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Abstract 

The response of idealised cermets comprising approximately 60% by volume steel 

spheres in a Sn/Pb solder matrix is investigated under a range of axisymmetric 

compressive stress states. Digital volume correlation (DVC) analysis of X-ray micro-

computed tomography scans (μ-CT), and the measured macroscopic stress-strain 

curves of the specimens revealed two deformation mechanisms. At low triaxialities the 

deformation is granular in nature, with dilation occurring within shear bands. Under 

higher imposed hydrostatic pressures, the deformation mechanism transitions to a more 

homogeneous incompressible mode. However, DVC analyses revealed that under all 

triaxialities there are regions with local dilatory and compaction responses, with the 

magnitude of dilation and the number of zones wherein dilation occurs decreasing with 

increasing triaxiality. Two numerical models are presented in order to clarify these 

mechanisms: (i) a periodic unit cell model comprising nearly rigid spherical particles 

in a porous metal matrix and (ii) a discrete element model comprising a large random 

aggregate of spheres connected by non-linear normal and tangential “springs”. The 

periodic unit cell model captured the measured stress-strain response with reasonable 

accuracy but under-predicted the observed dilation at the lower triaxialities, because 

the kinematic constraints imposed by the skeleton of rigid particles were not accurately 

accounted for in this model. By contrast, the discrete element model captured the 

kinematics and predicted both the overall levels of dilation and the simultaneous 

presence of both local compaction and dilatory regions with the specimens. However, 

the levels of dilation in this model are dependent on the assumed contact law between 

the spheres. Moreover, since the matrix is not explicitly included in the analysis, this 

model cannot be used to predict the stress-strain responses. These analyses have 

revealed that the complete constitutive response of cermets depends both on the 

kinematic constraints imposed by the particle aggregate skeleton, and the constraints 

imposed by the metal matrix filling the interstitial spaces in that skeleton.  

 

Keywords: cermets, porous plasticity, kinematic constraints, discrete element, digital 

volume correlation, micro-computed tomography.  
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1. Introduction 

Cermets are particulate composites comprising a high volume fraction of ceramic 

particles (typically carbides, nitrides, and oxides, in the range of 50-95% by volume) 

within a ductile metal binder phase (e.g. Mo, Ni, Co, Al) (ASTM Committee C-21, 

1955; Tinklepaugh and Crandall, 1960). They offer a good compromise between the 

hardness of ceramics and toughness of metals, e.g. typical values for WC/Co 

composites are in the range of 500-2000 HV and 8-20 MPa m1/2, respectively (Fang, 

2005). This combination of mechanical properties has led to their extensive use in small 

volume applications such as tips of cutting tools. Recent advances in manufacturing 

methods have provided the ability to produce cermets in large volumes at low cost. This 

has resulted in cermets being considered as materials for lightweight ballistic armour 

applications, where the high hardness is required to erode the projectile (Shockey et al., 

1990; Walley, 2010), and the improved toughness increases the ability of the armour to 

sustain multiple impacts (Blumenthal et al., 1994; Compton and Zok, 2013).  

 

The prediction of the strength of cermets has received considerable attention. Current 

models typically fall into two categories: (i) empirical e.g. the models for hardness by 

Lee and Gurland (1978) and Engqvist et al. (2002), and (ii) microstructurally motivated 

models based on either homogenisation schemes (Arsenault and Taya, 1987; Bao et al., 

1991; Christman et al., 1989) or dislocation models (Gustafson et al., 1997; Lee et al., 

1998; Taya et al., 1991).  The predictive microstructurally motivated models are 

primarily based on extending approaches developed for composites such as the so-

called self-consistent models (Budiansky, 1965; Hershey, 1954; Hill, 1965) and models 

that provide bounds on the response of particulate composites (Hashin and Shtrikman, 

1962). These models have the advantage that they do not make a priori assumptions on 

the microstructure but rather describe the microstructure through statistical information 

such as volume fraction and particle position correlation functions. However, this 

statistical information is typically only valid in the low particle volume fraction limit 

(< 20% by volume particles) when particle-particle contacts are negligible.  By contrast, 

most commercial cermets with ~80% particle volume fractions are well above the 

percolation threshold and a large number of the ceramic particles in these cermets are 

parts of percolated chains of ceramic particles. 

 

The percolated chains, known as force chains in the granular materials literature (Liu 

et al., 1995; Travers et al., 1987) have a very significant effect on the properties of the 

cermets. In fact, cermets with high volume fractions of hard ceramic inclusions are 

more akin to a granular medium with a high cohesive strength rather than a typical 

particle-reinforced composite. For example, recent studies (Pickering et al., 2016; 

Tarantino et al., 2016) have demonstrated that the multi-axial yield response of cermets 

is not solely governed by the von-Mises stress. Rather, similar to granular materials, 

cermets dilate under compression and thus their strength is also dependent on the 

imposed hydrostatic pressure. Moreover, Bele and Deshpande (2015) have 

demonstrated that composite models based on periodic unit cells significantly under-

predict the strength of cermets as they do not include the effects of force chains. Similar 

effects are also observed in other high volume particulate composites such as asphalt 

(Deshpande and Cebon, 1999) and polymer-bonded explosives (Bardenhagen and 

Brackbill, 1998). Discrete element models (Cundall and Strack, 1979), wherein the 

particles are modelled as discrete bodies interacting via contact relations are likely to 

be more appropriate for modelling the deformation of cermets. These approaches have 

been successfully used to predict the yielding and dilation of soils during confined 
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compression (McDowell and Harireche, 2002; Powrie et al., 2005) as well as the 

uniaxial deformation of asphalt (Cai et al., 2013; Collop et al., 2007; Wu et al., 2011). 

However, there have been no reported attempts of discrete element models for cermets. 

 

The experimental characterisation of the deformation of cermets has primarily been 

based on macroscopic strain measurements. While such measurements give some 

information on the deformation, they provide little insight into the microscopic 

deformation processes including the particle kinematics. By contrast, digital image 

correlation (DIC) techniques have been extensively deployed to quantify the 

deformation of soils. For example DIC techniques to observe deformation mechanisms 

in two-dimensional (2D) uniaxial compression (Desrues et al., 1996, 1985; Finno et al., 

1997) have demonstrated the existence of force chains under plane strain loading in 

granular materials. Moreover, with the increased spatial resolution of X-ray micro-

tomographic techniques, it has now become possible to quantify the three-dimensional 

(3D) deformation of granular materials using the so-called digital volume correlation 

(DVC) technique. Using this technique, Lenoir et al. (2007) have reported full-field 

incremental strain measurements during confined compression of argillaceous rock and 

Hu et al. (2015) studied deformation mechanisms in uniaxially compressed polymer 

bonded sugar (PBS) specimens. Such DVC measurements are typically not reported for 

triaxial compression due to the complexity of taking X-ray scans of specimens within 

high-pressure triaxial cells.  
 

1.1 Scope of this study 

Commercial cermets typically have very high yield strengths (in the range 5-10 GPa), 

which makes testing of these materials difficult. Thus, most strength measurements rely 

on hardness measurements that are typically difficult to interpret. The aim of this study 

is to develop an understanding of the deformation mechanisms of cermets under multi-

axial loading. We therefore use the so-called idealised cermets developed by Bele and 

Deshpande (2015). These materials comprise hard steel spheres in soft metal matrix 

and have a significantly lower yield strength compared to commercial cermets. 

However, a similar contrast in the properties of the phases of the idealised and 

commercial cermets makes the idealised cermets suitable model materials to study the 

deformation mechanisms in commercial cermets. 

 

The outline of the paper is as follows. Firstly, to clarify the deformation mechanisms 

under a range of stress triaxialities, μ-CT imaging was combined with ex-situ triaxial 

compression tests and the results were analysed by means of DVC. Next, two modelling 

approaches are reported in an attempt to gain insight into these measurements: (i) a 

periodic unit cell model comprising nearly rigid spheres in a porous plastic matrix and 

(ii) a discrete element model comprising a large number of randomly packed spheres 

interacting via a contact law. The features and drawbacks of these models are discussed 

and used to reveal the key deformation mechanisms that govern the mechanical 

response of the idealised cermets. 

 

 

 

 

2. Experimental protocol 

The overall aim of the experimental program is to determine the deformation modes of 

the idealised cermets as a function of stress triaxiality. To achieve this aim, we 
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conducted axisymmetric triaxial compression tests, interrupted at known macroscopic 

strains �̅�𝑒  to acquire X-ray micro-computed tomograms (μ-CT). The resulting μ-CT 

volumes derived after each loading step were then used to perform a DVC analyses to 

reveal the deformation modes. Here we briefly describe the main aspects of the 

experimental methods. 

 

2.1 Manufacture of specimens 

Idealised cermets comprising a volume fraction 𝑉𝑓 ≈ 0.60 of 2 mm diameter AISI 

52100 steel spheres (referred to subsequently as particles) in a Sn/Pb solder matrix (Sn 

60, Pb 38, Ag 2 wt.%), were investigated in this study. The cermet specimens were 

circular cylinders of diameter 18.5 mm and height 40 mm and were manufactured using 

the procedure described in Bele and Deshpande (2015) and Pickering et al. (2016). 

Briefly, the steel spheres were cleaned via ultrasonic vibration in an acetone bath and 

then packed into a cylindrical crucible of the diameter ~18.5 mm. The crucible was 

vibrated under a low applied axial compressive stress of ≈ 0.1 MPa to maximise the 

packing density. High temperature magnets were then placed around the periphery of 

the crucible to preserve the skeleton structure of the steel spheres, and solder powder 

(of average particle size 25-38 μm) was infiltrated into the interstitial sites between the 

particles. A small amount of ZnCl flux was added to improve interfacial adhesion, and 

the assembly was pressure-cast at a temperature of 200°C for 1 hr. An optical image of 

the as-cast specimen is included in Fig. 1a, and a X-ray computed tomogram through 

the centre of the specimen along the longitudinal axis is shown in Fig. 1b. μ-CT imaging 

revealed that the void volume fraction was in the range 1.5% to 5%. The Young’s 

modulus and yield strength of the AISI 52100 steel was 210 GPa and 2.1 GPa, 

respectively while the Sn/Pb solder had modulus and yield strength values of 32 GPa 

and ~30-40 MPa, respectively. 

 

 
Figure 1: (a) Photograph of the as-cast idealised cermet specimen and (b) a computed 

tomogram through the centre of the specimen along the longitudinal axis. 

 

2.2 Interrupted triaxial tests 

A high-pressure apparatus (see Pickering et al. (2016) for details of the triaxial cell) 

was used to subject the specimens to axisymmetric triaxial compression tests (Fig. 2a). 

It consists of a pressure cell with a maximum capacity of 100 MPa, and a piston for the 

application of axial force. Hydraulic fluid was used as the pressurising medium, and 

axial load is applied by displacing the piston via a screw-driven test machine. A 

submerged load cell provided readings of the axial load independent of the pressure of 

the surrounding fluid. Two linear variable differential transformer (LVDT) transducers 

were attached to the specimen in order to measure the axial displacement imposed on 
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the specimen. A third LVDT was attached to the mid-height of the specimen to measure 

the change in specimen diameter over a 3 mm central portion of the cylindrical 

specimen. 

 

 
Figure 2: (a) Sketch of the triaxial apparatus used to apply the axisymmetric stress states. The 

inset shows a magnified view of the specimen with the axial and radial LVDTs used to measure 

strain. (b) Sketch of the axisymmetric stress state and the three-pin localisation system used to 

ensure specimen alignment between successive CT scans. 

  

The applied stresses/forces on a cylindrical specimen of initial height ℓ0 and radius 𝑅0 

are sketched in Fig. 2b. The hydraulic fluid exerts a pressure 𝑃 (taken to be positive in 

compression) on the specimen and the axial force measured by the submerged load cell 

is 𝐹𝑎 (this is a force in excess of that exerted by the fluid pressure, and is taken to be 

positive in compression). The radial Cauchy stress is – 𝑃, and the axial stress can be 

inferred from 𝐹𝑎 as follows. The current specimen height ℓ and radius 𝑅 give the axial 

and radial stretches as 𝜆𝑎 = ℓ/ℓ0 and 𝜆𝑟 = 𝑅/𝑅0, respectively. The nominal axial and 

radial stresses then follow as �̅�𝑎 = −[𝐹𝑎/(𝜋𝑅0
2) + 𝑃𝜆𝑟

2]  and �̅�𝑟 =– 𝑃𝜆𝑎𝜆𝑟 , 

respectively. We can then define a nominal mean stress as 

 �̅�𝑚 ≡
�̅�𝑘𝑘

3
=

2

3
�̅�𝑟 +

�̅�𝑎

3
, (2.1) 

where �̅�𝑖𝑗 denotes the nominal stress tensor. Similarly, an invariant of the trace-less 

nominal stress (analogous to the von-Mises stress) is given by 

 �̅�𝑒 ≡ √
3

2
�̅�𝑖𝑗

′ �̅�𝑖𝑗
′ = |�̅�𝑎 − �̅�𝑟 |, (2.2) 

where �̅�𝑖𝑗
′ = �̅�𝑖𝑗 − �̅�𝑚𝛿𝑖𝑗, with 𝛿𝑖𝑗 denoting the Kronecker delta.  

 

Tests were conducted along proportional stress paths with the direction of the stress 

path defined by the relation �̅�𝑚 = −𝜂�̅�𝑒. The triaxiality parameter 𝜂 can take values 
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over the range 𝜂 = 1/3 (uniaxial compression) to 𝜂 = ∞  (hydrostatic compression). 

In the proportional loading tests of this study, 𝜂  was kept constant throughout the 

experiments by a feedback process whereby the fluid pressure 𝑃 and the axial stress �̅�𝑎 

were increased while keeping the triaxiality 𝜂 fixed. 

 

In the remainder of this study we discuss distributions of the Green-Lagrange strains as 

measured by the DVC analysis, and thus here we express the measured macroscopic 

strains in terms of the Green-Lagrange strains. The radial and axial Green-Lagrange 

strains follow from the stretches via the relations 

 
 

�̅�𝑟 =
1

2
(𝜆𝑟

2 − 1), (2.3) 

and 

 �̅�𝑎 =
1

2
(𝜆𝑎

2 − 1), (2.4) 

respectively. Then with �̅�𝑖𝑗  denoting the Green-Lagrange strain tensor, we define a 

mean strain given by �̅�𝑚 ≡ �̅�𝑘𝑘, a trace-less strain tensor �̅�𝑖𝑗
′ = �̅�𝑖𝑗 − 𝛿𝑖𝑗�̅�𝑚/3 and an 

invariant of this trace-less strain, �̅�𝑒 ≡ √(2/3)�̅�𝑖𝑗
′ �̅�𝑖𝑗

′  , analogous to the von-Mises 

effective strain. For axisymmetric loading these reduce to 

 
 

�̅�𝑚 = 2�̅�𝑟 + �̅�𝑎, (2.4) 

and 

 �̅�𝑒 =
2

3
|�̅�𝑟 − �̅�𝑎|. (2.6) 

We emphasise that in general �̅�𝑚 is not equal to the volumetric strain, i.e. �̅�𝑚 ≠ 𝛥𝑉/𝑉0, 

where 𝛥𝑉 and 𝑉0 are the change in volume and original volume respectively. Thus, �̅�𝑖𝑗
′  

is not a deviatoric strain in the sense of representing a deviation from the volumetric 

strain. However, as discussed in Appendix A, for the relatively small strains considered 

in this study �̅�𝑚 ≈ 𝛥𝑉/𝑉0  and it suffices to use the strain measures �̅�𝑚  and �̅�𝑒  to 

illustrate volumetric and shear deformations. Given that we present results in terms of 

the Green-Lagrange strains, it is appropriate to use the 2nd Piola-Kirchhoff stress 

measure. The work-conjugate 2nd Piola-Kirchhoff stresses to �̅�𝑎  and �̅�𝑟  are 𝑆�̅� =
�̅�𝑎/𝜆𝑎 and 𝑆�̅� = �̅�𝑟/𝜆𝑟, respectively. Then, analogous to Eqs. (2.1) and (2.2), we define 

the mean and effective stress as 𝑆�̅� ≡ 𝑆�̅�𝑘/3  and 𝑆�̅� ≡ √(3/2)𝑆�̅�𝑗
′ 𝑆�̅�𝑗

′  , respectively 

where 𝑆�̅�𝑗  is the 2nd Piola-Kirchhoff stress tensor and 𝑆�̅�𝑗
′ = 𝑆�̅�𝑗 − 𝑆�̅�𝛿𝑖𝑗  the 

corresponding trace-less stress.  

 

All experiments reported here were conducted for an applied loading rate �̅�𝑒
̇ ≈

10 kPa s−1 and prior to the start of each test the specimen was consolidated within the 

triaxial cell by applying a pure hydrostatic pressure 𝑃 = 100 MPa. This consolidation 

step was found to improve the repeatability of the measurements. The DVC analysis 

was conducted using three specimens loaded along proportional stress paths of 𝜂 =
1/3, 0.75 and 1.0. The images for the DVC were acquired via X-ray micro-tomography 
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(μ-CT) at four strain levels: an initial reference state scan at �̅�𝑒 = 0 (representing the 

state of the specimen after consolidation to 𝑃 = 100 MPa), and three scans acquired by 

interrupting the triaxial test and unloading to accumulated strain levels �̅�𝑒 =
0.02, 0.035 and 0.055. After each scan, the specimen was reinserted into the triaxial 

cell and loaded to the next strain level. Since the DVC analysis requires fixed reference 

points, the specimens were attached to a small, non-symmetric platen via three tool 

steel pins; see Fig. 2b. This enabled us to maintain the orientation of the specimen 

between each μ-CT scan and loading within the triaxial cell.  

 

2.3 X-ray micro-computed tomography and digital volume correlation 

The μ-CT scans for the DVC analyses were acquired using a custom Nikon/Metris 

scanner consisting of a 450 kVp power source coupled with a cesium-iodide detector 

(1621 Perkinelmer). The specimens were positioned 116.5 mm from the source, 

resulting in a pixel resolution of 28.3μm. Each tomogram comprised 1601 angular 

projections collected at an angular step of ~0.225o over a 360o rotation of the sample. 

The projection data was were reconstructed using Nikon's CTPro and CTAgent 

reconstruction software, which uses a filtered back projection algorithm.  

 

Similar to digital image correlation, DVC involves dividing the 3D scan volume into 

smaller sub-volumes, which can then be tracked between load steps using the internal 

microstructure of the material (Bay et al., 1999). The new position of the sub-volume 

centroid is taken to be at a location where the correlation coefficient between the 

original and displaced sub-volume is best. Here we performed the DVC analysis using 

DaVis software (LaVision, DaVis v.8.2.3 Software, Goettingen, Germany) by 

comparing the three strained states back to the reference scan at �̅�𝑒 = 0. The strain 

fields are then determined from the spatial gradients of displacement vector fields of 

the sub-volumes over a gauge length equal to 50% of the sub-volume size, as described 

in Gillard et al. (2014). A noise study was performed using sub-volume sizes between 

24 to 192 voxels (based on the resolution of the μ-CT scan each voxel represents a cube 

of side length ~28.3 μm) (Gillard et al., 2014). A 150 voxel sub-volume size with 50% 

overlap gave the best compromise between noise and an adequate spatial resolution for 

strain in these specimens. Thus, the DVC was performed with cubes of side ~4 .2 mm 

(volume ~64 mm3 ): with the 50% overlap this implied that approximately 7 sub-

volume cubes were present in the analysis across the diameter of the specimens. 

 

 

3. Summary of experimental results 

We proceed to describe the key findings of the experimental study on the triaxial 

responses of idealised cermets, and the associated deformation modes/strain 

distributions as determined from the DVC analysis. 

 

3.1 Mechanical responses 

A detailed study of the triaxial response of the idealised cermets is presented in 

Pickering et al. (2016). Here we summarise some key findings in order to explain the 

context of the DVC strain distribution measurements. The measured equivalent stress 

versus strain responses (𝑆�̅�  − �̅�𝑒 ) responses for triaxiality values in the range 𝜂 =
1/3 (uniaxial compression) to 𝜂 = 1.5 are plotted in Fig. 3a, and the corresponding 

variations of the mean strain �̅�𝑚 with the effective strain �̅�𝑒 are included in Fig. 3b. 

The stress-strain curves of Fig. 3a show that both the initial elastic response and the 

yield stress (defined at the 0.2% strain offset) are largely independent of 𝜂. However, 
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the subsequent plastic hardening response is strongly affected by the triaxiality: while 

the uniaxial response is approximately perfectly plastic, the plastic hardening rate 

increases up to 𝜂 = 1. Intriguingly, the 𝑆�̅�  − �̅�𝑒 curves become virtually identical for 

𝜂 ≥ 1 . Some insight into this triaxiality dependent response is given by the 

corresponding �̅�𝑚 − �̅�𝑒 curves included in Fig. 3b. In the low triaxiality limit (1/3 ≤
𝜂 ≤ 0.75) , two distinct regimes are seen: (i) an initial compaction regime where 

𝑑�̅�𝑚/𝑑�̅�𝑒 < 0, and (ii) a dilation regime with 𝑑�̅�𝑚/ 𝑑�̅�𝑒  > 0, wherein the volume of 

the specimen increases even though the hydrostatic pressure is compressive. While 

dilation commences very early under uniaxial compression (at approximately the yield 

strain of �̅�𝑒 = 0.5%), the dilatory regime is delayed at higher triaxialities, e.g. starting 

at �̅�𝑒 = 3.5% in the tests with 𝜂 = 0.75. We argue that similar to granular media, the 

work done against the hydrostatic pressure by the dilatory response of the cermet results 

in the plastic hardening rate increasing with 𝜂, as seen in Fig. 3a. With further increases 

in triaxiality, the dilatory part of the response is further delayed: over the strain levels 

tested here no dilation occurred in the regime 𝜂 ≥ 1, and the �̅�𝑚 − �̅�𝑒 curves are very 

similar (Fig. 3b). Since the plastic response is now nearly volumetrically 

incompressible, the stress-strain curves are uniquely described by the effective stress 

𝑆�̅� with no sensitivity to 𝜂 as seen in Fig. 3a. 

Figure 3: (a) The measured stress 𝑆�̅�  versus effective strain �̅�𝑒  response for proportional 

loading of the idealised cermet specimens at selected values of the triaxiality 𝜂 ; (b) the 

volumetric strain �̅�𝑚versus �̅�𝑒 responses corresponding to the curves in (a). 

The initial yield surface of these idealised cermets and the evolution of this surface with 

plastic strain is summarised in Fig. 4. The initial yield strength is obtained by the 0.2% 

strain offset in the 𝑆�̅�  − �̅�𝑒 curves. A plot of the stress pair (𝑆�̅�, 𝑆�̅�) corresponding to 

this definition of the yield point at all the values of 𝜂 tested here marks the locus of the 

initial yield surface. Loci of  (𝑆�̅�, 𝑆�̅�)  at three selected values of applied effective 

strain �̅�𝑒 , and fits to the data using the yield criterion suggested in Pickering et al. 

(2016) are also included. Superimposed on these loci is the direction of the plastic strain 

rate vector (�̇̅�𝑚, �̇̅�𝑒 ) at selected loading points, with the �̇̅�𝑚  and �̇̅�𝑒  axes co-incident 

with the 𝑆�̅�  and 𝑆�̅�  axes respectively. These measurements suggest that two distinct 

deformation mechanisms/regimes exist: 

(i) At low triaxialities, the yield surface has a Drucker and Prager (1952) characteristic 

with the yield strength being pressure dependent and the response dilatant even under 

compressive hydrostatic stresses, similar to granular materials. 
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(ii) At high triaxialities, the yield surface asymptotes to a von-Mises surface with the 

yield strength independent of pressure and the overall deformation nearly 

incompressible. 

 

 
Figure 4: The measured yield surfaces of the idealised cermets. The initial yield surface and 

the evolution of the surface for 3 additional values of the effective strain �̅�𝑒 are included. The 

plastic strain rate vectors are included for selected loading points with the �̇̅�𝑒 and �̇̅�𝑚 axes co-

incident with the 𝑆�̅� and 𝑆�̅� axes, respectively. 

 

3.2 Strain distributions 

While the strain measurements in Fig. 3b give the overall deformation state, it is 

unlikely that a “granular” medium like this idealised cermet will undergo homogenous 

deformation. We therefore report DVC measurements of the strain distribution. The 

Green-Lagrange strain tensor is denoted as 𝐸𝑖𝑗 and, analogous to definitions used for 

the macroscopic average strains in Section 2, we define a mean strain as 𝐸𝑚 = 𝐸𝑘𝑘 and 

a trace-less strain 𝐸𝑖𝑗
′ = 𝐸𝑖𝑗 − 𝛿𝑖𝑗𝐸𝑘𝑘/3, where 𝛿𝑖𝑗 is the Kronecker delta. The effective 

strain is then defined as  

 
 

𝐸𝑒 = √
2

3
𝐸𝑖𝑗

′ 𝐸𝑖𝑗
′ . (3.1) 

 

Distributions of 𝐸𝑚 and 𝐸𝑒 on a longitudinal cross-section through the specimen are 

included in Figs. 5 and 6 respectively for three proportional stressing paths (𝜂 = 1/3, 

0.75 and 1.0) at applied macroscopic strains �̅�𝑒 = 0.02, 0.035 and 0.055. First consider 

the uniaxial compression (𝜂 = 1/3) case. Early in the deformation (�̅�𝑒 = 0.02), the 

strain distributions are reasonably uniform though it is clear that nearly the entire 

specimen is undergoing dilation (Fig. 5a). With increasing �̅�𝑒, the deformation becomes 

more localised and both the 𝐸𝑚 and 𝐸𝑒 distributions show an inclined band near the top 

of the specimen within which the strains significantly exceed those in the remainder of 

the specimen. To illustrate that this band exists through the specimen we include in Fig. 

7 contours of 𝐸𝑚  for �̅�𝑒 = 0.055  on four longitudinal cross-sections through the 

specimen at orientations 𝜑: this orientation is defined in the inset of Fig. 7 (𝜑 = 0o is 

an arbitrarily chosen section through the specimen). The band of localised deformation 

is seen on all orientations confirming that this band persists through the specimen. With 

increasing triaxiality (i.e. 𝜂 = 0.75  and 1.0) two main changes occur: (i) the 

deformation is seen to become more homogenous and (ii) the level of dilation 

decreases. Regions of both compaction and dilation are seen at �̅�𝑒 = 0.055  in the 
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specimens loaded with 𝜂 = 0.75  and 1.0, however the values of positive 𝐸𝑚  remain 

small in relation to the 𝜂 = 1/3 case. 

 

 
Figure 5: Digital volume correlation (DVC) measurements of the spatial distribution of the 

volumetric strain 𝐸𝑚 on a longitudinal section of the idealised cermet specimen at three applied 

macroscopic strains �̅�𝑒. Results are shown for three stress paths (a) 𝜂 = 1/3, (b) 𝜂 = 0.75 and 

(c) 𝜂 = 1.0. 



 11 

 
Figure 6: Digital volume correlation (DVC) measurements of the spatial distribution of the 

effective strain 𝐸𝑒 on a longitudinal section of the idealised cermet specimen at three applied 

macroscopic strains �̅�𝑚. Results are shown for three stress paths (a) 𝜂 = 1/3, (b) 𝜂 = 0.75 and 

(c) 𝜂 = 1.0. 

 

To further emphasise these differences, we define an average volumetric strain �̂�𝑚(𝑧) 

as the average value of 𝐸𝑚  on the plane 𝑥3 = 𝑧  where the co-ordinate system 𝑥𝑖  is 

defined in the inset in Fig. 7 and 𝑥3 = 0 is the bottom face of the cylindrical specimen. 

The variations of �̂�𝑚 with the normalised co-ordinate 𝑧/ℓ0, where ℓ0 = 40 mm is the 

initial height of specimen, are included in Figs. 8a, 8b and 8c for 𝜂 = 1/3, 0.75 and 

1.0, respectively. In each case, we include the variations at �̅�𝑒 = 0.02, 0.035 and 0.055. 

The overall conclusions from the distributions in Fig. 5 are further confirmed here, viz.: 
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(i) the level of volumetric straining decreases with increasing 𝜂 and (ii) the deformation 

is more localised at the lower values of 𝜂  (a band with high deformation for the 

specimen loaded with 𝜂 = 1/3 is marked and labelled as a “localised band” in Fig. 8a). 

 

 
Figure 7: Digital volume correlation (DVC) measurements of the spatial distribution of the 

volumetric strain 𝐸𝑚  on four longitudinal sections through the idealised cermet specimen 

subjected to a macroscopic strain �̅�𝑒 = 0.055 under uniaxial compression (𝜂 = 1/3). The 

orientation 𝜑 of the sections is defined in the inset on a 3D plot of the 𝐸𝑚 distributions from 

the DVC analysis along with the co-ordinate system used to describe the specimen. 

 

 

 

 
Figure 8: Digital volume correlation (DVC) measurements of the average volumetric strain �̂�𝑚 

as a function of the normalised axial co-ordinate 𝑧/ℓ0 . Measurements are shown for the 

specimen deformed under stress paths (a) 𝜂 = 1/3, (b) 𝜂 = 0.75 and (c) 𝜂 = 1.0 for overall 

strain levels �̅�𝑒 = 0.02, 0.035 and 0.055 in each case. 

 

These measurements confirm our qualitative understanding that a transition in the 

deformation mechanism from granular (dilatory response within a shear band) to metal-

like (uniform, incompressible deformation) occurs with increasing stress triaxiality. 

Importantly, they show that deformation is heterogeneous with local dilatory and 

compaction regions. The magnitude of dilation and the number of dilating zones 

decreases with increasing 𝜂, giving rise to the observed changes in the macroscopic 

strain states. However, several aspects remain unclear. These include: (i) the 

microscopic mechanisms by which the transition from dilatory to incompressible 

behaviour occurs; and (ii) the roles of the matrix and the particle skeleton in dictating 

the kinematic response of the cermets. We proceed to develop two types of numerical 

models in an attempt to address these questions. 

4.         Analysis of periodic particulate composites  
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Here we model the idealised cermet as a periodic composite comprising spherical 

elastic particles in a voided elastic-plastic matrix. Such periodic models have been used 

extensively to analyse metal matrix composites (MMCs) following the initial work of 

Bao et al. (1991). Cermets differ from MMCs by the fact that they comprise a 

significantly higher volume fraction of particles/inclusions compared to MMCs, and 

here we aim to investigate whether such a model is capable of capturing their response. 

 

4.1 Brief description of model 

We consider a three-dimensional unit cell with the spherical particles arranged in a face-

centred-cubic (FCC) lattice as shown in Fig. 9. This is done in order to be able to reach 

higher local strains in the matrix while minimising mesh distortion. The particles are 

assumed to be isotropic elastic with shear modulus 𝐺𝑝 and Poisson’s ratio 𝜈𝑝 while the 

matrix is modelled as a porous elastic-plastic solid. The porous solid is modelled using 

a simplified version of the modified variational model (MVAR) presented in Danas and 

Aravas (2012) based on the nonlinear homogenisation approach of Ponte Castañeda 

(1991). Thus, unlike the particles, the voids (shown in the inset of Fig. 9) are not 

discretely modelled but rather smeared-out in the matrix. This approximation is 

acceptable given the large separation of length scales between the particle and void 

sizes. The general MVAR model considers a single family of ellipsoidal voids with 

arbitrary orientation, leading to an overall anisotropic response. Our aim here is to 

qualitatively investigate the fidelity of such a modelling approach for analysing cermets 

and thus we consider a simplified version wherein we restrict attention to spherical 

voids whose shape remains unchanged with deformation†  The resulting model thus 

remains isotropic at finite strains and reduces to the Gurson (1977) model in the 

hydrostatic loading limit but is more compliant for non-zero deviatoric stresses. For the 

sake of completeness we briefly describe the key constitutive equations of the matrix 

phase.  

 

 
Figure 9: Sketch of the 3D periodic unit cell comprising nearly rigid spherical particles in a 

face-centred-cubic arrangement with the interstitial spaces filled with a porous plastic matrix. 

The inset shows the microstructure of the homogenised porous matrix. The co-ordinate system 

used to describe the stress-state is also indicated. 

 

The matrix is modelled as an isotropic elastic plastic solid with shear modulus 𝐺𝑚 and 

Poisson’s ratio 𝜈𝑚. The elastic properties are assumed to be fixed and do not change 

with evolving porosity 𝑓. The plastic response is described by a yield surface given in 

                                                      
†  At high triaxialities, voids remain reasonably spherical. Thus, in this limit a model with 

evolving voids shapes (full model) and the simpler model used here give very similar 

predictions. Calculations with the full model were performed for the high volume fraction 

composites analysed here. The predictions of the two models were very similar since regions 

of high triaxiality dominate the responses of these composites.. 
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terms of the von-Mises effective Cauchy stress 𝜎𝑒 and the hydrostatic Cauchy stress 

𝜎𝑚 ≡ 𝜎𝑘𝑘/3 as 

 
 

𝛷 ≡ (1 +
2

3
𝑓) 𝜎𝑒

2 +
9

4
(

1 − 𝑓

ln 𝑓
)

2

𝜎𝑚
2 − (1 − 𝑓)2𝜎𝑌

2 = 0, (4.1) 

where 𝜎𝑌(𝜀𝑒
𝑝)  is the uniaxial yield strength of the plastic matrix material with zero 

porosity. The strain hardening response of the parent matrix material is assumed to be 

of the form 

 
 

𝜎𝑌 = 𝜎0 (1 +
𝜀𝑒

𝑝

𝜀0
)

1/𝑁

, (4.2) 

where 𝑁 is the hardening exponent, 𝜀0 ≡ 𝜎0/[2(1 + 𝜈𝑚)𝐺𝑚] is the yield strain, and 𝜀𝑒
𝑝
 

the von-Mises effective plastic strain in the parent solid material. Plastic normality is 

assumed with the matrix plastic strain rate given in terms of the plastic multiplier �̇� as 

 
 

𝐷𝑖𝑗
𝑝 = �̇�

𝜕𝛷

𝜕𝜎𝑖𝑗
, (4.3) 

with the total strain rate taken as the sum of the elastic and plastic strain rates. The 

effective plastic strain rate in the matrix follows from a work balance (Gurson, 1977) 

as 

 
 

𝜀�̇�
𝑝 =

𝜎𝑖𝑗𝐷𝑖𝑗
𝑝

𝜎𝑌(1 − 𝑓)
, (4.4) 

which is integrated to give 𝜀𝑒
𝑝
. It now remains to specify the evolution relation for the 

porosity 𝑓 . Following Aravas and Ponte Castañeda (2004) we assume that the pore 

volume fraction is only affected by plastic deformation. Then recalling that the matrix 

absent of voids is plastically incompressible, the evolution rate of the pore volume 

fraction 𝑓 is given as 

 
 

𝑓̇ = (1 − 𝑓)𝐷𝑘𝑘
𝑝 , (4.5) 

which can be integrated knowing the plastic straining history and the initial porosity 𝑓0 

to obtain the current 𝑓. 

 

We analyse the cubic periodic unit cell sketched in Fig. 9. It is subjected to periodic 

boundary conditions, such that the stress triaxiality Υ = −�̅�𝑚/𝜎𝑒
‡ and Lode angle Θ 

defined as 

 
 

cos 3Θ =
27

2

det (𝜎𝑖𝑗
′ )

𝜎𝑒
3 , (4.6) 

where 𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 − 𝛿𝑖𝑗𝜎𝑘𝑘/3, are held fixed throughout the finite deformation loading. 

Here the overbar denotes the macroscopic stress quantities corresponding to the volume 

averages over the unit cell of the corresponding local quantities. Corresponding to the 

axisymmetric compression tests reported in Section 3.1, we fix Θ = 60o  and apply 

                                                      
‡ We note that 𝛶 is the stress triaxiality in terms of the Cauchy stress while 𝜂 is the triaxiality 

in terms of the nominal stress. These two are approximately equal for the small macroscopic 

strains considered here but we denote them by different symbols to clarify this distinction. 
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volumetric average stresses 𝜎33 ≤ 0  and 𝜎11 = 𝜎22 ≤ 0  such that the stress state is 

axisymmetric about the 𝑥3 − axis (see Fig. 9 for definition of the co-ordinate system). 

This is achieved using the procedure described in Mbiakop et al. (2015) to keep 𝛶 and 

Θ fixed.  

 

Simulations are reported for 1/3 ≤ 𝛶 ≤ 1.0 . The material properties used in the 

simulations are as follows. The particles are modelled as essentially rigid compared to 

the matrix, consistent with the contrast between the matrix and particle phases in the 

idealised cermet. This is achieved by choosing a ratio 𝐺𝑝/𝐺𝑚 = 103 and 𝜈𝑝 = 𝜈𝑚 =

0.3. The matrix, absent of voids, is assumed to have a yield strain 𝜀0 = 0.1% and a 

hardening exponent 𝑁 = 10 . Moreover, unless otherwise stated, all calculations are 

presented for an initial porosity 𝑓0 = 10% (recall that the idealised cermets have an 

overall porosity in the range 1-5%, which corresponds to a matrix porosity in the range 

2.8% to 14%). All calculations were performed using the commercial finite element 

(FE) package Abaqus FEA and the unit cell discretised via 10-noded tetrahedral 

element (C3D10 in the Abaqus FEA notation) with a minimum element size ~0.05𝐷, 

where 𝐷 is the diameter of the spherical particles. The mesh is chosen to be denser in 

the narrow inter-particle channels, and coarser inside the elastic particles. All 

calculations are carried out in a finite strain setting.  

 

We emphasise here that loading is specified in terms of the Cauchy stresses and the 

corresponding triaxiality 𝛶 , consistent with stress measures employed in the porous 

matrix constitutive model. However, we present the stress predictions in terms of the 

2nd Piola-Kirchhoff stress 𝑆�̅�𝑗 ≡ 𝐽 �̅�𝑖𝑘
−1 𝜎𝑘𝑙 �̅�𝑗𝑙

−1 , where �̅�𝑖𝑗  is the macroscopic 

deformation gradient (i.e. volume average of the deformation gradient over the unit 

cell) and 𝐽 ≡ det (�̅�𝑖𝑗), in order to be consistent with the measurements discussed in 

Section 3.1. Correspondingly, the strains are presented in terms of the macroscopic 

Green-Lagrange strains �̅�𝑖𝑗 ≡ 0.5(�̅�𝑘𝑖 �̅�𝑘𝑗 − 𝛿𝑖𝑗), which are work-conjugate to 𝑆�̅�𝑗. The 

macroscopic effective stresses and strains then follow the definitions in Section 2. 

 

 

 
Figure 10: Predictions of the (a) 𝑆�̅�/𝜎0 − �̅�𝑒 response under uniaxial compression (𝜂 = 1/3) 

and (b) corresponding strain paths in �̅�𝑚 − �̅�𝑒 space for the FCC unit cell with particle volume 

fractions in the range 0.2 ≤ 𝑉𝑓 ≤ 0.65 and initial matrix porosity 𝑓0 = 0.1. 

 

 

4.2 Summary of predictions for the periodic composites 
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Predictions of the 𝑆�̅�/𝜎0 − �̅�𝑒  responses under uniaxial compression (𝛶 = 1/3)  are 

plotted in Fig. 10a, with the corresponding strain paths in �̅�𝑚 − �̅�𝑒 space included in 

Fig. 10b for particle volume fractions in the range 0.2 ≤ 𝑉𝑓 ≤ 0.65 and 𝑓0 = 0.1. As 

expected, the strength increases with increasing 𝑉𝑓. More intriguingly, the strain paths 

show a qualitative change with increasing particle volume fraction. At low 𝑉𝑓 , the 

composite undergoes volumetric compaction with the porosity in the matrix decreasing, 

consistent with the compressive mean stress associated with uniaxial compression. 

However, with increasing 𝑉𝑓, after an initial compaction phase the composite begins to 

dilate with 𝑑�̅�𝑚/𝑑�̅�𝑒 > 0 even under the imposed compressive mean stress. In fact, for 

the 𝑉𝑓 ≥ 0.6 composites, there is overall dilation on the order of 0.5% after deforming 

the composite to about �̅�𝑒 = 0.06.  

 

 
Figure 11: Predictions of spatial distribution of triaxiality 𝜐 in the FCC unit cell with volume 

fractions (a) 𝑉𝑓 = 0.2 and (b) 𝑉𝑓 = 0.65 of spherical particles. Results are shown for the case 

of an initial porosity 𝑓0 = 0.1 in the matrix with the unit cell subjected to uniaxial compression 

(𝛶 = 1/3) to a strain �̅�𝑒 = 0.1. Loading is axisymmetric about the 𝑥3 −axis. 

 

 
Figure 12: Predictions of spatial distribution of the porosity 𝑓 in the matrix in the FCC unit cell 

with volume fractions (a) 𝑉𝑓 = 0.2 and (b) 𝑉𝑓 = 0.65 of spherical particles. Results are shown 

for the case of an initial porosity 𝑓0 = 0.1 in the matrix with the unit cell subjected to uniaxial 

compression (𝛶 = 1/3) to a strain �̅�𝑒 = 0.1. Loading is axisymmetric about the 𝑥3 −axis. 
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In order to understand these differences, we include in Figs. 11a and 11b spatial 

distributions of the stress triaxiality (𝜐 ≡ −𝜎𝑚/𝜎𝑒) within models with  𝑉𝑓 = 0.2 and 

0.65, at �̅�𝑒 = 0.07. The stress state is more spatially homogeneous in the low volume 

fraction composite with 𝜐 > 0. By contrast, at high volume fractions, 𝜐 is spatially very 

heterogeneous and there exist regions wherein 𝜐 < 0 (i.e. tensile mean stresses) even 

though the macroscopic mean stress is compressive. These tensile mean stresses within 

the matrix result in the dilation of the matrix with an associated increase in the porosity. 

Contours of porosity, included in Fig. 12, show clearly that in the 𝑉𝑓 = 0.65 composite 

there are regions with significant increases in the porosity at the prescribed 

deformation, whereas in the 𝑉𝑓 = 0.2  composite, the porosity is seen to mainly 

decrease from this initial value. This high porosity is localised in between the thin inter-

particle zones where the triaxiality is also higher. The increase in porosity in the 𝑉𝑓 =

0.65 composite results in an overall dilation.  

 

This general behaviour is strongly affected by the initial porosity 𝑓0. Predictions of the 

variation of �̅�𝑚  with �̅�𝑒  for uniaxial compression of the 𝑉𝑓 = 0.6§  composite are 

included in Fig. 13 for 0.001 ≤ 𝑓0 ≤ 0.1. While the high porosity composites undergo 

initial compaction, this compaction phase is reduced or eliminated with decreasing 

porosity. On the other hand, 𝑑�̅�𝑚/𝑑�̅�𝑒  is nearly independent of 𝑓0  when the 

deformations as parameterised by �̅�𝑒  are large. This nevertheless implies that for a 

given �̅�𝑒 the overall levels of positive �̅�𝑚 are larger for composites with lower 𝑓0 as 

seen in Fig. 13 as the compaction mode is penalised at low 𝑓0. 

 

 
Figure 13: Predictions of the variation of �̅�𝑚 with �̅�𝑒 for uniaxial compression (𝛶 = 1/3) of 

the 𝑉𝑓 = 0.6 composite with the FCC unit cell. Results are shown for initial matrix porosities 

in the range 0.001 ≤ 𝑓0 ≤ 0.1. 

 

Predictions of the 𝑆�̅�/𝜎0 − �̅�𝑒  responses of the 𝑉𝑓 = 0.6  (𝑓0 = 0.1 ) composite with 

varying levels of triaxiality 𝛶 are included in Fig. 14a, and corresponding strain paths 

in �̅�𝑚 − �̅�𝑒  space are plotted in Fig. 14b. The corresponding measured 𝑆�̅�/𝜎0 − �̅�𝑒 

responses are also included in Fig. 14a with the choice 𝜎0 = 30 MPa  (Bele and 

Deshpande, 2015). There are some clear consistencies between measurements and 

                                                      
§ Henceforth we restrict results to the 𝑉𝑓 = 0.6 case for the high volume fraction composites. 

With increasing 𝑉𝑓, the thin matrix channels resulted in numerical convergence difficulties and 

a full set of results could not be obtained for 𝑉𝑓 > 0.6. 
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predictions: (i) the stress-strain measurements and predictions are in remarkable 

agreement with the predictions capturing the increase in the hardening rate with 

increasing triaxiality and (ii) both predictions and measurements show a transition from 

dilation to compaction with increasing triaxiality, which is in qualitative agreement with 

experiments. Nevertheless, a clear quantitative discrepancy remains between the 

numerical predictions and measurements: the levels of predicted dilation at low stress 

triaxiality are relatively small compared to the analogous experimental results (compare 

Figs. 3b and 14b). This difference can be understood by recalling that the level of 

dilation increases with increasing 𝑉𝑓 (Fig. 10b) due to the constraint imposed by the 

particle skeleton. While the particle volume fractions of these periodic models are 

approximately equal to those of the idealised cermets, there exists a key microstructural 

difference. The experimentally investigated cermets have a random packing of the 

spherical particles with particle-particle contacts forming force chains as discussed in 

Bele and Deshpande (2015) and Pickering et al. (2016). This imposes a strong 

kinematic constraint on the deformation mode, and we anticipate that similar to 

granular materials it results in relatively high macroscopic dilation.  

 

 
Figure 14: Predictions of the (a) 𝑆�̅�/𝜎0 − �̅�𝑒 responses and (b) corresponding strain paths in 

�̅�𝑚 −  �̅�𝑒 space for varying levels of triaxiality 𝛶. The calculations use the FCC unit cell with 

particle volume fraction 𝑉𝑓 = 0.6 and initial matrix porosity 𝑓0 = 0.1. In (a) we include the 

corresponding measurements with the measured stresses normalised by the Sn/Pb solder matrix 

yield strength 𝜎0 = 30 MPa. 
 

We note in passing here that the conventional porous plasticity model (i.e. model with 

no higher order terms such as gradients of plastic strain etc.) used to describe the matrix 

allows for large plastic strains to develop at the particle/matrix interfaces. In reality, the 

blockage of dislocation motion by the elastic particles will inhibit plastic straining near 

the interface (Danas et al., 2010) and thereby enhance the effective matrix strength. 

This strengthening effect due to the formation of a boundary layer at the interface is 

only significant in thin matrix films on the order of a few microns. While the roles of 

such higher order plasticity effects are not investigated here, the fact that the 

conventional plasticity model predicts the measured strength to reasonable level of 

accuracy (Fig. 14a) suggests that these effects play a minor role in the idealised cermets 

analysed here. By contrast, FE calculations performed as part of this study, but not 

shown here for the sake of brevity, suggest that de-bonding between the matrix and the 

particles significantly reduces the strength of the composite and increases the overall 

dilation levels. For instance, we found that for a composite with 60% volume particles, 

the uniaxial compressive strength of the de-bonded composite is about half that of the 
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composite with bonded particles but this de-bonded composite dilates to �̅�𝑚 ≈ 0.02 at 

a imposed strain �̅�𝑒 = 0.05  whereas the corresponding dilation in the bonded 

composite is negligible. 

 

The analysis of random composites with a high volume fraction of spherical particles, 

even though theoretically possible (see for instance Lopez-Pamies et al. (2013), albeit 

at lower particle volume fractions), is beyond the scope of current numerical tools for 

two reasons: the analysis will require (i) the modelling of large representative volume 

elements and many millions of degrees of freedom to adequately represent the porous 

matrix and the particles and (ii) the inclusion of the very thin matrix films in between 

particles that are touching each other; accurate FE modelling of the deformation of such 

thin porous films that undergo very large local deformations further complicates the FE 

modelling. A more appropriate discrete particle model is presented in the following 

section that is free of such disadvantages. 

 

 

5. Analysis of the deformation of a random assembly of spherical particles 

The periodic regular composite analysed in Section 4 does not adequately capture the 

kinematic constraints imposed by the particle skeleton. Hence in order to understand 

the kinematics of idealised cermets, we analyse the response of a model comprising a 

random aggregate of densely packed particles, with no matrix filling the interstitial sites 

(i.e. a so-called discrete element model). This approximation thus represents the other 

extreme, i.e. we model the constraints due to the particle skeleton but do not accurately 

account for the constraints imposed by the matrix. 

 

5.1 Brief description of model 

Here we analyse a “full specimen” rather than a RVE. The specimen is a cuboid of 

height 𝐻  and square cross-section of side length 𝐻/2 , containing randomly packed 

spherical particles of diameter 𝐷 ≈ 𝐻/12  as shown in Fig. 15a. The particles are 

packed using the Lubachevsky-Stillinger algorithm (Lubachevsky and Stillinger, 

1990), which has been used extensively to simulate random packing of objects within 

boundary walls. Within the cuboidal box, 400 spheres are packed to a volume fraction 

𝑉𝑓 ≈ 0.6. Both tensile and compressive inter-particle forces are modelled, in order to 

ensure the stability of the assembly under hydrostatic and deviatoric applied stress 

states. The contact model sketched in Fig. 15b defines these forces. Such a modelling 

scheme is commonly referred to in the literature as a “discrete element” simulation. 

 

The contact law between particles is defined as follows. An elastic-plastic truss (i.e. a 

strut that can carry tensile and compressive loads but no shear or bending loads) of 

cross-sectional area 𝐴𝑇 , tensile yield strength 𝛴𝑇, compressive yield strength 𝛴𝐶 and 

Young’s modulus 𝑌𝑇  connects the centres of each neighbouring particle. The 

undeformed length of the truss (i.e. state when the truss carries no force) is its length in 

the initial undeformed configuration of the assembly with the truss exerting either 

compressive or tensile forces between the connecting particles as it is shortened or 

lengthened, respectively from this initial state. In order to represent the full kinematic 

constraint of the particles, we also include a soft contact particle model along the lines 

of the model introduced by Cundall and Strack (1979). This contact model is included 

in the sketch in Fig. 15b. Briefly, with 𝑟 as the distance of separation of the particle 

centres, and the particle interpenetration given by 𝛿𝑛 = 𝑟 − 𝐷, the normal contact force 

during active contact (𝛿𝑛 < 0) is given by 𝐹𝑛 =  𝐾𝑛𝛿𝑛 so that the total contact force 
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equals the contact force 𝐹𝑛 and the force exerted by the truss.  A tangential force 𝐹𝑠 

between the particles also only exists during an active contact, and opposes sliding. It 

is limited in magnitude to |𝐹𝑠|  < 𝜇|𝐹𝑛| , where 𝜇  is the friction coefficient. This 

frictional force 𝐹𝑠 is defined by an elastic-plastic Coulomb type relation with stiffness 

𝐾𝑠, i.e.  

 

 𝐹𝑠 = {𝐾𝑠�̇�𝑠          if |𝐹𝑠|  < 𝜇|𝐹𝑛| or 𝐹𝑠�̇�𝑠  < 0
0                otherwise

’ (5.1) 

 

with �̇�𝑠 defined as the tangential displacement rate between the contacting particles. 

Unless otherwise specified, all calculations are presented with 𝐾𝑛 = 70𝑌𝑇𝐴𝑇/𝐷, 𝐾𝑠 =
2/7𝐾𝑛, 𝜇 = 0.6, 𝛴𝐶 = 𝑌𝑇/100 and 𝛴𝑇/𝛴𝐶 = 1. The purpose of this model is only to 

investigate the kinematics and does not attempt to predict the stress versus strain 

response. While the absolute values of these strengths and stiffnesses do not affect the 

kinematics, for completeness we mention that the calculations used a relatively low 

truss strength 𝛴𝐶 = 10 MPa. 

 

 
Figure 15: (a) The assembly of 400 spherical particles forming a cuboidal specimen of height 

𝐻  and base 𝐻/2 × 𝐻/2  analysed using discrete element simulations. Axisymmetric loading 

about the 𝑥3 −  axis was applied by compressing the specimen between the rigid platens 

included in the sketch. (b) Sketch of the inter-particle contact model used in the simulations. 

 

Similar to the experiments reported in Section 3, the cuboidal specimen (Fig. 15a) 

analysed here was subjected to axisymmetric loading about the 𝑥3 −  axis with 

proportional stress paths. This loading was imposed as follows. The specimen was 

compressed in the 𝑥3 − direction between two rigid platens as shown in Fig. 15a. All 

displacement degrees of freedom were constrained on the bottom platen, while in the 

top platen all rotations, and translations in the 𝑥1 and 𝑥2 directions, were constrained. 

The top platen was compressed against the specimen by the application of a 

compressive force 𝐹3  in the 𝑥3 −  direction such that the nominal axial stress �̅�33 =
4𝐹3/𝐻2, with 𝐹3 defined to be negative in compression. Further, a non-sliding frictional 

constraint was imposed on the particles in contact with both the platens, i.e. the 

translation in the 𝑥1 − 𝑥2 plane of particles in contact with the platens was constrained. 

The specimen was subjected to an axisymmetric stress state by specifying that the 
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nominal stresses �̅�11 = �̅�22 . These stresses are related to the axial stress via the 

triaxiality 𝜂 via 

 �̅�11 = �̅�22 =
3𝜂 + 1

3𝜂 − 2
�̅�33. (5.2) 

Note that here we use the symbol 𝜂 to denote triaxiality, as it is defined in a manner 

analogous to the experiments in terms of the nominal stresses. The forces on the lateral 

surfaces with outward normal 𝑛𝑗  (in the undeformed configuration) that generate these 

nominal stresses �̅�11 and  �̅�22 are given as  

 𝐹𝑖 =
𝐻2

2
�̅�𝑖𝑗𝑛𝑗 . (5.3) 

This total force is distributed equally over all particles on that lateral outer surface, i.e. 

a force 𝑓𝑖 = 𝐹𝑖/𝐾  is applied at the centre of each of the 𝐾  surface particles on the 

respective lateral surface. This scheme ensures that the specimen is subjected to 

proportional axisymmetric stressing with overall force equilibrium guaranteed and 

moment equilibrium satisfied by the force distributions generated by the contact of the 

specimen with the rigid platens on the top and bottom surfaces. 

 

 
Figure 16: Discrete element predictions of the variation of the macroscopic strains �̅�𝑚 and �̅�𝑒 

for varying levels of triaxiality 𝜂. 

 

The main aim of this model is to predict both the overall deformation state and also the 

distribution of deformation within the specimen. The local “strains” within the 

assembly are defined as follows. The domain is discretised into linear (i.e. 4-noded) 

tetrahedral elements with the nodes at the centres of the particles. The displacements at 

the four nodes of the tetrahedra along with their associated shape functions in the 

undeformed configuration are used to calculate the deformation gradient 𝐹𝑖𝑗
(𝑘)

 within 

element (𝑘) and the corresponding Green-Lagrange strain 𝐸𝑖𝑗
(𝑘)

≡ 0.5(𝐹𝑘𝑖
(𝑘)

𝐹𝑘𝑗
(𝑘)

− 𝛿𝑖𝑗). 

The volume averaged deformation gradient over the 𝑀 tetrahedral elements with the 

specimen then follows as 

 �̅�𝑖𝑗 ≡
1

𝑉0
∑ 𝑉(𝑘)𝐹𝑖𝑗

(𝑘)

𝑀

𝑘=1

, (5.4) 

where 𝑉0 = ∑ 𝑉(𝑘)𝑀
𝑘=1   with 𝑉(𝑘)  the undeformed volume of element (𝑘) . In the 

following we discuss distributions of the volumetric and effective strains 𝐸𝑚
(𝑘)

 and 𝐸𝑒
(𝑘)

, 

respectively defined in a manner analogous to the DVC analysis of Section 3.2. We 
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emphasise here that 𝐸𝑖𝑗  is not the strain in the matrix or the particles but rather a 

measure of the average strain in the tetrahedron comprising both matrix and particles. 

The corresponding macroscopic average strains �̅�𝑖𝑗 as well as �̅�𝑚 and �̅�𝑒 are defined 

from �̅�𝑖𝑗 as detailed in Section 4.1. We note in passing that the non-linear definition of 

the Green-Lagrange strain implies that �̅�𝑖𝑗 is not equal to the volume average of 𝐸𝑖𝑗
(𝑘)

. 

 

5.2 Deformation fields and effect of triaxiality 

Predictions of the variation of �̅�𝑚 with �̅�𝑒 are plotted in Fig. 16 for selected triaxialities 

𝜂. Consistent with observations (Fig. 3b) and predictions of the periodic model (Fig. 

14b), the levels of dilation increase with decreasing triaxiality 𝜂  and the aggregate 

undergoes overall compaction at the higher triaxialities over the range of deformations 

considered here. However, unlike the periodic model of Section 4, the levels of dilation 

are now significantly higher for the low triaxialities and similar to those seen in the 

measurements. This confirms our initial hypothesis that at a relatively high particle 

volume fraction, a random particle arrangement invariably implies percolated particle 

chains, and results in kinematic constraints that give rise to high levels of dilation at 

low triaxialities. 

 

Three-dimensional views of the specimen showing distributions of 𝐸𝑚  and 𝐸𝑒  are 

included in Figs. 17 and 18, respectively. The views are shown at four levels of applied 

strain �̅�𝑒  and for three values of 𝜂  (the two largest values of �̅�𝑒  are omitted for the 

highest triaxiality of 𝜂 = 1.5 as those calculations encountered numerical convergence 

difficulties). First consider the distributions of 𝐸𝑚. At low levels of overall deformation 

(�̅�𝑒 = 0.02), regions of both compaction and dilation are observed for all values of 𝜂. 

With increasing deformation, regions of dilation dominate for the 𝜂 = 1/3 case while 

regions of compaction dominate for 𝜂 = 1.5. This is consistent with the overall levels 

of �̅�𝑚  seen in Fig. 16 but nevertheless it is worth emphasising that regions of 

compaction and dilation are observed for both 𝜂 = 1/3 and 1.5 at all levels of �̅�𝑒, in 

line with the DVC measurements reported in Section 3.2. By contrast the distributions 

of 𝐸𝑒 are reasonably similar for the three triaxialities 𝜂 included in Fig. 18. 

 

To further illustrate the observation that the kinematic response of a region within the 

specimen is dependent on the macroscopic stress triaxiality, we consider in Fig. 19 the 

evolution of 𝐸𝑚  with the overall deformation �̅�𝑒  for three tetrahedra within the 

specimen. Results in Fig. 19 are shown for the 𝜂 = 1/3 and 1.5 cases and exemplifies 

the complexity of the kinematics. Tetrahedra labelled (i) and (ii) in Fig. 19 switched 

from dilatory paths to compactive paths as triaxiality was changed from 𝜂 = 1/3 to 1.5 

while the tetrahedron labelled (iii) dilated for deformation with 𝜂 = 1.5  but slightly 

compacted with 𝜂 = 1/3.  
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Figure 17: Discrete element predictions of the spatial distribution of the volumetric strain 𝐸𝑚 

(shown on the deformed configurations) in the idealised cermet specimen at selected applied 

macroscopic strains �̅�𝑒. Results are shown for three stress paths (a) 𝜂 = 1/3, (b) 𝜂 = 1.0 and 

(c) 𝜂 = 1.5. The numerical simulations did not converge for �̅�𝑒 > 4% for 𝜂 = 1.5 and hence 

those cases are omitted in (c). 
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Figure 18: Discrete element predictions of the spatial distribution of the effective strain 𝐸𝑒 

(shown on the deformed configurations) in the idealised cermet specimen at three applied 

macroscopic strains �̅�𝑒. Results are shown for three stress paths (a) 𝜂 = 1/3, (b) 𝜂 = 1.0 and 

(c) 𝜂 = 1.5. The numerical simulations did not converge for �̅�𝑒 > 4% for 𝜂 = 1.5 and hence 

those cases are omitted in (c). 
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While the dependence of local particle kinematics on the macroscopic stress state is 

relatively complex, the trends of the collective response are clear from Fig. 16: the 

specimen undergoes less dilation and even compaction with increasing triaxiality. This 

suggests that with increasing triaxiality, a larger fraction of the specimen is compacting 

rather than dilating. In order to quantify this, we define a dilated volume fraction as 

 

 𝜙 =
1

𝑉0
∑ 𝑉(𝑘) ℋ[

𝑀

𝑘=1

𝐸𝑚
(𝑘)

], (5.5) 

where ℋ[∙]  is a Heaviside step function. The variation of 𝜙  with �̅�𝑒  is included in 

Fig. 20 for 𝜂 = 1/3  and 𝜂 = 1.5 : clearly 𝜙  is significantly higher at the lower 

triaxiality value. Moreover, while 𝜙 is nearly monotonically increasing with �̅�𝑒 for 𝜂 =
1/3, the 𝜙 versus �̅�𝑒 relation fluctuates at 𝜂 = 1.5 as regions of the specimen compact 

and dilate alternatively during different stages in the deformation. 

 
 

 
Figure 19: Discrete element predictions of the evolution of the mean strain 𝐸𝑚  with the 

macroscopic strain �̅�𝑒 in three selected tetrahedra within the assembly of spherical particles 

analysed here. The three tetrahedra are indicated in the specimen and the 𝐸𝑚 − �̅�𝑒  curves 

shown for 𝜂 = 1/3 and 𝜂 = 1.5. 

 

5.3 Effect of inter-particle contact properties 

The differences in the local kinematic response to the imposed stress triaxiality are 

related to the relative constraints against compaction and dilation, and can be 

understood in a qualitative manner as follows. For the purpose of this discussion assume 

that there are two modes whereby a local region can be deformed to a given level of 

𝐸𝑒: a dilatory and a compaction mode. The dilatory mode is inhibited with increasing 

triaxiality as the mode involves work done against the externally applied pressure, with 

the compaction mode becoming more favourable as seen in the results presented above. 

Moreover, increasing the internal constraints can also inhibit the dilatory mode. For 

example, an incompressible matrix filling all the interstitial gaps between the particles 

will significantly reduce the tendency of the system to dilate, with the dilation mode 

only activated if the tensile hydrostatic stress within the matrix exceeds the cavitation 

pressure. In order to illustrate the effect of varying the level of the dilatory and 
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compaction constraints, we report here calculations with unequal compressive and 

tensile yield strengths: viz. the tensile truss yield strength 𝛴𝑇 is decreased from 𝛴𝑇 =
𝛴𝐶 to 𝛴𝐶/𝛴𝑇 = 100 while keeping all other particle contact properties unchanged from 

the reference values detailed in Section 5.1. 

 

Predictions of the variation of 𝜙 with �̅�𝑒 are included in Fig. 20 for 𝛴𝐶/𝛴𝑇 = 10 and 

100 in addition to the reference value of 𝛴𝐶/𝛴𝑇 = 1 for both 𝜂 = 1/3 and 1.5. With 

increasing 𝛴𝐶/𝛴𝑇, the dilated fraction 𝜙 clearly increases at 𝜂 = 1/3, due to the fact 

that the lower tensile truss strength favours the dilatory mode over the compaction 

mode. A similar increase is also observed for 𝜂 = 1.5 but the changes are relatively 

small as only a small fraction of the specimen dilates at this high triaxiality.  

 

It is thus evident that a full quantitative prediction of the response of the idealised 

cermets reported in Section 3 will require not only the accurate capture of the constraint 

imposed by the porous matrix (using formulations as in Section 4) but also the analysis 

of large RVEs with a high volume fraction of randomly packed spheres that include the 

constraints on the kinematics imposed by the contact of the particles. Such an analysis 

is beyond the scope of current computational capability but the limiting models 

presented here reveal some key physics and illustrate the limitations of these simplified 

models. 

 

 
Figure 20: Discrete element predictions of the fraction 𝜙  of the specimen that undergoes 

dilation, as a function of the macroscopic strain �̅�𝑒 for two selected values of the triaxiality 𝜂. 

In each case we show results for the reference value of 𝛴𝐶/𝛴𝑇 = 1 and two additional values 

of 𝛴𝐶/𝛴𝑇. 

 

 

6. Concluding remarks 
The response of idealised cermets comprising approximately 60% by volume steel 

spheres in a Sn/Pb solder matrix is investigated under a range of axisymmetric 

compressive stress states. The measured macroscopic stress-strain responses, and 

digital volume correlation (DVC) analyses revealed two distinct deformation 

mechanisms. At low triaxialities, the cermets behave as granular media and dilate under 

compressive loading. This gives rise to an increasing hardening rate with increasing 

triaxiality. By contrast, at sufficiently high triaxialities the deformation switches to a 

macroscopically incompressible mode, resulting in a stress versus strain response that 

is independent of triaxiality. However, the DVC reveals that under all triaxialities there 
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are local regions with dilatory and compaction responses; the magnitude of dilation and 

the number of zones wherein dilation occurs decreases with increasing triaxiality.  

 

Two numerical models are presented in order to understand these mechanisms: (i) a 

FCC periodic unit cell model comprising nearly rigid spherical particles in a porous 

metal matrix and (ii) a discrete element model comprising a large random aggregate of 

spheres connected by non-linear normal and tangential “springs”. The periodic unit cell 

model captures the measured stress-strain response with reasonable accuracy but 

significantly under-predicts the observed dilation at the lower triaxialities. While this 

model does predict overall dilation at low triaxialities, it under-predicts the magnitude 

of the dilation significantly because the non-contacting particles in this model 

underestimate the kinematic constraints imposed by the percolated particle chains in 

the idealised cermets. 

 

By contrast, the discrete element model captures the kinematics and predicts not only 

the overall levels of dilation but also the fact that both local compaction and dilatory 

regions exist for all triaxialities. However, this model does not explicitly include the 

matrix and it is unclear how the inter-particle contact law can be directly connected to 

the matrix properties. Thus, the model cannot be used as a predictive tool for the overall 

stress versus strain responses of idealised cermets.  

 

The analyses reported here have revealed that the complete constitutive response of 

cermets depends sensitively on both the kinematic constraints imposed by the particle 

aggregate skeleton and the constraints imposed by the metal matrix filling the 

interstitial spaces in that skeleton. It is thus evident that a full quantitative prediction of 

the response of the idealised cermets will require the analysis of large RVEs comprising 

a high volume fraction of randomly packed spheres within a porous plastic matrix. 

While such an analysis is beyond the scope of current computational capability, the 

limiting models presented here reveal some key physics of the deformation mechanisms 

of cermets. 

 

Appendix A: Volumetric and deviatoric strains for Green-Lagrange strain 

measures 

Throughout the main body of the paper we have used Green-Lagrange strain measures. 

This is because local strains and rotations within the idealised cermets might be large 

and thus it is most convenient to illustrate the deformations as measured by the DVC 

analysis via a finite strain measure such as the Green-Lagrange strain measure. Further, 

for simplicity, we then used 𝐸𝑚𝛿𝑖𝑗  and 𝐸𝑖𝑗
′ = 𝐸𝑖𝑗 − 𝐸𝑚𝛿𝑖𝑗/3   to parameterise the 

volumetric and deviatoric strains, respectively. These measures were motivated from 

the analogous small strain definitions but are not precise in the finite strain context. 

 

While the decomposition 𝐸𝑖𝑗 = 𝐸𝑖𝑗
′ + 𝐸𝑚𝛿𝑖𝑗/3 ensures that 𝐸𝑖𝑗

′  is trace-less it is not a 

deviatoric strain in the sense of representing a deviation from the volumetric strain. 

This is because 𝐸𝑚  is not the Green-Lagrange volumetric strain. An alternative 

decomposition suggested by Bažant (1996) is 

 𝐸𝑖𝑗 = 𝐸𝑖𝑗
𝑑 + 𝛿𝑖𝑗𝐸𝑣/3, (A1) 

with 
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𝐸𝑣 = 3 (𝐸0 +

1

2
𝐸0

2), 

 

(A2) 

where 𝐸0 ≡ 𝐽1/3 − 1  with 𝐽 = det(𝐹𝑖𝑗)  and 𝐹𝑖𝑗  the deformation gradient. With this 

decomposition 𝛿𝑖𝑗𝐸𝑣/3  is the Green-Lagrange strain tensor for purely volumetric 

deformations and therefore 𝐸𝑖𝑗
𝑑   is a deviatoric strain tensor (i.e. vanishes for purely 

volumetric deformation). However, now 𝐸𝑖𝑗
𝑑  is no longer trace-less as is the case with 

small strain measures of the deviatoric strain tensor. We can then define a measure of 

the deviatoric deformation analogous to the von-Mises effective strain as 

 𝐸𝑒𝑞 ≡ √
2

3
𝐸𝑖𝑗

𝑑 𝐸𝑖𝑗
𝑑 , (A3) 

and decompositions of the average strain measures �̅�𝑖𝑗 follow analogous definitions. 

The data in Fig. 3b for 𝜂 = 1/3, 0.75, 1 and 1.5 is re-plotted in Fig. A1a as �̅�𝑣 versus 

�̅�𝑒𝑞 with the data in terms of �̅�𝑚 versus �̅�𝑒 also included for comparison purposes. The 

differences are relatively small over the full range of strains investigated here.  

 

 

 
Figure A1: Comparisons between the measured (a) �̅�𝑣  versus �̅�𝑒𝑞  and �̅�𝑚  versus �̅�𝑒  strain 

curves and (b) 𝛥𝑉/𝑉0 versus �̅�𝑎 and �̅�𝑚 versus �̅�𝑎 curves for the idealised cermets. Curves are 

shown here for four values of 𝜂 using the data from Fig. 3b. 

 

We emphasise that while �̅�𝑣𝛿𝑖𝑗  is a volumetric tensor, neither �̅�𝑣  nor �̅�𝑚  gives the 

volumetric strain defined as 𝛥𝑉/𝑉0, where 𝛥𝑉 and 𝑉0 are the change in volume and 

initial volumes, respectively of the specimen. To illustrate this we re-plot in Fig. A1b 

the data of Fig. 3b in terms of 𝛥𝑉/𝑉0 = 𝐽 − 1 versus �̅�𝑎 along with �̅�𝑚 also versus �̅�𝑎. 

Again, we can see that the differences between �̅�𝑚 and 𝛥𝑉/𝑉0 are relatively small even 

at the highest levels of deformation investigated here. Similar small discrepancies are 

also seen between �̅�𝑣  and 𝛥𝑉/𝑉0  (omitted here for the sake of brevity). We thus 

conclude that for strain levels investigated here the simple measures of volumetric and 

deviatoric deformations motivated by small strain definitions suffice but we anticipate 

significant differences to emerge at larger strains. 
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