentage 

format biases in financial judgment contexts, it is concluded that the consistently poor 
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performance in the control condition in experiment 3b was related to limitations in the 

processing of data in percentage and rate formats. This therefore indicates that rather 

than a lack of cognitive effort, format biases are the primary mechanism underpinning 

erroneous judgment in complex percentage format domains. For example, even in real-

world contexts where there is motivation for high performance, the findings across all 

chapters indicate that people do not possess the cognitive capacity to synthesize cues 

and execute the appropriate operations to compute and extrapolate percentages and rates 

in complex settings. 

The results of experiment 3b indicate the framing effect to be highly robust which 

in turn supports the rationale for the linear prediction heuristic as underpinning 

percentage format biases. However, the mechanism via which the framing effect 

facilitates performance may be related more to the use of the default setting in the 

realistic framing condition 3 which anchored people  on the most optimal choice than to 

the side-by-side disclosure of current versus future rate cost alternatives There is 

substantial evidence both for the use of defaults in creating anchoring effects which lead 

to improvements in judgment and choice as well as for the presentation of choice 

information in simultaneous displays. It would therefore be useful to follow up the 

results from experiments 3a and 3b with an experiment to test whether the default may 

be the key factor contributing to the judgment effect, or whether the additive effects of 

combining the default and future rate frame manipulations creates improvements over 

the default alone.  

To further the investigation of the effects of defaults and future event context 

information on financial judgment, experiment 4 examines the impact of the two 

mechanisms on monthly mortgage repayment judgments by separating the 

informational content between two experimental conditions. Experiments 3a and 3b 

involved the testing of a framing effect in which the information presented in each 

condition remained the same, with the presentational format altering between them. 

However, in experiment 4 the mechanisms involved in the framing effect are further 

explored in separate data manipulations which involve two conditions disclosing 

different information. By examining the components of the framing effect in isolation, it 

may be possible to identify how the mechanisms involved in financial data frames and 

formats influence peoples’ interpretations and judgments.  

Akin to selecting a mortgage, making a monthly loan repayment decision is also 

an example of an important real-world financial judgment in which an individuals’ 
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interpretation of the information can be significantly influenced by the way in which the 

data is framed and disclosed. There are various advantages to testing the effects of 

defaults and future rate context information in a mortgage loan monthly repayment 

situation. Based on the findings, it may be possible to make recommendations for 

increasing the amount people opt to repay on a long-term loan per month. This can be 

financially advantageous by both reducing the loan term and thus the total repayment 

cost, and also by helping people to restructure peoples’ budgeting behaviours in 

preparedness for rate increases. In the context of experiment 4, a higher repayment 

choice thus reflects a lower discounting rate which in turn indicates a less optimistic and 

more effective financial judgment.  

It is necessary to note however, that there are complexities involved in the 

assessment of the rationality of financial judgment which extend beyond the scope of 

experiment 4. For the purpose of the experiment, judgment ‘rationality’ is measured 

from the economic perspective, in terms of the inclination to make higher monthly 

repayments in the present which act to reduce total repayment costs when factoring in 

interest rates over the course of the loan terms. As discussed in chapter 5, however, 

there are cases in which delay discounting, or the decision to make a smaller monthly 

repayment which leads to a larger cost overall, may not be irrational when considering a 

persons’ individual circumstances. For example, showing a tendency for delay 

discounting by opting for low monthly costs in the present despite higher overall costs 

in the future could be a rational strategy in the context of an expected inheritance, or 

future change in employment circumstances. In fact, delay discounting in such 

circumstances could actually indicate increased judgment rationality, based on more 

effective long-term financial planning and management skills.  

Previous studies which have tested financial data manipulations similar to real-

world credit card statements have yielded positive effects on consumer financial 

judgments. For example, based on the format of the Credit Card Accountability and 

Responsibility Disclosure (CARD) Act of 2009, Salisbury (2014) for example, showed 

that proving costs and loan repayment duration information for an additional higher 

amount in conjunction with the minimum costs increased monthly credit card 

repayments from the minimum required. The CARD Act of 2009 introduced the 

“minimum payment warning” which involves the following text prompt: “Minimum 

Payment Warning: If you make only the minimum payment each period, you will pay 

more in interest and it will take you longer to pay off your balance”. This is combined 
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with information about how much borrowers need to pay per month to clear the balance 

in three years in relation to the costs associated with making the minimum repayment 

only. To test the effects of this disclosure format, Salisbury (2014) presented consumers 

with the credit card balance, APR, time it would take to repay the loan based on the 

minimum repayment, and also the interest costs and time it would take to clear the 

balance over a three-year period.  

Results showed that minimum repayment cost and time information had no effect 

on propensity to repay any amount. However, providing additional three-year 

information for either time or cost, or both time and cost was effective in increasing the 

propensity to repay between $60-$70 per month rather than the minimum amount of 

$38.74. The probability of repaying less than $60-$70 was found to decrease with the 

presence of the three-year cost information. However, the probability of actually paying 

more than the three-year repayment amount ($66.21) decreased with presence of the 

three-year time information, particularly among those with a low knowledge of 

compound interest. Moderation analyses further indicated that the three-year time 

information increased the probability of repaying less than the three-year amount among 

consumers with six or more credit cards (16% of the sample).  

These results have important implications for regulatory financial policies and 

lender practices, suggesting that nudges in the form of alterative repayment choices are 

necessary for improving repayment behaviours. Rather than simply indicating that 

slower repayment incurs greater costs, it is necessary to understand the psychological 

factors underpinning the propensity to repay among different consumer groups. As 

demonstrated, cost and time information effected consumers differentially. Cost 

information was shown to increase repayment amount in some cases, whereas time 

information decreased repayment in others and had a stronger effect on consumers with 

multiple credit cards or less knowledge of interest compounding. It is likely that the 

three-year time information negatively impacted the propensity to pay more than the 

three-year interest amount because presentation of the two values created the perception 

of an upper and lower bound ($38.74 and $66.21). This may have led consumers to 

adjust downwards from the $66.21 towards the midway point (e.g., Slovic, Finucane, 

Peters & MacGregor, 2002; Roller, 2011).  

Experiment 4 involves a similar informational format to that used by Salisbury 

(2014) with a default manipulation in the form of cost information for the mortgage at a 

reduced term of 10-years. In both conditions 1 and 2 this default information is applied 
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in the presence of the full term, 20-year repayment information. In condition 1, both 

these suggested monthly repayment figures are presented in current interest rates only. 

The presentation of the minimum monthly repayment cost for the half versus the full 

term thus acts to create a numeric range in the data environment within which a 

judgment can fall. Based on the saliency of the default information (i.e., it being 

associated with lower interest and overall loan costs) and peoples’ propensity to derive 

meaning through comparison against a referent point within an upper and lower 

numerical bound (Roller, 2011), it is expected that the default will create an anchoring 

effect. This will lead people to focus more on the 10-year repayment figure than the 20-

year figure and adjust downwards from 10-year value towards the minimum suggested 

amount.  

In condition 2, the same data points are disclosed as above, except that the data 

presentation also includes the information for the full and reduced term costs in future 

interest rates. This future rate context data thus increases the absolute difference 

between the default (i.e., the 10-year term data which is now observable in future rates) 

and the minimum suggested amount (i.e., the 20-year data which is still observable in 

current rates). It is expected that by increasing the value of the default repayment figure 

in the context of the future rate information, the saliency of the default will heighten and 

increase its anchoring effect by increasing peoples’ awareness of risk and activating 

greater loss aversion.  

Similar judgment mechanisms to those shown in experiment 1 with the retail 

forecasters are likely to be observed among people making loan repayment decisions. It 

is expected that people will make judgments based on two numeric referents (i.e., the 

minimum and maximum suggested repayment values) and additively combine the 

values in each condition to yield a decision which reflects the arithmetic mean of the 

two figures. The anchoring effect of the default is expected to impact this process, 

leading people to make further adjustments to the additive computation based on the 

size of the absolute numeric difference between the minimum and maximum values. In 

this view, the larger the data range, the more the default will influence peoples’ 

repayment judgments based on the increased importance of the default which is inferred 

when positioned in the future rate context.  

The proposed mechanism therefore involves levering additive processing 

propensities applied in the presence of a numeric continuum, combined with creating an 

anchoring effect using a numeric default which is made more effective when disclosed 
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in highly salient context information. In condition 1, it is therefore predicted that people 

will show a propensity to make repayment decisions which are significantly above the 

minimum suggested 20-year term value, and that judgments will fall around the mean of 

the 10-year default figure and the 20-year amount. In condition 2 however, it is 

expected that positioning the default in the added future rate context information will 

increase the anchoring effect of the default and lead people to make lesser adjustments 

away from it, thus generating more economically optimal judgments. The effect is 

based on the increase sensitivity to the default which is created by the saliency of the 

future rate context, and the magnitude of the absolute difference perceived between the 

default and minimum suggested repayment figures. Thus, compared to condition 1, 

repayment decisions in condition 2 are expected to be significantly higher and to fall 

within in a range which is higher above the mean of the 20-year and 10-year figures.  

In sum, the informational manipulations tested in experiment 4 further explore the 

mechanisms involved in the data framing which was shown to facilitate judgment 

performance in experiment 3a and 3b. Specifically, experiment 4 assess the impact of a 

default value in the form of a reduced term repayment suggestion versus a full term 

repayment suggestion on peoples’ loan repayment judgments in condition 1. In 

condition 2, future rate context is added to the data disclosure which acts to increase the 

value of the default figure and increase the absolute difference between the minimum 

and maximum values in the data environment. The aim is to examine whether the 

addition of highly salient future rate information is more effective in promoting optimal 

loan repayment judgments and behaviours compared to applying a default without the 

added saliency generated by providing future event information. As with experiments 

3a and 3b, judgment ‘rationality’ in experiment 4 is determined from an economic 

perspective, whereby judgments which act to minimize total repayment costs are 

regarded as optimal.    

Greater choice effectiveness in condition 2 would thus indicate the importance of 

future event information to peoples’ judgment processes where compound interest is 

involved. From this perspective, the use of salient future event information to amplify 

the anchoring effects of defaults and highlight intertemporal cost implications, may be 

an effective means of counteracting biases and optimistic tendencies involved in 

ineffective financial judgments and other judgment situations which involve non-linear 

relations between variables such as health behaviours. 
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6.2   Experiment 4 

Experiment 4 further examines the mechanisms underpinning the effectiveness of 

the framing manipulation in experiment 3a and 3b by testing the anchoring effects of a 

default value compared to the effects of the default when disclosed in the context of 

future rate information on mortgage repayment judgments. In condition 1, the default 

(in the form of the monthly repayment cost for the loan over a reduced term) is 

presented simultaneously with the minimum monthly repayment figure for the loan over 

the full term in current rates. In condition 2, the same data is presented but with the 

addition of the repayment figures in the context of future interest rates. Using a design 

similar to that employed by Salisbury (2014), participants in both conditions are 

presented with a ‘mortgage repayment statement’ in which the monthly mortgage 

repayment costs are broken down into interest and total value amounts akin to a 

monthly credit card statement. 

 In the term default only framing condition 1, the total balance, interest rate and 

term information is given, together with the current balance, monthly repayment amount 

and interest costs and for clearing the balance over the full term of the loan (20 years) in 

current rates. The same information is also shown for the loan at a reduced term (10 

years) which creates the default repayment figure. In the term default plus future rate 

framing condition 2, the information and repayment options disclosed in condition 1 are 

repeated but with the addition of the full and reduced term data (i.e., the default figure) 

framed in future interest rates. The data manipulation in condition 2 thus involves the 

repayment information framed in both current versus future rates, plus the default figure 

which acts to further increase the size of the default in relation to the full term monthly 

repayment figure compared to condition 1. By disclosing different repayment 

information in separate data manipulations it is possible to compare the effects of the 

default to the effects of the added future rate information between the conditions.  

The heightened default value combined with simultaneous current and future rate 

disclosure in condition 2 is expected to be particularly effective in increasing 

repayments above the minimum based on past findings which have shown that warnings 

about higher costs and repayment horizons associated with minimum repayments were 

effective in increasing willingness to pay more via the increased saliency of the 

consequences that decisions can have on future outcomes (Haws, Bearden & Nenkov, 

2012). Simultaneously framing three-year and minimum repayment data is also shown 
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to be effective in increasing the salience of the trade-off between current and future 

costs and time horizons, facilitating borrowers in evaluating the differences between 

making minimum versus larger repayments (Soil, Keeney & Larrick, 2013). Moreover, 

Soil, Keeney and Larrick also found that the dual presentation of minimum and three-

year repayment data significantly reduced the tendency to overestimate and 

underestimate the three-year repayment costs which was associated with high and low 

levels of numeracy, respectively.  

These findings suggest that the effects of defaults may depend on the absolute 

difference between the default value and the data available for comparison (e.g., a 

minimum suggested repayment amount). Thus, the theoretical question relates to the 

perceived size of the default in relation to other relevant data points in the judgment 

context. As explained above, it is likely that the larger the difference between the 

default and the minimum suggested amount (and thus the perceived range between the 

upper and lower bound), the more the default is likely to influence the judgement 

process. I.e., the greater the absolute difference, the stronger the anchoring effect is 

likely to be, leading people to adjust less from the upper bound towards the mean.  

These effects may also be context dependent. For example, in this particular 

scenario, the use of the default acts to increase the saliency of loan costs in future rates, 

making people aware of the optimality of a higher repayment choice compared to the 

minimum suggested amount, which over the long term, represents a far less effective 

decision. Optimistic tendencies are therefore likely to come into play when making 

decisions about how much to repay per month. However, presenting a default value of a 

reduced term in a future rate frame is likely to heighten the saliency of compound 

interest rates and communicate the costs associated with rate variability, thus 

counteracting optimism by anchoring people on the most effective option. From this 

perspective, downwards adjustments towards the mean are likely to be influenced by the 

size of the default in relation to minimum presented values, with larger absolute 

differences dictating lesser adjustments, leading to more effective (less optimistic) 

repayment decisions.  

In sum, experiment 4 involves the further investigation of the framing 

manipulation applied in experiments 3a and 3b in the arena of loan repayment decision 

making. The aim is to assess whether the propensity to make monthly mortgage 

repayments above a minimum suggested figure can be impacted by using a default to 

elicit anchoring effects, and whether adding future event context increases the 
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effectiveness of the default. Increasing monthly loan repayments has the benefit of 

minimizing total mortgage costs by reducing the loan term and interest payments. There 

is also the added advantage of making higher monthly repayments in facilitating 

financial preparedness ahead of interest rate rises.  

It is expected that the default in the form of the cost to pay off the balance over 

half the loan term (in condition 1) will be moderately effective in increasing the 

tendency to repay an amount above the minimum suggested amount (i.e., the figure 

necessary to clear the loan over the full term). The dual effects of presenting the default 

figure in the context of future interest rates (in condition 2) is expected to be even more 

effective in yielding repayments closer the optimal amount. The increased effectiveness 

of the combined manipulation is based on creating a larger absolute difference between 

the default and the minimum suggested amount which works advantageously with the 

propensity to additively process the two values (thus yielding a higher mean value 

compared to condition 1). Increasing the range between the minimum and maximum 

suggested amounts raises data saliency in the context of loan costs and interest rates 

which is likely anchor people more firmly on the default and increase its anchoring 

effect. People in condition 2 are therefore expected to make lesser adjustments away 

from the default figure and towards the minimum suggested amount. This manipulation 

has the potential to be particularly effective in counteracting the harmful effects of 

optimistic or present biases, which involve the tendency to minimise present costs and 

discount the impact of rate rises in the future. 

6.2.1   Method 

Participants  

Another 160 participants aged over 18 years were recruited via Amazon 

Mechanical Turk and paid $2.00 (again, no participants from experiment 3b repeated 

the trials in experiment 4). The average age was 33.82 years (SD = 10.75, range = 20 to 

69 years), 40% were female and 36% were educated to a minimum level of a Bachelor’s 

degree.  

Design  

A single factor independent groups design was used in which participants were 

randomly assigned to the repayment term default only condition 1 which involved a 

default setting of costs for the full versus half the loan term, and the repayment term 
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default plus rate framing condition 2 which involved the costs framed in current versus 

future rates for the loan term in full versus half.  

Materials and Procedure 

After providing demographic information for age, gender and education, 

participants were then directed to the main choice task which involved answering one 

question relating to their repayment decision. On a blank screen, they were first 

provided with the following information: 

“Imagine you are taking out a mortgage for a value of $275,000 over a term of 20 

years for an apartment costing $325,000. On the next screen you will see information 

relating to your repayment options for clearing the balance. You will be asked to choose 

how much you would like to repay per month.” 

After clicking to go to the main task, they were provided with the following 

instruction:  

“Please use the information below to carefully consider how much you would 

prefer to repay per month on your mortgage of $275,000 and enter a figure into the box 

at the bottom. The information is there as a guide you can choose any amount to repay. 

Please treat your payment decision as you would in your everyday life.” 

This text was presented at the top of the screen with the mortgage information 

displayed in a tabulated format in the lower section of the screen, as shown in figure 

6.1. The above instruction remained onscreen for the full duration of the trial and there 

was no restriction placed on response time. After examining the information provided in 

the ‘Mortgage repayment statement’ in each condition, participants then entered a 

monetary amount into the response box at the bottom of the statement. Values of less 

than $1.00 were disallowed, and the following prompt was used to ask participants to 

confirm their decision before being able to submit their answer to encourage more 

careful consideration of responses: 

“You have chosen to repay $2000. To confirm your answer and move to the next 

section please click OK.” 

 

 

 



 

 

163 

 
Figure 6.1 (A) The term default only framing condition 1  

                  
Figure 6.1 (B) The term default plus and rate framing condition 2 
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Figure 6.1 Screenshot of the stimuli presented in condition 1 and 2 

Based on the disclosure format for credit card statements introduced by the 

CARD Act of 2009, both conditions provided the basic mortgage information relating 

to the cost of the loan, the current interest rates and the loan term (presented in the 

upper section of the mortgage repayment statement). In both conditions, this 

information was then presented in the context of the total cost of the mortgage over the 

full term, further broken down into the interest cost and the monthly repayment amount 

necessary to clear the balance over the full term (shown in the mid-section of the 

statement in both conditions). This repayment data was then placed in the context of the 

total, monthly and interest cost alternatives for repaying the full balance over half the 

loan term, i.e., in 10 years as opposed to in 20 which was displayed in the bottom 

section of the statement in both conditions.  

In condition 2, another layer of contextual information was provided for 

evaluative purposes by framing both the 20 and 10-year cost alternatives in current 

versus future interest rates. The future rate costs were computed using the same method 

applied in experiment 3a, in which +0.5% was added to the rate each year for three 

consecutive years following the 2-year fixed period. Over the 20-year term for example, 

this generated a rate of 5.99% in year three and 6.49% in year four which continued 

through to year 20. This additional future rate information was predicted to be more 

effective in increasing the propensity to repay more than the minimum suggested 

amount to clear the balance over the full term ($1,841.83) compared to the disclosure of 

costs over the 20 versus 10-year term only in condition 1. The aim therefore, is to 

examine the effectiveness of these framing alternatives in counteracting over-optimistic 

tendencies associated with choosing to delay costs/repay smaller amounts in the short 

term.  

After submitting a monthly mortgage repayment decision, participants were 

directed to a new screen where they answered questions relating to potentially relevant 

individual differences in repayment behaviour, again using the LOT-R measure of 

dispositional optimism (Scheier, Carver & Bridges, 1994), the financial literacy scale 

(Fernandes, Lynch, & Netemeyer, 2014) and the Berlin numeracy test (Cokely,Galesic, 

Schulz, Ghazal & Garcia-Retamero, 2012). Prior to completing the inventories, an 

additional question was also included as an alternative means of assessing temporal 

preference for gains. Using a dropdown menu, participants were asked to respond to the 

following question:  
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“Would you rather win US$10,000 now or win US$13,000 a year from now?” 

If a participant chose to win US$10,000 today, they would be categorized as being 

impatient (or possessing a high temporal preference for gains/low temporal preference 

for losses), based on an implicit discount rate of more than 30% (e.g., Loewenstein, 

Read & Baumeister, 2003). This measure therefore indicates a preference for immediate 

gains (indicating a preference for delayed higher repayment costs) versus delayed gains 

(indicating a preference for higher immediate costs), and was thus included as an 

additional measure to the LOT-R to examine decision performance based on underlying 

behavioural propensities related to self-control (Puri & Robinson, 2007). Following 

completion of the inventories, participants were provided with the reimbursement 

information.    

6.2.2   Results  

Of the 160 participants who completed the experiment, four were removed from 

the data set due to incomplete responses. This yielded 79 participants in condition 1 and 

77 in condition 2. 

Figure 6.2 shows participants mean repayment judgments per condition in relation 

to the minimum suggested repayment amount in both conditions (i.e., the necessary 

amount to clear the loan balance over the full term based on current interest rates with 

no rate variability over the full term), the maximum suggested amount (i.e., the default), 

and the average of these two values. As expected, one-sample t-tests conducted on the 

mean repayment amount per condition in relation to the minimum suggested amount 

($1,841.83) showed that repayment decisions were significantly greater than the 

minimum in condition 1, t(78.96) = 45.77, p<.001 and in condition 2, t(76.96) = 61.28, 

p<.001. A one-way ANOVA conducted on the repayment amount per condition 

confirmed hypotheses, showing that participants decided to repay a significantly larger 

amount per month on average in condition 2 (M=$2,492.18) with the loan term default 

manipulation in the context of the future rate data, compared to in condition 1 

(M=$2,297.67) with the loan term default manipulation only, F(526.29) = 178.9, 

p<.001. 
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Figure 6.2 Mean Monthly Repayment Decisions Per Condition in Exp 4 

The mean monthly repayment judgments with standard error bars in the reduced 

term default only framing condition 1 and the reduced term default plus future rate data 

in condition 2. Repayment judgments in both conditions are represented by the green 

bars and shown in relation to the minimum suggested repayment amount ($1,841.83), 

the maximum suggested repayment amount (default) in condition 1 and 2, and the 

average of these upper and lower bound values. The participants’ judgment is 

positioned next to the mean of the minimum and maximum values in condition 1 and 2 

to illustrate the proximity to the arithmetic average each judgment fell.  

This finding confirmed expectations regarding the effects of the default, showing 

that disclosing repayment costs in 10-year terms in the context of the full term 

repayment data (condition 1) resulted in repayment amounts which were greater than 

the minimum suggested amount. In the absence of a baseline condition, the possibility 

cannot be excluded that people may have made repayments which exceeded the 

minimum suggested amount without the presence of the default in condition 1. Based 

on past findings however (Salisbury, 2014), it is very probable the observed effect was 

related to the disclosure of the default repayment figure. In future extensions of the 

research, comparisons to baseline measures are necessary to fully isolate the effects of 

default settings.  
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Disclosing the same information in condition 2 with the addition of costs frames 

in future rates (thus enabling comparison with the minimum suggested amount in 

current rates) significantly increased the mean repayment judgment in condition 2 

further above the minimum suggested amount compared to condition 1.  

On average, participants’ repayment judgments in condition 1 ($2,297.67) 

represented an 124.7% increase from the minimum suggested amount, which equated to 

80.2% of the maximum suggested amount (i.e., the default of $2,811.12 based on the 

cost to clear the balance in current rates over the reduced 10-year term). This resulted in 

a mean repayment choice which fell marginally below the average ($2,326.47) of the 

minimum and maximum suggested repayment values presented in condition 1. In 

condition 2, the mean repayment judgment ($2,492.18) rose to 135.3% of the minimum 

suggested amount, equating to 84% of the maximum suggested amount which resulted 

in repayment judgments falling marginally above the mean of the minimum and 

maximum values ($2,403.145) presented in condition 2. This reflected in an absolute 

difference of $28.80 in condition 1, and $89.03 in condition 2 between the mean of the 

upper and lower bound and participants’ repayment judgments. 

This indicates an anchoring effect in combination with additive processing of the 

upper and lower bound values. The fact that judgments in both conditions were so close 

to the average of the minimum and maximum suggested amounts indicates that people 

combined the values using the arithmetic mean as the computational strategy for 

yielding a judgment in this context. The fact that the judgment was in excess of the 

mean in condition 2 corresponds with the increase in absolute difference between the 

minimum and maximum suggested amounts (i.e., the extent of the range between the 

upper and lower bounds). In this respect, the greater the absolute difference between the 

maximum and minimum values presented, the greater the anchoring influence of the 

upper bound on peoples’ decisions.  

It is necessary to further test the possible effect of the size differentials between 

upper and lower bounds in other financial decision making contexts as well as domains 

such as health behaviour change consumer purchasing behaviours. It is necessary to 

examine the extent to which judgments deviate from the mean, and the direction in 

which they increase and decrease based on smaller and larger absolute differences 

between minimum and maximum values. It is also necessary to assess the impact of 

increases and decreases in the numbers of informational cues provided in decision 

environments such as these to determine parameters for the tendency to arithmetically 
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combine only two data points under condition of varying complexity. It is possible that 

the greater the degree of noise (i.e., the number of non-causal or low causally-related 

cues) in the environment, the more people are inclined to use minimal cues in the 

attempt to simplify the judgment task. This may hold for example, in online consumer 

contexts where multiple conflicting promotional data create high variance which can 

impact cue selection.  

In sum, it is evident that the anchoring effect of the default setting used in this 

setting had a stronger impact on repayment decision making when applied in the context 

of the current versus future rate repayment data. In relation to chapter 5, this suggests 

that anchors in the form of higher repayment options created by future rate information 

can increase peoples' propensity to make financial choices which act to offset the 

optimistic tendency to delay costs and select products or make repayments based on the 

lowest possible amounts in the present. Thus defaults applied in presence of relevant, 

complex context information (future rate data) may be useful in facilitating comparisons 

which guide judgments towards more optimal, less optimistic financial choice and 

behaviour.       

Table 6.1 displays a breakdown of data relating to the repayment decisions made 

in each condition. Descriptive statistics are provided including the percentages of 

repayment amounts which fell below, above and in between the minimum and 

maximum suggested amounts. The minimum ($1,841.83) is the least effective 

repayment decision, based on the amount necessary to clear the loan balance over the 

full term in the most optimistic (unrealistic) circumstance (i.e., current interest rates 

with no variability over the full term). Whereas the maximum ($2,964.46) is the most 

effective repayment decision, based on halving the loan repayment period to minimise 

the impact of interest rate variability over the full term. A moderate incline in rates is 

the most realistic scenario, thus this repayment choice is the least optimistic and the 

most likely to maximise utility over the full time horizon. 
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Table 6.1 Descriptive Statistics for Repayment Choices in Exp 4 
Descriptive statistics for the repayment choices in each condition and percentages 

in relation to the minimum and maximum suggested amounts. 
 

 
Condition 1 

term default only 
framing 

Condition 2 
term default plus rate 

framing 

Mean repayment amount $2,297.67 $2,492.18 

Range $1,000 - $3,400 $1,150 - $3,500 

Mode $2,811 $3,000 

Median $2,200 $2,700 

Low range: Percentage of repayments 
below the min ($1,841.83) 10.13% 5.19% 

Mid-range: Percentage in between the min 
and max ($2,964.46) 86.08% 75.32% 

High range: Percentage above the max 3.80% 19.48% 

 

As shown in table 6.1 above, the overall mean repayment amount in condition 2 

was higher compared to condition 1 which, as expected, indicates that the addition of 

the rate frame manipulation in condition 2 was more effective in increasing the 

propensity to make a higher monthly mortgage repayment compared to the term only 

manipulation in condition 1. Three individual logistic regressions were conducted in 

which the proportions of repayments in the low, mid and high range were entered as the 

dependent variable and condition was entered as the predictor (displayed in figure 6.3 

below). The results indicated that the framing manipulation in condition 2 was 

significantly predictive of both the propensity to make less repayment choices below the 

minimum (B = -0.72, z = -5.903, p<.001, 95% CI [-0.96, -0.48]) and more repayment 

choices above the maximum suggested amount (B = 1.81, z = 14.38, p<.001, 95% CI 

[1.57,  2.06]) and condition 1 was significantly predictive of the propensity to make a 

repayment which fell in between the minimum and maximum suggested amounts (B = -

0.70, z = -8.752, p<.001, 95% CI [-0.86, -0.55]).  
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Figure 6.3 Proportions of Decisions Per Repayment Range in Exp 4 

The proportions of repayment decisions which fell into each range with standard 

error bars. This information is the same as the percentages breakdown presented in table 

6.1, but displayed graphically for illustrative purposes. As is shown, the largest 

proportion of repayment choices were in the mid-range (i.e., above the minimum but 

below the maximum suggested amounts) in both conditions. Although condition 1 

yielded a significantly higher proportion of repayment decision in the mid-range where 

the majority of repayment amounts fell in both conditions, condition 2 was still more 

effective overall, generating a larger proportion of decisions across both the mid and 

high range categories combined.  

The distribution of repayment decisions across the ranges indicates that condition 

1 was more effective than condition 2 in nudging a larger proportion of people towards 

a repayment amount higher than the minimum (i.e., creating a moderate improvement in 

loan repayment behaviour). However, condition 2 was more effective in moving 

peoples’ repayment decisions into the high range, i.e., the most effective bracket above 

the maximum suggested amount. When assessing the overall proportions of repayment 

decisions which exceeded the minimum (including both mid and high range repayment 

decisions), condition 2 yielded 95% whereas condition 1 generated a 90% rate of 

heightened decision performance. Thus, it can be concluded that condition 2 was the 

more effective manipulation in terms of overall improved repayment choice behaviour. 

One possibility is that the variation in repayment decisions between conditions 

could be due to individual differences interacting with the framing manipulations in 
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each condition. Table 6.2 shows the demographic information and the mean scores for 

each of the individual difference inventories per condition. As shown, participants in 

both conditions exhibited similar, moderate levels of financial literacy, numeracy and 

trait optimism. A larger proportion of participants in condition 2 possessed a temporal 

preference for gains, based on choosing to receive “$10,000 now” as opposed to 

“$13,000 in one year.” This preference for smaller immediate gains indicates a higher 

level of financial optimism which could be associated with choosing to repay less per 

month, based on the bias to believe that financial adversity will not occur, or that one 

will have the capability to cope with future financial adversity. 

Table 6.2 Individual Difference Scores and Demographics in Exp 4 
Mean individual difference scores and demographic information per condition. 

 

 
Condition 1 

term default only 
framing  

Condition 2 
term default plus rate 

framing 

Mean age 33.77 years 
(range 20-69, SD=9.91) 

33.86 years 
(range 20-69, SD=11.55) 

Gender 40.51% female 38.96% female 

Education 
(Bachelor’s degree or higher) 58.23% 38.96% 

Optimism 
(Max score 24) 16.54 17.30 

High temporal preference 
for gains (10k now) 45.57% 57.14% 

Financial literacy 
(Max score 13) 9.35 8.74 

Numeracy 
(Max score 4) 1.70 1.66 

 

Additional Analysis of Relevant Individual Difference Variables  

This subsection of the results involves the analysis of individual difference 

variables which are shown in previous studies to impact of financial judgment and 

behaviour. Findings regarding the effects of these variables are mixed, and have often 

yielded unexpected and contradictory outcomes. Thus the purpose of their inclusion in 

this experiment is to assess the potential relevance of such factors in the context of this 

particular framing manipulation and task objective. Identifying significant relations 

between performance and individual differences, or interactions between the framing 

conditions and individual factors, would provide useful data relating to underlying 
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mechanisms involved in the effectiveness of the manipulations. Increasing the 

understanding of how difference variables may interact with data disclosures is 

therefore important to further studies aimed at improving financial behaviour based on 

data framings.  

To test for the impact of individual differences on repayment decisions and their 

potential interactions with the framing manipulations, a regression model was 

constructed with repayment amount as the dependent variable. The responses to the 

surveys for financial literacy, numeracy and optimism were converted into standard 

normal variables and entered into the model as predictors along with the temporal 

preference indicator, age, education and condition (framing manipulation).  

The inclusion of all these factors in the model indicated that the framing 

manipulation in condition 2 significantly predicted the propensity to make higher 

monthly repayments, R2 = .122, F(8,147) = 3.714, p<.001, B = 235.806, t(147) = 3.169, 

p<.01. Being female, B = 172.406 t(147) = 2.289, p<.05 and possessing higher financial 

literacy, B = 89.152, t(147) = 2.098, p<.05 were also significant predictors of higher 

repayment decisions across conditions. As expected, a significant negative relationship 

was also found between the temporal preference indicator and repayment amount, 

indicating that increases in the preference for smaller short term gains (i.e., the tendency 

to delay costs into the future) was predictive of smaller monthly repayment choices, B = 

-171.974 t(147) = -2.179, p<.05.  

To examine the effects of these individual differences between the framing 

manipulations, separate regression models were then conducted per condition. In each 

model, the dependent variable was repayment amount and the individual difference 

parameters were entered as predictors one by one. In condition 1, significant positive 

associations were found between chosen repayment amount and financial literacy, R2 = 

.036, F(1,77) = 3.955, p=.05, B = 102.29, t(77) = 1.989, p=.05, and education, R2 = .11, 

F(1,77) = 11.49, p<.01, B = 335.99, t(77) = 3.39 , p<.01, and a significant negative 

relationship was identified between repayment amount and temporal preference, R2 = 

.11, F(1,77) = 10.8, p<.01, B = -323.87, t(77) = -3.287, p<.01. In condition 2, financial 

literacy was also found to positively correlate with repayment amount, R2 = .04, F(1,75) 

= 4.864, p<.05, B = 120.17, t(75) = 2.206, p<.05. When regressing repayment amount 

on each of the individual difference variables simultaneously per condition, the main 

effect of financial literacy held for condition two. In condition 1, temporal preference 

and education also remained significant, however financial literacy was no longer found 
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to be predictive of repayment amount, and instead gender presented as having a 

significant effect, R2 = .21, F(1,71) = 4.00, p<.001, B = 239.291, t(71) = 2.458, p<.05.   

Thus, although variations in the effects of individual differences were shown 

between participants in each condition, the key variables of importance to repayment 

amount when regressing across participants in both conditions were shown to be gender, 

financial literacy and temporal preference for gains.  

To assess the effectiveness of the framing manipulations across participants on the 

basis of these individual difference measures, separate regression models were 

conducted with repayment amount across groups as the dependent variable and the main 

effect of each individual difference parameter as the predictor variable plus an 

interaction term between the predictor and the framing manipulation (condition). This 

revealed a main effect for condition, R2 = .08, F(3,152) = 5.673, p<.01, B = 389.2,  

t(152) = 3.703, p<.001, with repayment amount increasing in condition 2, a main effect 

for education B = 669.6, t(152) = 2.822 , p<.01, indicating that higher educational level 

was predictive of higher repayment choices, and a significant interaction term between 

condition and education, B = -333.6, t(152) = -2.207, p<.05, indicating that the 

lower[higher] the educational level, the higher[lower] the impact of the framing 

manipulation on chosen repayment amount across conditions.  

6.2.3   Discussion 

Disclosing repayment information using a default manipulation in the form of 

loan repayment costs for the loan at a 50% reduced term was shown to positively impact 

the propensity to make monthly mortgage repayments above the minimum necessary to 

clear the loan over the full term in current rates. This manipulation was therefore 

effective in improving judgments by reducing the propensity to make financial 

decisions based on optimistic estimates of interest rate variability. However, with the 

addition of future rate context information to the data environment in condition 2, the 

effectiveness of peoples’ repayment judgments improved further.  

The positioning of the default figure in the future rate context data acted to raise 

the saliency of the default which heighted the anchoring effect, and increased the range 

between the minimum and maximum values. Based on the tendency to apply arithmetic 

operations to key referents and seek upper and lower bounds in numeric judgment 

environments, the mechanisms in condition 2 combined to yield more effective, less 

optimistic repayment judgments which were closer in value to the upper bound of the 
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judgment continuum. The findings have implications for data manipulations which may 

be effective in counteracting format biases and optimistic tendencies which are shown 

frequently to limit financial choice and behaviour across situations and groups.           

The results reflected those found with the retail forecasters in experiment 1 of 

chapter 3, in that people in both conditions formed judgments by applying additive 

operations to the two relevant data points to yield the arithmetic mean of the values. In 

the case of the retailers, forming predictions using the arithmetic mean led to judgments 

akin to a two-point linear regression model. In the current experiment, the propensity to 

additively combine two salient values to make a choice yielded repayment judgments 

which reflected the arithmetic mean of the most and least optimal repayment options. 

Based on this tendency, the framing of the data in both conditions 1 and 2 functioned to 

yield repayment judgments which significantly exceeded the minimum (least optimal) 

amount. In this respect, both conditions were successful in mitigating optimistic biases 

in financial choice, with condition 2 generating a larger effect based on the larger 

absolute difference between the minimum and maximum values presented in the data 

environment. 

The greater the value of the repayment judgments shown in condition 2 was not 

only associated with the tendency to arithmetically combine two points to generate a 

higher mean value in the context of a larger minimum and maximum range. The effect 

of disclosing the default value in the context of future rates further impacted the 

propensity to make higher repayment judgments by increasing the saliency of the rate 

information and the financial effects. Thus, combined with the propensity to form a 

judgment based on the arithmetic mean, increasing the saliency of potential costs by 

delivering future event information acted to highlight the size of the cost differences 

between the minimum and maximum suggested amounts and increase the relevance of 

the default in the data environment. When viewing the default, it is likely that disclosing 

the effects of future rate increases on loan repayments in condition 2 was effective in 

delivering a strong rationale for making a higher monthly repayment. This acted to 

emphasize the importance of the upper bound repayment figure in the judgment process 

to a greater extent than in condition 1. Heightening the relevance of the upper bound 

with the addition of the future rate context thus elicited a stronger anchoring effect from 

the default which increased peoples’ inclination to make judgments which were closer 

in value to the upper bound.   
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From this perspective, the strength of the anchoring effect of the default is likely 

to be associated with the saliency of the context information. In condition 1 (without the 

added context data) participants’ mean repayment judgment fell marginally below the 

average of the minimum and maximum suggested amounts, indicating a greater 

adjustment away from the maximum and towards the more optimistic minimum 

repayment option. In condition 2 however, the mean repayment fell above the average 

of the minimum and maximum values, indicating that the default manipulation was 

more effective in counteracting optimistic financial tendencies when positioned within 

the context of the future event data. It is therefore possible, that in the context of less 

salient additional information (e.g., context information which may be unrelated to rate 

rises and the cost implications), the default figure may have been less influential in the 

judgment process. This would likely result in an attenuation of the anchoring effect, 

leading to repayment decisions which would be closer in value to the lower end of the 

continuum and more akin to the less optimal minimum suggested amount.  

With respect to individual difference factors, lower levels of financial literacy and 

higher temporal preference for short term gains were associated with the tendency to 

make smaller (less optimal) monthly repayment decisions across conditions. When 

controlling for the effects of individual differences on the effectiveness of the framing 

manipulations, educational level was shown to interact with the framing manipulations 

across conditions. This interaction revealed that each framing manipulation was more 

effective among people with a higher educational level. A larger proportion of 

participants in condition 1 possessed a higher educational level (Bachelors or Graduate 

degree) compared to those in condition 2 (see table 6.2), yet the increases in repayment 

amounts above the minimum in condition 1 were only moderate compared to the 

improvements in condition 2.  

In conclusion to the supplementary analysis of individual factors, the significant 

interactions between the conditions and individual difference variables suggests that the 

effect of the framing manipulations in each condition may be associated with particular 

individual difference factors. However, when including all factors as covariates in the 

model to predict performance, the results remained robust which indicated the 

effectiveness of the framing manipulation in overriding any effects of individual 

differences. The increased effectiveness of condition 2 suggests that the disclosure of 

current versus future rate costs was a particularly advantageous component in addition 

to the framing of costs over different term horizons in overcoming limitations in 
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financial choice related to lower educational level, financial literacy and optimistic 

tendencies associated with a higher temporal preference. The combined informational 

disclosure of a reduced term default positioned within future rate context data is 

therefore concluded as robust in heightening financial judgment performance despite 

individual variations. This finding points strongly to potential applications for 

supporting effective financial judgment and behaviour across socio-economic and 

educational groups and real-world choice contexts.  

With respect to potential limitations, the study design involved repayment data 

disclosed in a format resembling a credit card statement, extracted from mortgage 

products available in the UK loan market in April 2015. In this sense, the framing was 

hypothetical, designed to impact monthly repayment decision making and behaviour in 

the same way that credit card statements are designed to increase the propensity to make 

higher monthly repayments. It must be noted therefore, that although the data presented 

in the experiment was representative of real-world products available in the market 

during April 2015, the participant group consisted of US citizens who were likely to be 

less familiar with the nature of the decision task compared to UK populations based on 

the American loan market which typically involves acquiring loans at fixed rates. Thus, 

rather than payments being subject to variable rates, US borrowers are able to make top 

up payments should and when they choose to. 
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Chapter 7  

General Discussion  

In this chapter, a summary of the main findings and scientific contributions is 
provided. This is followed by an overall review and evaluation of the key 
findings including alternative theoretical perspectives and limitations. This is 
proceeded by further research requirements and suggestions for practical 
applications and design, followed by final concluding comments.   

7.1   Summary and Contributions  

The aim of this thesis was to examine the biases and limitations in human 

probabilistic judgment which are associated with frames and formats of numerical 

information in different situations. By assessing performance in real-world judgment 

contexts, it was possible to contrast the performance of consumer and novice groups 

with that of professional populations using data frames and formats akin to those found 

in the real world.  

The findings revealed robust similarities in judgment processes across groups 

which provide critical evidence increasing our understanding of the role of linear 

tendencies in human rationality. Independent of skill and experience, the propensity to 

perceive linear relations and apply judgment strategies based on assuming concrete 

values was highly robust across contexts varying in complexity and format. Whether 

predicting sales, selecting between financial products, or forecasting refugee camp data, 

people used minimal cues and systematically applied additive methods to percentage 

data and exponential trends to yield linear estimates in both rich and sparse 

informational contexts. It is concluded that the linear bias is a key defining 

characteristic of human probabilistic inference, stemming from the notion of cognitive 

algorithms designed to compute frequency data as underlying judgment processes. From 

the ecological viewpoint, cognitive algorithms developed in accordance with peoples’ 

natural environment in a pre-mathematical world, thus creating the propensity to 

interpret and handle information in absolute terms or natural frequency formats.  

This conclusion is supported by the strong facilitative effects of frequency 

formats, showing that communicating base rate information by representing relations 
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between data using whole numbers, human rationality can be significantly improved. 

The use of icon arrays further increases peoples’ ability to contextualize data when 

communicated in absolute frequencies by facilitating correspondences between the data 

and the real-world. This heightened data saliency aids the conceptualization of 

judgment and choice implications in meaningful, real-world terms which enables people 

to better understand the impact of judgments in a broader sense and over longer time 

horizons.  

The findings deliver both theoretical and practical contributions. Across groups 

and individual differences, the effects of informational format and the tendency to 

linearly extrapolate are connected by the bias to perceive values in concrete terms and 

make sense of data by seeking simple reference points. People compare and combine 

referents using additive methods when inappropriate and adhere strongly to defaults 

when applied in simultaneous data frames in complex environments.  

The practical contribution involves a framing manipulation which shows that 

format biases (i.e., additive processing) and optimism (i.e., the propensity to delay costs 

and downplay risks) can be counteracted in judgments involving percentages and 

exponential growth rates by using absolute formats and framing data using defaults 

positioned within future event context information. This framing manipulation was 

highly effective in improving loan choice and repayment judgments compared to 

information in standard finance industry formats. There is a strong potential to increase 

rationality using this framing manipulation in other financial settings, as well as 

domains such as health behaviour judgment and choice in which peoples’ erroneous 

interpretation of percentages and non-linear relations between variables can negatively 

impact rationality, leading to maladaptive choices and behaviours.   

7.2   Overview and Evaluation of the Main Findings 

The findings from across the domains of retail, humanitarian aid and financial 

choice indicate that there were commonalities in the processes involved in the formation 

of judgments in each of these contexts which connect informational format with the 

linear bias. These processes which characterized judgments across settings involved the 

tendency to assume absolute values, seek relevant referents in data environments, and 

compare and combine the referents using arithmetic operations in numeric data. In 

graphical formats, the tendency to seek patterns and linearly project trends based on 

congruencies in noise was shown to characterize judgments (particularly for those with 
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specialist domain knowledge). In prediction domains, the extrapolation of judgments 

based on arithmetic computations results in linear forecasts. Thus, in the context of non-

linear growth trends and percentage data, arithmetic operations yield predictions which 

either under or overestimate outcomes, and ‘optimistic’ choices which reflect a high 

temporal preference. Results showed that in rich context environments involving 

absolute formats, adherence to defaults was strengthened by highly salient ‘future 

event’ information when framed simultaneously with information relating to events in 

the present. In this respect, optimistic tendencies relating to higher temporal discounting 

were shown to be minimised by this framing manipulation. The following section 

discusses how the judgment processes underpinning the linear bias are related in each 

setting.  

In sparse data environments, people in both retail and humanitarian aid contexts 

made judgments based on linearly extrapolating the cues in the absence of additional 

information. Akin to a two-point linear regression model, the retail forecasters focused 

on the last two observations per trial and computed forecasts based on the absolute 

difference between these two values, regardless of the format or whether sequences 

trended linearly or exponentially. The fact that error was greater when observed 

percentages trended linearly and vice versa (i.e., for mismatches), supports the 

viewpoint that processing errors (i.e., adding and subtracting values rather than 

processing points multiplicatively) underpinned the linear bias in this context.  

These findings indicate that when data is disclosed in numerical formats (as 

opposed to time series formats) people seek key reference points which they then 

combine using additive methods to generate linear judgments. Thus, in sparse contexts, 

where there is no additional data for comparison, people make sense of the environment 

by seeking relevant referents which can be easily and efficiently processed to make a 

fast, cognitively efficient judgment based on combining the referents arithmetically. A 

heuristic strategy such as this is logical, in that it minimizes effort and attentional 

resources where minimal information is available.  

The same processes and methodology were applied when viewing sparse data in 

time series format, except that this environment was less conducive to the identification 

of key referents. As in the retail context, both humanitarians and non-humanitarians 

with no prior forecasting experience formed consistently linear forecasts amidst 

cyclically trending data, which reflected a linear model based on all three cues (as 

opposed the last two points). This suggests that in time series formats, the tendency to 
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linearly extrapolate may be based more upon the visual comparison and combination of 

all available cues rather than a computation based on only two key data points. It is 

possible that the graphical display facilitated visual analysis to a greater extent than the 

numeric format which increased the inclination to additively compute estimates based 

on the arithmetic mean of two relevant points. Either way, the processes employed in 

each environment yielded consistently linear predictions based on the assumption of 

absolute values and the arithmetic processing of cues.  

When examining performance in rich data environments involving numerical 

formats, people making financial repayment judgments showed the same propensity to 

seek relevant reference points and combined them additively just as the retailers did in 

sparse numerical contexts. In this setting however, a default in the form of loan costs for 

a reduced mortgage term were displayed alongside costs for the full term in condition 1. 

In condition 2, the default was positioned in rich contextual data relating to loan costs in 

future rates. This future rate data for both the full and default (reduced) term 

information was disclosed simultaneously with the current rate data.  

When seeking meaning in more complex data environments such as those in 

experiment 4 which involved a wide range of cues (i.e., the reduced and full term cost 

information), people sought key referents in the form of the minimum and maximum 

repayment amounts. These two values were then additively combined to generate a 

decision based on the arithmetic mean. This indicates that when additional information 

is present, people make sense of the information in the environment by locating 

referents which represent an upper and lower bound. In the context of a repayment 

decision, this is a logical strategy in that it provides a summary of the most relevant 

information to the judgment and generates a range within which a repayment judgment 

can be made.  

In this setting, it is thus apparent that the framing mechanisms involving a 

numeric format and the simultaneous disclosure of default information in concrete terms 

worked in congruence with the judgment processes underpinning linear tendencies. The 

effect of the default thus interacted positively with the tendency to seek and combine 

referents based on minimum and maximum values which made this mechanism 

effective in operationalizing the linear bias to improve decision performance rather than 

to hinder it.  
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When presented with rich context information in time series formats, the 

propensity to make linear judgments based on additively combining cues remained 

robust. However, in this setting, non-causal cues as opposed to relevant context 

information was added to the data environment to create noise, which resulted in an 

increase in judgment error. In this situation, the same propensity to compare and 

combine data when simultaneously viewing target and added context cues was evident. 

However, it is possible that the time series format made the identification of useful 

numerical referents more difficult. Compounded by the lack of relevance of the context 

information, people thus sought meaning in the data environment based on visually 

comparing cues to identify similarities in the directions of the trends. Rather than 

seeking a clear upper and lower bound, this visual method appeared to characterize 

judgments, enabling people to derive a rationale for linearly projecting the target data in 

a particular direction.    

As in the sparse time series format, the target data cues were again combined 

additively to generate linear projections, however the direction of the linear 

extrapolations were guided by the direction of the trends in the noise. This shows that in 

complex environments where additional data is unrelated (and thus of no use), people 

are still prone to utilize the data to help guide and rationalize their judgments. Seeking 

patterns and similarities between data is therefore likely to be a strategy for making 

sense in incomprehensible environments when a clear judgment range is not 

numerically identifiable. This suggests that the increased judgment error in noise shown 

among humanitarians and novices is likely to stem not simply from linearly extending 

the target series, but from actively seeking patterns in noise to inform judgment 

directions.   

The key factors which influenced the linear bias in these two complex data 

environments are therefore the format of the data and context information, and the 

causality of the additional cues. Both situations involved rich information, however 

performance in the financial setting was facilitated whereas it was hindered in the 

humanitarian domain. It is probable that the time series format increased the difficulty 

of identifying referents, leading people to compare cues using a visual heuristic strategy 

based on similarities. Target data cues were then combined additively to produce linear 

extrapolations which followed the same direction of the other cues.  

However, in the financial scenario, the additional context information was 

delivered in numerical formats and the added information was highly relevant to the 



 

 

182 

task objective. Viewing the data in absolute formats in this situation made it easier for 

people to locate referents and established a clear meaning from the data, based on an 

upper and lower bound. In the context of the highly relevant additional information (i.e., 

the reduced term data), the propensity to seek an upper and lower bound and apply 

arithmetic operations becomes adaptive, based on people comparing and combining 

values across all observable cues. Therefore, the default (i.e., the reduced term data) in 

this particular setting represents an important mechanism impacting human judgment by 

harnessing the propensity to seek and compare key referents in complexity, and apply 

arithmetic operations. When presented simultaneously with the target information (i.e., 

the full term data) in concrete terms, the default utilized the processes involved in the 

linear bias to improve rationality by converting human propensities from erroneous 

processes into adaptive strategies within the given data environment. Rather than 

minimizing the linear bias therefore, the default increased performance by working in 

accordance with the propensities which promote it.  

The default further amplified judgment performance when the anchoring effect 

was amplified by positioning it in the context of future rate information. For example, 

the findings showed that loan repayment judgments were more optimal when people 

viewed the default (i.e., the reduced term data) alongside the full term data in ‘future 

rate’ context compared to when viewing the default information alongside the full term 

data in ‘current rates’ only. By disclosing the default in a future rate frame 

simultaneously with the target data in current rates, the absolute difference between the 

minimum and maximum suggested repayment amounts increased. This increase 

between the upper and lower bound improved judgment effectiveness (i.e., the amount 

people decided to repay) not only by increasing the value of the arithmetic mean, but 

also by heightening the saliency of costs associated with future interest rates, which 

within a financial choice scenario is extremely important.  

The strong relevance of the future rate information to the judgment task raised the 

significance of the increased costs, drawing greater attention to the default information 

containing the upper bound (i.e., the reduced term costs in future rates). As a result, the 

default had a stronger anchoring effect compared to when it conveyed reduced term 

costs in current rates. Under these conditions, people made lesser adjustments away 

from the default to form repayment judgments which fell above the arithmetic mean of 

the upper and lower bound. In contrast, when the default was positioned in a current 

rates frame, judgments fell slightly below the mean. 
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In sum, when observing numerical values without surrounding contextual 

information (i.e., in the retail environment), people utilize minimal data points (i.e., the 

two most relevant observations) and apply fast and frugal arithmetic operations. Where 

multiple cues exist, (i.e., in the humanitarian setting), the same linear prediction bias 

characterizes judgments, except that people use the surrounding information to guide 

their estimates as a means of deriving rationale for judgments based on patterns in the 

noise. Together, these findings point to the importance of the available contextual 

information in judgment situations. In the absence of contextual cues, people resort to 

basic linear strategies. When context is present, they combine the additional information 

to either guide linear projections, or to derive the arithmetic mean of two referent 

points. Depending on the causality and format, the propensity to combine context 

information can be either harmful or adaptive. Where irrelevant (i.e., in the context of 

non-causal context cues), the comparison and combination of cues leads to erroneous 

judgments which are linear in nature. Conversely, in the context of relevant, causal data 

cues and absolute numeric formats, the linear bias can be adaptive when default values 

are positioned within the context of future event data frames.   

The findings indicate that processes underpinning the linear bias characterize 

judgments across contexts and groups, and that data format impacts the linear bias via 

the human propensity to think in concrete terms, look for useful numerical benchmarks 

and add and subtract values to make choices and predictions. Depending on the format 

and relevance of contextual information in complex environments, data can be framed 

to counteract the negative effects of the linear bias in complex judgment domains 

involving non-linear relations. The robustness of the linear bias shown throughout the 

findings suggests that interventions aimed at minimizing it are unlikely to be effective. 

The results relating to the effectiveness of ‘future event’ defaults therefore deliver 

important theoretical and practical implications, indicating that it may be possible to 

facilitate more accurate estimates of the effects of exponential functions by displaying 

outcomes on a temporal continuum.  

Future event defaults delivered in concrete terms and disclosed simultaneously 

with current event data are effective in creating highly salient context which improves 

judgment by increasing the relevance of future events, and thus the anchoring effect of 

the default. It is possible therefore, that simultaneously framing ‘current’ versus ‘future’ 

outcomes at different points in time will facilitate more detailed comprehension of non-

linear relations between variables, and help to anchor people even more on ‘future’ 
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framed defaults. As described above, future event defaults may therefore provide a 

framing mechanism for improving human rationality by conveying information to work 

in accordance with linear biases. This approach is likely to be more effective than 

applying interventions aimed at correcting or retraining cognitive biases and irrational 

judgment processes. 

7.2.1   Alternative Theoretical Perspectives and Limitations in Design  

The remainder of this section evaluates the findings discussed above, delivering 

possible alternative perspectives and explanations for the results, including 

experimental effects and shortcomings in design which may have contributed to the 

results. 

When considering the linear bias in the retail forecasters for example, it is 

possible that more ‘conservative’ estimates based on forecasting towards the mean are 

less erroneous when considered in relation to wider supply chain factors and longer time 

horizons. When testing performance in real world settings, the tendency to under-

forecast and over-forecast may be adaptive in the context of other, un-modelled domain 

specific information. As a result, tendencies to project trends linearly could reflect tacit 

knowledge and beliefs about the data which are used in shaping judgments beyond the 

observable cues. However, data relating to peoples’ individual beliefs and knowledge 

about the domain and the data were not captured in the experiment. Further 

investigation using rich context is necessary to indicate how the linear bias may be 

impacted by beliefs and knowledge, based on how people synthesize data with beliefs 

and use additional context to guide judgments. Based on the sparse numerical cues used 

in the experiment, it is not possible to draw conclusions regarding how knowledge and 

beliefs are integrated in the judgment processes to yield the linear bias. However, it is 

clear that data format and framing is important to interpretation of cues and how people 

integrate additional data in the formation of linear judgments.  

This suggests that beliefs and knowledge will also be impacted by format. It is 

probable that they will shape judgments by feeding back into the interpretation of 

additional context data, and applied as a means of confirming initial interpretations of 

the data, based upon the format. For example, Hohle and Teigen (2015) showed that 

participants predicted experts’ climate change forecasts by endorsing trends which 

corresponded with their individual beliefs about the consequences of climatic changes. 

Predominantly, people continued the extension of upward trends for sea level and 
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temperature rises and downward trends for grain productivity. This propensity was 

particularly marked among people with stronger beliefs in anthropogenic climate 

changes. 

It is also possible that the linear bias may have arisen based on experience of the 

effects of trend-damping. For example, damping statistical model trends in the retail 

forecasting domain may have proven to be an effective strategy in the past, particularly 

in the context of sparse data, hence the strong propensity to linearly extend trends in the 

experiment. If the retailers were to show evidence of accurate non-linear extrapolation 

in contexts other than supply chain, this would indicate that the linear bias may be more 

associated with beliefs based on domain-specific experience, rather than global 

judgmental processes. Testing this hypothesis is warranted, because there may be a 

stronger element of domain specificity involved in the linear bias than these results 

indicate. Depending on the nature of the data, the linear bias may be more ‘rational’ in 

certain environments, and the impact of peoples’ knowledge and beliefs on probability 

estimates may vary greatly between settings (Lawrence, Goodwin, O’Connor, & Önkal, 

2006).  

Making conservative estimates or under-adjustments to statistical forecasts could 

also be an expression of the ‘golden rule’ of forecasting (Armstrong, Green & Graefe, 

2015), which states that ‘forecasters should be conservative by making proper use of 

cumulative knowledge and not go beyond that knowledge’. It is feasible that the 

conservativeness of the retailers’ estimates (i.e., the tendency to forecast towards the 

mean) reflected this concept, based on the assumption that their knowledge is not 

sufficiently greater than that of the systems or other experts involved in generating 

model data. A similar explanation to this is the ‘asymmetric loss function’ which 

accounts for operational logistics, marketing and sales forecasters’ propensity to over-

predict in an effort to minimize losses. This is based on the concept that over-ordering 

stock has less negative financial impact in the long term compared to under-ordering 

which risks empty stores. The retailers may therefore have underestimated increases as 

a mechanism for moderating risk associated with over-estimating returns (Lawrence, 

O'Connor, & Edmundson, 2000). Alternatively, the over-forecasting of decreases may 

reflect an optimistic belief that sales will not decline to extent the data suggests.  

In the case of both the retailers and the humanitarian aid workers in experiment 2, 

it is possible that the artificiality of the situation and the experimental presentation of 

the data encouraged participants to seek and extract trends leading to prediction 



 

 

186 

anomalies or atypical strategies which would not occur in the real-world setting. In 

unfamiliar situations for example, people are shown to make judgments based on 

strategies which are better suited to other circumstances which they are more familiar 

with (Oskarsson, Van Boven, McClelland & Hastie, 2009). An absence of real-world 

background information may have increased the propensity to seek patterns and 

regularities in the case where the underlying mechanisms and causal factors where 

unknown (Elliman, 2006).  

Throughout JDM research, biases which are identified are often recognised as 

arising from participants assuming that all available data is there to be used, and thus 

incorporating it in their judgments (Wanke, 2007). This could account for aid workers 

and novices’ tendency to linearly project trends in noise based on a perceived 

‘consensus’ between the directions of all observed cues. This finding may therefore 

have reflected an expectation bias, whereby people assumed that the trends were to be 

projected in the same direction, without considering what the task required or 

represented in reality. These possibilities point to some of the well-recognised 

difficulties and limitations associated with experimentally replicating field 

environments (Lipshitz, 1993; Lipshitz, Klein, Orasanu & Salas, 2001). 

When viewed as an experimental context effect, the tendency to trend damp and 

anti-damp (i.e., under-estimate increases and over-estimate decreases) may be 

considered an adaptive strategy, despite that linearly extrapolating the data created error 

in the particular data environments tested. For example, people are shown to regress 

towards the mean trend encountered when forming forecasts in multiple trials (Stevens 

& Greenbaum, 1966; Warren, 1985). In this respect, linear regression towards the mean 

may be a rational strategy for minimizing expected error by forecasting according to the 

estimated mean trend, or by taking a weighted average of the estimated trend on a 

particular trial and the estimated mean trend (Harvey & Reimers, 2013). A similar 

perspective to this is the adaptation hypothesis which also explains trend damping as an 

adaptive strategy, suggesting that people are predisposed to forecast in accordance with 

degrees of growth and decay which are representative of natural environments.  

Patterns in ecological growth and decline, found widely throughout natural time 

series, tend to follow sigmoidal functions resulting from an initial positive acceleration 

followed by trend damping due to depletion of resources. This leads to a levelling off 

which reflects the carrying capacity of the environment (Tsoularis & Wallace, 2002). 

Trend-damping may be considered as the tendency to predict in accordance with these 
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natural functions, hence the apparent effectiveness of trend-damp in various contexts 

(Collopy & Armstrong, 1992; Gardner & McKenzie, 1985).  

Interestingly, Harvey and Reimers (2013) found that the tendency to trend damp 

in accordance with representative patterns of growth and decline in the natural 

environment occurs independently of context effects. In a single-shot between-

participants experiment involving a single time-series, damping was shown to occur 

with positively accelerated series and anti-damping with negatively accelerated series. 

In the absence of repeated trials, these results suggest that rather than a bias created by 

context effects, trend damping may be the result of long-term adaptation to the natural 

environment from which trends occur.  

In terms of the prediction patterns shown among retail forecasters, the propensity 

to extrapolate linearly could thus be an expression of the tendency to trend damp and 

anti-damp in accordance with patterns of growth and decline in the environment. These 

patterns may be associated directly with ecological factors such as seasonal variance, as 

well as specific supply chain factors, such as manufacturing lead times. For example, 

naturally occurring growth and decay is reflected in weather changes which shape 

patterns in supply and demand. Ecological factors are also likely to impact factors such 

as product lead times, and may thus have an indirect influence on supply and demand.  

Factors such as lead times also mean that estimates have to be formed for events 

far into the future, which suggests that both retailers and aid workers’ may be better at 

forecasting over longer time horizons, using more cues compared to the short three-

point sequences used in the experiments. The inclination to moderate increasing and 

decreasing trends may therefore be an effective ‘rational’ strategy over longer horizons 

in complex environments. Findings have shown for example, that novices with no prior 

experience of a given field tend to employ strategies which are more adapted to shorter 

time horizons compared to those with domain specific knowledge (Thomson, Pollock, 

Henriksen, & Macaulay, 2004). In this view, the linear bias (i.e., the propensity to trend 

damp) may arise from people being more adapted to forecast over longer time horizons 

based on the effectiveness of the strategy in terms of real-world supply chain or refugee 

camp morbidity indicator outcomes. Depending on whether the variance in these factors 

reflects natural patterns of growth and decline, it is possible that the linear bias in this 

context represents peoples’ inherent awareness of such variance, thus supporting the 

ecological perspective. 
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Although this view does not effectively explain the importance of beliefs and 

domain knowledge to judgment performance, it posits the idea that the linear bias could 

be related to judgment processes which are attuned to naturally occurring variance and 

that human judgment processes yield effective estimates when applied in the context of 

time lines which more accurately reflect those found in the real-world environment. It is 

possible therefore that people with more experience may potentially be more sensitive 

to environmental patterns of growth and decay, and thus possess a greater ability to 

form more effective judgments in the context of more data over longer time spans. 

Further studies are necessary to test this possibility in the retail and aid environments, 

and other complex domains involving people with and without specific experience in 

the field.  

In the domain of financial choice, the ecological viewpoint could also account for 

the linear bias and its harmful effects. For example, a tendency to trend damp based on 

judgment processes being geared for natural growth and decline in the context of 

compound interest (exponential growth) will yield underestimates of future outcomes. 

Moreover, the effects of compounding mean that inaccuracies increase (as opposed to 

decrease) over longer time spans. The linear bias may therefore be particularly non-

adaptive in environments where trends follow ‘un-natural’ (non-sigmoidal) patterns, 

such as the exponential growth of interest rates. This notion of the linear bias as a 

product of adaptation to the environment fits with the concept of ‘natural algorithms’ 

forming the basis of human rationality, which involve processing data in terms of 

absolute counts, and sampling from the environment in natural frequencies.  

In the context of exponential growth trends, optimism is another factor 

contributing to judgment inaccuracy. In domains such as financial decision making, 

consumer choice, or health, judgments which involve computing percentages and 

modelling exponential trends often include other factors such as marketing, or public 

health messages which can impact peoples’ motives and behaviours. For example, 

choosing between credit cards, or whether to give up smoking, or to take up exercise are 

all judgments which involve extrapolating compound effects (i.e., exponential 

functions) and are subject to powerful individual motives and drivers. In these contexts, 

there is a strong propensity to think optimistically and underestimate future outcomes. 

The linear bias is thus behaviourally amplified in such environments which acts to 

increase its detrimental impact on choice and behaviour.  
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The results of the framing manipulation tested in the financial repayment 

judgment context demonstrate a means of improving judgments by counteracting 

optimism where compounding is concerned. From the ecological viewpoint, the framing 

manipulation may be increasing peoples’ ability to control for the effects of ‘un-natural’ 

exponential trends, by increasing rationality in accordance with statistical models rather 

than naturally occurring variance. The framing effects also held when factoring in other 

important individual differences. Participants with lower levels of education, financial 

literacy and a preference for short-terms gains (i.e., financial optimism) made 

significantly higher (more optimal) repayment judgments compared to a minimum 

suggested amount in current rates over the full term. Previously, these individual 

differences have been associated with poor financial judgment and behaviour. However, 

the robustness of the framing effect across groups indicates that the framing of rates in 

the future is likely to be effective in overcoming such effects. Future event frames may 

therefore be a useful manipulation for promoting behaviour and choice in other 

exponential growth contexts where individual differences and behavioural motives are 

likely to have a strong impact.  

It is important to note however, that the association between financial literacy and 

behaviour is unclear, with some studies yielding negative associations between financial 

literacy and performance (e.g., Newall, 2016b), and others showing that raising 

financial literacy does not lead to improvements in judgments (e.g., Fernandes et al., 

2014). The current findings thus provide a strong basis for further examination of the 

framing effect among individual differences in complex non-linear judgment domains 

to identify mechanisms which may be mediating performance effects in these groups, 

and whether or not they hold across settings.     

In summary, various explanations for the linear bias have been posited, which 

include experimental effects and the impacts of domain specific knowledge and 

experience, and trend damping as a reflection of the propensity to predict in accordance 

with natural growth and decline. From these perspectives, the linear bias is potentially 

adaptive in the context of more data and longer time horizons which could be more 

representative of the temporality of events in the real-world (i.e., in ‘nature’). In the 

context of exponential growth (e.g., compound interest rates) which are less reflective 

of patterns found in nature, the linear bias is detrimental to performance, particularly so 

over longer time horizons. Presenting data in absolute terms with defaults positioned in 

‘future outcome’ information could be a useful mechanism for optimizing judgment 
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tendencies in accordance with the linear bias to yield effective choices and behaviours 

in the context of exponential trends and complex, varied cues. 

Although performance may be difficult to determine based on only three data 

points (particularly in the context of noise), the robustness of the linear bias shown 

across groups and contexts throughout the prior chapters suggests that barriers to 

computation based on the tendency to think in concrete terms and apply simultaneous 

processing to numerical data are key factors underpinning the widespread tendency to 

make linear judgments amidst non-linear trends and percentages.  

Differences in how the linear bias impacts performance is dependent on data 

frame and format, and the richness and relevance of context information. These 

components then interact with judgment processes to shape rationality depending on 

individual motives, knowledge, experience and beliefs in the context of the task and 

specific judgment objectives. In both sparse and complex environments, it is likely that 

experience and beliefs etc., are applied in the judgment process to aid in the 

interpretation and synthesis of cues. Based on mechanisms identified in the ‘summary 

and contributions’ above, it is posited that people linearly extrapolate data (or adjust 

additively computed estimates) in ways which are confirmatory of beliefs and 

experience. In time series formats for example, this can result in following trends and 

seeking patterns in data which fit with expectations and are congruent with beliefs. In 

numeric formats, it is likely that people look for relevant reference points to compute 

estimates which are then adjusted in accordance with beliefs.  

7.3   Further Research  

There are possible modifications and extensions which could be made to the 

experiments in each chapter to further examine the processes underpinning the linear 

bias in the settings investigated. Firstly, it would be useful to deliver a formal measure 

of numerical data processing in each context to verify the propensity to additively 

process percentage data in the settings investigated. This would strengthen the evidence 

for this characteristic as key human trait underpinning the linear bias. For example, this 

could involve (as previous studies have done) assessing retailers, aid workers and 

consumers’ ability to determine whether the final return value of a stock rising and 

falling in percentage points is smaller or larger than the initial value.  
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Overestimating investment returns in this task indicates the tendency to 

simultaneously process information (Newall, 2016a), which would confirm format 

confusion and failure to multiplicatively processes as a key mechanism contributing to 

the linear bias when viewing percentages and exponential trends in each of the settings 

investigated. A formal measure of numeracy could also provide support for the 

robustness of percentage processing errors across groups and settings. For example, 

numeracy is shown to correlate not only with numerical skills (Tubau, 2008), but also 

with performance in Bayesian inference tasks when data is presented in both probability 

(percentage) and frequency formats (Chapman & Liu, 2009; Johnson & Tubau, 2015).  

Another important set of variables warranting further analysis is the impact of 

peoples’ individual beliefs based on experience, knowledge and motives on judgment 

formation and how they affect the linear bias. In conjunction with how format 

influences peoples’ perception of numerical information, it is likely that beliefs about 

the data and its meaning in the real-world are imported into the judgment process to 

influence perceptions of context information and the interpretation of patterns and 

relevant reference points in the data environment. There is likely to be a tendency to 

then seek features and meanings in the data with support beliefs, and make judgments 

based on additively processing the data to form linear estimates which reflect those 

beliefs.  

It is necessary to examine how these factors interact with data format, frames and 

context information to impact judgment processes in different settings. In domains such 

as retail and humanitarian aid for example, methodologies used in naturalistic decision 

making research could be usefully applied to collect data in investigative field 

experiments. Methods such as these would deliver insights into how experience and 

beliefs are combined with data and incorporated into the linear judgment processes. As 

outlined in the above, it is probable that people form linear judgments in accordance 

with beliefs, experience and motives based on seeking patterns in data which align with 

these factors. In this sense, individual expectations and experiences feedback into 

judgmental processes to inform the interpretation of data and guide judgment 

adjustments via linear perceptual processes. (These processes may differ therefore, 

depending on data format and the nature of context information).   

A closer analysis of the behavioural and motivational factors impacting judgment 

formation in consumer choice and financial decision making is also required. In these 

areas, it is important to understand how individual motives and factors such as temporal 
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discounting can influence peoples’ interpretation of information and contribute to the 

linear bias. In situations such as online shopping, lottery playing, or selecting between 

credit cards for example, tendencies such as optimism and impulsiveness are likely to 

play a key role in mediating or amplifying the linear bias. These tendencies are 

connected with high temporal preference (or the strong desire to maximize short term 

gains). This may be reflected in irrational, non-cost effective purchase decisions, and 

the propensity to select options with the lowest repayment costs, despite the fact that 

these choices incur higher costs overall. It is necessary to tease apart the effects of 

motives and beliefs in these situations to understand how irrational choices and 

behaviours (associated with the linear bias) are connected to informational formats and 

framings steering the judgmental processes. 

The findings from across all domains investigated indicate that format is an 

important factor determining the judgment processes which contribute to the linear bias. 

To verify the effects of format, it is necessary to test whether the judgment processes 

are impacted in the same way when alternating data formats between each of the 

environments assessed. Drawing parallels between performance across fields based on 

format is important to verify the proposed mechanisms for how data format is connected 

to the linear bias. For example, by presenting the retail forecasters with sales data in 

sparse time series format, we would expect to see the same tendency to linearly project 

trends as was shown by the aid workers. Likewise, if aid workers were shown numeric 

formats in sparse context trials, we would expect the same propensity to additively 

process percentages and extrapolate trends based on the last two observations as shown 

among retailers.  

Evidence suggests that people tend to interpret statistical information (specifically 

percentage data) as ‘benign’, which can lead to less accurate assessments of risk 

compared to when information is viewed in frequency formats, which more effectively 

promote the meaningfulness of the information (Slovic, Monahan & MacGregor, 2000). 

In the financial choice setting, it may therefore be possible to further optimize 

rationality by using graphical displays to communicate the temporal effects of 

compounding in terms of absolute costs when considering different rates, product types, 

and loan terms. A visual representation of the exponential relations could be more 

effective in countering optimism (or high discounting) than simultaneously displaying 

the current versus future rate information in numeric formats.  
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It would be interesting to test if displaying current versus future rate data and 

repayment information graphically (either in line or bar format) would further optimize 

the framing effect to facilitate loan choice and repayment decision making. For 

instance, a dynamic line or bar format to communicate loan options and monthly costs 

(in which people manipulate variables to see physical effects in terms of size/shape 

changes) could increase visualization of the data. Being able to see the physical effects 

of compounding in dynamic formats is likely to heighten the saliency of future rates, 

thus drawing greater attention to the real-word implications. Thus, graphical formats 

may more effectively communicate the concepts and relations between variables 

involved in complex non-linear environments (particularly in low educational groups).  

Another means of increasing the meaningfulness and correspondence of the data 

with the real-world could be to use icons (i.e., graphical representations of the 

variables). When applied in frequency format, the use of dynamic icon arrays is shown 

to significantly improve statistical rationality, particularly among lower numeracy 

populations (Garcia-Retamero & Galesic, 2009; Okan, Garcia-Retamero, Cokely & 

Maldonado, 2012). The mechanism is based on heightening the data saliency by using 

cues which reflect real-world populations, items or events. The frequency display thus 

conveys the set relations between the variables (i.e., the base rate information) to 

facilitate the comprehension of a risk factor as a proportion of a population whole. This 

is shown to greatly improve judgment by making transparent the implications of 

statistical data in terms of the real-world impacts on individuals and groups.  

It is possible that frequency formats using icon arrays may also be useful in the 

financial judgment setting to communicate cost differences between loan types, and 

between full versus reduced term information in current versus future rate frames. This 

could be effective by facilitating the comprehension of the temporal effects of 

compounding in relation to the continuum of absolute costs for different product types 

and loan terms over time more effectively than simply numeric formats involving a 

default in future rate context. Based on the results among lower educational 

populations, it is also possible that using icons in frequency format may be more 

effective in promoting judgmental rationality across groups compared to line or bar 

graph displays used to convey the framing effect.  

Other ways of facilitating judgment among low educational, or socio-economic 

groups could involve framing the data in terms of ‘losses’ versus ‘gains’. For example, 
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in addition to disclosing costs for the reduced term, it might increase the effect to also 

show the saving in relation to the full term alternative using the following manipulation:  

“You will save $104,703.80 over 10 years if you repay $2,811.12 per month” as 

opposed to “If you repay $2,811.12 per month, it will take 10 years to clear the 

balance”, and vice versa for the full term option; 

“You will lose $104,703.80 over 20 years if you repay $1,841.83 per month” 

rather than “If you repay $1,841.83 per month, it will take 20 years to clear the 

balance”.  

Loss/gain framing could also be applied to the interest costs in the same way, for 

example; 

 “You will save $6,007.93 in interest over 10 years” versus “You will lose 

$6,007.93 in interest over 20 years”. 

One interesting possibility is that framing costs associated with time spans as 

gains versus losses might interact with temporal preference. It would be worth 

investigating for example, whether people with higher temporal preference are more 

sensitive to higher long term costs when framed as gains and less sensitive to lower 

short term gains when framed as losses. Based on the ambiguity of the relation between 

financial literacy and financial judgment and behaviour (e.g., Fernandes et al., 2014), 

examining loss versus gain framings as a potential mediator of financial judgment 

among groups varying in educational abilities and temporal preferences could be 

beneficial. As outlined above, loss versus gain disclosures will act to increase the 

saliency of cost differences in easily relatable terms, thus potentially having a strong 

impact on rationality among lower educational groups. 

Increasing the effectiveness of informational formats and frames in financial 

judgment settings could also increase the quantity of data people are capable of 

processing. Past findings have shown that increasing the number of choice alternatives 

in various decision environments leads to a decline in judgment effectiveness (Benartzi 

& Thaler, 2002; Sethi-Iyengar, Huberman & Jiang, 2004), due to increases in noise 

which accompany more informational cues (e.g., Harvey, Bolger & McClelland, 1994). 

However, it is possible that graphical formats may increase the number of choice 

alternatives people are able to process onscreen at any one time. In a domain which 

involves hundreds of choice alternatives, exploring graphical data formats to increase 
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the proportion of data people can simultaneously process could greatly aid judgment 

effectiveness.  

The way in which people process complex cues when disclosed in simultaneous 

versus sequential frames requires closer analysis to understand how the process of 

comparative analysis contributes to judgment performance. Reconstructing the loan 

choice and repayment decision making experiments as eye-tracking studies would show 

how data was compared in each framing. The time spent viewing each rate frame and 

the number of comparisons made between each frame would indicate which data points 

were most important to the judgment process. Recording eye tracking information in 

combination with screen click data in the loan choice experiments would also show how 

people choose to reorder loans, providing data relating to which individual loan product 

attributes people deemed most important to the judgment process.  

Together, these results could provide further evidence of factors underpinning the 

linear bias in complex online choice environments. If tested in relation to standard 

financial data formats for example, we may see that people are inclined to focus more 

on percentage information despite miscomprehension of percentage formats, or that 

people pay particular attention to certain cues, or make particular data comparisons 

which are ineffective when analysing financial product attributes.   

In addition to testing alternative data formats, it is also necessary to assess how 

the linear bias may be effected by data presented over longer horizons and in different 

types of context information. It is possible that the three-point time horizons used to test 

performance in the retail and aid environments were not representative of real-world 

data, and thus generated unreliable reflections of peoples’ judgment processes. 

Examining performance over longer horizons in sparse and rich contexts is required to 

assess the robustness of the judgmental processes yielding the linear bias. For example, 

assessing judgment performance in relation to real-world outcomes (i.e., actual events) 

in the retail and aid environment may be useful in determining whether the linear bias 

(i.e., the propensity to trend damp) is effective over the longer time spans (i.e., leads to 

increased performance in terms of actual outcomes).  

As postulated in the ‘alternative theoretical perspectives’ section, we may find 

that people in complex environments are more capable of making effective predictions 

over longer time horizons. As well as reflecting adaptation to the variance in domain 

specific factors (e.g., product lead times), it could also represent a sensitivity to patterns 
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of variance in the natural world, thus supporting the adaptation perspective. This is 

possible, considering that naturally occurring patterns of growth and decline are echoed 

in domain specific factors (e.g., seasonally determined morbidity indicators). 

Based on the effects of sparse versus rich context on judgment processes in 

numeric and time series formats, it is likely that adding noise or relevant information to 

each environment will result in the same processing mechanisms. For example, we 

would expect that adding causal cues in numeric format to the retail environment would 

result in people seeking an upper and lower bound across the whole data environment, 

just as they did when viewing loan repayment data in current versus future rates. Thus, 

rather than computing the mean of the last two observations in each sequence, people 

would additively combine the last point in the target sequence with another point (or the 

mean of multiple points) in the context data. Depending on nature (and saliency) of the 

context information, people are likely to then adjust estimates above or below the mean, 

based on individual experience and beliefs.  

In the context of noise however, there is likely to be parallels with the aid 

workers, whereby people viewing noisy data numeric formats create meaning amidst 

the complexity by using simple heuristic strategies to identify patterns and similarities 

between all the observable cues. On strategy people might employ, could involve 

comparing the absolute differences between points two and three across all cues to 

identify similarities in trend directions. Akin to the aid worker, they may then 

incorporate noise into the judgment by predicting increases when all cues are rising 

from points two to three (based on the arithmetic mean of the last two points), and 

decreases when all cues are falling. Another possibility is that people will seek to match 

the final observations in each sequence based on the values in absolute terms, then 

additively combine points which have a similar absolute value to yield estimates based 

on the arithmetic mean of these referents.  

With respect to the ‘trend effect’ identified in the aid setting, it is necessary to 

examine its robustness in more varied time series data to see whether there is a limit in 

terms of complexity in which data becomes too noisy for trends to be visually compared 

and weighted. At this point, people may resort to different strategies to determine the 

direction in which to linearly project the target data. However, in the context of causal 

cues in time series formats, it is likely that the ‘trend effect’ will diminish because of the 

increase in meaningfulness of the additional information. This will decrease the 

inclination to look for ‘meaningful’ patterns in the data based on similarities in cue 
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directions, and increase the propensity to evaluate the data in the context of individual 

knowledge, experience and beliefs. The tendency to linearly project trends is likely to 

remain robust, based on the same tendency to additively combine cues in both noise and 

relevant context. However, the more relevant or salient the context, the more likely it 

will be to activate peoples’ individual experiences and beliefs, leading to judgments 

which are shaped and adjusted to a larger extent by these human factors than judgments 

formed in situations involving non-causal, noisy data.  

7.3.1   Practical Applications for Improving Judgment and Behaviour 

The findings offer several implications for design which may be effective in 

improving human rationality and judgment in the context of consumer choice and 

behaviour change, and also in professional settings which involve the formation of 

formal probabilistic judgments in complex, non-linear environments.  

Based on the findings in the retail and humanitarian aid environments, it may be 

considered that the linear bias renders human judgment relatively ineffective in noisy 

real-world domains. However, results also suggest that there are many un-modelled 

factors involved in complex environments which contribute to wider forecast 

performance, beyond the observable data. It is likely that peoples’ inherent knowledge 

and experience of a particular context provides an overall awareness and ability to 

conceptually synthesize the factors involved. This overarching understanding of the 

environment is likely to indirectly impact forecast performance via judgment processes 

and applications which are distinct from statistical knowledge or data handling skills. It 

is important therefore to facilitate human domain knowledge in complex judgment 

environments to maximize the benefits of integrating peoples’ experience and 

awareness of un-modelled factors, whilst minimizing the potentially harmful effects of 

the linear bias.  

This may be achieved by applying people in the development and monitoring of 

statistical models, rather than relying on people to form unaided judgments in noisy 

real-world settings. By using model forecasts as a basis, human knowledge and 

experience may be integrating into the data environment via the monitoring and 

controlling of statistical model predictions. This approach may be effective in extracting 

the benefits of peoples’ additional knowledge by changing the processes underpinning 

how knowledge and experience is applied to the data. This change in method may thus 

facilitate people in making informed judgmental adjustments to unbiased statistical 
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models without the risks of forecasts becoming linearly biased by the effects of the 

judgment mechanisms shown in this thesis to be involved when people form judgments 

unaided in noisy environments. In this view therefore, the advantages of human 

experience may be utilized and isolated to some extent from the tendency to erroneously 

seek trends and interpret congruencies in noise which do not exist. 

There is recent evidence which suggests this method of applying human 

experience and judgment processes is likely to be effective in the aid domain. In this 

instance, people are employed in the model building, monitoring and interpretation of 

systems designed to forecast humanitarian aid demands ahead of climate-related 

disasters (Cousin, 2015). People are also shown to be highly effective in the field of 

weather forecasting when applied to identify important variables in simulations (e.g., 

barometric pressure) which statistical models then weight to form weather forecasts. In 

this area, peoples’ domain experience and ability to perform sanity checks (Silver, 

2013) are shown to increase the predictive accuracy of weather simulations by up to 

twenty-five percent (Lynch, 2006, 2008). Combined with examples such as these, the 

current findings imply significant benefits from assimilating human experience and tacit 

knowledge with the statistical modelling necessary for analysing, interpreting and 

utilizing ever-growing data sets in increasingly complex environments.  

With regard to real-world probabilistic decision making in non-professional 

settings, the effectiveness of the future rate default framing manipulation in the financial 

choice and repayment judgment contexts, indicates there is a strong potential to apply 

this framing to increase rationality, choice and behaviour in saving, investment and 

insurance decision making, as well as other settings such as health. Judgments relating 

to health behaviours are commonly subject to optimistic biases which can lead people to 

downplay the negative effects of certain actions and choices and delay making decisions 

which effect behavioural changes. Optimistic tendencies such as these are compounded 

by problems in interpreting percentage information and estimating the effects of non-

linear relations between variables (or actions) and outcomes. 

Health outcomes are commonly related to actions and judgments in exponential 

relations (e.g., health exponentially improves with smoking cessation, reduced alcohol 

or fast food consumption, and increased exercise and healthy eating). The difficulties 

people experience in modelling exponential trends are therefore likely to impact the 

perceived benefits of making certain decisions and engaging in particular health 

behaviours. This may be reflected for example, in the tendency to regard exercise as an 
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ineffective use of time, or perceive the adversity involved in giving up smoking as 

outweighing the perceived benefits, based on an inaccurate estimate of the time 

necessary to achieve ‘worth-while’ health advantages.  

These perceptions are related to the tendency to assume linear relations between 

actions and events which result in underestimates of the benefits of implementing 

behavioural changes sooner, or the perception that it will take far longer to experience 

the benefits than is actually the case in reality. Thus, peoples’ failure to action change is 

likely to be associated with biased perceptions of costs (e.g., time, expense, discomfort) 

as outweighing the perceived advantages over given time horizons. However, the 

advantages of stopping smoking, exercising (particularly high intensity interval training, 

for instance), drinking less alcohol, eating healthier food, or saving money are all 

examples of actions with compound effects. I.e., the benefits are larger and accrued 

more quickly over a given time span than people may predict. 

It could be possible therefore, to motivate more optimal health related judgments 

and choices (thus reducing optimistic tendencies which are associated with delaying 

judgments and actions) by framing present behaviour (and the health/financial 

implications) in relation to target behaviour (and the health/financial implications) using 

a ‘current’ versus ‘future’ health status/financial advantage frame for a specific time 

horizon. Akin to the framing manipulation in the monthly loan repayment judgment 

scenario, this could involve presenting a smokers’ health status (e.g., in relation to 

someone who has never smoked) for the number of cigarettes they currently smoke per 

day (e.g., 20) versus a target amount (e.g., zero) in the present versus the future (e.g., 

two years from now). This would convey the relation between the effects of current 

versus alternative behaviours over the specified time horizon, illustrating the 

exponential change in health status associated with the reduction (or cessation) in 

cigarette smoking for the given period of time.  

Observing the effects of the target behaviour (e.g., reduced smoking, or total 

cessation) in the future frame compared to the effects of the current behaviour (e.g., 20 

cigarettes per day), is likely to anchor people on the optimal decision (i.e., to reduce or 

stop smoking now) based on the visualization of the extent of health benefits accrued by 

the target behaviour in the time frame. This may be effective in providing the 

motivation necessary to prompt judgment processes underpinning an effective rationale 

for supporting sustained behavioural adjustments. Thus, the future health status default 

creates an anchoring effect, increasing peoples’ inclination to make adjustments towards 
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this optimal state when the positive effects of certain choices or judgments are made 

salient. The ability to view increases in health or financial status over different time 

horizons is likely to increase the inclination to action changes sooner rather than 

delaying the benefits into the future. This framing therefore has the potential to help 

correct optimistic biases (associated with temporal discounting) which are shown 

widely to negatively affect peoples’ health and finances.  

  Using dynamic graphical displays, or icon arrays in frequency formats to convey 

the current versus future health/financial outcomes could further facilitate the effect by 

helping people conceptualize the absolute different in the effectiveness of choice 

alternatives over different time horizons. For example, sliding an icon from left to right 

across a display could show absolute increases in health status compared to an icon 

relating to heath status for current choices and behaviours. Using concrete 

representations to convey the effects of choices over time will also increase data 

saliency and heighten the perceived impact of certain judgments and behaviours in real-

world terms.  

As is the case with saving for example, people are prone to underestimate the 

benefits of small, but consistent behaviours when dealing with non-linear growth 

functions and tend to believe that only large scale changes, or extreme efforts over 

extended time periods will lead to positive results. This erroneous propensity to linearly 

estimate the benefits of certain actions thus impacts motivation and creates barriers to 

more adaptive choices and behaviours. Observing the behavioural benefits in terms of 

the levels of effort or costs involved over time necessary to achieve a particular 

outcome could be useful in conveying the achievability of goals which is important in 

providing a strong underpinning rationale necessary for motivating sustained 

behavioural changes.   

The findings relating to human performance across domains all point to the 

importance of appropriate goal setting and the frequent monitoring of goal behaviour 

which is necessary for the self-regulation underpinning behaviour change (Harkin et al., 

2016). Using future event defaults in dynamic graphic displays could therefore provide 

an effective mechanism for improving rationality underpinning behaviour change by 

impacting the linear judgment processes which lead people to underestimate the positive 

impacts that small, consistent changes can have on future health and wealth. By 

working in accordance with the judgment processes underpinning the linear bias, the 

framing of future events in concrete terms is a potentially useful tool in assisting 
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behaviour change, which could be more effective than interventions aimed at correcting 

biases or retraining cognitive processes associated with maladaptive choices and 

behaviours.  

This approach is likely to be more effective than current visual frames used to 

communicate the negative physical impacts of cigarette smoking for example, which 

involve images of lung damage etc., disclosed on cigarette packets. It is possible that 

‘shock-tactics’ such as this can lead to informational desensitization when people are 

repeatedly exposed to such stimuli. The severity of the images may also be acting to 

demotivate and disengage people rather than inspire (or scare) them into reducing 

smoking. For example, it may be assumed that the extent of internal damage incurred 

from smoking (as inferred by the images) is too great or potentially irreversible and thus 

effort to change behaviour is unwarranted. From this perspective, the time taken to 

repair the damage (i.e., years of smoking cessation), may be perceived as too great to 

warrant the effort involved in giving up, or even reducing cigarette smoking. 

Although it may be highly salient, emotive imagery and wording is potentially 

less effective than more pragmatic data disclosures in public health communications 

which involve conveying the positive temporal effects that behavioural changes can 

have. For example, the current approach fails to address the attitude that ‘just one more’ 

cigarette will create no significant effect, or that delaying reduction or cessation will 

have no overall impact on health or finances in the long term. It is likely that extreme 

images alone do not provide enough information to activate the relevant judgment 

processes.  

Thus, more information is necessary, but in a simplified format which delivers 

data appropriate for forming a rationale to motivate engagement in judgment processes 

which lead to self-generated conclusions and formulations of choice and behavioural 

intentions. Disclosing the positive effects of behaviours in future frames could therefore 

provide a motivational mechanism for impacting health behaviours, as opposed to using 

negative imagery which utilizes fear and avoidance as the motivating factors. By 

modelling the non-linearity of the relation between choices and future outcomes, people 

are able to form more accurate perceptions of the effects of their efforts. This is likely to 

prove highly motivational when perceived efforts are shown to yield greater benefits 

over shorter time horizons that previously judged.  
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Another context in which optimistic tendencies interact with format biases to limit 

judgment effectiveness is when making food choices based on product packaging and 

industry information. Effective judgment and choice in this area is increasingly difficult 

to achieve, based on food industry marketing and promotions delivering conflicting 

information regarding health versus desirability, combined with ambiguous product data 

and unsupported health claims regarding the benefits of particular products or dietary 

choices. As a result, people are confronted with increasing amounts of data regarding 

the benefits and harms of certain food choices or diets which increases the complexity 

of the shopping and food choice environment. Judgment processes are further impacted 

by marketing designed to activate behavioural factors such as optimism, locus of control 

and self-determination which are levered to work in opposition to optimal choice from 

both health and financial perspectives. Amidst an obesity epidemic and increases in the 

associated problems, it is important to therefore consider informational frames and 

formats applied in food packaging as a tool for impacting the rationality underpinning 

food and dietary choices and behaviours.  

In the UK, the Food Standards Agency provides a ‘traffic light’ labelling system 

in which energy and nutrient levels (i.e., fat, saturated fat, sugar and salt) are shown in 

grams and colour coded as ‘high’ ‘medium’ or ‘low’ per product serving alongside each 

data point as a percentage of the daily reference intake for energy and each nutrient 

type. The purpose is to define products as either ‘good’ or ‘bad’ based on a larger 

proportion of ‘low’ or ‘high’ colour codes per choice. However, this system assumes 

higher levels of any nutrient as ‘bad’ regardless of its type, which can lead to some 

more optimal options being erroneously framed as ineffective choices, and vice versa. 

For example, a product may be low in calories yet high in salt, or high in good fat but 

low in saturated fat.  

This data format and framing may also encourage people to assess items in 

isolation, when it is necessary to determine overall nutrient and energy intake on a daily 

basis in relation to referent intakes across all options. It is therefore difficult to compare 

and combine products to form an overall judgment of choice effectiveness per day, 

specifically when it involves synthesizing and balancing nutrient and energy values 

across varying portion sizes. It is also probable that people will interpret the nutrient, 

energy and reference intake cues as representative of the whole product, when in fact 

they represent a single portion. When considering the effects of marketing combined 

with optimistic biases in food choices, this is potentially hazardous, leading people to 
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assume that unhealthy options are not as suboptimal as the data suggests (i.e., that it is 

possible to consume far more of an option per day whilst remaining within the reference 

intakes). Confirmation biases also dictate that people are more likely to seek or interpret 

information in ways which align with expectations or beliefs. Thus, when seeking a 

rationale for an unhealthy choice, it is possible that the current frame and format of 

nutrient information could actually promote biased judgments and suboptimal 

behaviours, rather than act to minimise them. 

Based on the findings relating to the financial choice framing manipulation, one 

way to improve the effectiveness of peoples’ food choices would be to present minimal 

data in absolute formats and use a single metric which normalizes choice effectiveness 

across options to simplify the task of interpreting and comparing data for different 

portions. For example, energy per serving delivers an overall indication of choice 

effectiveness which could be sufficient to determine optimality across nutrient types, 

and groups of products. By converting the percentage of energy per serving (in relation 

to the 2000 kcal daily reference intake) into absolute values, a simple score on a scale of 

1 to 10 could be provided, where 1 equates to 10% of the daily caloric reference intake 

and 10 equates to 100%. (Caloric values are strongly associated with sugar and fat 

content, thus making energy a relatively effective indicator of general choice 

optimality). The advantage of framing caloric values as the key data point for decision 

making, is that it provides a clear referent point for facilitating people in forming fast, 

effective judgments based on summing the points across all choices per day.  

To more effectively communicate the data relating to portion size, a graphic (as 

opposed to numeric) format could be used to convey the relative quantities in absolute 

terms. For example, product packaging may be visually segmented into individual 

serving sizes using calibrations or shaded squares to represent the absolute size of each 

serving in relation to the whole product. Energy scores could then be displayed in a 

large typeface within each serving segment per packet to communicate the size of the 

portion relative to the score, thus indicating the effectiveness of options in terms of 

caloric density (i.e., small sizes with high numbers being less optimal). To maintain 

clarity in the data environment, the data for fat, saturated fat, sugar and salt (also framed 

in absolutes, i.e., grams per serving), could remain secondary to the energy score, 

disclosed in a smaller typeface with no scores attached. This will encourage people to 

focus predominantly on the energy metric, increasing the likelihood of them using the 

data as a referent point to combine and compare scores across options.   
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Providing an alternative frame for the energy score, such as a physical activity 

metric, could create a more meaningful context for the energy cue which may increase 

the impact of the data on judgment processes. For example, disclosing the number of 

minutes of brisk walking necessary to counteract the energy intake per potion (based on 

the average expenditure of 44 kcal per 10 minutes), creates a highly saliency 

visualization of the data, conveying information in relatable terms. Given that exercise 

is a strong predictor of general health across the lifespan (not just weigh loss), this could 

be a particularly beneficial manipulation in addition to energy scores. Using a graphical 

icon (e.g., a green ‘fast walking man’) in conjunction with the absolute minutes of brisk 

walking per portion could also aid the conceptual connection between caloric and 

nutritional information and everyday actions and behaviours. Using imagery to promote 

relations between data and real-life experiences could therefore be effective in evoking 

sensory and emotional responses which may lead to better visualization of the meaning 

and implications of choices compared to communicating the data in less vivid, ‘benign’ 

numeric formats.  

In sum, using visual representations and concrete values to frame the future 

effects of judgment and choice in relatable, real-world terms could overcome biases 

limiting rationality and behaviour in finance and health. For example, conveying food 

portion sizes in relation to exercise requirements, or framing health or financial 

advantages as the impacts of behaviour modification over time, are likely to promote 

more effective judgment and choice compared to standard industry informational 

frames and formats. Overall, the findings indicate that the key to effective frames and 

formats in consumer choice settings is to create mechanisms which work in accordance 

with peoples’ tendency to form linear inferences based on the mechanisms identified 

throughout this thesis. By supporting human rationality based on the propensity to seek 

meaning via referents and apply simple additive methods, it may be possible to facilitate 

and improve judgment and choice to a greater extent than applying measures designed 

to correct or modify the biases and limitations in peoples’ judgment processes.  

The communication of data in formats which are compatible with inherent 

judgment tendencies also support people in reaching effective conclusions and choices 

independently, through the self-assimilation of information. Creating mechanisms for 

learning and self-discovery which improve the depth of informational processing are 

thus important for the acquisition of knowledge underpinning effective rationales for 

behaviour change. For example, disclosing an energy score from 1 to 10 provides an 
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initial indicator of ‘good’ and ‘bad’ which can then be assessed within the context of the 

wider nutrient data and exercise requirement. In this sense, the energy data is made 

sufficiently accessibility to encourage further analysis, leading people to generate a 

stronger rationale for more optimal choice and behaviour. An educational mechanism 

such as this is likely to be more effective in creating long term behaviour change 

compared to information delivered in a purely instructional format, based on creating a 

deeper level of engagement which is achieved through the self-accrual of knowledge 

and personal experience.  

7.4   Concluding Comments  

The findings in this thesis show that the propensity to make concrete comparisons, 

perceive linear relations, and interpret data in accordance with knowledge, experience 

and beliefs are important determinants of human rationality in complex numeric 

domains. By assessing human judgment in both professional and novice/consumer 

populations, it was possible to test the robustness of processes underpinning biases 

across groups and individual differences. The tendency to form linear inferences is 

shown to be connected to informational format by the systematic bias to perceive values 

as absolutes and make sense of data by seeking linear trends and additively processing 

simple numeric referents which indicate the numeric continuum or bounds within which 

a judgment may be placed.  

The direction and magnitude of linear judgments are shown to relate to context 

information in a given situation. The way in which context effects judgment 

performance depends on the data frame and format which interacts with judgment 

processes to either help or hinder rationality. For example, in sparse time series formats, 

people linearly project cues based on all observable points, and in sparse numeric 

formats, people combine two key referents using arithmetic operations. In the context of 

non-linear trends and percentages, both these judgment processes can have detrimental 

effects. The potential for error is particularly high in varied time series formats, in 

which people tend to seek meaning in noise by utilizing the additional information as a 

directional guide for linear trend projections. However, when highly relevant context 

information (in the form of a future event default) is delivered numeric formats, the 

tendency to additively combine referents across the informational environment can be 

levered to generate highly effective judgment and choice.  



 

 

206 

In contextually richer environments therefore, formatting and framing information 

to operate in accordance with the judgment processes underpinning how people make 

sense of numeric environments (i.e., the processes which give rise to the linear bias), 

can lead to significant improvements in rationality and choice effectiveness. The 

importance of context data on human rationality suggests that judgment processes 

involve a far wider, more complex array of factors than those disclosed in the 

immediate data environment. Richer data settings activate peoples’ individual 

knowledge, experience and beliefs which are then imparted into the judgment process to 

guide formation of inferences and choices. How knowledge and experience etc., 

impacts rationality and judgment effectiveness thus depends on informational framings 

and formats. In both professional and consumer choice domains, the findings point 

towards individual knowledge and beliefs as having an impact on judgment 

performance which may be greater than statistical rationality, or the interpretation of 

cues in the immediate data environment alone.  

Although human judgment processes are strongly linearly biased, there is 

evidence that peoples’ inherent judgment abilities underpinned by individual knowledge 

and experience, can be significantly beneficial when applied in combination with model 

predictions in complex domains. This suggests there could be an evolutionary basis to 

human judgment processes which provides people with insights which cannot be 

captured effectively by statistical models in modern data environments.  

From the adaptive heuristics perspective for example, the strong tendency to 

assume linear relations makes sense when considering cognitive algorithms developed 

in accordance with sampling and summing natural frequencies in a pre-mathematical 

environment. It is possible therefore that people are more cognitively attuned to the 

variances which occur throughout natural environments and to data communicated in 

concrete terms, than to the variances in complex statistical environments which involve 

information in probabilistic and non-linear formats. Our evolutionary basis may 

therefore account for the inability to accurately process the base rate information which 

is conveyed in percentage formats, thus underpinning the robustness of the propensity 

to seek and perceive linear functional relations, thus viewing the world in absolute 

terms based on concrete objects. This also accounts for why multiplicative operations 

are particularly challenging and unintuitive to perform. Compared to arithmetic 

methods, the attentional resources involved in performing sequential processing far 

outweigh the cognitive effort involved in adding and subtracting whole values.        
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Assessing methods for optimizing human judgment in combination with statistical 

models is thus an effective use of resources, necessary to preserve the benefits of human 

intuition whilst safeguarding against the pitfalls of our ‘hard-wired’ linear cognitive 

propensities. For example, focusing on developing and expanding practical experience 

and domain knowledge, and applying people in the development, monitoring and 

controlling of systems in professional settings could help isolate and utilize the 

advantages of human intuition and inferences. This approach would optimize peoples’ 

ability to identify important wider, un-modelled factors, and develop a rich, tacit 

awareness of how those wider factors interact and connect in a real-world sense.   

In consumer settings, the harmful effects of the linear bias and optimistic 

behavioural propensities may be counteracted by re-framing percentages in concrete 

terms and disclosing the temporal effects of non-linear functional relations between 

stimulus and response variables. This is particularly relevant in domains such as finance 

and health, where disclosing future outcomes as a default, employing dynamic visual 

representations may facilitate the comprehension of ratios and proportional differences 

in terms of the size of an effect relative to a particular action or event for a given time 

horizon. Modelling the effects of judgments or behavioural modifications in terms of 

absolute size differences between icons, could therefore convey the non-linearity of the 

relation between variables without the need for multiplicative processing or 

extrapolation of exponential trends. The effect of visual data frames could be further 

optimized by utilizing highly salient metrics to communicate the meaning of the data in 

terms of real-world experiences. Thus, in combination, the use of relatable, ‘real-world’ 

frames and visual formats could help reduce the barriers to peoples’ intuitive judgment 

processes which are created by standard industry data formats in many highly important 

choice environments.  

In sum, the thorough explication of the relation between judgment processes and 

data frames and formats in this thesis contributes to our understanding of human 

rationality in terms of factors underlying the robustness of linear judgment biases across 

groups and domains. Whether forming predictions in varied statistical data, or making 

financial or consumer choices, human rationality is dependent on inherent processes 

which are hard-wired to utilize data in concrete terms and form linear inferences which 

optimize effort and efficiency. Rather than working to correct or align judgment 

processes with probabilistic models in complex data environments, the focus should be 
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on preserving the value and strengths of human intuition based on these innate cognitive 

processes and judgment abilities.  

Devising more effective mechanisms of data disclosure which facilitate judgment 

processes will thus enable us to optimize choice and enhance judgment by extracting the 

advantages of peoples’ knowledge and experience whilst minimizing the negative 

impacts of the linear bias in complex modern decision making domains. Despite 

cognitive limitations and individual differences, reducing the barriers to judgment 

processes will thus heighten our ability to reap the true benefits of human inferences 

and harness the insights and intuitions which exceed model capabilities in many real-

world situations.  



 

 

209 

References 

Agarwal, S., Chomsisengphet, S., Mahoney, N., & Stroebel, J. (2013). Regulating 

consumer financial products: evidence from credit cards (Working Paper No. 

19484). National Bureau of Economic Research. Retrieved from 

http://www.nber.org/papers/w19484 

Alvarez, G. A., & Franconeri, S. L. (2007). How many objects can you track? Evidence 

for a resource-limited attentive tracking mechanism. Journal of Vision, 7(13), 

14–14. http://doi.org/10.1167/7.13.14 

Ariely, D. (2009). Predictably irrational, revised and expanded edition: The hidden 

forces that shape our decisions. Harper Collins. 

Armstrong, J. S. (1980). The seer-sucker theory: The value of experts in forecasting. 

Technology Review, 82(7), 16-24.                                                              

Retrieved from http://papers.ssrn.com/abstract=648763 

Armstrong, J. S. (1985). Long Range Forecasting: From Crystal Ball to Computer. NY: 

Wiley. Retrieved from http://papers.ssrn.com/abstract=666990 

Armstrong, J. S. (1991). Prediction of consumer behaviour by experts and novices. 

Journal of Consumer Research, 18(2), 251-256. Retrieved from 

http://papers.ssrn.com/abstract=1232569 

Armstrong, J. S. (2008a). Global warming: Forecasts by scientists versus scientific 

forecasts (SSRN Scholarly Paper No. ID 1153120). Rochester, NY: Social 

Science Research Network. Retrieved from 

http://papers.ssrn.com/abstract=1153120 

Armstrong, J. S. (2008b). Prediction of consumer behavior by experts and novices 

(SSRN Scholarly Paper No. ID 1232569). Rochester, NY: Social Science 

Research Network.  

Armstrong, J. S., & Green, K. C. (2007). The ombudsman: Value of expertise for 

forecasting decisions in conflicts (SSRN Scholarly Paper No. ID 1657162). 

Rochester, NY: Social Science Research Network. Retrieved from 

http://papers.ssrn.com/abstract=1657162 

Armstrong, J. S., Green, K. C., & Graefe, A. (2015). Golden rule of forecasting: Be 



 

 

210 

conservative. Journal of Business Research, 68(8), 1717–1731. 

http://doi.org/10.1016/j.jbusres.2015.03.031 

Bateman, H., Dobrescu, L. I., Newell, B. R., Ortmann, A., & Thorp, S. (2016). As easy 

as pie: How retirement savers use prescribed investment disclosures. Journal of 

Economic Behavior & Organization, 121, 60–76. 

http://doi.org/10.1016/j.jebo.2015.10.020 

Bateman, I., Dent, S., Peters, E., Slovic, P., & Starmer, C. (2007). The affect heuristic 

and the attractiveness of simple gambles. Journal of Behavioral Decision 

Making, 20(4), 365–380. http://doi.org/10.1002/bdm.558 

Becker, O., Leitner, J., & Leopold-Wildburger, U. (2007). Heuristic modeling of 

expectation formation in a complex experimental information environment. 

European Journal of Operational Research, 176(2), 975–985. 

http://doi.org/10.1016/j.ejor.2005.09.003 

Becker, O., Leitner, J., & Leopold-Wildburger, U. (2008). Modeling expectation 

formation involving several sources of information. German Economic Review, 

9(1), 96–112. http://doi.org/10.1111/j.1468-0475.2008.00425.x 

Benartzi, S., & Thaler, R. H. (2002). How much is investor autonomy worth? The 

Journal of Finance, 57(4), 1593–1616. http://doi.org/10.1111/1540-6261.00472 

Bertrand, M., & Morse, A. (2011). Information disclosure, cognitive biases, and payday 

borrowing. The Journal of Finance, 66(6), 1865–1893. 

http://doi.org/10.1111/j.1540-6261.2011.01698.x 

Beshears, J., Choi, J. J., Laibson, D., & Madrian, B. C. (2009). How does simplified 

disclosure affect individuals’ mutual fund choices? (Working Paper No. 14859). 

National Bureau of Economic Research. Retrieved from 

http://www.nber.org/papers/w14859 

Bhargava, S., & Manoli, D. (2013). Why are benefits left on the table? Assessing the 

role of information, complexity, and stigma on take-up with an IRS field 

experiment. Amer. Econ. Rev. Retrieved from 

https://www.cmu.edu/dietrich/sds/docs/bhargava/Paper%203%20Bhargava%20

2013.pdf 

Bodie, Z., Kane, A., & Marcus, A. J. (2001). Investments, 5th Edition (5th edition). 

New York: McGraw-Hill Education. 



 

 

211 

Bramwell, R., West, H., & Salmon, P. (2006). Health professionals’ and service users’ 

interpretation of screening test results: Experimental study. BMJ, 333(7562), 

284. http://doi.org/10.1136/bmj.38884.663102.AE 

Brase, G. L. (2002). Which statistical formats facilitate what decisions? The perception 

and influence of different statistical information formats. Journal of Behavioral 

Decision Making, 15(5), 381–401. http://doi.org/10.1002/bdm.421 

Brase, G. L. (2013). Frequency interpretation of ambiguous statistical information 

facilitates Bayesian reasoning. Psychonomic Bulletin & Review, 15(2), 284–289. 

http://doi.org/10.3758/PBR.15.2.284 

Brehmer, B. (1974). Hypotheses about relations between scaled variables in the learning 

of probabilistic inference tasks. Organizational Behavior and Human 

Performance, 11(1), 1–27. http://doi.org/10.1016/0030-5073(74)90002-6 

Brehmer, B. (1978). Response consistency in probabilistic inference tasks. 

Organizational Behavior and Human Performance, 22(1), 103–115. 

http://doi.org/10.1016/0030-5073(78)90008-9 

Broadbent, D. E. (1958). The effects of noise on behaviour. Perception and 

communication (pp. 81–107). Elmsford, NY, US: Pergamon Press. 

Busemeyer, J. R., Byun, E., Delosh, E. L., & McDaniel, M. A. (1997a). Learning 

functional relations based on experience with input-output pairs by humans and 

artificial neural networks. In K. Lamberts D. R. Shanks (Ed.), Knowledge, 

concepts and categories (pp. 408–437). Cambridge, MA, US: The MIT Press. 

Busemeyer, J. R., Byun, E., Delosh, E. L., & McDaniel, M. A. (1997b). Learning 

functional relations based on experience with input-output pairs by humans and 

artificial neural networks. Knowledge, Concepts and Categories, 408–437. 

Buunk, A. P., & Gibbons, F. X. (2007). Social comparison: The end of a theory and the 

emergence of a field. Organizational Behavior and Human Decision Processes, 

102(1), 3–21. http://doi.org/10.1016/j.obhdp.2006.09.007 

Carroll, J. D. (1963). Functional learning: The learning of continuous functional 

mappings relating stimulus and response continua. ETS Research Bulletin 

Series, 1963(2), i–144. http://doi.org/10.1002/j.2333-8504.1963.tb00958.x 

Cesana-Arlotti, N., Téglás, E., & Bonatti, L. L. (2012). The probable and the possible at 



 

 

212 

12 months: Intuitive reasoning about the uncertain future. Advances in Child 

Development and Behavior, 43, 1–25. 

Chapman, G. B., & Liu, J. (2009). Numeracy, frequency, and Bayesian reasoning. 

Judgment and Decision Making, 4(1), 34–40. 

Chen, H., Marmorstein, H., Tsiros, M., & Rao, A. R. (2012). When more is less: The 

impact of base value neglect on consumer preferences for bonus packs over 

price discounts. Journal of Marketing, 76(4), 64–77. 

http://doi.org/10.1509/jm.10.0443 

Chen, H., & Rao, A. R. (2007). When two plus two is not equal to four: Errors in 

processing multiple percentage changes. Journal of Consumer Research, 34(3), 

327–340. http://doi.org/10.1086/518531 

Choi, J. J., Laibson, D., & Madrian, B. C. (2010). Why does the law of one price fail? 

An experiment on index mutual funds. Review of Financial Studies, 23(4), 

1405–1432. http://doi.org/10.1093/rfs/hhp097 

Clark, R. L., Maki, J. A., & Morrill, M. S. (2014). Can simple informational nudges 

increase employee participation in a 401(k) plan? Southern Economic Journal, 

80(3), 677–701. http://doi.org/10.4284/0038-4038-2012.199 

Cleveland, W. S., & McGill, R. (1984a). Graphical perception: Theory, 

experimentation, and application to the development of graphical methods. 

Journal of the American Statistical Association, 79(387), 531–554. 

http://doi.org/10.1080/01621459.1984.10478080 

Cleveland, W. S., & McGill, R. (1984b). The many faces of a scatterplot. Journal of the 

American Statistical Association, 79(388), 807–822. 

http://doi.org/10.1080/01621459.1984.10477098 

Cleveland, W. S., & McGill, R. (1986). An experiment in graphical perception. 

International Journal of Man-Machine Studies, 25(5), 491–500. 

http://doi.org/10.1016/S0020-7373(86)80019-0 

Cokely, E. T., Galesic, M., Schulz, E., Ghazal, S., & Garcia-Retamero, R. (2012). 

Measuring risk literacy: The Berlin numeracy test. Judgment and Decision 

Making, 7(1), 25. 

Collopy, F., & Armstrong, J. S. (1992). Rule-based forecasting: Development and 



 

 

213 

validation of an expert systems approach to combining time series 

extrapolations. Management Science, 38(10), 1394–1414. 

Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all? 

Rethinking some conclusions from the literature on judgment under uncertainty. 

Cognition, 58(1), 1–73. http://doi.org/10.1016/0010-0277(95)00664-8 

Costello, F., & Watts, P. (2014). Surprisingly rational: Probability theory plus noise 

explains biases in judgment. Psychological Review, 121(3), 463–480. 

http://doi.org/10.1037/a0037010 

Cousin, E. (2015, December 3). Forecast-based finance in humanitarian aid. The 

Economist. Retrieved from 

http://www.economist.com/news/international/21679547-executive-director-

world-food-programme-explains-how-spending-money-ahead-disaster-can 

Daston, L. (1988). Classical probability in the enlightenment. Princeton, JN: Princeton 

University Press. 

DeLosh, E. L., Busemeyer, J. R., & McDaniel, M. A. (1997a). Extrapolation: The sine 

qua non for abstraction in function learning. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 23(4), 968. 

DeLosh, E. L., Busemeyer, J. R., & McDaniel, M. A. (1997b). Extrapolation: The sine 

qua non for abstraction in function learning. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 23(4), 968–986. 

http://doi.org/10.1037/0278-7393.23.4.968 

Denes-Raj, V., & Epstein, S. (1994). Conflict between intuitive and rational processing: 

When people behave against their better judgment. Journal of Personality and 

Social Psychology, 66(5), 819–829. http://doi.org/10.1037/0022-3514.66.5.819 

Dux, P. E., Ivanoff, J., Asplund, C. L., & Marois, R. (2006). Isolation of a central 

bottleneck of information processing with time-resolved fMRI. Neuron, 52(6), 

1109–1120. http://doi.org/10.1016/j.neuron.2006.11.009 

Edmundson, B., Lawrence, M., & O’Connor, M. (1988). The use of non-time series 

information in sales forecasting: A case study. Journal of Forecasting, 7(3), 

201–211. http://doi.org/10.1002/for.3980070305 

Einhorn, H. J., & Hogarth, R. M. (1975). Unit weighting schemes for decision making. 



 

 

214 

Organizational Behavior and Human Performance, 13(2), 171–192. 

http://doi.org/10.1016/0030-5073(75)90044-6 

Eisenstein, E. M., & Hoch, S. J. (2005). Intuitive compounding: Framing, temporal 

perspective, and expertise. Manuscript, Temple University. Retrieved from 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.321.2641&rep=rep1&

type=pdf 

Elliman, D. (2006). Pattern recognition and financial time-series. Intelligent Systems in 

Accounting, Finance & Management, 14(3), 99–115. 

http://doi.org/10.1002/isaf.279 

Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., 

… Kramer, A. F. (2007). Training-induced functional activation changes in 

dual-task processing: An fMRI study. Cerebral Cortex, 17(1), 192–204. 

http://doi.org/10.1093/cercor/bhj137 

Erta, K., Iscenko, Z., Hunt, S., & Brambley, W. (2013). Applying behavioural 

economics at the Financial Conduct Authority. Retrieved from 

http://oro.open.ac.uk/42192/1/occasional-paper-1.pdf 

Fernandes, D., Lynch, J. G., & Netemeyer, R. G. (2014). Financial literacy, financial 

education, and downstream financial behaviors. Management Science, 60(8), 

1861–1883. http://doi.org/10.1287/mnsc.2013.1849 

Fiedler, K. (1988). The dependence of the conjunction fallacy on subtle linguistic 

factors. Psychological Research, 50(2), 123–129. 

http://doi.org/10.1007/BF00309212 

Fiedler, K. (2011). Social communication. Psychology Press. 

Fiedler, K., Kareev, Y., Avrahami, J., Beier, S., Kutzner, F., & Hütter, M. (2015). 

Anomalies in the detection of change: When changes in sample size are 

mistaken for changes in proportions. Memory & Cognition, 44(1), 143–161. 

http://doi.org/10.3758/s13421-015-0537-z 

Fischer, M. H. (2012). A hierarchical view of grounded, embodied, and situated 

numerical cognition. Cognitive Processing, 13(1), 161–164. 

http://doi.org/10.1007/s10339-012-0477-5 

Fisch, J. E., & Wilkinson-­‐Ryan, T. (2014). Why do retail investors make costly 



 

 

215 

mistakes? An experiment on mutual fund choice (SSRN Scholarly Paper No. ID 

2086766). Rochester, NY: Social Science Research Network. Retrieved from 

http://papers.ssrn.com/abstract=2086766 

Galesic M, & Garcia-Retamero R. (2010). Statistical numeracy for health: A cross-

cultural comparison with probabilistic national samples. Archives of Internal 

Medicine, 170(5), 462–468. http://doi.org/10.1001/archinternmed.2009.481 

Galesic, M., Garcia-Retamero, R., & Gigerenzer, G. (2009). Using icon arrays to 

communicate medical risks: Overcoming low numeracy. Health Psychology, 

28(2), 210–216. http://doi.org/10.1037/a0014474 

Garcia-Retamero, R., & Cokely, E. T. (2013). Communicating health risks with visual 

aids. Current Directions in Psychological Science, 22(5), 392–399. 

http://doi.org/10.1177/0963721413491570 

Garcia-Retamero, R., & Galesic, M. (2009). Communicating treatment risk reduction to 

people with low numeracy skills: A cross-cultural comparison. American 

Journal of Public Health, 99(12), 2196–2202. 

http://doi.org/10.2105/AJPH.2009.160234 

Garcia-Retamero, R., & Galesic, M. (2010). How to reduce the effect of framing on 

messages about health. Journal of General Internal Medicine, 25(12), 1323–

1329. http://doi.org/10.1007/s11606-010-1484-9 

Garcia-Retamero, R., Wicki, B., Cokely, E. T., & Hanson, B. (2014). Factors predicting 

surgeons’ preferred and actual roles in interactions with their patients. Health 

Psychology, 33(8), 920–928. http://doi.org/10.1037/hea0000061 

Gardner, E. S., & McKenzie, E. (1985). Forecasting trends in time series. Management 

Science, 31(10), 1237–1246. 

Gardner, P. H., McMillan, B., Raynor, D. K., Woolf, E., & Knapp, P. (2011). The effect 

of numeracy on the comprehension of information about medicines in users of a 

patient information website. Patient Education and Counseling, 83(3), 398–403. 

http://doi.org/10.1016/j.pec.2011.05.006 

Gattis, M. (2003). Spatial schemas and abstract thought. MIT Press. 

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the 

bias/variance dilemma. Neural Computation, 4(1), 1–58. 



 

 

216 

Gigerenzer, G. (1991). How to make cognitive illusions disappear: Beyond ‘heuristics 

and biases’. European Review of Social Psychology, 2(1), 83–115. 

http://doi.org/10.1080/14792779143000033 

Gigerenzer, G. (1994). Why the distinction between single-event probabilities and 

frequencies is important for psychology (and vice versa) [Article]. Retrieved 27 

May 2016, from https://www.mpib-

berlin.mpg.de/volltexte/institut/dok/full/gg/ggwtdsp__/ggwtdsp__.html 

Gigerenzer, G. (1996). On narrow norms and vague heuristics: A reply to Kahneman 

and Tversky. Psychological Review, 103(3), 592–596. 

http://doi.org/10.1037/0033-295X.103.3.592 

Gigerenzer, G. (2002). Calculated risks: How to know when numbers deceive you (1st 

Edition). New York: Simon & Schuster. 

Gigerenzer, G. (2008). Why heuristics work. Perspectives on Psychological Science, 

3(1), 20–29. http://doi.org/10.1111/j.1745-6916.2008.00058.x 

Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of 

Psychology, 62(1), 451–482. http://doi.org/10.1146/annurev-psych-120709-

145346 

Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without 

instruction: Frequency formats. Psychological Review, 102(4), 684–704. 

http://doi.org/10.1037/0033-295X.102.4.684 

Gigerenzer, G., & Hoffrage, U. (1999). Overcoming difficulties in Bayesian reasoning: 

A reply to Lewis and Keren (1999) and Mellers and McGraw (1999). 

Psychological Review, 106(2), 425–430. http://doi.org/10.1037/0033-

295X.106.2.425 

Gigerenzer, G., & Todd, P. M. (1999). Fast and frugal heuristics: The adaptive toolbox. 

Simple heuristics that make us smart (pp. 3–34). New York, NY, US: Oxford 

University Press. 

Goodwin, P., & Fildes, R. (1999). Judgmental forecasts of time series affected by 

special events: does providing a statistical forecast improve accuracy? Journal 

of Behavioral Decision Making, 12(1), 37–53. 

http://doi.org/10.1002/(SICI)1099-0771(199903)12:1<37::AID-

BDM319>3.0.CO;2-8 



 

 

217 

Green, E. (2014, July 23). Why do Americans stink at math? The New York Times. 

Retrieved from http://www.nytimes.com/2014/07/27/magazine/why-do-

americans-stink-at-math.html 

Green, K. C., & Armstrong, J. S. (2007). Global warming: Forecasts by scientists versus 

scientific forecasts. Energy & Environment, 18(7), 997–1021. 

http://doi.org/10.1260/095830507782616887 

Harkin, B., Webb, T. L., Chang, B. P., Prestwich, A., Conner, M., Kellar, I., Sheeran, P. 

(2016). Does monitoring goal progress promote goal attainment? A meta-

analysis of the experimental evidence. Psychological Bulletin, 142(2), 198. 

Harvey, N. (1995). Why are judgments less consistent in less predictable task 

situations? Organizational Behavior and Human Decision Processes, 63(3), 

247–263. http://doi.org/10.1006/obhd.1995.1077 

Harvey, N., Bolger, F., & McClelland, A. (1994). On the nature of expectations. British 

Journal of Psychology, 85(2), 203–229. http://doi.org/10.1111/j.2044-

8295.1994.tb02519.x 

Harvey, N., & Reimers, S. (2013). Trend damping: Under-adjustment, experimental 

artifact, or adaptation to features of the natural environment? Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 39(2), 589–607. 

http://doi.org/10.1037/a0029179 

Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information: 

The case of frequency of occurrence. American Psychologist, 39(12), 1372–

1388. http://doi.org/10.1037/0003-066X.39.12.1372 

Hastings, J. S., & Tejeda-Ashton, L. (2008). Financial literacy, information, and 

demand elasticity: Survey and experimental evidence from Mexico (Working 

Paper No. 14538). National Bureau of Economic Research. Retrieved from 

http://www.nber.org/papers/w14538 

Hausman, J. A. (2012). Contingent valuation: A critical assessment. Elsevier. 

Haws, K. L., Bearden, W. O., & Nenkov, G. Y. (2011). Consumer spending self-control 

effectiveness and outcome elaboration prompts. Journal of the Academy of 

Marketing Science, 40(5), 695–710. http://doi.org/10.1007/s11747-011-0249-2 

Hilbert, M. (2012). Toward a synthesis of cognitive biases: How noisy information 



 

 

218 

processing can bias human decision making. Psychological Bulletin, 138(2), 

211–237. http://doi.org/10.1037/a0025940 

Hoch, S. J., & Schkade, D. A. (1996). A psychological approach to decision support 

systems. Management Science, 42(1), 51–64. 

Hoffrage, U., & Gigerenzer, G. (1998). Using natural frequencies to improve diagnostic 

inferences. Academic Medicine, 73(5), 538–540. 

http://doi.org/10.1097/00001888-199805000-00024 

Hoffrage, U., Krauss, S., Martignon, L., & Gigerenzer, G. (2015). Natural frequencies 

improve Bayesian reasoning in simple and complex inference tasks. Frontiers in 

Psychology, 6. http://doi.org/10.3389/fpsyg.2015.01473 

Hoffrage, U., Lindsey, S., Hertwig, R., & Gigerenzer, G. (2000). Communicating 

statistical information. Science, 290(5500), 2261–2262. 

http://edoc.unibas.ch/dok/A5265669 

Hohle, S. M., & Teigen, K. H. (2015). Forecasting forecasts: the trend effect. Judgment 

and Decision Making, 10(5), 416–429. 

Hsee, C. K. (2006). Less is better: when low-value options are valued more highly than 

high-value options (SSRN Scholarly Paper No. ID 930083). Rochester, NY: 

Social Science Research Network. Retrieved from 

http://papers.ssrn.com/abstract=930083 

Hsee, C. K., Loewenstein, G. F., Blount, S., & Bazerman, M. H. (1999). Preference 

reversals between joint and separate evaluations of options: A review and 

theoretical analysis. Psychological Bulletin, 125(5), 576–590. 

http://doi.org/10.1037/0033-2909.125.5.576 

Hsee, C. K., & Zhang, J. (2010). General evaluability theory. Perspectives on 

Psychological Science, 5(4), 343–355. 

http://doi.org/10.1177/1745691610374586 

Hung, A., Heinberg, A., & Yoong, J. (2010). Do risk disclosures affect investment 

choice? (SSRN Scholarly Paper No. ID 1688038). Rochester, NY: Social 

Science Research Network. Retrieved from 

http://papers.ssrn.com/abstract=1688038 

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast 



 

 

219 

accuracy. International Journal of Forecasting, 22(4), 679–688. 

http://doi.org/10.1016/j.ijforecast.2006.03.001 

Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention. 

Cognitive Psychology, 43(3), 171–216. http://doi.org/10.1006/cogp.2001.0755 

Iyengar, S. S., Huberman, G., & Jiang, W. (2004). How much choice is too much? 

Contributions to 401 (k) retirement plans. Pension Design and Structure: New 

Lessons from Behavioral Finance, 83–95. 

Iyengar, S. S., & Lepper, M. R. (2000). When choice is demotivating: Can one desire 

too much of a good thing? Journal of Personality and Social Psychology, 79(6), 

995–1006. http://doi.org/10.1037/0022-3514.79.6.995 

Johnson, E. D., & Tubau, E. (2015). Comprehension and computation in Bayesian 

problem solving. Frontiers in Psychology, 6. 

http://doi.org/10.3389/fpsyg.2015.00938 

Johnson, E. J., & Goldstein, D. G. (2003). Do defaults save lives? (SSRN Scholarly 

Paper No. ID 1324774). Rochester, NY: Social Science Research Network. 

Retrieved from http://papers.ssrn.com/abstract=1324774 

Joireman, J., Kees, J., & Sprott, D. (2010). Concern with immediate consequences 

magnifies the impact of compulsive buying tendencies on college students’ 

credit card debt. Journal of Consumer Affairs, 44(1), 155–178. 

http://doi.org/10.1111/j.1745-6606.2010.01161.x 

Joireman, J., Sprott, D. E., & Spangenberg, E. R. (2005). Fiscal responsibility and the 

consideration of future consequences. Personality and Individual Differences, 

39(6), 1159–1168. http://doi.org/10.1016/j.paid.2005.05.002 

Juslin, P. (2015). Controlled information integration and Bayesian inference. Frontiers 

in Psychology, 6. http://doi.org/10.3389/fpsyg.2015.00070 

Juslin, P., Karlsson, L., & Olsson, H. (2008). Information integration in multiple cue 

judgment: A division of labor hypothesis. Cognition, 106(1), 259–298. 

http://doi.org/10.1016/j.cognition.2007.02.003 

Juslin, P., Lindskog, M., & Mayerhofer, B. (2015). Is there something special with 

probabilities? – Insight vs. computational ability in multiple risk combination. 

Cognition, 136, 282–303. http://doi.org/10.1016/j.cognition.2014.11.041 



 

 

220 

Kahneman, D. (2011). Thinking, fast and slow. Macmillan. 

Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological 

Review, 80(4), 237–251. http://doi.org/10.1037/h0034747 

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under 

risk. Econometrica, 47(2), 263–291. http://doi.org/10.2307/1914185 

Kalish, M. L. (2013). Learning and extrapolating a periodic function. Memory & 

Cognition, 41(6), 886–896. http://doi.org/10.3758/s13421-013-0306-9 

Kalish, M. L., Lewandowsky, S., & Kruschke, J. K. (2004). Population of linear 

experts: Knowledge partitioning and function learning. Psychological Review, 

111(4), 1072–1099. http://doi.org/10.1037/0033-295X.111.4.1072 

Kasa, K. (1992). Common stochastic trends in international stock markets. Journal of 

Monetary Economics, 29(1), 95–124. http://doi.org/10.1016/0304-

3932(92)90025-W 

Keller, C., & Siegrist, M. (2009). Effect of risk communication formats on risk 

perception depending on numeracy. Medical Decision Making. 

http://doi.org/10.1177/0272989X09333122 

Kheifets, A., & Gallistel, C. R. (2012). Mice take calculated risks. Proceedings of the 

National Academy of Sciences, 109(22), 8776–8779. 

http://doi.org/10.1073/pnas.1205131109 

Koehler, D. J., & Harvey, N. (2008). Blackwell handbook of judgment and decision 

making. John Wiley & Sons. 

Koehler, J. J. (1996). On conveying the probative value of DNA evidence: Frequencies, 

likelihood ratios, and error rates. University of Colorado Law Review, 67, 859. 

Koehler, J. J., & Mercer, M. (2009). Selection neglect in mutual fund advertisements. 

Management Science, 55(7), 1107–1121. 

Kogut, T., & Ritov, I. (2005). The singularity effect of identified victims in separate and 

joint evaluations. Organizational Behavior and Human Decision Processes, 

97(2), 106–116. http://doi.org/10.1016/j.obhdp.2005.02.003 

Koh, K., & Meyer, D. E. (1991). Function learning: Induction of continuous stimulus-

response relations. Journal of Experimental Psychology: Learning, Memory, 



 

 

221 

and Cognition, 17(5), 811–836. http://doi.org/10.1037/0278-7393.17.5.811 

Krauss, S., Martignon, L., Hoffrage, U, & Gigerenzer, G. (2002). Bayesian reasoning 

and natural frequencies: A generalization to complex situations. Manuscript 

Submitted for Publication. 

Kruger, J., & Vargas, P. (2008). Consumer confusion of percent differences. Journal of 

Consumer Psychology, 18(1), 49–61. http://doi.org/10.1016/j.jcps.2007.10.009 

Kurzenhäuser, S., & Hoffrage, U. (2002). Teaching Bayesian reasoning: An evaluation 

of a classroom tutorial for medical students. Medical Teacher, 24(5), 516–521. 

http://doi.org/10.1080/0142159021000012540 

Laibson, D. (1997). Golden eggs and hyperbolic discounting. The Quarterly Journal of 

Economics, 112(2), 443–477. 

Lakoff, G., & Johnson, M. (1980). Metaphors we live by. University of Chicago Press. 

Larrick, R. P., & Soll, J. B. (2008). The MPG illusion. Science, 320(5883), 1593–1594. 

http://doi.org/10.1126/science.1154983 

Lavie, N., & Robertson, I. H. (2001). The role of perceptual load in neglect: Rejection 

of ipsilesional distractors is facilitated with higher central load. Journal of 

Cognitive Neuroscience, 13(7), 867–876. 

http://doi.org/10.1162/089892901753165791 

Lawrence, M., Goodwin, P., O’Connor, M., & Önkal, D. (2006). Judgmental 

forecasting: A review of progress over the last 25 years. International Journal of 

Forecasting, 22(3), 493–518. http://doi.org/10.1016/j.ijforecast.2006.03.007 

Lawrence, M., & O’Connor, M. (1993). Scale, variability, and the calibration of 

judgmental prediction intervals. Organizational Behavior and Human Decision 

Processes, 56(3), 441–458. http://doi.org/10.1006/obhd.1993.1063 

Lawrence, M., O’Connor, M., & Edmundson, B. (2000). A field study of sales 

forecasting accuracy and processes. European Journal of Operational Research, 

122(1), 151–160. http://doi.org/10.1016/S0377-2217(99)00085-5 

Lee, J., & Frank, J. (1992). How quantity judgment changes as the number of cues 

increases: An analytical framework and review. Psychological Bulletin, 112(2), 

363–377. http://doi.org/10.1037/0033-2909.112.2.363 



 

 

222 

Lee, J., & Hogarth, J. M. (1999). The price of money: Consumers’ understanding of 

APRs and contract interest rates. Journal of Public Policy & Marketing, 18(1), 

66–76. 

Lim, J. S., & O’Connor, M. (1996). Judgmental forecasting with time series and causal 

information. International Journal of Forecasting, 12(1), 139–153. 

http://doi.org/10.1016/0169-2070(95)00635-4 

Lindsey, S., Hertwig, R., & Gigerenzer, G. (2003). Communicating statistical DNA 

evidence. Jurimetrics, 43(2), 147–163. 

Lipkus, I. M., Samsa, G., & Rimer, B. K. (2001). General performance on a numeracy 

scale among highly educated samples. Medical Decision Making, 21(1), 37–44. 

http://doi.org/10.1177/0272989X0102100105 

Lipshitz, R. (1993). Converging themes in the study of decision making in realistic 

settings. In G. A. Klein, J. Orasanu, R. Calderwood, & C. E. Zsambok (Eds.), 

Decision making in action: Models and methods (pp. 103–137). Westport, CT, 

US: Ablex Publishing. 

Lipshitz, R., Klein, G., Orasanu, J., & Salas, E. (2001). Taking stock of naturalistic 

decision making. Journal of Behavioral Decision Making, 14(5), 331–352. 

http://doi.org/10.1002/bdm.381 

List, J. A. (2002). Preference reversals of a different kind: The ‘more is less’ 

phenomenon. The American Economic Review, 92(5), 1636–1643. 

Loewenstein, G., Asch, D. A., Friedman, J. Y., Melichar, L. A., & Volpp, K. G. (2012). 

Can behavioural economics make us healthier? BMJ (Clinical Research Ed.), 

344, e3482. 

Loewenstein, G., Read, D., & Baumeister, R. F. (2003). Time and decision: Economic 

and psychological perspectives of intertemporal choice. Russell Sage 

Foundation. 

Loewenstein, G., Sunstein, C. R., & Golman, R. (2014). Disclosure: Psychology 

changes everything. Annual Review of Economics, 6(1), 391–419. 

http://doi.org/10.1146/annurev-economics-080213-041341 

Lopes, L. L., & Oden, G. C. (1987). Distinguishing between random and nonrandom 

events. Journal of Experimental Psychology: Learning, Memory, and Cognition, 



 

 

223 

13(3), 392–400. http://doi.org/10.1037/0278-7393.13.3.392 

Lusardi, A., & Mitchell, O. S. (2011). Financial literacy around the world: An 

overview. Journal of Pension Economics and Finance, 10(04), 497–508. 

http://doi.org/10.1017/S1474747211000448 

Lynch, P. (2006). The emergence of numerical weather prediction: Richardson’s 

dream. Cambridge University Press. 

Lynch, P. (2008). The origins of computer weather prediction and climate modeling. 

Journal of Computational Physics, 227(7), 3431–3444. 

http://doi.org/10.1016/j.jcp.2007.02.034 

Makridakis, S., & Taleb, N. (2009). Living in a world of low levels of predictability. 

International Journal of Forecasting, 25(4), 840–844. 

http://doi.org/10.1016/j.ijforecast.2009.05.008 

Mcdaniel, M. A., & Busemeyer, J. R. (2005). The conceptual basis of function learning 

and extrapolation: Comparison of rule-based and associative-based models. 

Psychonomic Bulletin & Review, 12(1), 24–42. 

McDaniel, M. A., Dimperio, E., Griego, J. A., & Busemeyer, J. R. (2009). Predicting 

transfer performance: A comparison of competing function learning models. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 

173–195. http://doi.org/10.1037/a0013982 

Mckenzie, C. R., & Liersch, M. J. (2011). Misunderstanding savings growth: 

Implications for retirement savings behavior. Journal of Marketing Research, 

48(SPL), S1–S13. http://doi.org/10.1509/jmkr.48.SPL.S1 

McKenzie, C. R. M., Liersch, M. J., & Finkelstein, S. R. (2006). Recommendations 

implicit in policy defaults. Psychological Science, 17(5), 414–420. 

http://doi.org/10.1111/j.1467-9280.2006.01721.x 

Mecklinger, A., Weber, K., Gunter, T. ., & Engle, R. . (2003). Dissociable brain 

mechanisms for inhibitory control: Effects of interference content and working 

memory capacity. Cognitive Brain Research, 18(1), 26–38. 

http://doi.org/10.1016/j.cogbrainres.2003.08.008 

Mercer, M., Palmiter, A. R., & Taha, A. E. (2010). Worthless warnings? Testing the 

effectiveness of disclaimers in mutual fund advertisements. Journal of Empirical 



 

 

224 

Legal Studies, 7(3), 429–459. http://doi.org/10.1111/j.1740-1461.2010.01184.x 

Mitchell, D. J., & Cusack, R. (2008). Flexible, capacity-limited activity of posterior 

parietal cortex in perceptual as well as visual short-term memory tasks. Cerebral 

Cortex, 18(8), 1788–1798. http://doi.org/10.1093/cercor/bhm205 

Mullainathan, S., Noeth, M., & Schoar, A. (2012). The market for financial advice: An 

audit study (Working Paper No. 17929). National Bureau of Economic 

Research. Retrieved from http://www.nber.org/papers/w17929 

Mussweiler, T., Strack, F., & Pfeiffer, T. (2000). Overcoming the inevitable anchoring 

effect: Considering the opposite compensates for selective accessibility. 

Personality and Social Psychology Bulletin, 26(9), 1142–1150. 

http://doi.org/10.1177/01461672002611010 

Navarro-Martinez, D., Salisbury, L. C., Lemon, K. N., Stewart, N., Matthews, W. J., & 

Harris, A. J. (2011). Minimum required payment and supplemental information 

disclosure effects on consumer debt repayment decisions. Journal of Marketing 

Research, 48(SPL), S60–S77. http://doi.org/10.1509/jmkr.48.SPL.S60 

Newall, P. W. S. (2016a). Downside financial risk is misunderstood. In Preparation. 

Newall, P. W. S. (2016b). Psychologically-informed investment disclosure. In 

Preparation. 

Newall, P. W. S., & Love, B. C. (2015). Nudging investors big and small toward better 

decisions. Decision, 2(4), 319–326. http://doi.org/10.1037/dec0000036 

Newell, R. G., & Siikamäki, J. V. (2013). Nudging energy efficiency behavior: The role 

of information labels (Working Paper No. 19224). National Bureau of Economic 

Research. Retrieved from http://www.nber.org/papers/w19224 

Newman, G. E., & Scholl, B. J. (2012). Bar graphs depicting averages are perceptually 

misinterpreted: The within-the-bar bias. Psychonomic Bulletin & Review, 19(4), 

601–607. http://doi.org/10.3758/s13423-012-0247-5 

Harvey, N., Ewart, T., & West, R. (1997). Effects of data noise on statistical judgement. 

Thinking & Reasoning, 3(2), 111–132. http://doi.org/10.1080/135467897394383 

Okan, Y., Garcia-Retamero, R., Cokely, E. T., & Maldonado, A. (2012). Individual 

differences in graph literacy: Overcoming denominator neglect in risk 

comprehension. Journal of Behavioral Decision Making, 25(4), 390–401. 



 

 

225 

http://doi.org/10.1002/bdm.751 

Okan, Y., Garcia-Retamero, R., Cokely, E. T., & Maldonado, A. (2015). Improving risk 

understanding across ability levels: Encouraging active processing with dynamic 

icon arrays. Journal of Experimental Psychology: Applied, 21(2), 178–194. 

http://doi.org/10.1037/xap0000045 

Önkal, D., & Muradoǧlu, G. (1994). Financial modelling evaluating probabilistic 

forecasts of stock prices in a developing stock market. European Journal of 

Operational Research, 74(2), 350–358. http://doi.org/10.1016/0377-

2217(94)90102-3 

Oskarsson, A. T., Van Boven, L., McClelland, G. H., & Hastie, R. (2009). What’s next? 

Judging sequences of binary events. Psychological Bulletin, 135(2), 262–285. 

http://doi.org/10.1037/a0014821 

Oxlade, A. (2016, April 15). Latest interest rates predictions: First rise in ‘December 

2019’. The Telegraph. Retrieved from http://www.telegraph.co.uk/personal-

banking/savings/latest-interest-rates-predictions-first-rise-in-august-2019/ 

Love, B. C., & Parker, K. N. (2016). Formats for success: Numerical frames with 

powerful effects in professional retail forecasting. In Preparation. 

Peters, E. (2012). Beyond comprehension: The role of numeracy in judgments and 

decisions. Current Directions in Psychological Science, 21(1), 31–35. 

http://doi.org/10.1177/0963721411429960 

Petrova, D., Garcia-Retamero, R., & Cokely, E. T. (2015). Understanding the harms and 

benefits of cancer screening: A model of factors that shape informed decision 

making. Medical Decision Making, 35(7), 847–858. 

http://doi.org/10.1177/0272989X15587676 

Puri, M., & Robinson, D. T. (2007). Optimism and economic choice. Journal of 

Financial Economics, 86(1), 71–99. http://doi.org/10.1016/j.jfineco.2006.09.003 

Remus, W., O’Connor, M., & Griggs, K. (1995). Does reliable information improve the 

accuracy of judgmental forecasts? International Journal of Forecasting, 11(2), 

285–293. http://doi.org/10.1016/0169-2070(94)00578-Z 

Reyna, V. F., & Brainerd, C. J. (2008). Numeracy, ratio bias, and denominator neglect 

in judgments of risk and probability. Learning and Individual Differences, 



 

 

226 

18(1), 89–107. http://doi.org/10.1016/j.lindif.2007.03.011 

Roller, C. (2011). The impact number formats have on judgment and decision making. 

Retrieved from http://www.uxmatters.com/mt/archives/2011/06/the-impact-

number-formats-have-on-judgment-and-decision-making.php 

Salisbury, L. C. (2013). Minimum payment warnings and information disclosure effects 

on consumer debt repayment decisions. Journal of Public Policy & Marketing, 

33(1), 49–64. http://doi.org/10.1509/jppm.11.116 

Sanders, N. R., & Ritzman, L. P. (2001). Judgmental adjustment of statistical forecasts. 

In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for researchers 

and practitioners (pp. 405–416). Boston, MA: Springer US. Retrieved from 

http://dx.doi.org/10.1007/978-0-306-47630-3_18 

Scalf, P. E., Banich, M. T., Kramer, A. F., Narechania, K., & Simon, C. D. (2007). 

Double take: Parallel processing by the cerebral hemispheres reduces attentional 

blink. Journal of Experimental Psychology: Human Perception and 

Performance, 33(2), 298–329. http://doi.org/10.1037/0096-1523.33.2.298 

Scalf, P. E., Dux, P. E., & Marois, R. (2011). Working memory encoding delays top–

down attention to visual cortex. Journal of Cognitive Neuroscience, 23(9), 

2593–2604. http://doi.org/10.1162/jocn.2011.21621 

Schapira, M. M., Nattinger, A. B., & McAuliffe, T. L. (2006). The influence of graphic 

format on breast cancer risk communication. Journal of Health Communication, 

11(6), 569–582. http://doi.org/10.1080/10810730600829916 

Schapira, M. M., Nattinger, A. B., & McHorney, C. A. (2001). Frequency or 

probability? A qualitative study of risk communication formats used in health 

care. Medical Decision Making, 21(6), 459–467. 

http://doi.org/10.1177/0272989X0102100604 

Scheier, M. F., & Carver, C. S. (1985). Optimism, coping, and health: Assessment and 

implications of generalized outcome expectancies. Health Psychology, 4(3), 

219–247. http://doi.org/10.1037/0278-6133.4.3.219 

Scheier, M. F., Carver, C. S., & Bridges, M. W. (1994). Distinguishing optimism from 

neuroticism (and trait anxiety, self-mastery, and self-esteem): A reevaluation of 

the Life Orientation Test. Journal of Personality and Social Psychology, 67(6), 

1063–1078. http://doi.org/10.1037/0022-3514.67.6.1063 



 

 

227 

Schwartz, L. M., Woloshin, S., Black, W. C., & Welch, H. G. (1997). The role of 

numeracy in understanding the benefit of screening mammography. Annals of 

Internal Medicine, 127(11), 966–972. http://doi.org/10.7326/0003-4819-127-11-

199712010-00003 

Sedlmeier, P., & Gigerenzer, G. (2001). Teaching Bayesian reasoning in less than two 

hours. Journal of Experimental Psychology: General, 130(3), 380–400. 

http://doi.org/10.1037/0096-3445.130.3.380 

Seifert, M., & Hadida, A. L. (2013). On the relative importance of linear model and 

human judge(s) in combined forecasting. Organizational Behavior and Human 

Decision Processes, 120(1), 24–36. http://doi.org/10.1016/j.obhdp.2012.08.003 

Seifert, M., Siemsen, E., Hadida, A. L., & Eisingerich, A. B. (2015). Effective 

judgmental forecasting in the context of fashion products. Journal of Operations 

Management, 36, 33–45. http://doi.org/10.1016/j.jom.2015.02.001 

Shafir, E., & LeBoeuf, R. A. (2002). Rationality. Annual Review of Psychology, 53(1), 

491–517. http://doi.org/10.1146/annurev.psych.53.100901.135213 

Should I be taking statins? (2014, November 26). National Institute for Health and 

Care Excellence. Retrieved from https://www.nice.org.uk/news/blog/should-i-

be-taking-statins 

Silver, N. (2012). The signal and the noise: The art and science of prediction.     

Penguin UK. 

Simkin, D., & Hastie, R. (1987). An information-processing analysis of graph 

perception. Journal of the American Statistical Association, 82(398), 454–465. 

http://doi.org/10.1080/01621459.1987.10478448 

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of 

Economics, 69(1), 99–118. http://doi.org/10.2307/1884852 

Sloman, S. A., Over, D., Slovak, L., & Stibel, J. M. (2003). Frequency illusions and 

other fallacies. Organizational Behavior and Human Decision Processes, 91(2), 

296–309. http://doi.org/10.1016/S0749-5978(03)00021-9 

Slovic, P., Finucane, M., Peters, E., & MacGregor, D. G. (2002). Rational actors or 

rational fools: Implications of the affect heuristic for behavioral economics. The 

Journal of Socio-Economics, 31(4), 329–342. http://doi.org/10.1016/S1053-



 

 

228 

5357(02)00174-9 

Slovic, P., Monahan, J., & MacGregor, D. G. (2000). Violence risk assessment and risk 

communication: The effects of using actual cases, providing instruction, and 

employing probability versus frequency formats. Law and Human Behavior, 

24(3), 271–296. http://doi.org/10.1023/A:1005595519944 

Soll, J. B., Keeney, R. L., & Larrick, R. P. (2013). Consumer misunderstanding of 

credit card use, payments, and debt: Causes and solutions. Journal of Public 

Policy & Marketing, 32(1), 66–81. http://doi.org/10.1509/jppm.11.061 

Stango, V., & Zinman, J. (2009). Exponential growth bias and household finance. The 

Journal of Finance, 64(6), 2807–2849. 

Stevens, S. S., & Greenbaum, H. B. (1966). Regression effect in psychophysical 

judgment. Perception & Psychophysics, 1(12), 439–446. 

http://doi.org/10.3758/BF03215821 

Stewart, N. (2009). The cost of anchoring on credit-card minimum repayments. 

Psychological Science, 20(1), 39–41. http://doi.org/10.1111/j.1467-

9280.2008.02255.x 

Strathman, A., Gleicher, F., Boninger, D. S., & Scott, C. (1994). The consideration of 

future consequences: Weighing immediate and distant outcomes of behavior. 

Journal of Personality and Social Psychology, 66(4), 742–752. 

http://doi.org/10.1037/0022-3514.66.4.742 

Strotz, R. H. (1955). Myopia and inconsistency in dynamic utility maximization. The 

Review of Economic Studies, 23(3), 165–180. http://doi.org/10.2307/2295722 

Tetlock, P. (2005). Expert political judgment: How good is it? How can we know? 

Princeton University Press. 

Thaler, R. (1985). Mental accounting and consumer choice. Marketing Science, 4(3), 

199–214. 

Thaler, Richard H. and Cass R. Sunstein. (2008). Nudge: Improving decisions about 

health, wealth, and happiness. New Haven, CT: Yale University Press. 

Thomson, M., Pollock, A., Henriksen, K., & Macaulay, A. (2004). The influence of the 

forecast horizon on judgemental probability forecasts of exchange rate 

movements. The European Journal of Finance, 10(4), 290–307. 



 

 

229 

http://doi.org/10.1080/13518470110047620 

Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human 

posterior parietal cortex. Nature, 428(6984), 751–754. 

http://doi.org/10.1038/nature02466 

Tsoularis, A., & Wallace, J. (2002). Analysis of logistic growth models. Mathematical 

Biosciences, 179(1), 21–55. http://doi.org/10.1016/S0025-5564(02)00096-2 

Tubau, E. (2008). Enhancing probabilistic reasoning: The role of causal graphs, 

statistical format and numerical skills. Learning and Individual Differences, 

18(2), 187–196. http://doi.org/10.1016/j.lindif.2007.08.006 

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and 

biases. Science, 185(4157), 1124–1131. 

http://doi.org/10.1126/science.185.4157.1124 

Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of 

choice. Science, 211(4481), 453–458. http://doi.org/10.1126/science.7455683 

Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The 

conjunction fallacy in probability judgment. Psychological Review, 90(4), 293–

315. http://doi.org/10.1037/0033-295X.90.4.293 

Tversky, A., & Koehler, D. J. (1994). Support theory: A non-extensional representation 

of subjective probability. Psychological Review, 101(4), 547–567. 

http://doi.org/10.1037/0033-295X.101.4.547 

Tversky, B., & Hard, B. M. (2009). Embodied and disembodied cognition: Spatial 

perspective-taking. Cognition, 110(1), 124–129. 

http://doi.org/10.1016/j.cognition.2008.10.008 

Tversky, B., Kugelmass, S., & Winter, A. (1991). Cross-cultural and developmental 

trends in graphic productions. Cognitive Psychology, 23(4), 515–557. 

http://doi.org/10.1016/0010-0285(91)90005-9 

Vitaliano, P. P., Russo, J., Carr, J. E., Maiuro, R. D., & Becker, J. (1985). The ways of 

coping checklist: revision and psychometric properties. Multivariate Behavioral 

Research, 20(1), 3–26. http://doi.org/10.1207/s15327906mbr2001_1 

Warren, R. M. (1985). Criterion shift rule and perceptual homeostasis. Psychological 

Review, 92(4), 574–584. http://doi.org/10.1037/0033-295X.92.4.574 



 

 

230 

Wearden, G. (2015, January 5). Millions fear missing January’s rent or mortgage 

payments, says Shelter. The Guardian. Retrieved from 

http://www.theguardian.com/society/2015/jan/05/missing-rent-mortgage-

payments-shelter-interest-rate-housing-costs 

Weber, B. J., & Chapman, G. B. (2005). Playing for peanuts: Why is risk seeking more 

common for low-stakes gambles? Organizational Behavior and Human 

Decision Processes, 97(1), 31–46. http://doi.org/10.1016/j.obhdp.2005.03.001 

Wegwarth, O., Schwartz, L. M., Woloshin, S., Gaissmaier, W., & Gigerenzer, G. 

(2012). Do physicians understand cancer screening statistics? A national survey 

of primary care physicians in the united states. Annals of Internal Medicine, 

156(5), 340–349. http://doi.org/10.7326/0003-4819-156-5-201203060-00005 

Weinstein, N. D. (1980). Unrealistic optimism about future life events. Journal of 

Personality and Social Psychology, 39(5), 806–820. 

http://doi.org/10.1037/0022-3514.39.5.806 

Weinstein, N. D., & Klein, W. M. (1996). Unrealistic optimism: Present and future. 

Journal of Social and Clinical Psychology, 15(1), 1–8. 

http://doi.org/10.1521/jscp.1996.15.1.1 

Wilkie-Thomson, M. E., Önkal-Atay, D., & Pollock, A. C. (1997). Currency 

forecasting: An investigation of extrapolative judgement. International Journal 

of Forecasting, 13(4), 509–526. http://doi.org/10.1016/S0169-2070(97)00036-8 

Witteman, H. O., Fuhrel-Forbis, A., Wijeysundera, H. C., Exe, N., Dickson, M., 

Holtzman, L., Kahn, V. C., Zikmund-Fisher, B. J. (2014). Animated 

randomness, avatars, movement, and personalization in risk graphics. Journal of 

Medical Internet Research, 16(3), e80. http://doi.org/10.2196/jmir.2895 

Xu, Y., & Chun, M. M. (2009). Selecting and perceiving multiple visual objects. Trends 

in Cognitive Sciences, 13(4), 167–174. http://doi.org/10.1016/j.tics.2009.01.008 

Yamagishi, K. (1997). When a 12.86% mortality is more dangerous than 24.14%: 

Implications for risk communication. Appl. Cognit. Psychol, 11(6), 495–506. 

http://doi.org/10.1002/(SICI)1099-0720(199712)11:63.0.CO;2-J 

Yang, S., Markoczy, L., & Qi, M. (2007). Unrealistic optimism in consumer credit card 

adoption. Journal of Economic Psychology, 28(2), 170–185. 

http://doi.org/10.1016/j.joep.2006.05.006 



 

 

231 

Zhu, L., & Gigerenzer, G. (2006). Children can solve Bayesian problems: The role of 

representation in mental computation. Cognition, 98(3), 287–308. 

http://doi.org/10.1016/j.cognition.2004.12.003 

Zikmund-Fisher, B. J., Ubel, P. A., Smith, D. M., Derry, H. A., McClure, J. B., Stark, 

A., Pitsch, R. K., Fagerlin, A. (2008). Communicating side effect risks in a 

tamoxifen prophylaxis decision aid: The debiasing influence of pictographs. 

Patient Education and Counseling, 73(2), 209–214. 

http://doi.org/10.1016/j.pec.2008.05.010 

 

 

 

 

 



 

 

232 

Appendices  

Appendix 1 

Chapter 3, Experiment 1. Method of conversion of the onscreen stimuli and the 

participants’ responses in the percentage condition into absolute values.  

Percentage condition 

 
Percentage 
numbers 

(observed) 

Base rate 
changes in 
absolute 
values 

(hidden) 

Conversions of 
percentages seen onscreen 

into absolute values of 
base rates 

Base rate changes 
calculated in 

absolute vales 

 
Linear 

increase 

101.56 % 
(101.5625) 200 101.5625*200/100 

= 203.125 
203.125 + 200 

= 403.125 

50.39 % 
(50.387597) 403.125 50.387597*403.125/100 

= 203.125 
203.125+403.125 

= 606.25 

33.51 % 
(33.505155) 

 
606.25 

 

33.505155*606.25/100 
= 203.125 

203.125+606.25 
= 809.375 

4th point 
prediction 

25.01 % 
(un-rounded = 

25.096525) 

 
809.375 

 

 
25.096525*809.375/100 

= 203.125 
 

203.125+809.375 
= 1012.5 

Exponential 
increase 

50 % 
(1.5) 200 50*200/100 = 100 100+200 

= 300 

50 % 
(1.5) 300 50*300/100 = 150 150+300 

= 450 

50 % 
(1.5) 450 50*450/100 = 225 225+450 

= 675 

4th point 
prediction 

50 % 
(1.5) 675 50*675/100 = 337.5 337.5+675 

= 1012.5 

 
Linear 

decrease 

-20.06 % 
(-20.061728) 

 
1012.5 

 

-20.061728*1012.5/100 
= -203.124996 

-203.125+1012.5 
= 809.375 

-25.01 % 
(-25.096525) 809.375 -25.096525*809.375/100 

= -203.1249992 
-203.125+809.375 

= 606.25 

-33.51 % 
(-33.505155) 606.25 -33.505155*606.25/100 

= -203.125 
-203.125+606.25 

= 403.125 
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4th point 
prediction 

-50.39 % 
(un-rounded = 
-50.387597) 

403.125 -50.387597*403.125/100 
= -203.125 

-203.125+403.125 
= 200 

Exponential 
decrease 

-33.3 % 
(0.666667) 

 
1012.5 

 

-33.3*1012.5/100 = -
337.5 

-337.5+1012.5 
= 675 

-33.3 % 
(0.666667) 675 -33.3*675/100 = -225 -225+675 

= 450 

-33.3 % 
(0.666667) 450 -33.3*450/100 = -150 -150+450 

= 300 

4th point 
prediction 

-33.3 % 
(0.666667) 300 -33.3*300/100 = -100 -100+300 

= 200 

Appendix 2 

Chapter 3, Experiment 1. Generation of the formal model predictions for the 

human-model fitting procedure. 

The 2-Regression Model Construction 

The 2-regression model was constructed by applying linear regression to the 

second and third data points observed in the absolute condition exponential increase and 

exponential decrease sequences and the percentage condition linear increase and linear 

decrease sequences. The fourth point predictions were then generated from the 

regression of these second and third points. Shown below are the numbers that were 

entered into the 2-regression model and the regression equation and fourth point 

predictions for the absolute and percentage condition. (x is the presentation order of the 

numbers in each trial, i.e., the last two observations are numbered x = 1 and 2 which 

represents the first and second numbers presented in each trial).  

Absolute condition: 

Exponential increase (1, 150) (2, 225);  y = 75x + 75; model prediction = 300.00. 

Exponential decrease (1, -225) (2, -150);  y = 75x – 300; model prediction = -75.00. 

Percentage condition: 

Linear increase (1, 50.387597) (2, 33.505155);  y = -16.882x + 67.27; model prediction 

= 16.622713000; conversion into absolute value = 134.54008379752700. 
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Linear decrease (1, -25.096525) (2, -33.505155); y = -8.4086x - 16.688; model 

prediction = -41.91378500; conversion into absolute value = -168.96494591716300. 

The 3-Regression Model Construction 

The 3-regression model was constructed in the same way as the 2-regression 

model, except all three observed values were used to generate the predictions. The 

numbers that were entered into the 3-regression model and the regression equations and 

fourth point predictions are given below for the absolute and percentage condition ( x = 

1, 2 and 3 which represents the first, second and third numbers presented in each trial).   

Absolute condition: 

Exponential increase (1, 100) (2, 150) (3, 225);  y = 62.5x + 33.333;  

model prediction = 283.33333333333300. 

Exponential decrease (1, -337.5) (2, -225) (3, -150);  y = 93.75x - 425; model prediction 

= -50.00. 

The percentage values given in the following linear regression model parameters 

are the un-rounded percentage values. In the trials, the values shown onscreen were 

rounded to two decimal places and labelled with a % sign and a plus/minus to signify 

increases and decreases. (E.g., +101.56%, +50.39%, +33.51%). 

Percentage condition: 

Linear increase (1, 101.5625) (2, 50.387597) (3, 33.505155);  y = -34.029x + 129.88;  

model prediction = -6.23892766666668000; conversion into absolute value =  

-50.4963209723977000. 

Linear decrease (1, -20.061728) (2, -25.096525) (3, -33.505155); y = -6.7217x - 12.778;  

model prediction = -39.6645630000; conversion into absolute value = -

159.8977697223700000. 

The 3-Mean Model Construction 

For both the absolute and percentage conditions, the fourth point predictions for 

the 3-mean model were calculated as the arithmetic mean of all three observed values. 

For the arithmetic mean calculations in the percentage condition, the outputs were 

converted in absolute values.  
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3-mean model predictions 

 Linear increase Linear decrease Exponential 
increase 

Exponential 
decrease 

Absolute 
condition +203.125 -203.125 +158.33 -237.5 

Percentage 
condition +61.82 -26.2 +50 -33.3 

Appendix 3  

Chapter 3, Experiment 1. Conversions of 3-mean model predictions from 

percentages into absolute values. 

Conversion of 3-mean model predictions into absolute values 

Percentage 
condition 

Arithmetic mean 
calculation 

Design function 
fourth point base rate 

Conversion into 
absolute value 

Linear increase 101.56 + 50.39 + 33.51/3 
= 61.82 809.375 809.375 * 61.82/100 

= 500.355625 

Exponential 
increase 

50 + 50 + 50/3 
= 50 675 675 * 50/100 

= 337.5 

Linear decrease -20.06 + -25.01 + -33.51/3 
= -26.19333333 403.125 

403.125 * -
26.19333333/100 

= -105.591875 

Exponential 
decrease 

-33.3 + -33.3 + -33.3/3 
= -33.3 300 300 * -33.3/100 

= -99.9 

 


