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ABSTRACT 

 

This paper is an attempt to test PENTA, an 

articulatory-functional model, on Persian focus 

prosody. The test was done on a corpus consisting of 

utterances with different focus conditions using 

PENTAtrainer2, a trainable prosody synthesizer that 

optimizes categorical pitch targets each correspond-

ing to multiple communicative functions. The 

evaluation was done by comparing the F0 contours 

generated by the extracted pitch targets to those of 

natural utterances through numerical and perceptual 

evaluations. The numerical results showed that the 

synthesized F0 was close to the natural contour in 

terms of RMSE (= 1.94) and Pearson’s r (= 0.84). 

Perceptual evaluation showed that the rate of focus 

identification and naturalness judgement by native 

Persian listeners were highly similar between 

synthetic and natural F0 contours.  

 

Keywords: PENTA model, focus, quantitative target 

approximation, Persian. 

1. INTRODUCTION 

Prosody as a key component of speech has always 

been a hard challenge for speech technology.  For 

instance, in text-to-speech synthesis, it is still an 

unresolved issue how to generate rich human-

sounding prosody. Finding a solution to this problem 

will not only facilitate the progress of speech 

technology but also improve the theoretical 

understanding of speech.     

The main acoustic correlate of speech prosody is 

F0, and most research effort has been spent on trying 

to achieve acceptable computational modeling of 

pitch contours. Although variability and uncertainty 

of F0 makes its modeling really difficult, there have 

been many attempts to achieve this goal in recent 

years as reviewed in [16].  

Previous approaches can be largely divided into 

two general categories, namely, those that model F0 

contours directly and those that attempt to simulate 

the underlying mechanisms of F0 production [10]. 

One of the latter approaches is the parallel encoding 

and target approximation (PENTA) model [14], 

which is currently realized by the quantitative target 

approximation (qTA) model [10]. It has been shown 

that high-accuracy predictive synthesis of F0 in 

languages like English, Mandarin and Thai can be 

achieved with this approach [16]. The current 

contribution is to assess PENTA’s ability in 

modeling Persian F0 in a small corpus containing 

focal and non-focal utterances.  

Persian prosody has generally been categorized 

as a stress language at word level [4, 5, 6, 7] and 

consisting of accentual phrases with a single pitch 

accent and high or low boundary tones at sentence 

level [1, 3, 9, 11]. Under focus, Persian prosody 

changes dramatically with higher F0 in on-focus 

elements and a significant decrease in post-focal 

words, hence a PFC (post-focus compression) 

language [11, 12, 13, 15].   

 

2. PENTA MODEL 

Drawing on an articulatory-functional view of 

speech, PENTA is a framework for linking 

communicative meanings to fine-grained prosodic 

details [14, 16]. From its inception, the model has 

been focused on two aspects of speech prosody, 

namely, communicative functions and articulatory 

mechanisms [14], each of which will be discussed 

briefly below.  

 

 
 

Figure 1: A sketch of Parallel Encoding and Target 

Approximation (PENTA) model [14]. 



2.1. Communicative functions 

In PENTA, a communicative function is a specific 

communicative meaning that the speaker intends to 

convey to the listener through speech prosody. As 

shown in Figure 1 the stacked boxes on the far left 

conceptualizes the individual functions as the 

driving force of the model. Each of these functions 

has a unique encoding scheme (the second stack of 

boxes from the left). These encoding schemes are 

composed of specifications of the pitch targets 

shown in the open box in the middle. These targets 

are then articulatorily implemented through target 

approximation, which ultimately generates the 

observed continuous F0 contours, as shown in the 

two boxes on the right. The PENTA framework thus 

describes the generation of speech prosody as a 

process of encoding communicative functions 

through target approximation.  

2.2. Target approximation 

The lower part of Figure 1 illustrates the target 

approximation (TA) process proposed by [17]. The 

red solid curve is the F0 contour that asymptotically 

approaches two successive pitch targets, one 

dynamic and the other static, represented by the 

dashed lines. The three grey vertical lines represent 

syllable boundaries. This conceptual model was later 

implemented as the quantitative Target Approxima-

tion (qTA) model in [10]. In qTA, the F0 of each 

syllable is represented by the following third-order 

critically damped linear equation: 

 

(1)                                    
        

  

where m and b denote the slope and height of the 

pitch targets, respectively, and   represents the rate 

or strength of target approximation. In addition, the 

three transient coefficients in (1) are computed from 

the following formulae: 

 

(2)                     
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qTA therefore uses three model parameters, m, b and 

 , to control the F0 trajectory of each syllable. 

Syllable is assumed as the basic prosody carrier in 

the PENTA model.  

2.3. PENTAtrainers 

The target parameters of qTA can be obtained in 

various ways. They can be specified arbitrarily (e.g., 

for purpose of a perception experiment), or obtained 

automatically through training on real speech data. 

To achieve automatic parameter estimation, two 

Praat-script-controlled [2] programs have been 

developed, PENTAtrainer1 [10] and PENTAtrainer2 

[16]. Both trainers extract target parameters via 

analysis-by-synthesis, but they differ in the manner 

of optimization. PENTAtrainer1 performs an 

exhaustive search, i.e., testing all the possible targets 

within a range and then selecting the one that 

generates the best fit to the natural F0 of each 

individual syllable. In this way, however, categorical 

targets corresponding to specific communicative 

functions could be obtained only by post-hoc 

averaging of targets belonging to the same catego-

ries [10]. In contrast, PENTAtrainer2 obtains 

optimal categorical targets directly by performing a 

global stochastic search over an entire corpus [16]. 

The present study used PENTAtrainer2 to extract 

categorical targets from a Persian corpus originally 

collected for a study of focus prosody. 

3. METHOD 

3.1. Corpus 

The corpus was made of utterances originally 

collected for a study of the production and percep-

tion of focus in Persian [12, 13]. The target sentence 

is shown in Table 1. Five male speakers produced 

six different versions of this sentence in various 

focus conditions, which in total make up 6 foci x 5 

repetitions x 5 speakers = 150 utterances. 

 
Table 1: The target sentence of the experiment 

W1 W2 W3 W4 W5 

maha baba-ye nili-ro lændæn didim 

we-PL father-EZ Nili-DO London see.PST-1PL 

 

To compare the current perception results with those 

on natural utterances, we selected utterances from 

three of the speakers that were used in the perception 

experiment in [12]. The utterances of these speakers 

had the minimum, maximum and median standard 

deviations of F0 of all the five speakers. In total, 

therefore, there were 6 foci x 5 repetitions x 3 

speakers = 90 tokens.  

3.2. Functional annotation and modeling 

Following PENTA’s assumption of parallel 

encoding of communicative functions, the corpus 

was annotated with three functional layers: stress 

(Stressed / Unstressed), syllable position (Initial / 

penultimate / Final) and focus condition (Pre-focus / 

On-focus / Post-focus), as shown in Figure 2. All 

syllable boundaries were marked manually. In 



addition, F0 rectification was done manually with the 

help of the annotation tool to check the vocal cycles 

in the wave form.     

After the annotation, the learn tool in PEN-

TAtrainer2 was used to obtain all the multi-

functional pitch targets (19 in total) which were then 

used by the synthesis tool to obtain the final 

synthesis results. The training and synthesis were 

performed in a speaker-independent manner. That is, 

the pitch targets were first extracted from each 

speaker, and then averaged across the speakers. The 

averaged targets were then used to perform synthesis 

on the utterances of all speakers.  

 

 
 

Figure 2: The layered annotation of communicative 

functions. The layers from top to down are stress, 

syllable position and focus condition.  U and S denote 

unstressed and stressed, I, F and P denote initial, final 

and penultimate, PRE, ON and POS denote pre-focus, 

on-focus and post-focus, respectively. 

3.3. Perceptual evaluation 

Five males and five females with the same language 

background as those in [12] were recruited from an 

educational centre to perform the perception 

evaluation. They had no self-reported speech and 

hearing disorders, and they were paid for their 

participation. 

ExperimentMFC in Praat was used to carry out 

two separate experiments on focus identification and 

naturalness judgement, respectively. Listeners were 

instructed to identify the focused word in one task 

and to judge whether the utterance was natural or 

synthetic in another task. They had an optional 

practice run before doing the main tests.  

3.4. Results  

Figure 3 shows the demo window of the synthesis 

tool in PENTAtrainer2 for an utterance by one of the 

speakers.  

 

 

Figure 3: The demo window of the synthesis tool of 

PENTAtrainer2, showing the original contours of an 

utterances (dotted blue curve), the learned pitch 

targets (green dashed lines), and the synthetic contours 

(red dotted curve).  

 

The blue curve, green line and the red trajectory are 

the original pitch contour, the learned pitch targets 

and the synthesized contour, respectively. Figure 4 

shows examples of mean time-normalized synthetic 

and original F0 contours.     

 
Figure 4: Mean time-normalized original (blue solid 

line) and synthetic (red dotted line) F0 contours across 

five repetitions and three speakers. Bold-face indicates 

a focus location. 

Table 2 shows the results of RMSE and Pearson’s r 

for neutral-focus and focused utterances, which 

indicate the goodness of fit between the synthetic 

and original F0. These values show very good 

synthesis performance, comparable to those reported 

in previous studies [8, 16], indicating that the 

reconstructed F0 fits the original trajectory quite 

well.  

 
Table 2: Average RMSE and Pearson’s r correlation 

coefficients between two types of neutral focus and 

focused utterances.  

Sentence Type RMSE Correlation 

Neutral focus 1.62 0.76 

Focus 2.01 0.86 

 

Figure 5 shows the rate of focus identification in the 

listening experiment. The highest and lowest rate of 

focus recognition belongs to utterances with focus 

on the second and fifth (last) word, respectively. It is 

comparable to the results of [12] which were 

obtained with the same methodology from natural 

utterances.  
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Figure 5: Percentage (numbers above the bars) of 

correct identification of neutral focus and focus on 

word 1-5. The error bars represent standard errors.  

Table 3 shows the confusion matrix of focus 

perception. The main difference is between focus on 

word 5 and the other focus locations.  

 
Table 3: Confusion matrix of focus perception of 

synthesized utterances (in percentage of identifica-

tion). Bold face indicates correct focus identification. 

         heard as 

original 

 

none W1 W2 W3 W4 W5 

None 88.6 

 

3.6 

 

0.0 

 

1.6 

 

3.6 

 

1.6 

 W1 12 

 
85.3 

 

2 

 

0.0 

 

0.0 

 

0.0 

 W2 4.6 

 

2 

 
93.3 

 

0.0 

 

0.0 

 

0.0 

 W3 13.3 

 

1.3 

 

3.3 

 
79.3 

 

2.6 

 

0.0 

 W4 8.0 

 

0.0 

 

0.0 

 

0.0 

 
91.3 

 

0.6 

 W5 28.6 

 

0.6 

 

0.0 

 

0.0 

 

5.0 66.0 

  

Table 4 shows the results of post-hoc pairwise 

comparisons with Bonferroni adjustments. The only 

significant difference is between the focus on word 5 

and focus on words 2 and 4. In other words, the rate 

of correct focus recognition for word 5 is signifi-

cantly lower than the focus on words 2 and 4. This is 

also comparable to the results of the same experi-

ment for natural utterances reported in [12].       
 

Table 4: Results of post-hoc pairwise compari-

sons. The mean difference is significant at the .05 

level. 

 

Focus 

Type (I) 
 

Focus 

Type (J) 

Mean 

Difference (I-J) 

Std. 

Error Sig. 

None  
W1 

W2 

W3 

W4 

W5 

5.333 

-2.669 

11.333 

-.668 

25.334 

5.692 

4.355 

8.836 

5.918 

6.426 

1.000 

1.000 

1.000 

1.000 

.051 

W1 W2 

W3 

W4 

W5 

-8.002 

6.000 

-6.001 

20.001 

4.074 

7.533 

5.484 

8.835 

1.000 

1.000 

1.000 

.748 

W2  W3 

W4 

W5 

14.002 

2.001 

28.003
*
 

6.399 

3.151 

6.111 

.846 

1.000 

.020 

W3  W4 

W5 

-12.001 

14.001 

4.423 

8.343 

.358 

1.000 

W4  W5 26.002
*
 5.208 .011 

 

The only difference between the two studies is that 

in [12] there was also a significant difference 

between focus on word 5 and neutral focus 

condition. However, it is interesting to see that the 

rate of focus identification for synthesized utterances 

was higher than the natural utterances in [12] for all 

focus conditions (84.0% vs. 75.5%). 

Figure 6 shows the results of naturalness judge-

ment. There is no significant difference in either 

neutral-focus [F(1,9) = 0.87, p = 0.775] or focused 

utterances [F(1,9) = 2.969, p = 0.119].     

 

 
Figure 6: Means (bars and numbers above them) and 

standard errors (vertical lines) of naturalness evalua-

tion of synthesized utterances in focus and neutral 

focus condition. 

4. DISCUSSION AND CONCLUSION 

The results reported above demonstrate that it is 

possible to achieve high quality synthetic F0 in non-

tonal languages like Persian with PENTAtrainer2, a 

semi-automatic software package for studying 

speech prosody which combines simulation of 

articulatory mechanisms of pitch production, 

functional annotation and stochastic optimization. 

Subjective and objective evaluation tests showed 

good results, which were comparable to previous 

ones on modeling Mandarin, Thai, English and 

Japanese [8, 16]. It is especially worth noting that 

perception of focus was better for synthetic prosody 

in this study than for natural prosody in [12]. 

PENTAtrainer2 was therefore found to be an 

effective tool for simulating focus prosody in 

Persian. For future research we would like to test 

this model with a large scale Persian database 

designed for a text-to-speech application to check 

the predictive power of this framework in speech 

synthesis systems.    
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